PORTFOLIO THEORY - EXERCISES 07/05/2024

Dr. Andrea Rigamonti

EXERCISE 1

The vector of weights and the covariance matrix of a portfolio with two assets are:

$$
\boldsymbol{w}=\left[\begin{array}{l}
0.6 \\
0.4
\end{array}\right] \quad \boldsymbol{\Sigma}=\left[\begin{array}{ll}
0.002 & 0.001 \\
0.001 & 0.003
\end{array}\right]
$$

Compute, using matrix form, the variance of the portfolio.

$$
\begin{aligned}
& \operatorname{Var}\left(R_{P}\right)=\left[\begin{array}{ll}
0.6 & 0.4
\end{array}\right]\left[\begin{array}{ll}
0.002 & 0.001 \\
0.001 & 0.003
\end{array}\right]\left[\begin{array}{l}
0.6 \\
0.4
\end{array}\right]= \\
& {\left[\begin{array}{lll}
0.6 * 0.002+0.4 * 0.001 & 0.6 * 0.001+0.4 * 0.003
\end{array}\right]\left[\begin{array}{c}
0.6 \\
0.4
\end{array}\right]=} \\
& {\left[\begin{array}{ll}
0.0016 & 0.0018
\end{array}\right]\left[\begin{array}{l}
0.6 \\
0.4
\end{array}\right]=0.0016 * 0.6+0.0018 * 0.4=0.00168}
\end{aligned}
$$

EXERCISE 2

An investor with risk-aversion $\gamma=4$ invests in a portfolio of one risk-free asset and two risky assets with mean excess return, covariance matrix and inverse covariance matrix equal to:

$$
\mu=\binom{0.006}{0.004} \quad \Sigma=\left[\begin{array}{cc}
0.003 & 0.002 \\
0.002 & 0.0015
\end{array}\right] \quad \Sigma^{-1} \approx\left[\begin{array}{cc}
3000 & -4000 \\
-4000 & 6000
\end{array}\right]
$$

Compute the portfolio weights.

The weights for the risky assets are:

$$
\begin{gathered}
\boldsymbol{w}_{\boldsymbol{m} \boldsymbol{v}}=\frac{1}{\gamma} \Sigma^{-\mathbf{1}} \boldsymbol{\mu}=\frac{1}{4}\left[\begin{array}{cc}
3000 & -4000 \\
-4000 & 6000
\end{array}\right]\binom{0.006}{0.004} \\
=\left[\begin{array}{cc}
750 & -1000 \\
-1000 & 1500
\end{array}\right]\binom{0.006}{0.004}= \\
{\left[\begin{array}{c}
750 * 0.006+(-1000) * 0.004 \\
-1000 * 0.006+1500 * 0.004
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
0
\end{array}\right]}
\end{gathered}
$$

The weight for the risk-free asset is: $1-0.5=0.5$

EXERCISE 3

Given two risky assets with mean return, covariance matrix and inverse covariance matrix equal to

$$
\mu=\binom{0.007}{0.004} \quad \Sigma=\left[\begin{array}{ll}
0.004 & 0.002 \\
0.002 & 0.003
\end{array}\right] \quad \Sigma^{-1}=\left[\begin{array}{cc}
375 & -250 \\
-250 & 500
\end{array}\right]
$$

compute the weights for the minimum variance portfolio.

The weights for the risky assets are:

$$
\begin{aligned}
& w_{v}=\frac{1}{\mathbf{1}^{\prime} \sum^{\mathbf{- 1}} \mathbf{1}} \Sigma^{-\mathbf{1}} \mathbf{1}=\frac{1}{\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left[\begin{array}{cc}
375 & -250 \\
-250 & 500
\end{array}\right]\binom{1}{1}}\left[\begin{array}{cc}
375 & -250 \\
-250 & 500
\end{array}\right]\binom{1}{1} \\
& = \\
& \left.\frac{1}{[1 * 375+1 *(-250)} 11 *(-250)+1 * 500\right]\binom{1}{1}\left[\begin{array}{c}
375 * 1+(-250) * 1 \\
-250 * 1+500 * 1
\end{array}\right] \\
& = \\
& \left.\frac{1}{[125} \quad 250\right]\binom{1}{1}\left[\begin{array}{l}
125 \\
250
\end{array}\right]=\frac{1}{125+250}\left[\begin{array}{l}
125 \\
250
\end{array}\right]=\frac{1}{375}\left[\begin{array}{l}
125 \\
250
\end{array}\right] \approx\left[\begin{array}{c}
0.33 \\
0.67
\end{array}\right]
\end{aligned}
$$

EXERCISE 4

Write the first order conditions for the problem of computing portfolio weights that minimize the variance given a target return of 1% and a riskfree rate of 0.1\%:

$$
\begin{gathered}
\min _{\boldsymbol{w}} \boldsymbol{w}^{\prime} \sum \boldsymbol{w} \\
\text { subject to: } \\
\boldsymbol{w}^{\prime} \boldsymbol{\mu}+\left(1-\boldsymbol{w}^{\prime} \mathbf{1}\right) 0.001=0.01
\end{gathered}
$$

First we write the Lagrangian function:

$$
\begin{aligned}
L(\boldsymbol{w}, \lambda) & =\boldsymbol{w}^{\prime} \sum \boldsymbol{w}+\lambda\left[0.01-\boldsymbol{w}^{\prime} \boldsymbol{\mu}-\left(1-\boldsymbol{w}^{\prime} \mathbf{1}\right) 0.001\right] \\
& =\boldsymbol{w}^{\prime} \sum \boldsymbol{w}+\lambda\left[0.009-\boldsymbol{w}^{\prime} \boldsymbol{\mu}+\boldsymbol{w}^{\prime} \mathbf{0 . 0 0 1}\right]
\end{aligned}
$$

The first order conditions are the two partial derivatives of the Lagrangian with respect to \boldsymbol{w} and λ set equal to zero:

$$
\begin{gathered}
\frac{\partial L}{\partial \boldsymbol{w}}=2 \sum \boldsymbol{w}-\lambda \boldsymbol{\mu}+\lambda \mathbf{0 . 0 0 1}=\mathbf{0} \\
\frac{\partial L}{\partial \lambda}=0.009-\boldsymbol{w}^{\prime} \boldsymbol{\mu}-\boldsymbol{w}^{\prime} \mathbf{0 . 0 0 1}=0
\end{gathered}
$$

EXERCISE 5

Given a vector of theoretically optimal weights

$$
\boldsymbol{w}=\left[\begin{array}{c}
-0.2 \\
0.4 \\
0.5 \\
0.3
\end{array}\right]
$$

compute the weights \boldsymbol{w}^{*} of the shrinkage portfolio obtained as

$$
\boldsymbol{w}^{*}=\delta \boldsymbol{w}_{\text {NAIVE }}+(1-\delta) \boldsymbol{w}
$$

with shrinkage parameter $\delta=0.4$

The weights of the shrinkage portfolio are:

$$
\boldsymbol{w}^{*}=0.4\left[\begin{array}{l}
0.25 \\
0.25 \\
0.25 \\
0.25
\end{array}\right]+0.6\left[\begin{array}{c}
-0.2 \\
0.4 \\
0.5 \\
0.3
\end{array}\right]=\left[\begin{array}{l}
0.1 \\
0.1 \\
0.1 \\
0.1
\end{array}\right]+\left[\begin{array}{c}
-0.12 \\
0.24 \\
0.3 \\
0.18
\end{array}\right]=\left[\begin{array}{c}
-0.02 \\
0.34 \\
0.4 \\
0.28
\end{array}\right]
$$

EXERCISE 6

Given the following series of returns:
0.05
0.02 ,
$0.03,0$,
0.005

Compute the downside deviation for an investor that sets the benchmark $B=0.01$

We compute the semivariance:

$$
\begin{gathered}
\sigma_{B}^{2}=\frac{1}{6}\left[(-0.01-0.01)^{2}+(0-0.01)^{2}+(0.005-0.01)^{2}\right] \\
=\frac{1}{6} 0.000525=0.0000875
\end{gathered}
$$

The downside deviation is simply the square root of the semivariance:

$$
\sigma_{B}=\sqrt{0.0000875}=0.009354143
$$

EXERCISE 7

Consider the set of weights

$$
w_{t-1}=\left[\begin{array}{c}
0.3 \\
0.7
\end{array}\right] \quad w_{t}=\left[\begin{array}{c}
0.4 \\
0.6
\end{array}\right]
$$

Compute the turnover taking into account the effect of the realized returns $R_{t}=\left[\begin{array}{l}0.1 \\ 0.2\end{array}\right]$

We have to use the formula

$$
T O_{t}=\sum_{i=1}^{N}\left|w_{i, t}-w_{i, t-1}^{+}\right|
$$

To apply it correctly we first need to compute $w_{i, t-1}^{+}$.
The first asset experienced a $+10 \%$ returns, therefore we have $0.3+$ $0.3 \times 0.1=0.33$

The second asset experienced a $+20 \%$ returns, therefore we have $0.7+$ $0.7 \times 0.2=0.84$

The weights now sum to 1.17 . We need to normalize them so that they sum up to 1 again:

$$
w_{i, t-1}^{+}=\left[\begin{array}{l}
\frac{0.33}{1.17} \\
\frac{0.84}{1.17}
\end{array}\right] \approx\left[\begin{array}{l}
0.28 \\
0.72
\end{array}\right]
$$

Now we can apply the formula and compute the turnover:

$$
T O_{t}=|0.4-0.28|+|0.6-0.72|=0.12+0.12=0.24
$$

This means we need to trade 14% of our wealth in order to update the weights.

