Econometrics

Anna Donina

Lecture 1

INTRODUCTORY ECONOMETRICS COURSE

- Lecturer: Anna Donina (Junior Researcher, CERGE-EI, Prague) anna.donina@gmail.com
- Lectures / Seminars: Friday, 14:00-15:50 / 16:00-17:50 (VT203)

Grading

- Quizzes/Home assignment: 40%
- Midterm exam: 30 \%
- Final Exam/Project: 30 \%
to pass the course, student has to get at least 20 points in the final exam and 50 points in total

Introductory econometrics course

Recommended literature:

- Studenmund, A. H., Using Econometrics: A Practical Guide
- Wooldridge, J. M., Introductory Econometrics: A Modern Approach
- Adkins, L., Using gretl for Principles of Econometrics

What is econometrics?

Tobeginning students, it may seem as if econometrics is an overly complex obstacle to an otherwise useful education. (. . .) To professionals in the field, econometrics is a fascinating set of techniques that allows the measurement and analysis of economic phenomena and the prediction of future economic trends.

Studenmund (Using Econometrics: A Practical Guide)

What is econometrics?

- Econometrics is a set of statistical tools and techniques for quantitative measurement of actual economic and business phenomena
- It attempts to

1. quantify economic reality
2. bridge the gap between the abstract world of economic theory and the real world of human activity

- It has three major uses:

1. describing economic reality
2. testing hypotheses about economic theory
3. forecasting future economic activity

EXAMPLE

- Consumer demand for a particular commodity can be thought of as a relationship between
- quantity demanded (Q)
- commodity's price (P)
- price of substitute good $\left(P_{s}\right)$
- disposable income (Y)
- Theoretical functionalrelationship:

$$
Q=f\left(P, P_{S}, Y\right)
$$

- Econometrics allows us to specify:

$$
Q=31.50-0.73 P+0.11 P_{s}+0.23 Y
$$

Lecture 1

Introduction, repetition of statisticalbackground

- probability theory
- statistical inference

Readings:

- Studenmund, A. H., Using Econometrics: A Practical Guide, Chapter 16
- Wooldridge, J. M., Introductory Econometrics: A Modern Approach, Appendix B and C

RANDOM VARIABLES

- Random variable X is a variable whose numerical value is determined by chance. It is a quantification of the outcome of a random phenomenon.
- Discrete random variable has a countable number of possible values

Example: the number of times that a coin will be flipped before a heads is obtained

- Continuous random variable can take on any value in an interval

Example: time until the first goal is scored in a football match

Discrete random variables

- Described by listing the possible values and the associated probability that it takes on each value
- Probability distribution of a variable X that can take values $x_{1}, x_{2}, x_{3}, \ldots$:

$$
\begin{aligned}
& P\left(X=x_{1}\right)=p_{1} \\
& P\left(X=x_{2}\right)=p_{2} \\
& P\left(X=x_{3}\right)=p_{3}
\end{aligned}
$$

- Cumulative distribution function (CDF):

$$
F_{X}(x)=P(X \leq x)=\sum_{i=1, x_{i} \leq x} P\left(X=x_{i}\right)
$$

SIX-SIDED DIE: PROBABILITY DISTRIBUTION FUNCTION

SIX-SIDED DIE: HISTOGRAM OF DATA (100 ROLLS)

SIX-SIDED DIE: HISTOGRAM OF DATA (1000 ROLLS)

CONTINUOUS RANDOM VARIABLES

- Probability density function $f_{X}(x)$ (PDF) describes the relative likelihood for the random variable X to take on a particular value x
- Cumulative distribution function (CDF):

$$
F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} f_{X}(t) \mathrm{d} t
$$

- Computational rule:

$$
P(X \geq x)=1-P(X \leq x)
$$

EXPECTED VALUE AND MEDIAN

- Expected value (mean):

Mean is the (long-run) average value of random variable Discrete variable

Continuous variable

$$
E[X]=\sum_{i=1} x_{i} P\left(X=x_{i}\right) \quad E[X]=\int_{-\infty}^{+\infty} x f_{X}(x) \mathrm{d} x
$$

Example: calculating mean of six-sided die

- Median : "the value in the middle"

EXERCISE 1

- A researcher is analyzing data on financial wealth of 100 professors at a small liberal arts college. The values of their wealth range from $\$ 400$ to $\$ 400,000$, with a mean of $\$ 40,000$, and a median of $\$ 25,000$.
- However, when entering these data into a statistical software package, the researcher mistakenly enters $\$ 4,000,000$ for the person with $\$ 400,000$ wealth.
- How much does this error affect the mean and median?

VARIANCE AND STANDARD DEVIATION

- Variance:

Measures the extent to which the values of a random variable are dispersed from the mean.
If values (outcomes) are far away from the mean, variance is high. If they are close to the mean, variance is low.

$$
\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-(E[X])^{2}
$$

- Standard deviation :

$$
\sigma_{X}=\sqrt{\operatorname{Var}[X]}
$$

Note: Outliers influence on variance/sd.

DANCING STATISTICS

Watch the video "Dancing statistics: Explaining the statistical concept of variance through dance":
$\frac{\text { https://www.youtube.com/watch?v=pGfwj4GrUlA\&list= }}{\text { PLEzw67WWDg82xKriFiOoixGpNLXK2GNs9\&index=4 }}$
Use the 'dancing' terminology to answer thesequestions:

1. How do we define variance?
2. How can we tell if variance is large or small?
3. What does it mean to evaluate variance within a set?
4. What does it mean to evaluate variance between sets?
5. What is the homogeneity of variance?
6. What is the heterogeneity of variance?

EXERCISE 2

- Which has a higher expected value and which has a higher standard deviation:
- a standard six-sided die or
- a four-sided die with the numbers 1 through 4 printed on the sides?
- Explain your reasoning, without doing any calculations, then verify, doing the calculations.

COVARIANCE, CORRELATION, INDEPENDENCE

- Covariance:
- How, on average, two random variables vary with one another.
- Do the two variables move in the same or opposite direction?
- Measures the amount of linear dependence between two variables.
$\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]$
- Correlation:

Similar concept to covariance, but easier to interpret. It has values between -1 and 1 .

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

Independence of variables

- Independence: X and Y are independent if the conditional probability distribution of X given the observed value of Y is the same as if the value of Y had not been observed.
- If X and Y are independent, then $\operatorname{Cov}(X, Y)=0(n o t$ the other way round in general)
- Dancing statistics: explaining the statistical concept of correlation through dance
https://www.youtube.com/watch?v=VFjaBh12C6s\&index=3\&
list=PLEzw67WWDg82xKriFiOoixGpNLXK2GNs9

COMPUTATIONAL RULES

$$
\begin{aligned}
E(a X+b) & =a E(X)+b \\
\operatorname{Var}(a X+b) & =a^{2} \operatorname{Var}(X) \\
\operatorname{Var}(X+Y) & =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(a X, b Y) & =\operatorname{Cov}(b Y, a X)=a b \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(X+Z, Y) & =\operatorname{Cov}(X, Y)+\operatorname{Cov}(Z, Y) \\
\operatorname{Cov}(X, X) & =\operatorname{Var}[X]
\end{aligned}
$$

RANDOM VECTORS

Sometimes, we deal with vectors of randomvariables

Example:

$$
\mathbf{X}=\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right)
$$

$$
E[\mathbf{X}]=\left(\begin{array}{c}
E\left[X_{1}\right] \\
E\left[X_{2}\right] \\
E\left[X_{3}\right]
\end{array}\right)
$$

Variance/covariancematrix:

$$
\operatorname{Var}[\mathbf{X}]=\left(\begin{array}{ccc}
\operatorname{Var}\left[X_{1}\right] & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Cov}\left(X_{1}, X_{3}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left[X_{2}\right] & \operatorname{Cov}\left(X_{2}, X_{3}\right) \\
\operatorname{Cov}\left(X_{3}, X_{1}\right) & \operatorname{Cov}\left(X_{3}, X_{2}\right) & \operatorname{Var}\left[X_{3}\right]
\end{array}\right)
$$

Standardized Random variables

- Standardization is used for better comparison of different variables
- Define Z to be the standardized variable of X :

$$
Z=\frac{X-\mu_{X}}{\sigma_{X}}
$$

- The standardized variable Z measures how many standard deviations X is below or above its mean
- No matter what are the expected value and variance of X, it always holds that

$$
E[Z]=0 \quad \text { and } \quad \operatorname{Var}[Z]=\sigma_{Z}^{2}=1
$$

Normal (GaUssian) DISTRIBUTION

Notation : $X \sim N\left(\mu, \sigma^{2}\right)$

- $E[X]=\mu$
- $\operatorname{Var}[\mathrm{X}]=\sigma^{2}$

Dancingstatistics
https://www.youtube.com/watch?v=dr1DynUzjq0 \&index=2\&
list=PLEzw67WWDg82xKriFiOoixGpNLXK2GNs9

OTHER DISTRIBUTIONS

ExERCISE 3

- The heights of U.S. females between age 25 and 34 are approximately normally distributed with a mean of 66 inches and a standard deviation of 2.5 inches.
- What fraction of U.S. female population in this age bracket is taller than 70 inches, the height of average adult U.S. male of this age?

EXERCISE 4

- A woman wrote to Dear Abby, saying that she had been pregnant for 310 days before giving birth.
- Completed pregnancies are normally distributed with a mean of 266 days and a standard deviation of 16 days.
- Use statistical tables to determine the probability that a completed pregnancy lasts
- at least 270 days
- at least 310 days

SUMMARY

- Today, we revised some concepts from statistics that we will use throughout our econometrics classes
- It was a very brief overview, serving only for information what students are expected to know already
- The focus was on properties of statistical distributions and on work with normal distribution tables

Next lecture

- We will go through terminology of sampling and estimation
- We will start with regression analysis and introduce the Ordinary Least Squares estimator

