PORTFOLIO THEORY – EXERCISES 3 Dr. Andrea Rigamonti EXERCISE 1 An investor with risk-aversion 𝛾 = 4 invests in a portfolio of one risk-free asset and two risky assets whose excess returns have mean vector, covariance matrix and inverse covariance matrix equal to: Β΅ = [ 0.006 0.004 ] 𝚺 = [ 0.003 0.002 0.002 0.0015 ] πšΊβˆ’πŸ β‰ˆ [ 3000 βˆ’4000 βˆ’4000 6000 ] Compute the portfolio weights that maximize mean-variance utility, and the corresponding utility. The weights for the risky assets are: π’˜ 𝑼 = 1 𝛾 πšΊβˆ’πŸ 𝝁 = 1 4 [ 3000 βˆ’4000 βˆ’4000 6000 ] [ 0.006 0.004 ] = [ 750 βˆ’1000 βˆ’1000 1500 ] [ 0.006 0.004 ] = [ 750 βˆ— 0.006 + (βˆ’1000) βˆ— 0.004 βˆ’1000 βˆ— 0.006 + 1500 βˆ— 0.004 ] = [ 0.5 0 ] The weight for the risk-free asset is: 1 βˆ’ 0.5 = 0.5 The formula we used maximizes the utility given by π‘ˆ(π’˜) = π’˜β€²π βˆ’ 𝛾 2 π’˜β€² Ζ©π’˜. Therefore, the utility is: π‘ˆ(π’˜) = π’˜β€²π βˆ’ 𝛾 2 π’˜β€² Ζ©π’˜ = [0.5 0] [ 0.006 0.004 ] βˆ’ 4 2 [0.5 0] [ 0.003 0.002 0.002 0.0015 ] [ 0.5 0 ] = 0.5 βˆ— 0.006 + 0 βˆ— 0.004 βˆ’ 2 βˆ— [0.5 βˆ— 0.003 + 0 βˆ— 0.002 0.5 βˆ— 0.002 + 0 βˆ— 0.0015] [ 0.5 0 ] = 0.003 βˆ’ 2 βˆ— [0.0015 0.001] [ 0.5 0 ] = 0.003 βˆ’ 2 βˆ— 0.0015 βˆ— 0.5 = 0.003 βˆ’ 0.0015 = 0.0015 Equivalently, we can use the formula for the utility of an optimal mean-variance portfolio, which is only valid for a portfolio with optimal weights: π‘ˆ(π’˜ 𝑼) = 1 2𝛾 𝝁′ Ζ©βˆ’πŸ 𝝁 = 1 2 βˆ— 4 [0.006 0.004] [ 3000 βˆ’4000 βˆ’4000 6000 ] [ 0.006 0.004 ] = 1 8 [0.006 βˆ— 3000 + 0.004 βˆ— (βˆ’4000) 0.006 βˆ— (βˆ’4000) + 0.004 βˆ— 6000] [ 0.006 0.004 ] = 1 8 [2 0] [ 0.006 0.004 ] = 1 8 βˆ— 2 βˆ— 0.006 = 0.0015 EXERCISE 2 An investor with risk-aversion 𝛾 = 2 invests in a portfolio of one risk-free asset and two risky assets whose excess returns have mean vector, covariance matrix and inverse covariance matrix equal to: Β΅ = [ 0.005 0.004 ] 𝚺 = [ 0.003 0.002 0.002 0.0015 ] πšΊβˆ’πŸ β‰ˆ [ 3000 βˆ’4000 βˆ’4000 6000 ] Compute the portfolio weights that maximize mean-variance utility given a full-investment constraint. The weights are given by: π’˜ π‘Όβˆ— = Ζ©βˆ’πŸ 𝛾 (𝝁 + 𝛾 βˆ’ 𝝁′ Ζ©βˆ’πŸ 𝟏 πŸβ€²Ζ©βˆ’πŸ 𝟏 𝟏) = 1 2 [ 3000 βˆ’4000 βˆ’4000 6000 ] {[ 0.005 0.004 ] + 2 βˆ’ [0.005 0.004] [ 3000 βˆ’4000 βˆ’4000 6000 ] [ 1 1 ] [1 1] [ 3000 βˆ’4000 βˆ’4000 6000 ] [ 1 1 ] [ 1 1 ]} = [ 1500 βˆ’2000 βˆ’2000 3000 ] {[ 0.005 0.004 ] + 2 βˆ’ [0.005 0.004] [ 3000 βˆ— 1 βˆ’ 4000 βˆ— 1 βˆ’4000 βˆ— 1 + 6000 βˆ— 1 ] [1 1] [ 3000 βˆ— 1 βˆ’ 4000 βˆ— 1 βˆ’4000 βˆ— 1 + 6000 βˆ— 1 ] [ 1 1 ]} = [ 1500 βˆ’2000 βˆ’2000 3000 ] {[ 0.005 0.004 ] + 2 βˆ’ [0.005 0.004] [ βˆ’1000 2000 ] [1 1] [ βˆ’1000 2000 ] [ 1 1 ]} = [ 1500 βˆ’2000 βˆ’2000 3000 ] {[ 0.005 0.004 ] + 2 βˆ’ [0.005 βˆ— (βˆ’1000) + 0.004 βˆ— 2000] βˆ’1000 + 2000 [ 1 1 ]} = [ 1500 βˆ’2000 βˆ’2000 3000 ] {[ 0.005 0.004 ] + βˆ’1 1000 [ 1 1 ]} = [ 1500 βˆ’2000 βˆ’2000 3000 ] {[ 0.005 0.004 ] + [ βˆ’0.001 βˆ’0.001 ]} = [ 1500 βˆ’2000 βˆ’2000 3000 ] [ 0.004 0.003 ] = [ 1500 βˆ— 0.004 βˆ’ 2000 βˆ— 0.003 βˆ’2000 βˆ— 0.004 + 3000 βˆ— 0.003 ] = [ 0 1 ] EXERCISE 3 Given a risk-free asset and two risky assets whose excess returns have mean vector, covariance matrix and inverse covariance matrix equal to Β΅ = [ 0.01 0.008 ] 𝚺 = [ 0.004 0.002 0.002 0.003 ] πšΊβˆ’πŸ = [ 375 βˆ’250 βˆ’250 500 ] compute the weights for the optimal mean-variance portfolio with target return 𝑅𝑒 = 0.01. The weights for the risky assets are: π’˜ π’Žπ’— = 𝑅𝑒 πβ€²πšΊβˆ’πŸ 𝝁 πšΊβˆ’πŸ 𝝁 = 0.01 [0.01 0.008] [ 375 βˆ’250 βˆ’250 500 ] [ 0.01 0.008 ] [ 375 βˆ’250 βˆ’250 500 ] [ 0.01 0.008 ] = 0.01 [0.01 βˆ— 375 + 0.008 βˆ— (βˆ’250) 0.01 βˆ— (βˆ’250) + 0.008 βˆ— 500] [ 0.01 0.008 ] [ 375 βˆ— 0.01 + (βˆ’250) βˆ— 0.008 βˆ’250 βˆ— 0.01 + 500 βˆ— 0.008 ] = 0.01 [1.75 1.5] [ 0.01 0.008 ] [ 1.75 1.5 ] = 0.01 0.0175 + 0.012 [ 1.75 1.5 ] = 0.01 0.0295 [ 1.75 1.5 ] β‰ˆ [ 0.59 0.51 ] The weight for the risk-free asset is 1 βˆ’ (0.59 + 0.51) = βˆ’0.1 EXERCISE 4 Given a risk-free asset and two risky assets whose excess returns have mean vector, covariance matrix and inverse covariance matrix equal to Β΅ = [ 0.01 0.008 ] 𝚺 = [ 0.004 0.002 0.002 0.003 ] πšΊβˆ’πŸ = [ 375 βˆ’250 βˆ’250 500 ] compute the weights for the optimal mean-variance portfolio with target return 𝑅𝑒 = 0.01 given a fullinvestment constraint. The weights are: π’˜ π’Žπ’—βˆ— = Ζ©βˆ’πŸ [ 𝐢𝑅𝑒 βˆ’ 𝐡 𝐴𝐢 βˆ’ 𝐡2 𝝁 + 𝐴 βˆ’ 𝐡𝑅𝑒 𝐴𝐢 βˆ’ 𝐡2 𝟏] where 𝐴 = πβ€²Ζ©βˆ’πŸ 𝝁, 𝐡 = πŸβ€² Ζ©βˆ’πŸ 𝝁 and 𝐢 = πŸβ€² Ζ©βˆ’πŸ 𝟏. First we compute the three scalars: 𝐴 = πβ€²Ζ©βˆ’πŸ 𝝁 = [0.01 0.008] [ 375 βˆ’250 βˆ’250 500 ] [ 0.01 0.008 ] = = [0.01 βˆ— 375 + 0.008 βˆ— (βˆ’250) 0.01 βˆ— (βˆ’250) + 0.008 βˆ— 500] [ 0.01 0.008 ] = = [1.75 1.5] [ 0.01 0.008 ] = 1.75 βˆ— 0.01 + 1.5 βˆ— 0.008 = 0.0295 𝐡 = πŸβ€² Ζ©βˆ’πŸ 𝝁 = [1 1] [ 375 βˆ’250 βˆ’250 500 ] [ 0.01 0.008 ] = = [1 βˆ— 375 + 1 βˆ— (βˆ’250) 1 βˆ— (βˆ’250) + 1 βˆ— 500] [ 0.01 0.008 ] = = [125 250] [ 0.01 0.008 ] = 125 βˆ— 0.01 + 250 βˆ— 0.008 = 3.25 𝐢 = πŸβ€² Ζ©βˆ’πŸ 𝟏 = [1 1] [ 375 βˆ’250 βˆ’250 500 ] [ 1 1 ] = = [1 βˆ— 375 + 1 βˆ— (βˆ’250) 1 βˆ— (βˆ’250) + 1 βˆ— 500] [ 1 1 ] = = [125 250] [ 1 1 ] = 125 βˆ— 1 + 250 βˆ— 1 = 375 Now we can compute the weights: π’˜ π’Žπ’—βˆ— = Ζ©βˆ’πŸ [ 𝐢𝑅𝑒 βˆ’ 𝐡 𝐴𝐢 βˆ’ 𝐡2 𝝁 + 𝐴 βˆ’ 𝐡𝑅𝑒 𝐴𝐢 βˆ’ 𝐡2 𝟏] = [ 375 βˆ’250 βˆ’250 500 ] { 375 βˆ— 0.01 βˆ’ 3.25 0.0295 βˆ— 375 βˆ’ 10.5625 [ 0.01 0.008 ] + 0.0295 βˆ’ 3.25 βˆ— 0.01 0.0295 βˆ— 375 βˆ’ 10.5625 [ 1 1 ]} = [ 375 βˆ’250 βˆ’250 500 ] { 0.5 0.5 [ 0.01 0.008 ] + βˆ’0.003 0.5 [ 1 1 ]} = [ 375 βˆ’250 βˆ’250 500 ] {[ 0.01 0.008 ] + [ βˆ’0.006 βˆ’0.006 ]} = [ 375 βˆ’250 βˆ’250 500 ] [ 0.004 0.002 ] = [ 375 βˆ— 0.004 βˆ’ 250 βˆ— 0.002 βˆ’250 βˆ— 0.004 + 500 βˆ— 0.002 ] = [ 1 0 ] EXERCISE 5 Given a risk-free asset and two risky assets whose excess returns have mean vector, covariance matrix and inverse covariance matrix equal to Β΅ = [ 0.01 0.008 ] 𝚺 = [ 0.004 0.002 0.002 0.003 ] πšΊβˆ’πŸ = [ 375 βˆ’250 βˆ’250 500 ] compute the tangency portfolio. The weights are given by: π’˜ 𝒕𝒂𝒏 = Ζ©βˆ’πŸ 𝝁 πŸβ€²Ζ©βˆ’πŸ 𝝁 = [ 375 βˆ’250 βˆ’250 500 ] [ 0.01 0.008 ] [1 1] [ 375 βˆ’250 βˆ’250 500 ] [ 0.01 0.008 ] = [ 375 βˆ— 0.01 βˆ’ 250 βˆ— 0.008 βˆ’250 βˆ— 0.01 + 500 βˆ— 0.008 ] [1 1] [ 375 βˆ— 0.01 βˆ’ 250 βˆ— 0.008 βˆ’250 βˆ— 0.01 + 500 βˆ— 0.008 ] = [ 1.75 1.5 ] [1 1] [ 1.75 1.5 ] = [ 1.75 1.5 ] 1 βˆ— 1.75 + 1 βˆ— 1.5 = 1 3.25 [ 1.75 1.5 ] β‰ˆ [ 0.54 0.46 ] EXERCISE 6 Given two risky assets with mean return, covariance matrix and inverse covariance matrix equal to Β΅ = [ 0.007 0.004 ] 𝚺 = [ 0.004 0.002 0.002 0.003 ] πšΊβˆ’πŸ = [ 375 βˆ’250 βˆ’250 500 ] compute the weights for the minimum variance portfolio. The weights are: π’˜ 𝒗 = 1 πŸβ€²πšΊβˆ’πŸ 𝟏 πšΊβˆ’πŸ 𝟏 = 1 [1 1] [ 375 βˆ’250 βˆ’250 500 ] [ 1 1 ] [ 375 βˆ’250 βˆ’250 500 ] [ 1 1 ] = 1 [1 βˆ— 375 + 1 βˆ— (βˆ’250) 1 βˆ— (βˆ’250) + 1 βˆ— 500] [ 1 1 ] [ 375 βˆ— 1 + (βˆ’250) βˆ— 1 βˆ’250 βˆ— 1 + 500 βˆ— 1 ] = 1 [125 250] [ 1 1 ] [ 125 250 ] = 1 125 + 250 [ 125 250 ] = 1 375 [ 125 250 ] β‰ˆ [ 0.33 0.67 ] EXERCISE 7 A mean-variance utility investor with risk-aversion coefficient 𝛾 = 5 can invest in two risky assets and one risk-free asset. The mean and covariance matrix of the excess returns of the two risky assets are: Β΅ = [ 0.01 0.008 ] Ζ© = [ 0.005 0.002 0.002 0.003 ] Compute the weights for the 1/N portfolio that optimally allocates the wealth between the risky assets and the risk-free asset. We compute the weights for the risky assets: π’˜ 𝟏/𝑡 = 1 𝛾 πŸβ€²π πŸβ€²Ζ©πŸ 𝟏 = 1 5 [1 1] [ 0.01 0.008 ] [1 1] [ 0.005 0.002 0.002 0.003 ] [ 1 1 ] [ 1 1 ] = 1 5 1 βˆ— 0.01 + 1 βˆ— 0.008 [1 βˆ— 0.005 + 1 βˆ— 0.002 1 βˆ— 0.002 + 1 βˆ— 0.003] [ 1 1 ] [ 1 1 ] = 1 5 0.018 [0.007 0.005] [ 1 1 ] [ 1 1 ] = 1 5 0.018 0.007 βˆ— 1 + 0.005 βˆ— 1 [ 1 1 ] = 1 5 0.018 0.007 βˆ— 1 + 0.005 βˆ— 1 [ 1 1 ] = 1 5 0.018 0.012 [ 1 1 ] = 0.018 0.06 [ 1 1 ] = 0.3 [ 1 1 ] = [ 0.3 0.3 ] The two risky assets get a weight of 0.3 each, so the weight of the risk-free asset is: 1 βˆ’ (0.3 + 0.3) = 0.4