Portfolio Theory Lecture 7

Luděk Benada

Department of Finance - 402, benada.esf@gmail.com

April 5, 2016

Luděk Benada MPF APOT

Luděk Benada MPF APOT

Testing of the model

Model was many times testing, but with ambiguous results Sharpe, Lintner, Miller, Jensen, Fama, French ...

Testing of the model

- Model was many times testing, but with ambiguous results
- Sharpe, Lintner, Miller, Jensen, Fama, French
- . . .

A B > A B > A

Testing of the model

- Model was many times testing, but with ambiguous results
- Sharpe, Lintner, Miller, Jensen, Fama, French
- ...

• The model is based on expectations

- The variables are expressed in future value
- ...but the calculation is on observed values
- Prices of assets will be variing around equilibrium
- The equilibrium return of an individual asset:

•
$$r_i^e = r_f + (r_M - r_f) * \beta_i$$

• ...but the real return:

•
$$r_i - r_f = (r_M - r_f) * \beta + \varepsilon_i$$

- The model is based on expectations
- The variables are expressed in future value
- ...but the calculation is on observed values
- Prices of assets will be variing around equilibrium
- The equilibrium return of an individual asset:
- $r_i^e = r_f + (r_M r_f) * \beta_i$
- ...but the real return:

•
$$r_i - r_f = (r_M - r_f) * \beta + \varepsilon_i$$

- The model is based on expectations
- The variables are expressed in future value
- ...but the calculation is on observed values
- Prices of assets will be variing around equilibrium
- The equilibrium return of an individual asset:

•
$$r_i^e = r_f + (r_M - r_f) * \beta_i$$

• ...but the real return:

•
$$r_i - r_f = (r_M - r_f) * \beta + \varepsilon_i$$

- The model is based on expectations
- The variables are expressed in future value
- ...but the calculation is on observed values
- Prices of assets will be variing around equilibrium
- The equilibrium return of an individual asset:
- $r_i^e = r_f + (r_M r_f) * \beta_i$
- ...but the real return:

•
$$r_i - r_f = (r_M - r_f) * \beta + \varepsilon_i$$

- The model is based on expectations
- The variables are expressed in future value
- ...but the calculation is on observed values
- Prices of assets will be variing around equilibrium
- The equilibrium return of an individual asset:
- $r_i^e = r_f + (r_M r_f) * \beta_i$
- ...but the real return:
- $r_i r_f = (r_M r_f) * \beta + \varepsilon_i$

- The model is based on expectations
- The variables are expressed in future value
- ...but the calculation is on observed values
- Prices of assets will be variing around equilibrium
- The equilibrium return of an individual asset:

•
$$r_i^e = r_f + (r_M - r_f) * \beta_i$$

• ...but the real return:

•
$$r_i - r_f = (r_M - r_f) * \beta + \varepsilon_i$$

- The model is based on expectations
- The variables are expressed in future value
- ...but the calculation is on observed values
- Prices of assets will be variing around equilibrium
- The equilibrium return of an individual asset:
- $r_i^e = r_f + (r_M r_f) * \beta_i$
- ...but the real return:
- $r_i r_f = (r_M r_f) * \beta + \varepsilon_i$

- The model is based on expectations
- The variables are expressed in future value
- ...but the calculation is on observed values
- Prices of assets will be variing around equilibrium
- The equilibrium return of an individual asset:

•
$$r_i^e = r_f + (r_M - r_f) * \beta_i$$

...but the real return:

•
$$r_i - r_f = (r_M - r_f) * \beta + \varepsilon_i$$

Random component of the model

• Properties of random error:

- $E(\varepsilon_i) = 0$; for $\forall_i = 1, 23, \dots$
- $Cov(\varepsilon_i, r_i) = 0$; for $\forall_i = 1, 23, ...$
- $Cov(\varepsilon_i, \varepsilon_j) = 0$; for $\forall_i = 1, 23, ... \land i \neq j$
- $E[\varepsilon_i(r_M \overline{r}_M)] = 0$; for $\forall_i = 1, 23, ...$

Random component of the model

- Properties of random error:
- $E(\varepsilon_i) = 0$; for $\forall_i = 1, 23, \dots$
- $Cov(\varepsilon_i, r_i) = 0$; for $\forall_i = 1, 23, ...$
- $Cov(\varepsilon_i, \varepsilon_j) = 0$; for $\forall_i = 1, 23, ... \land i \neq j$
- $E[\varepsilon_i(r_M \overline{r}_M)] = 0$; for $\forall_i = 1, 23, ...$

Random component of the model

• Properties of random error:

•
$$E(\varepsilon_i) = 0$$
; for $\forall_i = 1, 23, \dots$

•
$$Cov(\varepsilon_i, r_i) = 0$$
; for $\forall_i = 1, 23, ...$

• $Cov(\varepsilon_i, \varepsilon_j) = 0$; for $\forall_i = 1, 23, ... \land i \neq j$

•
$$E[\varepsilon_i(r_M - \overline{r}_M)] = 0$$
; for $\forall_i = 1, 23, ...$

Random component of the model

• Properties of random error:

•
$$E(\varepsilon_i) = 0$$
; for $\forall_i = 1, 23, ...$

- $Cov(\varepsilon_i, r_i) = 0$; for $\forall_i = 1, 23, ...$
- $Cov(\varepsilon_i, \varepsilon_j) = 0$; for $\forall_i = 1, 23, ... \land i \neq j$
- $E[\varepsilon_i(r_M \bar{r}_M)] = 0; \text{for } \forall_i = 1, 23, ...$

Random component of the model

• Properties of random error:

•
$$E(\varepsilon_i) = 0$$
; for $\forall_i = 1, 23, ...$

•
$$Cov(\varepsilon_i, r_i) = 0$$
; for $\forall_i = 1, 23, \ldots$

•
$$Cov(\varepsilon_i, \varepsilon_j) = 0$$
; for $\forall_i = 1, 23, ... \land i \neq j$

•
$$E[\varepsilon_i(r_M - \overline{r}_M)] = 0$$
; for $\forall_i = 1, 23, ...$

• Parameters could be estimated:

• The set of this points is described by empirical regresion function:

•
$$\hat{y}_i = f(a, b, x) = a + b * x$$

• Residue...
$$\varepsilon_i = y_i - \hat{y}_i$$

- The methodology of OLS minimalize the errors
- Thus the objective function:

•
$$S_r = \sum_{i=1}^N e_i^2 \Rightarrow min$$

- Parameters could be estimated:
- The set of this points is described by empirical regresion function:

•
$$\hat{y}_i = f(a, b, x) = a + b * x$$

• Residue...
$$\varepsilon_i = y_i - \hat{y}_i$$

- The methodology of OLS minimalize the errors
- Thus the objective function:

•
$$S_r = \sum_{i=1}^N e_i^2 \Rightarrow min$$

- Parameters could be estimated:
- The set of this points is described by empirical regresion function:

•
$$\hat{y}_i = f(a, b, x) = a + b * x$$

• Residue...
$$\varepsilon_i = y_i - \hat{y}_i$$

- The methodology of OLS minimalize the errors
- Thus the objective function:

•
$$S_r = \sum_{i=1}^N e_i^2 \Rightarrow min$$

- Parameters could be estimated:
- The set of this points is described by empirical regresion function:

•
$$\hat{y}_i = f(a, b, x) = a + b * x$$

• Residue...
$$\varepsilon_i = y_i - \hat{y}_i$$

- The methodology of OLS minimalize the errors
- Thus the objective function:

•
$$S_r = \sum_{i=1}^N e_i^2 \Rightarrow min$$

- Parameters could be estimated:
- The set of this points is described by empirical regresion function:

•
$$\hat{y}_i = f(a, b, x) = a + b * x$$

- Residue... $\varepsilon_i = y_i \hat{y}_i$
- The methodology of OLS minimalize the errors
- Thus the objective function:
- $S_r = \sum_{i=1}^N e_i^2 \Rightarrow min$

- Parameters could be estimated:
- The set of this points is described by empirical regresion function:

•
$$\hat{y}_i = f(a, b, x) = a + b * x$$

- Residue... $\varepsilon_i = y_i \hat{y}_i$
- The methodology of OLS minimalize the errors
- Thus the objective function:
- $S_r = \sum_{i=1}^N e_i^2 \Rightarrow min$

- Parameters could be estimated:
- The set of this points is described by empirical regresion function:

•
$$\hat{y}_i = f(a, b, x) = a + b * x$$

- Residue... $\varepsilon_i = y_i \hat{y}_i$
- The methodology of OLS minimalize the errors
- Thus the objective function:

•
$$S_r = \sum_{i=1}^N e_i^2 \Rightarrow min$$

Solution

• Partial derivatives with respect to a, b

- ⇒system of equiations:
 - $na+b\sum X_i=\sum Y_i$
 - $a \sum X_i + b \sum X_i^2 = \sum X_i Y_i$
 - ...matrix calculation...

- Partial derivatives with respect to a, b
- \Rightarrow system of equiations:
 - $na + b \sum X_i = \sum Y_i$
 - $a \sum X_i + b \sum X_i^2 = \sum X_i Y_i$
 - ...matrix calculation...

- Partial derivatives with respect to a, b
- \Rightarrow system of equiations:
 - $na+b\sum X_i=\sum Y_i$
 - $a\sum X_i + b\sum X_i^2 = \sum X_i Y_i$
 - ...matrix calculation...

- Partial derivatives with respect to a, b
- \Rightarrow system of equiations:
 - $na + b\sum X_i = \sum Y_i$ • $a\sum X_i + b\sum X_i^2 = \sum X_i Y_i$
 - $a \sum \lambda_i + b \sum \lambda_i^- = \sum \lambda_i r$
 - ...matrix calculation...

- Partial derivatives with respect to a, b
- \Rightarrow system of equiations:
 - $na + b \sum X_i = \sum Y_i$
 - $a\sum X_i + b\sum X_i^2 = \sum X_i Y_i$
 - ...matrix calculation...

Variance of security

• Variance of excess return:

Luděk Benada MPF APOT

< 1 → <

Variance of security

• Variance of excess return:

•
$$\operatorname{var}(r_i - r_f) = \operatorname{var}(r_i) + \operatorname{var}(r_f) = \sigma_i^2$$

• $\operatorname{var}[(r_M - r_f) + \varepsilon_i] = \beta_i^2 * \sigma_{i,i}^2 + \varepsilon_i^2$

< 1 → <

Variance of security

• Variance of excess return:

•
$$\operatorname{var}(r_i - r_f) = \operatorname{var}(r_i) + \operatorname{var}(r_f) = \sigma_i^2$$

• var
$$[(r_M - r_f) + \varepsilon_i] = \beta_i^2 * \sigma_M^2 + \varepsilon_i^2$$

Market and unique risk

ε_i²...concerns only an individual company or industry, could be diversified!

- $\beta_i^2 * \sigma_M^2$...undiversified part of risk, concerns all securities on the market
- Ratio of the systematic risk is given by $R^2...$ is explaining how fits the model

Market and unique risk

- ε_i²...concerns only an individual company or industry, could be diversified!
- $\beta_i^2 * \sigma_M^2$...undiversified part of risk, concerns all securities on the market
- Ratio of the systematic risk is given by $R^2...$ is explaining how fits the model

Market and unique risk

- ε_i²...concerns only an individual company or industry, could be diversified!
- $\beta_i^2 * \sigma_M^2$...undiversified part of risk, concerns all securities on the market
- Ratio of the systematic risk is given by $R^2...$ is explaining how fits the model

- Investors are looking for investment opportunities ...securities in unequilibrium
- A security is undervalueted if the return is higher then the equilibrium return
- A security is overvalueted if the return is under expected return (security is expansive)
- The equilibrium return lies on the SML
- $\delta_i = r_i \overline{r_i}$

- Investors are looking for investment opportunities ...securities in unequilibrium
- A security is undervalueted if the return is higher then the equilibrium return
- A security is overvalueted if the return is under expected return (security is expansive)
- The equilibrium return lies on the SML
- $\delta_i = r_i \overline{r_i}$

- Investors are looking for investment opportunities ...securities in unequilibrium
- A security is undervalueted if the return is higher then the equilibrium return
- A security is overvalueted if the return is under expected return (security is expansive)
- The equilibrium return lies on the SML
- $\delta_i = r_i \overline{r_i}$

- Investors are looking for investment opportunities ...securities in unequilibrium
- A security is undervalueted if the return is higher then the equilibrium return
- A security is overvalueted if the return is under expected return (security is expansive)
- The equilibrium return lies on the SML
- $\delta_i = r_i \overline{r_i}$

- Investors are looking for investment opportunities ...securities in unequilibrium
- A security is undervalueted if the return is higher then the equilibrium return
- A security is overvalueted if the return is under expected return (security is expansive)
- The equilibrium return lies on the SML

•
$$\delta_i = r_i - \bar{r}_i$$

Investment decision

• If $\delta_i > 0$ \Rightarrow the security is over the SML \dots undervalueted

- If $\delta_i <$ 0 \Rightarrow the security is under the SML \ldots overvalueted
- If $\delta_i = 0 \Rightarrow$ the security is on the SML ...in equilibrium

Investment decision

- If $\delta_i > 0 \Rightarrow$ the security is over the SML \dots undervalueted
- If $\delta_i < 0$ \Rightarrow the security is under the SML \ldots overvalueted
- If $\delta_i = 0 \Rightarrow$ the security is on the SML ...in equilibrium

Investment decision

- If $\delta_i > 0 \Rightarrow$ the security is over the SML …undervalueted
- If $\delta_i < 0$ \Rightarrow the security is under the SML \ldots overvalueted
- If $\delta_i=0$ \Rightarrow the security is on the SML \ldots in equilibrium