Expert estimates Portfolio (return and risk)

Portfolio Theory Lecture 1

Luděk Benada

Department of Finance - 402, benada esf@gmail.com

February 29, 2016

Luděk Benada MPF APOT

Expert estimates Portfolio (return and risk)

Luděk Benada MPF APOT

• Estimates of market prices of assets at the time of realization

- N experts will provide estimates for all actives (considered for investment)
- In the calcultation is used the probability structure
- No dividend payment considered
- The price of asset(s) is know at the point of buying (selling)

- Estimates of market prices of assets at the time of realization
- N experts will provide estimates for all actives (considered for investment)
- In the calcultation is used the probability structure
- No dividend payment considered
- The price of asset(s) is know at the point of buying (selling)

- Estimates of market prices of assets at the time of realization
- N experts will provide estimates for all actives (considered for investment)
- In the calcultation is used the probability structure
- No dividend payment considered
- The price of asset(s) is know at the point of buying (selling)

- Estimates of market prices of assets at the time of realization
- N experts will provide estimates for all actives (considered for investment)
- In the calcultation is used the probability structure
- No dividend payment considered
- The price of asset(s) is know at the point of buying (selling)

- Estimates of market prices of assets at the time of realization
- N experts will provide estimates for all actives (considered for investment)
- In the calcultation is used the probability structure
- No dividend payment considered
- The price of asset(s) is know at the point of buying (selling)

• If the probability of price development is known

• The mean of the security could be determined

•
$$r_i = \sum_{i=1}^N r_i * p_i$$

•
$$\sigma_i = \sqrt{\sum_{i=1}^N (r_i - \overline{r})^2 * p_i}$$

- If the probability of price development is known
- The mean of the security could be determined

•
$$r_i = \sum_{i=1}^N r_i * p_i$$

•
$$\sigma_i = \sqrt{\sum_{i=1}^N (r_i - \overline{r})^2 * p_i}$$

- If the probability of price development is known
- The mean of the security could be determined

•
$$r_i = \sum_{i=1}^N r_i * p_i$$

•
$$\sigma_i = \sqrt{\sum_{i=1}^N (r_i - \overline{r})^2 * p_i}$$

- If the probability of price development is known
- The mean of the security could be determined

•
$$r_i = \sum_{i=1}^N r_i * p_i$$

• $\sigma_i = \sqrt{\sum_{i=1}^N (r_i - \overline{r})^2 * p_i}$

- If the probability of price development is known
- The mean of the security could be determined

•
$$r_i = \sum_{i=1}^N r_i * p_i$$

•
$$\sigma_i = \sqrt{\sum_{i=1}^N (r_i - \overline{r})^2 * p_i}$$

• *P_{it}*...Market price of an asset in the point of portfolio formation

- *N_{ij}*...The number of total number of estimates for the future price (of i-th assets, done by j-th expert)
- *N_{ij}*... The probability according of j-th expert's estimates of the return during the period
- In accordance with the condition: $\sum_{i=1}^{N} p_{ijk} = 1$

• ... then must be applied
$$p_{ij} = \frac{1}{N_e} * \sum_{j=1}^{N_e} p_{ijk}$$

•
$$r_{ijk} = \frac{P_{it+n} - P_{it}}{P_{it}}$$

- *P*_{it}...Market price of an asset in the point of portfolio formation
- N_{ij}...The number of total number of estimates for the future price (of i-th assets, done by j-th expert)
- *N_{ij}*... The probability according of j-th expert's estimates of the return during the period
- In accordance with the condition: $\sum_{i=1}^{N} p_{ijk} = 1$

$$ullet$$
 ... then must be applied $p_{ij}=rac{1}{N_e}*\sum_{j=1}^{N_e}p_{ijk}$

•
$$r_{ijk} = \frac{P_{it+n} - P_{it}}{P_{it}}$$

- *P*_{it}...Market price of an asset in the point of portfolio formation
- N_{ij}...The number of total number of estimates for the future price (of i-th assets, done by j-th expert)
- *N_{ij}*... The probability according of j-th expert's estimates of the return during the period
- In accordance with the condition: $\sum_{i=1}^{N} p_{ijk} = 1$
- ... then must be applied $p_{ij} = \frac{1}{N_e} * \sum_{j=1}^{N_e} p_{ijk}$

•
$$r_{ijk} = \frac{P_{it+n} - P_{it}}{P_{it}}$$

- *P*_{it}...Market price of an asset in the point of portfolio formation
- N_{ij}...The number of total number of estimates for the future price (of i-th assets, done by j-th expert)
- *N_{ij}*... The probability according of j-th expert's estimates of the return during the period
- In accordance with the condition: $\sum_{i=1}^{N} p_{ijk} = 1$
- ... then must be applied $p_{ij} = \frac{1}{N_e} * \sum_{j=1}^{N_e} p_{ijk}$

•
$$r_{ijk} = \frac{P_{it+n} - P_{it}}{P_{it}}$$

• $r_{ijk} = \frac{P_{it+n} - P_{it}}{P_{it}}$

- *P*_{it}...Market price of an asset in the point of portfolio formation
- N_{ij}...The number of total number of estimates for the future price (of i-th assets, done by j-th expert)
- *N_{ij}*... The probability according of j-th expert's estimates of the return during the period
- In accordance with the condition: $\sum_{i=1}^{N} p_{ijk} = 1$
- ullet ... then must be applied $p_{ij}=rac{1}{N_e}*\sum_{j=1}^{N_e}p_{ijk}$

- *P*_{it}...Market price of an asset in the point of portfolio formation
- N_{ij}...The number of total number of estimates for the future price (of i-th assets, done by j-th expert)
- *N_{ij}*... The probability according of j-th expert's estimates of the return during the period
- In accordance with the condition: $\sum_{i=1}^{N} p_{ijk} = 1$
- ... then must be applied $p_{ij} = \frac{1}{N_e} * \sum_{j=1}^{N_e} p_{ijk}$

•
$$r_{ijk} = \frac{P_{it+n} - P_{it}}{P_{it}}$$

Return

- Normalization of the probability
- The return of portfolio
- The risk of portfolio

Return

• Normalization of the probability

- The return of portfolio
- The risk of portfolio

Return

- Normalization of the probability
- The return of portfolio
- The risk of portfolio

- Return
- Normalization of the probability
- The return of portfolio
- The risk of portfolio

• A portfolio based of n assets

- i-th asset has wiand ri
- ...thus the return of this portfolio will be: $r_p = \sum_{i=1}^{N} w_i * r_i$
- if the expected return of i-th asset will be \bar{r}_i
- ...thus the expected return of the portfolio will be: $\bar{r}_p = \sum_{i=1}^N w_i * \bar{r}_{ii}$
- under condition: $\sum_{i=1}^{n} = 1$
- Note: It is posible to have w_i < 0, then sale short is executed

- A portfolio based of n assets
- i-th asset has w_iand r_i
- ...thus the return of this portfolio will be: $r_p = \sum_{i=1}^{N} w_i * r_i$
- if the expected return of i-th asset will be \bar{r}_i
- ...thus the expected return of the portfolio will be: $\bar{r}_p = \sum_{i=1}^N w_i * \bar{r}_{ii}$
- under condition: $\sum_{i=1}^n = 1$
- Note: It is posible to have w_i < 0, then sale short is executed

- A portfolio based of n assets
- i-th asset has w_iand r_i
- ...thus the return of this portfolio will be: $r_p = \sum_{i=1}^N w_i * r_i$
- if the expected return of i-th asset will be \bar{r}_i
- ...thus the expected return of the portfolio will be: $\bar{r}_{p} = \sum_{i=1}^{N} w_{i} * \bar{r}_{ii}$
- under condition: $\sum_{i=1}^n = 1$
- Note: It is posible to have w_i < 0, then sale short is executed</p>

- A portfolio based of n assets
- i-th asset has wiand ri
- ...thus the return of this portfolio will be: $r_{\rho} = \sum_{i=1}^{N} w_i * r_i$
- if the expected return of i-th asset will be \bar{r}_i
- ...thus the expected return of the portfolio will be: $\bar{r}_p = \sum_{i=1}^N w_i * \bar{r}_{ii}$
- under condition: $\sum_{i=1}^{n} = 1$
- Note: It is posible to have w_i < 0, then sale short is executed

- A portfolio based of n assets
- i-th asset has wiand ri
- ...thus the return of this portfolio will be: $r_p = \sum_{i=1}^N w_i * r_i$
- if the expected return of i-th asset will be \bar{r}_i
- ...thus the expected return of the portfolio will be: $\bar{r}_p = \sum_{i=1}^{N} w_i * \bar{r}_{ii}$
- under condition: $\sum_{i=1}^{n} = 1$
- Note: It is posible to have w_i < 0, then sale short is executed</p>

- A portfolio based of n assets
- i-th asset has wiand ri
- ...thus the return of this portfolio will be: $r_p = \sum_{i=1}^N w_i * r_i$
- if the expected return of i-th asset will be \bar{r}_i
- ...thus the expected return of the portfolio will be: $\bar{r}_{p} = \sum_{i=1}^{N} w_{i} * \bar{r}_{ii}$
- under condition: $\sum_{i=1}^n = 1$
- Note: It is posible to have w_i < 0, then sale short is executed

- A portfolio based of n assets
- i-th asset has wiand ri
- ...thus the return of this portfolio will be: $r_p = \sum_{i=1}^N w_i * r_i$
- if the expected return of i-th asset will be \bar{r}_i
- ...thus the expected return of the portfolio will be: $\bar{r}_{p} = \sum_{i=1}^{N} w_{i} * \bar{r}_{ii}$
- under condition: $\sum_{i=1}^n = 1$
- Note: It is posible to have $w_i < 0$, then sale short is executed

•
$$\sigma_{\rho} = \sqrt{D(X)} = \sqrt{\sum_{i=1}^{N} \sum_{i=1}^{N} w_i * w_j * \sigma_{ij}} = \sqrt{w V w}$$

•
$$\sigma_{\rho} = \sum_{i=1}^{N} w_i^2 * \sigma_i^2 + \sum_{i=1}^{N} \sum_{j=1/i \neq j}^{N} w_i * w_j * \sigma_{ij}$$

• A special case (equal weights)

•
$$\sigma_p^2 = \frac{1}{N} \sum_{i=1}^N \frac{\sigma_i^2}{N} + \frac{N-1}{N} \sum_{i=1}^N \sum_{j=1/i \neq j}^N \frac{\sigma_{ij}}{N*(N-1)} \Rightarrow \sigma_p^2 = \frac{1}{N} * \bar{\sigma}_i^2 + \frac{N-1}{N} * \sigma_{ij}$$

•
$$\sigma_p = \sqrt{D(X)} = \sqrt{\sum_{i=1}^N \sum_{i=1}^N w_i * w_j * \sigma_{ij}} = \sqrt{w' V w}$$

• $\sigma_p = \sum_{i=1}^N w_i^2 * \sigma_i^2 + \sum_{i=1}^N \sum_{j=1/i \neq j}^N w_i * w_j * \sigma_{ij}$
• A special case (equal weights)
• $\sigma_p^2 = \frac{1}{N} \sum_{i=1}^N \frac{\sigma_i^2}{N} + \frac{N-1}{N} \sum_{i=1}^N \sum_{j=1/i \neq j}^N \frac{\sigma_{ij}}{N * (N-1)} \Rightarrow \sigma_p^2 = \frac{1}{N} * \overline{\sigma}_i^2 + \frac{N-1}{N} * \sigma_{ij}$

Luděk Benada MPF APOT

æ

•
$$\sigma_p = \sqrt{D(X)} = \sqrt{\sum_{i=1}^N \sum_{i=1}^N w_i * w_j * \sigma_{ij}} = \sqrt{w' V w}$$

•
$$\sigma_p = \sum_{i=1}^{N} w_i^2 * \sigma_i^2 + \sum_{i=1}^{N} \sum_{j=1/i \neq j}^{N} w_i * w_j * \sigma_{ij}$$

• A special case (equal weights)

• $\sigma_{\rho}^2 = \frac{1}{N} \sum_{i=1}^{N} \frac{\sigma_i^2}{N} + \frac{N-1}{N} \sum_{i=1}^{N} \sum_{j=1/i \neq j}^{N} \frac{\sigma_{ij}}{N*(N-1)} \Rightarrow \sigma_{\rho}^2 = \frac{1}{N} * \overline{\sigma_i}^2 + \frac{N-1}{N} * \sigma_{ij}$

•
$$\sigma_p = \sqrt{D(X)} = \sqrt{\sum_{i=1}^N \sum_{i=1}^N w_i * w_j * \sigma_{ij}} = \sqrt{w'Vw}$$

• $\sigma_p = \sum_{i=1}^N w_i^2 * \sigma_i^2 + \sum_{i=1}^N \sum_{j=1/i\neq j}^N w_i * w_j * \sigma_{ij}$
• A special case (equal weights)
• $\sigma_p^2 = \frac{1}{N} \sum_{i=1}^N \frac{\sigma_i^2}{N} + \frac{N-1}{N} \sum_{i=1}^N \sum_{j=1/i\neq j}^N \frac{\sigma_{ij}}{N*(N-1)} \Rightarrow \sigma_p^2 = \frac{1}{N} * \overline{\sigma_i}^2 + \frac{N-1}{N} * \sigma_{ij}$

Luděk Benada MPF APOT

æ

Comment to risk

- The contribution of a partial risk to the total risk of the portfolio is decreasing to zero with growing number of securities
- The contribution to the portfolio risk flowing from covariance is with the growing number of assets approaching an average covariance
- The individual risk of securities could be removed completely...

Comment to risk

- The contribution of a partial risk to the total risk of the portfolio is decreasing to zero with growing number of securities
- The contribution to the portfolio risk flowing from covariance is with the growing number of assets approaching an average covariance
- The individual risk of securities could be removed completely...

Comment to risk

- The contribution of a partial risk to the total risk of the portfolio is decreasing to zero with growing number of securities
- The contribution to the portfolio risk flowing from covariance is with the growing number of assets approaching an average covariance
- The individual risk of securities could be removed completely...