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Consequences of Heteroskedasticity for OLS

 Consequences of heteroscedasticity for OLS

OLS still unbiased and consistent under heteroscedastictiy!

Also, interpretation of R-squared is not changed

Heteroscedasticit 7 invalidates variance formulas for OLS estimators
The usual F-tests and t-tests are not valid under heteroscedasticity

Under heteroscedasticity, OLS is no longer the best linear unbiased estimator

(BLUE); there may be more efficient linear estimators



Heteroskedasticity-Robust Inference
after OLS Estimation

 Heteroscedasticity-robust inference after OLS

= Formulas for OLS standard errors and related statistics have been developed

that are robust to heteroscedasticity of unknown form

= All formulas are only valid in large samples

= Formula for heteroscedasticity-robust OLS standard error

n 7’22@2/ Also called White/Eicker standard errors. They involve the
‘7\ 3 t=1 "33 squared residuals from the regression and from a
ar(ﬁ ) = q gressio o]
J SSR2 regression of x; on all other explanatory variables.
J

= Using thes formula, the usual t-test is valid asymptotically

= The usual F-statistic does not work under heteroscedasticity, but

heteroscedasticity robust versions are available in most software



Heteroskedasticity-Robust Inference
after OLS Estimation

 Example: Hourly wage equation

@(wage) = — .128 4+ .0904 educ + .0410 exper — .0007 exper?
(.105) (.0075) .0052) (.0001)
[.107] (.0078) (0050} [.0001]

Heteroscedasticity robust standard errors may be larger
. _ _ or smaller than their nonrobust counterparts. The
Ho : Bexpefr - /Beacperz =0 differences are often small in practice.

F = 17.95 <« F-statistics are also often not too different.

I3 — 17.99 If there is strong heteroscedasticity, differences may be larger. To be
robust — . on the safe side, it is advisable to always compute robust standard

errors.



Testing for Heteroskedasticity

 Testing for heteroscedasticity

= |t may still be interesting whether there is heteroscedasticity because then

OLS may not be the most efficient linear estimator anymore

* Breusch-Pagan test for heteroscedasticity

Hg : Var(ulzy,zo,...,z,) = Var(u|x) = o2

Under MLR.4
Var(ulx) = E(u2x) — (B = BQ2e

The mean of u2 must not vary

= E(uz\xl, e ) = E(uQ) — g2 <« With X3, Xy ooy X,




Testing for Heteroskedasticity

* Breusch-Pagan test for heteroscedasticity (cont.)

42 = 0o + 011 + - - - + 0z + error

Regress squared residuals on all expla-
natory variables and test whether this

HO . 51 — 52 —_— = 51@ = 0 regression has explanatory power.
@/li A large test statistic (= a high R-
U squared) is evidence against the null
~ b k-1

T (1-R.)/(n—k—-1)

5 Alternative test statistic (= Lagrange multiplier statistic, LM obtained
LM =n . X% L/ by regressing residuals from unrestricted model to all explanatory
‘ variables). Again, high values of the test statistic (= high R-squared)

lead to rejection of the null hypothesis that the expected value of u? is
unrelated to the explanatory variables.

hypothesis.



Testing for Heteroskedasticity

 Example: Heteroscedasticity in housing price equations

price = — 21.77 4+ .0021 lotsize+ .123 sqrft+ 13.85 bdrms

(29.48) (.0006) (.013) (9.01)
/ Heteroscedasticity

log(price) = — 1.30 4+ .168 log(lotsize)+ .700 log(sqrft)+ .037 bdrms
(.65) (.038) (.093) (.028)

In the logarithmic specification, homoscedasticity cannot be rejected —
benefit of using the logarithmic functional form



Testing for Heteroskedasticity

Regress squared residuals on all expla-
natory variables, their squares, and in-

/ teractions (here: example for k=3)

4% = Sp+ 0121+ 6202+ 0323+ 0427 + 6535 + J625

White test for heteroscedasticity

+07x120 + d0gr1T3 + d9T O3 + error

HO . (51 = 52 . = 59 =0 The White test detects more general
deviations from heteroscedasticity than
> the Breusch-Pagan test
LM =n-Rz ~X§

* Disadvantage of this form of the White test

= |Including all squares and interactions leads to a large number of estimated

parameters (e.g. k=6 leads to 27 parameters to be estimated)



Testing for Heteroskedasticity

e Alternative form of the White test

i° = 0o + 01y + (52@2 -+ error

This regression indirectly tests the dependence of the squared residuals on the
explanatory variables, their squares, and interactions, because the predicted
value of y and its square implicitly contain all of these terms.

Ho:61=030=0, LM =n-Rz ~ x5

 Example: Heteroscedasticity in (log) housing price equations

R2, = .0392, LM = 88(.0392) ~ 3.45,p—valuey; = .178



Weighted Least Squares Estimation

Heteroscedasticity is known up to a multiplicative constant

2 The functional form of th
Var(u:lx:;) = c“h(x: h(x:) = h: ~ ()| «— 'hefunctional form ot the
( Z| Z) ( 7“)’ ( ?’) ! heteroscedasticity is known

v, = Bo + Brxi1 + - - + Brxie + g

+ [ = o o [ o [

= y;‘ — /8033%"0 _|_ 6133;‘1 _|_ .. _|_ Ika:k + ’UL,T <« — Transformed model



Weighted Least Squares Estimation

* Example: Savings and income

sav; = + Biinc; + w;, Var(u;linc,) = o2ine;
) BO 1 1 ) ) 1 )

savy 1 ’L'?ZCZ' «
— = Bo — + 51 —+ !
[ [ [ P — Note that this regression

model has no intercept
* The transformed model is homoscedastic

” 2
( m-) x

* If the other Gauss-Markov assumptions hold as well, OLS applied to the

L E(’LL?|X) . O'th D

E(u;?|x;) = E

transformed model is the best linear unbiased estimator!




Weighted Least Squares Estimation

* OLS in the transformed model is weighted least squares (WLS)

n 2
TN RN,
m'”@;([\/h—i] o\ vm] T VR W

T : ,
. 2 &—Observations with a large
< min Z (yz — bO — b1z — - — bkxzk) / variance get a smaller weight in
=1 the optimization problem

* Why is WLS more efficient than OLS in the original model?

= QObservations with a large variance are less informative than observations

with small variance and therefore should get less weight

« W.LS s a special case of generalized least squares (GLS)



Weighted Least Squares Estimation

* Unknown heteroscedasticity function (feasible GLS)

> > — Assumed general form

VCLT(U|X) =0 eXD(50+51$1—|—' . —|—5ka:k) =0 h(X) of heteroscedasticity;
exp-function is used to

ensure positivity

’LL2 = 0‘2 exp(éo -+ 51331 + -4+ 5kxk)@
Multiplicative error (assumption:

— |Og(u2) = ag + 0121+ ---+ 5]65618 + e independent of the explanatory

variables)

estimated heteroscedasticity
funtion as weights in WLS

|Og(ﬁ2) = 540 —+ glﬂil + ...+ gkl'k + 67& Use inverse values of the

Feasible GLS is consistent and asymptotically more efficient than OLS.
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Weighted Least Squares Estimation

 Example: Demand for cigarettes

* Estimation by OLS

Smoking restrictions
in restaurants

Cigarettes smoked per day Logged income and cigarette price
cigs = — 3.64 + .880 log(income) — .751 log(cigpric)
(24.08) (.728) (5.773)

— .501 educ — .771 age — .0090 a,ge2 — 2.83 restaurn
(.167) (.160) (.0017) (1.11)

Reject homo-

scedastici
n=807,R° = 0526, p—value greysch— Pagan : e



Weighted Least Squares Estimation

* Estimation by FGLS

Now statistically significant

P
cigs = — 5.64 +11.30 | log(income) — 2.94 log(cigpric)
(17.80) |(.44); (4.46)

— .463 educ + .482 age — .0056 ag(22 — 3.46 restaurn
(.120) (.097) (.0009) (.80)

n=807,R°=.1134

Discussion

= The income elasticity is now statistically significant; other coefficients are also

more precisely estimated (without changing qualit. results)



Weighted Least Squares Estimation

 What if the assumed heteroscedasticity function is wrong?

= |f the heteroscedasticity function is misspecified, WLS is still consistent under

MLR.1 — MLR.4, but robust standard errors should be computed

=  WLS is consistent under MLR.4

E(uilx;) =0 = E (’%/\/WXZ)) [x;) =0

= |f OLS and WLS produce very different estimates, this typically indicates that

some other assumptions (e.g. MLR.4) are wrong

= |f there is strong heteroscedasticity, it is still often better to use a wrong form

of heteroscedasticity in order to increase efficiency



Next Class

* Endogenous regressors and
instrumental variables

* Multiple Choice Quiz ©
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