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IMPROVING PORTFOLIO OPTIMIZATION 

Let us consider again the portfolio optimization problem. Whatever metrics we will use to evaluate 
the results, we need to compare them with appropriate benchmarks in order to know if the results 
are satisfying. A benchmark portfolio surprisingly difficult to beat is the one created with a naïve 
1/N rule.1 This portfolio simply assigns equal weights to all the assets in all periods, and therefore 
does not require to estimate any input and to perform any optimization procedure. This is indeed 
one of its main strengths: it is completely immune to estimation errors. Another advantage is that 
it has a very low turnover, which translates into very low transaction costs. 

Another possible benchmark is the market, or more precisely the returns of a large stock market 
index, like the S&P 500. While it is not possible to buy an index, it is possible to buy ETFs. An ETF 
(Exchange-Traded Fund) is a fund that is traded on the financial markets and which tries to replicate 
a certain index. By investing in such fund, the investor can invest in a certain index without having 
to trade al the stocks contained in such index. Stock markets sometimes go through periods of poor 
performance that can last years, but over the long run they provide good returns (in countries with 
a solid  economy). Therefore, such passive investing solution, which also does not require to perform 
estimation and optimization procedures, is another reasonable benchmark (over long enough 
periods of time). 

Basic mean-variance optimization with sample estimates often struggles to beat common 
benchmarks, especially the naïve rule mentioned above. To improve optimization performance we 
need to reduce the severity of the estimation errors in the inputs, and/or reduce the impact of such 
errors on portfolio formation. Plenty of solutions have been proposed. We focus on some of them 
that proved to be effective and not too difficult to apply. 

On the side of parameter estimation, we consider techniques developed to improve the estimation 
of the covariance matrix. While in general the error in the vector of sample means in more severe 
than the error in the sample covariance matrix, solutions proposed to improve over the latter are 
simpler and more effective. Moreover, while the number of parameters in 𝝁 is equal to the number 
of assets 𝑁, the number of parameters in ∑ is equal to 𝑁2. Therefore, as the portfolio gets larger, 
estimation error in ∑ becomes worse much faster than in does in 𝝁, which might jeopardize the 
performance benefit that we theoretically get from a larger 𝑁 thanks to the greater diversification 
potential. 

The approach arguably more successful in dealing with the estimation of the covariance matrix is 
given by shrinkage estimators. Ledoit & Wolf (2004) define the shrinkage estimator 

∑𝑳𝑾 = 𝛿𝑰𝜇𝑠̂ + (1 − 𝛿)∑ 

where ∑ is the usual sample covariance matrix, 𝑰 is the identity matrix, 𝜇𝑠̂ is the average sample 
variance of all the variables (so the product 𝑰𝜇𝑠̂ gives a diagonal matrix whose elements on the 
diagonal are equal to the average sample variance and all the other elements are equal to zero), 
and 𝛿 is the shrinkage parameter whose value is between 0 and 1. 

It is called “shrinkage” estimator because the sample estimate is shrunk toward a target matrix. ∑𝑳𝑾 
is basically the result of a weighted average between the sample covariance matrix and the target 
matrix. The intensity of the shrinkage is controlled by the shrinkage parameter 𝛿. Ledoit and Wolf 

 
1 We will refer to this rule/portfolio as “naive” or “naïve 1/N”, to not confuse it with the 1/N rule we described before. 

However, it is also commonly called simply “1/N” rule/portfolio in the literature. 



(2004) select an optimal value for 𝛿 with a procedure whose details are beyond our scope here. This 
shrunk estimator improves over the sample estimator, which translate in better performance of the 
mean-variance and minimum variance portfolios (and portfolios computed using the covariance 
matrix as input in general). Moreover, it gives a nonsingular covariance matrix even when the 
number of periods 𝑇 used for estimation is smaller than the number of assets 𝑁. The sample 
covariance matrix, on the contrary, in such case is singular and therefore not invertible, which makes 
it impossible to perform the optimization procedures. It is also very easy to use this estimator in 
common statistical environments like R. Hence, it is now standard to use this estimator instead of 
the sample covariance in many applications, including portfolio optimization. 

We now turn to solutions that mitigate the impact of estimation errors on portfolio formation. One 
of such solutions relies on a logic similar to the one we just described, and consists in computing 
shrinkage portfolios. The idea, proposed by Tu and Zhou (2011), is that we can improve over the 
mean-variance portfolio by shrinking it toward the naïve 1/N portfolio. In this way we can combine 
a portfolio that optimizes the weights but suffers from estimation errors with one that is not 
optimized but is also immune from estimation errors, obtaining a portfolio that improves over both. 
The weights of such portfolio are given by 

𝒘∗ = 𝛿𝒘𝑵𝑨𝑰𝑽𝑬 + (1 − 𝛿)𝒘 

where 𝒘𝑵𝑨𝑰𝑽𝑬 is the vector of weights of the naïve 1/N portfolio, 𝒘 is the vector of weights of the 
optimized portfolio (usually the mean-variance portfolio, but can be also other portfolios), and 𝛿 is 
again the parameter that controls the shrinkage intensity. The value of 𝛿 can be chosen using 
optimization rules, heuristics, or cross-validation. 

Another solution to improve over the standard mean-variance portfolio is the grouping strategy 
proposed by Branger et al. (2019). The idea is that since the performance of mean-variance (or 
minimum variance) optimization suffers more and more as 𝑁 increases, due to the growing number 
of parameters to estimate, one could achieve better performance by grouping together the assets 
in a certain number of groups. The optimization procedure is than performed between the groups, 
while within a group the assets are equally weighted. This reduces the dimension of the problem, 
and therefore the number of parameters to estimate. In other words, it is another strategy that 
combines the benefits of the naïve 1/N rule (which is applied within groups) and of optimization 
(which is applied between groups). The stocks can be grouped according to how similar they are in 
terms of estimated mean, variance or beta, and the number of groups can be chosen using 
optimization rules, heuristics, or cross-validation. The higher the number of groups, the closer we 
get to the usual optimization; the smaller the number of groups, the closer we get to the naïve 1/N 
rule. In the extreme case where we only have one group we obtain the naïve 1/N portfolio; in the 
extreme case where the number of groups is equal to N, we get the usual optimized portfolio. 

 


