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Organizational IssuesOrganizational Issues

Course schedule (proposal) 

Class DateClass Date

1 Fr, Mar 11

2 Fr, Mar 182 Fr, Mar 18

3 Fr, Apr  1

4 Fr, Apr  154 Fr, Apr  15

5 Fr, Apr   22

6 Fr,  Apr 29

Classes start at 10:00

6 Fr,  Apr 29
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Organizational Issues, cont’dOrganizational Issues, cont’d

Teaching and learning method

� Course in six blocks � Course in six blocks 
� Class discussion, written homework (computer exercises, GRETL) 

submitted by groups of (3-5) students, presentations of homework 
by participantsby participants

� Final exam 
Assessment of student workAssessment of student work

� For grading, the written homework, presentation of homework in 
class and a final written exam will be of relevanceclass and a final written exam will be of relevance

� Weights: homework 40 %, final written exam 60 %
� Presentation of homework in class: students must be prepared to be � Presentation of homework in class: students must be prepared to be 

called at random
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Organizational Issues, cont’dOrganizational Issues, cont’d

Literature

Course textbookCourse textbook
� Marno Verbeek, A Guide to Modern Econometrics, 3rd Ed., Wiley, 

2008
Suggestions for further reading 
� W.H. Greene, Econometric Analysis. 7th Ed., Pearson International, 

20122012
� R.C. Hill, W.E. Griffiths, G.C. Lim, Principles of Econometrics, 4th Ed., 

Wiley, 2012 Wiley, 2012 
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Aims and ContentAims and Content

Aims of the course 

� Deepening the understanding of econometric concepts and principles� Deepening the understanding of econometric concepts and principles
� Learning about advanced econometric tools and techniques

� ML estimation and testing methods (MV, Cpt. 6) 
� Models for limited dependent variables (MV, Cpt. 7)
� Time series models (MV, Cpt. 8, 9)

Multi-equation models (MV, Cpt. 9)� Multi-equation models (MV, Cpt. 9)
� Panel data models (MV, Cpt. 10)

� Use of econometric tools for analyzing economic data: specification of � Use of econometric tools for analyzing economic data: specification of 
adequate models, identification of appropriate econometric methods, 
interpretation of results

� Use of GRETL
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Limited Dependent Variables: Limited Dependent Variables: 
An ExampleAn Example

Explain whether a household owns a car: explanatory power have 
income � income 

� household size 
etc. � etc. 

Regression is not suitable! 
WHY?WHY?
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Limited Dependent Variables: Limited Dependent Variables: 
An ExampleAn Example

Explain whether a household owns a car: explanatory power have 
income � income 

� household size 
etc. � etc. 

Regression is not suitable!
� Owning a car has two manifestations: yes/no� Owning a car has two manifestations: yes/no
� Indicator for owning a car is a binary variable 
Models are needed that allow to describe a binary dependent Models are needed that allow to describe a binary dependent 

variable or a, more generally, limited dependent variable 
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Cases of Limited Dependent Cases of Limited Dependent 
VariableVariable
Typical situations: functions of explanatory variables are used to 

describe or explain 
� Dichotomous dependent variable, e.g., ownership of a car 

(yes/no), employment status (employed/unemployed), etc.
Ordered response, e.g., qualitative assessment � Ordered response, e.g., qualitative assessment 
(good/average/bad), working status (full-time/part-time/not 
working), etc. xworking), etc.

� Multinomial response, e.g., trading destinations 
(Europe/Asia/Africa), transportation means (train/bus/car), etc.

x

(Europe/Asia/Africa), transportation means (train/bus/car), etc.
� Count data, e.g., number of orders a company receives in a 

week, number of patents granted to a company in a year
� Censored data, e.g., expenditures for durable goods, duration of 

study with drop outs
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Time Series Example: Time Series Example: 
Price/Earnings RatioPrice/Earnings Ratio
Verbeek’s data set PE: PE = ratio of S&P composite stock price index 

and S&P composite earnings of the S&P500, annual, 1871-2002
Is the PE ration mean reverting?� Is the PE ration mean reverting?

� log(PE)
� Mean 2.63 

4.0

� Mean 2.63 
(PE: 13,9)

� Min 1.81
3.2

3.6

� Min 1.81
� Max 3.60
� Std 0.33

2.4

2.8

2.0

2.4

1.6
80 90 00 10 20 30 40 50 60 70 80 90 00

log(PE)

Hackl, Econometrics 2, Lecture 1 10Mar 11, 2016



Time Series Models Time Series Models 

Types of model specification
� Deterministic trend: a function f(t) of the time, describing the evolution � Deterministic trend: a function f(t) of the time, describing the evolution 

of E{Yt} over time
Yt = f(t) + εt, εt: white noise 

e.g., Yt = α + βt + εt
� Autoregression  AR(1) 

Y = δ + θY + ε ,   |θ| < 1, ε : white noise Yt = δ + θYt-1 + εt,   |θ| < 1, εt: white noise 
generalization: ARMA(p,q)-process

Y = θ Y + … + θ Y + ε + α ε + … + α εYt = θ1Yt-1 + … + θpYt-p + εt + α1εt-1 + … + αqεt-q
Purpose of modelling: 
� Description of the data generating process� Description of the data generating process
� Forecasting
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PE Ratio: Various ModelsPE Ratio: Various Models

Diagnostics for various competing models: ∆yt = log PEt - log PEt-1

Best fit for
� BIC: MA(2) model ∆yt = 0.008 + et – 0.250 et-2
� AIC: AR(2,4) model ∆yt = 0.008 – 0.202 ∆yt-2 – 0.211 ∆yt-4 + et

Q : Box-Ljung statistic for the first 12 autocorrelations� Q12: Box-Ljung statistic for the first 12 autocorrelations

Model Lags AIC BIC Q12 p-value

MA(4) 1−4 -73.389 -56.138 5.03 0.957MA(4) 1−4 -73.389 -56.138 5.03 0.957

AR(4) 1−4 -74.709 -57.458 3.74 0.988

MA 2, 4 -76.940 -65.440 5.48 0.940MA 2, 4 -76.940 -65.440 5.48 0.940

AR 2, 4 -78.057 -66.556 4.05 0.982

MA 2 -76.072 -67.447 9.30 0.677MA 2 -76.072 -67.447 9.30 0.677

AR 2 -73.994 -65.368 12.12 0.436
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Multi-equation ModelsMulti-equation Models

Economic processes: Simultaneous and interrelated development of 
a set of variables 

Examples:Examples:
� Households consume a set of commodities (food, durables, etc.); 

the demanded quantities depend on the prices of commodities, the the demanded quantities depend on the prices of commodities, the 
household income, the number of persons living in the household, 
etc.; a consumption model includes a set of dependent variables 
and a common set of explanatory variables. and a common set of explanatory variables. 

� The market of a product is characterized by (a) the demanded and 
supplied quantity and (b) the price of the product; a model for the supplied quantity and (b) the price of the product; a model for the 
market consists of equations representing the development and 
interdependencies of these variables.

� An economy consists of markets for commodities, labour, finances, � An economy consists of markets for commodities, labour, finances, 
etc.; a model for a sector or the full economy contains descriptions 
of the development of the relevant variables and their interactions.
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Panel DataPanel Data

Population of interest: individuals, households, companies, 
countries

Types of observations
� Cross-sectional data: Observations of all units of a population, or of a 

(representative) subset, at one specific point in time(representative) subset, at one specific point in time

� Time series data: Series of observations on units of the population over 
a period of timea period of time

� Panel data (longitudinal data): Repeated observations of (the same) 
population units collected over a number of periods; data set with both a 
cross-sectional and a time series aspect; multi-dimensional datacross-sectional and a time series aspect; multi-dimensional data

Cross-sectional and time series data are special cases of panel data
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Panel Data Example: Individual Panel Data Example: Individual 
WagesWages
Verbeek’s data set “males” 
� Sample of � Sample of 

� 545 full-time working males 

� each person observed yearly after completion of school in 1980 till 
1987

� Variables
wage: log of hourly wage (in USD)� wage: log of hourly wage (in USD)

� school: years of schooling

� exper: age – 6 – school� exper: age – 6 – school

� dummies for union membership, married,  black, Hispanic, public 
sectorsector

� others
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Panel Data ModelsPanel Data Models

Panel data models 
� Allow controlling individual differences, comparing behaviour, analysing Allow controlling individual differences, comparing behaviour, analysing 

dynamic adjustment, measuring effects of policy changes 

� More realistic models than cross-sectional and time-series models

Allow more detailed or sophisticated research questions� Allow more detailed or sophisticated research questions

E.g.: What is the effect of being married on the hourly wage
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The Linear ModelThe Linear Model

Y: explained variable
X: explanatory or regressor variableX: explanatory or regressor variable
The model describes the data-generating process of Y

under the condition X

A simple linear regression model
Y = α + βX

β: coefficient of Xβ: coefficient of X
α: intercept

A multiple linear regression modelA multiple linear regression model
Y = β1 + β2X2 + … + βΚXΚ
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Fitting a Model to DataFitting a Model to Data

Choice of values b1, b2 for model parameters β1, β2 of Y = β1 + β2 X,
given the observations (yi, xi), i = 1,…,Ngiven the observations (yi, xi), i = 1,…,N

Model for observations: yi = β1 + β2 xi + εi, i = 1,…,N

Fitted values: ŷi = b1 + b2 xi, i = 1,…,N

Principle of (Ordinary) Least Squares gives the OLS estimatorsPrinciple of (Ordinary) Least Squares gives the OLS estimators
bi = arg minβ1,β2 S(β1, β2), i=1,2

Objective function: sum of the squared deviationsObjective function: sum of the squared deviations
S(β1, β2) = Σi [yi - (β1 + β2xi)]2 = Σi εi

2

Deviations between observation and fitted values, residuals: Deviations between observation and fitted values, residuals: 
ei = yi - ŷi = yi - (b1 + b2xi)
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Observations and Fitted Observations and Fitted 
Regression LineRegression Line

Simple linear regression: Fitted line and observation points (Verbeek, 
Figure 2.1) Figure 2.1) 
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OLS EstimatorsOLS Estimators

Equating the partial derivatives of S(β1, β2) to zero: normal equations
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OLS Estimators: The General OLS Estimators: The General 
Case Case 
Model for Y contains K-1 explanatory variables

Y = β1 + β2X2 + … + βKXK = x’βY = β1 + β2X2 + … + βKXK = x’β

with x = (1, X2, …, XK)’ and β = (β1, β2, …, βK)’ 

Observations: [y , x ] = [y , (1, x , …, x )’], i = 1, …, NObservations: [yi, xi] = [yi, (1, xi2, …, xiK)’], i = 1, …, N

OLS-estimates b = (b1, b2, …, bK)’ are obtained by minimizing 
Nβ β′= −∑

this results in the OLS estimators

2

1
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i ii
S y xβ β

=
′= −∑

this results in the OLS estimators

( ) ∑∑ =

−

=
′= N

i ii

N

i ii yxxxb
1

1

1 ∑∑ == ii 11

Mar 11, 2016 Hackl, Econometrics 2, Lecture 1 23



Matrix NotationMatrix Notation

N observations
(y1,x1), … , (yN,xN)1 1 N N

Model: yi = β1 + β2xi + εi, i = 1, …,N, or

y = Xβ + εy = Xβ + ε
with
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Gauss-Markov Assumptions Gauss-Markov Assumptions 

Observation yi (i = 1, …, N) is a linear function 
yi = xi'β + εiyi = xi'β + εi

of observations xik, k =1, …, K, of the regressor variables and the 
error term εi

A1 E{ε } = 0 for all i

xi = (xi1, …, xiK)'; X = (xik)

A1 E{εi} = 0 for all i

A2 all εi are independent of all xi (exogenous xi)

A3 V{εi} = σ2 for all i (homoskedasticity)

A4 Cov{εi, εj} = 0 for all i and j with i ≠ j (no autocorrelation)A4 Cov{εi, εj} = 0 for all i and j with i ≠ j (no autocorrelation)
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Normality of Error TermsNormality of Error Terms

A5 εi normally distributed for all i

Together with assumptions (A1), (A3), and (A4), (A5) implies
εi ~ NID(0,σ2) for all ii

i.e., all εi are 
� independent drawings 

from the normal distribution N(0,σ2) � from the normal distribution N(0,σ2) 
� with mean 0 
� and variance σ2� and variance σ2

Error terms are “normally and independently distributed” (NID, n.i.d.)
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Properties of OLS EstimatorsProperties of OLS Estimators

OLS estimator b = (X’X)-1X’y
1. The OLS estimator b is unbiased: E{b} = β1. The OLS estimator b is unbiased: E{b} = β
2. The variance of the OLS estimator is given by

V{b} = σ2(Σi xi xi’ )-1i i i

3. The OLS estimator b is a BLUE (best linear unbiased estimator) 
for β

4. The OLS estimator b is normally distributed with mean β and 4. The OLS estimator b is normally distributed with mean β and 
covariance matrix V{b} = σ2(Σi xi xi’ )-1

Properties Properties 
� 1., 2., and 3. follow from Gauss-Markov assumptions 
� 4. needs in addition the normality assumption (A5)� 4. needs in addition the normality assumption (A5)
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Distribution of t-statisticDistribution of t-statistic

t-statistic
k

k

b
t =

follows 

( )
k

k

t
s e b

=

1. the t-distribution with N-K d.f. if the Gauss-Markov assumptions 
(A1) - (A4) and the normality assumption (A5) hold 

2. approximately the t-distribution with N-K d.f. if the Gauss-Markov 2. approximately the t-distribution with N-K d.f. if the Gauss-Markov 
assumptions (A1) - (A4) hold but not the normality assumption (A5) 

3. asymptotically (N → ∞) the standard normal distribution N(0,1)3. asymptotically (N → ∞) the standard normal distribution N(0,1)
4. Approximately, for large N, the standard normal distribution N(0,1)
The approximation errors decrease with increasing sample size NThe approximation errors decrease with increasing sample size N
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OLS Estimators: ConsistencyOLS Estimators: Consistency

The OLS estimators b are consistent,  
plimN → ∞ b = β,plimN → ∞ b = β,

if one of the two sets of conditions are fulfilled:
� (A2) from the Gauss-Markov assumptions and the assumption (A2) from the Gauss-Markov assumptions and the assumption 

(A6), or
� the assumption (A7), weaker than (A2), and the assumption (A6)

xAssumptions (A6) and (A7): x

A6 1/N ΣNi=1 xi xi’ converges with growing N to a finite, A6 1/N Σ i=1 xi xi’ converges with growing N to a finite, 
nonsingular matrix Σxx

A7 The error terms have zero mean and are uncorrelated 

Assumption (A7) is weaker than assumption (A2)!

A7 The error terms have zero mean and are uncorrelated 
with each of the regressors: E{xi εi} = 0

Assumption (A7) is weaker than assumption (A2)!
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Estimation ConceptsEstimation Concepts

OLS estimator: Minimization of objective function S(β) = Σi εi
2 gives 

� K first-order conditions Σi (yi – xi’b) xi = Σi ei xi = 0, the normal 
equations

i i i i i i i
equations

� OLS estimators are solutions of the normal equations
� Moment conditions � Moment conditions 

E{(yi – xi’ β) xi} = E{εi xi} = 0
� Normal equations are sample moment conditions (times N)� Normal equations are sample moment conditions (times N)
IV estimator: Model allows derivation of moment conditions 

E{(yi – xi’ β) zi} = E{εi zi} = 0i i i i i

which are functions of
� observable variables yi, xi, instrument variables zi, and unknown 

parameters βparameters β
� Moment conditions are used for deriving IV estimators
� OLS estimators are special case of IV estimators
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Estimation Concepts, cont’dEstimation Concepts, cont’d

GMM estimator: generalization of the moment conditions
E{f(wi, zi, β)} = 0i i

� with observable variables wi, instrument variables zi, and unknown 
parameters β; f: multidimensional function with as many components 
as conditions as conditions 

� Allows for non-linear models
� Under weak regularity conditions, the GMM estimators are

� consistent
� asymptotically normal

Maximum likelihood estimation Maximum likelihood estimation 
� Basis is the distribution of yi conditional on regressors xi
� Depends on unknown parameters β� Depends on unknown parameters β
� The estimates of the parameters β are chosen so that the distribution 

corresponds as well as possible to the observations yi and xi
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Example: Urn ExperimentExample: Urn Experiment

Urn experiment:
� The urn contains red and white balls 

Proportion of red balls: p (unknown)� Proportion of red balls: p (unknown)
� N random draws
� Random draw i: y = 1 if ball in draw i is red, y = 0 otherwise; � Random draw i: yi = 1 if ball in draw i is red, yi = 0 otherwise; 

P{yi=1} = p
� Sample: N1 red balls, N-N1 white ballsSample: N1 red balls, N-N1 white balls
� Probability for this result: 

P{N1 red balls, N-N1 white balls} ≈ pN1 (1 – p)N-N1

Likelihood function L(p): The probability of the sample result, Likelihood function L(p): The probability of the sample result, 
interpreted as a function of the unknown parameter p
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Urn Experiment: Likelihood Urn Experiment: Likelihood 
Function and LM EstimatorFunction and LM Estimator
Likelihood function: (proportional to) the probability of the sample 

result, interpreted as a function of the unknown parameter p
L(p) = pN1 (1 – p)N-N1 , 0 < p < 1L(p) = pN1 (1 – p)N-N1 , 0 < p < 1

Maximum likelihood estimator: that value     of p which maximizes 
L(p)

p̂
L(p)

Calculation of    : maximization algorithmsp̂

ˆ argmax ( )pp L p=

� As the log-function is monotonous, coordinates p of the extremes 
of L(p) and log L(p) coincide 

� Use of log-likelihood function is often more convenient

p̂

� Use of log-likelihood function is often more convenient
log L(p) = N1 log p + (N - N1) log (1 – p)
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Urn Experiment: Likelihood Urn Experiment: Likelihood 
Function, cont’dFunction, 

Verbeek, Fig.6.1

p log 

L(p)

x

L(p)

0,1 -107,21
0,2 -83,31

x
-83,31

0,3 -72,95
0,4 -68,92
0,5 -69,31
0,6 -73,79
0,7 -83,120,7 -83,12
0,8 -99,95
0,9 -133,58
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Urn Experiment: ML EstimatorUrn Experiment: ML Estimator

Maximizing log L(p) with respect to p gives the first-order condition 

1 1log ( )
0

N N Nd L p −= − =

Solving this equation for p gives the maximum likelihood estimator 

1 1log ( )
0

1

N N Nd L p

dp p p

−= − =
−

Solving this equation for p gives the maximum likelihood estimator 
(ML estimator)

N
p 1ˆ =

For N = 100, N1 = 44, the ML estimator for the proportion of red balls 
is     = 0.44

N
p̂ =

p̂is     = 0.44p̂
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Maximum Likelihood Maximum Likelihood 
Estimator: The IdeaEstimator: The Idea
� Specify the distribution of the data (of y or y given x) 
� Determine the likelihood of observing the available sample as a 

function of the unknown parametersfunction of the unknown parameters
� Choose as ML estimates those values for the unknown parameters 

that give the highest likelihoodthat give the highest likelihood
� Properties: In general, the ML estimators are 

� consistent 
� asymptotically normal
� efficient
provided the likelihood function is correctly specified, i.e., provided the likelihood function is correctly specified, i.e., 
distributional assumptions are correct
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Example: Normal Linear Example: Normal Linear 
RegressionRegression
Model

yi = β1 + β2Xi + εii 1 2 i i

with assumptions (A1) – (A5)
From the normal distribution of εi follows: contribution of  observation i

to the likelihood function:to the likelihood function:
2

2 1 2

22

( )1 1
( ; , ) exp

22

i i
i i

y X
f y X

β ββ σ
σπσ

 − −= − 
 

L(β,σ²) = ∏i f(yi│xi;β,σ²) due to independent observations; the log-
likelihood function is given by

2 22 σπσ  

likelihood function is given by
2 2log ( , ) log ( ; , )

1

i ii
L f y X

N

β σ β σ= ∏
∑2 2

1 22

1
log(2 ) ( )

2 2
i ii

N
y Xπσ β β

σ
= − − − −∑
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Normal Linear Regression, cont’dNormal Linear Regression, cont’d

Maximizing log L(β,σ²) with respect to β and σ2 gives the ML estimators 

{ } { }xVxyCov2 /),β̂ =

which coincide with the OLS estimators, and

{ } { }
xy

xVxyCov

21

2

ˆˆ

/),

ββ

β

−=

=

which coincide with the OLS estimators, and

∑=
i ie

N

22 1σ̂

which is biased and underestimates σ²!
Remarks:

∑iN

Remarks:
� The results are obtained assuming normally and independently 

distributed (NID) error terms 
ML estimators are consistent but not necessarily unbiased; see the � ML estimators are consistent but not necessarily unbiased; see the 
properties of ML estimators below 
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ML Estimator: NotationML Estimator: Notation

Let the density (or probability mass function) of yi, given xi, be given by 
f(yi|xi,θ) with K-dimensional vector θ of unknown parameters

Given independent observations, the likelihood function for the sample Given independent observations, the likelihood function for the sample 
of size N is

∏∏ == iiiii xyfxyLXyL );|(),|(),|( θθθ
The ML estimators are the solutions of

maxθ log L(θ) = maxθ Σi log Li(θ)

∏∏ ==
i iii iii xyfxyLXyL );|(),|(),|( θθθ

maxθ log L(θ) = maxθ Σi log Li(θ)
or the solutions of the K first-order conditions 

ˆ ˆ ˆ

log ( )log ( )ˆ( ) | | ( ) | 0iLL
s s

θθθ θ∂∂= = = =∑ ∑
s(θ) = Σi si(θ), the K-vector of gradients, also denoted score vector

Solution of s(θ) = 0 

ˆ ˆ ˆ
ˆ( ) | | ( ) | 0

i i
s sθ θ θθ θ

θ θ
= = = =

∂ ∂∑ ∑

Solution of s(θ) = 0 
� analytically (see examples above) or
� by use of numerical optimization algorithms
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Matrix DerivativesMatrix Derivatives

The scalar-valued function

1log ( | , ) log ( | , ) log ( ,..., | , )i i i Ki
L y X L y x L y Xθ θ θ θ= =∏

or – shortly written as log L(θ) – has the K arguments θ1, 3, θK
� K-vector of partial derivatives or gradient vector or score vector or 

gradient

1i i i Ki∏

gradient
log ( ) log ( ) log ( )

,..., ( )
L L L

s
θ θ θ θ

θ θ θ

′ ∂ ∂ ∂= = ∂ ∂ ∂ 
� KxK matrix of second derivatives or Hessian matrix

1 Kθ θ θ ∂ ∂ ∂ 

2 2log ( ) log ( )L Lθ θ ∂ ∂

1 1 12

log ( ) log ( )

log ( )

'

K

L L

L

θ θ
θ θ θ θ

θ
θ θ

 ∂ ∂
 ∂ ∂ ∂ ∂ ∂  =

∂ ∂  

K

M O M

2 2

1

'
log ( ) log ( )

K K K

L L
θ θ

θ θ
θ θ θ θ

 =
∂ ∂  

∂ ∂ 
 ∂ ∂ ∂ ∂ 

M O M

L
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ML Estimator: PropertiesML Estimator: Properties

The ML estimator is
1. Consistent
2. asymptotically efficient
3. asymptotically normally distributed:

ˆ( ) N(0, )N Vθ θ− →
V: asymptotic covariance matrix of 

ˆ( ) N(0, )N Vθ θ− →
ˆNθ
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The Information MatrixThe Information Matrix

Information matrix I(θ)
� I(θ) is the limit (for N→ ∞) of

� For the asymptotic covariance matrix V can be shown: V = I(θ)-1

22 log ( )1 log ( ) 1 1
( ) ( )i

N ii i

LL
I E E I

N N N

θθθ θ
θ θ θ θ

   ∂∂= − = − =   ′ ′∂ ∂ ∂ ∂   
∑ ∑

� For the asymptotic covariance matrix V can be shown: V = I(θ)-1

� I(θ)-1 is the lower bound of the asymptotic covariance matrix for any 
consistent, asymptotically normal estimator for θ: Cramèr-Rao lower 

   

consistent, asymptotically normal estimator for θ: Cramèr-Rao lower 
bound 

Calculation of Ii(θ) can also be based on the outer product of the score 
vector

i
vector

{ }
2 log ( )

( ) ( ) ( ) ( )i
i i i i

L
J E s s E I

θθ θ θ θ
θ θ

 ∂′= = − = ′∂ ∂ 

for a miss-specified likelihood function, Ji(θ) can deviate from Ii(θ)

θ θ ′∂ ∂ 
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Example: Normal Linear Example: Normal Linear 
RegressionRegression
Model

yi = β1 + β2Xi + εii 1 2 i i

with assumptions (A1) – (A5) fulfilled
The score vector with respect to β = (β1,β2)’ is – using xi = (1, Xi)’ –

1∂

The information matrix is obtained both via Hessian and outer product

2

2

1
( ) log ( , )i i i is L xβ β σ ε

β σ
∂= =

∂
The information matrix is obtained both via Hessian and outer product

{ }
2

2

,11

log ( )
( , ) '

'

i
i i i

L
I E E s s

θβ σ
β β

 ∂= − = ∂ ∂ 

{ }2

24 2 2

'

11 1 1
' '

i

i i i i i

X
E x x x x

X X

β β

ε
σ σ σ

∂ ∂ 

 
= = =  

 
{ } 24 2 2i i i i i

i iX Xσ σ σ  
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Covariance Matrix V: Covariance Matrix V: 
Calculation
Two ways to calculate V:
� Estimator based on the information matrix I(θ) 

1
2 θ

−
 ∂

1
2

1

ˆ

log ( )1 ˆˆ | ( )i
H Ni

L
V I

N θ

θ θ
θ θ

−
− ∂= − = ′∂ ∂ 

∑

index “H”: the estimate of V is based on the Hessian matrix
� Estimator based on the score vector 

 

1 1
1 1

− −
   

with score vector s(θ); index “G”: the estimate of V is based on 

1 1
1 1ˆ ˆ ˆˆ ( ) ( ) ( )G i i ii i

V s s J
N N

θ θ θ
− −

   ′= =   
   
∑ ∑

with score vector s(θ); index “G”: the estimate of V is based on 
gradients
� also called: OPG (outer product of gradient) estimator � also called: OPG (outer product of gradient) estimator 
� also called: BHHH (Berndt, Hall, Hall, Hausman) estimator
� E{si(θ) si(θ)’} coincides with Ii(θ) if f(yi| xi,θ) is correctly specified
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Again the Urn Experiment Again the Urn Experiment 

Likelihood contribution of the i-th observation 
log Li(p) = yi log p + (1 - yi) log (1 – p)i i i

This gives scores

p

y

p

y
ps

p

pL ii
i

i

−
−−==

∂
∂

1

1
)(

)(log

and 
pp

ps
p

i −
−==

∂ 1
)(

2 1)(log yypL −∂

With E{y } = p, the expected value turns out to be 

222

2

)1(

1)(log

p

y

p

y

p

pL iii

−
−

−−=
∂

∂

With E{yi} = p, the expected value turns out to be 

)1(

1

1

11)(log
)(

2

2

ppppp

pL
EpI i

i −
=

−
+=









∂
∂−=

The asymptotic variance of the ML estimator V = I-1 = p(1-p)

)1(12 ppppp
i −−



 ∂
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Urn Experiment and Binomial Urn Experiment and Binomial 
DistributionDistribution
The asymptotic distribution is

( ))1(,0)ˆ( ppNppN −→−
� Small sample distribution:

N ~ B(N, p)

( ))1(,0)ˆ( ppNppN −→−

p̂N ~ B(N, p)
� Use of the approximate normal distribution for portions  

� rule of thumb for using the approximate distribution 

p̂

p̂

� rule of thumb for using the approximate distribution 

N p (1-p) > 9
Test of H0: p = p0 can be based on test statistic Test of H0: p = p0 can be based on test statistic 

0
ˆ ˆ( ) / ( )p p se p−
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Example: Normal Linear Example: Normal Linear 
Regression
Model

yi = xi’β + εii i i

with assumptions (A1) – (A5)
Log-likelihood function

∑ ′−−−= N 222 1 βπσσβ
Scores of the i-th observation

∑ ′−−−=
i ii xy

N
L 2

2

22 )(
2

1
)2log(

2
),(log β

σ
πσσβ

2

2
2

log ( , )

( , )

i i i
i

i

L y x
x

s

β σ β
β σβ σ

 ∂ ′− 
   ∂ = =  
 2

2

2 42

( , )
1 1log ( , ) ( )
2 2

i

i
i i

s
L y x

β σ
β σ β

σ σσ

 = =  
   ∂ ′− + −    ∂ 
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Normal Linear Regression: ML-Normal Linear Regression: ML-
Estimators
The first-order conditions – setting both components of Σisi(β,σ²) to 

zero – give as ML estimators: the OLS estimator for β, the average 
squared residuals for σ²squared residuals for σ²

( ) 221
)ˆ(

1
ˆ,ˆ βσβ ∑∑∑ ′−=′= −

i iii iii ii xy
N

yxxx

Asymptotic covariance matrix: Contribution of the i-th observation 
(E{εi} = E{εi3} = 0, E{εi2} = σ², E{εi4} = 3σ4)

∑∑∑
N

1 1 
i i i i

gives

2 2 2

2 4

1 1
( , ) { ( , ) ( , ) } diag ,

2
i i i i iI E s s x xβ σ β σ β σ

σ σ
 ′ ′= =  
 

gives
V = I(β,σ²)-1 = diag (σ²Σxx-1, 2σ4)

with Σxx = lim (Σixixi‘)/Nwith Σxx = lim (Σixixi‘)/N
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Normal Linear Regression: ML-Normal Linear Regression: ML-
and OLS-Estimators
The ML estimate for β and σ² follow asymptotically

2 1ˆ( ) N(0, )xxN β β σ −− → Σ
2 2 4

ˆ( ) N(0, )

ˆ( ) N(0,2 )

xxN

N

β β σ

σ σ σ

− → Σ

− →

For finite samples: covariance matrix of ML estimators for β

( ) 1
2ˆˆ ˆ( ) i ii

V x xβ σ
−

′= ∑
similar to OLS results 

( )ˆ( ) i ii
V x xβ σ ′= ∑
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Diagnostic TestsDiagnostic Tests

Diagnostic (or specification) tests based on ML estimators
Test situation:
� K-dimensional parameter vector θ = (θ1, …, θK)’
� J ≥ 1 linear restrictions (K ≥ J)

H : R θ = q with JxK matrix R, full rank; J-vector q� H0: R θ = q with JxK matrix R, full rank; J-vector q
Test principles based on the likelihood function:
1. Wald test: Checks whether the restrictions are fulfilled for the 1. Wald test: Checks whether the restrictions are fulfilled for the 

unrestricted ML estimator for θ; test statistic ξW
2. Likelihood ratio test: Checks whether the difference between the 

log-likelihood values with and without the restriction is close to log-likelihood values with and without the restriction is close to 
zero; test statistic ξLR

3. Lagrange multiplier test (or score test): Checks whether the first-3. Lagrange multiplier test (or score test): Checks whether the first-
order conditions (of the unrestricted model) are violated by the 
restricted ML estimators; test statistic ξLM
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Likelihood and Test StatisticsLikelihood and Test Statistics

AlogL

logL, g(β) g(β) = 0: restriction
log L: log-likelihoodA

LR

B
LM

logLR

logLmax
log L: log-likelihood

logL

LM

g(β)

0
W

g(β~)
C

0
ββ~β~R
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The Asymptotic TestsThe Asymptotic Tests

Under H0, the test statistics of all three tests 
� follow asymptotically, for finite sample size approximately, the Chi-

square distribution with J d.f.square distribution with J d.f.
� The tests are asymptotically (large N) equivalent
� Finite sample size: the values of the test statistics obey the relation� Finite sample size: the values of the test statistics obey the relation

ξW ≥ ξLR ≥ ξLM
Choice of the test: criterion is computational effortChoice of the test: criterion is computational effort
1. Wald test: Requires estimation only of the unrestricted model; 

e.g., testing for omitted regressors: estimate the full model, test 
whether the coefficients of potentially omitted regressors are whether the coefficients of potentially omitted regressors are 
different from zero

2. Lagrange multiplier test: Requires estimation only of the restricted 2. Lagrange multiplier test: Requires estimation only of the restricted 
model; preferable if restrictions complicate estimation

3. Likelihood ratio test: Requires estimation of both the restricted  
and the unrestricted modeland the unrestricted model
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Wald TestWald Test

Checks whether the restrictions are fulfilled for the unrestricted ML 
estimator for θ

Asymptotic distribution of the unrestricted ML estimator:Asymptotic distribution of the unrestricted ML estimator:

Hence, under H : R θ = q, 
),0()ˆ( VNN →−θθ

Hence, under H0: R θ = q, 

The test statistic
),0()ˆ()ˆ( RRVNqRNRRN ′→−=− θθθ

The test statistic

under H , ξ is expected to be close to zero

[ ] )ˆ(ˆ)ˆ(
1

qRRVRqRNW −′′−=
−

θθξ
� under H0, ξW is expected to be close to zero
� p-value to be read from the Chi-square distribution with J d.f.
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Wald Test, cont’dWald Test, cont’d

Typical application: tests of linear restrictions for regression 
coefficients
Test of H : β = 0 � Test of H0: βi = 0 

ξW = bi2/[se(bi)2]
� ξW follows the Chi-square distribution with 1 d.f.� ξW follows the Chi-square distribution with 1 d.f.
� ξW is the square of the t-test statistic

� Test of the null-hypothesis that a subset of J of the coefficients β
are zerosare zeros

ξW = (eR’eR – e’e)/[e’e/(N-K)] 
� e: residuals from unrestricted model� e: residuals from unrestricted model
� eR: residuals from restricted model
� ξW follows the Chi-square distribution with J d.f.W

� ξW is related to the F-test statistic by ξW = FJ
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Likelihood Ratio TestLikelihood Ratio Test

Checks whether the difference between the ML estimates obtained 
with and without the restriction is close to zero 
for nested modelsfor nested models

� Unrestricted ML estimator:    
� Restricted ML estimator:    ; obtained by minimizing the log-

θˆ
θ~� Restricted ML estimator:    ; obtained by minimizing the log-

likelihood subject to R θ = q
Under H0: R θ = q, the test statistic 

θ~

0

� is expected to be close to zero

( ))~(log)ˆ(log2 θθξ LLLR −=
� is expected to be close to zero
� p-value to be read from the Chi-square distribution with J d.f.
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Likelihood Ratio Test, cont’dLikelihood Ratio Test, cont’d

Test of linear restrictions for regression coefficients
� Test of the null-hypothesis that J linear restrictions of the 

coefficients β are validcoefficients β are valid
ξLR = N log(eR’eR/e’e) 

� e: residuals from unrestricted model� e: residuals from unrestricted model
� eR: residuals from restricted model 
� ξLR follows the Chi-square distribution with J d.f.

� Requires that the restricted model is nested within the unrestricted 
model 
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Lagrange Multiplier TestLagrange Multiplier Test

Checks whether the derivative of the likelihood for the restricted ML 
estimator is close to zero

Based on the Lagrange constrained maximization methodBased on the Lagrange constrained maximization method
Lagrangian, given θ = (θ1’, θ2’)’ with restriction θ2 = q, J-vectors θ2, q, λ

H(θ, λ) = Σ log L (θ) – λ‘(θ -q)H(θ, λ) = Σi log L i(θ) – λ‘(θ2-q)
First-order conditions give the restricted ML estimators 

and 
1( , )qθ θ ′ ′ ′=% %

λ~and λ

∑∑ ==
∂

∂
i ii

i s
L

0)
~
(|

)(log
1~

1

θ
θ

θ
θ

λ measures the extent of violation of the restrictions, basis for ξ

∑∑ =
∂

∂=
i ii

i s
L

)
~
(|

)(log~
2~

2

1

θ
θ

θλ θ

λ measures the extent of violation of the restrictions, basis for ξLM
si are the scores; LM test is also called score test 

2
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Lagrange Multiplier Test, cont’dLagrange Multiplier Test, cont’d

For     can be shown that           follows asymptotically the normal 
distribution N(0,Vλ)  with 
λ%

1 22 1( ) ( ) ( ) ( ) [ ( )]V I I I I Iθ θ θ θ θ− −= − =

1N λ− %

i.e., the lower block diagonal of the inverted information matrix

1 22 1

22 21 11 22( ) ( ) ( ) ( ) [ ( )]V I I I I Iλ θ θ θ θ θ− −= − =

1 11 12( ) ( ) ( ) ( )I I I Iθ θ θ θ−
   11 12

11 121

21 22
21 22

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

I I I I
I

I I I I

θ θ θ θθ
θ θ θ θ

−   
= =   
   

The Lagrange multiplier test statistic

λθλξ ~
)
~
(ˆ

~ 221 INLM
′= −

has under H0 an asymptotic Chi-square distribution with J d.f.
is the lower block diagonal of the estimated inverted 

λθλξ )(ÎNLM
′=

)
~
(ˆ22 θI is the lower block diagonal of the estimated inverted 
information matrix, based on the restricted estimators for θ
)(θI
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The LM Test StatisticThe LM Test Statistic

Outer product gradient (OPG) of ξLM
� Information matrix estimated on basis of scores

{ }ˆ ∑ ∑% % % % %

� With 
( )sλ θ=∑% %

{ }1 1

2 2
ˆ( ) ( ) ( ) ' 0, ( ) ( ) 'i i i ii i
I N s s N diag s sθ θ θ θ θ− −= =∑ ∑% % % % %

� the LM test statistics can be written as

( ) 1

( ) ' ( ) ( ) ' ( )s s s sξ θ θ θ θ
−

=∑ ∑ ∑% % % %

2 ( )ii
sλ θ=∑% %

With the NxK matrix of first derivatives S = [s1(  ), …, sN(  )]‘
( ) 1

2 2 2 2( ) ' ( ) ( ) ' ( )LM i i i ii i i
s s s sξ θ θ θ θ

−
=∑ ∑ ∑% % % %

1 1ˆ( ) ( ) ( ) ' 'I N s s N S Sθ θ θ− −= =∑% % %
θ%θ%

� and – with the N-vector i = (1, …, 1)’ 

1 1ˆ( ) ( ) ( ) ' 'i ii
I N s s N S Sθ θ θ− −= =∑% % %

( ) 1

( ) ' ( ) ( ) ' ( )s s s sξ θ θ θ θ
−

=∑ ∑ ∑% % % %( )
( )

2 2 2 2

1
1

( ) ' ( ) ( ) ' ( )

( ) ' ( ) ( ) ' ( ) ' ( ' ) '

LM i i i ii i i

i i i ii i i

s s s s

s s s s i S S S S i

ξ θ θ θ θ

θ θ θ θ
− −

=

= =

∑ ∑ ∑

∑ ∑ ∑

% % % %

% % % %
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Calculation of the LM Test Calculation of the LM Test 
StatisticStatistic
Auxiliary regression of a N-vector i = (1, …, 1)’ on the scores si(  ),  

i.e., on the columns of S; no intercept 
Predicted values from auxiliary regression: S(S'S)-1S’i

θ~

� Predicted values from auxiliary regression: S(S'S)-1S’i
� Sum of squared predictions: i’S(S’S)-1S’S(S’S)-1S’i = i’S(S’S)-1S’i 
� Total sum of squares: i’i = N� Total sum of squares: i’i = N
� LM test statistic 

ξLM = i’S(S’S)-1S’i = N uncR² ξLM = i’S(S’S) S’i = N uncR² 
with the uncentered R² of the auxiliary regression with residuals e

Remember: For  the regression y = Xβ + ε 
� OLS estimates for β: b = (X‘X)-1X‘y

the predictions for y: ŷ = X(X‘X)-1X‘y� the predictions for y: ŷ = X(X‘X)-1X‘y
� uncentered R²: uncR² = ŷ’ŷ/y’y 
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The Urn Experiment: Three The Urn Experiment: Three 
Tests of H0: p=p0Tests of H0: p=p0
The urn experiment: test of H0: p = p0
The likelihood contribution of the i-th observation is

log Li(p) = yi log p + (1 - yi) log (1 – p)
This gives 

s (p) = y /p – (1-y )/(1-p) and I (p) = [p(1-p)]-1si(p) = yi/p – (1-yi)/(1-p) and Ii(p) = [p(1-p)]-1

Wald test (with the unrestricted estimators     and   )
ξW = N(R - q) [RV-1R]-1 (R - q) = N(   - p0) [ (1- )]-1 (   - p0)θˆ θˆ

θˆ p̂

p̂ p̂p̂p̂ξW = N(R - q) [RV-1R]-1 (R - q) = N(   - p0) [ (1- )]-1 (   - p0)
with J = 1, R = I; this gives

2 2

0 1 0
ˆ( ) ( )p p N Np

N Nξ − −= =

θˆ θˆ p̂ p̂p̂p̂

Example: In a sample of N = 100 balls, N1 = 40 are red, i.e.,    =0,40

0 1 0

1

ˆ( ) ( )

ˆ ˆ(1 ) ( )
W

p p N Np
N N

p p N N N
ξ − −= =

− −
p̂Example: In a sample of N = 100 balls, N1 = 40 are red, i.e.,    =0,40

� Test of H0: p0 = 0,5 results in 
ξW = 4,167, corresponding to a p-value of 0,041

p̂
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The Urn Experiment: LR Test The Urn Experiment: LR Test 
of H0: p=p0of H0: p=p0
Likelihood ratio test:

( )ˆ2 log ( ) log ( )LR L p L pξ = − %

with
( )LR

)1log()()log()~(log

)/1log()()/log()ˆ(log 1111

pNNpNpL

NNNNNNNpL

−−+=
−−+=

unrestricted estimator     and restricted estimator
)1log()()log()~(log 0101 pNNpNpL −−+=

p̂ p%

Example: In the sample of N = 100 balls, N1 = 40 are red
� =0,40,     = p0 = 0,5 p̂ p%� =0,40,     = p0 = 0,5 
� Test of H0: p0 = 0,5 results in 

ξW = 4,027, corresponding to a p-value of 0,045

p p%

Mar 11, 2016 Hackl, Econometrics 2, Lecture 1 67



The Urn Experiment: LM Test The Urn Experiment: LM Test 
of H0: p=p0of H0: p=p0
Lagrange multiplier test:

with
1 01 1( ) |

N NpN N N
s pλ −−= = − =∑%

and the inverted information matrix [I(p)]-1 = p(1-p), calculated for 
the restricted case, the LM test statistic is

0

1 01 1

0 0 0 0

( ) |
1 (1 )

i pi
s p

p p p p
λ = = − =

− −∑%

the restricted case, the LM test statistic is
1 1

0 0 0 0 0 0

2

ˆ ˆ[ (1 )] ( )[ (1 )] ( )

ˆ( )

LM N p p N p p p p p p

p p

ξ λ λ− −= − = − − −

−

% %

2

0

0 0

ˆ( )

(1 )

p p
N

p p

−=
−

Comparison of the test results

Wald LR LM

Example: 

Test statistic 4,167 4,027 4,000

p-value 0,041 0,045 0,046Example: 
� In the sample of N = 100 balls, 40 are red
� LM test of H0: p0 = 0,5 gives ξLM = 4,000 with p-value of 0,044
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Normal Linear Regression: Normal Linear Regression: 
Scores
Log-likelihood function
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Covariance matrix
V = I(β,σ²)-1 = diag(σ²Σxx-1, 2σ4) 
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Testing for Omitted RegressorsTesting for Omitted Regressors

Model: yi = xi’β + zi’γ + εi, εi ~ NID(0,σ²)
Test whether the J regressors zi are erroneously omitted:Test whether the J regressors zi are erroneously omitted:
� Fit the restricted model 
� Apply the LM test to check H0: γ = 00

First-order conditions give the scores
2
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2 2
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with restricted ML estimators for β and σ²; ML-residuals 
� Auxiliary regression of N-vector i = (1, …, 1)’ on the scores gives 

2 2 2 4
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,x zε ε% %� Auxiliary regression of N-vector i = (1, …, 1)’ on the scores gives 
the uncentered R² 

� The LM test statistic is ξLM = N uncR² 

,i i i ix zε ε% %

� The LM test statistic is ξLM = N uncR² 
� An asymptotically equivalent LM test statistic is NRe² with Re² 

from the regression of the ML residuals on xi and zi
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Testing for HeteroskedasticityTesting for Heteroskedasticity

Model: yi = xi’β + εi, εi ~ NID, V{εi} = σ² h(zi’α), h(.) > 0 but unknown, 
h(0) = 1, ∂/∂α{h(.)} ≠ 0, J-vector zii

Test for homoskedasticity: Apply the LM test to check H0: α = 0 
First-order conditions with respect to σ² and α give the scores

z′−− )~~(,~~ 2222 σεσε
with restricted ML estimators for β and σ²; ML-residuals 

� Auxiliary regression of N-vector i = (1, …, 1)’ on the scores gives 

iii z′−− )~~(,~~ 2222 σεσε
iε%

� Auxiliary regression of N-vector i = (1, …, 1)’ on the scores gives 
the uncentered R² 

� LM test statistic ξLM = N uncR²; a version of Breusch-Pagan test� LM test statistic ξLM = N uncR²; a version of Breusch-Pagan test
� An asymptotically equivalent version of the Breusch-Pagan test is 

based on NRe² with Re² from the regression of the squared ML based on NRe² with Re² from the regression of the squared ML 
residuals on zi and an intercept

� Attention! No effect of the functional form of h(.) 
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Testing for AutocorrelationTesting for Autocorrelation

Model: yt = xt’β + εt, εt = ρεt-1 + vt, vt ~ NID(0,σ²)
LM test of H0: ρ = 0 LM test of H0: ρ = 0 
First-order conditions give the scores with respect to β and 

1
~~,~

−′
tttt x εεε

with restricted ML estimators for β and σ²
� The LM test statistic is ξLM = (T-1) uncR² with the uncentered

R² from the auxiliary regression of the N-vector i = (1,…,1)’ on R² from the auxiliary regression of the N-vector i = (1,…,1)’ on 
the scores

� If xt contains no lagged dependent variables: products with xt� If xt contains no lagged dependent variables: products with xt
can be dropped from the regressors; ξLM = (T-1) R² with R² 
from i = (1, …, 1)’ on the scores

1t tε ε −% %

An asymptotically equivalent test is the Breusch-Godfrey test 
based on NRe² with Re² from the regression of the ML 
residuals on x and the lagged residuals

1

residuals on xt and the lagged residuals
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Your HomeworkYour Homework

1. Assume that the errors εt of the linear regression yt = β1 + β2xt + εt
are NID(0, σ2) distributed. (a) Determine the log-likelihood function 
of the sample for t = 1, …,T; (b) derive (i) the first-order conditions of the sample for t = 1, …,T; (b) derive (i) the first-order conditions 
and (ii) the ML estimators for β1, β2, and σ2; (c) derive the 
asymptotic covariance matrix of the ML estimators for β1 and β2 on asymptotic covariance matrix of the ML estimators for β1 and β2 on 
the basis (i) of the information matrix and (ii) of the score vector. 

2. Open the Greene sample file “greene7_8, Gasoline price and 2. Open the Greene sample file “greene7_8, Gasoline price and 
consumption”, offered within the Gretl system. The dataset 
contains time series of annual observations from 1960 through 
1995.The variables to be used in the following are: G = total U.S. 1995.The variables to be used in the following are: G = total U.S. 
gasoline consumption, computed as total expenditure of gas 
divided by the price index; Pg = price index for gasoline; Y = per divided by the price index; Pg = price index for gasoline; Y = per 
capita disposable income; Pnc = price index for new cars; 
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Your Homework, cont’dYour Homework, cont’d

Puc = price index for used cars; Pop = U.S. total population in 
millions. Perform the following analyses and interpret the results: 
a. Produce and interpret the scatter plot of the per capita (p.c.) gasoline 

consumption (Gpc) over the p.c. disposable income (Y). 
b. Fit the linear regression for log(Gpc) with regressors log(Y), Pg, Pncb. Fit the linear regression for log(Gpc) with regressors log(Y), Pg, Pnc

and Puc to the data and give an interpretation of the outcome.
c. Use the Chow test to test for a structural break between 1979 and 

1980.1980.
d. Test for autocorrelation of the error terms using the LM test statistic 

ξLM = (T-1) R² with R² from the auxiliary regression of the vector of ξLM = (T-1) R² with R² from the auxiliary regression of the vector of 
ones i = (1, …, 1)’ on the scores (et*et-1).

e. Test for autocorrelation by means of the Breusch-Godfrey test, using 
the test statistic TR ² with R ² from the regression of the residuals on the test statistic TRe² with Re² from the regression of the residuals on 
the regressors and the lagged residuals.
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