% RESENI POMOCI LU-ROZKLADU: load LRmat1 A A = 3 2 1 2 3 1 2 1 3 5 5 2 b b = 5 1 11 6 [L,U,p,jb] = LUdemo(A) m = 4 n = 3 A = 3 2 1 1 2 3 1 2 2 1 3 3 5 5 2 4 Vlozte polohu dalsiho schodu ve tvaru [r,s]: [4 1] r = 4 jb = 1 k = 1 PREHOZENI k-ho a r-teho RADKU: A = 5 5 2 4 2 3 1 2 2 1 3 3 3 2 1 1 ULOZENI TRANSFORMACNICH SKALARU MISTO NUL DO s-teho SLOUPCE: A = 5 5 2 4 2/5 3 1 2 2/5 1 3 3 3/5 2 1 1 ELIMINACE ZBYVAJICICH SLOUPCU s+1,...,n: A = 5 5 2 4 2/5 1 1/5 2 2/5 -1 11/5 3 3/5 -1 -1/5 1 Posledni eliminovany sloupec: s = 1 Vlozte polohu dalsiho schodu ve tvaru [r,s]: [2 2] rs = 2 2 r = 2 jb = 1 2 k = 2 Zamena radku se neprovadi ULOZENI TRANSFORMACNICH SKALARU MISTO NUL DO s-teho SLOUPCE: A = 5 5 2 4 2/5 1 1/5 2 2/5 -1 11/5 3 3/5 -1 -1/5 1 ELIMINACE ZBYVAJICICH SLOUPCU s+1,...,n: A = 5 5 2 4 2/5 1 1/5 2 2/5 -1 12/5 3 3/5 -1 0 1 Posledni eliminovany sloupec: s = 2 Vlozte polohu dalsiho schodu ve tvaru [r,s]: 3 rs = 3 jb = 1 2 3 L = 1 0 0 0 2/5 1 0 0 2/5 -1 1 0 3/5 -1 0 1 U = 5 5 2 0 1 1/5 0 0 12/5 0 0 0 p = 4 2 3 1 jb = 1 2 3 % Kontrola A(p,:)-L*U ans = 0 0 0 0 0 0 0 0 * 0 0 0 A(p,:) ans = 5 5 2 2 3 1 2 1 3 3 2 1 L*U ans = 5 5 2 2 3 1 2 1 3 3 2 1 % Resime L*z = b(p): z = L\b(p) z = 6 -7/5 36/5 0 % Resime U*x=z: [U,z] ans = 5 5 2 6 0 1 1/5 -7/5 0 0 12/5 36/5 0 0 0 0 % Neni schod navic => system je resitelny % hodnost je 3: pocet sloupcu-3=0 => jedine reseni: x = U\z x = 2 -2 3 diary off ***************************************************** load LRmat2 A A = 5 -9 5 2 3 3 1 8 0 1 -2 1 b b = 1 2 1 0 [L,U,p,jb] = LUdemo(A) m = 4 n = 3 A = 5 -9 5 1 2 3 3 2 1 8 0 3 1 -2 1 4 Vlozte polohu dalsiho schodu ve tvaru [r,s]: [4 1] r = 4 jb = 1 k = 1 PREHOZENI k-ho a r-teho RADKU: A = 1 -2 1 4 2 3 3 2 1 8 0 3 5 -9 5 1 ULOZENI TRANSFORMACNICH SKALARU MISTO NUL DO s-teho SLOUPCE: A = 1 -2 1 4 2 3 3 2 1 8 0 3 5 -9 5 1 ELIMINACE ZBYVAJICICH SLOUPCU s+1,...,n: A = 1 -2 1 4 2 7 1 2 1 10 -1 3 5 1 0 1 Posledni eliminovany sloupec: s = 1 Vlozte polohu dalsiho schodu ve tvaru [r,s]: [4 2] rs = 4 2 r = 4 jb = 1 2 k = 2 PREHOZENI k-ho a r-teho RADKU: A = 1 -2 1 4 5 1 0 1 1 10 -1 3 2 7 1 2 ULOZENI TRANSFORMACNICH SKALARU MISTO NUL DO s-teho SLOUPCE: A = 1 -2 1 4 5 1 0 1 1 10 -1 3 2 7 1 2 ELIMINACE ZBYVAJICICH SLOUPCU s+1,...,n: A = 1 -2 1 4 5 1 0 1 1 10 -1 3 2 7 1 2 Posledni eliminovany sloupec: s = 2 Vlozte polohu dalsiho schodu ve tvaru [r,s]: [3 3] rs = 3 3 r = 3 jb = 1 2 3 k = 3 Zamena radku se neprovadi ULOZENI TRANSFORMACNICH SKALARU MISTO NUL DO s-teho SLOUPCE: A = 1 -2 1 4 5 1 0 1 1 10 -1 3 2 7 -1 2 ELIMINACE ZBYVAJICICH SLOUPCU s+1,...,n: A = 1 -2 1 4 5 1 0 1 1 10 -1 3 2 7 -1 2 Posledni eliminovany sloupec: s = 3 Vlozte polohu dalsiho schodu ve tvaru [r,s]: rs = [] jb = 1 2 3 L = 1 0 0 0 5 1 0 0 1 10 1 0 2 7 -1 1 U = 1 -2 1 0 1 0 0 0 -1 0 0 0 p = 4 1 3 2 jb = 1 2 3 A(p,:) ans = 1 -2 1 5 -9 5 1 8 0 2 3 3 L*U ans = 1 -2 1 5 -9 5 1 8 0 2 3 3 % Resime L*z = b(p): z = L\b(p) z = 0 1 -9 -14 % Resime U*x=z: [U,z] ans = 1 -2 1 0 0 1 0 1 0 0 -1 -9 0 0 0 -14 % V poslednim sloupci je jeden schod navic, takze reseni neexistuje ***************************************************************** diary off load LRmat3 A A = 2 -3 2 1 -2 1 5 -9 5 b b = 1 0 1 [L,U,p,jb] = LUdemo(A) m = 3 n = 3 A = 2 -3 2 1 1 -2 1 2 5 -9 5 3 Vlozte polohu dalsiho schodu ve tvaru [r,s]: [2 1] r = 2 jb = 1 k = 1 PREHOZENI k-ho a r-teho RADKU: A = 1 -2 1 2 2 -3 2 1 5 -9 5 3 ULOZENI TRANSFORMACNICH SKALARU MISTO NUL DO s-teho SLOUPCE: A = 1 -2 1 2 2 -3 2 1 5 -9 5 3 ELIMINACE ZBYVAJICICH SLOUPCU s+1,...,n: A = 1 -2 1 2 2 1 0 1 5 1 0 3 Posledni eliminovany sloupec: s = 1 Vlozte polohu dalsiho schodu ve tvaru [r,s]: [2 2] rs = 2 2 r = 2 jb = 1 2 k = 2 Zamena radku se neprovadi ULOZENI TRANSFORMACNICH SKALARU MISTO NUL DO s-teho SLOUPCE: A = 1 -2 1 2 2 1 0 1 5 1 0 3 ELIMINACE ZBYVAJICICH SLOUPCU s+1,...,n: A = 1 -2 1 2 2 1 0 1 5 1 0 3 Posledni eliminovany sloupec: s = 2 Vlozte polohu dalsiho schodu ve tvaru [r,s]: rs = [] jb = 1 2 L = 1 0 0 2 1 0 5 1 1 U = 1 -2 1 0 1 0 0 0 0 p = 2 1 3 jb = 1 2 % Kontrola: A(p,:) ans = 1 -2 1 2 -3 2 5 -9 5 L*U ans = 1 -2 1 2 -3 2 5 -9 5 % Resime L*z = b(p): z = L\b(p) z = 0 1 0 % Resime U*x=z: [U,z] ans = 1 -2 1 0 0 1 0 1 0 0 0 0 % Neni schod navic => reseni existuje % pocet sloupcu - hodnost = 3 - 2 = 1 % x3 = t je volna promenna % Partikularni reseni t=0 t = 0 y = U(1:2,1:2)\z(1:2) y = 2 1 x0=[y;t] x0 = 2 1 0 % Baze: t=1 t = 1 y = U(1:2,1:2)\(-U(1:2,3)) y = -1 0 x1=[y;t] x1 = -1 0 1 % Vsechna reseni: x0+t*x1 = [2,1,0]+t*[-1,0,1]=[2-t,1,t] diary off