Econometrics 2 - Lecture 5

Multi-equation Models

Contents

- Systems of Equations
- VAR Models
- Simultaneous Equations and VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Multiple Dependent Variables

Economic processes: Simultaneous and interrelated development of a multiple set of variables

Examples:

- Households consume a set of commodities (food, durables, etc.); the demanded quantities depend on the prices of commodities, the household income, the number of persons living in the household, etc.; a consumption model includes a set of dependent variables and a common set of explanatory variables.
- The market of a product is characterized by (a) the demanded and supplied quantity and (b) the price of the product; a model for the market consists of equations representing the development and interdependencies of these variables.
- An economy consists of markets for commodities, labour, finances, etc.; a model for a sector or the full economy contains descriptions of the development of the relevant variables and their interactions.

Systems of Regression
 Equations

Economic processes encompass the simultaneous developments as well as interrelations of a set of dependent variables

- For modelling economic processes: system of relations, typically in the form of regression equations: multi-equation model
Example: Two dependent variables $y_{\mathrm{t} 1}$ and $y_{\mathrm{t} 2}$ are modelled as

$$
\begin{aligned}
y_{\mathrm{t} 1} & =x_{\mathrm{t} 1}^{\prime} \beta_{1}+\varepsilon_{\mathrm{t} 1} \\
y_{\mathrm{t2}} & =x_{\mathrm{t}+\mathrm{t}} \beta_{2}+\varepsilon_{\mathrm{t} 2} \\
\text { with } \mathrm{V}\left\{\varepsilon_{\mathrm{t} i}\right\} & =\sigma_{\mathrm{i}}^{2} \text { for } i=1,2, \operatorname{Cov}\left\{\varepsilon_{\mathrm{t} 1}, \varepsilon_{\mathrm{t} 2}\right\}=\sigma_{12} \neq 0
\end{aligned}
$$

Typical situations:

1. The set of regressors $x_{\mathrm{t}_{1}}$ and $x_{\mathrm{t} 2}$ coincide
2. The set of regressors $x_{\mathrm{t} 1}$ and $x_{\mathrm{t} 2}$ differ, may overlap
3. Regressors contain one or both dependent variables
4. Regressors contain lagged variables

Types of Multi-equation Models

Multivariate regression or multivariate multi-equation model

- A set of regression equations, each explaining one of the dependent variables
- Possibly common explanatory variables
- Seemingly unrelated regression (SUR) model: each equation is a valid specification of a linear regression, related to other equations only by the error terms
- See cases 1 and 2 of "typical situations" (slide 4)

Simultaneous equations models

- Describe the relations within the system of economic variables
- in form of model equations
- See cases 3 and 4 of "typical situations" (slide 4)

Error terms: dependence structure is specified by means of second moments or as joint probability distribution

Capital Asset Pricing Model

Capital asset pricing (CAP) model: describes the return R_{i} of asset i

$$
R_{\mathrm{i}}-R_{\mathrm{f}}=\beta_{\mathrm{i}}\left(\mathrm{E}\left\{R_{\mathrm{m}}\right\}-R_{\mathrm{f}}\right)+\varepsilon_{\mathrm{i}}
$$

with

- $\quad R_{\mathrm{f}}$: return of a risk-free asset
- $\quad R_{\mathrm{m}}$: return of the market's optimal portfolio
- β_{i} : indicates how strong fluctuations of the returns of asset i are determined by fluctuations of the market as a whole
- Knowledge of the return difference R_{i} - R_{f} will give information on the return difference R_{j} - R_{f} of asset j, at least for some assets
- Analysis of a set of assets $i=1, \ldots, s$
- The error terms $\varepsilon_{\mathrm{i}}, i=1, \ldots, s$, represent common factors, e.g., inflation rate, have a common dependence structure
- Efficient use of information: simultaneous analysis

A Model for Investment

Grunfeld investment data [Greene, (2003), Chpt.13; Grunfeld \& Griliches (1960)]: Panel data set on gross investments $l_{\text {it }}$ of firms $i=$ $1, \ldots, 6$ over 20 years and related data

- Investment decisions are assumed to be determined by

$$
I_{\mathrm{it}}=\beta_{\mathrm{i} 1}+\beta_{\mathrm{i} 2} F_{\mathrm{it}}+\beta_{\mathrm{i} 3} C_{\mathrm{it}}+\varepsilon_{\mathrm{it}}
$$

with

- $\quad F_{i t}$: market value of firm i at the end of year $t-1$
- $\quad C_{i t}$: value of stock of plant and equipment at the end of year $t-1$
- Simultaneous analysis of equations for the various firms i : efficient use of information
- Error terms for the firms include common factors such as economic climate
- Coefficients may be the same for the firms

The Hog Market

Model equations:

$$
\begin{aligned}
& Q^{\mathrm{d}}=\alpha_{1}+\alpha_{2} P+\alpha_{3} Y+\varepsilon_{1} \text { (demand equation) } \\
& Q^{\mathrm{s}}=\beta_{1}+\beta_{2} P+\beta_{3} Z+\varepsilon_{2} \text { (supply equation) } \\
& Q^{\mathrm{d}}=Q^{\mathrm{s}} \text { (equilibrium condition) }
\end{aligned}
$$

with Q^{d} : demanded quantity, Q^{s} : supplied quantity, P : price, Y : income, and Z : costs of production, or

$$
\begin{aligned}
& Q=\alpha_{1}+\alpha_{2} P+\alpha_{3} Y+\varepsilon_{1} \text { (demand equation) } \\
& Q=\beta_{1}+\beta_{2} P+\beta_{3} Z+\varepsilon_{2} \quad \text { (supply equation) }
\end{aligned}
$$

- Model describes quantity and price of the equilibrium transactions
- Model determines simultaneously Q and P, given Y and Z
- Error terms
- May be correlated: $\operatorname{Cov}\left\{\varepsilon_{1}, \varepsilon_{2}\right\} \neq 0$
- Simultaneous analysis necessary for efficient use of information

Klein's Model I

1. $C_{\mathrm{t}}=\alpha_{1}+\alpha_{2} P_{\mathrm{t}}+\alpha_{3} P_{\mathrm{t}-1}+\alpha_{4}\left(W_{\mathrm{t}}^{\mathrm{p}}+W_{\mathrm{t}}^{\mathrm{g}}\right)+\varepsilon_{\mathrm{t} 1}$ (consumption)
2. $I_{\mathrm{t}}=\beta_{1}+\beta_{2} P_{\mathrm{t}}+\beta_{3} P_{\mathrm{t}-1}+\beta_{4} K_{\mathrm{t}-1}+\varepsilon_{\mathrm{t} 2}$ (investment)
3. $W_{\mathrm{t}}^{\mathrm{p}}=\mathrm{V}_{1}+\mathrm{V}_{2} X_{\mathrm{t}}+\gamma_{3} X_{\mathrm{t}-1}+\gamma_{4} t+\varepsilon_{\mathrm{t} 3}$ (wages)
4. $X_{\mathrm{t}}=C_{\mathrm{t}}+I_{\mathrm{t}}+G_{\mathrm{t}}$
5. $K_{\mathrm{t}}=I_{\mathrm{t}}+K_{\mathrm{t}-1}$
6. $P_{\mathrm{t}}=X_{\mathrm{t}}-W_{\mathrm{t}}^{\mathrm{p}}-T_{\mathrm{t}}$
with C (consumption), P (profits), W^{p} (private wages), W^{g}
(governmental wages), I (investment), K_{-1} (capital stock), X (national product), G (governmental demand), T (taxes) and t [time (year1936)]

Model determines simultaneously C, I, W^{p}, X, K, and P
Simultaneous analysis necessary in order to take dependence structure of error terms into account: efficient use of information

Examples of Multi-equation Models

Multivariate regression models

- Capital asset pricing (CAP) model: for all assets, return R_{i} (or risk premium $R_{\mathrm{i}}-R_{\mathrm{f}}$) is a function of $\mathrm{E}\left\{R_{\mathrm{m}}\right\}-R_{\mathrm{f}}$; dependence structure of the error terms caused by common variables
- Model for investment: firm-specific regressors, dependence structure of the error terms like in CAP model
- Seemingly unrelated regression (SUR) models

Simultaneous equations models

- Hog market model: endogenous regressors, dependence structure of error terms
- Klein's model I: endogenous regressors, dynamic model, dependence of error terms from different equations and possibly over time

Single- vs. Multi-equation Models

Complications for estimation of parameters of multi-equation models:

- Dependence structure of error terms
- Violation of exogeneity of regressors

Example: Hog market model, demand equation

$$
Q=\alpha_{1}+\alpha_{2} P+\alpha_{3} Y+\varepsilon_{1}
$$

- Covariance matrix of $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}\right)$

$$
\operatorname{Cov}\{\varepsilon\}=\left(\begin{array}{ll}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right)
$$

- P is not exogenous: $\operatorname{Cov}\left\{P, \varepsilon_{1}\right\}=\left(\sigma_{1}{ }^{2}-\sigma_{12}\right) /\left(\beta_{2}-\alpha_{2}\right) \neq 0$

Statistical analysis of multi-equation models requires methods adapted to these features

Analysis of Multi-equation Models

Issues of interest:

- Estimation of parameters
- Interpretation of model characteristics, prediction, etc.

Estimation procedures

- Multivariate regression models
- GLS, FGLS, ML
- Simultaneous equations models
- Single equation methods: indirect least squares (ILS), two stage least squares (TSLS), limited information ML (LIML)
- System methods of estimation: three stage least squares (3SLS), full information ML (FIML)
- Dynamic models: estimation methods for vector autoregressive (VAR) and vector error correction (VEC) models

Contents

- Systems of Equations
- VAR Models
- Simultaneous Equations and VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Example: Income and Consumption

Model for income (Y) and consumption (C)

$$
\begin{aligned}
& Y_{\mathrm{t}}=\delta_{1}+\theta_{11} Y_{\mathrm{t}-1}+\theta_{12} C_{\mathrm{t}-1}+\varepsilon_{1 \mathrm{t}} \\
& C_{\mathrm{t}}=\delta_{2}+\theta_{21} C_{\mathrm{t}-1}+\theta_{22} Y_{\mathrm{t}-1}+\varepsilon_{2 \mathrm{t}}
\end{aligned}
$$

with (possibly correlated) white noises $\varepsilon_{1 \mathrm{t}}$ and $\varepsilon_{2 \mathrm{t}}$
Notation: $Z_{\mathrm{t}}=\left(Y_{\mathrm{t}}, C_{\mathrm{t}}\right)^{\prime}, 2$-vectors δ and ε, and (2×2)-matrix $\Theta=\left(\theta_{\mathrm{ij}}\right)$, the model is

$$
\binom{Y_{t}}{C_{t}}=\binom{\delta_{1}}{\delta_{2}}+\left(\begin{array}{ll}
\theta_{11} & \theta_{12} \\
\theta_{21} & \theta_{22}
\end{array}\right)\binom{Y_{t-1}}{C_{t-1}}+\binom{\varepsilon_{1 t}}{\varepsilon_{2 t}}
$$

in matrix notation

$$
Z_{t}=\delta+\Theta Z_{t-1}+\varepsilon_{t}
$$

Represents each component of Z as a linear combination of lagged variables
Extension of the AR-model to the 2 -vector Z_{t} : vector autoregressive model of order 1, VAR(1) model

The $\operatorname{VAR}(p)$ Model

$\operatorname{VAR}(p)$ model: generalization of the $\operatorname{AR}(p)$ model for k-vectors Y_{t}

$$
Y_{t}=\delta+\Theta_{1} Y_{t-1}+\ldots+\Theta_{p} Y_{t-p}+\varepsilon_{t}
$$

with k-vectors Y_{t}, δ, and ε_{t} and $k \times k$-matrices $\Theta_{1}, \ldots, \Theta_{\mathrm{p}}$

- Using the lag-operator L :

$$
\Theta(L) Y_{t}=\delta+\varepsilon_{t}
$$

with matrix lag polynomial $\Theta(L)=I-\Theta_{1} L-\ldots-\Theta_{p} L^{p}$

- $\Theta(L)$ is a $k x k$-matrix
- Each matrix element of $\Theta(L)$ is a lag polynomial of order p
- Error terms ε_{t}
- have covariance matrix Σ (for all t); allows for contemporaneous correlation
- are independent of $Y_{\mathrm{t}, \mathrm{j}}, j>0$, i.e., of the past of the components of Y_{t}

The $\operatorname{VAR}(p)$ Model, cont'd

$\operatorname{VAR}(p)$ model for the k-vector Y_{t}

$$
Y_{t}=\delta+\Theta_{1} Y_{t-1}+\ldots+\Theta_{p} Y_{t-p}+\varepsilon_{t}
$$

- Vector of expectations of Y_{t} : assuming stationarity

$$
E\left\{Y_{t}\right\}=\delta+\Theta_{1} E\left\{Y_{t}\right\}+\ldots+\Theta_{p} E\left\{Y_{t}\right\}
$$

gives

$$
E\left\{Y_{t}\right\}=\mu=\left(I_{k}-\Theta_{1}-\ldots-\Theta_{p}\right)^{-1} \delta=\Theta(1)^{-1} \delta
$$

i.e., stationarity requires that the $k \times k$-matrix $\Theta(1)$ is invertible

- In deviations $y_{\mathrm{t}}=Y_{\mathrm{t}}-\mu$, the $\operatorname{VAR}(p)$ model is

$$
\Theta(L) y_{\mathrm{t}}=\varepsilon_{\mathrm{t}}
$$

- MA representation of the $\operatorname{VAR}(p)$ model, given that $\Theta(L)$ is invertible

$$
\dot{Y}_{\mathrm{t}}=\mu+\Theta(L)^{-1} \varepsilon_{\mathrm{t}}=\mu+\varepsilon_{\mathrm{t}}+\mathrm{A}_{1} \varepsilon_{\mathrm{t}-1}+\mathrm{A}_{2} \varepsilon_{\mathrm{t}-2}+\ldots
$$

VAR(p) Model: Extensions

$\operatorname{VAR}(p)$ model for the k-vector Y_{t}

$$
Y_{t}=\delta+\Theta_{1} Y_{t-1}+\ldots+\Theta_{p} Y_{t-p}+\varepsilon_{t}
$$

- $\operatorname{VARMA}(p, q)$ Model: Extension of the $\operatorname{VAR}(p)$ model by multiplying ε_{t} (from the left) with a matrix lag polynomial $\mathrm{A}(L)$ of order q
- $\operatorname{VARX}(p)$ model with m-vector X_{t} of exogenous variables, $k x m$-matrix Γ

$$
Y_{t}=\Theta_{1} Y_{t-1}+\ldots+\Theta_{p} Y_{t-p}+\Gamma X_{t}+\varepsilon_{t}
$$

Reasons for Using a VAR Model

VAR model represents a set of univariate $A R(M A)$ models, one for each component

- Reformulation of simultaneous equations models as dynamic models
- To be used instead of simultaneous equations models:
- No need to distinct a priori endogenous and exogenous variables
- No need for a priori identifying restrictions on model parameters
- Simultaneous analysis of the components: More parsimonious, fewer lags, simultaneous consideration of the history of all included variables
- Allows for non-stationarity and cointegration

Attention: The number of parameters to be estimated increases with k and p

Number of parameters in $\Theta(L)$

p	1	2	3
$k=2$	4	8	12
$k=4$	16	32	48

Contents

- Systems of Equations
- VAR Models
- Simultaneous Equations and VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Example: Income and Consumption

Model for income $\left(Y_{t}\right)$ and consumption $\left(C_{t}\right)$

$$
\begin{aligned}
& Y_{\mathrm{t}}=\delta_{1}+\theta_{11} Y_{\mathrm{t}-1}+\theta_{12} C_{\mathrm{t}-1}+\varepsilon_{1 \mathrm{t}} \\
& C_{\mathrm{t}}=\delta_{2}+\theta_{21} C_{\mathrm{t}-1}+\theta_{22} Y_{\mathrm{t}-1}+\varepsilon_{2 \mathrm{t}}
\end{aligned}
$$

with (possibly correlated) white noises $\varepsilon_{1 t}$ and $\varepsilon_{2 t}$

- Matrix form of the simultaneous equations model:

$$
A\left(Y_{t}, C_{t}\right)^{\iota}=\Gamma\left(1, Y_{t-1}, C_{t-1}\right)^{\prime}+\left(\varepsilon_{1 t}, \varepsilon_{2 t}\right)^{\prime}
$$

with

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \Gamma=\left(\begin{array}{lll}
\delta_{1} & \theta_{11} & \theta_{12} \\
\delta_{2} & \theta_{21} & \theta_{22}
\end{array}\right)
$$

- VAR(1) form: $Z_{t}=\delta+\Theta Z_{t-1}+\varepsilon_{t}$ or

$$
\binom{Y_{t}}{C_{t}}=\binom{\delta_{1}}{\delta_{2}}+\left(\begin{array}{ll}
\theta_{11} & \theta_{12} \\
\theta_{21} & \theta_{22}
\end{array}\right)\binom{Y_{t-1}}{C_{t-1}}+\binom{\varepsilon_{1 t}}{\varepsilon_{2 t}}
$$

Simultaneous Equations Models in VAR Form

Model with m endogenous variables (and equations), K regressors

$$
A y_{t}=\Gamma z_{t}+\varepsilon_{t}=\Gamma_{1} y_{t-1}+\Gamma_{2} x_{t}+\varepsilon_{t}
$$

with m-vectors y_{t} and $\varepsilon_{\mathrm{t}}, K$-vector $\mathrm{z}_{\mathrm{t}},(m \times m)$-matrix $\mathrm{A},(m \times K)$-matrix Γ, and $(m \times m)$-matrix $\Sigma=\bigvee\left\{\varepsilon_{\}}\right\}$;

- z_{t} contains lagged endogenous variables $y_{\mathrm{t}-1}$ and exogenous variables x_{t}
- Rearranging gives

$$
y_{t}=\Theta y_{t-1}+\delta_{t}+v_{t}
$$

with $\Theta=\mathrm{A}^{-1} \Gamma_{1}, \delta_{\mathrm{t}}=\mathrm{A}^{-1} \Gamma_{2} x_{\mathrm{t}}$, and $v_{\mathrm{t}}=\mathrm{A}^{-1} \varepsilon_{\mathrm{t}}$

- Extension of the set of variables by regressors x_{t} : the matrix δ_{t} becomes a vector of deterministic components (intercepts)

VAR Model: Estimation

$\operatorname{VAR}(p)$ model for the k-vector Y_{t}

$$
Y_{\mathrm{t}}=\delta+\Theta_{1} Y_{\mathrm{t}-1}+\ldots+\Theta_{\mathrm{p}} Y_{\mathrm{t}-\mathrm{p}}+\varepsilon_{\mathrm{t}}, V\left\{\varepsilon_{\mathrm{t}}\right\}=\Sigma
$$

- Components of Y_{t} : linear combinations of lagged variables
- Error terms: Possibly contemporaneously correlated, covariance matrix Σ, uncorrelated over time
- SUR model

Estimation, given the order p of the VAR model

- OLS estimates of parameters in $\Theta(L)$ are consistent
- Estimation of Σ based on residual vectors $e_{\mathrm{t}}=\left(e_{1 \mathrm{t}}, \ldots, e_{\mathrm{kt}}\right)^{\prime}$:

$$
S=\frac{1}{T-p} \sum_{t} e_{t} e_{t}^{\prime}
$$

- GLS estimator coincides with OLS estimator: same explanatory variables for all equations

VAR Model: Estimation, cont’d

Choice of the order p of the VAR model

- Estimation of VAR models for various orders p
- Choice of p based on Akaike or Schwarz information criterion

Income and Consumption: Estimation of VAR-System

AWM data base, 1971:1-2003:4: $P C R$ (real private consumption), $P Y R$ (real disposable income of households); respective annual growth rates of logarithms: C, Y
Fitting $Z_{t}=\delta+\Theta Z_{t-1}+\varepsilon_{t}$ with $Z=(Y, C)^{4}$ gives

		δ	Y_{-1}	C_{-1}	adj. R^{2}
	θ_{ij}	0.001	0.815	0.106	0.82
\boldsymbol{Y}	$t\left(\theta_{\mathrm{ij}}\right)$	0.39	11.33	1.30	
\boldsymbol{C}	Θ_{ij}	0.003	0.085	0.796	0.78
	$t\left(\Theta_{\mathrm{ij}}\right)$	2.52	1.23	10.16	

with $\mathrm{AIC}=-14.60$
$\operatorname{VAR}(2)$ model: AIC = -14.55
LR-test of $\mathrm{H}_{0}: \operatorname{VAR}(1)$ against $\mathrm{H}_{1}: \operatorname{VAR}(2)$: p-value 0.51

Income and Consumption: Other Estimation Methods

Alternative estimation method - OLS equation-wise - SUR				$Y_{\text {-1 }}$	C_{1}	adj. R^{2}
		δ				
VAR estimation, SUR estimation, and OLS equation-wise estimation give very similar results	OLS		0.001	0.815	0.106	0.82
		Y	0.39	11.33	1.30	
			0.003	0.085	0.796	0.79
		c	2.52	1.23	10.16	
	SUR		0.001	0.815	0.106	0.82
		Y	0.39	11.47	1.31	
			0.003	0.085	0.796	0.79
		c	2.55	1.25	10.28	

VAR Model Estimation in

 GRETLVAR systems

```
Model > Time Series > Vector Autoregression...
```

- Estimates the specified VAR system for the chosen lag order; calculates information criteria like AIC and BIC, F-tests for various zero restrictions for the equations and for the system as a whole SUR model
Model > Simultaneous equations...
- Allows for various estimation methods, among them OLS and SUR; estimates the specified equations

Impulse-response Function

MA representation of the $\operatorname{VAR}(p)$ model

$$
Y_{\mathrm{t}}=\Theta(1)^{-1} \delta+\varepsilon_{\mathrm{t}}+\mathrm{A}_{1} \varepsilon_{\mathrm{t}-1}+\mathrm{A}_{2} \varepsilon_{\mathrm{t}-2}+\ldots
$$

- Interpretation of A_{s} : the (i, j)-element of A_{s} represents the effect of a one unit increase of $\varepsilon_{j t}$ upon the i-th variable $Y_{i, t+s}$ in $Y_{\mathrm{t}+\mathrm{s}}$
- Dynamic effects of a one unit increase of $\varepsilon_{\mathrm{jt}}$ upon the i-th component of Y_{t} are corresponding to the (i, j)-th elements of $I_{k}, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots$
- The plot of these elements over s represents the impulse-response function of the i-th variable in Y_{t+s} on a unit shock to $\varepsilon_{j \mathrm{jt}}$

Contents

- Systems of Equations
- VAR Models
- Simultaneous Equations and VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

AR(1) Process: Stationarity and Non-stationarity

$\operatorname{AR}(1)$ process $Y_{t}=\theta Y_{t-1}+\varepsilon_{t}$

- is stationary, if the root z of the characteristic polynomial

$$
\Theta(z)=1-\theta z=0
$$

fulfils $|z|>1$, i.e., $|\Theta|<1$;

- $\Theta(z)$ is invertible, i.e., $\Theta(z)^{-1}$ can be derived such that $\Theta(z)^{-1} \Theta(z)=1$
- $\quad Y_{t}$ can be represented by a $M A(\infty)$ process: $Y_{t}=\Theta(L)^{-1} \varepsilon_{t}$
- is non-stationary, if

$$
z=1 \text {, i.e., } \theta=1
$$

i.e., $Y_{\mathrm{t}} \sim I(1), Y_{\mathrm{t}}$ has a stochastic trend

VAR(1) Model, Non-stationarity, and Cointegration

$\operatorname{VAR}(1)$ model for the k-vector $Y_{\mathrm{t}}=\left(Y_{1 \mathrm{t}}, \ldots, Y_{\mathrm{kt}}\right)^{\prime}$

$$
Y_{\mathrm{t}}=\delta+\Theta_{1} Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}
$$

- If $\Theta(L)=I-\Theta_{1} L$ is invertible,

$$
Y_{t}=\Theta(1)^{-1} \delta+\Theta(L)^{-1} \varepsilon_{t}=\mu+\varepsilon_{t}+A_{1} \varepsilon_{t-1}+A_{2} \varepsilon_{\mathrm{t}-2}+\ldots
$$

i.e., each variable in Y_{t} is a linear combination of white noises, is a stationary $I(0)$ variable

- If $\Theta(L)$ is not invertible, not all variables in Y_{t} can be stationary $I(0)$ variables: at least one variable must have a stochastic trend
- If all k variables have independent stochastic trends, all k variables are $I(1)$ and no cointegrating relation exists; e.g., for $k=2$:

$$
\Theta(1)=\left(\begin{array}{cc}
1-\theta_{11} & \theta_{12} \\
\theta_{21} & 1-\theta_{22}
\end{array}\right)=\binom{0}{00}
$$

i.e., $\theta_{11}=\theta_{22}=1, \theta_{12}=\theta_{21}=0$ and $\Delta Y_{1 t}=\delta_{1}+\varepsilon_{1 \mathrm{t}}, \Delta Y_{2 \mathrm{t}}=\delta_{2}+\varepsilon_{2 \mathrm{t}}$

- The more interesting case: at least one cointegrating relation; number of cointegrating relations equals the rank $r\{\Theta(1)\}$ of matrix $\Theta(1)$

Example: A VAR(1) Model

$\operatorname{VAR}(1)$ model $Y_{t}=\delta+\Theta_{1} Y_{t-1}+\varepsilon_{t}$ for k-vector Y

$$
\Delta Y_{\mathrm{t}}=-\Theta(1) Y_{\mathrm{t}-1}+\delta+\varepsilon_{\mathrm{t}}
$$

with ($k x k$) matrix $\Theta(L)=I-\Theta_{1} L$ and $\Theta(1)=I_{k}-\Theta_{1}$
$r=r\{\Theta(1)\}$: rank of $\Theta(1), 0 \leq r \leq k$

1. $r=0$: implies $\Delta Y_{t}=\delta+\varepsilon_{t}$, i.e., Y is a k-dimensional random walk, each component is $I(1)$, no cointegrating relationship
2. $r<k$: $(k-r)$-fold unit root, $(k x r)$-matrices γ and β can be found, both of rank r, with

$$
\Theta(1)=\gamma \beta^{\prime}
$$

the r columns of β are the cointegrating vectors of r cointegrating relations $\beta^{\prime} Y_{\mathrm{t}}$ (β in normalized form, i.e., the main diagonal elements of β being ones)
3. $r=k: \operatorname{VAR}(1)$ process is stationary, all components of Y are $I(0)$

Cointegrating Space

$Y_{\mathrm{t}}: k$-vector, each component $I(1)$
Cointegrating space:

- Among the k variables, $r \leq k-1$ independent linear relations $\beta_{j}{ }^{\prime} Y_{t}, j=1$, \ldots, r, are possible so that $\beta_{j}{ }^{\prime} Y_{t} \sim I(0)$
- Individual relations can be combined with others and these are again $l(0)$, i.e., not the individual cointegrating relations are identified but only the r-dimensional space
- Cointegrating relations should have an economic interpretation Cointegrating matrix β from $\Delta Y_{t}=-\Theta(1) Y_{t-1}+\delta+\varepsilon_{t}=-\gamma \beta^{\prime} Y_{t-1}+\delta+\varepsilon_{t}$
- The $k \times r$ matrix $\beta=\left(\beta_{1}, \ldots, \beta_{r}\right)$ of vectors $\beta_{j}, j=1, \ldots, r$, that state the cointegrating relations $\beta_{j}^{\prime} Y_{\mathrm{t}} \sim I(0), j=1, \ldots, r$
- Cointegrating rank: the rank of matrix β : $r\{\beta\}=r$

Granger's Representation Theorem

Granger's Representation Theorem (Engle \& Granger, 1987): If a set of $l(1)$ variables is cointegrated, then an error-correction (EC) relation of the variables exists.
Extends to VAR models: If the $I(1)$ variables of the k-vector Y_{t} are cointegrated, then an error-correction (EC) relation of the variables exists.

Granger's Representation Theorem for VAR(p) Models

$\operatorname{VAR}(p)$ model for the k-vector Y_{t}

$$
Y_{t}=\delta+\Theta_{1} Y_{t-1}+\ldots+\Theta_{p} Y_{t-p}+\varepsilon_{t}
$$

transformed into

$$
\begin{equation*}
\Delta Y_{\mathrm{t}}=\delta+\Gamma_{1} \Delta Y_{\mathrm{t}-1}+\ldots+\Gamma_{\mathrm{p}-1} \Delta Y_{\mathrm{t}-\mathrm{p}+1}+\Pi Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}} \tag{A}
\end{equation*}
$$

- $\quad=-\Theta(1)=-\left(l_{k}-\Theta_{1}-\ldots-\Theta_{p}\right)$, „long-run matrix", $k x k$, determines the long-run dynamics of Y_{t}
- $\Gamma_{1}, \ldots, \Gamma_{p-1}(k \times k)$-matrices, functions of $\Theta_{1}, \ldots, \Theta_{p}$
- ΠY_{t-1} is stationary: ΔY_{t} and ε_{t} are $I(0)$
- Three cases

1. $\mathrm{r}\{\Pi\}=r$ with $0<r<k$: there exist r stationary linear combinations of Y_{t}, i.e., r cointegrating relations
2. $r\{\Pi\}=0: \Pi=0$, no cointegrating relation, equation (A) is a $\operatorname{VAR}(p)$ model for stationary variables ΔY_{t}
3. $r\{\Pi\}=k$: all variables in Y_{t} are stationary, $\Pi=-\Theta(1)$ is invertible

Vector Error-Correction Model

$\operatorname{VAR}(p)$ model for the k-vector Y_{t}

$$
Y_{t}=\delta+\Theta_{1} Y_{t-1}+\ldots+\Theta_{p} Y_{t-p}+\varepsilon_{t}
$$

transformed into

$$
\Delta Y_{t}=\delta+\Gamma_{1} \Delta Y_{t-1}+\ldots+\Gamma_{p-1} \Delta Y_{t-p+1}+\Pi Y_{t-1}+\varepsilon_{t}
$$

with $r\{\Pi\}=r$ and $\Pi=y \beta^{\prime}$ gives

$$
\begin{equation*}
\Delta Y_{t}=\delta+\Gamma_{1} \Delta Y_{t-1}+\ldots+\Gamma_{p-1} \Delta Y_{t-p+1}+\gamma \beta^{\prime} Y_{t-1}+\varepsilon_{t} \tag{B}
\end{equation*}
$$

- r cointegrating relations $\beta^{\prime} Y_{\mathrm{t}-1}$
- Adaptation parameters γ measure the portion or speed of adaptation of Y_{t} in compensation of the "equilibrium errors" $Z_{t-1}=\beta^{\prime} Y_{t-1}$
- Equation (B) is called the vector error-correction (VEC) form of the $\operatorname{VAR}(p)$ model

Example: Bivariate VAR Model

$\operatorname{VAR}(1)$ model for the 2-vector $Y_{\mathrm{t}}=\left(Y_{1 t}, Y_{2 t}\right)^{\prime}$

$$
Y_{\mathrm{t}}=\Theta Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}} ; \text { and } \Delta Y_{\mathrm{t}}=\Pi Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}
$$

- Long-run matrix

$$
\Pi=-\Theta(1)=\left(\begin{array}{cc}
\theta_{11}-1 & \theta_{12} \\
\theta_{21} & \theta_{22}-1
\end{array}\right)
$$

- $\Pi=0$, if $\theta_{11}=\theta_{22}=1, \theta_{12}=\theta_{21}=0$, i.e., $Y_{1 t}, Y_{2 t}$ are random walks
- r\{П\}<2, if $\left(\theta_{11}-1\right)\left(\theta_{22}-1\right)-\theta_{12} \theta_{21}=0$; cointegrating vector: $\beta^{\prime}=$ ($\theta_{11}-1, \theta_{12}$), long-run matrix

$$
\Pi=\gamma \beta^{\prime}=\binom{1}{\theta_{21} /\left(\theta_{11}-1\right)}\left(\theta_{11}-1 \quad \theta_{12}\right)
$$

- The error-correction form is

$$
\binom{\Delta Y_{1 t}}{\Delta Y_{2 t}}=\binom{1}{\theta_{21} /\left(\theta_{11}-1\right)}\left[\left(\theta_{11}-1\right) Y_{1, t-1}+\theta_{12} Y_{2, t-1}\right]+\binom{\varepsilon_{1 t}}{\varepsilon_{2 t}}
$$

Deterministic Component

$\operatorname{VEC}(p)$ model for the k-vector Y_{t}

$$
\begin{equation*}
\Delta Y_{t}=\delta+\Gamma_{1} \Delta Y_{t-1}+\ldots+\Gamma_{p-1} \Delta Y_{t-p+1}+\gamma \beta^{\prime} Y_{t-1}+\varepsilon_{t} \tag{B}
\end{equation*}
$$

- Expectation gives

$$
\left(I_{k}-\Gamma_{1}-\ldots-\Gamma_{p-1}\right) E\left\{\Delta Y_{t}\right\}=\delta+\gamma E\left\{\beta^{\prime} Y_{t-1}\right\}
$$

The deterministic component (intercept) δ :

1. If $E\left\{\Delta Y_{t}\right\}=0$, i.e., no deterministic trend in any component of Y_{t} : given that $\Gamma=I_{k}-\Gamma_{1}-\ldots-\Gamma_{\mathrm{p}-1}$ has full rank:

- $\Gamma E\left\{\Delta Y_{t}\right\}=\delta+\gamma E\left\{\beta^{\prime} Y_{t-1}\right\}=0$ with equilibrium error $\beta^{\prime} Y_{t-1}=Z_{t-1}$
- $E\left\{Z_{t-1}\right\}$ corresponds to the intercepts of the cointegrating relations; with r dimensional vector $E\left\{Z_{t-1}\right\}=\alpha$ (and hence $\delta=-\gamma E\left\{Z_{t_{-1}}\right\}=-\gamma \alpha$)

$$
\begin{equation*}
\Delta Y_{t}=\Gamma_{1} \Delta Y_{t-1}+\ldots+\Gamma_{p-1} \Delta Y_{t-p+1}+\gamma\left(-\alpha+\beta^{\prime} Y_{t-1}\right)+\varepsilon_{t} \tag{C}
\end{equation*}
$$

- Intercepts only in the cointegrating relations
- „Restricted constant" case

Deterministic Component, cont'd

2. Addition of a k-vector λ with identical components to (C)

$$
\Delta Y_{t}=\lambda+\Gamma_{1} \Delta Y_{t-1}+\ldots+\Gamma_{p-1} \Delta Y_{t-p+1}+\gamma\left(-\alpha+\beta^{\prime} Y_{t-1}\right)+\varepsilon_{t}
$$

- Long-run equilibrium: steady state growth with growth rate $\mathrm{E}\left\{\Delta Y_{\mathrm{t}}\right\}=\Gamma^{-1} \lambda$
- Deterministic trends cancel out in the long run, so that no deterministic trend in the error-correction term; cf. (B)
- Addition of k-vector λ can be repeated: up to k - r separate deterministic trends can cancel out in the error-correction term
- The general notation is equation (B) with δ containing r intercepts of the long-run relations and $k-r$ deterministic trends in the variables of Y_{t}
- „Unrestricted constant" case

3. "No constant" case: $\lambda=\alpha=0$

Choice of Constants

Example 1: Income and consumption

- Both processes are /(1)
- Both appear to follow a deterministic linear trend
- Equilibrium relation may show an intercept
- Unrestricted constant case

Example 2: Interest rates

- Generally not trended
- Difference between two rates might be stationary around a non-zero mean due to, e.g., rate-specific risk premia
- Restricted constant case

Choice between the three cases: visual inspection, economic reasoning

The Five Cases

Based on empirical observation and economic reasoning, model specification has to choose between:

1) Unrestricted constant: variables show deterministic linear trends
2) Restricted constant: variables not trended but mean distance between them not zero; intercept in the error-correction term
3) No constant

Generalization: deterministic component contains intercept and trend
4) Constant + restricted trend: cointegrating relations include a trend but the first differences of the variables in question do not
5) Constant + unrestricted trend: trend in both the cointegrating relations and the first differences, corresponding to a quadratic trend in the variables (in levels)

Contents

- Systems of Equations
- VAR Models
- Simultaneous Equations and VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Choice of the Cointegrating Rank

Based on k-vector $Y_{\mathrm{t}} \sim /(1)$
Y_{t} follows the k-variate process

$$
\Delta Y_{t}=\delta+\Gamma_{1} \Delta Y_{t-1}+\ldots+\Gamma_{p-1} \Delta Y_{t-p+1}+\gamma \beta^{\prime} Y_{t-1}+\varepsilon_{t}
$$

Estimation procedure needs as input the cointegrating rank r, i.e., the rank $r=r\{y \beta\}$
Testing for cointegration

- Engle-Granger approach
- Johansen‘s R3 method

The Engle-Granger Approach

Non-stationary processes $Y_{\mathrm{t}} \sim I(1), X_{\mathrm{t}} \sim I(1)$; the model is

$$
Y_{t}=\alpha+\beta X_{t}+\varepsilon_{t}
$$

- Step 1: OLS-fitting
- Test for cointegration based on residuals, e.g., DF test with special critical values; H_{0} : residuals are $/(1)$, no cointegration
- If H_{0} is rejected:
- OLS fitting in Step 1 gives consistent estimate of the cointegrating vector
- Step 2: OLS estimation of the EC model based on the cointegrating vector from Step 1
Can be extended to k-vector $Y_{t}=\left(Y_{1 t}, \ldots, Y_{k t}\right)^{\prime}:$
- Step 1 applied to $Y_{1 \mathrm{t}}=\alpha+\beta_{1} Y_{2 t}+\ldots+\beta_{k} Y_{\mathrm{kt}}+\varepsilon_{\mathrm{t}}$
- DF test of H_{0} : residuals are $l(1)$, no cointegration

Engle-Granger Cointegration Test: Problems

Residual based cointegration tests can be misleading

- Test results depend on specification
- Which variables are included
- Normalization of the cointegrating vector, i.e., which variable on left hand side
- Test may be inappropriate due to wrong specification of cointegrating relation
- Power of the test may suffer from inefficient use of information (dynamic interactions not taken into account)
- Test gives no information about the rank r

Johansen`s R3 Method

Reduced rank regression or R3 method: a method for specifying the cointegrating rank r

- Also called Johansen's test
- The test is based on the k eigenvalues $\lambda_{i}\left(\lambda_{1}>\lambda_{2}>\ldots>\lambda_{k}\right)$ of

$$
Y_{1}{ }^{\prime} Y_{1}-Y_{1}{ }^{\prime} \Delta Y\left(\Delta Y Y^{\prime} \Delta Y\right)^{-1} \Delta Y^{\prime} Y_{1}
$$

with ΔY : ($T_{x k}$) matrix of differences $\Delta Y_{t}, Y_{1}$: (Txk) matrix of Y_{t-1}

- Has the same rank as the $k x k$ long run matrix $y \beta^{\prime}=\Pi$
- Eigenvalues λ_{i} fulfil $0 \leq \lambda_{i}<1$
- If $r\left\{y \beta^{\prime}\right\}=r$, the $k-r$ smallest eigenvalues obey

$$
\log \left(1-\lambda_{\mathrm{j}}\right)=\lambda_{\mathrm{j}}=0, j=r+1, \ldots, k
$$

- Johansen's iterative test procedures, based on estimates \hat{l}_{j} of λ_{j}
- Trace test
- Maximum eigenvalue test or max test

Max Test

LR test, based on the assumption of normally distributed errors

- Counts the number of non-zero eigenvalues
- For $r_{0}=0,1,2, \ldots$, the null-hypothesis $H_{0}: \lambda_{r 0}=0$ is tested; stops when H_{0} is not rejected for the first time, number of cointegrating relations is the number of rejections
- For $r_{0}=0,1, \ldots$:
- Test of $H_{0}: r \leq r_{0}$ against $H_{1}: r=r_{0}+1$
- Test statistic

$$
\lambda_{\max }\left(r_{0}\right)=-T \log \left(1-\hat{I}_{\mathrm{r} 0+1}\right)
$$

- Stops when H_{0} is not rejected for the first time
- Critical values from simulations
- Rejection of $H_{0}: r=0$ in favour of $H_{1}: r=1$: No cointegrating relation

Trace Test

LR tests, based on the assumption of normally distributed errors

- For $r_{0}=1,2, \ldots$, the null-hypothesis is tested that the sum of the eigenvalues $\lambda_{j}, j \geq r_{0}$, is zero; stops when H_{0} is not rejected for the first time, number of cointegrating relations is the number of rejections
- For $r_{0}=0,1, \ldots$:
- Test of $H_{0}: r \leq r_{0}$ against $H_{1}: r>r_{0}\left(r_{0}<r \leq k\right)$

$$
\lambda_{\text {trace }}\left(r_{0}\right)=-T \sum_{\mathrm{j}=\mathrm{r} 0+1}^{\mathrm{k}} \log \left(1-\hat{l}_{\mathrm{j}}\right)
$$

- Tests whether the $k-r_{0}$ smallest λ_{j} are zero
- H_{0} is rejected for large values of $\lambda_{\text {trace }}\left(r_{0}\right)$
- Stops when H_{0} is not rejected for the first time
- Critical values from simulations

Trace and Max Test: Critical

Limits

Critical limits are shown in Verbeek's Table 9.9 for both tests

- Depend on presence of trends and intercepts
- Case 1: no deterministic trends, intercepts in cointegrating relations ("restricted constant")
- Case 2: k unrestricted intercepts in the VAR model, i.e., $k-r$ deterministic trends, r intercepts in cointegrating relations ("unrestricted constant")
- Depend on $k-r$
- Need small sample correction, e.g., factor ($T-p k$)/T for the test statistic: avoids too large values of r

Example: Purchasing Power Parity

Verbeek's dataset PPP: Price indices and exchange rates for France and Italy, $T=186$ (1/1981-6/1996)

- Variables: LNIT (log price index Italy), LNFR (log price index France), LNX (log exchange rate France/Italy)
Purchasing power parity (PPP): exchange rate between the currencies (Franc, Lira) equals the ratio of price levels of the countries

$$
\mathrm{LNX}_{\mathrm{t}}=\mathrm{LNP} \mathrm{t}_{\mathrm{t}}
$$

- Relative PPP: equality fulfilled only in the long run

$$
\mathrm{LNX}_{\mathrm{t}}=\alpha+\beta \mathrm{LNP}_{\mathrm{t}}
$$

with $\mathrm{LNP}_{\mathrm{t}}=\mathrm{LNIT}_{\mathrm{t}}-\mathrm{LNFR} \mathrm{t}_{\mathrm{t}}$, i.e., the log of the price index ratio France/ltaly
Generalization:

$$
\mathrm{LNX}_{\mathrm{t}}=\alpha+\beta_{1} \mathrm{LNIT}_{\mathrm{t}}-\beta_{2} \mathrm{LNFR}_{\mathrm{t}}
$$

PPP: Cointegrating Rank r

As discussed by Verbeek: Johansen test for $k=3$ variables, based on a VEC(3) model

r_{0}	eigen- value	H_{0}	H_{1}	$\lambda_{\mathrm{tr}}\left(r_{0}\right)$	p-value	H_{1}	$\lambda_{\max }\left(r_{0}\right)$	p-value
0	0.301	$r=0$	$r \geq 1$	93.9	0.0000	$r=1$	65.5	0.0000
1	0.113	$r \leq 1$	$r \geq 2$	28.4	0.0023	$r=2$	22.0	0.0035
2	0.034	$r \leq 2$	$r=3$	6.4	0.169	$r=3$	6.4	0.1690

H_{0} not rejected that smallest eigenvalue equals zero: series are nonstationary
Both the trace and the max test suggest $r=2$

Contents

- Systems of Equations
- VAR Models
- Simultaneous Equations and VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Estimation of VEC Models

Estimation of

$$
\Delta Y_{\mathrm{t}}=\delta+\Gamma_{1} \Delta Y_{\mathrm{t}-1}+\ldots+\Gamma_{\mathrm{p}-1} \Delta Y_{\mathrm{t}-\mathrm{p}+1}+\Pi Y_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}
$$

requires finding $(k x r)$-matrices γ and β with $\Pi=\gamma \beta^{\prime}$

- $\quad \beta$: matrix of cointegrating vectors
- Y : matrix of adjustment coefficients
- Identification problem: linear combinations of cointegrating vectors are also cointegrating vectors
- Unique solutions for γ and β require restrictions
- Minimum number of restrictions which guarantee identification is r^{2}
- Normalization
- Phillips normalization
- Manual normalization

Phillips Normalization

Cointegrating vectors

$$
\beta^{\prime}=\left(\beta_{1}{ }^{\prime}, \beta_{2}{ }^{\prime}\right)
$$

β_{1} : $(r \times r)$-matrix with rank $r, \beta_{2}:[(k-r) \times r]$-matrix

- Normalization consists in transforming the (kxr)-matrix β into

$$
\hat{\beta}=\binom{I}{\beta_{2} \beta_{1}^{-1}}=\binom{I}{-B}
$$

with matrix B of unrestricted coefficients

- The r cointegrating relations express the first r variables as functions of the remaining $k-r$ variables
- Fulfils the condition that at least r^{2} restrictions are needed to guarantee identification
- Resulting equilibrium relations may be difficult to interpret
- Alternative: manual normalization

Example: Money Demand

Verbeek's data set "money": US data 1:54-12:1994 ($T=164$)

- m: log of real M1 money stock
- infl: quarterly inflation rate (change in log prices, \% per year)
- cpr. commercial paper rate (\% per year)
- y : log real GDP (billions of 1987 dollars)
- tbr. treasury bill rate

Money Demand: Cointegrating Relations

Intuitive choice of long-run behaviour relations

- Money demand

$$
m_{\mathrm{t}}=\alpha_{1}+\beta_{14} y_{\mathrm{t}}+\beta_{15} t b r_{\mathrm{t}}+\varepsilon_{1 \mathrm{t}}
$$

Expected: $\beta_{14} \approx 1, \beta_{15}<0$

- Fisher equation

$$
\operatorname{inff}_{\mathrm{t}}=\alpha_{2}+\beta_{25} t b r_{\mathrm{t}}+\varepsilon_{2 \mathrm{t}}
$$

Expected: $\beta_{25} \approx 1$

- Stationary risk premium

$$
c p r_{\mathrm{t}}=\alpha_{3}+\beta_{35} t b r_{\mathrm{t}}+\varepsilon_{3 \mathrm{t}}
$$

Stationarity of difference between $c p r$ and $t b r$; expected: $\beta_{35} \approx 1$

Money Demand: Cointegrating Vectors

ML estimates, lag order $p=6$, cointegration rank $r=2$, restricted constant

- Cointegrating vectors β_{1} and β_{2} and standard errors (s.e.), Phillips normalization

	m	infl	cpr	y	thor	const
β_{1}	1.00	0.00	0.61	-0.35	-0.60	-4.27
(s.e.)	(0.00)	(0.00)	(0.12)	(0.12)	(0.12)	(0.91)
β_{2}	0.00	1.00	-26.95	-3.28	-27.44	39.25
(s.e.)	(0.00)	(0.00)	(4.66)	(4.61)	(4.80)	(35.5)

Estimation of VEC(p) Models:

 $k=2$Estimation procedure consists of the following steps

1. Test the variables in the 2-vector Y_{t} for stationarity using the usual ADF tests; VEC models need /(1) variables
2. Determine the order p
3. Specification of

- deterministic trends of the variables in Y_{t}
- intercept in the cointegrating relation

4. Cointegration test
5. Estimation of cointegrating relation, normalization
6. Estimation of the VEC model

Example: Income and Consumption

Model:

$$
\begin{aligned}
& Y_{\mathrm{t}}=\delta_{1}+\theta_{11} Y_{\mathrm{t}-1}+\theta_{12} C_{\mathrm{t}-1}+\varepsilon_{1 \mathrm{t}} \\
& C_{\mathrm{t}}=\delta_{2}+\theta_{21} C_{\mathrm{t}-1}+\theta_{22} Y_{\mathrm{t}-1}+\varepsilon_{2 \mathrm{t}}
\end{aligned}
$$

With $Z=(Y, C), 2$-vectors δ and ε, and (2×2)-matrix Θ, the $\operatorname{VAR}(1)$ model is

$$
Z_{t}=\delta+\Theta Z_{t-1}+\varepsilon_{t}
$$

Represents each component of Z as a linear combination of lagged variables

Income and Consumption: VEC(1) Model

AWM data base: $P C R$ (real private consumption), $P Y R$ (real disposable income of households); logarithms: C, Y

1. Check whether C and Y are non-stationary, results in

$$
C \sim I(1), Y \sim I(1)
$$

2. Lag order with minimal AIC: $p=4$
3. Johansen test for cointegration: given that C and Y have no trends and the cointegrating relationship has an intercept:

$$
r=1(p<0.05)
$$

the cointegrating relationship is

$$
C=8.55-1.61 Y
$$

with $t(Y)=18.2$

Income and Consumption: VEC(1) Model, cont'd

3. VEC(1) model (same specification as in 2.) with $Z=(Y, C)^{\prime}$

$$
\Delta Z_{t}=-\gamma\left(\beta^{\prime} Z_{t-1}+\delta\right)+\Gamma \Delta Z_{t-1}+\varepsilon_{t}
$$

		coint	ΔY_{-1}	ΔC_{-1}	adj. R^{2}	AIC
ΔY	$Y_{i j}$	-0.029	0.167	0.059	0.14	-7.42
	$t\left(Y_{i j}\right)$	5.02	1.59	0.49		
ΔC	$Y_{i j}$	-0.047	0.226	-0.148	0.18	-7.59
	$t\left(Y_{i j}\right)$	2.36	2.34	1.35		

The model explains growth rates of $P C R$ and $P Y R$; $\operatorname{AIC}=-15.41$ is smaller than that of the $\operatorname{VAR}(1)-$ Modell $(\operatorname{AIC}=-14.45)$

Estimation of VEC Models

Estimation procedure consists of the following steps

1. Test of the k variables in Y_{t} for stationarity: ADF test
2. Determination of the number p of lags in the cointegration test (order of VAR): AIC or BIC
3. Specification of

- deterministic trends of the variables in Y_{t}
- intercept in the cointegrating relations

4. Determination of the number r of cointegrating relations: trace and/or max test
5. Estimation of the coefficients β of the cointegrating relations and the adjustment coefficients γ; normalization; assessment of the cointegrating relations
6. Estimation of the VEC model

VEC Models in GRETL

```
Model > Time Series > VAR lag selection..
```

- Calculates information criteria like AIC and BIC from VARs of order 1 to the chosen maximum order of the VAR

```
Model > Time Series > Cointegration test > Johansen...
```

- Calculates eigenvalues, test statistics for the trace and max tests, and estimates of the matrices γ, β, and $\Pi=\gamma \beta$ '
Model > Time Series > VECM
- Estimates the specified VEC model for a given cointegration rank: (1) cointegrating vectors and standard errors, (2) adjustment vectors, (3) coefficients and various criteria for each of the equations of the VEC model

Your Homework

1. Verbeek's data set "money": US data 1:54-12:1994 ($T=164$) with m : log of real M1 money stock, infl: quarterly inflation rate (change in log prices, \% per year), cpr. commercial paper rate (\% per year), y : log real GDP (billions of 1987 dollars), and tbr. treasury bill rate. Answer the following questions for the three equations for m with regressors y and $t b r$, infl with regressor tbr, and cpr with regressor tbr.
a. Which indications for spurious regressions do you see?
b. Which indications for cointegrating relationships do you see?
c. What order of integration apply to the five variables?
d. Determination of the number p of lags in the cointegration test.
e. Estimate an $\operatorname{VAR}(1)$ model for the vector $Y=(m \text {, infl, cpr, } y, t b r)^{\prime}$.
f. Estimate an VEC model for the vector $Y=(m, i n f l, c p r, y, t b r)^{\prime}$ with $p=2$ and (i) $r=1$ and (ii) $r=2$. Compare the AICs for the two VEC models and the VAR model; compare the equation for $d _m$ in the two VEC models.

Your Homework

2. For the $\operatorname{VAR}(2)$ model

$$
Y_{t}=\delta+\Theta_{1} Y_{t-1}+\Theta_{2} Y_{t-2}+\varepsilon_{t}
$$

assuming a k-vector Y_{t} and appropriate orders of the other vectors and matrices, derive the VEC form $\Delta Y_{t}=\delta+\Gamma_{1} \Delta Y_{t-1}+\Pi Y_{t-1}+\varepsilon_{t}$; indicate Γ_{1} and Π as functions of the parameters Θ_{1} and Θ_{2}.

