Product mix and TOC

Ing.J.Skorkovský, CSc,
Department of Corporate Economy
FACULTY OF ECONOMICS AND ADMINISTRATION Masaryk University Brno Czech Republic

Task control parameters

8 hours /day=480 min, Cost/hour/resource=10 USD To produce \mathbf{P} or $\mathrm{Q}->20$ minutes of B (bottleneck) To produce R or S->30 minutes of B (bottleneck)

Two workers are always needed to produce each of the four products

Some calculations

Time in minutes calculated for all Machine centers :
P->6+10+20, Q->8+10+20,R->5+10+20, S->5+10+20

| Product | Unit Price | Material Cost | Work (min USD) | Profit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P | 50 | 20 | $36 \min (6$ USD) | $50-20-6=24$ |
| Q | 50 | 25 | $38 \min (6,33$ USD) | $50-25-6,33=18,67$ |
| R | 55 | 25 | $35 \min (5,83$ USD) | $55-25-5,83=24,17$ |
| S | 52 | 20 | $35 \min (5,83$ USD) | $52-20-5,83=26,17$ |
| | | | | |

36 minutes -> 36/60=0,6->0,6*10 USD =6 USD (Cost of work)

RM=Raw Material
Price $=$ Selling Price or in Dynamics Business Central Unit Price

38 minutes $->38 / 60=0,63->0,63 * 10$ USD $=6,33$ USD (Cost of work)
Cost of work/minute in USD -> time includes both machines (A and B)
Based on Prof. James R. Holt, Washington State University

Four different approaches how to solve the product mix

THE MARKETING TOOLKIT	
	WE NEEDTO CHANGE THE ADVERTISING MARKETING ORECTOR

Classic approach - highest margin 26,17 (accountant) - S product
 NP=T-OE

- $52 * 16$ pcs $-20 * 16$ pcs -2 workers*8 hours*10 USD/hour = 352 USD/day
- Where $16=480 / 30=16=480 /(20+10)$
- $30=20+10$ is capacity of machine B to produce S

Calculations for bottleneck B only !

Product+	Price	Material	Work (min USD)	Profit
\mathbf{P}	50	20	$36 \min (6$ USD $)$	$50-20-6=24$
Q	50	25	$38 \min (6,33$ USD)	$50-25-6,33=18,67$
R	55	25	$35 \min (5,83$ USD)	$55-25-5.83=24.17$
S	52	20	$35 \min (5,83$ USD)	$52-20-5,83=26,17$

This table is used only for classic approach
to choose product with highest profit (S)

Cost of work/minute in USD calculation.
Calculated time of work includes both machines (A and B)

Marketing approach - highest selling price \mathbf{R} product

- 55*16 pcs $-25 * 16$ pcs -2 workers*8 hours*10 USD/hour = 320 USD/day
- Where $16=480 / 30=16=480 /(20+10)$
- 20+ 10 is capacity of machine B to produce R

Focused on the highest selling price

Production approach - highest machine efficiency product

- 50*24 pcs - 25*24 pcs - 2 workers*8 hours*10 USD/hour = 440 USD/day
- Where 24=480/ 20
- 20 is capacity of machine \mathbf{B} to produce \mathbf{Q}

The intention is to produce as much as possible

TOC approach - highest use of bottleneck P product

- 50*24 pcs - 20*24 pcs -2 workers*8 hours*10 USD/hour = 560 USD/day
- Where 24=480/ 20
- 20 is capacity of machine B to produce P

Calculations for bottleneck B only
The intention is highest use of bottleneck
Material costs are lower for product \mathbf{P} than for product \mathbf{Q}.

Results

- Accounting approach
- Sales-Higher Sales Price
- Production-Efficiency
- TOC approach

S	$\$ 352$	100%
R	$\$ 320$	90%
Q	$\$ 440$	125%
P	$\$ 560$	159%

Thanks for your attention

