% Vypocet inverzni matice pomoci LU-rozkladu: % -------------------------------------------- % KaSk: Pr.10.3/90 A=[3,2,1;-1,2,2;2,1,-2] A = 3 2 1 -1 2 2 2 1 -2 b=[2;-1;1] b = 2 -1 1 det(A) ans = -19 % Matice je regularni % Nalezeni inverze LU-rozkladem % ============================= [L,U,p,jb] = LUdemo(A) m = 3 n = 3 A = 3 2 1 1 -1 2 2 2 2 1 -2 3 Vlozte polohu dalsiho schodu ve tvaru [r,s]: [2 1] r = 2 jb = 1 k = 1 PREHOZENI k-ho a r-teho RADKU: A = -1 2 2 2 3 2 1 1 2 1 -2 3 ULOZENI TRANSFORMACNICH SKALARU MISTO NUL DO s-teho SLOUPCE: A = -1 2 2 2 -3 2 1 1 -2 1 -2 3 ELIMINACE ZBYVAJICICH SLOUPCU s+1,...,n: A = -1 2 2 2 -3 8 7 1 -2 5 2 3 Posledni eliminovany sloupec: s = 1 Vlozte polohu dalsiho schodu ve tvaru [r,s]: [3 2] rs = 3 2 r = 3 jb = 1 2 k = 2 PREHOZENI k-ho a r-teho RADKU: A = -1 2 2 2 -2 5 2 3 -3 8 7 1 ULOZENI TRANSFORMACNICH SKALARU MISTO NUL DO s-teho SLOUPCE: A = -1 2 2 2 -2 5 2 3 -3 8/5 7 1 ELIMINACE ZBYVAJICICH SLOUPCU s+1,...,n: A = -1 2 2 2 -2 5 2 3 -3 8/5 19/5 1 Posledni eliminovany sloupec: s = 2 Vlozte polohu dalsiho schodu ve tvaru [r,s]: 3 rs = 3 jb = 1 2 3 L = 1 0 0 -2 1 0 -3 8/5 1 U = -1 2 2 0 5 2 0 0 19/5 p = 2 3 1 jb = 1 2 3 % Kontrola A(p,:) ans = -1 2 2 2 1 -2 3 2 1 L*U ans = -1 2 2 2 1 -2 3 2 1 B=eye(3) B = 1 0 0 0 1 0 0 0 1 PB=B(p,:) PB = 0 1 0 0 0 1 1 0 0 % Resime L*Z=PB: Z = L\PB Z = 0 1 0 0 2 1 1 -1/5 -8/5 % Resime U*X=Z X=U\Z X = 6/19 -5/19 -2/19 -2/19 8/19 7/19 5/19 -1/19 -8/19 % Kontrola inv(A) ans = 6/19 -5/19 -2/19 -2/19 8/19 7/19 5/19 -1/19 -8/19 % Reseni x=X*b x = 15/19 -5/19 3/19 % Kontrola x=A\b x = 15/19 -5/19 3/19 diary off