PORTFOLIO THEORY - EXAM 6/6/2024

 Dr. Andrea Rigamonti

 Dr. Andrea Rigamonti}

EXERCISE 1

In a perfectly competitive market where the interest rate r remains constant over time, there are two securities: A and B.

A pays 990 euro after one year and it costs 900 euro.
If B pays 1500 euro after two years, at what price can you buy it on the market?

The interest rate is:

$$
\begin{aligned}
& 900=\frac{990}{1+r} \\
& r=\frac{90}{900}=0.1
\end{aligned}
$$

Since the interest rate is 10% and we are in a perfect market, the price of B has to be:

$$
P_{B}=\frac{1500}{(1+r)^{2}}=\frac{1500}{(1+0.1)^{2}}=1239.669
$$

EXERCISE 2

The market portfolio has an expected return of 5\%, and the risk-free rate is 1\%. Suppose that the conditions for the CAPM are fully respected. The expected return of a portfolio in which 40% of the wealth if placed in Acme stocks and 60% in an ETF that replicates the market portfolio with zero tracking error is 7%. What is the beta of the Acme stocks?

First, we determine the beta of the portfolio:

$$
\begin{gathered}
E\left[R_{P}\right]=R_{f}+\beta_{P} *\left(E\left[R_{M}\right]-R_{f}\right) \\
0.07=0.01+\beta_{P} *(0.05-0.01) \\
0.06=0.04 \beta_{P} \\
\beta_{P}=\frac{0.06}{0.04}=1.5
\end{gathered}
$$

The beta of a portfolio is equal to the weighted average of the beta of its components. The beta of the ETF is equal to 1 (because it replicates the market portfolio). Therefore, the beta of the Acme stocks is:

$$
1.5=0.4 * \beta_{\text {Acme }}+0.6 * 1
$$

$$
\begin{gathered}
0.9=0.4 * \beta_{\text {Acme }} \\
\beta_{\text {Acme }}=\frac{0.9}{0.4}=2.25
\end{gathered}
$$

EXERCISE 3

There is a mean-variance utility investor with risk-aversion coefficient $\gamma=5$, and the asset menu has two risky asset and one risk-free asset. The mean and covariance matrix of the excess returns of the two risky assets are:

$$
\mu=\binom{0.01}{0.008} \quad \Sigma=\left[\begin{array}{ll}
0.005 & 0.002 \\
0.002 & 0.003
\end{array}\right]
$$

Compute the weights for $1 / \mathrm{N}$ portfolio that optimally allocates the wealth between the risky assets and the risk-free asset.

We compute the weights for the risky assets:

$$
\begin{aligned}
& w_{1 / N}=\frac{1}{\gamma} \frac{\mathbf{1}^{\prime} \boldsymbol{\mu}}{\mathbf{1}^{\prime} \sum \mathbf{1}} \mathbf{1} \\
& =\frac{1}{5} \frac{\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{c}
0.01 \\
0.008
\end{array}\right]}{\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{ll}
0.005 & 0.002 \\
0.002 & 0.003
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\frac{1}{5} \frac{1 * 0.01+1 * 0.008}{[1 * 0.005+1 * 0.002 \quad 1 * 0.002+1 * 0.003]\left[\begin{array}{l}
1 \\
1
\end{array}\right]}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{5} \frac{0.018}{0.007 * 1+0.005 * 1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{5} \frac{0.018}{0.012}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \approx \frac{1}{5} * 1.5\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\frac{1}{5} *\left[\begin{array}{l}
1.5 \\
1.5
\end{array}\right] \approx\left[\begin{array}{l}
0.3 \\
0.3
\end{array}\right]
\end{aligned}
$$

The two risky assets get a weight of 0.3 each, so the weight of the risk-free asset is:

$$
1-(0.3 * 2)=0.4
$$

EXERCISE 4

Given the following series of returns
$0.05,-0.02,-0.01,0.1$
and the following series of risk-free rates
$0.005, ~ 0.005, ~ 0, ~ 0$

Compute:

1. The Sharpe ratio
2. The Sortino ratio for an investor that sets the benchmark equal to zero
3. The Sharpe ratio is given by:

$$
S R=\frac{\bar{R}-R_{f}}{\sigma}
$$

First we compute the excess return:

$$
\begin{gathered}
0.05-0.005=0.045 \\
-0.02-0.005=-0.025 \\
-0.01-0=-0.01 \\
0.1-0=0.1
\end{gathered}
$$

Then we compute the mean excess return and the standard deviation of excess returns:

$$
\begin{gathered}
\overline{R_{e x c}}=\frac{0.045-0.025-0.01+0.1}{4}=0.0275 \\
=\frac{(0.045-0.0275)^{2}+(-0.025-0.0275)^{2}+(-0.01-0.0275)^{2}+(0.1-0.0275)^{2}}{3} \\
\sigma^{2}=\frac{1}{T-1} \sum_{t=1}^{T}\left(R_{\text {exc,t }}-\overline{R_{e x c}}\right)^{2} \\
\approx \frac{0.0003+0.0028+0.0014+0.0053}{3} \approx 0.0032 \\
\sigma=\sqrt{0.00425} \approx 0.0566
\end{gathered}
$$

So the Sharpe ratio is:

$$
S R=\frac{0.0275}{0.0566} \approx 0.48
$$

2. As the investor sets the benchmark equal to zero, we can simply use the given returns to compute the semivariance:

$$
\begin{gathered}
\sigma_{B}^{2}=\frac{1}{T} \sum_{t=1}^{T}\left[\operatorname{Min}\left(R_{t}-B, 0\right)\right]^{2}=\frac{1}{4}\left[0+(-0.02)^{2}+(-0.01)^{2}+0\right]= \\
=\frac{1}{4} 0.0005=0.00025
\end{gathered}
$$

Then we compute the downside deviation:

$$
\sigma_{B}=\sqrt{0.00025} \approx 0.0158
$$

Finally we need the mean return:

$$
\bar{R}=\frac{0.05-0.02-0.01+0.1}{4}=\frac{0.12}{4}=0.03
$$

Now we can compute the Sortino ratio:

$$
\text { Sortino }=\frac{\bar{R}-B}{\sigma_{B}}=\frac{0.03-0}{0.0158} \approx 1.899
$$

EXERCISE 5

Suppose the assumptions of the CAPM are fully respected.

- Can you show on the graph the fraction of volatility of IBM stocks for which the investors get compensated?
- How is the line passing through the "T-Bills" and the "Market Portfolio" called?

The line is called Capital Market Line.

EXERCISE 6

1. How does the price of a bond change right after a coupon is paid?
2. Assume the law of one price holds. A zero-coupon bond that pays 100 euro after one year costs 90 euro. What is the cost of a zero-coupon bond that pays 150 euro after one year?
3. If an portfolio manages to achieve returns that are not explained by its beta, the Jensen alpha of this portfolio is lower, equal, or greater than zero?
4. In an efficient market where the annual interest rate is always equal to 5%, what is the price of a security that pays the owner 100 euro once a year forever?
5. We want to estimate the Ledoit \& Wolf shrinkage covariance matrix of three assets whose variances are $0.02,0.03$ and 0.01 . Write the target matrix toward which the sample covariance matrix gets shrunk.
6. The price of the bond drops by the amount of the coupon.
7. It costs $90 \times 1.5=135$ euro.
8. It is higher than 0 .
9. It is a perpetuity. Its price is $P=\frac{100}{0.05}=2000$ euro
10. The target matrix is a diagonal matrix whose elements on the diagonal are the average of the sample variances:

$$
\left[\begin{array}{ccc}
0.02 & 0 & 0 \\
0 & 0.02 & 0 \\
0 & 0 & 0.02
\end{array}\right]
$$

