
IRIS Toolbox knowledge base article 2

Everything you always wanted to know

about unit-root models

(but were afraid to ask)

Part I

Jaromír Bene²
∗

International Monetary Fund

Martin Fuka£

Federal Reserve Bank of Kansas City

First version: 1 November 2011

This draft: 23 November 2011

In progress. Un�nished. Incomplete.

Imperfect. Early draft. Preliminary.

Errors and typos quite likely.

But feel free to quote.

Abstract

This is a practical guide to handling models with unit roots e�-

ciently and conveniently. DSGEs included. No more pain stationar-

ising your models; you don't deserve it. And by the way, all this has

been implemented in IRIS since long.

∗Corresponding author: jaromir (dot) benes (at) gmail (dot) com.

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 2

Contents

1 Introduction 3

2 The model: RBC with exogenous growth 4

3 The old way 5

4 Going the extra mile 7

5 The new way 9

5.1 Steady state . 10

5.2 First-order expansion . 14

6 How is it done in IRIS? 16

A Equivalence 16

B Numerical example of non-stochastic steady state 17

C Algebraic system matrices for the stationarised model 17

D Numerical recursive-form solution of the unit-root model 17

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 3

1 Introduction

You have a nice model. The model has a nice unit root. Or perhaps two of

them. Or �ve. What do you do? Transform some of the variables to make

them stationary? Then apply the usual �rst-order approximate stu�? And

then convert everything back into its original terms after each simulation?

Wrong.

Here is the deal (we can call it a "Big Unit-Root Proposition", or BURP).

If you have a model that contains one or more unit roots, and are able

to stationarise the model so to �nd its valid �rst-order solution, then you

actually do not need to transform the model whatsoever in the �rst place. You

simply deal with everything in its original form, and still arrive at exactly

the same results.

Does it not seem to be a big deal to you? That is probably because you

have only played with models of just a few equations. In practice, however,

there are people who work with dozens or even hundreds of equations, and

possibly multiple unit roots (think of a small open economy with one tech-

nology process, price level home, and price level abroad: that is three and

possibly counting). Stationarising such systems is a real pain. Not to speak

of the fact that sometimes you have to re-transform and re-write everything

from scratch every time you make a little change here or there.

In the rest of the paper, we take the perhaps simplest possible example

(an RBC model with exogenous growth), and �rst explain every step in solv-

ing the model the traditional way, i.e. by stationarising the model's unit-root

variables. Then, with this solution at hand, we show that such a station-

ary solution can be easily translated to the original levels bringing back the

unit root. Finally, we show we can take a short-cut arriving directly at the

unit-root solution without making the intermediate step of stationarising the

model.

In the follow-up Part II of the paper, we show how to work conveniently

with unit-root models using a triangular solution proposed by Benes (2011),

including automatic recognition of unit-root variables, running a unit-root

Kalman �lter, and more. We also show simple rules of thumb that help to

tell apart unit-root models in which �rst-order solutions, or local solutions

in general, are valid from those in which they are not valid (no matter if you

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 4

stationarise the model or use the method proposed here).

2 The model: RBC with exogenous growth

Here is our example model. It is a simple RBC with �xed labour and ex-

ogenous labour-augmenting productivity. Because we only deal with non-

stochastic steady state and �rst-order accurate solutions in this paper, we

take the liberty to drop the expectations operator for ease of notation. The

model consists of �ve equations in �ve variables:

1/Ct = βRt/Ct+1 (1a)

Yt = At
γKt−1

1−γ (1b)

Yt = Ct +Kt − (1− δ)Kt−1 (1c)

(1− γ)Yt+1/Kt = Rt − 1 + δ (1d)

At = At−1α exp εt (1e)

where Ct denotes consumption, Yt output,Kt capital available for production

at time t + 1, Rt the gross rate of real interest, and At productivity. The

three parameters, α, β, and γ describe productivity growth, households' time

preferences, and labour share of production, respectively.

The next three steps are about as follows:

1. Find non-stochastic steady state (with the term `steady state' becom-

ing more blurred than what you might have ever imagined shortly).

2. Compute the �rst-order Taylor expansion of the equations around the

steady state.

3. Solve out expectations expressing the model in recursive form.

We perform these three steps both the traditional way (stationarising

some of the variables) and the convenient way (keeping everyting in its orig-

inal form as above), and show that the two are equivalent in the results

they produce while the latter is clearly superior measured by the modeller's

convenience.

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 5

3 The old way

Even though solving the above model the traditional way may seem boring

to you, bear with us. We add some not-so-common bits to it, explain a few

new concepts, and derive results to be later compared with those obtained

by applying the newly proposed method.

Before computing steady state the traditional way, we �rst need to iden-

tify which variables are to be stationarised. This is trivial in our example

model. Arguably, it ought to be rather trivial in any of your models, too �

simply because knowing your model at least this well really is best practice

in the profession. In other words, variables should be non-stationary by your

assumption and by your intelligent design, so to speak, rather than taking

you by surprise after you are done with the algebra.

We introduce the following familiar transformations (mind the way at is

de�ned!): ct := Ct/At, yt := Yt/At, kt := Kt/At, at := At/At−1; and re-write

the original equations using the new variables:

at+1/ct = βRt/ct+1

yt = (kt−1/at)
1−γ

yt = ct + kt − (1− δ)kt−1/at

(1− γ) at+1yt+1/kt = Rt − 1 + δ

at = α exp ε

To �nd the non-stochastic steady state, we can now simply drop the time

indices, replace shocks with zeros, and solve a system of 5 equations in 5

unknowns (denoting the steady-state levels by a bar)

ā = βR̄ (2a)

ȳ = (k̄/ā)1−γ (2b)

ȳ = c̄+ k̄ [1− (1− δ)/ā] (2c)

(1− γ) āȳ/k̄ = R̄− 1 + δ (2d)

ā = α (2e)

We report steady-state values for an example set of parameters in Ap-

pendix B.

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 6

The next step is a �rst-order Taylor expansion around the steady state.

To this end, we need to choose whether a particular variable will be linearised

or log-linearised. The choice is relatively unimportant here, but becomes

rather critical when we use the new method. For reasons that become clear

later on, we must log-linearise the system in ct, yt, kt, and at. As for Rt, we

are free to choose what to do; for convenience, we log-linearise Rt, too. The

�rst-order expansions (with all terms concentrated on the LHS) are reported

here in their raw forms with no simpli�cations or cancellations made:

ā

c̄

[
(ln at+1 − ln ā)− (ln ct − ln c̄)

]
− βR̄

c̄

[
(lnRt − ln R̄)− (ln ct+1 − ln c̄)

]
= 0, (3a)

· · · (3b)

ȳ (ln yt − ln ȳ)− c̄ (ln ct − ln c̄)− k̄ (ln kt − ln k̄)

+ (1− δ) k̄
ā

[
(ln kt−1 − ln k̄)− (ln at − ln ā)

]
= 0. (3c)

· · · (3d)

· · · (3e)

We can now put the system in its �rst-di�erence matrix form

AEt

[
xbt
xft+1

]
+B

[
xbt−1

xft

]
+ C +Dεt = 0, (4)

to make it ready for a rational-expectations solution. Note that we preserve

the constant terms in the system; this will become important once we bring

back the unit roots. The vector of predetermined (or backward-looking)

variables, xbt , and the vector of non-predetermined (or forward-looking) vari-

ables, xft , are de�ned as follows, respectively:

xbt :=
[
ln kt

]
, xft :=

ln ct

ln yt

ln at

lnRt

 ,

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 7

Note that Rt, which does not occur in the equations with any lags or leads

could be also alternatively included in xbt instead but it is computationally

more e�cient to keep it in xft . The coe�cient matrices A, B, C, and D are

again reported in Appendix.

Finally, it is now easy to �nd the model's recursive solution,[
xbt
xft

]
= Txbt−1 +K +R0 εt +R1 Et[εt+1] + · · ·+Rk Et[εt+k], (5)

using one of the available methods, such as Klein (2000) or Benes (2011).

To simulate the model, we need to set up the initial condition for Kt−1

and At−1, the current and future shocks, εt, then convert the initial condi-

tions to the transformed variables, simulate the stationarised model using

(5), then compute the implied path for At based on at, and �nally convert

the all the variables back to their original levels.

4 Going the extra mile

We now add an extra step to the traditional way. We take the �rst-order

expansion around the stationary steady state from the previous section, and

substitute back for the transformed variables. As a result, we get a system

in the original levels (or, strictly speaking, in the logarithms of them, lnCt,

lnYt, lnKt, and lnAt). The result will be a model log-linearised around its

stationarised steady state but with its unit root brought back. Because we

merely make a mechanical substitution, the two systems (the stationarised

one, and the one in the original levels and with the unit root back) will be

absolutely equivalent.

Why do we do it? Or course, there is no improvement in the solution

e�ciency at this point (we still start from the �rst-order representation ob-

tained by painfully stationarising the model). There are though two other

good reasons for that. First, we want to introduce the very notion of a

model solution with unit roots preserved in it. Second, it will be our point

of reference for comparing the tradition solution method with the new, more

convenient, one.

Because the transformations are log-linear (the ratio of two variables

is a simple di�erence between the respective logarithms), we can directly

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 8

plug them in a log-linearised system, and the system remains equivalent.

This is exactly the reason we chose to log-linearise the variables earlier.

Furthermore, we can choose whether to do so at the level of the unsolved

system, i.e. in equations (3a)�(3e) and their matrix form (4), or the solved

system, (5). We do both: they, of course, yield identical results.

We �rst substitute for ln ct, ln yt, ln kt, and ln at in (3a)�(3e):

ln ct = lnCt − lnAt,

ln yt = lnYt − lnAt,

ln kt = lnKt − lnAt,

ln at = lnAt − lnAt−1.

In equation (3a), we make use of the fact that ā = βR̄ in steady state.

Hence the Taylor coe�cients are the same at all of the expansion terms,

ln at+1 cancels against the newly substituted lnAt+1 − lnAt, and after col-

lecting the constant terms together, the equation becomes

lnCt+1 − lnCt − lnRt − lnβ = 0, (6a)

because ln ā − ln R̄ = lnβ. Obviously, we could have obtained exactly this

equation by directly taking logs of both sides of the very original equation.

In equation (3b)

· · · (6b)

In equation (3c), we make use of the fact that ȳ = c̄ + k̄ + (1 − δ)k̄/ā
in steady state. Note also that all terms involving lnAt and lnAt−1 cancel

each other in this equation:

ȳ lnYt − c̄ lnCt − k̄ lnKt + (1− δ) k̄
ā

lnKt−1

−
[
ȳ ln ȳ − c̄ ln c̄− k̄ ln k̄ + (1− δ) k̄

ā
(ln k̄ − ln ā)

]
= 0 (6c)

In equation (3d)

· · · (6d)

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 9

In equation (3e)

· · · (6e)

Based on these equations, we can write a new system

A∗ Et

[
Xb
t

Xf
t+1

]
+B∗

[
Xb
t−1

Xf
t

]
+ C∗ +D∗εt = 0, (7)

with the upper-case vectors of predetermined and non-predetermined vari-

ables given by, respectively

Xb
t =

[
lnKt

lnAt

]
, Xf

t =

lnCt

lnYt

lnRt

 ,
After we solve out for expectations, we get a new recursive form[

Xb
t

Xf
t

]
= T ∗Xb

t−1 +K∗ +R∗
0 εt +R∗

1 Et εt+1 + · · ·+R∗
k Et εt+k, (8)

The new solution will have one unit root (which, by the way, needs to be

treated as a non-explosive, or stable, root in the Blanchard-Kahn saddle path

condition). Simulating the new recursive system, (8), is equivalent to the

producedure described at the end of the previous section: simulating the old

system, (5), calculating the path for At by cumulating at, and transforming

all the variables back to their original levels.

Now, we already know what it means working with a unit-root solution.

But we still have to stationarise the model �rst to get to that point. Hence,

the million-buck question is: Can we somehow arrive at the equations (6a)�

(6e) directly without the intermediate step of stationarising the variables?

The answer is: Yes, we can.

5 The new way

Key to understanding the new way of solving models are two things. First,

how do we pinpoint the (non-stochastic) steady state of the model when we

do not stationarise the unit-root variables? And second, how do we calculate

a �rst-order expansion of a non-stationary system?

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 10

The various steps we make to answer these questions might seem not so

straightforward at �rst sight. But once you grasp the (very) simple logic of

it, you will understand them perfectly at second sight. Equally important,

all the steps are purely mechanical with no need for manual intervention at

any point, and can be therefore easily automated using basic text or regexp

manipulation functions available in virtually all programming packages.

5.1 Steady state

The non-stochastic steady state of the stationarised system is de�ned in

terms of some stable ratios, Ct/At, Yt/At,Kt/At, and a growth rate, At/At−1.

We can easily translate these numbers into a balanced-growth path (BGP).

Along a BPG, the four variables will be growing at the same rate in �xed pro-

portion to each other. Picking a particular value for At determines uniquely

the BGP values for all other variables (including Rt, which is �xed no mat-

ter what). Furthermore, to completely describe the steady state, we obvi-

ously also need to know the rate of change for each variable; we will denote

the steady-state (or BGP) rate of change by a hat: Ĉt = Ct/Ct−1. In

our example model, the steady-state rates of change are rather trivial, as

Ĉ = Ŷ = K̂ = Â = α (and R̂ = 1, for that matter). Let's now form a

ten-tuple (C̄, Ȳ , K̄, Ā, R̄, Ĉ, Ŷ , K̂, Â, R̂), and let's call the ten-tuple �a BGP

point�. There are, of course, in�nitely many BGP points, with di�erent lev-

els for C, Y , K, and A. All of the BGP points will though see the same

ratios of these four variables, and on top of that, the same values for the rest

of the ten-tuple, i.e. R̄, Ĉ, Ŷ , K̂, Â, R̂.

To compute the �rst-order expansion without stationarising the model,

the �rst step is now to simply �nd one arbitrary BGP point; any of them

will do the job equally well. How to �nd a BGP? Let's say initially that

we know the rates of change for every variable (which we do in this simple

model), and we make use of this knowledge. In that case, the problem turns

out to be very trivial. Later in this subsection, we also show how to solve

the problem without this short-cut.

We take the original equations in the original levels, (1a)�(1e), and re-

place

• every occurence of a variable at time t with its BGP level, e.g. Kt with

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 11

K̄;

• every occurence of a variable at time t− 1 with its BGP level divided

by its gross rate of growth, e.g. Kt−1 with K̄/K̂;

• every occurence of a variable at time t+1 with its BGP level multiplied

by its gross rate of growth, e.g. Kt+1 with K̄K̂;

• in general, every occurence of a higher lag or lead with a term including

an appropriate power of the rate of change, e.g. Kt−k with K̄/K̂
k, and

Kt+k with K̄K̂k.

Note that these substitutions can be fully automated using basic text or

regexp manipulation functions, and there is absolutely no need for any kind

of manual intervention after specifying the correct rates of change.

We get the following system of �ve equations in �ve unknowns, where we

explicitly substitute α for Ĉ, Ŷ , K̂, and Â, and 1 for R̂.

1/C̄ = βR̄/(C̄α) (9a)

Ȳ = Āγ (K̄/α)1−γ (9b)

Ȳ = C̄ + K̄ − (1− δ)K̄/α (9c)

(1− γ) Ȳ α/K̄ = R̄− 1 + δ (9d)

Ā = Ā (9e)

If you have immediately spotted resamblance of these equations to the sta-

tionarised steady-state system (2a)�(2e) you are on the right track.

The last equation, (9e), poses obviously a singularity. This is simply

because the level of Ā is not pinned down by the logic of the model. In other

words, Ā can be anything, and the levels for the three other variables, C̄, Ȳ ,

and K̄, will adjust.

But how do we deal with the singularity in practice? It is actually not an

issue: Most of the numerical solvers available in optimization packages will

easily deal with the singularity returning simple some value for A, and the

correct values for the rest of the variables (examples of such solvers include

fsolve and lsqnonlin in Matlab). And we already know that any value

will do the job.

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 12

Next, can we solve simultaneously for both the levels and the rates of

change? Yes. All we need is �ve extra independent equations for the �ve

extra unknowns (Ĉ, Ŷ , K̂, Â, and R̂). Where do we get them from? We

simply add the �ve model equations a second time, now for a di�erent BGP

point. Think of it as writing the above steady-state equations (9a)�(9e) with

all levels shifted by an arbitrary number of periods forward or backward.

Choose a constant m 6= 0 (preferably an integer for easier interpretation

of the resulting equations), and add �ve new equations based on (1a)�(1e)

replacing

• every occurence of a variable at time t with its BGP level mutliplied

by the respective gross rate of change to the power of m, e.g. Kt with

K̄K̂m;

• every occurence of a variable at time t−1 with its BGP level divided by

its gross rate of growth to the power of m−1, e.g. Kt−1 with K̄K̂
m−1;

• every occurence of a variable at time t+1 with its BGP level multiplied

by its gross rate of growth to the power of m + 1, e.g. Kt+1 with

K̄K̂m+1;

• in general, every occurence of a higher lag or lead with a term including

an appropriate power of the rate of change, e.g. Kt−k with KK̂m−k,

and Kt+k with K̄K̂m+k.

The steady-state system for calculating the entire ten-tuple of BGP val-

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 13

ues in our example model will therefore become something like the following:

1/C̄ = βR̄/(C̄Ĉ) (10a)

Ȳ = Āγ (K̄/K̂)1−γ (10b)

Ȳ = C̄ + K̄ − (1− δ)K̄/K̂ (10c)

(1− γ) Ȳ Ŷ /K̄ = R̄− 1 + δ (10d)

Ā = Ā/Â α (10e)

1/(C̄Ĉm) = β(R̄R̂m)/(C̄Ĉm+1) (10f)

Ȳ Ŷ m = (ĀÂm)γ (K̄K̂m−1)1−γ (10g)

Ȳ Ŷ m = C̄Ĉm + K̄K̂m − (1− δ)K̄K̂m−1 (10h)

(1− γ) Ȳ Ŷ m+1/(K̄K̂m) = R̄R̂m − 1 + δ (10i)

ĀÂm = ĀÂm−1 α (10j)

where m 6= 0 is a �xed number, and C̄, Ȳ , K̄, Ā, R̄, Ĉ, Ŷ , K̂, Â, and R̂ are

the unknowns. As before, the system has one singularity across equations

(9e) and (10j) (with these two equations able to pin down the rate of change

Â but not the level A), but again this fact poses no practical problem. And

as before, all the above substitutions can be again fully automated using

basic text manipulation.

Finally, we conclude this subsection with three practical considerations.

First, when you compute steady state in all kinds of economic models, it is

a good idea to restrict those variables that are supposed to be positive to re-

ally stay positive; such restrictions help tremendously the solvers to converge

and converge fast. Note also that introducing a simple exponential transfor-

mation is usually much more powerful than imposing hard-typed inequality

constraints even in the solvers that have been designed for constrained prob-

lems.

Second, if you want to regain control over what kind of value you get for

Ā,1 you can do the following. Replace A with 1 (or whatever number you

wish) keeping the system of equations otherwise unchanged. Although we

keep A on the list of unknowns, the variables will not occur in the equations

1Why would you want that? A typical situation is when you run a steady-state com-

parative static exercise changing a particular parameter, and you wish to compare the

implied levels of output for a given �xed level of productivity.

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 14

any more. This is, in fact, equivalent to the singularity problem before;

and again, many of the numerical solvers can handle this situation with no

di�culty.

Third, we can generlise the previous argument for any of the unit-root

variables, C̄, Ȳ , K̄, or Ā. Because we have one unit root in the model, we

are free to choose a particular value for one of those four variables, replacing

its occurences with the value of your choice (keeping though the steady-state

rates of change for that variable untouched in the equations), and running

the solver.

5.2 First-order expansion

With a particular (yet arbitrary) BGP point at hand, we can proceed as

follows to obtain a �rst-order expansion which will turn out to be identical

to the one computed on the stationarised model with the transformations

substituted back, (6a)�(6e):

• in each individual equation, express algebraically the �rst-order Taylor

expansion in the logarithms of the individual variables (treating current

dates, lags, and leads as distinct variables, of course) around values that

you simply denote with a bar, preserving the time subscript, using e.g.

K̄t, K̄t−1, and K̄t+1 to denote three distinct values;

• evaluate these derivatives at the BGP point found above adjusting the

levels of lags and leads appropriately for the BGP rates of change; for

instance, replace all occurences of K̄t with K̄ in these derivatives, K̄t−1

with the value of K̄/K̂, and K̄t+1 with the value of K̄K̂.

We now do the calculations step by step for each of the �ve model equa-

tions.

In eq. (1c), we express the �rst-order expansion in the logarithms of

three variables: Ct, Rt, and Ct+1 (hint: to express a derivative w.r.t. the

logarithm of a variables, �rst calculate the derivative w.r.t. the variable

itself, and then multiply the result by the BGP value of that variable).

− 1/C̄t(lnCt − ln C̄t)

− βR̄t/C̄t+1(lnRt − ln R̄t) + βR̄t/C̄t+1(lnCt+1 − ln C̄t+1) = 0

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 15

Next, we substitute C̄ for C̄t, R̄ for R̄t, and �nally C̄Ĉ for C̄t+1, and collect

(only for the sake of convenience) the constant terms at the end of the

equation:

− 1/C̄ lnCt − βR̄/(C̄Ĉ) lnRt + βR̄/(C̄Ĉ) lnCt+1

−
[
−1/C̄ ln C̄ − βR̄/(C̄Ĉ) ln R̄+ βR̄/(C̄Ĉ) ln(C̄Ĉ)

]
= 0 (11a)

In eq. (1b)

· · · (11b)

In eq. (1c), we express the �rst-order expansion in the logarithms of four

variables: Yt, Ct, Kt, and Kt−1 :

Ȳ (lnYt − ln Ȳt)− C(lnCt − ln C̄t)−K(lnKt − ln K̄t)

+ (1− δ)K̄t−1(lnKt−1 − ln K̄t−1) = 0.

Now, we make the substitutions Ȳ for Ȳt, C̄ for C̄t, K̄ for K̄t, and K̄/K̂ for

K̄t−1, and collect the constant terms at the end of the equation,

Ȳ lnYt − C̄ lnCt − K̄ lnKt + (1− δ)K̄/K̂ lnKt−1

−
[
Ȳ ln Ȳ − C̄ ln C̄ − K̄ ln K̄ + (1− δ)K̄/K̂ ln(K̄/K̂)

]
= 0. (11c)

In eq. (1d)

· · · (11d)

In eq. (1e)

· · · (11e)

We are done. As we show in Appendix A, the above equations, (11a)�

(11e) are equivalent to equations (6a)�(6e) derived in section 4, and can be

used to form a system like (7) ready for rational-expectations.

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 16

6 How is it done in IRIS?

References

Benes, J. (2011). E�cient triangular solution to rational-expectations models

and its forward expansion. IRIS Toolbox Knowledge Base Article 1.

Klein, P. (2000). Using the Generalized Schur Form to Solve a Multivariate

Linear Rational Expectations Model. Journal of Economic Dynamics and

Control, 24(10):1405�23.

A Equivalence

In this appendix, we show that the system of equations (11a)�(11e) obtained

by the �rst-order expansion of the original model around a BGP point is

equivalent to the system of equations (6a)�(6e) obtained by the �rst-order

expansion of the stationarised model around a stationary steady-state with

the original levels brought back subsequently.

Although the equivalence might seem coincidental to some at �rst sight,

being just a special case in our particular model, it is in fact something rather

universal in a broad class of macroeconomic models. Key to the equivalence is

the concept of linear homogeneity in the basic macroeconomic relationships

(such as preferences and technology), at least in steady state or on BGP

(when, for instance, various rigidities and adjustment costs disappear).

In eq. (11a), we multiply the entire expansion by −C̄, make use of the

fact that βR̄/Ĉ = 1, and expand the logarithm in the last term:

lnCt + lnRt − lnCt+1 −
[
ln C̄ + lnR− (ln C̄ + ln Ĉ)

]
= 0

Because ln R̄− ln Ĉ = ln R̄− lnα = − lnβ, we get

lnCt + lnRt − lnCt+1 + lnβ = 0, (12a)

an equation identical to (6a).

In eq. (11b)

· · · (12b)

IRIS Toolbox knowledge base article 2: Unit-root models, Part I 17

In eq. (11c), we �rst divide the entire expansion by Ā and re-use the

lower-case notation introduced in section, and, at the same time, substitute

ā = K̂, expanding also the logarithm in the last term:

ȳ lnYt − c̄ lnCt − k̄ lnKt + (1− δ)k̄/ā lnKt−1

−
[
ȳ ln Ȳ − c̄ ln C̄ − k̄ ln K̄ + (1− δ)k̄/ā (ln K̄ − ln ā)

]
= 0.

Last, we add and subtract ln Ā within the brackets containing the constant

terms, and making use of the fact that ȳ − c̄ − k̄ + (1 − δ)k̄/ā = 0, we

re-arrange the RHS into

ȳ lnYt − c̄ lnCt − k̄ lnKt + (1− δ)k̄/ā lnKt−1

−
[
ȳ ln ȳ − c̄ ln c̄− k̄ ln k̄ + (1− δ)k̄/ā (ln k̄ − ln ā)

]
= 0, (12c)

which is the same as (6c).

In eq. (11d)

· · · (12d)

In eq. (11e)

· · · (12e)

B Numerical example of non-stochastic steady state

C Algebraic system matrices for the stationarised model

D Numerical recursive-form solution of the unit-root

model

