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Stationarity and nonstationary time series 



Stationarity and nonstationary time series 

Why is stationarity so important? 

 

• When we want to understand the relationship between variables, we need to have some 

kind of stability. 

 

• Otherwise, if we allow this relationship to change over time arbitrarily, then it is not 

possible to understand much about it. 

 

• At a more tangible level, we could say that when a process is stationary, we know 

that the first and the second moments are stationary (mean and variance).  

 

• If a process is nonstationary, then we cannot expect to make any inference, we would 

have what we call “spurious regressions”. 



Stationarity and nonstationary time series 



Stationarity and nonstationary time series 

Probably the most popular example of a weakly dependent process is the following: 

 

This process is called an autoregressive process of order one [AR(1)]. 

What do we need for this model to be weakly dependent?  



Stationarity and nonstationary time series 

To fit an autoregressive model on R is quite simple… let just take a break and try it… 

 

Remember our data for air passengers? 

Figure 1: Air Passengers (retrieved from the R database) 

So, what happen if we try to fit an 

AR(1) model into this data? 



Stationarity and nonstationary time series 

Well, this is what we get… 

Figure 2: Air Passengers vs AR(1) fitted model 

It looks like there is some room for 

improvement… 

 

Do you think this would improve if we 

fit an AR(2)? 

 

If we think of the value estimated for 

beta in the AR(1). Would this process 

be weakly dependent?  

 

 



Asymptotic properties of OLS 

• As we stated in Lecture 1, sometimes not all the classical linear model assumptions 

hold, in which case we must appeal to large sample properties of OLS.  

 

• These assumptions, you will see, have a similar flavor to the ones we already know. 



Asymptotic properties of OLS 

Assumption 2’: No perfect collinearity 

 

Do not worry, this is the same as in Lecture 1. 



Asymptotic properties of OLS 



Asymptotic properties of OLS 



Asymptotic properties of OLS 

Asymptotic normality of OLS 

 

 

Under assumptions 1’-5’, the OLS estimators are asymptotically normally distributed. Further, the usual 

OLS standard errors, t statistics and F statistics are asymptotically valid. 



Highly persistent time series 

• What happen if we violate some of the assumptions we saw in Lecture 1 and the 

data is not weakly dependent? 

• Basically, we are asking ourselves what should we do if our data is highly persistent or 

strongly dependent. 



Highly persistent time series 

• A quite popular persistent time series is the so-called Random Walk (RW): 



Highly persistent time series 

Let us move to R for a second 

and see whether we get the 

same simulations… 

Figure 3: Two different realizations of a random walk  



Highly persistent time series 



Transformation on highly persistent time series 

First differences 

• If a non-stationary process is integrated of order 1 -I(1)-, that means that the first 

difference of that process will be stationary. 

 

• Forget about the technicalities, think of our random walk: 

• It is quite straightforward to see that the first difference of this process is stationary. 

Look: 



Transformation on highly persistent time series 

• When we suspect that our series are non-stationary, it is a good idea to differentiate it, 

so to get a stationary process. 

 

• If we work with logs, for example, we get: 

 

• This means that, quite simply, we can directly work with the rates of variation of a 

variable.  

 



Transformation on highly persistent time series 

• Another good thing of working with differences, is that it removes any trend in the 

data. 

 

• Remember when we talked about detrending? We said we could include a trend in the 

regression. 

• Well, working with first differences is another good way for detrend the data. 

 

• Why don’t we see an example? 

 



Transformation on highly persistent time series 

Figure 4: Air Passengers (retrieved from the R database) Figure 5: Air Passengers (first differences) 



Transformation on highly persistent time series 

• Normally, when working with time series, you may find the data in levels and in 

differences. 

 

• Check, for instance, https://fred.stlouisfed.org/series/GDP. 

 

• In these cases, you may decide whether to work with differences or not, depending on 

the stationarity of the series. 

 

• Is there any formal procedure to check the stationarity of the series? 

 

• Let us check a popular unit root test… 
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Unit root tests 

• First, we need to understand that there are many unit root tests we could perform… 

 

• Believe me that a good unit root test is the Augmented Dickey-Fuller test (ADF). 

 

• The Dickey-Fuller test the null hypothesis that a unit root process is present in our data. 

 

• Basically, if we run the test and we reject the null hypothesis, then we can be fairly 

sure that the series is stationary, and we can run our models. 

 

• Let us study the ADF formally… 



Unit root tests 

• The ADF test consist of running the following equation: 

• Think of the following AR(1) process: 



Unit root tests 

Note that the implementation of the ADF allows for three options: 

• Include a constant or not 

 

• Include a trend 

 

• Include lags 

 

A visual inspection of the data is key in order to choose the right selection and 

understand with what kind of data we are dealing. 

 

Let us move to R for a bit and prepare for our seminar… 



ARIMA models 

 

• ARIMA models are quite popular univariate timer series models. 

 

• Based on the Box-Jenkins theoretical framework.  

 

• In order to understand ARIMA models, we need to think about three parameters (p, d and 

q): 

 

ARIMA(p, d, q) 

Autoregressive part 
Integration (differencing) 

Moving average 



ARIMA models 

 

• Each parameter tells us the order of the process. 

 

• Remember that working with time series requires the data to be stationary. 

 

• In consequence, if the data to is not stationary, when working with typical functions R 

will perform this operation for you. 

 

• Only then the data is usable you will be able to identify the other two parameters. 

 

• Do not worry, we will go over a typical ARIMA model on R together! However, let us 

see some examples:  

 



ARIMA models 

Some examples:  

• ARIMA(1,0,0)  

 

• ARIMA(1,0,1) 

 

• ARIMA(0,0,1) 

 

• ARIMA(2,0,1) 

 

• ARIMA(1,0,2) 

 



ARIMA models 

ARIMA models are quite flexible and allow for different combinations 

We need to inspect the 

series to have an idea of 

the correct specification 

Some functions help us 

choose the right structure 

Through a function that 

employs the Kalman-

Filter, we can have good 

forecasts! 



ARIMA models 

Univariate models 

ETS ARIMA models 

Multivariate models 

Vector autoregressive models (VAR) 

Structural VAR 



Main takeaways 

• What is stationarity? What is weekly dependence? Why are they important? 

 

• What does it mean asymptotic consistency? 

 

• What is a R-W process? Is it stationary? What is the problem about this process? 

 

• What test can we use to test stationarity? What is the equation for this test? 

 

• How can we deal with non-stationary data? 

 

• When do we use ARIMA models? What do their parameters represent? 

 

 



Seminar 3 

 

 

 
 

 
 
 
 
 
 
 



Seminar 3 

• Using data on CPI (you can retrieve it from our course materials), proceed to: 

 

1. Load the data and plot the time series. Describe it briefly in terms of the existence of trends, constants and preliminary 

ideas of stationarity (1 point). 

 

2. Perform an ADF test and report the results. Perform the test both with and without a trend, and using 0, 1 and 12 lags. 

Interpret them briefly and justify which test applies in your opinion (1 point). 

 

3. Differentiate the data and compare it to the original series. Plot both of them and describe them (1 point). 

 

4. Perform an ADF on the new differentiated series. Explain whether now the series is stationary. (1 point). 

 

5. Remember the AirPassenger dataset from last week? Well, estimate an ARIMA model using the auto.arima() function. Use 

both the quick and the more complex option (using stepwise, trace and approximation options for your convenience).  What 

model does the ARIMA function suggest? Do the results change when using these latter options? Produce a forecast for the 

next year with both models identified. (1 point) 

 

6. Deliver the codes and a brief report before March 15. (1 point) 


