Econometrics 2 - Lecture 3
Univariate Time Series
Models

Contents

- Time Series
- Stochastic Processes
- Stationary Processes
- The ARMA Process
- Deterministic and Stochastic Trends
- Models with Trend
- Unit Root Tests
- Estimation of ARMA Models

Private Consumption

Private Consumption: Growth Rate

Disposable Income

Time Series

Time-ordered sequence of observations of a random variable

Examples:

- Annual values of private consumption
- Yearly changes in expenditures on private consumption
- Quarterly values of personal disposable income
- Monthly values of imports

Notation:

- Random variable Y
- Sequence of observations $Y_{1}, Y_{2}, \ldots, Y_{T}$
- Deviations from the mean: $y_{t}=Y_{t}-E\left\{Y_{t}\right\}=Y_{t}-\mu$

Components of a Time Series

Components or characteristics of a time series are

- Trend
- Seasonality
- Irregular fluctuations

Time series model: represents the characteristics as well as possible interactions
Purpose of modeling

- Description of the time series
- Forecasting the future

Example: Quarterly observations of the disposable income

$$
\begin{aligned}
Y_{\mathrm{t}} & =\beta t+\Sigma_{\mathrm{i}}^{\mathrm{y}} \mathrm{i} \\
D_{i t} & +\varepsilon_{\mathrm{t}} \\
\text { with } D_{\mathrm{it}} & =1 \text { if } t \text { corresponds to } i \text {-th quarter, } D_{\mathrm{it}}=0 \text { otherwise }
\end{aligned}
$$

Contents

- Time Series
- Stochastic Processes
- Stationary Processes
- The ARMA Process
- Deterministic and Stochastic Trends
- Models with Trend
- Unit Root Tests
- Estimation of ARMA Models

Stochastic Process

Time series: realization of a stochastic process
Stochastic process is a sequence of random variables Y_{t}, e.g.,

$$
\begin{aligned}
& \left\{Y_{\mathrm{t}}, t=1, \ldots, \mathrm{n}\right\} \\
& \left\{\mathrm{Y}_{\mathrm{t}}, t=-\infty, \ldots, \infty\right\}
\end{aligned}
$$

Joint distribution of the $Y_{1}, \ldots, Y_{\mathrm{n}}$:

$$
p\left(y_{1}, \ldots ., y_{n}\right)
$$

Of special interest

- Evolution of the expectation $\mu_{t}=E\left\{Y_{t}\right\}$ over time
- Dependence structure over time

Example: Extrapolation of a time series as a tool for forecasting

White Noise

White noise process $\left\{Y_{t}, t=-\infty, \ldots, \infty\right\}$

- $E\left\{Y_{t}\right\}=0$
- $V\left\{Y_{t}\right\}=\sigma^{2}$
- $\operatorname{Cov}\left\{Y_{t}, Y_{t-s}\right\}=0$ for all (positive or negative) integers s
i.e., a mean zero, serially uncorrelated, homoskedastic process

AR(1)-Process

States the dependence structure between consecutive observations as

$$
Y_{\mathrm{t}}=\delta+\theta Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}, \quad|\theta|<1
$$

with $\varepsilon_{\mathrm{t}}:$ white noise, i.e., $\mathrm{V}\left\{\varepsilon_{\mathrm{t}}\right\}=\sigma^{2}$ (see next slide)

- Autoregressive process of order 1

From $Y_{t}=\delta+\theta Y_{t-1}+\varepsilon_{t}=\delta+\theta \delta+\theta^{2} \delta+\ldots+\varepsilon_{t}+\theta \varepsilon_{t-1}+\theta^{2} \varepsilon_{t-2}+\ldots$ follows

$$
E\left\{Y_{t}\right\}=\mu=\delta(1-\theta)^{-1}
$$

- $|\theta|<1$ needed for convergence! Invertibility condition

In deviations from $\mu, y_{\mathrm{t}}=Y_{\mathrm{t}}-\mu$:

$$
y_{t}=\theta y_{t-1}+\varepsilon_{t}
$$

AR(1)-Process, cont'd

Autocovariances $\gamma_{k}=\operatorname{Cov}\left\{Y_{t}, Y_{t-k}\right\}$

- $k=0: Y_{0}=V\left\{Y_{t}\right\}=\theta^{2} V\left\{Y_{t-1}\right\}+V\left\{\varepsilon_{t}\right\}=\ldots=\Sigma_{i} \theta^{2 i} \sigma^{2}=\sigma^{2}\left(1-\theta^{2}\right)^{-1}$
- $k=1: Y_{1}=\operatorname{Cov}\left\{Y_{t}, Y_{t-1}\right\}=E\left\{y_{t} y_{t-1}\right\}=E\left\{\left(\theta y_{t-1}+\varepsilon_{t}\right) y_{t-1}\right\}=\theta V\left\{y_{t-1}\right\}$

$$
=\theta \sigma^{2}\left(1-\theta^{2}\right)^{-1}
$$

- In general:

$$
Y_{k}=\operatorname{Cov}\left\{Y_{t}, Y_{t-k}\right\}=\theta^{\mathrm{k}} \sigma^{2}\left(1-\theta^{2}\right)^{-1}, k=0, \pm 1, \ldots
$$

depends upon k, not upon t !

MA(1)-Process

States the dependence structure between consecutive observations as

$$
Y_{t}=\mu+\varepsilon_{t}+\alpha \varepsilon_{t-1}
$$

with ε_{t} : white noise, $\mathrm{V}\left\{\varepsilon_{\mathrm{t}}\right\}=\sigma^{2}$
Moving average process of order 1

$$
E\left\{Y_{t}\right\}=\mu
$$

Autocovariances $\gamma_{k}=\operatorname{Cov}\left\{Y_{t}, Y_{t-k}\right\}$

- $k=0: Y_{0}=\vee\left\{Y_{\mathrm{t}}\right\}=\sigma^{2}\left(1+\alpha^{2}\right)$
- $k=1: Y_{1}=\operatorname{Cov}\left\{Y_{t}, Y_{t-1}\right\}=\alpha \sigma^{2}$
- $Y_{k}=0$ for $k=2,3, \ldots$
- Depends upon k, not upon t !

AR-Representation of MAProcess

The $\operatorname{AR}(1)$ can be represented as MA-process of infinite order

$$
y_{\mathrm{t}}=\theta y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}=\sum_{\mathrm{i}=0}^{\infty} \theta^{i} \varepsilon_{\mathrm{t}-\mathrm{i}}
$$

given that $|\theta|<1$
Similarly: the AR representation of the MA(1) process

$$
y_{t}=\alpha y_{t-1}-\alpha^{2} y_{t-2} \pm \ldots+\varepsilon_{t}=\sum_{i=0}^{\infty}(-1)^{i} a^{i+1} y_{t-i-1}+\varepsilon_{t}
$$

given that $|\alpha|<1$

Contents

- Time Series
- Stochastic Processes
- Stationary Processes
- The ARMA Process
- Deterministic and Stochastic Trends
- Models with Trend
- Unit Root Tests
- Estimation of ARMA Models

Stationary Processes

Refers to the joint distribution of Y_{t}^{\prime} s, in particular to second moments
(Weak) stationary or covariance stationary process: the first two
moments are finite and not affected by a shift of time

$$
\begin{gathered}
\mathrm{E}\left\{Y_{\mathrm{t}}\right\}=\mu \text { for all } t \\
\operatorname{Cov}\left\{Y_{\mathrm{t}}, Y_{\mathrm{t}+\mathrm{k}}\right\}=\gamma_{\mathrm{k}}, k=0, \pm 1, \ldots \text { for all } t \text { and all } k \\
\operatorname{Cov}\left\{Y_{\mathrm{t}}, Y_{\mathrm{t}+\mathrm{k}}\right\}, k=0, \pm 1, \ldots: \text { covariance function; } \gamma_{\mathrm{t}, \mathrm{k}}=\gamma_{\mathrm{t},-\mathrm{k}}
\end{gathered}
$$

A process is called strictly stationary if its stochastic properties are unaffected by a change of the time origin

- The joint probability distribution at any set of times is not affected by an arbitrary shift along the time axis

$A C$ and PAC Function

Autocorrelation function (AC function, ACF) Independent of the scale of Y

- For a stationary process:

$$
\rho_{\mathrm{k}}=\operatorname{Corr}\left\{Y_{\mathrm{t}}, Y_{\mathrm{t}-\mathrm{k}}\right\}=Y_{\mathrm{k}} / Y_{0}, k=0, \pm 1, \ldots
$$

- Properties:
- $\left|\rho_{k}\right| \leq 1$
- $\rho_{\mathrm{k}}=\rho_{-\mathrm{k}}$
- $\rho_{0}=1$
- Correlogram: graphical presentation of the AC function

Partial autocorrelation function (PAC function, PACF):

$$
\theta_{k k}=\operatorname{Corr}\left\{Y_{t}, Y_{t-k} \mid Y_{t-1}, \ldots, Y_{t-k+1}\right\}, k=0, \pm 1, \ldots
$$

- θ_{kk} is obtained from $Y_{\mathrm{t}}=\theta_{\mathrm{k} 0}+\theta_{\mathrm{k} 1} Y_{\mathrm{t}-1}+\ldots+\theta_{\mathrm{kk}} Y_{\mathrm{t}-\mathrm{k}}$
- Partial correlogram: graphical representation of the PAC function

Examples

for the AC and PAC functions:

- White noise

$$
\begin{aligned}
& \rho_{0}=\theta_{00}=1 \\
& \rho_{\mathrm{k}}=\theta_{\mathrm{kk}}=0, \text { if } k \neq 0
\end{aligned}
$$

white noise is stationary

- $\operatorname{AR}(1)$ process, $Y_{t}=\delta+\theta Y_{t-1}+\varepsilon_{t}$

$$
\rho_{\mathrm{k}}=\theta^{\mathrm{k}}, k=0, \pm 1, \ldots
$$

$$
\theta_{00}=1, \theta_{11}=\theta, \theta_{\mathrm{kk}}=0 \text { for } k>1
$$

- MA(1) process, $Y_{t}=\mu+\varepsilon_{t}+\alpha \varepsilon_{t-1}$

$$
\rho_{0}=1, \rho_{1}=\alpha /\left(1+\alpha^{2}\right), \rho_{k}=0 \text { for } k>1
$$

PAC function: damped exponential if $\alpha>0$, alternating and damped exponential if $\alpha<0$

Stationarity of MA- and ARProcesses

MA processes are stationary

- Weighted sum of white noises
- E.g., MA(1) process: $Y_{\mathrm{t}}=\mu+\varepsilon_{\mathrm{t}}+\alpha \varepsilon_{\mathrm{t}-1}$

$$
\rho_{0}=1, \rho_{1}=\alpha /\left(1+\alpha^{2}\right), \rho_{k}=0 \text { for } k>1
$$

An AR process is stationary if it is invertible

- $\operatorname{AR}(1)$ process, $Y_{\mathrm{t}}=\theta Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}=\sum^{\infty}{ }_{\mathrm{i}=0} \theta^{\mathrm{i}} \varepsilon_{\mathrm{t}-\mathrm{i}}$ if $|\theta|<1$ (invertibility condition)

$$
\rho_{\mathrm{k}}=\theta^{\mathrm{k}}, k=0, \pm 1, \ldots
$$

$A C$ and PAC Function:

Estimates

- Estimator for the AC function ρ_{k} :

$$
r_{k}=\frac{\sum_{t}\left(y_{t}-\bar{y}\right)\left(y_{t-k}-\bar{y}\right)}{\sum_{t}\left(y_{t}-\bar{y}\right)^{2}}
$$

- Estimator for the PAC function θ_{kk} : coefficient of $Y_{\mathrm{t}-\mathrm{k}}$ in the regression of Y_{t} on Y_{t-1}, \ldots, Y_{t-k}

AR(1) Processes, Verbeek, Fig. 8.1

Figure 8.1 First-order autoregressive processes: data series and autocorrelation functions

MA(1) Processes, Verbeek, Fig. 8.2

Figure 8.2 First-order moving average processes: data series and autocorrelation functions

Contents

- Time Series
- Stochastic Processes
- Stationary Processes
- The ARMA Process
- Deterministic and Stochastic Trends
- Models with Trend
- Unit Root Tests
- Estimation of ARMA Models

The ARMA(p,q) Process

Generalization of the AR and MA processes: $\operatorname{ARMA}(p, q)$ process

$$
y_{t}=\theta_{1} y_{t-1}+\ldots+\theta_{p} y_{t-p}+\varepsilon_{t}+\alpha_{1} \varepsilon_{t-1}+\ldots+\alpha_{q} \varepsilon_{t-q}
$$

with white noise ε_{t}
Lag (or shift) operator $L\left(L y_{\mathrm{t}}=y_{\mathrm{t}-1}, L^{0} y_{\mathrm{t}}=l y_{\mathrm{t}}=y_{\mathrm{t}}, L^{\mathrm{p}} y_{\mathrm{t}}=y_{\mathrm{t}-\mathrm{p}}\right)$
$\operatorname{ARMA}(p, q)$ process in operator notation

$$
\theta(L) y_{\mathrm{t}}=\alpha(L) \varepsilon_{\mathrm{t}}
$$

with operator polynomials $\theta(L)$ and $\alpha(L)$

$$
\begin{aligned}
& \theta(L)=I-\theta_{1} L-\ldots-\theta_{p} L^{p} \\
& \alpha(L)=I+\alpha_{1} L+\ldots+\alpha_{q} L^{q}
\end{aligned}
$$

Lag Operator

Lag (or shift) operator L

- $L y_{\mathrm{t}}=y_{\mathrm{t}-1}, L^{0} y_{\mathrm{t}}=l y_{\mathrm{t}}=y_{\mathrm{t}}, L^{\mathrm{p}} y_{\mathrm{t}}=y_{\mathrm{t}-\mathrm{p}}$
- Algebra of polynomials in L like algebra of variables

Examples:

- $\left(I-\phi_{1} L\right)\left(I-\phi_{2} L\right)=I-\left(\phi_{1}+\phi_{2}\right) L+\phi_{1} \phi_{2} L^{2}$
- $(I-\theta L)^{-1}=\sum_{i=0}^{\infty} \theta^{i} L^{i}$
- MA (∞) representation of the $\mathrm{AR}(1)$ process

$$
y_{\mathrm{t}}=(I-\theta L)^{-1} \varepsilon_{\mathrm{t}}
$$

the infinite sum defined only (e.g., finite variance) if $|\theta|<1$

- MA (∞) representation of the $\operatorname{ARMA}(p, q)$ process

$$
y_{t}=[\theta(\mathrm{L})]^{-1} \alpha(\mathrm{~L}) \varepsilon_{\mathrm{t}}
$$

similarly the $\operatorname{AR}(\infty)$ representations; invertibility condition: restrictions on parameters

Invertibility of Lag Polynomials

Invertibility condition for lag polynomial $\theta(L)=I-\theta L:|\theta|<1$
Invertibility condition for lag polynomial of order $2, \theta(L)=I-\theta_{1} L-\theta_{2} L^{2}$

- $\theta(L)=I-\theta_{1} L-\theta_{2} L^{2}=\left(I-\phi_{1} L\right)\left(I-\phi_{2} L\right)$ with $\phi_{1}+\phi_{2}=\theta_{1}$ and $-\phi_{1} \phi_{2}=\theta_{2}$
- Invertibility conditions: both $\left(I-\phi_{1} L\right)$ and $\left(I-\phi_{2} L\right)$ invertible; $\left|\phi_{1}\right|<$
$1,\left|\phi_{2}\right|<1$
Invertibility in terms of the characteristic equation

$$
\theta(z)=\left(1-\phi_{1} z\right)\left(1-\phi_{2} z\right)=0
$$

- Characteristic roots: solutions z_{1}, z_{2} from $\left(1-\phi_{1} z\right)\left(1-\phi_{2} z\right)=0$

$$
z_{1}=\phi_{1}^{-1}, z_{2}=\phi_{2}^{-1}
$$

- Invertibility conditions: $\left|z_{1}\right|=\left|\phi_{1}{ }^{-1}\right|>1,\left|z_{2}\right|=\left|\phi_{2}{ }^{-1}\right|>1$

Polynomial $\theta(L)$ is not invertible if any solution z_{i} fulfills $\left|z_{i}\right| \leq 1$
Can be generalized to lag polynomials of higher order

Unit Root and Invertibility

Lag polynomial of order 1: $\theta(z)=(1-\theta z)=0$,

- Unit root: characteristic root $z=1$; implies $\theta=1$
- Invertibility condition $|\theta|<1$ is violated, AR process $Y_{t}=\theta Y_{t-1}+\varepsilon_{t}$ is non-stationary
Lag polynomial of order 2
- Characteristic equation $\theta(z)=\left(1-\phi_{1} z\right)\left(1-\phi_{2} z\right)=0$
- Characteristic roots $z_{i}=1 / \phi_{i}, i=1,2$
- Unit root: a characteristic root z_{i} of value 1 ; violates the invertibility condition $\left|z_{1}\right|=\left|\phi_{1}{ }^{-1}\right|>1,\left|z_{2}\right|=\left|\phi_{2}{ }^{-1}\right|>1$
- $\operatorname{AR}(2)$ process Y_{t} is non-stationary
$\operatorname{AR}(p)$ process: polynomial $\theta(z)=1-\theta_{1} z-\ldots-\theta_{p} L^{p}$, evaluated at $z=1$, is zero, given $\Sigma_{i} \theta_{i}=1: \Sigma_{i} \theta_{i}=1$ indicates a unit root
Tests for unit roots are important tools for identifying stationarity

Contents

- Time Series
- Stochastic Processes
- Stationary Processes
- The ARMA Process
- Deterministic and Stochastic Trends
- Models with Trend
- Unit Root Tests
- Estimation of ARMA Models

Types of Trend

Trend: The development of the expected value of a process over time; typically an increasing (or decreasing) pattern

- Deterministic trend: a function $f(t)$ of the time, describing the evolution of $E\left\{Y_{t}\right\}$ over time

$$
Y_{t}=f(t)+\varepsilon_{\mathrm{t}}, \varepsilon_{\mathrm{t}}: \text { white noise }
$$

Example: $Y_{t}=\alpha+\beta t+\varepsilon_{t}$ describes a linear trend of Y; an increasing trend corresponds to $\beta>0$

- Stochastic trend: $Y_{\mathrm{t}}=\delta+Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}$ or

$$
\Delta Y_{t}=Y_{t}-Y_{t-1}=\delta+\varepsilon_{t}, \varepsilon_{t}: \text { white noise }
$$

- describes an irregular or random fluctuation of the differences ΔY_{t} around the expected value δ
- $\operatorname{AR}(1)$ - or $\mathrm{AR}(p)$ - process with unit root
- "random walk with trend"

Example: Private Consumption

Private consumption, AWM database; level values (PCR) and first differences (PCR_D)

Mean of PCD_D: 3740

Trends: Random Walk and AR Process

Random walk: $Y_{t}=Y_{t-1}+\varepsilon_{\mathrm{t}} ;$ random walk with trend: $Y_{\mathrm{t}}=0.1+Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}$; $\operatorname{AR}(1)$ process: $Y_{\mathrm{t}}=0.2+0.7 Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}} ; \varepsilon_{\mathrm{t}}$ simulated from $N(0,1)$

Random Walk with Trend

The random walk with trend $Y_{t}=\delta+Y_{t-1}+\varepsilon_{t}$ can be written as

$$
Y_{t}=Y_{0}+\delta t+\sum_{i \leq t} \varepsilon_{i}
$$

δ : trend parameter
Components of the process

- Deterministic growth path $Y_{0}+\delta t$
- Cumulative errors $\Sigma_{i \leq t} \varepsilon_{i}$

Properties:

- Expectation $Y_{0}+\delta t$ is depending on Y_{0}, i.e., on the origin $(t=0)$!
- $V\left\{Y_{t}\right\}=\sigma^{2} t$ becomes arbitrarily large!
- $\operatorname{Corr}\left\{Y_{t}, Y_{t-k}\right\}=\sqrt{ }(1-k / t)$
- Random walk with trend is non-stationary!

Random Walk with Trend, cont'd

From $\operatorname{Corr}\left\{Y_{t}, Y_{t-k}\right\}=\sqrt{ }(1-\mathrm{k} / \mathrm{t})$ follows

- For fixed k, Y_{t} and $Y_{\mathrm{t}-\mathrm{k}}$ are the stronger correlated, the larger t
- With increasing k, correlation tends to zero, but the slower the larger t (long memory property)
Comparison of random walk with the $\operatorname{AR}(1)$ process $Y_{t}=\delta+\theta Y_{t-1}+\varepsilon_{t}$
- AR(1) process: $\varepsilon_{\mathrm{t}-\mathrm{i}}$ has the lesser weight, the larger i
- $\mathrm{AR}(1)$ process similar to random walk when θ is close to one

Non-Stationarity: Consequences

$\operatorname{AR}(1)$ process $Y_{t}=\theta Y_{t-1}+\varepsilon_{t}$

- OLS estimator for θ :

$$
\hat{\boldsymbol{\theta}}=\frac{\sum_{t} y_{t} y_{t-1}}{\sum_{t} y_{t}^{2}}
$$

- For $|\theta|<1$: the estimator is
- consistent
- asymptotically normally distributed
- For $\theta=1$ (unit root)
- θ is underestimated
- estimator not normally distributed
- spurious regression problem

Integrated Processes

In order to cope with non-stationarity

- Trend-stationary process: the process can be transformed in a stationary process by subtracting the deterministic trend
- E.g., $Y_{\mathrm{t}}=f(t)+\varepsilon_{\mathrm{t}}$ with white noise $\varepsilon_{\mathrm{t}}: Y_{\mathrm{t}}-f(t)=\varepsilon_{\mathrm{t}}$ is stationary
- Difference-stationary process, or integrated process: stationary process can be derived by differencing
- E.g., $Y_{t}=\delta+Y_{t-1}+\varepsilon_{t}$, E.g., $Y_{t}-Y_{t-1}=\delta+\varepsilon_{t}$ is stationary Integrated process: stochastic process Y is called
- integrated of order one if the first difference yield a stationary process: $Y \sim /(1)$
- integrated of order d, if the d-fold differences yield a stationary process: $Y \sim /(d)$

$I(0)-$ vs. $I(1)$-Processes

$l(0)$ process, e.g., $Y_{t}=\delta+\varepsilon_{t}$

- Fluctuates around the process mean with constant variance
- Mean-reverting
- Limited memory
$I(1)$ process e.g., $Y_{\mathrm{t}}=\delta+Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}$
- Fluctuates widely
- Infinitely long memory
- Persistent effect of shocks

Integrated Stochastic Processes

Many economic time series show stochastic trends
From the AWM Database

	Variable	d
YER	GDP, real	1
PCR	Consumption, real	$1-2$
PYR	Household's Disposable Income, real	$1-2$
PCD	Consumption Deflator	2

$\operatorname{ARIMA}(p, d, q)$ process: d-th differences follow an $\operatorname{ARMA}(p, q)$ process

Contents

- Time Series
- Stochastic Processes
- Stationary Processes
- The ARMA Process
- Deterministic and Stochastic Trends
- Models with Trend
- Unit Root Tests
- Estimation of ARMA Models

Example: Model for a Stochastic Trend

Data generation: random walk (without trend): $Y_{t}=Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}, \varepsilon_{\mathrm{t}}$: white noise

- Realization of Y_{t} : is a non-stationary process, stochastic trend
- $\mathrm{V}\left\{Y_{\mathrm{t}}\right\}$: a multiple of t

Specified model: $Y_{\mathrm{t}}=\alpha+\beta t+\varepsilon_{\mathrm{t}}$

- Deterministic trend
- Constant variance
- Miss-specified mode!!

Consequences for OLS estimator for β

- t - and F-statistics: wrong critical limits, rejection probability too large
- R^{2} indicates explanatory potential although Y_{t} random walk without trend
- "spurious regression" or "nonsense regression"

White Noise and Random Walk

Computer-generated random numbers

- eps: white noise, i.e., N(0,1)-distributed
- Y : random walk

$$
Y_{t}=Y_{t-1}+e p s_{t}
$$

Random Walk and Deterministic Trend

Fitting the deterministic trend model $Y_{t}=\alpha+\beta t+\varepsilon_{t}$ to the random walk data results in $-0.92+0.096 t$ with t-statistic 19.77 for $b, \mathrm{R}^{2}=0.66$, and Durbin Watson statistic 0.066

Actual and fitted zz

How to Model Trends?

Specification of

- Deterministic trend, e.g., $Y_{t}=\alpha+\beta t+\varepsilon_{t}$: risk of spurious regression, wrong decisions
- Stochastic trend: analysis of differences ΔY_{t} if a random walk, i.e., a unit root, is suspected
Consequences of spurious regression are more serious
Consequences of modeling differences ΔY_{t} :
- Autocorrelated errors
- Consistent estimators
- Asymptotically normally distributed estimators
- HAC correction of standard errors, i.e., heteroskedasticity and autocorrelation consistent estimates of standard errors

Elimination of Trend

Random walk $Y_{t}=\delta+Y_{t-1}+\varepsilon_{t}$ with white noise ε_{t}

$$
\Delta Y_{t}=Y_{t}-Y_{t-1}=\delta+\varepsilon_{t}
$$

- ΔY_{t} is a stationary process
- A random walk is a difference-stationary or $l(1)$ process

Linear trend $Y_{t}=\alpha+\beta t+\varepsilon_{t}$

- Subtracting the trend component $\alpha+\beta t$ provides a stationary process
- Y_{t} is a trend-stationary process

Contents

- Time Series
- Stochastic Processes
- Stationary Processes
- The ARMA Process
- Deterministic and Stochastic Trends
- Models with Trend
- Unit Root Tests
- Estimation of ARMA Models

Unit Root Tests

$\operatorname{AR}(1)$ process $Y_{t}=\delta+\theta Y_{t-1}+\varepsilon_{t}$ with white noise ε_{t}

- Dickey-Fuller or DF test (Dickey \& Fuller, 1979)

Test of $H_{0}: \theta=1$ against $H_{1}: \theta<1$, i.e., H_{0} states $Y \sim I(1), Y$ is nonstationary

- KPSS test (Kwiatkowski, Phillips, Schmidt \& Shin, 1992)

Test of $H_{0}: \theta<1$ against $H_{1}: \theta=1$, i.e., H_{0} states $Y \sim I(0), Y$ is stationary

- Augmented Dickey-Fuller or ADF test extension of DF test
- Various modifications like Phillips-Perron test, Dickey-Fuller GLS test, etc.

Dickey-Fuller’s Unit Root Test

$\operatorname{AR}(1)$ process $Y_{t}=\delta+\theta Y_{t-1}+\varepsilon_{t}$ with white noise ε_{t}
OLS Estimator for θ :

$$
\hat{\theta}=\frac{\sum_{t} y_{t} y_{t-1}}{\sum_{t} y_{t}^{2}}
$$

Test statistic

$$
D F=\frac{\hat{\theta}-\theta}{\operatorname{se}(\hat{\theta})}
$$

Distribution of $D F$

- If $|\theta|<1$: approximately $t(T-1)$
- If $\theta=1$: Dickey \& Fuller critical values

DF test for testing $H_{0}: \theta=1$ against $H_{1}: \theta<1$

- $\theta=1$: characteristic equation $1-\theta z=0$ has unit root

Dickey-Fuller Critical Values

Monte Carlo estimates of critical values for
$D F_{0}$: Dickey-Fuller test without intercept; $Y_{t}=\theta Y_{t-1}+\varepsilon_{t}$
DF: Dickey-Fuller test with intercept; $Y_{\mathrm{t}}=\delta+\theta Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}$ $D F_{\mathrm{T}}$: Dickey-Fuller test with time trend; $Y_{\mathrm{t}}=\delta+\mathrm{\gamma t}+\theta Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}$

T		$p=0.01$	$p=0.05$	$p=0.10$
25	$D F_{0}$	-2.66	-1.95	-1.60
	DF	-3.75	-3.00	-2.63
	$D F_{\text {T }}$	-4.38	-3.60	-3.24
100	$D F_{0}$	-2.60	-1.95	-1.61
	$D F$	-3.51	-2.89	-2.58
	$D F_{\text {T }}$	-4.04	-3.45	-3.15
$\mathrm{N}(0,1)$		-2.33	-1.65	-1.28

Unit Root Test: The Practice

$\operatorname{AR}(1)$ process $Y_{t}=\delta+\theta Y_{t-1}+\varepsilon_{t}$ with white noise ε_{t}
can be written with $\pi=\theta-1$ as

$$
\Delta Y_{\mathrm{t}}=\delta+\pi Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}
$$

DF tests $H_{0}: \pi=0$ against $H_{1}: \pi<0$
test statistic for testing $\pi=\theta-1=0$ identical with $D F$ statistic

$$
D F=\frac{\hat{\theta}-1}{\operatorname{se}(\hat{\theta})}=\frac{\hat{\pi}}{\operatorname{se}(\hat{\theta})}
$$

Two steps:

1. Regression of ΔY_{t} on Y_{t-1} : OLS-estimator for $\pi=\theta-1$
2. Test of H_{0} : $\pi=0$ against H_{1} : $\pi<0$ based on $D F$; critical values of Dickey \& Fuller

Example: Price/Earnings Ratio

Verbeek's data set PE: annual time series data on composite stock price and earnings indices of the S\&P500, 1871-2002

- PE: price/earnings ratio
- Mean 14.6
- $\quad \operatorname{Min} 6.1$
- Max 36.7
- St.Dev. 5.1
- log(PE)
- Mean 2.63
- Min 1.81
- Max 3.60
- St.Dev. 0.33

Price/Earnings Ratio, cont'd

Fitting an $A R(1)$ process to the $\log (P E)$ data gives:

$$
\Delta Y_{t}=0.335-0.125 Y_{t-1}
$$

with t-statistic -2.569 (for Y_{t-1}) and p-value 0.1021

- p-value of the DF statistic (-2.569): 0.102
- 1% critical value: -3.48
- 5% critical value: -2.88
- 10% critical value: -2.58
- $H_{0}: \theta=1$ (non-stationarity) cannot be rejected for the log(PE)

Unit root test for first differences: $\Delta \Delta Y_{\mathrm{t}}=0.008-0.9935 \Delta Y_{\mathrm{t}-1}$, DF statistic -10.59, p-value 0.000 (1% critical value: -3.48)

- $\log (\mathrm{PE})$ is $/(1)$

However: for sample 1871-1990: DF statistic -3.65, p-value 0.006 ; within the period 1871-1990, the $\log (\mathrm{PE})$ is stationary

Unit Root Test: Extensions

DF test so far for a model with intercept: $\Delta Y_{t}=\delta+\pi Y_{t-1}+\varepsilon_{t}$
Tests for alternative or extended models

- DF test for model without intercept: $\Delta Y_{t}=\pi Y_{t-1}+\varepsilon_{t}$
- DF test for model with intercept and trend: $\Delta Y_{\mathrm{t}}=\delta+\mathrm{\gamma t}+\pi Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}$ DF tests in all cases $H_{0}: \pi=0$ against $H_{1}: \pi<0$
Test statistic in all cases

$$
D F=\frac{\hat{\theta}-1}{\operatorname{se}(\hat{\theta})}
$$

Critical values depend on cases; cf. Table on slide 47

KPSS Test

Process $Y_{\mathrm{t}}=\beta t+\left(r_{\mathrm{t}}+\alpha\right)+\varepsilon_{\mathrm{t}}$, with deterministic time trend βt, a random walk $r_{\mathrm{t}}=r_{\mathrm{t}-1}+u_{\mathrm{t}}$ with white noise u_{t} with variance $\sigma_{\mathrm{u}}{ }^{2}, r_{0}=\alpha$ serving as intercept, and white noise error term ε_{t}

- Test of $H_{0}: \sigma_{u}{ }^{2}=0$, i.e., (Y_{t} is trend stationary, or $Y_{t}-\beta t$ is stationary $)$, against $H_{1}: \sigma_{u}{ }^{2}>0$
- H_{0} implies a unit moving average root in the ARMA representation of ΔY_{t}
- KPSS (Kwiatkowski, Phillips, Schmidt, Shin) test statistic

$$
K P S S=\frac{\sum_{t=1}^{T} S_{t}^{2}}{T^{2} s^{2}}
$$

with $S_{\mathrm{t}}=\sum_{\mathrm{i}=1}^{\mathrm{t}} \mathrm{e}_{\mathrm{i}}$ and the variance estimate s^{2} of the residuals e_{t} from the regression $Y_{t}=\delta+\beta t+\varepsilon_{t}$

- Reject H_{0} for large values of KPSS
- Critical values from Monte Carlo simulations

ADF Test

Extended model according to an $\operatorname{AR}(p)$ process:

$$
\Delta Y_{t}=\delta+\pi Y_{t-1}+\beta_{1} \Delta Y_{t-1}+\ldots+\beta_{p} \Delta Y_{t-p+1}+\varepsilon_{t}
$$

Example: $\operatorname{AR}(2)$ process $Y_{\mathrm{t}}=\delta+\theta_{1} Y_{\mathrm{t}-1}+\theta_{2} Y_{\mathrm{t}-2}+\varepsilon_{\mathrm{t}}$ can be written as

$$
\Delta Y_{\mathrm{t}}=\delta+\left(\theta_{1}+\theta_{2}-1\right) Y_{\mathrm{t}-1}-\theta_{2} \Delta Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}
$$

the characteristic equation $\left(1-\phi_{1} L\right)\left(1-\phi_{2} L\right)=0$ has roots $\theta_{1}=\phi_{1}+$ ϕ_{2} and $\theta_{2}=-\phi_{1} \phi_{2}$
a unit root implies $\phi_{1}=\theta_{1}+\theta_{2}=1$:
Augmented DF (ADF) test

- Test of $H_{0}: \pi=0$, i.e., $Y \sim I(1)$, against $H_{1}: \pi<0$
- Critical values from simulations
- Extensions (intercept, trend) similar to the DF-test
- Phillips-Perron test: alternative method; uses HAC-corrected standard errors

Price/Earnings Ratio, cont'd

Extended model according to an AR(2) process gives:

$$
\Delta Y_{t}=0.366-0.136 Y_{t-1}+0.152 \Delta Y_{t-1}-0.093 \Delta Y_{t-2}
$$

with t-statistics -2.487 $\left(Y_{t-1}\right), 1.667\left(\Delta Y_{t-1}\right)$ and -1.007 $\left(\Delta Y_{\mathrm{t}-2}\right)$ and
p-values $0.119,0.098$ and 0.316

- p-value of the DF statistic 0.121
- 1% critical value: -3.48
- 5% critical value: -2.88
- 10% critical value: -2.58
- Non-stationarity cannot be rejected for the log(PE)

Unit root test for first differences: DF statistic -7.31, p-value 0.000 (1\% critical value: -3.48)

- $\log (P E)$ is $I(1)$

However: for sample 1871-1990: DF statistic -3.52, p-value 0.009

Unit Root Tests in GRETL

For marked variable:

- Variable > Unit root tests > Augmented DickeyFuller test

Performs the

- DF test (choose zero for "lag order for ADF test") or the
- ADL test
- with or without constant, trend, squared trend
- Variable > Unit root tests > ADF-GLS test Performs the
- DF test (choose zero for "lag order for ADF test") or the
- ADL test
- with or without a trend, which are estimated by GLS
- Variable > Unit root tests > KPSS test

Performs the KPSS test with or without a trend

Contents

- Time Series
- Stochastic Processes
- Stationary Processes
- The ARMA Process
- Deterministic and Stochastic Trends
- Models with Trend
- Unit Root Tests
- Estimation of ARMA Models

ARMA Models: Application

Application of the ARMA (p, q) model in data analysis: Three steps

1. Model specification, i.e., choice of p, q (and d if an ARIMA model is specified)
2. Parameter estimation
3. Diagnostic checking

Estimation of ARMA Models

The estimation methods

- OLS estimation
- ML estimation

AR models

- Explanatory variables are lagged values of the explained variable
- Uncorrelated with error term
- OLS estimation

MA Models: OLS Estimation

MA models:

- Minimization of sum of squared deviations is not straightforward
- E.g., for an MA(1) model, $S(\mu, \alpha)=\Sigma_{t}\left[Y_{t}-\mu-\alpha \Sigma_{j=0}(-\alpha)^{j}\left(Y_{t-j-1}-\mu\right)\right]^{2}$
- $S(\mu, \alpha)$ is a nonlinear function of parameters
- Needs $Y_{\mathrm{t}-\mathrm{j}-1}$ for $j=0,1, \ldots$, i.e., historical $Y_{\mathrm{s}}, s<0$
- Approximate solution from minimization of

$$
S^{*}(\mu, \alpha)=\Sigma_{t}\left[Y_{t}-\mu-\alpha \Sigma_{j=0}^{t-2}(-\alpha)^{j}\left(Y_{t-j-1}-\mu\right)\right]^{2}
$$

- Nonlinear minimization, grid search

ARMA models combine AR part with MA part

ML Estimation

Assumption of normally distributed ε_{t}
Log likelihood function, conditional on initial values

$$
\log L\left(\alpha, \theta, \mu, \sigma^{2}\right)=-[(T-1) / 2] \log \left(2 \pi \sigma^{2}\right)-\left(2 \sigma^{2}\right)^{-1} \Sigma_{t} \varepsilon_{t}^{2}
$$

ε_{t} are functions of the parameters

- $\operatorname{AR}(1): \varepsilon_{t}=y_{t}-\theta_{1} y_{t-1}$
- MA(1): $\varepsilon_{t}=\Sigma_{\mathrm{j}=0}^{\mathrm{t}-1}(-\alpha)^{\mathrm{j}} y_{\mathrm{t}-\mathrm{j}}$

Initial values: y_{1} for AR, $\varepsilon_{0}=0$ for MA

- Extension to exact ML estimator
- Again, estimation for AR models easier
- ARMA models combine AR part with MA part

Model Specification

Based on the

- Autocorrelation function (ACF)
- Partial Autocorrelation function (PACF)

Structure of AC and PAC functions typical for AR and MA processes
Example:

- MA(1) process: $\rho_{0}=1, \rho_{1}=\alpha /\left(1-\alpha^{2}\right) ; \rho_{\mathrm{i}}=0, i=2,3, \ldots ; \theta_{\mathrm{kk}}=\alpha^{\mathrm{k}}, k=0$, 1, ...
- AR(1) process: $\rho_{\mathrm{k}}=\theta^{k}, k=0,1, \ldots ; \theta_{00}=1, \theta_{11}=\theta, \theta_{\mathrm{kk}}=0$ for $k>1$

Empirical ACF and PACF give indications on the process underlying the time series

ARMA (p, q)-Processes

Condition for	$\operatorname{AR}(p)$ $\theta(L) Y_{t}=\varepsilon_{t}$	MA (q) $Y_{t}=\alpha(L) \varepsilon_{t}$	$\operatorname{ARMA}(p, q)$ $\theta(L) Y_{t}=\alpha(L) \varepsilon_{t}$
Stationarity	roots z_{i} of $\theta(z)=0:\left\|z_{i}\right\|>1$	always stationary	roots z_{i} of $\theta(z)=0:\left\|z_{i}\right\|>1$
Invertibility	always invertible	roots z_{i} of $\alpha(z)=0:\left\|z_{i}\right\|>1$	roots z_{i} of $\alpha(z)=0:\left\|z_{i}\right\|>1$
AC function	damped, infinite	$\rho_{k}=0$ for $k>q$	damped, infinite
PAC function	$\theta_{\text {kk }}=0$ for $k>p$	damped, infinite	damped, infinite

Empirical AC and PAC Function

Estimation of the AC and PAC functions
AC ρ_{k} :

$$
r_{k}=\frac{\sum_{t}\left(y_{t}-\bar{y}\right)\left(y_{t-k}-\bar{y}\right)}{\sum_{t}\left(y_{t}-\bar{y}\right)^{2}}
$$

PAC $\theta_{k k}$: coefficient of $Y_{\mathrm{t}-\mathrm{k}}$ in regression of Y_{t} on $Y_{\mathrm{t}-1}, \ldots, Y_{\mathrm{t}-\mathrm{k}}$
$\mathrm{MA}(q)$ process: standard errors for $r_{k}, k>q$, from

$$
\sqrt{ } \mathrm{T}\left(r_{\mathrm{k}}-\rho_{\mathrm{k}}\right) \rightarrow \mathrm{N}\left(0, \mathrm{v}_{\mathrm{k}}\right)
$$

with $v_{k}=1+2 \rho_{1}{ }^{2}+\ldots+2 \rho_{k}{ }^{2}$

- test of $H_{0}: \rho_{1}=0$, i.e., model is MA(0): compare $\sqrt{ } T r_{1}$ with critical value from $N(0,1)$, etc.
$\operatorname{AR}(p)$ process: test of $H_{0}: \rho_{\mathrm{k}}=0$ for $k>p$ based on asymptotic distribution

$$
\sqrt{T} \hat{\theta}_{k k} \rightarrow N(0,1)
$$

Diagnostic Checking

ARMA (p, q) : Adequacy of choices p and q
Analysis of residuals from fitted model:

- Correct specification: residuals are realizations of white noise
- Box-Ljung Portmanteau test: for a $\operatorname{ARMA}(p, q)$ process

$$
Q_{K}=T(T+2) \sum_{k=1}^{K} \frac{1}{T-k} r_{k}^{2}
$$

follows the Chi-squared distribution with $K-p-q d f$
Overfitting

- Starting point: a general model
- Comparison with a model with reduced number of parameters: choose model with smallest BIC or AIC
- AIC: tends to result asymptotically in overparameterized models

Example: Price/Earnings Ratio

Data set PE : $\mathrm{PE}=$ price/earnings

- $\log (P E)$
- Mean 2.63
- Min 1.81
- Max 3.60
- Std 0.33

PE Ratio: AC and PAC Function

Figure 8.7 Sample autocorrelation function of $\log (P / E)$
Sample ACF and PACF of $\log \left(P E_{t}\right)-\log \left(P E_{t-1}\right)$

At level 0.05 significant values:
\quad ACF: $k=4$
\quad PACF: $k=2,4$
possibly $\mathrm{MA}(4)\left(\mathrm{ACF}_{k}=0\right.$ if $\left.k>4\right)$ or $\operatorname{AR(4)}$
Sample PACF

Figure 8.8 Sample partial autocorrelation function of $\log (\mathrm{P} / \mathrm{E})$

PE Ratio: MA (4) Model

MA(4) model for differences $\log \left(P E_{t}\right)-\log \left(P E_{t-1}\right), L O G P E=\log (P E)$

Function evaluations: 37
Evaluations of gradient: 11
Model 2: ARMA, using observations 1872-2002 ($T=131$)
Estimated using Kalman filter (exact ML)
Dependent variable: d_LOGPE
Standard errors based on Hessian

	coefficient	std. error	t-ratio	p-value
--1020				
const	0,00804276	0,0104120	0,7725	0,4398
theta_1	0,0478900	0,0864653	0,5539	0,5797
theta_2	$-0,187566$	0,0913502	$-2,053$	0,0400
theta_3	$-0,0400834$	0,0819391	$-0,4892$	0,6247
theta_4	$-0,146218$	0,0915800	$-1,597$	0,1104

Mean dependent var	0,008716	S.D. dependent var	0,181506
Mean of innovations	$-0,000308$	S.D. of innovations	0,174545
Log-likelihood	42,69439	Akaike criterion	$-73,38877$
Schwarz criterion	$-56,13759$	Hannan-Quinn	$-66,37884$

PE Ratio: AR(4) Model

$\mathrm{AR}(4)$ model for differences $\log \left(P E_{t}\right)-\log \left(\mathrm{PE}_{\mathrm{t}-1}\right), \mathrm{LOGPE}=\log (\mathrm{PE})$

Function evaluations: 36
Evaluations of gradient: 9
Model 3: ARMA, using observations 1872-2002 ($T=131$)
Estimated using Kalman filter (exact ML)
Dependent variable: d_LOGPE
Standard errors based on Hessian

	coefficient	std. error	t-ratio	p-value	
const	0,00842210	0,0111324	0,7565	0,4493	
phi_1	0,0601061	0,0851737	0,7057	0,4804	
phi_2	-0,202907	0,0856482	-2,369	0,0178	
phi_3	-0,0228251	0,0853236	-0,2675	0,7891	
phi_4	-0,206655	0,0850843	-2,429	0,0151	
Mean dependent var		0,008716	S.D. dependent var		0,181506
Mean of innovations		-0,000315	S.D. of innovations		0,173633
Log-likelihood		43,35448	Akaike criterion		-74,70896
Schwarz criterion		-57,45778	Hannan-Quinn		-67,69903

PE Ratio: Various Models

Diagnostics for various competing models: $\Delta y_{t}=\log \left(P E_{t}\right)-\log \left(P E_{t-1}\right)$ Best fit for

- BIC: MA(2) model $\Delta y_{\mathrm{t}}=0.008+e_{\mathrm{t}}-0.250 e_{\mathrm{t}-2}$
- AIC: $\operatorname{AR}(2,4)$ model $\Delta y_{\mathrm{t}}=0.008-0.202 \Delta y_{\mathrm{t}-2}-0.211 \Delta y_{\mathrm{t}-4}+e_{\mathrm{t}}$

Model	Lags	AIC	BIC	Q_{12}	p-value
MA(4)	$1-4$	-73.389	-56.138	5.03	0.957
AR(4)	$1-4$	-74.709	-57.458	3.74	0.988
MA	2,4	-76.940	-65.440	5.48	0.940
AR	2,4	-78.057	-66.556	4.05	0.982
MA	2	-76.072	-67.447	9.30	0.677
AR	2	-73.994	-65.368	12.12	0.436

Time Series Models in GRETL

```
Variable > Unit root tests > (a) Augmented Dickey-
    Fuller test,(b) ADF-GLS test,(c) KPSS test
```

a) DF test or ADF test with or without constant, trend and squared trend
b) DF test or ADF test with or without trend, GLS estimation for demeaning and detrending
c) KPSS (Kwiatkowski, Phillips, Schmidt, Shin) test

Model > Time Series > ARIMA

- Estimates an ARMA model, with or without exogenous regressors

Your Homework

1. Use Greene's data set GREENE18_1 (Corporate bond yields, 1990:01 to 1994:12) and answer the following questions for the variable YIELD (yield on Moody's Aaa rated corporate bond).
a) Using the model-statement "Ordinary Least Squares ..." in Gretl, (i) estimate the standard Dickey-Fuller regression with intercept and compute the DF test statistics for a unit root. What do you conclude about the presence of a unit root, about stationarity of YIELD?
b) Produce a graph of YIELD. Interpret the graph in view of the results of a).
c) Using Gretl, conduct ADF tests including (i) with and (ii) without a linear trend, and (iii) with seasonal dummies. What do you conclude about the presence of a unit root? Compare the results with those of a).
d) Transform YIELD into its first differences d_YIELD. Repeat c) for the differences. What do you conclude?
e) Determine the sample ACF and PACF for YIELD. What orders of the ARMA model for YIELD is suggested by these graphs?

Your Homework

e) Estimate (i) an AR(1)- and (ii) an AR(2)-model for YIELD. Test for autocorrelation in the residuals of the two models. What do you conclude?
2. For the $\operatorname{AR}(1)$ process $Y_{t}=\theta Y_{t-1}+\varepsilon_{t}$ with white noise ε_{t}, show that (a) the ACF is $\rho_{k}=\theta^{k}, k=0, \pm 1, \ldots$, and that (b) the PACF is $\theta_{00}=1, \theta_{11}$ $=\theta, \theta_{\mathrm{kk}}=0$ for $k>1$.

