Portfolio Theory Lecture 3

Luděk Benada

Department of Finance - 402, benada esf@gmail.com

March 7, 2016

Luděk Benada MPF APOT

< 口 > < 同

э

Forms of admissible portfolios

• The model of Markowitz

- The wealth is defined
- Time period
- Problem of portfolio selection
- There are two extrems for a portfolio construction:
 - Wealth (assets) can not be devided
 - Wealth (assets) can be arbitrarily devided

Forms of admissible portfolios

• The model of Markowitz

- The wealth is defined
- Time period
- Problem of portfolio selection
- There are two extrems for a portfolio construction:
 - Wealth (assets) can not be devided
 - Wealth (assets) can be arbitrarily devided

Forms of admissible portfolios

• The model of Markowitz

- The wealth is defined
- Time period
- Problem of portfolio selection
- There are two extrems for a portfolio construction:
 - Wealth (assets) can not be devided
 - Wealth (assets) can be arbitrarily devided

- The model of Markowitz
 - The wealth is defined
 - Time period
 - Problem of portfolio selection
- There are two extrems for a portfolio construction:
 - Wealth (assets) can not be devided
 - Wealth (assets) can be arbitrarily devided

- The model of Markowitz
 - The wealth is defined
 - Time period
 - Problem of portfolio selection
- There are two extrems for a portfolio construction:
 - Wealth (assets) can not be devided
 - Wealth (assets) can be arbitrarily devided

- The model of Markowitz
 - The wealth is defined
 - Time period
 - Problem of portfolio selection
- There are two extrems for a portfolio construction:
 - Wealth (assets) can not be devided
 - Wealth (assets) can be arbitrarily devided

- The model of Markowitz
 - The wealth is defined
 - Time period
 - Problem of portfolio selection
- There are two extrems for a portfolio construction:
 - Wealth (assets) can not be devided
 - Wealth (assets) can be arbitrarily devided

Indivisible assets

• The set of admissible portfolios will consist of only a finite set

• The options by portfolio creation are limited to "pseudo-short sell"

Indivisible assets

- The set of admissible portfolios will consist of only a finite set
- The options by portfolio creation are limited to "pseudo-short sell"

- Return of portfolio: $r_p = \sum_{i=1}^{N} w_i * r_i$
- The weights in portfolio: $w_1 + w_2 = 1$
- Expected return of portfolio: $\bar{r}_p = w_1 * \bar{r}_1 + w_2 * \bar{r}_2$
- Covariance of two assets: $\sigma_{12} = \sigma_1 * \sigma_2 *
 ho_{12}$
- Risk of portfolio:

- Return of portfolio: $r_p = \sum_{i=1}^{N} w_i * r_i$
- The weights in portfolio: $w_1 + w_2 = 1$
- Expected return of portfolio: $\bar{r}_p = w_1 * \bar{r}_1 + w_2 * \bar{r}_2$
- Covariance of two assets: $\sigma_{12} = \sigma_1 * \sigma_2 *
 ho_{12}$
- Risk of portfolio:

- Return of portfolio: $r_p = \sum_{i=1}^{N} w_i * r_i$
- The weights in portfolio: $w_1 + w_2 = 1$
- Expected return of portfolio: $\bar{r}_p = w_1 * \bar{r}_1 + w_2 * \bar{r}_2$
- Covariance of two assets: $\sigma_{12} = \sigma_1 * \sigma_2 *
 ho_{12}$
- Risk of portfolio:

- Return of portfolio: $r_p = \sum_{i=1}^{N} w_i * r_i$
- The weights in portfolio: $w_1 + w_2 = 1$
- Expected return of portfolio: $\bar{r}_p = w_1 * \bar{r}_1 + w_2 * \bar{r}_2$
- Covariance of two assets: $\sigma_{12} = \sigma_1 * \sigma_2 *
 ho_{12}$
- Risk of portfolio:

- Return of portfolio: $r_p = \sum_{i=1}^{N} w_i * r_i$
- The weights in portfolio: $w_1 + w_2 = 1$
- Expected return of portfolio: $\bar{r}_p = w_1 * \bar{r}_1 + w_2 * \bar{r}_2$
- Covariance of two assets: $\sigma_{12} = \sigma_1 * \sigma_2 *
 ho_{12}$
- Risk of portfolio:

$$\sigma_{
ho} = \sqrt{w_1^2 * \sigma_1^2 + (1 - w_1)^2 * \sigma_2^2 + 2 * w_1 * (1 - w_1) * \sigma_{12}}$$

Two risky assets - $\sigma_{12}=1$

- Assumptions: $w_1, w_2 \geq 0, r_1 < r_2 \wedge \sigma_1 < \sigma_2$
- Return of portfolio...
- Risk of expected return: $\sigma_p = w_1 * \sigma_1 + (1 w_1) * \sigma_2$
- The minimalization of the risk coulde be reached:

• $w_1 = 1!$

Two risky assets - $\sigma_{12}=1$

- Assumptions: $w_1, w_2 \geq 0, r_1 < r_2 \wedge \sigma_1 < \sigma_2$
- Return of portfolio...
- Risk of expected return: $\sigma_p = w_1 * \sigma_1 + (1 w_1) * \sigma_2$
- The minimalization of the risk coulde be reached:

• $w_1 = 1!$

- Assumptions: $w_1, w_2 \geq 0, r_1 < r_2 \wedge \sigma_1 < \sigma_2$
- Return of portfolio...
- Risk of expected return: $\sigma_p = w_1 * \sigma_1 + (1 w_1) * \sigma_2$
- The minimalization of the risk coulde be reached:
 w₁ = 1!

Two risky assets - $\sigma_{12}=1$

- Assumptions: $w_1, w_2 \geq 0, r_1 < r_2 \wedge \sigma_1 < \sigma_2$
- Return of portfolio...
- Risk of expected return: $\sigma_{p} = w_{1} * \sigma_{1} + (1 w_{1}) * \sigma_{2}$
- The minimalization of the risk coulde be reached:

• $w_1 = 1!$

- Assumptions: $w_1, w_2 \geq 0, r_1 < r_2 \wedge \sigma_1 < \sigma_2$
- Return of portfolio...
- Risk of expected return: $\sigma_{p} = w_{1} * \sigma_{1} + (1 w_{1}) * \sigma_{2}$
- The minimalization of the risk coulde be reached:

•
$$w_1 = 1!$$

- Assumptions: $w_1, w_2 \geq 0, r_1 < r_2 \wedge \sigma_1 < \sigma_2$
- Return of portfolio...
- Risk of expected return: $\sigma_p = w_1 * \sigma_1 (1 w_1) * \sigma_2$
- The minimalization of the risk coulde be reached:

- Assumptions: $w_1, w_2 \geq 0, r_1 < r_2 \wedge \sigma_1 < \sigma_2$
- Return of portfolio...
- Risk of expected return: $\sigma_{
 ho} = w_1 * \sigma_1 (1 w_1) * \sigma_2$
- The minimalization of the risk coulde be reached:

- Assumptions: $w_1, w_2 \geq 0, r_1 < r_2 \wedge \sigma_1 < \sigma_2$
- Return of portfolio...
- Risk of expected return: $\sigma_{p} = w_{1} * \sigma_{1} (1 w_{1}) * \sigma_{2}$
- The minimalization of the risk coulde be reached:

- Assumptions: $w_1, w_2 \geq 0, r_1 < r_2 \wedge \sigma_1 < \sigma_2$
- Return of portfolio...
- Risk of expected return: $\sigma_{
 ho} = w_1 * \sigma_1 (1 w_1) * \sigma_2$
- The minimalization of the risk coulde be reached:

- Assumptions: $w_1, w_2 \geq 0, r_1 < r_2 \wedge \sigma_1 < \sigma_2$
- Return of portfolio...
- Risk of expected return: $\sigma_{
 ho} = w_1 * \sigma_1 (1 w_1) * \sigma_2$
- The minimalization of the risk coulde be reached:

•
$$w_1 = \frac{\sigma_2}{\sigma_1 + \sigma_2}!$$

- Assumptions: $w_1, w_2 \geq 0, r_1 < r_2 \wedge \sigma_1 < \sigma_2$
- Return of portfolio...
- Risk of expected return: $\sigma_{p} = \sqrt{w_{1}^{2} * \sigma_{1}^{2} + (1 w_{1})^{2} * \sigma_{2}^{2}}$
- The minimalization of the risk coulde be reached:

- Assumptions: $w_1, w_2 \geq 0, r_1 < r_2 \wedge \sigma_1 < \sigma_2$
- Return of portfolio...
- Risk of expected return: $\sigma_{
 m
 ho}=\sqrt{w_1^2*\sigma_1^2+(1-w_1)^2*\sigma_2^2}$
- The minimalization of the risk coulde be reached:

- Assumptions: $w_1, w_2 \geq 0, r_1 < r_2 \wedge \sigma_1 < \sigma_2$
- Return of portfolio...
- Risk of expected return: $\sigma_{
 ho}=\sqrt{w_1^2*\sigma_1^2+(1-w_1)^2*\sigma_2^2}$
- The minimalization of the risk coulde be reached:

Two risky assets - $\sigma_{12}=0$

- Assumptions: $w_1, w_2 \geq 0, r_1 < r_2 \land \sigma_1 < \sigma_2$
- Return of portfolio...

• $w_1 = \frac{\sigma_2^2}{\sigma_2^2 + \sigma_2^2}!$

- Risk of expected return: $\sigma_{
 ho}=\sqrt{w_1^2*\sigma_1^2+(1-w_1)^2*\sigma_2^2}$
- The minimalization of the risk coulde be reached:

- Assumptions: $w_1, w_2 \geq 0, r_1 < r_2 \land \sigma_1 < \sigma_2$
- Return of portfolio...
- Risk of expected return: $\sigma_{
 ho}=\sqrt{w_1^2*\sigma_1^2+(1-w_1)^2*\sigma_2^2}$
- The minimalization of the risk coulde be reached:

•
$$w_1 = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}!$$

More components portfolio

• Assumptions: $w_1, w_2, w_3 \ge 0$

• . . .

• . . .

æ

< D > < P > < P > < P >

More components portfolio

• Assumptions: $w_1, w_2, w_3 \ge 0$

• ...

• . . .

æ

< D > < P > < P > < P >

More components portfolio

• Assumptions: $w_1, w_2, w_3 \ge 0$

- ...
- ...

æ

< ロ > < 同 > < 回 > <

- Assumptions: $w_1, w_2 \ge 0$
- Return of portfolio...
- Risk of expected return: $\sigma_{
 ho}=\sqrt{w_1^2*\sigma_1^2}$
- The minimalization of the risk coulde be reached:
 - ?

- Assumptions: $w_1, w_2 \ge 0$
- Return of portfolio...
- Risk of expected return: $\sigma_{\!
 ho} = \sqrt{w_1^2 st \sigma_1^2}$
- The minimalization of the risk coulde be reached:

- Assumptions: $w_1, w_2 \ge 0$
- Return of portfolio...
- Risk of expected return: $\sigma_{
 m
 ho} = \sqrt{w_1^2 * \sigma_1^2}$
- The minimalization of the risk coulde be reached:
 7

- Assumptions: $w_1, w_2 \ge 0$
- Return of portfolio...
- Risk of expected return: $\sigma_{
 m
 ho} = \sqrt{w_1^2 * \sigma_1^2}$
- The minimalization of the risk coulde be reached:

- Assumptions: $w_1, w_2 \ge 0$
- Return of portfolio...
- Risk of expected return: $\sigma_{
 m
 ho} = \sqrt{w_1^2 * \sigma_1^2}$
- The minimalization of the risk coulde be reached:
 - ?

Indifference curves of investor

• Map of investor 's ICs

- An IC represents all desirable combinations of portfolio for an investor
- Properties of ICs:
 - All portfolios on an IC are equally desirable
 - A rational investor prefers portfolios on higher ICs

Indifference curves of investor

- Map of investor 's ICs
- An IC represents all desirable combinations of portfolio for an investor
- Properties of ICs:
 - All portfolios on an IC are equally desirable
 - A rational investor prefers portfolios on higher ICs

Indifference curves of investor

- Map of investor 's ICs
- An IC represents all desirable combinations of portfolio for an investor
- Properties of ICs:
 - All portfolios on an IC are equally desirable
 - A rational investor prefers portfolios on higher ICs

The form of ICs

• The ICs are convex:

- Unsaturation (return)
- Risk aversion
- All investors have some kind of resistance to the risk, but the individual aversion is unique

The form of ICs

• The ICs are convex:

- Unsaturation (return)
- Risk aversion
- All investors have some kind of resistance to the risk, but the individual aversion is unique

The form of ICs

- The ICs are convex:
 - Unsaturation (return)
 - Risk aversion
- All investors have some kind of resistance to the risk, but the individual aversion is unique

The form of ICs

- The ICs are convex:
 - Unsaturation (return)
 - Risk aversion
- All investors have some kind of resistance to the risk, but the individual aversion is unique

Princip of asset dominance

• There are such assets A, B, where: $r_a > r_b \wedge \sigma_a < \sigma_b$

• Thus we say that A dominates B

Princip of asset dominance

- There are such assets A, B, where: $r_a > r_b \wedge \sigma_a < \sigma_b$
- Thus we say that A dominates B

Definition of effective set

- There is no set in between the admissible portfolios, that can has with the same or higher return less risk
- There is no set in between the admissible portfolios, that can has with the same or lower risk higher return

Definition of effective set

- There is no set in between the admissible portfolios, that can has with the same or higher return less risk
- There is no set in between the admissible portfolios, that can has with the same or lower risk higher return

The form of efficient set

• Sharpe 's set of efficient portfolios

- For chosen $r_p \Rightarrow \min \sigma_p$
- Markowitz's set of efficient portfolios
 - For chosen $\sigma_p \Rightarrow$ max r_p
- The solution for an optimal portfolio is ESPs $\land \mathsf{ICs}$

The form of efficient set

• Sharpe's set of efficient portfolios

- For chosen $r_p \Rightarrow \min \sigma_p$
- Markowitz's set of efficient portfolios

• For chosen $\sigma_p \Rightarrow$ max r_p

• The solution for an optimal portfolio is ESPs $\wedge \mathsf{ICs}$

The form of efficient set

- Sharpe's set of efficient portfolios
 - For chosen $r_p \Rightarrow \min \sigma_p$
- Markowitz's set of efficient portfolios
 - For chosen $\sigma_p \Rightarrow \max r_p$
- The solution for an optimal portfolio is ESPs $\land \mathsf{ICs}$

The form of efficient set

- Sharpe's set of efficient portfolios
 - For chosen $r_p \Rightarrow \min \sigma_p$
- Markowitz's set of efficient portfolios
 - For chosen $\sigma_p \Rightarrow \max r_p$
- The solution for an optimal portfolio is ESPs $\land \mathsf{ICs}$

The form of efficient set

- Sharpe's set of efficient portfolios
 - For chosen $r_p \Rightarrow \min \sigma_p$
- Markowitz's set of efficient portfolios
 - For chosen $\sigma_p \Rightarrow \max r_p$
- The solution for an optimal portfolio is ESPs ∧ICs