MUNI ECON

Kvantifikace dopadů mergers

Oligopoly

Vězňovo dilema

		В	
		talk	silent
А	talk	A = 2, B = 2	A = 0, B = 5
	silent	A = 5, B = 0	A = 1, B = 1

		Coca-cola	
		advertise	not-advertise
Pepsi	advertise	P = 3, C = 3	P = 13, C = -2
	not-advertise	P = -2, C = 13	P = 8, C = 8

Cournout oligopoly

Cournout oligopoly

- Homogenous good
- Competing in quantities
- Preferences -> biggest profit
- Evaluating Cournout:
 - 1. Estimate residual demand
 - 2. Estimate marginal revenue given the other firm`s quantity
 - 3. Firm 1: *marginal revenue = marginal costs*
 - 4. Firm 2: *marginal revenue = marginal costs*
 - 5. Solve

Cournout oligopoly: merger control

- Hypothethical example: Two symmetric firms in the same market want to merge:
 - Inverse demand: P = a b * Q
 - Residual demand: $P = a b * (q_1 + q_2)$
 - Marginal costs of 1 firm: mc₁
 - Total revenue of 1 firm: $TR = [a b * (q_1 + q_2)] * q_1$
 - Marginal costs of 2 firm: mc₂
 - Total revenue of 2 firm: $TR = [a b * (q_1 + q_2)] * q_2$
 - Symmetry implies:
 - $Q = N * q_i$
 - $mc_i = mc_j$

Cournout oligopoly: pre-merger

$$q_1 = \frac{a - bq_2 - mc_1}{2b}$$
 and $q_2 = \frac{a - bq_1 - mc_2}{2b}$

Solving these two equations would give us Cournot-Nash equilibrium quantities,

$$q_i = \frac{a + \mathrm{mc}_j - 2\mathrm{mc}_i}{3b}.$$

Summing across firms we can calculate the total industry output:

$$Q=\frac{2a-\mathrm{mc}_1-\mathrm{mc}_2}{3b}.$$

And substituting total output into the inverse demand function implies that the market price will be

$$P=\frac{a+\mathrm{mc}_1+\mathrm{mc}_2}{3}.$$

Cournout oligopoly: post-merger

$$\max_{q_1,q_2} (P(q_1 + q_2) - \mathrm{mc}_1)(q_1 + q_2) = \max_Q (P(Q) - \mathrm{mc}_1)Q,$$

where the equality follows since the former optimization program only depends on the total output, $Q = q_1 + q_2$. The first-order condition for profit maximization is

$$P(Q) + P'(Q)Q = \mathrm{mc}_1.$$

Replacing the demand function and its derivative, we obtain the optimal monopoly quantity which will also depend on the demand parameters and the firm's costs

$$a - bQ - bQ = \mathrm{mc}_1$$

so that post-merger market output is

$$Q = \frac{a - \mathrm{mc}_1}{2b}$$
 and $P = \frac{a + \mathrm{mc}_1}{2}$.

8

Cournout oligopoly: reaction functions

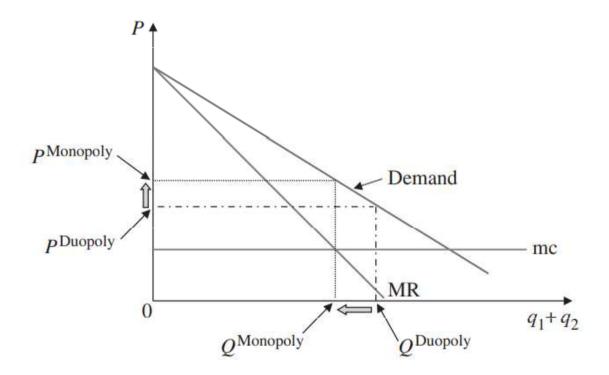
The reaction functions of firms in a market with N symmetric firms are

$$q_i = \frac{a - \mathrm{mc}}{b(N+1)}$$

and the market price will be

$$P = \frac{a + N \operatorname{mc}}{N + 1}.$$

Hypothetical merger: results



10

I hate maths, what should I do?

In symmetric markets, the reaction function is:

•
$$q_i = \frac{a - mc}{b(N+1)}$$

- In symmetric markets ($Q = N * q_i$), the total quantity is:
 - $Q = N \frac{a mc}{b(N+1)}$
- In symmetric markets ($Q = N * q_i$), the price is:

•
$$P = \frac{a + Nmc}{N+1}$$

Case study

- Three symmetric firms, with following demand function:
 - P = 1 Q, *i.e.* $P = 1 (q_1 + q_2 + q_3)$
 - mc = 0
 - Two firms want to merge
 - Calculate:
 - Pre and post-merger quantities
 - Pre and post-merger prices