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Introduction

So far, the dependent variable (Y) was continuous:
* Average wage
* Number of children
* Money growth rate

But what if it is a binary variable?
Y =1, if person has college degree, 0 otherwise;
Y =1, if person smokes, 0 otherwise;

The linear probability model (LPM)
Non-linear probability model

* Probit

* Logit



Limited Dependent Variable Models

» Limited dependent variables (LDV)

* LDV are variables whose range is substantively
restricted

* Binary variables, e.g. employed/not employed

* Nonnegative variables, e.g. wages, prices,
interest rates

* Nonnegative variables with excess zeros, e.g.

labor supply

« Count variables, e.g. the number of arrests in a
year

* Censored variables, e.g. unemployment
durations




A Binary Dependent Variable: The Linear
Probability Model

* Linear regression when the dependent variable is binary

If the dependent variable only

Yy = /60 + 6135’1 + ...+ Bkﬂjk + u takes on the values 1 and 0

=

E(y|x) = Bo + Brx1 + ... + Bz /

E(ylx) =1-P(y=1|x) +0- P(y = 0x)
Linear probability

P(y =1[x) = 8o+ B1z1 + ... + Bzp & model (LPM)

b j = OP(y = 1|x)/0x j €— In the linear probability model, the
coefficients describe the effect of the
explanatory variables on the probability that
v=1 (the probability of , success”)




A Binary Dependent Variable: The Linear
Probability Model

* Example: Labor force participation of married women

=1 if in labor force, =0 otherwise Non-wife income (in thousand dollars per year)

4

nlf = .586 — .0034 nwifeinc + .038 educ + .039 exper
(.154) (.0014) (.007) (.006)

— .00060 exper? — .016 agelmldsltG
(.00018) (.002) .034)\

If the number of kids under six

+ .0130 kidsge6, n — 753, R?2 = 264 years increases by one, the
proprobability that the woman
AN works falls by 26.2%

Not significant



A Binary Dependent Variable: The Linear
Probability Model

* Example: Female labor participation of married women (cont.)

probability
of labor
f
partigirggtion Graph for nwifeinc=50, exper=5,
Bl m D _______ age=30, kindslt6=1, kidsge6=0

slope = .038

\

The maximum level of education in
the sample is educ=17. For the given
case, this leads to a predicted
probability to be in the labor force of

3.84 educ
—-.146 €

Negative predicted probability but no
problem because no woman in the
sample has educ < 5.




The Linear Probability Model:
Heteroskedasticity

Yi=Po+ f1Xni+ -+ P Xui + ui

The variance of a Bernoulli random variable:
Var(Y)=Pr(Y=1)x (1 - Pr(Y =1))

We can use this to find the conditional variance of the error term

Var (uj| Xyj, -+ . Xki) = Var(Y; — (Bo + B1X4j + -+ B Xii)| Xaio -+, Xki)
= Var (Y[ Xyj, -+ Xii)
— P (Y= Xaiy X)) x (1= Pr(Yi=1| Xap, -, X))
- (30 + .-31 X‘lf Tt .-BKXM) X (1 - .-30 - -"'31 X‘If -t .-SKXM}
% of

Solution: always use heteroskedasticity robust standard errors when
estimating a LPM



A Binary Dependent Variable:
The Linear Probability Model

* Disadvantages of the linear probability model
* Predicted probabilities may be larger than one or smaller than zero
« Marginal probability effects sometimes logically impossible
 The linear probability model is necessarily heteroskedastic

V@T(y|X) — P(y — 1|X) [1 . P(y — 1|X)] : Variance of Bernoulli

variable

» Heterosceasticity consistent standard errors need to be computed

* Advantanges of the linear probability model
 Easy estimation and interpretation
 Estimated effects and predictions often reasonably good in practice



Logit and Probit Models for Binary Response

* Disadvantages of the LPM for binary dependent variables
* Predictions sometimes outside the unit interval
* Partial effects of explanatory variables are constant

* Nonlinear models for binary response
* Response probability is a nonlinear function of explanat.
variables

P(y = 1|x) = G(Bo+pL1x1+- - -+ LBrxr) = G(x3)

\

Probability of a A cumulative distribution function Shorthand vector notation: the
»success” given 0 < G(z) < 1., The response vector of explanatory variables x
explanatory probability is thus a function of the also contains the constant of the

variables explanatory variables x. model.



Logit and Probit Models for Binary Response

e Choices for the link function

Probit: G(z) = ®P(2) = /z ¢(v)dv  (standard normal distribution)
@)

Logit: G(z) = A(z) = exp(z)/[1 + exp(z)] (logistic function)



Logit and Probit Models for Binary Response

TABLE 1 The Cumulative Standard Mormal Distribution Function, @{z) = Pr(Z " z)

Area = PriZ = &)

1
L
0 -

Second Decimal Value of x

z o 1 2 3 4 5 6 7 8 o
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Pr(Y =1) = Pr(Z < -0.8) = ®(-0.8) = 0.2119



Logit and Probit Models for Binary Response

Standard logistic density

.25

Area = Pr(Z <=-0.8)

15

.05

Pr(Y =1) =Pr(Z <-0.8) = = 0.31

1+e08

0> < = = = ©ac



Logit and Probit Models for Binary Response

Standard Logistic CDF and Standard Normal CDF

logistic @—=——-—- normal




Logit and Probit Models for Binary Response

* Interpretation of coefficients in Logit and Probit models

— g(x3)B; where g(z) = 9G(2)/9z > O
8:cj 1

How does the probability for y=1 change if
explanatory variable x; changes by one unit?

Discrete explanatory variables:

G [Bo + Brx1 + - - - + Bpilcy + 1 —G [Bo + Brz1 + - - - + Brickl

e e o e o o e e

R A

For example, explanatory variable x, increases by one unit.

* Partial effects are nonlinear and depend on the level of x !



Logit and Probit Models: Estimation

So far, we used OLS to estimate models

Logit and Probit models are nonlinear in parameters:
 Hence, in this case the OLS cannot be used

The method used to estimate Logit and Probit models is
Maximum Likelihood Estimation (MLE)

The MLE are the values of parameters that best describe the full
distribution of the data

* The likelihood function is the joint probability distribution of
the data, treated as a function of the unknown coefficients

* The MLE are the values of the coefficients that maximize the
likelihood function

* MLE’s are the parameter values “most likely” to have
produced the data



Logit and Probit Models for Binary Response

* Goodness-of-fit measures for Logit and Probit models

* Percent correctly predicted
._={1 if G(x;8) > .5 —

Y 0O otherwise

* Pseudo R-squared

R? =1 —log Lg/ log Ly <

e Correlation based measures
Corr(y;, y;), Corr(y;, G(x;83))

Individual i's outcome is predicted as
one if the probability for this event is
larger than .5, then percentage of
correctly predicted y=1 and y=0is
counted

Compare maximized log-likelihood of
the model with that of a model that
only contains a constant (and no
explanatory variables)

Look at correlation (or squared
correlation) between predictions or
predicted prob. and true values



Logit and Probit Models for Binary Response

* Reporting partial effects of explanatory variables

 The difficulty is that partial effects are not constant but
depend on x

« Partial effects at the average:

The partial effect of explanatory variable x; is
PEA. — T A . considered for an ,average individual® (this is
J g ( 6 )B J < problematic in the case of explanatory variables
such as gender)

« Average partial effects:

n The partial effect of explanatory variable x; is
T -1 AN S computed for each individual in the sample and
APEj —n Z g(xiﬁ)ﬁj € then averaged across all sample members
=1

1= (makes more sense)



Logit and Probit Models for Binary Response

* Example: Married women’s labor force participation

TABLE 17.1 LPM, Logit, and Probit Estimates of Labor Force Participation

Dependent Variable: inlf

__—The coefficients are not comparable across models

" Independent Variables LPM (OLS) Logit (MLE)  Probit (MLE) |
nwifeinc —.0034 —.021 =012
(.0015) (.008) (.005)
educ .038 221 .131
(.007) (.043) (.025)
exper :039 .206 {123
(.006) (.032) (.019)
exper’ —.00060 —.0032 —.0019
(.00018) (.0010) (.0006)
age —.016 —.088 —.053
(.002) (.015) (.008)
kidslt6 —.262 —1.443 —.868
(.032) (.204) (.119)
kidsge6 .013 .060 .036
(.013) (.075) (.043)
constant .586 425 .270
(.151) (.860) (.509)
Percentage correctly predicted 73.4 73.6 73.4
Log-likelihood value — —401.77 —401.30
Pseudo R-squared .264 .220 221
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Often, Logit estimated coefficients are 1.6 times Probit
estimated because g ,.,,(0)/gpropit(0) =~ 1/1.6

The biggest difference between the LPM and Logit/Probit is
that partial effects are nonconstant in Logit/Probit:

: i
1 1
1 1
1 1
| P(working|®, kidslt6 = 0) = .707 i
1

~ 1
| P(working|®, kidslt6 = 1) = .373 :
1

~ 1
iP(workingl:ﬁ, kidslt6 = 2) = .117 :
| |
! 1

(Larger decrease in probability for the first child)



