Portfolio Theory Lecture 9

Luděk Benada

Department of Finance - 402, benada.esf@gmail.com

April 25, 2016

Luděk Benada MPF APOT

Structure

2 Cut-off ratio

Luděk Benada MPF APOT

• There is empirical evidence: $\uparrow M \Rightarrow \uparrow S$

- Therefore the (excess) return of a security is represented in relation to the market:
 - $r_i = a_i + b_i * r_M$
- The return of a security consists of two parts:
 - Dependent on the market
 - Independent on the market

- There is empirical evidence: $\uparrow M \Rightarrow \uparrow S$
- Therefore the (excess) return of a security is represented in relation to the market:

• $r_i = a_i + b_i * r_M$

- The return of a security consists of two parts:
 - Dependent on the market
 - Independent on the market

- There is empirical evidence: $\uparrow M \Rightarrow \uparrow S$
- Therefore the (excess) return of a security is represented in relation to the market:

• $r_i = a_i + b_i * r_M$

- The return of a security consists of two parts:
 - Dependent on the market
 - Independent on the market

- There is empirical evidence: $\uparrow M \Rightarrow \uparrow S$
- Therefore the (excess) return of a security is represented in relation to the market:

• $r_i = a_i + b_i * r_M$

- The return of a security consists of two parts:
 - Dependent on the market
 - Independent on the market

- There is empirical evidence: $\uparrow M \Rightarrow \uparrow S$
- Therefore the (excess) return of a security is represented in relation to the market:

•
$$r_i = a_i + b_i * r_M$$

- The return of a security consists of two parts:
 - Dependent on the market
 - Independent on the market

- There is empirical evidence: $\uparrow M \Rightarrow \uparrow S$
- Therefore the (excess) return of a security is represented in relation to the market:

•
$$r_i = a_i + b_i * r_M$$

- The return of a security consists of two parts:
 - Dependent on the market
 - Independent on the market

• The model could be splited into:

- Estimate
- Ramdom error

- The return of the market and the error are random variable $\Rightarrow \left(\mu,\sigma^2
 ight)$
- Model must garantee:
 - $cov(\varepsilon_i, r_m) = 0$
 - $cov(\varepsilon_i,\varepsilon_j)=0$
 - $\sigma_{i,j} = \beta_i * \beta_j \sigma_M^2$

• The model could be splited into:

- Estimate
- Ramdom error

- The return of the market and the error are random variable $\Rightarrow \left(\mu,\sigma^2
 ight)$
- Model must garantee:
 - $cov(\varepsilon_i, r_m) = 0$
 - $cov(\varepsilon_i,\varepsilon_j)=0$
 - $\sigma_{i,j} = \beta_i * \beta_j \sigma_M^2$

- The model could be splited into:
 - Estimate
 - Ramdom error

- The return of the market and the error are random variable $\Rightarrow \left(\mu,\sigma^2
 ight)$
- Model must garantee:
 - $cov(\varepsilon_i, r_m) = 0$
 - $cov(\varepsilon_i,\varepsilon_j)=0$
 - $\sigma_{i,j} = \beta_i * \beta_j \sigma_M^2$

- The model could be splited into:
 - Estimate
 - Ramdom error

- The return of the market and the error are random variable $\Rightarrow \left(\mu,\sigma^2
 ight)$
- Model must garantee:
 - $cov(\varepsilon_i, r_m) = 0$
 - $cov(\varepsilon_i,\varepsilon_j)=0$
 - $\sigma_{i,j} = \beta_i * \beta_j \sigma_M^2$

- The model could be splited into:
 - Estimate
 - Ramdom error

- The return of the market and the error are random variable $\Rightarrow \left(\mu,\sigma^2
 ight)$
- Model must garantee:
 - $cov(\varepsilon_i, r_m) = 0$
 - $cov(\varepsilon_i, \varepsilon_j) = 0$
 - $\sigma_{i,j} = \beta_i * \beta_j \sigma_M^2$

- The model could be splited into:
 - Estimate
 - Ramdom error

•
$$r_i = \alpha_i + \beta_i * r_M + \varepsilon_i$$

- The return of the market and the error are random variable $\Rightarrow \left(\mu,\sigma^2
 ight)$
- Model must garantee:
 - cov(ε_i, r_m) = 0
 cov(ε_i, ε_j) = 0
 σ_{i,j} = β_i * β_jσ_M²

- The model could be splited into:
 - Estimate
 - Ramdom error

•
$$r_i = \alpha_i + \beta_i * r_M + \varepsilon_i$$

- The return of the market and the error are random variable $\Rightarrow \left(\mu,\sigma^2
 ight)$
- Model must garantee:
 - $cov(\varepsilon_i, r_m) = 0$ • $cov(\varepsilon_i, \varepsilon_j) = 0$ • $\sigma_{i,j} = \beta_i * \beta_j \sigma_M^2$

- The model could be splited into:
 - Estimate
 - Ramdom error

•
$$r_i = \alpha_i + \beta_i * r_M + \varepsilon_i$$

- The return of the market and the error are random variable $\Rightarrow \left(\mu,\sigma^2
 ight)$
- Model must garantee:
 - $cov(\varepsilon_i, r_m) = 0$ • $cov(\varepsilon_i, \varepsilon_j) = 0$
 - $\sigma_{i,j} = \beta_i * \beta_j \sigma_M^2$

- The model could be splited into:
 - Estimate
 - Ramdom error

•
$$r_i = \alpha_i + \beta_i * r_M + \varepsilon_i$$

- The return of the market and the error are random variable $\Rightarrow \left(\mu,\sigma^2
 ight)$
- Model must garantee:
 - $cov(\varepsilon_i, r_m) = 0$

•
$$cov(\varepsilon_i, \varepsilon_j) = 0$$

•
$$\sigma_{i,j} = \beta_i * \beta_j \sigma_M^2$$

- Suppose that the SIM is the best method of predicting a covariace structure of returns
- For creating a portfolio basket it will be useful to have a tool to select assets
- If SIM holds, then the decision making criteria:
 - $\frac{\bar{r}_i r_f}{\beta_i}$
- Ranking expresses favourableness of every assets included into the portfolio

- Suppose that the SIM is the best method of predicting a covariace structure of returns
- For creating a portfolio basket it will be useful to have a tool to select assets
- If SIM holds, then the decision making criteria: • $\frac{\overline{r_i - r_f}}{\beta_i}$
- Ranking expresses favourableness of every assets included into the portfolio

- Suppose that the SIM is the best method of predicting a covariace structure of returns
- For creating a portfolio basket it will be useful to have a tool to select assets
- If SIM holds, then the decision making criteria:
 - $\frac{\bar{r}_i r_f}{\beta_i}$
- Ranking expresses favourableness of every assets included into the portfolio

- Suppose that the SIM is the best method of predicting a covariace structure of returns
- For creating a portfolio basket it will be useful to have a tool to select assets
- If SIM holds, then the decision making criteria:

•
$$\frac{\bar{r}_i - r_f}{\beta_i}$$

• Ranking expresses favourableness of every assets included into the portfolio

- Suppose that the SIM is the best method of predicting a covariace structure of returns
- For creating a portfolio basket it will be useful to have a tool to select assets
- If SIM holds, then the decision making criteria:

•
$$\frac{\bar{r}_i - r_f}{\beta_i}$$

• Ranking expresses favourableness of every assets included into the portfolio

Implication of decision criteria

- If a security with its ratio is in the portfolio included, then all securities with higher ratio should be included as well
- If a security with its ratio is not in the portfolio, then all securities with lower ratio must be excluded to the portfolio

Implication of decision criteria

- If a security with its ratio is in the portfolio included, then all securities with higher ratio should be included as well
- If a security with its ratio is not in the portfolio, then all securities with lower ratio must be excluded to the portfolio

Portfolio selection with ban on short sell

• It is necessary to establish the threshold C*

- Subsequently selection is done:
 - Securities to the portfolio
 - Securities out of the portfolio

Portfolio selection with ban on short sell

- It is necessary to establish the threshold C*
- Subsequently selection is done:
 - Securities to the portfolio
 - Securities out of the portfolio

Portfolio selection with ban on short sell

- It is necessary to establish the threshold C*
- Subsequently selection is done:
 - Securities to the portfolio
 - Securities out of the portfolio

Portfolio selection with ban on short sell

- It is necessary to establish the threshold C*
- Subsequently selection is done:
 - Securities to the portfolio
 - Securities out of the portfolio

Procedure by the selection

• Ranking of every security by $\frac{\overline{r_i} - r_f}{\beta_i}$

Include securities with:

(日) (同) (三) (

Procedure by the selection

- Ranking of every security by $\frac{\overline{r_i} r_f}{\beta_i}$
- Include securities with:

Procedure by the selection

- Ranking of every security by $\frac{\overline{r}_i r_f}{\beta_i}$
- Include securities with:

•
$$\frac{\bar{r}_i - r_f}{\beta_i} > C^*$$

Luděk Benada MPF APOT

Determining of cut-off

•
$$C_i = rac{\sigma_M^2 \sum_{i=1}^N rac{(\bar{r}_i - r_f) * \beta_i}{\sigma_{\mathcal{E}_i}^2}}{1 + \sigma_M^2 * \sum_{i=1}^N \left(rac{\beta_i^2}{\sigma_{\mathcal{E}_i}^2}\right)}$$

• Securities are included to the portfolio if:

• $\frac{\bar{r}_i - r_f}{B_i} > C_i$

 $\bullet\,$ C* corresponds to the last securities holding this condition

< /i>

Determining of cut-off

•
$$C_i = rac{\sigma_M^2 \sum_{i=1}^N rac{(\bar{r}_i - r_f) * \beta_i}{\sigma_{\mathcal{E}_i}^2}}{1 + \sigma_M^2 * \sum_{i=1}^N \left(rac{\beta_i^2}{\sigma_{\mathcal{E}_i}^2}\right)}$$

• Securities are included to the portfolio if:

•
$$\frac{\overline{r}_i - r_f}{\beta_i} > C_i$$

• C* corresponds to the last securities holding this condition

Determining of cut-off

•
$$C_i = rac{\sigma_M^2 \sum_{i=1}^N rac{(\bar{r}_i - r_f) * \beta_i}{\sigma_{\mathcal{E}_i}^2}}{1 + \sigma_M^2 * \sum_{i=1}^N \left(rac{\beta_i^2}{\sigma_{\mathcal{E}_i}^2}\right)}$$

• Securities are included to the portfolio if:

•
$$\frac{\bar{r}_i - r_f}{\beta_i} > C_i$$

• C* corresponds to the last securities holding this condition

Determining of cut-off

•
$$C_i = rac{\sigma_M^2 \sum_{i=1}^N rac{(\bar{r}_i - r_f) * \beta_i}{\sigma_{\mathcal{E}_i}^2}}{1 + \sigma_M^2 * \sum_{i=1}^N \left(rac{\beta_i^2}{\sigma_{\mathcal{E}_i}^2}\right)}$$

• Securities are included to the portfolio if:

•
$$\frac{\bar{r}_i - r_f}{\beta_i} > C_i$$

• C* corresponds to the last securities holding this condition

Weights in portfolio

æ

・ロト ・部ト ・ヨト ・ヨト

Weights in portfolio

•
$$w_i = \frac{Z_i}{\sum_{i=1}^N Z_i}$$

• $Z_i = \frac{\beta_i}{\sigma_{\varepsilon_i}^2}$

Luděk Benada MPF APOT

◆□ > ◆□ > ◆豆 > ◆豆 >

æ

Portfolio selection if SS is allowed

• In this case the $C^* \dots C_n$

< 口 > < 同

Short sell is not allowed

Luděk Benada MPF APOT

æ

1≣ ►

メロト メロト メヨト メ

Short sell is allowed

Luděk Benada MPF APOT

æ

1≣ ►

・ロト ・母ト ・ヨト・