format compact
% Priklad 1
Ar=-5+round(10*rand(3,5))
Ar =
     5     0     0    -1     4
    -3     4    -5     1     2
     1     3     3     3    -3
Ai=-5+round(10*rand(3,5))
Ai =
    -1    -1    -1    -4     1
     4     4     3    -3    -2
     4    -4    -5    -3    -3
Br=-5+round(10*rand(3,5))
Br =
    -5     4     3     2     2
     2     0     0     3    -1
    -1    -1    -3    -5     3
Bi=-5+round(10*rand(3,5))
Bi =
     0    -2     2    -3     4
     2    -3    -2     2     4
    -1    -3     0    -1     1
A=Ar+i*Ai
A =
  Columns 1 through 4 
   5.0000 - 1.0000i        0 - 1.0000i        0 - 1.0000i  -1.0000 - 4.0000i
  -3.0000 + 4.0000i   4.0000 + 4.0000i  -5.0000 + 3.0000i   1.0000 - 3.0000i
   1.0000 + 4.0000i   3.0000 - 4.0000i   3.0000 - 5.0000i   3.0000 - 3.0000i
  Column 5 
   4.0000 + 1.0000i
   2.0000 - 2.0000i
  -3.0000 - 3.0000i
B=Br+i*Bi
B =
  Columns 1 through 4 
  -5.0000             4.0000 - 2.0000i   3.0000 + 2.0000i   2.0000 - 3.0000i
   2.0000 + 2.0000i        0 - 3.0000i        0 - 2.0000i   3.0000 + 2.0000i
  -1.0000 - 1.0000i  -1.0000 - 3.0000i  -3.0000            -5.0000 - 1.0000i
  Column 5 
   2.0000 + 4.0000i
  -1.0000 + 4.0000i
   3.0000 + 1.0000i
C=B.'
C =
  -5.0000             2.0000 + 2.0000i  -1.0000 - 1.0000i
   4.0000 - 2.0000i        0 - 3.0000i  -1.0000 - 3.0000i
   3.0000 + 2.0000i        0 - 2.0000i  -3.0000          
   2.0000 - 3.0000i   3.0000 + 2.0000i  -5.0000 - 1.0000i
   2.0000 + 4.0000i  -1.0000 + 4.0000i   3.0000 + 1.0000i
D=B'
D =
  -5.0000             2.0000 - 2.0000i  -1.0000 + 1.0000i
   4.0000 + 2.0000i        0 + 3.0000i  -1.0000 + 3.0000i
   3.0000 - 2.0000i        0 + 2.0000i  -3.0000          
   2.0000 + 3.0000i   3.0000 - 2.0000i  -5.0000 + 1.0000i
   2.0000 - 4.0000i  -1.0000 - 4.0000i   3.0000 - 1.0000i
% Priklad 3
Bs=B(1:3,1:3)
Bs =
  -5.0000             4.0000 - 2.0000i   3.0000 + 2.0000i
   2.0000 + 2.0000i        0 - 3.0000i        0 - 2.0000i
  -1.0000 - 1.0000i  -1.0000 - 3.0000i  -3.0000          
Bs'*Bs
ans =
  35.0000           -22.0000 + 6.0000i -16.0000 -17.0000i
 -22.0000 - 6.0000i  39.0000            17.0000 + 5.0000i
 -16.0000 +17.0000i  17.0000 - 5.0000i  26.0000          
% Matice neni unitarni, nebot Bs'*Bs neni jednotkova matice
A+B
ans =
  Columns 1 through 4 
        0 - 1.0000i   4.0000 - 3.0000i   3.0000 + 1.0000i   1.0000 - 7.0000i
  -1.0000 + 6.0000i   4.0000 + 1.0000i  -5.0000 + 1.0000i   4.0000 - 1.0000i
        0 + 3.0000i   2.0000 - 7.0000i        0 - 5.0000i  -2.0000 - 4.0000i
  Column 5 
   6.0000 + 5.0000i
   1.0000 + 2.0000i
        0 - 2.0000i
A.*B
ans =
  Columns 1 through 4 
 -25.0000 + 5.0000i  -2.0000 - 4.0000i   2.0000 - 3.0000i -14.0000 - 5.0000i
 -14.0000 + 2.0000i  12.0000 -12.0000i   6.0000 +10.0000i   9.0000 - 7.0000i
   3.0000 - 5.0000i -15.0000 - 5.0000i  -9.0000 +15.0000i -18.0000 +12.0000i
  Column 5 
   4.0000 +18.0000i
   6.0000 +10.0000i
  -6.0000 -12.0000i
A./B
ans =
  Columns 1 through 4 
  -1.0000 + 0.2000i   0.1000 - 0.2000i  -0.1538 - 0.2308i   0.7692 - 0.8462i
   0.2500 + 1.7500i  -1.3333 + 1.3333i  -1.5000 - 2.5000i  -0.2308 - 0.8462i
  -2.5000 - 1.5000i   0.9000 + 1.3000i  -1.0000 + 1.6667i  -0.4615 + 0.6923i
  Column 5 
   0.6000 - 0.7000i
  -0.5882 - 0.3529i
  -1.2000 - 0.6000i
A*C
ans =
 -35.0000 +11.0000i   4.0000 + 9.0000i   3.0000 +28.0000i
  23.0000 -18.0000i  19.0000 + 3.0000i  30.0000 -16.0000i
  21.0000 -84.0000i   2.0000 -17.0000i -45.0000 + 5.0000i
% Priklad 5
E=A(:,1:3)*C(1:3,:)
E =
 -25.0000 - 2.0000i   7.0000 + 8.0000i  -9.0000          
  18.0000 -13.0000i   4.0000            30.0000 -26.0000i
  18.0000 -51.0000i -28.0000 - 5.0000i -21.0000 + 5.0000i
det(E)
ans =
 -1.9200e+003 -1.2435e+004i
det(A(:,1:3))*det(C(1:3,:))
ans =
 -1.9200e+003 -1.2435e+004i
system_dependent('setprintcolorchoice', -1)
; ; ; ; ; ; 
disp(get(0, 'Echo'))
off
set(0, 'Echo', 'off')
set(0, 'Format', 'short')
set(0, 'FormatSpacing', 'compact')
feature('EightyColumns', 0);
system_dependent('TabCompletion', 100);
% Priklad 6
help eig

 EIG    Eigenvalues and eigenvectors.
    E = EIG(X) is a vector containing the eigenvalues of a square 
    matrix X.
 
    [V,D] = EIG(X) produces a diagonal matrix D of eigenvalues and a
    full matrix V whose columns are the corresponding eigenvectors so
    that X*V = V*D.
  
    [V,D] = EIG(X,'nobalance') performs the computation with balancing
    disabled, which sometimes gives more accurate results for certain
    problems with unusual scaling.
  
    E = EIG(A,B) is a vector containing the generalized eigenvalues
    of square matrices A and B.
 
    [V,D] = EIG(A,B) produces a diagonal matrix D of generalized
    eigenvalues and a full matrix V whose columns are the
    corresponding eigenvectors so that A*V = B*V*D.
 
    EIG(A,B,'chol') is the same as EIG(A,B) for symmetric A and symmetric
    positive definite B.  It computes the generalized eigenvalues of A and B
    using the Cholesky factorization of B.
    EIG(A,B,'qz') ignores the symmetry of A and B and uses the QZ algorithm.
    In general, the two algortihms return the same result, however using the
    QZ algorithm may be more stable for certain problems.
    The flag is ignored when A and B are not symmetric.
 
    See also CONDEIG, EIGS.

 Overloaded methods
    help lti/eig.m
    help sym/eig.m

lambda=eig(E)
lambda =
 -40.7966 -30.5895i
   3.8080 - 5.0586i
  -5.0114 +38.6481i
prod(lambda)
ans =
 -1.9200e+003 -1.2435e+004i
det(E)
ans =
 -1.9200e+003 -1.2435e+004i
sum(lambda)
ans =
 -42.0000 + 3.0000i
trace(E)
ans =
 -42.0000 + 3.0000i
% Priklad 7
[m,n]=size(A)
m =
     3
n =
     5
[A;(1:m)*A]
ans =
  Columns 1 through 4 
   5.0000 - 1.0000i        0 - 1.0000i        0 - 1.0000i  -1.0000 - 4.0000i
  -3.0000 + 4.0000i   4.0000 + 4.0000i  -5.0000 + 3.0000i   1.0000 - 3.0000i
   1.0000 + 4.0000i   3.0000 - 4.0000i   3.0000 - 5.0000i   3.0000 - 3.0000i
   2.0000 +19.0000i  17.0000 - 5.0000i  -1.0000 -10.0000i  10.0000 -19.0000i
  Column 5 
   4.0000 + 1.0000i
   2.0000 - 2.0000i
  -3.0000 - 3.0000i
  -1.0000 -12.0000i
% Priklad 8
x=B(:,1)
x =
  -5.0000          
   2.0000 + 2.0000i
  -1.0000 - 1.0000i
u=A(:,1)
u =
   5.0000 - 1.0000i
  -3.0000 + 4.0000i
   1.0000 + 4.0000i
xp = (dot(u,x)/dot(u,u)).*u
xp =
  -2.2941 - 0.7647i
   2.1765 - 0.9412i
   0.5294 - 1.8824i
dot(x-xp,u)
ans =
     0
dot(u,u)
ans =
    68
norm(u)^2
ans =
    68
% Priklad 9
w=cross(x-xp,u)
w =
 -13.0000 +11.0000i
  -1.0000 +16.0000i
   3.0000 -28.0000i
dot(w,u)
ans =
 -1.1800e+002 +4.2000e+001i
dot(w,x-xp)
ans =
  61.5294 -20.4706i
help cross

 CROSS  Vector cross product.
    C = CROSS(A,B) returns the cross product of the vectors
    A and B.  That is, C = A x B.  A and B must be 3 element
    vectors.
 
    C = CROSS(A,B) returns the cross product of A and B along the
    first dimension of length 3.
 
    C = CROSS(A,B,DIM), where A and B are N-D arrays, returns the cross
    product of vectors in the dimension DIM of A and B. A and B must
    have the same size, and both SIZE(A,DIM) and SIZE(B,DIM) must be 3.
 
    See also DOT.

w=cross(u,x-xp)
w =
  13.0000 -11.0000i
   1.0000 -16.0000i
  -3.0000 +28.0000i
w=cross(conj(u),x-xp)
w =
  -3.4706 - 0.1765i
   8.8824 + 8.7059i
 -15.0000 + 6.0000i
dot(w,x-xp)
ans =
  61.5294 +20.4706i
A
A =
  Columns 1 through 4 
   5.0000 - 1.0000i        0 - 1.0000i        0 - 1.0000i  -1.0000 - 4.0000i
  -3.0000 + 4.0000i   4.0000 + 4.0000i  -5.0000 + 3.0000i   1.0000 - 3.0000i
   1.0000 + 4.0000i   3.0000 - 4.0000i   3.0000 - 5.0000i   3.0000 - 3.0000i
  Column 5 
   4.0000 + 1.0000i
   2.0000 - 2.0000i
  -3.0000 - 3.0000i
kron(A,ones(3,2))
ans =
  Columns 1 through 4 
   5.0000 - 1.0000i   5.0000 - 1.0000i        0 - 1.0000i        0 - 1.0000i
   5.0000 - 1.0000i   5.0000 - 1.0000i        0 - 1.0000i        0 - 1.0000i
   5.0000 - 1.0000i   5.0000 - 1.0000i        0 - 1.0000i        0 - 1.0000i
  -3.0000 + 4.0000i  -3.0000 + 4.0000i   4.0000 + 4.0000i   4.0000 + 4.0000i
  -3.0000 + 4.0000i  -3.0000 + 4.0000i   4.0000 + 4.0000i   4.0000 + 4.0000i
  -3.0000 + 4.0000i  -3.0000 + 4.0000i   4.0000 + 4.0000i   4.0000 + 4.0000i
   1.0000 + 4.0000i   1.0000 + 4.0000i   3.0000 - 4.0000i   3.0000 - 4.0000i
   1.0000 + 4.0000i   1.0000 + 4.0000i   3.0000 - 4.0000i   3.0000 - 4.0000i
   1.0000 + 4.0000i   1.0000 + 4.0000i   3.0000 - 4.0000i   3.0000 - 4.0000i
  Columns 5 through 8 
        0 - 1.0000i        0 - 1.0000i  -1.0000 - 4.0000i  -1.0000 - 4.0000i
        0 - 1.0000i        0 - 1.0000i  -1.0000 - 4.0000i  -1.0000 - 4.0000i
        0 - 1.0000i        0 - 1.0000i  -1.0000 - 4.0000i  -1.0000 - 4.0000i
  -5.0000 + 3.0000i  -5.0000 + 3.0000i   1.0000 - 3.0000i   1.0000 - 3.0000i
  -5.0000 + 3.0000i  -5.0000 + 3.0000i   1.0000 - 3.0000i   1.0000 - 3.0000i
  -5.0000 + 3.0000i  -5.0000 + 3.0000i   1.0000 - 3.0000i   1.0000 - 3.0000i
   3.0000 - 5.0000i   3.0000 - 5.0000i   3.0000 - 3.0000i   3.0000 - 3.0000i
   3.0000 - 5.0000i   3.0000 - 5.0000i   3.0000 - 3.0000i   3.0000 - 3.0000i
   3.0000 - 5.0000i   3.0000 - 5.0000i   3.0000 - 3.0000i   3.0000 - 3.0000i
  Columns 9 through 10 
   4.0000 + 1.0000i   4.0000 + 1.0000i
   4.0000 + 1.0000i   4.0000 + 1.0000i
   4.0000 + 1.0000i   4.0000 + 1.0000i
   2.0000 - 2.0000i   2.0000 - 2.0000i
   2.0000 - 2.0000i   2.0000 - 2.0000i
   2.0000 - 2.0000i   2.0000 - 2.0000i
  -3.0000 - 3.0000i  -3.0000 - 3.0000i
  -3.0000 - 3.0000i  -3.0000 - 3.0000i
  -3.0000 - 3.0000i  -3.0000 - 3.0000i
w=cross(x-xp,u)
w =
 -13.0000 +11.0000i
  -1.0000 +16.0000i
   3.0000 -28.0000i
dot(conj(w),x-xp)
ans =
     0
w=conj(cross(x-xp,u))
w =
 -13.0000 -11.0000i
  -1.0000 -16.0000i
   3.0000 +28.0000i
dot(w,x-xp)
ans =
     0
dot(w,u)
ans =
            0 +1.0658e-014i
diary off