Econometrics

Qualitative and Limited Dependent Variable Models

Anna Donina

Lecture 8

1/36

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

So far, the dependent variable (*Y*) was continuous:

- Average wage
- Number of children
- Money growth rate

But what if it is a binary variable?

Y = 1, if person has college degree, 0 otherwise;

Y = 1, if person smokes, 0 otherwise;

The linear probability model (LPM) Non-linear probability model

- Probit
- Logit

Limited Dependent Variable Models

• Limited dependent variables (LDV)

- LDV are variables whose range is substantively restricted
 - Binary variables, e.g. employed/not employed
 - Nonnegative variables, e.g. wages, prices, interest rates
 - Nonnegative variables with excess zeros, e.g. labor supply
 - Count variables, e.g. the number of arrests in a year
 - Censored variables, e.g. unemployment durations

A Binary Dependent Variable: The Linear Probability Model

• Linear regression when the dependent variable is binary

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + u$$

$$\Rightarrow E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$$

$$E(y|\mathbf{x}) = 1 \cdot P(y = 1|\mathbf{x}) + 0 \cdot P(y = 0|\mathbf{x})$$

$$\Rightarrow P(y = 1|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$$

$$\stackrel{\text{Linear probability}}{\longrightarrow} \frac{\text{model (LPM)}}{\text{model (LPM)}}$$

$$\Rightarrow \beta_j = \partial P(y = 1|\mathbf{x}) / \partial x_j \longleftarrow \text{In the linear probability model, the}$$

coefficients describe the effect of the

y=1 (the probability of "success")

explanatory variables on the probability that

A Binary Dependent Variable: The Linear Probability Model

• Example: Labor force participation of married women

A Binary Dependent Variable: The Linear Probability Model

Example: Female labor participation of married women (cont.)

Graph for nwifeinc=50, exper=5, age=30, kindslt6=1, kidsge6=0

The maximum level of education in the sample is educ=17. For the given case, this leads to a predicted probability to be in the labor force of about 50%.

Negative predicted probability but no problem because no woman in the sample has educ < 5.

The Linear Probability Model: Heteroskedasticity

 $Y_i = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki} + u_i$

The variance of a Bernoulli random variable:

$$Var(Y) = Pr(Y = 1) \times (1 - Pr(Y = 1))$$

We can use this to find the conditional variance of the error term

$$Var(u_i|X_{1i}, \cdots, X_{ki}) = Var(Y_i - (\beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki})|X_{1i}, \cdots, X_{ki})$$

$$= Var(Y_i|X_{1i}, \cdots, X_{ki})$$

$$= Pr(Y_i = 1|X_{1i}, \cdots, X_{ki}) \times (1 - Pr(Y_i = 1|X_{1i}, \cdots, X_{ki}))$$

$$= (\beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki}) \times (1 - \beta_0 - \beta_1 X_{1i} - \cdots - \beta_k X_{ki})$$

$$\neq \sigma_u^2$$

Solution: always use heteroskedasticity robust standard errors when estimating a LPM

A Binary Dependent Variable: The Linear Probability Model

- Disadvantages of the linear probability model
 - Predicted probabilities may be larger than one or smaller than zero
 - Marginal probability effects sometimes logically impossible
 - The linear probability model is necessarily heteroskedastic

 $Var(y|\mathbf{x}) = P(y = 1|\mathbf{x}) \left[1 - P(y = 1|\mathbf{x})\right]$ **Variance of Bernoulli** variable

- Heterosceasticity consistent standard errors need to be computed
- Advantanges of the linear probability model
 - Easy estimation and interpretation
 - Estimated effects and predictions often reasonably good in practice

- Disadvantages of the LPM for binary dependent variables
 - Predictions sometimes outside the unit interval
 - Partial effects of explanatory variables are constant
- Nonlinear models for binary response
 - Response probability is a nonlinear function of explanat. variables

$$P(y = 1 | \mathbf{x}) = G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k) = G(\mathbf{x}\beta)$$

Probability of a "success" given explanatory variables

A cumulative distribution function 0 < G(z) < 1. The response probability is thus a function of the explanatory variables x.

Shorthand vector notation: the vector of explanatory variables x also contains the constant of the model.

Choices for the link function

<u>Probit</u>: $G(z) = \Phi(z) = \int_{-\infty}^{z} \phi(v) dv$ (standard normal distribution)

Logit: $G(z) = \Lambda(z) = \exp(z) / [1 + \exp(z)]$ (logistic function)

 $Pr(Y = 1) = Pr(Z \le -0.8) = \Phi(-0.8) = 0.2119$

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@

• Interpretation of coefficients in Logit and Probit models

$$\frac{\partial P(y = 1 | \mathbf{x})}{\partial x_j} = g(\mathbf{x}\beta)\beta_j \text{ where } g(z) = \partial G(z)/\partial z > 0$$

How does the probability for y=1 change if
explanatory variable x_j changes by one unit?
$$\frac{\text{Discrete explanatory variables:}}{G[\beta_0 + \beta_1 x_1 + \dots + \beta_k (c_k + 1)] - G[\beta_0 + \beta_1 x_1 + \dots + \beta_k (c_k)]}$$

For example, explanatory variable x_k increases by one unit.

• Partial effects are nonlinear and depend on the level of x !

Logit and Probit Models: Estimation

- So far, we used OLS to estimate models
- Logit and Probit models are nonlinear in parameters:
 - Hence, in this case the OLS cannot be used
- The method used to estimate Logit and Probit models is Maximum Likelihood Estimation (MLE)
- The MLE are the values of parameters that best describe the full distribution of the data
 - The **likelihood function** is the joint probability distribution of the data, treated as a function of the unknown coefficients
 - The **MLE** are the values of the coefficients that maximize the likelihood function
 - MLE's are the parameter values "most likely" to have produced the data

Goodness-of-fit measures for Logit and Probit models

Percent correctly predicted

$$ilde{y}_i = \left\{ egin{array}{cc} 1 & ext{if } G(\mathbf{x}_i \hat{oldsymbol{eta}}) > .5 \\ 0 & ext{otherwise} \end{array}
ight.$$

- Pseudo R-squared $\tilde{R}^2 = 1 - \log L_0 / \log L_{ur}$
- Correlation based measures $Corr(y_i, \tilde{y}_i), Corr(y_i, G(\mathbf{x}_i \hat{\boldsymbol{\beta}})) \longleftarrow$

Individual i's outcome is predicted as one if the probability for this event is larger than .5, then percentage of correctly predicted y=1 and y=0 is counted

Compare maximized log-likelihood of the model with that of a model that only contains a constant (and no explanatory variables)

Look at correlation (or squared correlation) between predictions or predicted prob. and true values

- Reporting partial effects of explanatory variables
 - The difficulty is that partial effects are not constant but depend on x
 - <u>Partial effects at the average</u>:

$$\widehat{PEA}_j = g(\bar{x}\hat{\beta})\hat{\beta}_j$$

• Average partial effects:

$$\widehat{APE}_j = n^{-1} \sum_{i=1}^n g(\mathbf{x}_i \hat{\boldsymbol{\beta}}) \widehat{\beta}_j \longleftarrow$$

The partial effect of explanatory variable x_j is considered for an "average individual" (this is problematic in the case of explanatory variables such as gender)

The partial effect of explanatory variable x_j is computed for each individual in the sample and then averaged across all sample members (makes more sense)

• Example: Married women's labor force participation

TABLE 17.1 LPM, Logit, and Probit Estimates of Labor Force Participation			
Dependent Variable: inlf			
Independent Variables	LPM (OLS)	Logit (MLE)	Probit (MLE)
nwifeinc	0034	021	012
	(.0015)	(.008)	(.005)
educ	.038	.221	.131
	(.007)	(.043)	(.025)
exper	.039	.206	.123
	(.006)	(.032)	(.019)
exper ²	00060	0032	0019
	(.00018)	(.0010)	(.0006)
age	016	088	053
	(.002)	(.015)	(.008)
kidslt6	262	-1.443	868
	(.032)	(.204)	(.119)
kidsge6	.013	.060	.036
	(.013)	(.075)	(.043)
constant	.586	.425	.270
	(.151)	(.860)	(.509)
Percentage correctly predicted	73.4	73.6	73.4
Log-likelihood value	—	-401.77	-401.30
Pseudo <i>R</i> -squared	.264	.220	.221

The coefficients are not comparable across models

Often, Logit estimated coefficients are 1.6 times Probit estimated because $g_{Logit}(0)/g_{Probit}(0) \approx 1/1.6$

The biggest difference between the LPM and Logit/Probit is that partial effects are nonconstant in Logit/Probit:

 $\hat{P}(working|\bar{x}, kidslt6 = 0) = .707$

 $\hat{P}(working|\bar{x}, kidslt6 = 1) = .373$

 $\hat{P}(working|\bar{x}, kidslt6 = 2) = .117$

(Larger decrease in probability for the first child)