Drum -Buffer-Rope

Traditional Approach: Divide and Conquer

- Division of Labor breaks down linkages complex systems into manageable chunks.
- Which is harder to manage? Left or Right?

Left

We Measure Operational Efficiency

- Work flows from left to right through processes with capacity shown.

Market
Request
11

Capability (Throughput Rate)
Parts/Day
$\mathbf{R M}=$ raw material
FG $=$ finished goods

9
$5 \quad 8$
Too Much Overtime Excellent Efficiency--Near 100\%
Chronic Complainer

Reward Based on Efficiency

- Work flows from left to right.

Capability(Throughput Rate)

Parts/Day	7	9	5

Both found ways to look busy and appear to have a capacity of 5 parts/day.

In reality...

- Processes A and B won't produce more than Process C for long.

Potential PID

Reality
7
9
5
8
6

P/D=parts/day

Then Variability Sets In

- Processing times are just AVERAGE Estimates

| Process | A | B | C | D | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| RM | 7 | 9 | 5 | 8 | 6 |
| Reality | 52 | 52 | 52 | 52 | 52 |

What's an Average? 50\%

- Half the time there are 5 or more per day at each process--Half the time less

Over all: $0,5 * 0,5^{*} 0,5 * 0,5 * 0,5=0,03125=3 \%$ Chance of 5 per day !!!

Previous Solution: Inventory

- Put a day of inventory (WIP) at each process!

Variable
Process $\quad 5252225050$

System Variability Takes Over--Chaos

Inventory (WIP) quickly shifts position. Inventory manager tries to smooth it out.
Distribution problems result. Costs go up !!!

System Variability Takes Over--Chaos

An Average of 5 means sometimes 3 and some times 7

Shifting work-in-process creates large queues at some locations. This makes work wait longer to be processed. (based on Little s law)

System Variability Takes Over--Chaos

Process A B C D E

WIP

Variable 52525252
Process
Shifting work-in-process creates large queues at some locations. This makes work wait longer to be processed.

Other workstations are starving for work (B) The work they could do is delayed because they have no input material. They can't take advantage of their extra capability. So....... ?

System Variability Takes Over--Chaos

Variable 52525 | 52 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Process
So... Management Helps! Management puts in more work (Inventory) (rate of input RM) to give everyone something to do (Cost world)! Result: It takes longer and longer from time of release until final shipping. More and more delay!!!!!!!!!!!

TOC Steps to
 Continuous Improvement

Step 1. Identify the system's constraint.
Step 2. Exploit the system's constraint.
Step 3. Subordinate everything else to the above decision.

Step 4. Elevate the system's constraint.
Step 5. If a constraint is broken (that is, relieved or improved), go back to Step 1. But don't allow inertia to become a constraint.

Five Steps Applied to Flow Operations

Five Focusing Steps
Step 1. Identify the Constraint (The Drum) - CRT
Step 2. Exploit the Constraint (Buffer the Drum) - time reserve
Step 3. Subordinate Everything Else (Rope) - feedback
Step 4. Elevate the Constraint (\$?)
Step 5. If the Constraint Moves, Start Over

Understanding Buffers

WIP

RM

- The "Buffer" is Time!
- In general, the buffer is the total time from work release until the work arrives at the constraint.
- Contents of the buffer alters (see below)
- If different items spend different time at the constraint, then number of items in the buffer changes
- but Time in the buffer remains constant.

We need more than one Buffer

There is variability in the Constraint. To protect our delivery to our customer we need a finished goods buffer.

There is variability in our suppliers.
We need to protect ourselves from unreliable delivery.

Buffer Time is Constant-Predictable

Buffer Management

Time until Scheduled at Constraint

Problem Identification

Additional Buffers

- Constraint Buffer (as we discussed)
- Protects the Constraint from running out of work
- Finished Goods Buffer
- Protects customer delivery from Constraint variation
- Raw Material Buffer
- Protects the Release of material from suppliers
- Assembly Buffer
- Facilitates speedy flow of products

