Qualitative and Limited Dependent Variable Models

Ketevani Kapanadze Brno, 2020

A Single Dummy Independent Variable

Qualitative Information

- Examples: gender, race, industry, region, rating grade, ...
- A way to incorporate qualitative information is to use dummy variables
- They may appear as the dependent or as independent variables

Dummy Variables

- Dummy variable takes on the values of 0 or 1, depending on a qualitative attribute;
- Examples of dummy variables are:

$$Male = \begin{cases} 1 & \text{if the person is male} \\ 0 & \text{if the person is female} \end{cases}$$
$$Weekend = \begin{cases} 1 & \text{if the day is on weekend} \\ 0 & \text{if the day is a work day} \end{cases}$$

NewStadium = $\begin{cases} 0 & \text{if the team plays on old stadium} \end{cases}$

Intercept Dummy

- Dummy variable included in a regression alone (not interacted with other variables) is an intercept dummy;
- It changes the intercept for the subset of data defined by a dummy variable condition:

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + u_i$$

where

 $D_i = \begin{cases} 1 & \text{if the } i\text{-th observation meets a particular condition} \\ 0 & \text{otherwise} \end{cases}$

• We have: (on the board)

Intercept Dummy

• Graphical Illustration

Example

• Estimating the determinant of wages:

$wage_i = -3.89 + 2.156 M_i + 0.603 educ_i + 0.010 exper_i$ (0.270) (0.051) (0.064)

• Interpretation of the dummy variable M: men earn on average \$2.156 per hour more than women, ceteris paribus

A Single Dummy Independent Variable

• Estimated wage equation with intercept shift

 $n = 526, R^2 = .364$

• Does that mean that women are discriminated against?

• Not necessarily. Being female may be correlated with other productivity characteristics that have not been controlled for.

A Single Dummy Independent Variable

• Comparing means of subpopulations described by dummies

$$\widehat{wage} = 7.10 - 2.51 female$$

(.21) (.26)

$$n = 526, R^2 = .116$$

Not holding other factors constant, women earn 2.51\$ per hour less than men, i.e. the difference between the mean wage of men and that of women is 2.51\$.

• Discussion

- It can easily be tested whether difference in means is significant
- The wage difference between men and women is larger if no other things are controlled for;
 i.e. part of the difference is due to differences in education, experience and tenure between men and women

Slope Dummy

- If a dummy variable is interacted with another variable (x), it is a slope dummy;
- It changes the relationship between x and y for a subset of data defined by a dummy variable condition:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 (X_i^* D_i) + u_i$$

where

 $D_i = \begin{cases} 1 & \text{if the } i\text{-th observation meets a particular condition} \\ 0 & \text{otherwise} \end{cases}$

• We have: (on the board)

Example

• Estimating the determinant of wages:

$$wage_i = -2.620 + 0.450 \ educ_i + 0.17 \ M_i^* \ educ_i + 0.010 \ exper_i$$

(0.054) (0.021) (0.065)

• Interpretation: men gain on average 17 cents per hour more than women for each additional year of education, ceteris paribus

Multiple categories

- What if a variable defines three or more qualitative attributes?
- Example: level of education elementary school, high school, and college;
- Define and use a set of dummy variables:

$$H = \begin{cases} 1 & \text{if high school} \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad C = \begin{cases} 1 & \text{if college} \\ 0 & \text{otherwise} \end{cases}$$

- Should we include also a third dummy in the regression, which is equal to 1 for people with elementary education?
 - No, unless we exclude the intercept!
 - Using full set of dummies leads to perfect multicollinearity (dummy variable trap)

A Single Dummy Independent Variable

• Dummy variable trap

$$wage = \beta_0 + \gamma_0 male + \delta_0 female + \beta_1 educ + u$$
When using dummy variables, one category always has to be omitted:

$$wage = \beta_0 + \delta_0 female + \beta_1 educ + u \quad \text{The base category are men}$$

$$wage = \beta_0 + \gamma_0 male + \beta_1 educ + u \quad \text{The base category are women}$$
Alternatively, one could omit the intercept:

$$wage = \gamma_0 male + \delta_0 female + \beta_1 educ + u$$

$$\frac{\text{Disadvantages:}}{1 \text{ More difficult to test for differences}}$$

$$wage = \gamma_0 male + \delta_0 female + \beta_1 educ + u$$

$$\frac{\text{Disadvantages:}}{2 \text{ R-squared formula only valid}}$$

if regression contains intercept

Interactions Involving Dummy Variables

A Binary Dependent Variable: The Linear Probability Model

A Binary Dependent Variable: The Linear Probability Model

• Linear regression when the dependent variable is binary

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + u$$

$$\Rightarrow E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$$

$$E(y|\mathbf{x}) = 1 \cdot P(y = 1|\mathbf{x}) + 0 \cdot P(y = 0|\mathbf{x})$$

$$\Rightarrow P(y = 1|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$$

$$\Rightarrow \beta_j = \partial P(y = 1|\mathbf{x}) / \partial x_j \qquad \text{In the linear probability model, the coefficients describe the effect of the explanatory variables on the probability$$

that y=1 (=the probability of "success")

A Binary Dependent Variable: The Linear Probability Model

• Example: Labor force participation of married women

A Binary Dependent Variable: The Linear Probability Model

Example: Female labor participation of married women (cont.)

Graph for nwifeinc=50, exper=5, age=30, kindslt6=1, kidsge6=0

The maximum level of education in the sample is educ=17. For the given case, this leads to a predicted probability to be in the labor force of about 50%.

Negative predicted probability but no problem because no woman in the sample has educ < 5.

A Binary Dependent Variable: The Linear Probability Model

• Disadvantages of the linear probability model

- Predicted probabilities may be larger than one or smaller than zero
- Marginal probability effects sometimes logically impossible
- The linear probability model is necessarily heteroskedastic

 $Var(y|\mathbf{x}) = P(y = 1|\mathbf{x}) [1 - P(y = 1|\mathbf{x})]^{4}$

Variance of Bernoulli variable

- Heterosceasticity consistent standard errors need to be computed
- Advantanges of the linear probability model
 - Easy estimation and interpretation
 - Estimated effects and predictions often reasonably good in practice

• Disadvantages of the LPM for binary dependent variables

- Predictions sometimes outside the unit interval
- Partial effects of explanatory variables are constant
- Nonlinear models for binary response

variables

• Response probability is a nonlinear function of explanat. variables

$$P(y = 1 | \mathbf{x}) = G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k) = G(\mathbf{x}\beta)$$
Probability of a
"success" given explanatory A cumulative distribution function $0 < G(z) < 1$. The response vector of explanatory also contains

probability is thus a function of the

explanatory variables x.

Shorthand vector notation: the vector of explanatory variables x also contains the constant of the model.

Choices for the link function

<u>Probit</u>: $G(z) = \Phi(z) = \int_{-\infty}^{z} \phi(v) dv$ (standard normal distribution)

Logit:
$$G(z) = \Lambda(z) = \exp(z) / [1 + \exp(z)]$$
 (logistic function)

• Interpretation of coefficients in Logit and Probit models

• Marginal effects are nonlinear and depend on the level of X !

Marginal effects for the logit model

$$\partial p / \partial \mathbf{x}_j = \Lambda(\mathbf{x}'\beta)[1 - \Lambda(\mathbf{x}'\beta)]\beta_j = \frac{e^{\mathbf{x}'\beta}}{\left(1 + e^{\mathbf{x}'\beta}\right)^2}\beta_j$$

Marginal effects for the probit model

 $\partial p / \partial \mathbf{x}_j = \phi(\mathbf{x}' \beta) \beta_j$

Estimating marginal effects

Marginal effects at the mean

• The marginal effects are estimated for the average person in the sample $\bar{\mathbf{x}}$.

 $\partial p/\partial \mathbf{x}_j = \mathbf{F}'(\mathbf{\bar{x}}'\boldsymbol{\beta})\boldsymbol{\beta}_j$

- Most papers report marginal effects at the mean.
- A problem is that there may not be such a person in the sample.

Average marginal effects

• The marginal effects are estimated as the average of the individual marginal effects.

$$\partial p / \partial \mathbf{x}_j = \frac{\sum \mathbf{F}'(\mathbf{x}'\beta)}{n} \beta_j$$

- This is a better approach of estimating marginal effects, but papers still use the previous approach.
- In practice, the two ways to estimate marginal effects produce almost identical results most of the time.

Partial effects for discrete variables

• Predict the probabilities for the two discrete values of a variable and take the difference: $F(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 (k+1)) - F(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 (k))$

Interpretation of marginal effects

- An increase in x increases (decreases) the probability that y=1 by the marginal effect expressed as a percent.
- For dummy independent variables, the marginal effect is expressed in comparison to the base category (x=0).
- For continuous independent variables, the marginal effect is expressed for a one-unit change in x.
- We interpret both the sign and the magnitude of the marginal effects.
- The probit and logit models produce almost identical marginal effects.

- Goodness-of-fit measures for Logit and Probit models
 - Percent correctly predicted

$$\tilde{y}_i = \left\{ \begin{array}{ll} \mathbf{1} & \text{if } G(\mathbf{x}_i \hat{\boldsymbol{\beta}}) > .5 \\ \mathbf{0} & \text{otherwise} \end{array} \right.$$

• Pseudo R-squared

R-squared = $1 - L_{ur}/L_r$

Individual i's outcome is predicted as one if the probability for this event is larger than .5, then percentage of correctly predicted y=1 and y=0 is counted

Compare maximized log-likelihood of the model with that of a model that only contains a constant (and no explanatory variables)

Discussion about binary outcome models

Choice between the logit and probit model

- The choice depends on the data generating process, which is unknown.
- The models produce almost identical results (different coefficients but similar marginal effects).
- The choice is up to you.

Coding of the dependent variable

If we reverse the categories 0 and 1, the signs of the coefficients are reversed (positive become negative and vice versa) but the magnitudes are the same.

• Example: Married women's labor force participation

TABLE 17.1 LPM, Logit, and Probit Estimates of Labor Force Participation			
Dependent Variable: inlf			
Independent Variables	LPM (OLS)	Logit (MLE)	Probit (MLE)
nwifeinc	0034	021	012
	(.0015)	(.008)	(.005)
educ	.038	.221	.131
	(.007)	(.043)	(.025)
exper	.039	.206	.123
	(.006)	(.032)	(.019)
exper ²	00060	0032	0019
	(.00018)	(.0010)	(.0006)
age	016	088	053
	(.002)	(.015)	(.008)
kidslt6	262	-1.443	868
	(.032)	(.204)	(.119)
kidsge6	.013	.060	.036
	(.013)	(.075)	(.043)
constant	.586	.425	.270
	(.151)	(.860)	(.509)
Percentage correctly predicted Log-likelihood value Pseudo <i>R</i> -squared	73.4 	73.6 -401.77 .220	73.4 -401.30 .221

The coefficients are not comparable across models

Often, Logit estimated coefficients are 1.6 times Probit estimated because $g_{Logit}(0)/g_{Probit}(0) \approx 1/1.6$

The biggest difference between the LPM and Logit/Probit is that partial effects are nonconstant in Logit/Probit:

 $\hat{P}(working|\bar{x}, kidslt6 = 0) = .707$

 $\hat{P}(working|\bar{x}, kidslt6 = 1) = .373$

 $\hat{P}(working|\bar{x}, kidslt6 = 2) = .117$

(Larger decrease in probability for the first child)

Next Class – 10.04 In the Zoom at 1pm

Regression Analysis with Time Series Data