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Characterizing trending time series

* Many time series grow over time, they follow a trend. This is a key feature to consider
when making inference. Why?

* Let us assume that we have two series characterized by a positive trend over time. If we
ignore this, we might wrongly conclude that one series explains the other.

* Many time series appear to be correlated just because they are trending over time, but this
is related to other unobserved factors, not to a relationship between them.

* So, we say there are a lot o time series that follow a trend. Can you think of any?



Characterizing trending time series

Do we have a trend here?
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Figure 1: GDP for the European Union. Not seasonally adjusted.



Characterizing trending time series

And here?

FRED -~/ — rederal Debt: Total Public Debt
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Figure 2: United States Federal Debt. Not seasonally adjusted.



Characterizing trending time series

What about here? Becomes difficult here...

FRED ~/ — Harmonized Unemployment: Monthly Rates: Total
N — Consumer Price Index: All items: Total: Total for the European Union
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Figure 3: Unemployment and inflation in the European Union. Not seasonally adjusted.



Characterizing trending time series

Definitely not here, right?

FRED ;f_/' — Real Gross Domestic Product
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Figure 4: Real GDP growth for the United Staes. Seasonally adjusted.



Characterizing trending time series

The simplest way to capture a time trend could be:

Vw=apta t+es, t=1,2,.. (1)

where {e,} is an independent, identically distributed (ii.d) sequence with E(e,)= 0 and Var(e,) = 62.

The parameter @, multiplies time, t, and this results in adding a linear time trend fo the model. If
we hold all {e;} fixed, a; measures the change in y; due to the passage of time. Indeed:

AYi= Vi — Vi1 =0y (2)



Characterizing trending time series

We could also think of the trend as:

Elye]=a+at 3)

Note that if >0, then on average y; is growing over time and, therefore, has an upward trend. if
a; <0, the trend is downward.

Of course, if we check some of the series we were just checking, and we draw a trend, we will note
that they do not fall exactly over the time-series, however, it does on average.

Do all time series have a linear time trend? No... Can you think of a series with exponential
trends?



Characterizing trending time series

FRED c_/} — Gross domestic product per capita
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Figure 5: US GDP per capita. Not seasonally adjusted.

Series that have the same average growth rate from period to period follow an exponential trends. (Do you
know the rule of 707?).



Characterizing trending time series

How do we model an exponential trend?

Well, we could model the natural logarithm of the dependent variable as a linear trend:

lﬂg(yt)= ﬁn+ﬂ1t+et, t=1,2,.. (4')

Remembering that Alog(y;) ﬁy’;:"i,wecantakechangesin@)andassumethat Ae; = 0, in order
to get:

Alog(ye) = py,forallt ()

This implies that f accounts for a rate of change from one period to the next. For example, if y, is real
GDP and t accounts for years, then £ is the yearly rate of growth of real GDP.



Characterizing trending time series

Let us think of more complicated trends... What about a quadratic time trend like this...
J’t=ﬁo+ﬁit+ﬁzt2+et:t=1;2;--- (6)

Assuming that e, remains fixed, can you calculate the slope of Eq. (6)?

Ayy

Vi B+ 2Bt 7

Can you find the slope of the following time series process with a cubic trend?

ye= Po+Prit+ Bt + B3t e, t=1,2,.. (8

A
= B+ 2Bt + 3B3 L2 9



Using trending variables in regression analysis

Why is important to consider trends in regression analysis?

Remember our 6 assumptions from last week? Well, adding a trend does not necessarily violate
any of these.

If we ignore trends and have that both explanatory and dependent variables follow one (increasing
or decreasing) we might wrongly conclude that these two are related in a way they are not.

This is what we call a spurious regressions!

But, what is really the problem? What happens if we omit the trend? Can you guess?



Using trending variables in regression analysis

* Ifyou think of a simple regression like the following:

YVi=PBothXu+hoXpthttu; (10)

*  What happens if we estimate this one instead?

Vi=PBothriXut+ P Xptu; (11)

» Allowing for this trend recognizes explicitly that v, be growing (Gf f3 >
0) or falling (if f; < 0) for reasons unrelated to X;, and X,. Otherwise, we would be omitting
a relevant variables that goes directly into our error term, and our estimated wounld be
biased!



Using trending variables in regression analysis

Let us check a simple way to add a trend in a simple linear regression!



Seasonality

What is seasonality?

FRED 2/ — Unemployment Rate; Not Seasonally Adjusted
N — Unemployment Rate; Seasonally Adjusted
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Figure 6: US unemployment. Both seasonally and not seasonally adjusted.



Seasonality

What is seasonality?

*  When we work with data at quarterly, monthly, weekly, or daily data, our time series may
exhibit seasonality. Can you think of any examples?

* For example, retail sales are higher in December, due to Christmas; wages are usually set in the
beginning of the year in many countries; the real estate market for student housing is high in
September; the ski resorts have high sales in winter.

* Of course, not all the series at lower frequency than yearly display seasonality (interest rates, for
instance, do not exhibit seasonality).

* However, we need to find a way to adjust our time series in order to account for the existence of
seasonal patterns.



Seasonality

How do we deal with seasonality?
» A simple approach would be to work with dummy variables.

* This 1s quite straightforward. If we work with monthly data, for example, we can estimate a model
of the followmg kind:

Ye = ﬂo + ﬁl Xu + ... ﬂk Xﬂt + 51febt + 627"-“7} + ...+ 611dect + U (12)

where feb,, mar,, ... dec; are dummy vanables indicating whether time period t commesponds fo the
corresponding month_

* Note that we always need to leave one dummy variable out of our model. In Eq.(11), we have left
Janmary out (base month) and £, is the intercept for January.

* If there is no seasonality in ¥,, our estimators from 6; to &, would be non-significant (test F).



Seasonality

The most straightforward method, however, is called seasonal decomposition!

Seasonal decomposition decomposes seasonal time series data into its components.

What components?
1. Trend
2. Seasonality

3. Remainder

*  How do we decompose the time series?



Seasonality

Additive method Multiplicative method

* Add components up
*  Multiplies components
* Simple method

* Gives a quick idea (first exploration)

Drawbacks from the additive model

* Good for constant seasonality but problematic with long series that suffer changes in
the seasonal component.

* In this case it might be better to move towards alternative methods (x12, Seats, etc.).



Seasonality

Let us see how this works on R:
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Seasonality

How does it look the seasonal decomposition with our additive model?

Decomposition of additive time series
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Seasonality

So how do we get our seasonal adjusted data?

nottemadjusted
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Figure 9: Nottem dataset seasonally adjusted

Well, basically, we have to subtract the
seasonal component from the original
series, and it looks like Figure 9.

Since the main component of nottem
was the seasonal component, we do not
see any trend and it pretty much looks
like a series of residuals.



Seasonality

A simple forecasting exercise...

Forecasts from STL + ARIMA(1,1,1)
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Figure 10: Nottem dataset forecast 24 months ahead
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We will see in a simple code that it is
possible to run a forecast using the
data from the seasonal decomposition.

With this kind of regular data, (no trend
and constant seasonal component, the
forecast looks quite accurate).



Seasonality

Exponential smoothing with function ETS

Combines multiplicative and additive methods. It describes the time series using three parameters,
each of them with interesting options:

p—

Error (additive or multiplicative)

2. Trend (non-present, additive or multiplicative)

W

Seasonality (non-present, additive or multiplicative)

* Interestingly, with exponential smoothing it is possible to combine the components, each of them
having different multiplicative, additive or none components.

* Exponential smoothing gives more weight to recent data (makes sense and cover changes in
seasonal patterns.



Seasonality

Exponential smoothing with function ETS

A simple function in R is ets().

Applying ets() produces the following smoothing coefficients:

Alpha: initial level

Beta: trend

Gamma: seasonality

Phi: dumped paratemer (usually between 0.8 and 1, the lower it is the more important the

dumping effect is; allows for the model to dump the trend since this may change along the
series).

.

*  The lower the coefficients are, the higher the level of smoothness, the closer to 1, the more it
relies on recent data.



Main takeaways from Lecture 2

* Visual inspect the data, identify trends. Why do we need to consider trends in our
analysis?

* What is the easiest way to detrend the data? How can you check whether it works or
not?

* What are the consequences of not detrending our data for regression analysis?
*  When can we find seasonality in the data?
*  When do additive and multiplicative methods work best?

* What the potential problems of working with seasonal data?



Exercise

Let us solve the exercise together and prepare for the seminar...



Seminar 2



Seminar exercise

1. Plot the dataset ‘AirPassengers’ (you can get it directly form R database), describe briefly the dataset and the
patterns you observe. (1 point)

2. Create two models, modell and model2, decomposing the series with additive and multiplicative functions.
Plot and compare both models. Which one fits the data better? Why you think this is the case? (1 point)

3. Create a third model (model3) using the ets() function, report the parameters identified by the function and
explain them (1 point).

4.  Plot both the original and the seasonally adjusted series from point 3. (1 point)

5. Deliver the codes and a brief one-page report including points 1-4 before Thursday 7" of March. (1 point)

6. Extra point: Remember the tbillmodel from seminar 1? Create a quadratic trend and estimated the tbillmodel
including this trend. Is it significant? (1 point)



