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Lecture 3:

Further Issues in Using OLS with Time Series Data
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Stationarity and nonstationary time series

When we talk about stationarity, we think of a stochastic process {x;:t=1,2,...} for
which for every collection of time indices 1 < ¢, < t; < ... < i, the joint distribution
of (X¢1, X¢2, v s Xppn) is the same as the joint distribution of (X¢q+5, Xi24hs o s Xgm+n) for all
integer h > 1.

+ An implication of stationarity is that choosing m=1 and £;=1, x; has the same distribution as x; for all
£=2, 3, ... In simple words, it means the sequence 1s identically distributed.

* This is not enough, stationarity requires that the joint distribution of (x,, x;) (the first two terms in the
sequence) 15 the same as the joint distribution of any (x;,x;4q) forany £ = 1.

* This places no restrictions on how x, and x, ., are related to one another; indeed, they may be highly
corrclated. Stationarity does require that the nature of any correlation between adjacent terms is the



Stationarity and nonstationary time series

Why is stationarity so important?

*  When we want to understand the relationship between variables, we need to have some
kind of stability.

* Otherwise, if we allow this relationship to change over time arbitrarily, then it is not
possible to understand much about it.

* At a more tangible level, we could say that when a process is stationary, we know
that the first and the second moments are stationary (mean and variance).

» If a process is nonstationary, then we cannot expect to make any inference, we would
have what we call “spurious regressions”.



Stationarity and nonstationary time series

Weakly dependent time series

Apart from stationarity, we also need fo assume some sort of weekly dependence. A
stationarity time series process {x,:t = 1,2, ... } is said to be weakly dependent if x; and
Xr+n are almost independent as h increases.

In simple words, we say that Corr(x;, x;+p) tends to 0 as h tends to infinite
(asymptotically uncorrelated).

This weak dependence, even if difficult to understand, replaces the assumption of random
sampling -implying the law of large numbers LLN and the central limit theorem (CLT)-.

Stationarity and weakly dependence are key to justify the use of OLS and be able to make
inference.



Stationarity and nonstationary time series

Probably the most popular example of a weakly dependent process is the following:

Ve= P1Viqt 6, t=12,.. (1)

The starting point in the sequence is y, (at t=0), and {e,:t=1, 2,...} is an i.d.d sequence with zero
mean and variance 2. Also, we assume that e, are independent of y,, and E(y,) = 0.

This process is called an autoregressive process of order one [AR(1)].

What do we need for this model to be weakly dependent?

We need the stability condition, this is |p4| < 1. This implies that {y,} is a stable AR(1).



Stationarity and nonstationary time series

To fit an autoregressive model on R is quite simple... let just take a break and try it...

Remember our data for air passengers?
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So, what happen if we try to fit an
AR(1) model into this data?
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Figure 1: Air Passengers (retrieved from the R database)



Stationarity and nonstationary time series

Well, this is what we get...

It looks like there is some room for
improvement...

Do you think this would improve if we
fit an AR(2)?

AirPassengers

Y If we think of the value estimated for
L ‘ | | | ‘ beta in the AR(1). Would this process
1950 1952 1954 1956 1958 1960 be weakly dependent?
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Figure 2: Air Passengers vs AR(1) fitted model



Asymptotic properties of OLS

* As we stated in Lecture 1, sometimes not all the classical linear model assumptions
hold, in which case we must appeal to large sample properties of OLS.

* These assumptions, you will see, have a similar flavor to the ones we already know.

Assumption 1’: Linearity and weak dependence

Here we assume the model is just as in Assumption I, but we add that {(x;,y):t =12, ..}
is stationary and weakly dependent. In particular, the LLN and the CLT can be applied to sample
averages.

» The important extra assumption here is weakly dependence, which is required on both
x¢ and y; and certainly puts resfrictions on the joint distribution.



Asymptotic properties of OLS

Assumption 2’: No perfect collinearity

Do not worry, this is the same as in Lecture 1.
E(u, /X) =0, t=12,..n

Assumpftion 3°: Zero conditional mean

The explanatory variables Xy = (Xp, X, = Xe) Qre conft raneously exogenous. This means
Elug/x] = 0.

« Interestingly, this is a much weaker assumption than Assumption 3 from Lecture 1
because it puts no restrictions on the relationship between u, and the explanatory

variables on other periods.

* Since we assume stationarity, if exogeneity holds for one period, then it holds for all of
them.



Asymptotic properties of OLS

Consistency of OLS
Remember that under Assumptions 1, 2 and 3 in Lecture 1 our estimator was unbiased? Well, here we
talk about consistency.

Indeed, if Assumptions 1°, 2’ and 3’ hold, we say that our OLS estimators are consistent. This means
that plim By = B;,j = 0,1,-..k.

The simplest way to understand consistency is by thinking that our estimator tends to the true
parameter as the sample increases and tends fo infinite.



Asymptotic properties of OLS

Assumption 4’°: Homoskedasticity

The errors are contemporaneously homoscedastic, which means that Var (u:|x,) = 62
. ms. . .

Assumption 5°: No serial corrclation Var(u,/X) = Var(,/X) = 62,t=1,2, ...,n

Forallt # s, E(uuu|xx.) = 0. Corr(u,u; /X)=0

» It looks like these conditions are less restrictive m. Lecture 1.
* For instance, in Assumption 4’ the ction holds only for time t.

* The same happens with Assumption 5°, since we condition only on the variables
coinciding with u; and u..



Asymptotic properties of OLS

Asymptotic normality of OLS

Under assumptions 1°-5’, the OLS estimators are asymptotically normally distributed. Further, the usual
OLS standard errors, t statistics and F statistics are asymptotically valid.



Highly persistent time series

*  What happen if we violate some of the assumptions we saw in Lecture 1 and the
data is not weakly dependent?

* Basically, we are asking ourselves what should we do if our data is highly persistent or
strongly dependent.

* Remember that we just saw that the stability condition for am AR(1) process
requires that [p;] < 1?

* What would happen if |p4| = 1?



Highly persistent time series

A quite popular persistent time series is the so-called Random Walk (RW):

Ye = Ye-1t+e, t=12,.. (1)

This process is called RW because y; depends on a zero mean random variable
i]].dq)endeﬂt from Yt—1-

* This makes the value at each t completely random.
* This is why the process is often referred as a drunkard’s walk.

* So, how does this process look like?



Highly persistent time series

RW process

Let us move to R for a second
5 and see whether we get the
- same simulations...

t

Figure 3: Two different realizations of a random walk



Highly persistent time series

* The problem with random walk process is that they are highly persistent.

* In consequence, it becomes impossible to make inference, since the best guess for
tomorrow’s value of the variable (or in 30 years time), will always be today.

» The problem is that, since |p4| = 1, then the importance of today’s values for the
variable remain determinant while with |p4| < 1, the weight of today values decrease
over time.

*  When we talk about RW processes, we are in fact talking about a specific case of what
we called wunit root processes!

* So, what do we have to do when we work with highly persistent data?



Transformation on highly persistent time series

First differences

« If a non-stationary process is integrated of order 1 -I(1)-, that means that the first
difference of that process will be stationary.

* Forget about the technicalities, think of our random walk:

Ve = Yeate,t=12.. (2)

» It is quite straightforward to see that the first difference of this process is stationary.
Look:

YVe— Vi1 = Ayp =6, t=12,.. 3)



Transformation on highly persistent time series

*  When we suspect that our series are non-stationary, it is a good idea to differentiate it,
so to get a stationary process.

* If we work with logs, for example, we get:

Alog(ye) = log(y:) — log(¥-1) 4

Alog(¥e) = (Ve—Ye-1)/Ye-1 (5)

* This means that, quite simply, we can directly work with the rates of variation of a
variable.



Transformation on highly persistent time series

* Another good thing of working with differences, is that it removes any trend in the
data.

* Remember when we talked about detrending? We said we could include a trend in the
regression.

* Well, working with first differences is another good way for detrend the data.

*  Why don’t we see an example?



Transformation on highly persistent time series
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Figure 4: Air Passengers (retrieved from the R database) Figure 5: Air Passengers (first differences)



Transformation on highly persistent time series

* Normally, when working with time series, you may find the data in levels and in
differences.

* Check, for instance, https://fred.stlouisfed.org/series/GDP.

* In these cases, you may decide whether to work with differences or not, depending on
the stationarity of the series.

* Is there any formal procedure to check the stationarity of the series?

* Let us check a popular unit root test...
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Unit root tests

* First, we need to understand that there are many unit root tests we could perform...
* Believe me that a good unit root test is the Augmented Dickey-Fuller test (ADF).
* The Dickey-Fuller test the null hypothesis that a unit root process is present in our data.

* Basically, if we run the test and we reject the null hypothesis, then we can be fairly
sure that the series is stationary, and we can run our models.

* Let us study the ADF formally...



Unit root tests

* Think of the following AR(1) process:

Ye =Q+pYe-1 + & (6)
* The ADF test consist of running the following equation:

Ayr =0+ Bt+ yyi—q +61AY 1+ o+ Gy 1AYi g1 + & @

Where o is a constant, f is a coefficient on a time trend, p is the lag order of the
autoregressive process and 6;= p-1. Note that when a=0 and =0, then we are in the

presence of a typical RW process.

Note that the hypothesis we test is whether y=0 (stationarity), against the alternative of
¥ < 0 (non-stationarity).



Unit root tests

Note that the implementation of the ADF allows for three options:

* Include a constant or not
* Include a trend
* Include lags

A visual inspection of the data is key in order to choose the right selection and
understand with what kind of data we are dealing.

Let us move to R for a bit and prepare for our seminar...



ARIMA models

* ARIMA models are quite popular univariate timer series models.
* Based on the Box-Jenkins theoretical framework.

* In order to understand ARIMA models, we need to think about three parameters (p, d and
q):

ARIMA(p, d, q)

/

Autoregressive part _
: P Integration (differencing) Moving average



ARIMA models

* Each parameter tells us the order of the process.
* Remember that working with time series requires the data to be stationary.

* In consequence, if the data to is not stationary, when working with typical functions R
will perform this operation for you.

* Only then the data is usable you will be able to identify the other two parameters.

* Do not worry, we will go over a typical ARIMA model on R together! However, let us
see some examples:



ARIMA models

Some examples:

v

Ve = Bo+ B1ye-11+ U

ARIMA1.0,0)

v

« ARIMA(1.0.1) Ve = Qo+ 1Y+ 61 U1 U

Ye= o+ 01U 1+ u;

v

* ARIMA(0,0.1)

« ARIMA(2.0.1) Ye= o+ B1Yi-1+B2Yi—2 + 61U Hu;

v

« ARIMA(1.0.2) Ve = Qo+ B1Ye—1 01U 1+ Su o tu;

v




ARIMA models

ARIMA models are quite flexible and allow for different combinations

We need to inspect the . | Through a function that
series to have an idea of Some functions help us employs the Kalman-

) . choose the right structure .
the correct specification & Filter, we can have good
forecasts!



ARIMA models

ETS

Univariate models

v

ARIMA models

Multivariate models

v

Vector autoregressive models (VAR)

l

Structural VAR



Main takeaways

* What is stationarity? What is weekly dependence? Why are they important?

* What does it mean asymptotic consistency?

*  What is a R-W process? Is it stationary? What is the problem about this process?
* What test can we use to test stationarity? What is the equation for this test?

* How can we deal with non-stationary data?

*  When do we use ARIMA models? What do their parameters represent?



Seminar 3



Seminar 3

Using data on CPI (you can retrieve it from our course materials), proceed to:

1. Load the data and plot the time series. Describe it briefly in terms of the existence of trends, constants and preliminary
ideas of stationarity (1 point).

2. Perform an ADF test and report the results. Perform the test both with and without a trend, and using 0, 1 and 12 lags.
Interpret them briefly and justify which test applies in your opinion (1 point).

3. Differentiate the data and compare it to the original series. Plot both of them and describe them (1 point).

4.  Perform an ADF on the new differentiated series. Explain whether now the series is stationary. (1 point).

5. Remember the AirPassenger dataset from last week? Well, estimate an ARIMA model using the auto.arima() function. Use
both the quick and the more complex option (using stepwise, trace and approximation options for your convenience). What
model does the ARIMA function suggest? Do the results change when using these latter options? Produce a forecast for the

next year with both models identified. (1 point)

6.  Deliver the codes and a brief report before March 15. (1 point)



