PORTFOLIO THEORY โ€“ EXERCISES 1 EXERCISE 1 The security S pays 990 euro after eight months and it costs 900 euro. If there is a 20% tax on financial profits and the inflation rate is 2% per year, what is the real annual return paid by security S after taxes? After eight months we earn 990 โˆ’ 900 = 90 euro. On this we have to pay a 20% tax, so we actually earn 90 โˆ’ 90 โˆ— 0.2 = 72 euro The nominal return net of taxes is therefore: ๐‘… = 972 โˆ’ 900 900 = 0.08 = 8% The annual nominal return is: ๐‘…12 = (1 + ๐‘…) 12 8 โ€“ 1 = (1 + 0.08) 3 2 โ€“ 1 โ‰ˆ 0.122 We now need to account for the inflation. The real return is: ๐‘… ๐‘Ÿ = 1 + ๐‘…12 1 + ๐‘– โˆ’ 1 = 1 + 0.122 1 + 0.02 โˆ’ 1 = 0.1 = 10% EXERCISE 2 The log-return of the four assets included in an equally weighted portfolio is: ๐‘Ÿ1 = 0.1, ๐‘Ÿ2 = โˆ’0.06, ๐‘Ÿ3 = 0.07, ๐‘Ÿ4 = 0.05 What is the return of the portfolio? Log-returns are not asset additive. We first need to convert them to simple returns: ๐‘…1 = exp(๐‘Ÿ1) โˆ’ 1 = exp(0.1) โˆ’ 1 = 0.1052 ๐‘…2 = exp(๐‘Ÿ2) โˆ’ 1 = exp(โˆ’0.06) โˆ’ 1 = โˆ’0.0582 ๐‘…3 = exp(๐‘Ÿ3) โˆ’ 1 = exp(0.07) โˆ’ 1 = 0.0725 ๐‘…4 = exp(๐‘Ÿ4) โˆ’ 1 = exp(0.05) โˆ’ 1 = 0.0513 We can now compute the return of the portfolio: ๐‘… ๐‘ = ๐‘ค1 ๐‘…1 + ๐‘ค2 ๐‘…2 + ๐‘ค3 ๐‘…3 + ๐‘ค4 ๐‘…4 = = 0.25 โˆ— 0.1052 + 0.25 โˆ— (โˆ’0.0582) + 0.25 โˆ— 0.0725 + 0.25 โˆ— 0.0513 = 0.0427 EXERCISE 3 The returns of a security over four periods are: ๐‘…๐‘ก=1 = 0.2, ๐‘…๐‘ก=2 = โˆ’0.1, ๐‘…๐‘ก=3 = 0.08, ๐‘…๐‘ก=4 = 0.04 If we invested 1000 euro in this asset at t=0, how much is our investment worth at t=4? The value of the investment is: ๐‘‰4 = ๐‘‰0 + ๐‘‰0 [โˆ(1 + ๐‘…๐‘ก) 4 ๐‘ก=1 โˆ’ 1] = 1000 + 1000[(1 + 0.2)(1 โˆ’ 0.1)(1 + 0.08)(1 + 0.04) โˆ’ 1] โ‰ˆ 1000 + 1000 โˆ— [1.213 โˆ’ 1] = 1213 Alternatively, we can transform the returns in log-returns, which are time-additive: ๐‘Ÿ๐‘ก=1 = ln(๐‘…๐‘ก=1 + 1) = ln(0.2 + 1) โ‰ˆ 0.1823 ๐‘Ÿ๐‘ก=2 = ln(๐‘…๐‘ก=2 + 1) = ln(โˆ’0.1 + 1) โ‰ˆ โˆ’0.1054 ๐‘Ÿ๐‘ก=3 = ln(๐‘…๐‘ก=3 + 1) = ln(0.08 + 1) โ‰ˆ 0.0770 ๐‘Ÿ๐‘ก=4 = ln(๐‘…๐‘ก=4 + 1) = ln(0.04 + 1) โ‰ˆ 0.0392 The cumulative log-return from ๐‘ก = 1 to ๐‘ก = 4 is: ๐‘๐‘ข๐‘š๐‘Ÿ๐‘’๐‘ก1โˆ’4 = 0.1823 โˆ’ 0.1054 + 0.0770 + 0.0392 = 0.1931 We need to convert this into a simple return: ๐‘๐‘ข๐‘š๐‘…๐‘’๐‘ก1โˆ’4 = exp(๐‘๐‘ข๐‘š๐‘Ÿ๐‘’๐‘ก1โˆ’4) โˆ’ 1 = exp(0.1931) โˆ’ 1 โ‰ˆ 0.213 And the value of the investment at ๐‘ก = 4 is therefore: ๐‘‰4 = ๐‘‰0 + ๐‘‰0 โˆ— ๐‘๐‘ข๐‘š๐‘…๐‘’๐‘ก1โˆ’4 = 1000 + 1000 โˆ— 0.231 = 1231 EXERCISE 4 The vector of weights and the covariance matrix of a portfolio with three assets are: ๐’˜ = [ 0.5 0.7 โˆ’0.2 ] ๐œฎ = [ 0.004 0.006 0.003 0.006 0.008 0.007 0.003 0.007 0.005 ] Compute, using matrix form, the variance of the portfolio. We just need to apply the formula: ๐‘‰๐‘Ž๐‘Ÿ(๐‘… ๐‘ƒ) = ๐’˜โ€ฒ ฦฉ๐’˜ = [0.5 0.7 โˆ’0.2] [ 0.004 0.006 0.003 0.006 0.008 0.007 0.003 0.007 0.005 ] [ 0.5 0.7 โˆ’0.2 ] = [0.5 โˆ— 0.004 + 0.7 โˆ— 0.006 โˆ’ 0.2 โˆ— 0.003 0.5 โˆ— 0.006 + 0.7 โˆ— 0.008 โˆ’ 0.2 โˆ— 0.007 0.5 โˆ— 0.003 + 0.7 โˆ— 0.007 โˆ’ 0.2 โˆ— 0.005] [ 0.5 0.7 โˆ’0.2 ] = [0.0056 0.0072 0.0054] [ 0.5 0.7 โˆ’0.2 ] = 0.0056 โˆ— 0.5 + 0.0072 โˆ— 0.7 + 0.0054 โˆ— (โˆ’0.2) = 0.00676 EXERCISE 5 A risky investment is estimated to deliver the following returns. After 9 months: โ€ข ๐‘… = โˆ’0.15 with a 20% probability โ€ข ๐‘… = 0.1 with a 70% probability โ€ข ๐‘… = 0.25 with a 10% probability After 24 months: โ€ข ๐‘… = โˆ’0.2 with a 20% probability โ€ข ๐‘… = 0.15 with a 60% probability โ€ข ๐‘… = 0.3 with a 20% probability The annual inflation rate is 3%. What is the real cumulative expected return after 24 months? First we need to compute the expected return at 9 months and at 24 months. ๐ธ[๐‘…9๐‘š] = โˆ‘ ๐‘ ๐‘… ๐‘… ๐‘… = 0.2 โˆ— (โˆ’0.15) + 0.7 โˆ— 0.1 + 0.1 โˆ— 0.25 = 0.065 ๐ธ[๐‘…24๐‘š] = โˆ‘ ๐‘ ๐‘… ๐‘… ๐‘… = 0.2 โˆ— (โˆ’0.2) + 0.6 โˆ— 0.15 + 0.2 โˆ— 0.3 = 0.11 The cumulative expected return at 24 months is: ๐‘…24๐‘š,๐‘๐‘ข๐‘š = โˆ(1 + ๐‘…๐‘ก) 2 ๐‘ก=1 โˆ’ 1 = (1 + 0.065)(1 + 0.11) โˆ’ 1 โ‰ˆ 0.182 The 24-month inflation rate is: ๐‘–24 = (1 + ๐‘–12)2 โ€“ 1 = (1 + 0.03)2 โ€“ 1 = 0.0609 So the real cumulative expected return after 24 months is: ๐‘… ๐‘Ÿ = 1 + ๐‘… 1 + ๐‘– โˆ’ 1 = 1 + 0.182 1 + 0.0609 โˆ’ 1 โ‰ˆ 0.114 EXERCISE 6 Consider the following series of unadjusted monthly closing prices (in euro) of a stock that undergoes the corporate events indicated next to the price. January: 7 February: 6.5 Dividend of 1 euro per share is paid March: 7.5 April: 7.2 May: 4 2 for 1 stock split June: 4.5 Compute the adjusted stock returns. First, we adjust the prices to account for the stock split: January: 7/2 = 3.5 February: 6.5/2 = 3.25 Dividend: 1/2 = 0.5 March: 7.5/2 = 3.75 April: 7.2/2 = 3.6 May: 4 June: 4.5 Now we compute the returns, accounting for the dividend in February: ๐‘… ๐น๐‘’๐‘ = 3.25 + 0.5 โˆ’ 3.5 3.5 โ‰ˆ 0.071 ๐‘… ๐‘€๐‘Ž๐‘Ÿ = 3.75 โˆ’ 3.25 3.25 โ‰ˆ 0.154 ๐‘… ๐ด๐‘๐‘Ÿ = 3.6 โˆ’ 3.75 3.75 = โˆ’0.04 ๐‘… ๐‘€๐‘Ž๐‘ฆ = 4 โˆ’ 3.6 3.6 โ‰ˆ 0.111 ๐‘…๐ฝ๐‘ข๐‘› = 4.5 โˆ’ 4 4 = 0.125 Alternatively, we can use the Cumulative Adjustment Factor: ๐ถ๐ด๐น๐‘ก = ๐ถ๐ด๐น๐‘กโˆ’1 ร— ๐‘†๐‘๐‘™๐‘–๐‘ก ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘ก ร— (1 + ๐ท๐‘–๐‘ฃ๐‘–๐‘‘๐‘’๐‘›๐‘‘ ๐‘ก ๐‘ƒ๐‘Ÿ๐‘–๐‘๐‘’๐‘ก ) January: 7 ๐ถ๐ด๐น๐ฝ๐‘Ž๐‘› = 1 February: 6.5 ๐ถ๐ด๐น๐น๐‘’๐‘ = 1 ร— 1 ร— (1 + 1 6.5 ) โ‰ˆ 1.1538 March: 7.5 ๐ถ๐ด๐น ๐‘€๐‘Ž๐‘Ÿ = 1.1538 ร— 1 ร— (1 + 0) = 1.1538 April: 7.2 ๐ถ๐ด๐น๐ด๐‘๐‘Ÿ = 1.1538 ร— 1 ร— (1 + 0) = 1.1538 May: 4 ๐ถ๐ด๐น ๐‘€๐‘Ž๐‘ฆ = 1.1538 ร— 2 ร— (1 + 0) = 2.3076 June: 4.5 ๐ถ๐ด๐น๐ฝ๐‘ข๐‘› = 2.3076 ร— 1 ร— (1 + 0) = 2.3076 Now we adjusted the prices: January: 7 โˆ— 1 = 7 February: 6.5 โˆ— 1.1538 = 7.4997 March: 7.5 โˆ— 1.1538 = 8.6535 April: 7.2 โˆ— 1.1538 โ‰ˆ 8.3074 May: 4 โˆ— 2.3076 = 9.2304 June: 4.5 โˆ— 2.3076 = 10.3842 And finally we compute the returns: ๐‘… ๐น๐‘’๐‘ = 7.4997 โˆ’ 7 7 โ‰ˆ 0.071 ๐‘… ๐‘€๐‘Ž๐‘Ÿ = 8.6535 โˆ’ 7.4997 7.4997 โ‰ˆ 0.154 ๐‘… ๐ด๐‘๐‘Ÿ = 8.3074 โˆ’ 8.6535 8.6535 โ‰ˆ โˆ’0.04 ๐‘… ๐‘€๐‘Ž๐‘ฆ = 9.2304 โˆ’ 8.3074 8.3074 โ‰ˆ 0.111 ๐‘…๐ฝ๐‘ข๐‘› = 10.3842 โˆ’ 9.2304 9.2304 = 0.125