Econometrics 2 - Lecture 1
ML Estimation, Diagnostic Tests

Contents

- Organizational Issues
- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and Illustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests

Organizational Issues

Course schedule (proposal)

Class	Date
1	Fr, Mar 11
2	Fr, Mar 18
3	Fr, Apr 1
4	Fr, Apr 15
5	Fr, Apr 22
6	Fr, Apr 29

Classes start at 10:00

Organizational Issues, cont'd

Teaching and learning method

- Course in six blocks
- Class discussion, written homework (computer exercises, GRETL) submitted by groups of (3-5) students, presentations of homework by participants
- Final exam

Assessment of student work

- For grading, the written homework, presentation of homework in class and a final written exam will be of relevance
- Weights: homework 40 \%, final written exam 60 \%
- Presentation of homework in class: students must be prepared to be called at random

Organizational Issues, cont'd

Literature

Course textbook

- Marno Verbeek, A Guide to Modern Econometrics, 3rd Ed., Wiley, 2008

Suggestions for further reading

- W.H. Greene, Econometric Analysis. 7th Ed., Pearson International, 2012
- R.C. Hill, W.E. Griffiths, G.C. Lim, Principles of Econometrics, $4^{\text {th }}$ Ed., Wiley, 2012

Aims and Content

Aims of the course

- Deepening the understanding of econometric concepts and principles
- Learning about advanced econometric tools and techniques
- ML estimation and testing methods (MV, Cpt. 6)
- Models for limited dependent variables (MV, Cpt. 7)
- Time series models (MV, Cpt. 8, 9)
- Multi-equation models (MV, Cpt. 9)
- Panel data models (MV, Cpt. 10)
- Use of econometric tools for analyzing economic data: specification of adequate models, identification of appropriate econometric methods, interpretation of results
- Use of GRETL

Limited Dependent Variables: An Example

Explain whether a household owns a car: explanatory power have

- income
- household size
- etc.

Regression is not suitable! WHY?

Limited Dependent Variables: An Example

Explain whether a household owns a car: explanatory power have

- income
- household size
- etc.

Regression is not suitable!

- Owning a car has two manifestations: yes/no
- Indicator for owning a car is a binary variable

Models are needed that allow to describe a binary dependent variable or a, more generally, limited dependent variable

Cases of Limited Dependent Variable

Typical situations: functions of explanatory variables are used to describe or explain

- Dichotomous dependent variable, e.g., ownership of a car (yes/no), employment status (employed/unemployed), etc.
- Ordered response, e.g., qualitative assessment (good/average/bad), working status (full-time/part-time/not working), etc.
- Multinomial response, e.g., trading destinations (Europe/Asia/Africa), transportation means (train/bus/car), etc.
- Count data, e.g., number of orders a company receives in a week, number of patents granted to a company in a year
- Censored data, e.g., expenditures for durable goods, duration of study with drop outs

Time Series Example: Price/Earninas Ratio

Verbeek's data set PE: PE = ratio of S\&P composite stock price index and S\&P composite earnings of the S\&P500, annual, 1871-2002

- Is the PE ration mean reverting?
- $\log (P E)$
- Mean 2.63 (PE: 13,9)
- Min 1.81
- Max 3.60
- Std 0.33

Time Series Models

Types of model specification

- Deterministic trend: a function $f(t)$ of the time, describing the evolution of $E\left\{Y_{\}}\right\}$over time

$$
Y_{\mathrm{t}}=f(t)+\varepsilon_{\mathrm{t}}, \varepsilon_{\mathrm{t}}: \text { white noise }
$$

e.g., $Y_{t}=\alpha+\beta t+\varepsilon_{t}$

- Autoregression $\operatorname{AR}(1)$

$$
Y_{t}=\delta+\theta Y_{t-1}+\varepsilon_{t}, \quad|\theta|<1, \varepsilon_{\mathrm{t}}: \text { white noise }
$$

generalization: $\operatorname{ARMA}(p, q)$-process

$$
Y_{\mathrm{t}}=\theta_{1} Y_{\mathrm{t}-1}+\ldots+\theta_{\mathrm{p}} Y_{\mathrm{t}-\mathrm{p}}+\varepsilon_{\mathrm{t}}+\alpha_{1} \varepsilon_{\mathrm{t}-1}+\ldots+\alpha_{q} \varepsilon_{\mathrm{t}-\mathrm{q}}
$$

Purpose of modelling:

- Description of the data generating process
- Forecasting

PE Ratio: Various Models

Diagnostics for various competing models: $\Delta y_{t}=\log \mathrm{PE}_{\mathrm{t}}-\log \mathrm{PE} \mathrm{E}_{\mathrm{t}-1}$ Best fit for

- BIC: MA(2) model $\Delta y_{\mathrm{t}}=0.008+e_{\mathrm{t}}-0.250 e_{\mathrm{t}-2}$
- AIC: $\operatorname{AR}(2,4)$ model $\Delta y_{\mathrm{t}}=0.008-0.202 \Delta y_{\mathrm{t}-2}-0.211 \Delta y_{\mathrm{t}-4}+e_{\mathrm{t}}$
- Q_{12} : Box-Ljung statistic for the first 12 autocorrelations

Model	Lags	AIC	BIC	Q_{12}	p-value
MA(4)	$1-4$	-73.389	-56.138	5.03	0.957
AR(4)	$1-4$	-74.709	-57.458	3.74	0.988
MA	2,4	-76.940	-65.440	5.48	0.940
AR	2,4	-78.057	-66.556	4.05	0.982
MA	2	-76.072	-67.447	9.30	0.677
AR	2	-73.994	-65.368	12.12	0.436

Multi-equation Models

Economic processes: Simultaneous and interrelated development of a set of variables
Examples:

- Households consume a set of commodities (food, durables, etc.); the demanded quantities depend on the prices of commodities, the household income, the number of persons living in the household, etc.; a consumption model includes a set of dependent variables and a common set of explanatory variables.
- The market of a product is characterized by (a) the demanded and supplied quantity and (b) the price of the product; a model for the market consists of equations representing the development and interdependencies of these variables.
- An economy consists of markets for commodities, labour, finances, etc.; a model for a sector or the full economy contains descriptions of the development of the relevant variables and their interactions.

Panel Data

Population of interest: individuals, households, companies, countries

Types of observations

- Cross-sectional data: Observations of all units of a population, or of a (representative) subset, at one specific point in time
- Time series data: Series of observations on units of the population over a period of time
- Panel data (longitudinal data): Repeated observations of (the same) population units collected over a number of periods; data set with both a cross-sectional and a time series aspect; multi-dimensional data
Cross-sectional and time series data are special cases of panel data

Panel Data Example: Individual Wages

Verbeek's data set "males"

- Sample of
- 545 full-time working males
- each person observed yearly after completion of school in 1980 till 1987
- Variables
- wage: log of hourly wage (in USD)
- school: years of schooling
- exper: age - 6 - school
- dummies for union membership, married, black, Hispanic, public sector
- others

Panel Data Models

Panel data models

- Allow controlling individual differences, comparing behaviour, analysing dynamic adjustment, measuring effects of policy changes
- More realistic models than cross-sectional and time-series models
- Allow more detailed or sophisticated research questions
E.g.: What is the effect of being married on the hourly wage

Contents

- Organizational Issues
- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and Illustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests

The Linear Model

Y : explained variable
X : explanatory or regressor variable
The model describes the data-generating process of Y under the condition X

A simple linear regression model
$Y=\alpha+\beta X$
β : coefficient of X
α : intercept
A multiple linear regression model

$$
Y=\beta_{1}+\beta_{2} X_{2}+\ldots+\beta_{\mathrm{K}} X_{\mathrm{K}}
$$

Fitting a Model to Data

Choice of values b_{1}, b_{2} for model parameters β_{1}, β_{2} of $Y=\beta_{1}+\beta_{2} X$, given the observations $\left(y_{i}, x_{i}\right), i=1, \ldots, N$

Model for observations: $y_{\mathrm{i}}=\beta_{1}+\beta_{2} x_{\mathrm{i}}+\varepsilon_{\mathrm{i}}, i=1, \ldots, N$
Fitted values: $\hat{y}_{\mathrm{i}}=b_{1}+b_{2} x_{\mathrm{i}}, i=1, \ldots, N$
Principle of (Ordinary) Least Squares gives the OLS estimators

$$
b_{\mathrm{i}}=\arg \min _{\beta 1, \beta 2} \mathrm{~S}\left(\beta_{1}, \beta_{2}\right), i=1,2
$$

Objective function: sum of the squared deviations

$$
\mathrm{S}\left(\beta_{1}, \beta_{2}\right)=\Sigma_{i}\left[y_{i}-\left(\beta_{1}+\beta_{2} x_{i}\right)\right]^{2}=\Sigma_{i} \varepsilon_{i}^{2}
$$

Deviations between observation and fitted values, residuals:

$$
e_{i}=y_{i}-\hat{y}_{\mathrm{i}}=y_{\mathrm{i}}-\left(b_{1}+b_{2} x_{\mathrm{i}}\right)
$$

Observations and Fitted Regression Line

Simple linear regression: Fitted line and observation points (Verbeek, Figure 2.1)

Contents

- Organizational Issues
- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and Illustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests

OLS Estimators

Equating the partial derivatives of $S\left(\beta_{1}, \beta_{2}\right)$ to zero: normal equations

$$
\begin{aligned}
& b_{1}+b_{2} \sum_{i=1}^{N} x_{i}=\sum_{i=1}^{N} y_{i} \\
& b_{1} \sum_{i=1}^{N} x_{i}+b_{2} \sum_{i=1}^{N} x_{i}^{2}=\sum_{i=1}^{N} x_{i} y_{i}
\end{aligned}
$$

OLS estimators b_{1} und b_{2} result in

$$
\begin{gathered}
b_{2}=\frac{s_{x y}}{s_{x}^{2}} \\
b_{1}=\bar{y}-b_{2} \bar{x}
\end{gathered} \quad \begin{gathered}
\text { with mean values } \bar{x}, \bar{y} \text { and } \\
\text { and second moments }
\end{gathered} \quad \begin{array}{r}
s_{x y}=\frac{1}{N} \sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
s_{x}^{2}=\frac{1}{N} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
\end{array}
$$

OLS Estimators: The General Case

Model for Y contains $K-1$ explanatory variables

$$
Y=\beta_{1}+\beta_{2} X_{2}+\ldots+\beta_{K} X_{K}=x^{\prime} \beta
$$

with $x=\left(1, X_{2}, \ldots, X_{K}\right)^{\prime}$ and $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{K}\right)^{\prime}$
Observations: $\left[y_{\mathrm{i}}, x_{\mathrm{i}}\right]=\left[y_{\mathrm{i}},\left(1, x_{\mathrm{i} 2}, \ldots, x_{\mathrm{ik}}\right)^{\prime}\right], i=1, \ldots, N$
OLS-estimates $b=\left(b_{1}, b_{2}, \ldots, b_{K}\right)^{\prime}$ are obtained by minimizing

$$
S(\beta)=\sum_{i=1}^{N}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2}
$$

this results in the OLS estimators

$$
b=\left(\sum_{i=1}^{N} x_{i} x_{i}^{\prime}\right)^{-1} \sum_{i=1}^{N} x_{i} y_{i}
$$

Matrix Notation

N observations

$$
\left(y_{1}, x_{1}\right), \ldots,\left(y_{N}, x_{N}\right)
$$

Model: $y_{\mathrm{i}}=\beta_{1}+\beta_{2} x_{\mathrm{i}}+\varepsilon_{\mathrm{i}}, i=1, \ldots, N$, or

$$
y=X \beta+\varepsilon
$$

with

$$
y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right), X=\left(\begin{array}{cc}
1 & x_{1} \\
\vdots & \vdots \\
1 & x_{N}
\end{array}\right), \beta=\binom{\beta_{1}}{\beta_{2}}, \varepsilon=\left(\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{N}
\end{array}\right)
$$

OLS estimators

$$
b=(X X)^{-1} X y
$$

Gauss-Markov Assumptions

Observation $y_{\mathrm{i}}(i=1, \ldots, N)$ is a linear function

$$
\begin{aligned}
& y_{\mathrm{i}}=x_{\mathrm{i}}^{\prime} \beta+\varepsilon_{\mathrm{i}} \\
& \text { of observations } x_{\mathrm{ik}}, k=1, \\
& \text { error term } \varepsilon_{\mathrm{i}} \\
& x_{\mathrm{i}}=\left(x_{\mathrm{i} 1}, \ldots, x_{\mathrm{ik}}\right)^{\prime} ; \quad X=\left(x_{\mathrm{ik}}\right)
\end{aligned}
$$

of observations $x_{i k}, k=1, \ldots, K$, of the regressor variables and the

A1	$\mathrm{E}\left\{\varepsilon_{i}\right\}=0$ for all i
A2	all ε_{i} are independent of all x_{i} (exogenous x_{i})
A3	$\mathrm{V}\left\{\varepsilon_{i}\right\}=\sigma^{2}$ for all i (homoskedasticity)
A4	$\operatorname{Cov}\left\{\varepsilon_{\mathrm{i}}, \varepsilon_{j}\right\}=0$ for all i and j with $i \neq j$ (no autocorrelation)

Normality of Error Terms

\section*{| A5 | ε_{i} normally distributed for all i |
| :--- | :--- |}

Together with assumptions (A1), (A3), and (A4), (A5) implies

$$
\varepsilon_{i} \sim \operatorname{NID}\left(0, \sigma^{2}\right) \text { for all } i
$$

i.e., all ε_{i} are

- independent drawings
- from the normal distribution $\mathrm{N}\left(0, \sigma^{2}\right)$
- with mean 0
- and variance σ^{2}

Error terms are "normally and independently distributed" (NID, n.i.d.)

Properties of OLS Estimators

OLS estimator $b=(X X)^{-1} X y$

1. The OLS estimator b is unbiased: $E\{b\}=\beta$
2. The variance of the OLS estimator is given by

$$
V\{b\}=\sigma^{2}\left(\Sigma_{\mathrm{i}} x_{\mathrm{i}} x_{\mathrm{i}}^{\prime}\right)^{-1}
$$

3. The OLS estimator b is a BLUE (best linear unbiased estimator) for β
4. The OLS estimator b is normally distributed with mean β and covariance matrix $\mathrm{V}\{b\}=\sigma^{2}\left(\Sigma_{\mathrm{i}} x_{\mathrm{i}} x_{\mathrm{i}}^{\prime}\right)^{-1}$
Properties

- 1., 2., and 3. follow from Gauss-Markov assumptions
- 4. needs in addition the normality assumption (A5)

Distribution of t-statistic

t-statistic

$$
t_{k}=\frac{b_{k}}{s e\left(b_{k}\right)}
$$

follows

1. the t-distribution with $N-K$ d.f. if the Gauss-Markov assumptions (A1) - (A4) and the normality assumption (A5) hold
2. approximately the t-distribution with $N-K$ d.f. if the Gauss-Markov assumptions (A1) - (A4) hold but not the normality assumption (A5)
3. asymptotically $(N \rightarrow \infty)$ the standard normal distribution $N(0,1)$
4. Approximately, for large N, the standard normal distribution $N(0,1)$

The approximation errors decrease with increasing sample size N

OLS Estimators: Consistency

The OLS estimators b are consistent,

$$
\operatorname{plim}_{N \rightarrow \infty} b=\beta,
$$

if one of the two sets of conditions are fulfilled:

- (A2) from the Gauss-Markov assumptions and the assumption (A6), or
- the assumption (A7), weaker than (A2), and the assumption (A6) Assumptions (A6) and (A7):

A6	$1 / N \Sigma^{N}{ }_{i=1} x_{i} x_{i}^{\prime}$ converges with growing N to a finite, nonsingular matrix $\Sigma_{x x}$
A7	The error terms have zero mean and are uncorrelated with each of the regressors: $E\left\{x_{i} \varepsilon_{i}\right\}=0$

Assumption (A7) is weaker than assumption (A2)!

Contents

- Organizational Issues
- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and Illustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests

Estimation Concepts

OLS estimator: Minimization of objective function $S(\beta)=\Sigma_{i} \varepsilon_{i}^{2}$ gives

- K first-order conditions $\Sigma_{i}\left(y_{i}-x_{i}^{\prime} b\right) x_{i}=\Sigma_{i} e_{i} x_{i}=0$, the normal equations
- OLS estimators are solutions of the normal equations
- Moment conditions

$$
E\left\{\left(y_{i}-x_{i}^{\prime} \beta\right) x_{i}\right\}=E\left\{\varepsilon_{i} x_{i}\right\}=0
$$

- Normal equations are sample moment conditions (times N)

IV estimator: Model allows derivation of moment conditions

$$
\mathrm{E}\left\{\left(y_{\mathrm{i}}-x_{\mathrm{i}}^{\prime} \beta\right) z_{\mathrm{i}}\right\}=\mathrm{E}\left\{\varepsilon_{\mathrm{i}} z_{\mathrm{i}}\right\}=0
$$

which are functions of

- observable variables $y_{\mathrm{i}}, x_{\mathrm{i}}$, instrument variables z_{i}, and unknown parameters β
- Moment conditions are used for deriving IV estimators
- OLS estimators are special case of IV estimators

Estimation Concepts, cont'd

GMM estimator: generalization of the moment conditions

$$
\mathrm{E}\left\{f\left(w_{\mathrm{i}}, z_{\mathrm{i}}, \beta\right)\right\}=0
$$

- with observable variables w_{i}, instrument variables z_{i}, and unknown parameters β; f : multidimensional function with as many components as conditions
- Allows for non-linear models
- Under weak regularity conditions, the GMM estimators are
- consistent
- asymptotically normal

Maximum likelihood estimation

- Basis is the distribution of y_{i} conditional on regressors x_{i}
- Depends on unknown parameters β
- The estimates of the parameters β are chosen so that the distribution corresponds as well as possible to the observations y_{i} and x_{i}

Contents

- Organizational Issues
- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and Illustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests

Example: Urn Experiment

Urn experiment:

- The urn contains red and white balls
- Proportion of red balls: p (unknown)
- N random draws
- Random draw $i: y_{\mathrm{i}}=1$ if ball in draw i is red, $y_{\mathrm{i}}=0$ otherwise; $\mathrm{P}\left\{y_{\mathrm{i}}=1\right\}=p$
- Sample: N_{1} red balls, $N-N_{1}$ white balls
- Probability for this result:
$\mathrm{P}\left\{N_{1}\right.$ red balls, $N-N_{1}$ white balls $\} \approx p^{N 1}(1-p)^{N-N 1}$
Likelihood function $L(p)$: The probability of the sample result, interpreted as a function of the unknown parameter p

Urn Experiment: Likelihood Function and LM Estimator

Likelihood function: (proportional to) the probability of the sample result, interpreted as a function of the unknown parameter p

$$
L(p)=p^{N 1}(1-p)^{N-N 1}, 0<p<1
$$

Maximum likelihood estimator: that value \hat{p} of p which maximizes
$L(p)$

$$
\hat{p}=\arg \max _{p} L(p)
$$

Calculation of \hat{p} : maximization algorithms

- As the log-function is monotonous, coordinates p of the extremes of $L(p)$ and $\log L(p)$ coincide
- Use of log-likelihood function is often more convenient

$$
\log L(p)=N_{1} \log p+\left(N-N_{1}\right) \log (1-p)
$$

Urn Experiment: Likelihood Function, cont'd

Verbeek, Fig.6.1

Figure 6.1 Sample loglikelihood function for $N=100$ and $N_{1}=44$

Urn Experiment: ML Estimator

Maximizing $\log L(p)$ with respect to p gives the first-order condition

$$
\frac{d \log L(p)}{d p}=\frac{N_{1}}{p}-\frac{N-N_{1}}{1-p}=0
$$

Solving this equation for p gives the maximum likelihood estimator (ML estimator)

$$
\hat{p}=\frac{N_{1}}{N}
$$

For $N=100, N_{1}=44$, the ML estimator for the proportion of red balls is $\hat{p}=0.44$

Maximum Likelihood Estimator: The Idea

- Specify the distribution of the data (of y or y given x)
- Determine the likelihood of observing the available sample as a function of the unknown parameters
- Choose as ML estimates those values for the unknown parameters that give the highest likelihood
- Properties: In general, the ML estimators are
- consistent
- asymptotically normal
- efficient
provided the likelihood function is correctly specified, i.e., distributional assumptions are correct

Example: Normal Linear Regression

Model

$$
y_{i}=\beta_{1}+\beta_{2} x_{i}+\varepsilon_{i}
$$

with assumptions (A1) - (A5)
From the normal distribution of ε_{i} follows: contribution of observation i to the likelihood function:

$$
f\left(y_{i} \mid X_{i} ; \beta, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2} \frac{\left(y_{i}-\beta_{1}-\beta_{2} X_{i}\right)^{2}}{\sigma^{2}}\right\}
$$

$L\left(\beta, \sigma^{2}\right)=\prod_{i} f\left(y_{i} \mid x_{i} ; \beta, \sigma^{2}\right)$ due to independent observations; the loglikelihood function is given by

$$
\begin{aligned}
& \log L\left(\beta, \sigma^{2}\right)=\log \prod_{i} f\left(y_{i} \mid X_{i} ; \beta, \sigma^{2}\right) \\
& \quad=-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i}\left(y_{i}-\beta_{1}-\beta_{2} X_{i}\right)^{2}
\end{aligned}
$$

Normal Linear Regression, cont'd

Maximizing $\log L\left(\beta, \sigma^{2}\right)$ with respect to β and σ^{2} gives the ML estimators

$$
\begin{aligned}
& \left.\hat{\beta}_{2}=\operatorname{Cov}\{y, x)\right\} / V\{x\} \\
& \hat{\beta}_{1}=\bar{y}-\hat{\beta}_{2} \bar{x}
\end{aligned}
$$

which coincide with the OLS estimators, and

$$
\hat{\sigma}^{2}=\frac{1}{N} \sum_{i} e_{i}^{2}
$$

which is biased and underestimates σ^{2} !
Remarks:

- The results are obtained assuming normally and independently distributed (NID) error terms
- ML estimators are consistent but not necessarily unbiased; see the properties of ML estimators below

Contents

- Organizational Issues
- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and IIlustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests

ML Estimator: Notation

Let the density (or probability mass function) of y_{i}, given x_{i}, be given by
$f\left(y_{i} \mid x_{i}, \theta\right)$ with K-dimensional vector θ of unknown parameters
Given independent observations, the likelihood function for the sample of size N is

$$
L(\theta \mid y, X)=\prod_{i} L_{i}\left(\theta \mid y_{i}, x_{i}\right)=\prod_{i} f\left(y_{i} \mid x_{i} ; \theta\right)
$$

The ML estimators are the solutions of

$$
\max _{\theta} \log L(\theta)=\max _{\theta} \Sigma_{\mathrm{i}} \log L_{\mathrm{i}}(\theta)
$$

or the solutions of the K first-order conditions

$$
s(\hat{\theta})=\left.\frac{\partial \log L(\theta)}{\partial \theta}\right|_{\hat{\theta}}=\left.\sum_{i} \frac{\partial \log L_{i}(\theta)}{\partial \theta}\right|_{\hat{\theta}}=\left.\sum_{i} s(\theta)\right|_{\hat{\theta}}=0
$$

$s(\theta)=\Sigma_{i} s_{i}(\theta)$, the K-vector of gradients, also denoted score vector
Solution of $s(\theta)=0$

- analytically (see examples above) or
- by use of numerical optimization algorithms

Matrix Derivatives

The scalar-valued function

$$
\log L(\theta \mid y, X)=\prod_{i} \log L_{i}\left(\theta \mid y_{i}, x_{i}\right)=\log L\left(\theta_{1}, \ldots, \theta_{K} \mid y, X\right)
$$

or - shortly written as $\log L(\theta)$ - has the K arguments $\theta_{1}, \ldots, \theta_{K}$

- K-vector of partial derivatives or gradient vector or score vector or gradient

$$
\frac{\partial \log L(\theta)}{\partial \theta}=\left(\frac{\partial \log L(\theta)}{\partial \theta_{1}}, \ldots, \frac{\partial \log L(\theta)}{\partial \theta_{K}}\right)^{\prime}=s(\theta)
$$

- KxK matrix of second derivatives or Hessian matrix

$$
\frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}}=\left(\begin{array}{ccc}
\frac{\partial^{2} \log L(\theta)}{\partial \theta_{1} \theta_{1}} & \cdots & \frac{\partial^{2} \log L(\theta)}{\partial \theta_{1} \partial \theta_{K}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} \log L(\theta)}{\partial \theta_{K} \partial \theta_{1}} & \cdots & \frac{\partial^{2} \log L(\theta)}{\partial \theta_{K} \partial \theta_{K}}
\end{array}\right)
$$

ML Estimator: Properties

The ML estimator is

1. Consistent
2. asymptotically efficient
3. asymptotically normally distributed:

$$
\sqrt{N}(\hat{\theta}-\theta) \rightarrow \mathrm{N}(0, V)
$$

V : asymptotic covariance matrix of $\sqrt{N} \hat{\theta}$

The Information Matrix

Information matrix $I(\theta)$

- $I(\theta)$ is the limit (for $N \rightarrow \infty)$ of

$$
\bar{I}_{N}(\theta)=-\frac{1}{N} E\left\{\frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}}\right\}=-\frac{1}{N} \sum_{i} E\left\{\frac{\partial^{2} \log L_{i}(\theta)}{\partial \theta \partial \theta^{\prime}}\right\}=\frac{1}{N} \sum_{i} I_{i}(\theta)
$$

- For the asymptotic covariance matrix V can be shown: $V=I(\theta)^{-1}$
- $I(\theta)^{-1}$ is the lower bound of the asymptotic covariance matrix for any consistent, asymptotically normal estimator for θ : Cramèr-Rao lower bound
Calculation of $l_{i}(\theta)$ can also be based on the outer product of the score vector

$$
J_{i}(\theta)=E\left\{s_{i}(\theta) s_{i}(\theta)^{\prime}\right\}=-E\left\{\frac{\partial^{2} \log L_{i}(\theta)}{\partial \theta \partial \theta^{\prime}}\right\}=I_{i}(\theta)
$$

for a miss-specified likelihood function, $J_{i}(\theta)$ can deviate from $l_{i}(\theta)$

Example: Normal Linear Regression

Model

$$
y_{i}=\beta_{1}+\beta_{2} x_{i}+\varepsilon_{i}
$$

with assumptions (A1) - (A5) fulfilled
The score vector with respect to $\beta=\left(\beta_{1}, \beta_{2}\right)^{\prime}$ is - using $x_{i}=\left(1, X_{i}\right)^{\prime}-$

$$
s_{i}(\beta)=\frac{\partial}{\partial \beta} \log L_{i}\left(\beta, \sigma^{2}\right)=\frac{1}{\sigma^{2}} \varepsilon_{i} x_{i}
$$

The information matrix is obtained both via Hessian and outer product

$$
\begin{aligned}
& I_{i, 11}\left(\beta, \sigma^{2}\right)=-E\left\{\frac{\partial^{2} \log L_{i}(\theta)}{\partial \beta \partial \beta^{\prime}}\right\}=E\left\{s_{i} s_{i}^{\prime}\right\} \\
& \quad=\frac{1}{\sigma^{4}} E\left\{\varepsilon_{i}^{2} x_{i} x_{i}^{\prime}\right\}=\frac{1}{\sigma^{2}} x_{i} x_{i}{ }^{\prime}=\frac{1}{\sigma^{2}}\left(\begin{array}{cc}
1 & X_{i} \\
X_{i} & X_{i}^{2}
\end{array}\right)
\end{aligned}
$$

Covariance Matrix V: Calculation

Two ways to calculate V :

- Estimator based on the information matrix $I(\theta)$

$$
\hat{V}_{H}=\left(-\left.\frac{1}{N} \sum_{i} \frac{\partial^{2} \log L_{i}(\theta)}{\partial \theta \partial \theta^{\prime}}\right|_{\hat{\theta}}\right)^{-1}=\bar{I}_{N}(\hat{\theta})^{-1}
$$

index " H ": the estimate of V is based on the Hessian matrix

- Estimator based on the score vector

$$
\hat{V}_{G}=\left(\frac{1}{N} \sum_{i} s_{i}(\hat{\theta}) s_{i}(\hat{\theta})^{\prime}\right)^{-1}=\left(\frac{1}{N} \sum_{i} J_{i}(\hat{\theta})\right)^{-1}
$$

with score vector $s(\theta)$; index " G ": the estimate of V is based on gradients

- also called: OPG (outer product of gradient) estimator
- also called: BHHH (Berndt, Hall, Hall, Hausman) estimator
- $E\left\{s_{i}(\theta) s_{i}(\theta)\right.$ '\} coincides with $l_{i}(\theta)$ if $f\left(y_{i} \mid x_{i}, \theta\right)$ is correctly specified

Contents

- Organizational Issues
- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and IIIustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests

Again the Urn Experiment

Likelihood contribution of the i-th observation

$$
\log L_{i}(p)=y_{i} \log p+\left(1-y_{i}\right) \log (1-p)
$$

This gives scores

$$
\frac{\partial \log L_{i}(p)}{\partial p}=s_{i}(p)=\frac{y_{i}}{p}-\frac{1-y_{i}}{1-p}
$$

and

$$
\frac{\partial^{2} \log L_{i}(p)}{\partial p^{2}}=-\frac{y_{i}}{p^{2}}-\frac{1-y_{i}}{(1-p)^{2}}
$$

With $\mathrm{E}\left\{y_{\mathrm{i}}\right\}=p$, the expected value turns out to be

$$
I_{i}(p)=E\left\{-\frac{\partial^{2} \log L_{i}(p)}{\partial p^{2}}\right\}=\frac{1}{p}+\frac{1}{1-p}=\frac{1}{p(1-p)}
$$

The asymptotic variance of the ML estimator $V=r^{-1}=p(1-p)$

Urn Experiment and Binomial Distribution

The asymptotic distribution is

$$
\sqrt{N}(\hat{p}-p) \rightarrow N(0, p(1-p))
$$

- Small sample distribution:

$$
N \hat{p} \sim B(N, p)
$$

- Use of the approximate normal distribution for portions \hat{p}
- rule of thumb for using the approximate distribution

$$
N p(1-p)>9
$$

Test of $\mathrm{H}_{0}: p=p_{0}$ can be based on test statistic

$$
\left(\hat{p}-p_{0}\right) / \operatorname{se}(\hat{p})
$$

Example: Normal Linear Regression

Model

$$
y_{\mathrm{i}}=x_{\mathrm{i}}^{\prime} \beta+\varepsilon_{\mathrm{i}}
$$

with assumptions (A1) - (A5)
Log-likelihood function

$$
\log L\left(\beta, \sigma^{2}\right)=-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2}
$$

Scores of the i-th observation

$$
s_{i}\left(\beta, \sigma^{2}\right)=\binom{\frac{\partial \log L_{i}\left(\beta, \sigma^{2}\right)}{\partial \beta}}{\frac{\partial \log L_{i}\left(\beta, \sigma^{2}\right)}{\partial \sigma^{2}}}=\binom{\frac{y_{i}-x_{i}^{\prime} \beta}{\sigma^{2}} x_{i}}{-\frac{1}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2}}
$$

Normal Linear Regression: MLEstimators

The first-order conditions - setting both components of $\sum_{i} s_{i}\left(\beta, \sigma^{2}\right)$ to zero - give as ML estimators: the OLS estimator for β, the average squared residuals for σ^{2}

$$
\hat{\beta}=\left(\sum_{i} x_{i} x_{i}^{\prime}\right)^{-1} \sum_{i} x_{i} y_{i}, \hat{\sigma}^{2}=\frac{1}{N} \sum_{i}\left(y_{i}-x_{i}^{\prime} \hat{\beta}\right)^{2}
$$

Asymptotic covariance matrix: Contribution of the i-th observation $\left(\mathrm{E}\left\{\varepsilon_{i}\right\}=\mathrm{E}\left\{\varepsilon_{i}^{3}\right\}=0, \mathrm{E}\left\{\varepsilon_{i}^{2}\right\}=\sigma^{2}, \mathrm{E}\left\{\varepsilon_{i}^{4}\right\}=3 \sigma^{4}\right)$

$$
I_{i}\left(\beta, \sigma^{2}\right)=E\left\{s_{i}\left(\beta, \sigma^{2}\right) s_{i}\left(\beta, \sigma^{2}\right)^{\prime}\right\}=\operatorname{diag}\left(\frac{1}{\sigma^{2}} x_{i} x_{i}^{\prime}, \frac{1}{2 \sigma^{4}}\right)
$$

gives

$$
\begin{aligned}
V & =I\left(\beta, \sigma^{2}\right)^{-1}=\operatorname{diag}\left(\sigma^{2} \Sigma_{x x}{ }^{-1}, 2 \sigma^{4}\right) \\
\text { with } \Sigma_{\mathrm{xx}} & =\lim \left(\Sigma_{\mathrm{i}} x_{\mathrm{i}} x_{\mathrm{i}}\right) / N
\end{aligned}
$$

Normal Linear Regression: MLand OLS-Estimators

The ML estimate for β and σ^{2} follow asymptotically

$$
\begin{aligned}
& \sqrt{N}(\hat{\beta}-\beta) \rightarrow \mathrm{N}\left(0, \sigma^{2} \Sigma_{x x}{ }^{-1}\right) \\
& \sqrt{N}\left(\hat{\sigma}^{2}-\sigma^{2}\right) \rightarrow \mathrm{N}\left(0,2 \sigma^{4}\right)
\end{aligned}
$$

For finite samples: covariance matrix of ML estimators for β

$$
\hat{V}(\hat{\beta})=\hat{\sigma}^{2}\left(\sum_{i} x_{i} x_{i}^{\prime}\right)^{-1}
$$

similar to OLS results

Contents

- Organizational Issues
- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and IIlustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests

Diagnostic Tests

Diagnostic (or specification) tests based on ML estimators Test situation:

- K-dimensional parameter vector $\theta=\left(\theta_{1}, \ldots, \theta_{K}\right)^{\prime}$
- $J \geq 1$ linear restrictions ($K \geq J$)
- $\mathrm{H}_{0}: R \theta=q$ with $J \times K$ matrix R, full rank; J-vector q

Test principles based on the likelihood function:

1. Wald test: Checks whether the restrictions are fulfilled for the unrestricted ML estimator for θ; test statistic ξ_{w}
2. Likelihood ratio test: Checks whether the difference between the log-likelihood values with and without the restriction is close to zero; test statistic $\xi_{L R}$
3. Lagrange multiplier test (or score test): Checks whether the firstorder conditions (of the unrestricted model) are violated by the restricted ML estimators; test statistic $\xi_{L M}$

Likelihood and Test Statistics

The Asymptotic Tests

Under H_{0}, the test statistics of all three tests

- follow asymptotically, for finite sample size approximately, the Chisquare distribution with J d.f.
- The tests are asymptotically (large N) equivalent
- Finite sample size: the values of the test statistics obey the relation

$$
\xi_{W} \geq \xi_{\mathrm{LR}} \geq \xi_{\mathrm{LM}}
$$

Choice of the test: criterion is computational effort

1. Wald test: Requires estimation only of the unrestricted model; e.g., testing for omitted regressors: estimate the full model, test whether the coefficients of potentially omitted regressors are different from zero
2. Lagrange multiplier test: Requires estimation only of the restricted model; preferable if restrictions complicate estimation
3. Likelihood ratio test: Requires estimation of both the restricted and the unrestricted model

Wald Test

Checks whether the restrictions are fulfilled for the unrestricted ML estimator for θ
Asymptotic distribution of the unrestricted ML estimator:

$$
\sqrt{N}(\hat{\theta}-\theta) \rightarrow N(0, V)
$$

Hence, under $\mathrm{H}_{0}: R \theta=q$,

$$
\sqrt{N}(R \hat{\theta}-R \theta)=\sqrt{N}(R \hat{\theta}-q) \rightarrow N\left(0, R V R^{\prime}\right)
$$

The test statistic

$$
\xi_{W}=N(R \hat{\theta}-q)^{\prime}\left[R \hat{V} R^{\prime}\right]^{-1}(R \hat{\theta}-q)
$$

- under H_{0}, ξ_{w} is expected to be close to zero
- $\quad p$-value to be read from the Chi-square distribution with J d.f.

Wald Test, cont'd

Typical application: tests of linear restrictions for regression coefficients

- Test of $\mathrm{H}_{0}: \beta_{\mathrm{i}}=0$

$$
\xi_{w}=b_{i}^{2} /\left[\operatorname{se}\left(b_{i}\right)^{2}\right]
$$

- ξ_{w} follows the Chi-square distribution with 1 d.f.
- ξ_{w} is the square of the t-test statistic
- Test of the null-hypothesis that a subset of J of the coefficients β are zeros

$$
\xi_{W}=\left(e_{R}^{\prime} e_{R}-e^{\prime} e\right) /\left[e^{\prime} e /(N-K)\right]
$$

- e : residuals from unrestricted model
- $\quad e_{R}$: residuals from restricted model
- $\quad \xi_{w}$ follows the Chi-square distribution with J d.f.
- $\quad \xi_{w}$ is related to the F-test statistic by $\xi_{w}=F J$

Likelihood Ratio Test

Checks whether the difference between the ML estimates obtained with and without the restriction is close to zero for nested models

- Unrestricted ML estimator: $\hat{\theta}$
- Restricted ML estimator: $\widetilde{\theta}$; obtained by minimizing the loglikelihood subject to $R \theta=q$
Under $\mathrm{H}_{0}: R \theta=q$, the test statistic

$$
\xi_{L R}=2(\log L(\hat{\theta})-\log L(\widetilde{\boldsymbol{\theta}}))
$$

- is expected to be close to zero
- $\quad p$-value to be read from the Chi-square distribution with J d.f.

Likelihood Ratio Test, cont'd

Test of linear restrictions for regression coefficients

- Test of the null-hypothesis that J linear restrictions of the coefficients β are valid

$$
\xi_{L R}=N \log \left(e_{R}{ }^{\prime} e_{R} / e^{\prime} e\right)
$$

- e : residuals from unrestricted model
- e_{R} : residuals from restricted model
- $\quad \xi_{\mathrm{LR}}$ follows the Chi-square distribution with J d.f.
- Requires that the restricted model is nested within the unrestricted model

Lagrange Multiplier Test

Checks whether the derivative of the likelihood for the restricted ML estimator is close to zero
Based on the Lagrange constrained maximization method
Lagrangian, given $\theta=\left(\theta_{1}{ }^{\prime}, \theta_{2}{ }^{\prime}\right)^{\prime}$ with restriction $\theta_{2}=q$, J-vectors θ_{2}, q, λ

$$
H(\theta, \lambda)=\Sigma_{i} \log L_{i}(\theta)-\lambda^{\prime}\left(\theta_{2}-q\right)
$$

First-order conditions give the restricted ML estimators $\tilde{\theta}=\left(\tilde{\theta}_{1}^{\prime}, q^{\prime}\right)^{\prime}$ and $\tilde{\lambda}$

$$
\begin{aligned}
& \left.\sum_{i} \frac{\partial \log L_{i}(\theta)}{\partial \theta_{1}}\right|_{\tilde{\theta}}=\sum_{i} s_{i 1}(\widetilde{\theta})=0 \\
& \tilde{\lambda}=\left.\sum_{i} \frac{\partial \log L_{i}(\theta)}{\partial \theta_{2}}\right|_{\tilde{\theta}}=\sum_{i} s_{i 2}(\widetilde{\theta})
\end{aligned}
$$

λ measures the extent of violation of the restrictions, basis for $\xi_{L M}$ s_{i} are the scores; LM test is also called score test

Lagrange Multiplier Test, cont'd

For $\tilde{\lambda}$ can be shown that $N^{-1} \tilde{\lambda}$ follows asymptotically the normal distribution $\mathrm{N}\left(0, V_{\lambda}\right)$ with

$$
V_{\lambda}=I_{22}(\theta)-I_{21}(\theta) I_{11}^{-1}(\theta) I_{22}(\theta)=\left[I^{22}(\theta)\right]^{-1}
$$

i.e., the lower block diagonal of the inverted information matrix

$$
I(\theta)^{-1}=\left(\begin{array}{ll}
I_{11}(\theta) & I_{12}(\theta) \\
I_{21}(\theta) & I_{22}(\theta)
\end{array}\right)^{-1}=\left(\begin{array}{ll}
I^{11}(\theta) & I^{12}(\theta) \\
I^{21}(\theta) & I^{22}(\theta)
\end{array}\right)
$$

The Lagrange multiplier test statistic

$$
\xi_{L M}=N^{-1} \tilde{\lambda}^{\prime} \hat{I}^{22}(\tilde{\theta}) \tilde{\lambda}
$$

has under H_{0} an asymptotic Chi-square distribution with J d.f.
$\hat{I}^{22}(\widetilde{\theta})$ is the lower block diagonal of the estimated inverted information matrix, based on the restricted estimators for θ

The LM Test Statistic

Outer product gradient (OPG) of $\xi_{L м}$

- Information matrix estimated on basis of scores

$$
\hat{I}(\tilde{\theta})=N^{-1} \sum_{i} s_{i}(\tilde{\theta}) s_{i}(\tilde{\theta})^{\prime}=N^{-1} \operatorname{diag}\left\{0, \sum_{i} s_{i 2}(\tilde{\theta}) s_{i 2}(\tilde{\theta})^{\prime}\right\}
$$

- With

$$
\tilde{\lambda}=\sum_{i} s_{i 2}(\tilde{\theta})
$$

- the LM test statistics can be written as

$$
\xi_{L M}=\sum_{i} s_{i 2}(\tilde{\theta})^{\prime}\left(\sum_{i} s_{i 2}(\tilde{\theta}) s_{i 2}(\tilde{\theta})^{\prime}\right)^{-1} \sum_{i} s_{i 2}(\tilde{\theta})
$$

With the $N \times K$ matrix of first derivatives $S=\left[s_{1}(\tilde{\theta}), \ldots, s_{N}(\tilde{\theta})\right]^{d}$

$$
\hat{I}(\tilde{\theta})=N^{-1} \sum_{i} s_{i}(\tilde{\theta}) s_{i}(\tilde{\theta})^{\prime}=N^{-1} S^{\prime} S
$$

- and - with the N-vector $i=(1, \ldots, 1)^{\prime}$

$$
\begin{aligned}
& \xi_{L M}=\sum_{i} s_{i 2}(\tilde{\theta})^{\prime}\left(\sum_{i} s_{i 2}(\tilde{\theta}) s_{i 2}(\tilde{\theta})^{\prime}\right)^{-1} \sum_{i} s_{i 2}(\tilde{\theta}) \\
& \quad=\sum_{i} s_{i}(\tilde{\theta})^{\prime}\left(\sum_{i} s_{i}(\tilde{\theta}) s_{i}(\tilde{\theta})^{\prime}\right)^{-1} \sum_{i} s_{i}(\tilde{\theta})=i^{\prime} S\left(S^{\prime} S\right)^{-1} S^{\prime} i
\end{aligned}
$$

Calculation of the LM Test

Statistic

Auxiliary regression of a N-vector $i=(1, \ldots, 1)^{\prime}$ on the scores $s_{i}(\widetilde{\theta})$, i.e., on the columns of S; no intercept

- Predicted values from auxiliary regression: $S\left(S^{\prime} S\right)^{-1} S^{\prime \prime} i$
- Sum of squared predictions: $i^{\prime} S\left(S^{\prime} S\right)^{-1} S^{\prime} S\left(S^{\prime} S\right)^{-1} S^{\prime} i=i^{\prime} S\left(S^{\prime} S\right)^{-1} S^{\prime \prime}$
- Total sum of squares: $1 i i^{\prime}=N$
- LM test statistic

$$
\xi_{\mathrm{LM}}=i^{\prime} S\left(S^{\prime} S\right)^{-1} S^{\prime} i=N \text { unc } R^{2}
$$

with the uncentered R^{2} of the auxiliary regression with residuals e

Remember: For the regression $y=X \beta+\varepsilon$

- OLS estimates for $\beta: b=\left(X^{\prime} X\right)^{-1} X^{\prime} y$
- the predictions for $y: \hat{y}=X\left(X^{\prime} X\right)^{-1} X^{\prime} y$
- uncentered R^{2} : unc $R^{2}=\hat{y} \hat{y}^{\prime} \hat{l} / y^{\prime} y$

The Urn Experiment: Three Tests of $\mathrm{H}_{0}: p=p_{0}$

The urn experiment: test of $H_{0}: p=p_{0}$
The likelihood contribution of the i-th observation is

$$
\log L_{i}(p)=y_{i} \log p+\left(1-y_{i}\right) \log (1-p)
$$

This gives

$$
s_{\mathrm{i}}(p)=y_{\mathrm{i}} / p-\left(1-y_{\mathrm{i}}\right) /(1-p) \text { and } l_{\mathrm{i}}(p)=[p(1-p)]^{-1}
$$

Wald test (with the unrestricted estimators $\hat{\theta}$ and \hat{p})

$$
\xi_{w}=N\left(R \hat{\theta-q}-\left[R V^{-1} R\right]^{-1}(R \hat{\theta}-q)=N\left(\hat{p}-p_{0}\right)[\hat{p}(1-\hat{p})]^{-1}\left(\hat{p}-p_{0}\right)\right.
$$

with $J=1, R=l$; this gives

$$
\xi_{W}=N \frac{\left(\hat{p}-p_{0}\right)^{2}}{\hat{p}(1-\hat{p})}=N \frac{\left(N_{1}-N p_{0}\right)^{2}}{N\left(N-N_{1}\right)}
$$

Example: In a sample of $N=100$ balls, $N_{1}=40$ are red, i.e., $\hat{p}=0,40$

- Test of $H_{0}: p_{0}=0,5$ results in
$\xi_{w}=4,167$, corresponding to a p-value of 0,041

The Urn Experiment: LR Test of $H_{0}: p=p_{0}$

Likelihood ratio test:

$$
\xi_{L R}=2(\log L(\hat{p})-\log L(\tilde{p}))
$$

with

$$
\begin{aligned}
& \log L(\hat{p})=N_{1} \log \left(N_{1} / N\right)+\left(N-N_{1}\right) \log \left(1-N_{1} / N\right) \\
& \log L(\widetilde{p})=N_{1} \log \left(p_{0}\right)+\left(N-N_{1}\right) \log \left(1-p_{0}\right)
\end{aligned}
$$

unrestricted estimator \hat{p} and restricted estimator \tilde{p}
Example: In the sample of $N=100$ balls, $N_{1}=40$ are red

- $\hat{p}=0,40, \tilde{p}=\mathrm{p}_{0}=0,5$
- Test of $H_{0}: p_{0}=0,5$ results in
$\xi_{w}=4,027$, corresponding to a p-value of 0,045

The Urn Experiment: LM Test of $H_{0}: p=p_{0}$

Lagrange multiplier test:
with

$$
\tilde{\lambda}=\left.\sum_{i} s_{i}(p)\right|_{p_{0}}=\frac{N_{1}}{p_{0}}-\frac{N-N_{1}}{1-p_{0}}=\frac{N_{1}-N p_{0}}{p_{0}\left(1-p_{0}\right)}
$$

and the inverted information matrix $[/(p)]^{-1}=p(1-p)$, calculated for the restricted case, the LM test statistic is

\[

\]

Example:

- In the sample of $N=100$ balls, 40 are red
- LM test of H_{0} : $p_{0}=0,5$ gives $\xi_{\text {Lm }}=4,000$ with p-value of 0,044

Contents

- Organizational Issues
- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and IIlustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests

Normal Linear Regression: Scores

Log-likelihood function

$$
\log L\left(\beta, \sigma^{2}\right)=-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2}
$$

Scores:

$$
s_{i}\left(\beta, \sigma^{2}\right)=\binom{\frac{\partial \log L_{i}\left(\beta, \sigma^{2}\right)}{\partial \beta}}{\frac{\partial \log L_{i}\left(\beta, \sigma^{2}\right)}{\partial \sigma^{2}}}=\binom{\frac{y_{i}-x_{i}^{\prime} \beta}{\sigma^{2}} x_{i}}{-\frac{1}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2}}
$$

Covariance matrix

$$
V=I\left(\beta, \sigma^{2}\right)^{-1}=\operatorname{diag}\left(\sigma^{2} \Sigma_{x x}{ }^{-1}, 2 \sigma^{4}\right)
$$

Testing for Omitted Regressors

Model: $y_{\mathrm{i}}=x_{\mathrm{i}}^{\prime} \beta+z_{\mathrm{i}}^{\prime} \gamma+\varepsilon_{\mathrm{i}}, \varepsilon_{\mathrm{i}} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$
Test whether the J regressors z_{i} are erroneously omitted:

- Fit the restricted model
- Apply the LM test to check $H_{0}: ~ \gamma=0$

First-order conditions give the scores

$$
\frac{1}{\tilde{\sigma}^{2}} \sum_{i} \tilde{\varepsilon}_{i} x_{i}=0, \quad \frac{1}{\tilde{\sigma}^{2}} \sum_{i} \tilde{\varepsilon}_{i} z_{i}, \quad-\frac{N}{2 \tilde{\sigma}^{2}}+\frac{1}{2} \sum_{i} \frac{\tilde{\varepsilon}_{i}^{2}}{\tilde{\sigma}^{4}}=0
$$

with restricted ML estimators for β and σ^{2}; ML-residuals $\tilde{\varepsilon}_{i}=y_{i}-x_{i}{ }^{\prime} \hat{\beta}$

- Auxiliary regression of N-vector $i=(1, \ldots, 1)$ ' on the scores g $\tilde{\tilde{x}}_{i} \mathbf{T S}, \tilde{\varepsilon}_{i} z_{i}$ the uncentered R^{2}
- The LM test statistic is $\xi_{L M}=N$ unc R^{2}
- An asymptotically equivalent LM test statistic is $N R_{e}{ }^{2}$ with $R_{e}{ }^{2}$ from the regression of the ML residuals on x_{i} and z_{i}

Testing for Heteroskedasticity

Model: $y_{\mathrm{i}}=x_{\mathrm{i}}^{\prime} \beta+\varepsilon_{\mathrm{i}}, \varepsilon_{\mathrm{i}} \sim N I D, \mathrm{~V}\left\{\varepsilon_{\mathrm{i}}\right\}=\sigma^{2} h\left(z_{\mathrm{i}}^{\prime} \alpha\right), h()>$.0 but unknown, $h(0)=1, \partial \partial \alpha\{h()\} \neq 0,$.$J -vector z_{i}$
Test for homoskedasticity: Apply the LM test to check $H_{0}: \alpha=0$
First-order conditions with respect to σ^{2} and α give the scores

$$
\widetilde{\mathcal{E}}_{i}^{2}-\widetilde{\sigma}^{2}, \quad\left(\widetilde{\varepsilon}_{i}^{2}-\widetilde{\sigma}^{2}\right) z_{i}^{\prime}
$$

with restricted ML estimators for β and σ^{2}; ML-residuals $\tilde{\varepsilon}_{i}$

- Auxiliary regression of N-vector $i=(1, \ldots, 1$)' on the scores gives the uncentered R^{2}
- LM test statistic $\xi_{\mathrm{LM}}=N$ uncRR^{2}; a version of Breusch-Pagan test
- An asymptotically equivalent version of the Breusch-Pagan test is based on $N R_{e}{ }^{2}$ with $R_{e}{ }^{2}$ from the regression of the squared ML residuals on z_{i} and an intercept
- Attention! No effect of the functional form of $h($.

Testing for Autocorrelation

Model: $y_{\mathrm{t}}=x_{\mathrm{t}}^{\prime} \beta+\varepsilon_{\mathrm{t}}, \varepsilon_{\mathrm{t}}=\rho \varepsilon_{\mathrm{t}-1}+v_{\mathrm{t}}, v_{\mathrm{t}} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$
LM test of $H_{0}: \rho=0$
First-order conditions give the scores with respect to β and

$$
\widetilde{\varepsilon}_{t} x_{t}^{\prime}, \quad \widetilde{\varepsilon}_{t} \widetilde{\varepsilon}_{t-1}
$$

with restricted ML estimators for β and σ^{2}

- The LM test statistic is $\xi_{L M}=(T-1)$ unc R^{2} with the uncentered R^{2} from the auxiliary regression of the N-vector $i=(1, \ldots, 1)^{\prime}$ on the scores
- If x_{t} contains no lagged dependent variables: products with x_{t} can be dropped from the regressors; $\xi_{L M}=(T-1) R^{2}$ with R^{2} from $i=(1, \ldots, 1)^{\prime}$ on the scores $\tilde{\varepsilon}_{t} \tilde{\varepsilon}_{t-1}$
An asymptotically equivalent test is the Breusch-Godfrey test based on $N R_{e}{ }^{2}$ with $R_{e}{ }^{2}$ from the regression of the ML residuals on x_{t} and the lagged residuals

Your Homework

1. Assume that the errors ε_{t} of the linear regression $y_{t}=\beta_{1}+\beta_{2} x_{t}+\varepsilon_{t}$ are $\operatorname{NID}\left(0, \sigma^{2}\right)$ distributed. (a) Determine the log-likelihood function of the sample for $t=1, \ldots, T$; (b) derive (i) the first-order conditions and (ii) the ML estimators for β_{1}, β_{2}, and σ^{2}; (c) derive the asymptotic covariance matrix of the ML estimators for β_{1} and β_{2} on the basis (i) of the information matrix and (ii) of the score vector.
2. Open the Greene sample file "greene7_8, Gasoline price and consumption", offered within the Gretl system. The dataset contains time series of annual observations from 1960 through 1995. The variables to be used in the following are: $G=$ total U.S. gasoline consumption, computed as total expenditure of gas divided by the price index; $\mathrm{Pg}=$ price index for gasoline; $\mathrm{Y}=$ per capita disposable income; Pnc = price index for new cars;

Your Homework, cont'd

Puc = price index for used cars; Pop = U.S. total population in millions. Perform the following analyses and interpret the results:
a. Produce and interpret the scatter plot of the per capita (p.c.) gasoline consumption (Gpc) over the p.c. disposable income (Y).
b. Fit the linear regression for $\log (G p c)$ with regressors $\log (Y), P g, P n c$ and Puc to the data and give an interpretation of the outcome.
c. Use the Chow test to test for a structural break between 1979 and 1980.
d. Test for autocorrelation of the error terms using the LM test statistic $\xi_{L M}=(T-1) R^{2}$ with R^{2} from the auxiliary regression of the vector of ones $i=(1, \ldots, 1)^{\prime}$ on the scores $\left(e_{t}^{*} e_{t-1}\right)$.
e. Test for autocorrelation by means of the Breusch-Godfrey test, using the test statistic $T R_{e}{ }^{2}$ with $R_{e}{ }^{2}$ from the regression of the residuals on the regressors and the lagged residuals.

