Econometrics

Endogenous Regressors and Instrumental Variables

Anna Donina

Lecture 7

1/36

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Endogeneity Problem

- An *endogenous* variable is one that is correlated with *u*
- An *exogenous* variable is one that is uncorrelated with *u*
- Intuition behind bias:
 - If an explanatory variable x and the error term ε are correlated with each other, the OLS estimate attributes to x some of the variation in y that actually came form the error term ε
- In IV regression, we focus on the case that *X* is endogenous and there is an instrument, *Z*, which is exogenous.

Digression on terminology: "Endogenous" literally means "determined within the system." If *X* is jointly determined with *Y*, then a regression of *Y* on *X* is subject to simultaneous causality bias. But this definition of endogeneity is too narrow because IV regression can be used to address OV bias and errors-in-variable bias. Thus we use the broader definition of endogeneity above.

Endogeneity Problem

- <u>Omitted variable bias</u> from a variable that is correlated with X but is unobserved and for which there are inadequate control variables;
- <u>Selection bias</u>: an unobservable characteristic has influence on both dependent and independent variables;
- <u>Measurement error bias</u> (X is measured with error)
- <u>Simultaneous causality bias</u> (X causes Y, Y causes X);

All three problems cause X to be **endogenous**, $E(u|X) \neq 0$

Selection Bias

- Very similar to omitted variable bias;
- We suppose there is some unobservable characteristic that influences both the level of the dependent variable y and of the explanatory variable x;
- This unobservable characteristic forms part of the error term ε, causing cov(ε, x)≠0 (in the same manner as an omitted variable);
- Example: surveying only non-smoking mothers when inferring the impact of the number of prenatal visits on the birth weight of children.
 - Smoking affects both the number of prenatal visits and the birth weight

Simultaneity

• Occurs in models where variables are jointly determined:

$$y_{1i} = \boldsymbol{\alpha}_0 + \boldsymbol{\alpha}_1 y_{2i} + \boldsymbol{\varepsilon}_{1i}$$
$$y_{2i} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 y_{1i} + \boldsymbol{\varepsilon}_{2i}$$

- Intuitively: change in y_{1i} will cause a change in y_{2i} , which in turn will cause y_{1i} to change again
- Technically:

$$Cov(\varepsilon_{1i}, y_{2i}) = Cov(\varepsilon_{1i}, \beta_0 + \beta_1 y_{1i} + \varepsilon_{2i})$$

= $\beta_1 Cov(\varepsilon_{1i}, y_{i1})$
= $\beta_1 Cov(\varepsilon_{1i}, \alpha_0 + \alpha_1 y_{2i} + \varepsilon_{1i})$
= $\beta_1 (\alpha_1 Cov(\varepsilon_{1i}, y_{2i}) + Var(\varepsilon_{1i}))$
$$Cov(\varepsilon_{1i}, y_{2i}) = \frac{\beta_1}{1 - \alpha_1 \beta_1} Var(\varepsilon_{1i}) \neq 0$$

Endogeneity Problem

- The endogeneity problem is endemic in social sciences/economics
 - In many cases important personal variables cannot be observed (examples?)
 - These are often correlated with observed explanatory information
 - In addition, measurement error may also lead to endogeneity
 - Solutions to endogeneity problems:
 - Proxy variables method for omitted regressors
 - Fixed effects methods if: 1) panel data is available, 2) endogeneity is time-constant, and 3) regressors are not time-constant
- <u>Instrumental variables method (IV)</u>
 - IV is the most well-known method to address endogeneity problems

Instrumental Variables (IV)

- Answer to the situation when $Cov(x, \varepsilon) \neq 0$
- Instrumental variable (or instrument) should be a variable z such that
 - 1. z is uncorrelated with the error term: $Cov(z, \varepsilon) = 0$
 - 2. z is correlated with the explanatory variable x: $Cov(x, z) \neq 0$
- Intuition behind instrumental variables approach:
 - project the endogenous variable x on the instrument z;
 - this projection is uncorrelated with the error term and can be used as an explanatory variable instead of x

Instrumental Variables

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

 IV regression breaks X into two parts: a part that might be correlated with *u*, and a part that is not. By isolating the part that is not correlated with *u*, it is possible to estimate β₁.

• This is done using an *instrumental variable*, *Z_i*, which is correlated with *X_i* but uncorrelated with *u_i*.

Instrumental Variables

- Properties of IV with a poor instrumental variable
 - <u>IV may be much more inconsistent than OLS</u> if the instrumental variable is not completely exogenous and only weakly related to x

$$plim \ \hat{\beta}_{1,OLS} = \beta_1 + Corr(x, u) \cdot \frac{\sigma_u}{\sigma_x}$$
There is no problem if the instrumental variable is really exogenous. If not, the asymptotic bias will be the larger the weaker the correlation with x.
$$plim \ \hat{\beta}_{1,IV} = \beta_1 + \frac{Corr(z, u)}{Corr(z, x)} \cdot \frac{\sigma_u}{\sigma_x}$$
IV worse than OLS if:
$$\frac{Corr(z, u)}{Corr(z, x)} > Corr(x, u) \quad \text{e.g.} \ \frac{0.03}{0.2} > 0.1$$

• Variance of IV estimator is always (!) greater than variance of OLS estimator!

Instrumental Variables

• IV estimation in the multiple regression model

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + \dots + \beta_k z_{k-1} + u_1$$

endogenous exogenous variables

- Conditions for instrumental variable
 - 1) Does not appear in regression equation
 - 2) Is uncorrelated with error term
 - 3) Is partially correlated with endogenous explanatory variable

$$y_2 = \pi_0 + \pi_1 z_1 + \dots + \pi_k z_{k-1} + \pi_k z_k + v_2$$

This is the so called *"reduced form regression"*

In a regression of the endogenous explanatory variable on all exogenous

zero coefficient.

variables, the instrumental variable must have a non-

As it sounds, TSLS has two stages – two regressions:

1. Isolate the part of *X* that is uncorrelated with *u* by regressing *X* on *Z* using OLS:

$$X_i = \pi_0 + \pi_1 Z_i + v_i \qquad (1)$$

- Because Z_i is uncorrelated with u_i , $\pi_0 + \pi_1 Z_i$ is uncorrelated with u_i . We don't know π_0 or π_1 but we have estimated them, so...
- Compute the predicted values of *X_i*,

2. Replace X_i by \hat{X}_i in the regression of interest: regress \hat{Y} on \hat{X}_i using OLS:

$$Y_i = \beta_0 + \beta_1 \hat{X}_i + u_i$$
 (2)

- Because \hat{X}_i is uncorrelated with u_i , the first least squares assumption holds for regression (2). (This requires *n* to be large so that π_0 and π_1 are precisely estimated.)
- Thus, in large samples, β₁ can be estimated by OLS using regression (2)
- The resulting estimator is called the *Two Stage Least Squares* (*TSLS*) estimator, $\hat{\beta}_1^{TSLS}$.

Suppose Z_i , satisfies the two conditions for a valid instrument:

1. *Instrument relevance*: $corr(Z_i, X_i) \neq 0$

2. *Instrument exogeneity*: $corr(Z_i, u_i) = 0$

Two-stage least squares:

Stage 1: Regress X_i on Z_i (including an intercept), obtain the predicted values, \hat{X}_i

Stage 2: Regress Y_i on \hat{X}_i (including an intercept); the coefficient on \hat{X}_i is the TSLS estimator, $\hat{\beta}_1^{TSLS}$.

 $\hat{\beta}_1^{TSLS}$ is a consistent estimator of β_1 .

Example

• Estimating the impact of education on the number of children for a sample of women in Botswana (OLS)

Source	SS	df	MS		Number of obs	=	4361
					F(3, 4357) =	191	.5.20
Model	12243.0295	34	081.00985		Prob > F	=	0.0000
Residual	9284.14679	4357 2	.13085765		R-squared	=	0.5687
					Adj R-squared	=	0.5684
Total	21527.1763	4360 4	. 93742577		Root MSE	=	1.4597
	I Contraction of the second seco						
children	Coef.	Std. Err	. t	P> t	[95% Conf.	In	terval]
educ	0905755	.0059207	-15.30	0.000	102183		0789679
age	.3324486	.0165495	20.09	0.000	. 3000032		.364894
agesq	0026308	.0002726	-9.65	0.000	0031652		0020964
_cons	-4.138307	.2405942	-17.20	0.000	-4.609994	_	3.66662

Example

- Education may be endogenous both education and number of children may be influenced by some unobserved socioeconomic factors
 - Omitted variable bias: family background is an unobserved factor that influences both the number of children and years of education
- Finding possible instrument:
 - Something that explains education
 - But is not correlated with the family background
- A dummy variable $frsthalf = \begin{cases} 1 & \text{if the woman was born in the first} \\ & \text{six months of a year} \\ 0 & \text{otherwise} \end{cases}$

Example: Intuition behind the IV

- The first condition instrument explains education:
 - School year in Botswana starts in January
 - Thus, women born in the first half of the year start school when they are at least six and a half.
 - Schooling is compulsory till the age of 15
 - Thus, women born in the first half of the year get less education if they leave school at the age of 15.
- The second condition the instrument is uncorrelated with the error term:
 - Being born in the first half of the year is uncorrelated with the unobserved socioeconomic factors that influence education and the number of children (family background etc.)

Example: 2SLS

First-stage regressions

Number of obs	=	4361
F(3, 4357)	=	175.21
Prob > F	=	0.0000
R-squared	=	0.1077
Adj R-squared	=	0.1070
Root MSE	=	3.7110

educ	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	1079504	.0420402	-2.57	0.010	1903706	0255302
agesq	0005056	.0006929	-0.73	0.466	0018641	.0008529
frsthalf	8522854	.1128296	-7.55	0.000	-1.073489	6310821
_cons	9.692864	.5980686	16.21	0.000	8.520346	10.86538

Example: 2SLS

Instrumental variables (2SLS) regression

Number of obs	=	4361
Wald chi2(3)	=	5300.22
Prob > chi2	=	0.0000
R-squared	=	0.5502
Root MSE	=	1.49

children	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
educ	1714989	.0531553	-3.23	0.001	2756813	0673165
age	.3236052	.0178514	18.13	0.000	.2886171	.3585934
agesq	0026723	.0002796	-9.56	0.000	0032202	0021244
_cons	-3.387805	.5478988	-6.18	0.000	-4.461667	-2.313943

Instrumented: educ

Instruments: age agesq frsthalf

Example

- Compare the estimates:
- OLS:

children	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ	0905755	.0059207	-15.30	0.000	102183	0789679

• 2SLS

children	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
educ	1714989	.0531553	-3.23	0.001	2756813	0673165

- Why does Two Stage Least Squares work?
 - All variables in the second stage regression are exogenous because endogenous variable has been replaced by a prediction based on only exogenous information;
 - By using the prediction based on exogenous information, endog. variable is purged of its endogenous part (the part that is related to the error term)
- Properties of Two Stage Least Squares
 - The standard errors from the OLS second stage regression are wrong. However, it is not difficult to compute correct standard errors.
 - If there is one endogenous variable and one instrument then 2SLS = IV
 - The 2SLS estimation can also be used if there is more than one endogenous variable and at least as many instruments

Statistical properties of 2SLS/IV-estimation

- Under assumptions completely analogous to OLS, but conditioning on z_i rather than on x_i , 2SLS/IV is consistent and asymptotically normal
- 2SLS/IV is typically much less precise because there is more multicollinearity and less explanatory variation in the second stage regression
- Corrections for heteroscedasticity analogous to OLS
- 2SLS/IV easily extends to time series and panel data situations