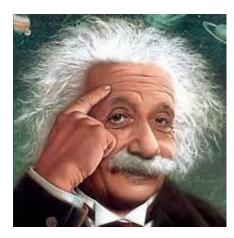
Kepner-Tregoe Methodology


Skorkovský

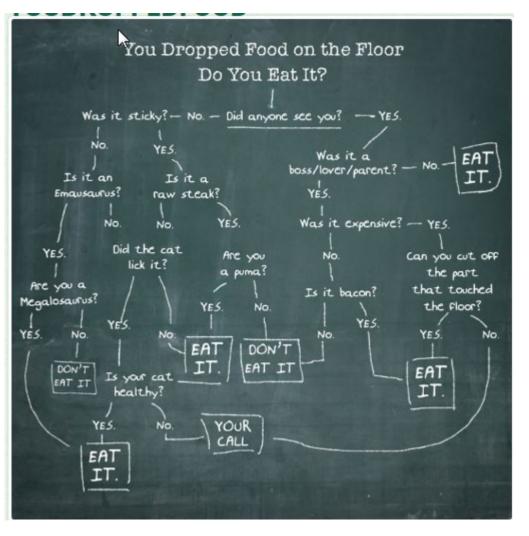
Department of business economy

Feveloped by Charles H. Kepner and Benjamin B. Tregoe in the 1960s.

The formulation of a problem is far more essential than its solution which may be merely a matter of mathematical or experimental skill"

- Albert Einstein

Apollo 13 – Houston, Houston, do you read me ? We have a big problem....!



The Apollo 13 team is famous for bringing back the astronauts stranded in space by solving difficult and complex problems. The teams solving the problems has used the Kepner-Tregoe (KT) methodology !

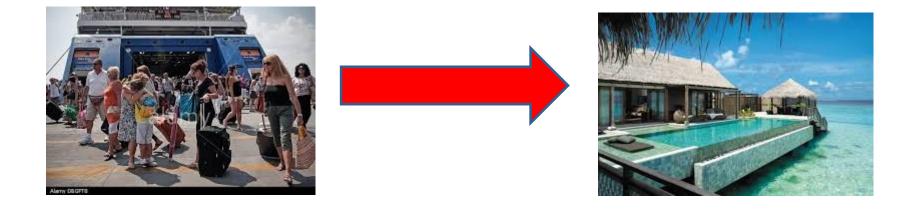
Decision Analysis –serious one

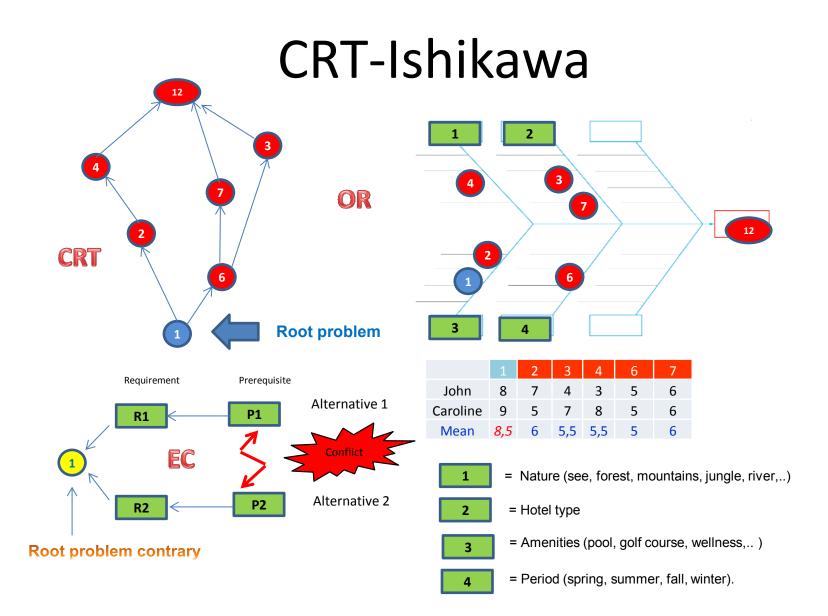
Sticky- lepkavý Lick – olíznout

What is it K-T methodology ?

Kepner Tregoe is used for decision making (one of many possible methods)

It is a structured methodology for gathering information and prioritizing and evaluating it.


It is very detailed and complex method applicable in many areas, which is much broader than just idea selection.


It is called also a root cause analysis and decision-making method.

It is a step-by-step approach for systematically solving problems, making decisions, and analyzing potential risks.

Make decision (A choice between two or more alternatives)

 Identify what is being decided (e.g. how many rooms I have to order if I am owner of the travel agency)—see next slide (in this case K-T method is not considered)

Alternative means how to solve problem and what kind of pay-off you will get

One possible solution Decision making methods without probabilities (MaxiMax and MaxiMin) – 1st slide-explanantion

MaxiMax is the rule for the optimist. A slogan for MaxiMax might be "best of the best" - a decision maker considers the best possible outcome for each course of action, and chooses the course of action that corresponds to the best of the best possible outcomes (result, effect).

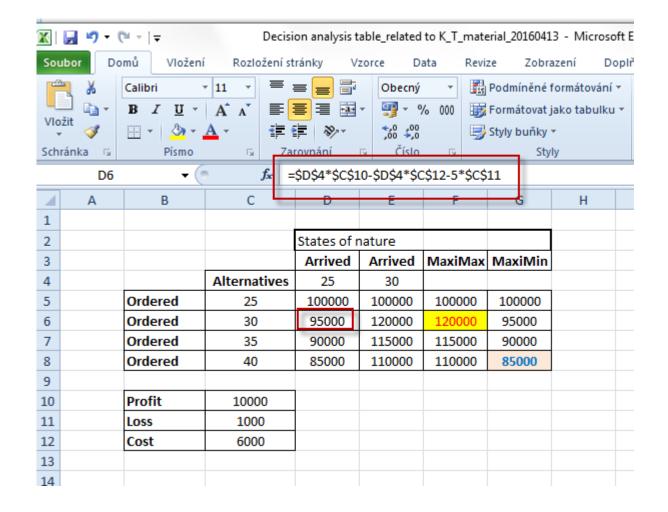
-				
Alternatives	01	02	03	Maximum Payoff
Α	\$1,000	\$1,000	\$1,000	\$1,000
B	\$10,000	-\$7,000	\$500	\$10,000
Č	\$5,000	\$ 0	\$800	\$5,000
D	\$8,000	-\$2,000	\$700	\$8,000

Payoff Table

 $\mathbf{B} \! > \! \mathbf{D} \! > \! \mathbf{C} \! > \! \mathbf{A}$

MaxiMin Payoff

Select the alternative which results in the maximum of minimum payoffs; a pessimistic criterion


		Outcomes		
Alternatives	01	02	03	Minimum Payoff
A	\$1,000	\$1,000	\$1,000	\$1,000
B	\$10,000	-\$7,000	\$500	-\$7,000
С	\$5,000	\$0	\$800	\$ 0
D	\$8,000	-\$2,000	\$700	-\$2,000

Payoff Table

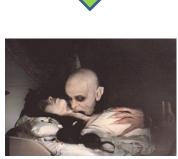
A > C > D > B

Decision making without probability

Hotel industry simple example (placed ordered-> alternatives and how many of them will really arrive) } not BPH-EPS1

Make decision (A choice between two or more alternatives-

Kepner-Tregoe approach)


- Identify what is being decided
- Establish and classify objectives (main ones, minor ones,..)
- Separate the objectives into **must** (*must to have*) and **want** (*nice to have*) categories (we have to assign importance factors from 1-10, where 10 is the most important **want** objective) and assign criterion rating (weights)
- Generate the alternatives (we can do it that way or we can take another way as well)
- Evaluate the alternatives by scoring the wants against the main objective see next slides
- Review adverse (harmful) consequences of your corrective steps (risk evaluation, risk assessment)
- Make the best possible choice what to do

Access situation (situation appraisal)

- Identify concerns (problems) by listing them
- Separate the level of concern (importance, magnitude, level of influence)
- Set the priority level to measure seriousness of impacts (influence), urgency and growth potential
- Decide what action to take next (step by step approach)
- Plan for who is involved, what they will be doing, where they will be involved, when it happened and the extent of involvement (magnitude)

WHO WHAT WHEN WHERE EXTENT

Criteria rating

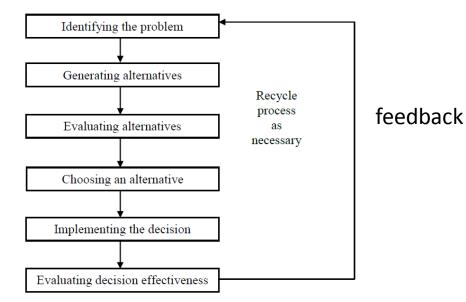
"Must" Criteria		C	ar 1	Ca	IT 2	Car	3	Car 4
Cost under \$9,000 Available within one week		۲ <u> </u>	Yes Yes		ves Ves	Yes Yes Car 3		Yes No
"Want" Criteria	Importance*	Criterion rating	Weighted score	Criterion rating	Weighted score	Criterion rating	Weighted score	
Good gas mileage	7	5	7 × 5 = 35	6	7 × 6 = 42	8	7 × 8 = 56	
Sporty	8	5	$8 \times 5 = 40$	7	$8 \times 7 = 56$	4	$8 \times 4 = 32$	
Color (blue)	3	10	3 × 10 = 30	0	3×0=0	0	3×0=0	
AM/FM stereo	5	7	$5 \times 7 = 35$	8	$5 \times 8 = 40$	3	$5 \times 3 = 15$	
Good condition	10	5	$10 \times 5 = 50$	6	$10 \times 6 = 60$	8	$10 \times 8 = 80$	
Low mileage	6	6	$6 \times 6 = 36$	4	$6 \times 4 = 24$	5	6 × 5 = 30	
Relatively new	7	3	7 × 3 = 21	5	7 × 5 = 35	5	$7 \times 5 = 35$	
TOTAL WEIGHTED S	SCORE (WS)		247		257		248	

See similar example on the next slide

Importance can be understood as a Satisfaction score,

meaning desirable but not essential.

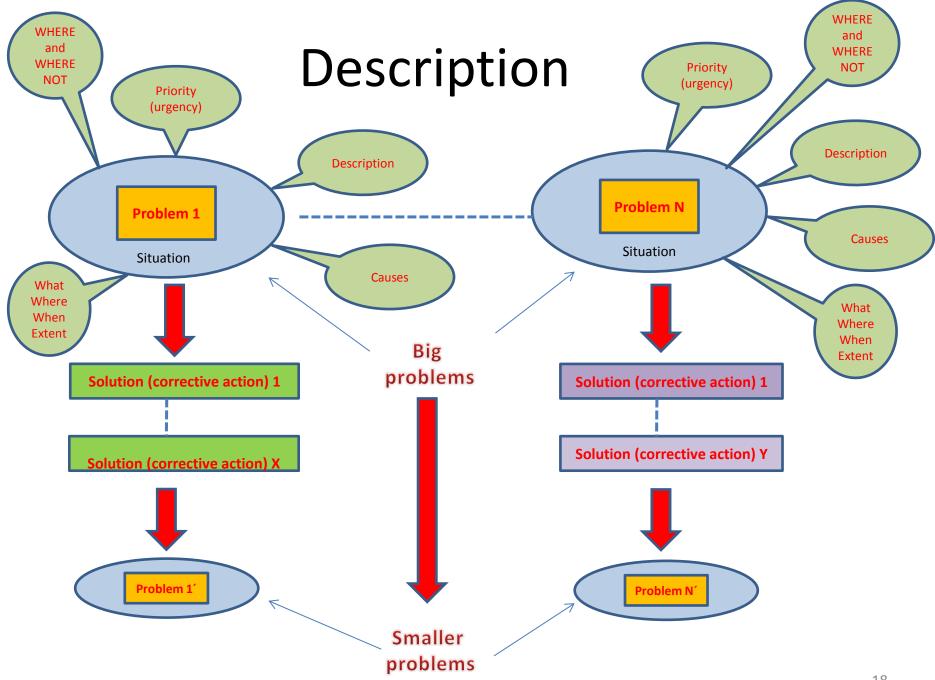
Criteria rating is related to want criteria and every car property

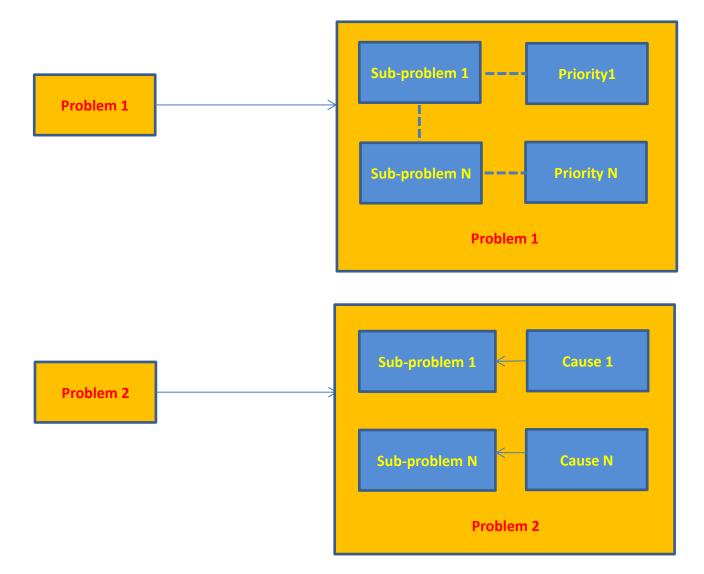

Which car to buy ?

MUSTS		А		в	(C	1	D
Power Brakes		GO		GO		GO		iO
Power Steering		GO	GO GO		GO		GO	
AM/FM Stereo		GO	G	O	NO	GO	G	0
Automatic		GO	G	O	NO	GO	G	0
Under \$15,000		GO	G	0	G	0	G	0
WANTS We	ight Score	WxS	Score	WxS	Score	WxS	Score	WxS
	0 10	100	0	0	Score		10	100
	7 6	42	10	70	\sim	\sim	10	70
	a o	42	10	90	\sim	\sim		0
	3 5	40	10	80	<>	<>	0 5	40
J					$\langle \rangle$	$\langle \rangle$	0	
	5 10	60	0	0	$\langle \rangle$	<>		0
Engine Size	8 8	48	6	36	\sim	\sim	10 5	60
	5 5	25	10	50	\sim	\sim	5	25
	4 0	0	10	40	\sim	\sim	10	40
Warranty	3 10	80	7	56	\sim	\sim	10 3 4	24
Resale Value	7 7	49	7	49	\sim	\geq	4	28
/ тот,	ALS	444	2	471				387
/								
	Criterion rating							
Importanco scoro, mo								1 back
Importance score, mea	or carrie score, meaning							
desirable but not esse	ntial.							

See the Upcoming (approaching, next to come) and Potential Opportunity=Solution=řešení)

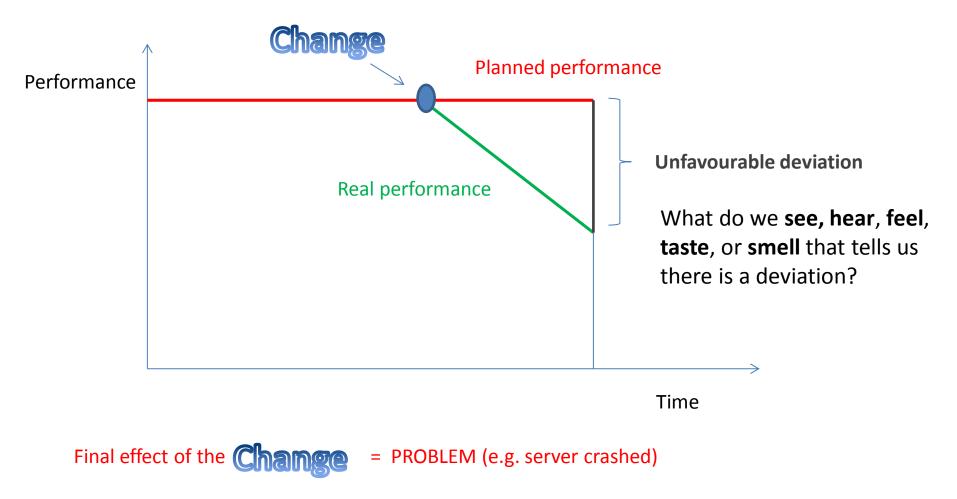
an}


- List the potential alternatives **A**{a1, a
- Consider the possible(suitable)solution (e.g. the second one)⁻
- Take the action to address the likely cause/solution
- Prepare actions to enhance(vylepšit) likely (possible) effects


Uncover and handle problems

(problem analysis)

- State the problem (definition and description of the problem)
- Specify the problem by asking what is and what is not
- Develop possible causes of the problem (similar to CRT)
- Test and verify possible causes
- Determine the most probable cause (root cause)
- Verify any assumptions
- Try the best possible solution and monitor what will be a situation after applied correctives step



Decomposition, priorities and causes

Example of problem manifestation

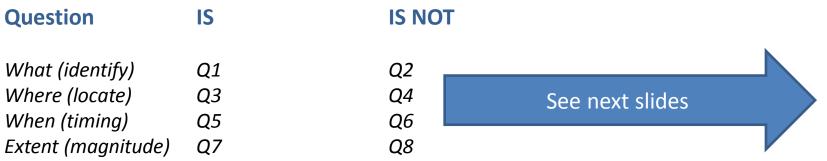
(decrease of performance)

Then we have to ask : What, Where, When, and to what Extent -Size (how much, how many)?

Server crashed !!!! (home study !!!)

- Server crashed (this is a very poor problem definition)
- The e-mail system crashed after the 3rd shift support engineer applied hot-fix XYZ to Exchange Server 123 (better definition of the problem)

	IS	COULD BE bu	DIFFERENCES	CHANGES	
WHAT	System failure	Similar systems/situations not failed	?	?	
WHERE	Failure location	Other locations that did not fail	?	?	
WHEN	Failure time	Other times where failure did not occur		?	?
EXTENT	Other failed systems	Other systems without failure		?	?
	IS	COULD BE but IS NOT	DIFFERENCES	CHAN	GES
WHAT	Exchange Server 123 crashed upon application of hot-fix XYZ	Other Exchange Servers getting hot- fix XYZ	Different staff (3rd shift) applied this hot-fix	New patch procedure	from vendor
WHERE	3rd floor production room without vendor/ contractor support	Anywhere else with vendor/ contractor support Normally done by vendor		New procedure, first t applies hot-fixes	ime 3rd shift
WHEN	Last night, 1:35am	Any other time or location	None noted		
EXTENT	Any Exchange Server on 3rd floor	Other servers			


History (and best practice) says that the root cause of the problem is probably due to some **recent change**. **WHAT, WHERE, WHEN and EXTENT will be shown on next slides**

Test the Most Probable Cause (home study !!!)

Clarifying problem Analysis (example)

Potential root cause:	True if:	Probable root cause?	
Exchange Server 123 has something wrong with it	Only Exchange Server 123 has this problem	Maybe	
Procedure incorrect	Same procedure crashes another server	Probably	
Technician error	Problem did not always reoccur	Probably not	

We have to ask (where Qi =QUESTION i) :

Problem Analysis - What

Is

- What specific object(s) has the deviation?
- What is the specific deviation?

Example for Is :

- 1. What specific **object IS** related to the defect? Inventory Valuation Objects in **database A**
- 2. What specifically is the defect (deviation)? Inventory Adjustment does not work
- 1-> see setup of the database and see differences
- 2->see algorithm used for calculation and parameters used.You can see , that in production calculation it dose not work

Is Not

- What similar object(s) could have the deviation, but does not? (It did not happen)
- What other deviations could be reasonably observed, but are not? (It did not happen)

Example for Is Not :

- 1. What specific **object IS NOT** related to the defect? Inventory Valuation Objects in **database B**
- 2. What specifically is not the defect (deviation)?
- 1 -> Setup has another parameters On
- 2-> Algorithm is used also for production where not error occurs

See two MS Dynamics Setup screens (related to the problem specified recently)

Inventory Setup	■ X Inventory Setup
General Location Dimensions Numbering	General Location Dimensions Numbering
Automatic Cost Posting .	Automatic Cost Posting .
Expected Cost Posting	Expected Cost Posting
Automatic Cost Adjust Never	Automatic Cost Adjust
Average Cost Calc. Type Item 💌	Average Cost Calc. Type Item 💌
Average Cost Period Day	Average Cost Period Day
Copy Comments Order 📝	Copy Comments Order 🔽
Copy Comments Order 🔽	Copy Comments Order 🔽
Outbound Whse. Han	Outbound Whse. Han
Inbound Whse. Handli	Inbound Whse. Handli
н	Help

Problem Analysis - What

Is

 What specific object(s) has the deviation?

 What is the specific deviation? - bites on the neck

Example for **Is** :

1. Nice young girl's neck and strange look of anemic person

Is Not

 What similar object(s) could have the deviation, but does not? (It did not happen)

What is the specific deviation? but does not? (It did not happen) – bites, anemia

Example of Is Not :

- 1. Girl with garlic in her hands
- 2. No bites
- 3. Zaftig

Another example for What IS and What IS NOT

Example I.

Customer **X** and Customer **Y** both use product B but only to customer X was sent the wrong product so the object IS Customer X, but IS NOT Customer Y

Example II.

IS girl visited Dracula lower castle without a bunch of garlic, but **IS NOT** not the one having bunch of garlic and visiting Špiberk castle in Brno

Problem Analysis - Where

Is

- Where is the object when the deviation is observed? (geographically)
- Where is the deviation on the object?

Example for Is:

1. Old castle in the mountains (Romania)

Where IS : Romanian Carpathian mountains where it is very easy to meet a lot of vampires there

Is Not

- Where else could the object be when the deviation is observed, but is not?
- Where else could the deviation be located on the object, but is not?

Example for Is Not

1. Brno castle Špilberk

Where **IS NOT** possible to meet vampires

(only lovers and children and seniors)

Problem Analysis - When

Is

- When was the deviation observed first (clock and calendar time)?
- When since that time has the deviation been observed?
- When, in the object's history or life cycle, was the deviation observed first?

Is Not

- When else could the deviation have been observed first, but was not?
- When since that time could the deviation have been observed, but was not?
- When else, in the object's history or life cycle, could the deviation have been observed first, but was not?

Example for When and IS and IS NOT

Customer X and Customer Y both use product B but only customer X was sent the wrong product if Salesman Tony was on holiday in this time and Salesman Mustafa was in charge, so the object IS Salesman Mustafa , but IS NOT Salesman Tony

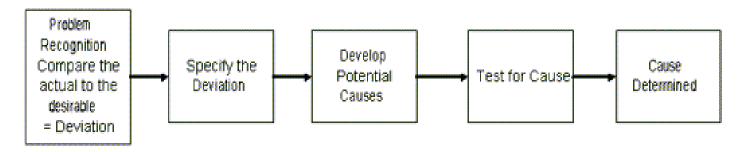
Problem Analysis - Extent

Is

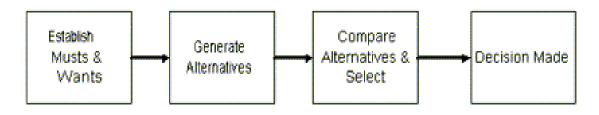
- How many objects have the deviation?
- What is the size of a single deviation?
- How many deviations are on each object?
- What is the trend?
 - Occurrences?
 - Size?

Is Not

- How many objects could have the deviation, but don't?
- What other size could a deviation be, but isn't?
- How many deviations could there be on each object, but are not?
- What could be the trend, but isn't?
 - Occurrences?
 - Size?


Problem Analysis Confirm True Cause

- What can be done to verify any assumptions made?
- How can this cause be observed at work?
- How can we demonstrate the cause-andeffect relationship (e.g. Current Reality Tree or Ishikawa Fishbone Diagram)?
- When corrective action is taken, how will results be checked?


Let's Look At Some Problems!

Systematic Problem Solving and Decision making Overview

Problem Definition Process

Decision Making Process

Planning the Next Steps

- Problem Analysis
 - Do we have a deviation?
 - Is the cause unknown?
 - Is it important to know the cause to take effective action?
- If the answer is YES to ALL three, than you have a big problem, Huston !!!

Problem analysis table template (Home study)

		IS	IS NOT	Distinction	Cause
What	Identify:	What is problem?	What is not problem?	What difference between is and is not?	What is possible cause?
Where	Locate:	Where is problem found?	Where is problem not found?	What difference in locations?	What cause?
When	Timing:	When does problem occur?	When does problem not occur?	What difference in timing?	What cause?
		When was it first observed?	When was it last observed?	What difference between 1 st , last?	What cause?
Extent	Magnitude:	How far does problem extend?	How localized is problem?	What is the distinction?	What cause?
		How many units are affected?	How many not affected?	What is the distinction?	What cause?
		How much of any one unit is affected?	How much of any one unit is not affected?	What is the distinction?	What cause?

Problem description (example)


On a new model of airplane, flight attendants develop rash on arms, hands, face (only those places). It only occurs on flights over water.

Usually disappears after 24 hours. No problems on old planes over those routes.

Does not affect all attendants on these flights, but same number of attendants get it on each flight. Those who get rash have no other ill effects.

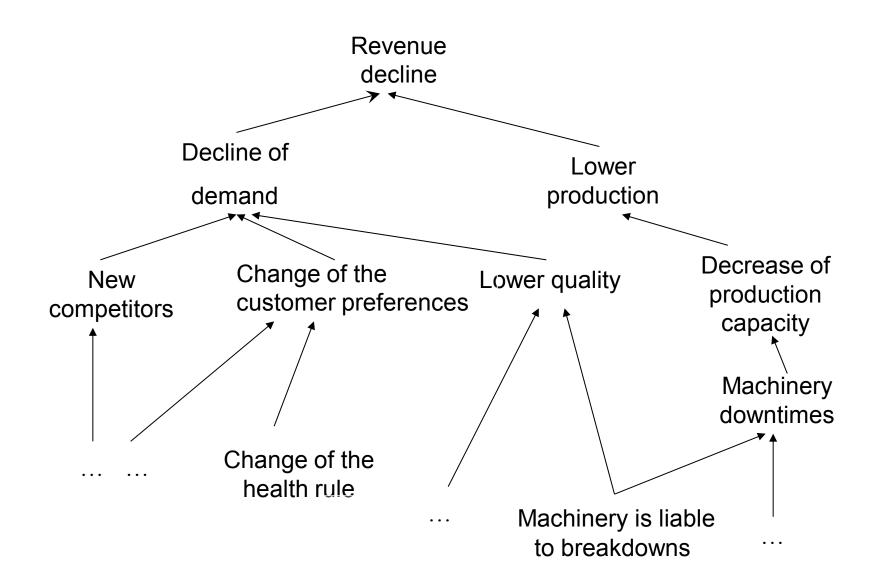
No measurable chemicals, etc., in cabin air.

Rash arm ->

Problem analysis real table

	IS	IS NOT	DISTINCTION
WHAT:	Rash	Other illness	External contact
WHEN:	New planes used	Old planes used	Different materials
WHERE:	Flights over water	Flights over land	Different crew procedures
EXTENT:	Face, hands, arms	Other parts	Something contacting face, hands and arms
	Only some attendants	All attendants	Crew duties

Distinction=Difference


Results ????

Tree of the casual relationships I –example

- Decline of revenue due to :
- Lower merchantability of the items
 - New competitors
 - Change of the customer preferences
 - Poor (not sufficient) quality of the item
 - Restriction of capacity production
 - Downtime due to machine failure, obsolete machinery, irregular maintenance
 - Change of the legislation (change of the health rules)

Let's Look At Some Problems again!

Decision making process

- Problem definition
- Requirements identification
- Goal establishment
- Evaluation criteria development
- Select decision –making tool
- Apply tool (K &T, Pros-Cons,...)
- Check

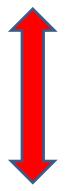
Step 1 and Step 2

Step 1 Problem: Pick a replacement vehicle for the motor pool fleet

The definition of the problem dictates the requirements. As the vehicle is for a motor pool, the requirements will differ from those for a family car, for example.

Step 2 Requirements:

- 1. Vehicle shall be made in U.S.A.
- 2. Vehicle shall seat at least four adults, but no more than six adults
- 3. Vehicle shall cost no more than **\$28,000**
- 4. Vehicle shall be new and the current model year



Max 28000 USD

Min

Max

New car (current model)

Step 3 and Step 4

Step 3 Goals:

- · Maximize passenger comfort
- · Maximize passenger safety
- \cdot Maximize fuel-efficiency
- \cdot Maximize reliability of the car
- \cdot Minimize investment cost

Step 4 Alternatives:

There are many alternatives but the requirements eliminate the consideration of a number of them:

Requirement 1 eliminates the products not manufactured in the USA Requirement 2 eliminates vans, buses, and sports cars (Ferrari no !!!!) Requirement 3 eliminates high-end luxury cars Requirement 4 eliminates used vehicles

Step 5

Step 5 Criteria:

"Maximize comfort" will be based on the combined rear seat leg and shoulder room. (Note: front seat passenger leg and shoulder room was found to be too nearly the same to discriminate among the alternatives.) **5**

"Maximize safety" will be based on the total number of stars awarded by the National Highway Traffic Safety Administration for head-on and side impact. **10**

"Maximize fuel efficiency" will be based on the EPA fuel consumption for city driving. **7**

"Maximize reliability" will be based on the reliability rating given each vehicle by a consumer product testing company. 9

"Minimize Cost" will be based on the purchase price. 10

Weighted criteria vector C(5,10,7,9,10) are values assigned by decision makers !!!!

Kepner-Tregoe table

(for 4 cars : Arrow, Baton, Carefree and Dash

Criteria/	Criteria	Arrow		Alter-	Tota	al Score	
Want objectives	Weight			native			
					Score		
Comfort	5	86 in. rear seat leg and shoulder room, seats 5		eats 5	6		30
Safety	10	14 stars			5		50
Fuel efficiency	7	21 mpg			9	63	
Reliability	9	80		9	81		
Cost	10	\$26,000			5	5	
			1	Fotal			274
		В	aton				
Comfort	5	88 in. rear seat leg and shoulder room, seats 6		eats 6	9		45
Safety	10	17 stars		8		80	
Fuel efficiency	7	19 mpg			8	56	
Reliability	9	70			7		63
Cost	10	\$21,000			8	80	
			1	Fotal			324
			refree				
Comfort	5	80 in. rear seat leg and shoulder room, seats 5		4		20	
Safety	10	15 stars		6	60		
Fuel efficiency	7	22 mpg		10	70		
Reliability	9	65		5	45		
Cost	10	\$17,000		10	100		
			1	Fotal			295
		L)ash				
Comfort	5	89 in rear seat leg and	l shoulder room, se	ats 6	10		50
Safety	10	19 stars		10	100		
Fuel efficiency	7	21 mpg		9	63		
Reliability	9	85		10	90		
Cost	10	\$24,000			6		60
			1	Fotal			363

Last step – Validation (check)

Last Step Validate Solution:

The totals of the weighted scores show that the **Dash** most nearly meets the wants/goals (or put another way, has the most "benefits"). Dash meets all the requirements and solves the problem !!!

WORLD CUP & QUALITY MANAGEMENT

SAMUEL K. M. HO

Keywords: Quality Management, World Cup, problem solving

Abstract: In the semi-final World Cup 1990, England lost to West Germany in the penalty knockout. The Italian team had similar experience when they lost to Brazil in the World Cup final 1994. History repeats itself -- in WC'98, England lost to Argentina and Italy lost to France by the same mistakes. In an attempt to audit the defeats, the author developed the S-H Method of managerial auditing and used the World Cup match examples to illustrate the significance of the S-H Method in auditing managerial processes.

Author: prof. Samuel K.M Ho, School of Business, Hong Kong Baptist University, Hong Kong

- Rule #1: In a successful penalty-shoot, the ball ends up in the goal away from the goal-keeper's reach. The most likely positions are those along the inside edges of the goal-posts, the higher the better, provided that the ball does not go over the bar. The football player must target these points.
- Rule #2: The shooter should assume that there is nobody at all in the field, and concentrate on shooting the ball into the positions defined as the best.

ENGLAND		WEST GERMANY			
Goal	Goal Player Result & Analysis		Goal	Player	Result
E1	Lineker	In	W1	Brehme	In
	Beardsley	In	W2	Matthaeus	In
E3	Platt	In despite being touched by the goal-	W3	Riedle	In
		keeper			
E4	Pearce	Ball caught by the goal-keeper (violating	W4	Thon	In
		Rule #1)			
E5	Waddle	Ball flew above the goal (violating Rule	WON		
		#2)			

Table 1 Score Table of Penalty-shoot Knock-out -- World Cup Semi-final 1990: England vs. West Germany

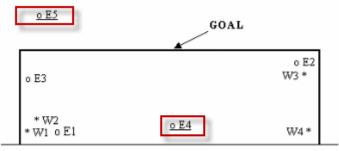


Figure 3

Approximate Positions of Penalty-shoot Goals -- World Cup Semi-final 1990: England (E) vs. West Germany (W) (Underlined balls indicate missing shoots)

Example of analysis- use of questions

Table III Problem-solving worksheet applied to analyse World Cup match problem is the problem? The point of change is as expected? What Weak penalty shooting Performance during the Difference in penalty shoot-out tactics match Who Two out of the five German players The way some players England players struck the ball When After 120 minutes of During the match Penalty shoot-out took football place after a long and tiring match Where At the points easily At the positions near the Ball easily caught by the reached by the goalposts, inside the goal goalkeeper or ended up (E2 and E3) outside the goal keeper Above the bar How significant Two failures out of five The German team did not Very significant miss out of four attempts attempts Possible causes Some players not following rule 1 1 Certain players are incapable of shooting the ball at the right spot 2 3 Some players are affected psychologically by the presence of the goalkeeper and have forgotten about rule 2 Lack of proper training based on rules 1 and 2 4

- WHAT -- Lack of proper training led to the weak penalty-shooting, mostly due to players not adhering to Rule #1 (see).
- WHO -- A significant number of players were making the mistake as a result of insufficient training.
- WHEN -- When players are tired, the physical condition may affect their decision making. This is why training is important.
- WHERE -- More stringent training on correct shooting (Rule #1).
- HOW SIGNIFICANT -- The importance of the match makes the problem very significant. Therefore training must be thorough.

Thanks for Your attention

