Portfolio Theory Lecture 5

Luděk Benada

Department of Finance - 402, benada.esf@gmail.com

March 21, 2016

Luděk Benada MPF APOT

2 Enlargement of portfolio deversification

Luděk Benada MPF APOT

Risky and Risk free Asset

• r_f... treasury bills, deposits at a bank

- Model example (r_i, r_f, r_p)
- Return and risk
- Graphycal representation

Risky and Risk free Asset

- r_f... treasury bills, deposits at a bank
- Model example (r_i, r_f, r_p)
- Return and risk
- Graphycal representation

Risky and Risk free Asset

- r_f... treasury bills, deposits at a bank
- Model example (r_i, r_f, r_p)
- Return and risk
- Graphycal representation

Risky and Risk free Asset

- r_f... treasury bills, deposits at a bank
- Model example (r_i, r_f, r_p)
- Return and risk
- Graphycal representation

\bullet All combination of risky and risk free asset $\Rightarrow \mathsf{a}$ line

• The mean of the security could be determined

•
$$r_p = r_f + \left(\frac{\bar{r}_A - r_f}{\sigma_A}\right) \sigma_p$$

- The impact on the permissible and effective set (EPF)
- Which line to choose?

- \bullet All combination of risky and risk free asset $\Rightarrow \mathsf{a}$ line
- The mean of the security could be determined

•
$$r_p = r_f + \left(\frac{\bar{r}_A - r_f}{\sigma_A}\right) \sigma_p$$

- The impact on the permissible and effective set (EPF)
- Which line to choose?

- \bullet All combination of risky and risk free asset $\Rightarrow \mathsf{a}$ line
- The mean of the security could be determined

•
$$r_p = r_f + \left(\frac{\bar{r}_A - r_f}{\sigma_A}\right) \sigma_p$$

- The impact on the permissible and effective set (EPF)
- Which line to choose?

- \bullet All combination of risky and risk free asset $\Rightarrow \mathsf{a}$ line
- The mean of the security could be determined

•
$$r_p = r_f + \left(\frac{\bar{r}_A - r_f}{\sigma_A}\right) \sigma_p$$

• The impact on the permissible and effective set (EPF)

• Which line to choose?

- \bullet All combination of risky and risk free asset $\Rightarrow \mathsf{a}$ line
- The mean of the security could be determined

•
$$r_p = r_f + \left(\frac{\bar{r}_A - r_f}{\sigma_A}\right) \sigma_p$$

- The impact on the permissible and effective set (EPF)
- Which line to choose?

• A part of our fund to $r_f \Rightarrow$ borrow sources to someone

- We can invest more than we own ...we must borrow
- The boundary between lending and borrowing represents the situation when all funds are invested in *r_i*
- In accordance with the condition: $\sum_{i=1}^{N} p_{ijk} = 1$
- The hypothetical shape of EPF and the real shape of EPF

- A part of our fund to $r_f \Rightarrow$ borrow sources to someone
- We can invest more than we ownwe must borrow
- The boundary between lending and borrowing represents the situation when all funds are invested in *r_i*
- In accordance with the condition: $\sum_{i=1}^{N} p_{ijk} = 1$
- The hypothetical shape of EPF and the real shape of EPF

- A part of our fund to $r_f \Rightarrow$ borrow sources to someone
- We can invest more than we own ...we must borrow
- The boundary between lending and borrowing represents the situation when all funds are invested in *r_i*
- In accordance with the condition: $\sum_{i=1}^{N} p_{ijk} = 1!$
- The hypothetical shape of EPF and the real shape of EPF

- A part of our fund to $r_f \Rightarrow$ borrow sources to someone
- We can invest more than we own ...we must borrow
- The boundary between lending and borrowing represents the situation when all funds are invested in *r_i*
- In accordance with the condition: $\sum_{i=1}^{N} p_{ijk} = 1$
- The hypothetical shape of EPF and the real shape of EPF

- A part of our fund to $r_f \Rightarrow$ borrow sources to someone
- We can invest more than we own ...we must borrow
- The boundary between lending and borrowing represents the situation when all funds are invested in *r_i*
- In accordance with the condition: $\sum_{i=1}^{N} p_{ijk} = 1$
- The hypothetical shape of EPF and the real shape of EPF

Finding a portfolio with respect to r_f

- The Short Sell is allowed and there is r_f
- The Short Sell is allowed, but there is not r_f
- The Short Sell is not allowed and there is r_f
- There is neither SS allowed, nor rf exists

Finding a portfolio with respect to r_f

- The Short Sell is allowed and there is r_f
- The Short Sell is allowed, but there is not r_f
- The Short Sell is not allowed and there is r_f
- There is neither SS allowed, nor rf exists

Finding a portfolio with respect to r_f

- The Short Sell is allowed and there is r_f
- The Short Sell is allowed, but there is not r_f
- The Short Sell is not allowed and there is r_f
- There is neither SS allowed, nor rf exists

Finding a portfolio with respect to r_f

• Four possible scenarious:

- The Short Sell is allowed and there is r_f
- The Short Sell is allowed, but there is not r_f
- The Short Sell is not allowed and there is r_f

• There is neither SS allowed, nor r_f exists

Finding a portfolio with respect to r_f

- The Short Sell is allowed and there is r_f
- The Short Sell is allowed, but there is not r_f
- The Short Sell is not allowed and there is r_f
- There is neither SS allowed, nor r_f exists

Short Sell allowed with existance of r_f

• Maximalization of an objective function with restrictions

- The objective function is tg of the angle (r_f, T)
- The restrictions are weights ...
- $f(\overrightarrow{X}) = \frac{\overline{r_p r_f}}{\sigma_p}$

Short Sell allowed with existance of r_f

- Maximalization of an objective function with restrictions
- The objective function is tg of the angle (r_f, T)
- The restrictions are weights
- $f(\overrightarrow{X}) = \frac{\overline{r_p} r_f}{\sigma_p}$

Short Sell allowed with existance of r_f

- Maximalization of an objective function with restrictions
- The objective function is tg of the angle (r_f, T)
- The restrictions are weights ...

• $f(\overrightarrow{X}) = \frac{\overline{r_p} - r_f}{\sigma_p}$

Short Sell allowed with existance of r_f

- Maximalization of an objective function with restrictions
- The objective function is tg of the angle (r_f, T)
- The restrictions are weights ...

•
$$f(\overrightarrow{X}) = \frac{\overline{r_p - r_f}}{\sigma_p}$$

• Meaning of diversification

- The Central Limit Theorem ...
- A portfolio of N assets created with same weights:
 - r_p = ¹/_N Σ^N_{i=1} w_i * r_i
 Variance of portfolio on conditions (N(μ, σ², σ_{i,j} = 0, N → ∞) ⇒0
- If the distribution deviates from gaussian, then the mean-variance approach exhibits shortcomings

- Meaning of diversification
- The Central Limit Theorem ...
- A portfolio of N assets created with same weights:

r_p = ¹/_N Σ^N_{i=1} w_i * r_i
 Variance of portfolio on conditions (N(μ, σ², σ_{i,j} = 0, N → ∞) ⇒0

 If the distribution deviates from gaussian, then the mean-variance approach exhibits shortcomings

- Meaning of diversification
- The Central Limit Theorem ...
- A portfolio of N assets created with same weights:

•
$$r_p = \frac{1}{N} \sum_{i=1}^{N} w_i * r_i$$

- Variance of portfolio on conditions $(N(\mu, \sigma^2, \sigma_{i,j} = 0, N \rightarrow \infty) \Rightarrow 0$
- If the distribution deviates from gaussian, then the mean-variance approach exhibits shortcomings

- Meaning of diversification
- The Central Limit Theorem ...
- A portfolio of N assets created with same weights:

•
$$r_p = \frac{1}{N} \sum_{i=1}^N w_i * r_i$$

- Variance of portfolio on conditions $(N(\mu, \sigma^2, \sigma_{i,j} = 0, N \rightarrow \infty) \Rightarrow 0$
- If the distribution deviates from gaussian, then the mean-variance approach exhibits shortcomings

- Meaning of diversification
- The Central Limit Theorem ...
- A portfolio of N assets created with same weights:

•
$$r_p = \frac{1}{N} \sum_{i=1}^N w_i * r_i$$

- Variance of portfolio on conditions $(N(\mu, \sigma^2, \sigma_{i,j} = 0, N \to \infty) \Rightarrow 0$
- If the distribution deviates from gaussian, then the mean-variance approach exhibits shortcomings

- Meaning of diversification
- The Central Limit Theorem ...
- A portfolio of N assets created with same weights:

•
$$r_p = \frac{1}{N} \sum_{i=1}^N w_i * r_i$$

- Variance of portfolio on conditions $(N(\mu, \sigma^2, \sigma_{i,j} = 0, N \to \infty) \Rightarrow 0$
- If the distribution deviates from gaussian, then the mean-variance approach exhibits shortcomings

- If any assets are correlated the ability to minimize the risk is limited
- . . .
- . . .
- Elimination of risk involves only the nonsystematic risk!

- If any assets are correlated the ability to minimize the risk is limited
- ...
- . . .
- Elimination of risk involves only the nonsystematic risk!

- If any assets are correlated the ability to minimize the risk is limited
- ...
- ...
- Elimination of risk involves only the nonsystematic risk!

- If any assets are correlated the ability to minimize the risk is limited
- ...
- ...
- Elimination of risk involves only the nonsystematic risk!

Alternative approaches to risk

Variation rate

- Rate of negative risk (Downside risk)
- Value at Risk

Alternative approaches to risk

Variation rate

• Rate of negative risk (Downside risk)

Value at Risk

Alternative approaches to risk

- Variation rate
- Rate of negative risk (Downside risk)
- Value at Risk