Time Value of Money Formula For:	Annual Compounding	Compounded (m) Times Per Year	Continuous Compounding
Future value of a single cash flow. (Future Value of a Lump Sum)	$FV = PV(1+i)^n$	$\mathbf{FV} = \mathbf{PV} \left(1 + \frac{\mathbf{i}}{\mathbf{m}}\right)^{\mathbf{nm}}$	$FV = PV(e)^{in}$
Present value of a single cash flow. (Present Value of a Lump Sum)	$\mathbf{PV} = \mathbf{FV}(1+\mathbf{i})^{-\mathbf{n}}$	$\mathbf{PV} = \mathbf{FV} \left(1 + \frac{\mathbf{i}}{\mathbf{m}}\right)^{-\mathbf{nm}}$	$PV = FV(e)^{-in}$
Future value of a series of equal cash flows (PMT) at fixed intervals for a specified number of periods. (Future Value of an Annuity)	$FVA = PMT\left[\frac{(1+i)^n - 1}{i}\right]$	$FVA = PMT \left[\frac{\left(1 + \frac{i}{m}\right)^{nm} - 1}{i/m} \right]$	$\mathbf{FVA} = \mathbf{PMT} \left[\frac{(e^{in} - 1)}{(e^{i} - 1)} \right]$
Present value of a series of equal cash flows (PMT) at fixed intervals for a specified number of periods. (Present Value of an Annuity)	$PVA = PMT\left[\frac{1-(1+i)^{-n}}{i}\right]$	$PVA = PMT \left[\frac{1 - \left(1 + \frac{i}{m} \right)^{-nm}}{i/m} \right]$	$\mathbf{PVA} = \mathbf{PMT} \left[\frac{(1 - e^{-in})}{(e^{i} - 1)} \right]$
Effective interest rate given simple (or quoted) interest rate.	EAR = i	$EAR = \left(1 + \frac{i}{m}\right)^m - 1$	$EAR = e^{i} - 1$
Simple (or quoted) interest rate given effective interest rate.	i = EAR	$i = m_{[}(1 + EAR)^{1/m} - 1_{]}$	i = ln(1 + EAR)
The length of time required for a single cash flow to grow to a specified future amount at a given rate of interest.	$n = \frac{\ln(FV/PV)}{\ln(1+i)}$	$n = \frac{\ln(FV/PV)}{m * \ln(1 + \frac{i}{m})}$	$\mathbf{n} = \frac{1}{i} \ln(FV/PV)$
The simple (or quoted) rate of interest required for a single cash flow to grow to a specified future cash flow.	$i = \left(\frac{FV}{PV}\right)^{1/n} - 1$	$i = m \left[\left(\frac{FV}{PV} \right)^{1/(nm)} - 1 \right]$	$i = \frac{1}{n} \ln (FV/PV)$
The length of time required for a series of equal cash flows (PMT) to grow to a specific future amount.	$n = \frac{\ln\left[\frac{(FVA)(i)}{PMT} + 1\right]}{\ln(1+i)}$	$n = \frac{\ln\left(\frac{i}{m}\right)\left(\frac{FVA}{PMT} + \frac{m}{i}\right)}{m * \left[\ln\left(1 + \frac{i}{m}\right)\right]}$	
Present value of a finite series of cash flows (CF) growing at a constant rate (g) for (n) periods with constant (i).	$CE(1+\alpha)$ $\begin{bmatrix} (1+\alpha)n \end{bmatrix}$	ri≠g	
i = simple or quoted rate (nominal interest rate)n = time period expressed in years (or portion thereof)m = number of compounding periods per yeare = Euler's constant ≈ 2.71828ln = netural logarithmEAP = affective ennuel rate			

ln = natural logarithm

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

EAR = effective annual rate