Dominated and non-dominated variants - problems for practice

1. Choose which variants are non-dominated and dominated (and by which ones).

	$\mathrm{k}_{1}(\min)$	$\mathrm{k}_{2}(\max)$	$\mathrm{k}_{3}(\max)$
Variant 1	50	54	24
Variant 2	28	72	39
Variant 3	21	77	51

(Solution: Non-dominated variant is 3; var 1 is dominated by 2 and 3 ; var 2 is dominated by 3)
2. Choose which variants are non-dominated and dominated (and by which ones). Determine ideal and basal variant and full solution.
*hint: you can try to use Excel add-in SANNA from prof. Jablonský from PSE

	$\mathrm{k}_{1}(\mathrm{~min})$	$\mathrm{k}_{2}(\max)$	$\mathrm{k}_{3}(\min)$	$\mathrm{k}_{4}(\max)$	$\mathrm{k}_{5}(\mathrm{~min})$
Variant 1	48	64	84	64	18
Variant 2	24	82	6	105	15
Variant 3	26	88	146	101	7
Variant 4	33	67	22	56	20
Variant 5	47	60	126	70	18
Variant 6	28	88	166	75	19

(Solution: Non-dominated variants are 2 and 3 (full solution); variants 1, 4, 5 are domin by 2, variant 6 is domin by 3; basal variant has values $48,60,166,56,20$; ideal $24,88,6,105,7$)

Transformation of minimizing criteria to maximizing, normalizing - problems for practice

1. Transform the following criteria to maximizing.

	$\mathrm{k}_{1}(\mathrm{~min})$	$\mathrm{k}_{2}(\max)$	$\mathrm{k}_{3}(\min)$	$\mathrm{k}_{4}(\max)$	$\mathrm{k}_{5}(\mathrm{~min})$
Variant 1	48	64	84	64	18
Variant 2	24	82	6	105	15
Variant 3	26	88	146	101	7
Variant 4	33	67	22	56	20
Variant 5	47	60	126	70	18
Variant 6	28	88	166	75	19

(Solution: for transforming min criterion values to max values use y ($\max)=B(\min)-y(m i n))$

	$\mathrm{T}-\mathrm{k}_{1}(\min)$	$\mathrm{k}_{2}(\max)$	$\mathrm{T}-\mathrm{k}_{3}(\min)$	$\mathrm{k}_{4}(\max)$	$\mathrm{T}-\mathrm{k}_{5}(\min)$
Variant 1	0	64	82	64	2
Variant 2	24	82	160	105	5
Variant 3	22	88	20	101	13
Variant 4	15	67	144	56	0
Variant 5	1	60	40	70	2
Variant 6	20	88	0	75	1

2. Transform the following matrix of parameters to the normalized values.

	$\mathrm{k}_{1}(\mathrm{~min})$	$\mathrm{k}_{2}(\mathrm{~min})$	$\mathrm{k}_{3}(\mathrm{max})$
Variant 1	50	54	24
Variant 2	28	72	39
Variant 3	21	77	51

(Solution: we transform max criterion values using $(y-B) /(I-B)$, and min using (B-y)/(B-I))

	$\mathrm{T}-\mathrm{k}_{1}(\min)$	$\mathrm{T}-\mathrm{k}_{2}(\min)$	$\mathrm{T}-\mathrm{k}_{3}(\max)$
Variant 1	0	1	0
Variant 2	0.76	0.22	0.56
Variant 3	1	0	1

WSA - problems for practice

1. We have 5 evaluation criteria, that were assigned points based on their importance: $\left.k_{1}\right) 3, k_{2}$) $\left.\left.\left.6, k_{3}\right) 7, k_{4}\right) 1, k_{5}\right) 5$. Calculate weights of these criteria (for possible further calculations).
(Solution: individual weights are calculated as the ratio of k_{n} from $\Sigma\left(k_{1} \ldots k_{n}\right)$, thus k_{1}) 0.136; k_{2}) 0.273; k_{3}) 0.318; k_{4}) $0.045 ; k_{5}$) 0.227 ; what sums up as 1.000)
2. An investor has decided to build a factory and chooses between 4 alternatives. Individual parameters and weights are in the table. Use WSA for evaluation of the variants.

	Investment costs	Running costs	Production of item 1	Production of item 2	Production of item 3
Variant 1	58	9.7	58	58	67
Variant 2	55	5.4	59	69	121
Variant 3	54	9.2	63	50	31
Variant 4	69	11.8	43	90	190
weights	8%	12%	15%	22%	43%

(Solution: 1) 35.2\%; 2) 66.3\%; 3) 27.9\%; 4) 65.0\%)
3. An investor has again decided to build a factory and chooses between 3 alternatives. Individual parameters and weights are in the table. Use WSA for evaluation of the variants.

	Investment costs	Running costs	Production of item 1	Production of item 2	Production of item 3	Negatíva voči okoliu
Variant 1	46	5.9	68	57	122	5
Variant 2	31	8.4	61	92	81	6
Variant 3	55	10.3	88	111	144	14
weights	5	4	8	11	14	12

(Solution: 1) 53.8\%; 2) 45.4\%; 3) 61.1\%)

Lexicographic method - problem for practice

1. A family wants to buy a new car. They have preliminary chosen 5 models. Use lexicographic method, which models should be considered for further decision.

	Price	Trunk size	Power	Fuel cons.	Safety	Looks
A	488	430	105	6.9	10	6
B	416	401	102	5.1	8	8
C	694	555	108	7.2	10	10
D	449	439	93	6.2	6	7
E	580	445	108	5.6	10	5
Criterion preference	1.	3.	5.	4.	2.	6.
Limit	≤ 600	≥ 400	≥ 100	$\leq 7,0$	≥ 8	≥ 6

(Solution: A family would consider models A, B for further decision making)

