INTRODUCTION TO THE SERIES

The Handbooks in Finance are intended to be a definitive source for comprehensive and
accessible information in the field of finance. Each individual volume in the series should
present an accurate self-contained survey of a sub-field of finance, suitable for use by
finance and economics professors and lecturers, professional researchers, graduate students
and as a teaching supplement. The goal is to have a broad group of outstanding volumes in
various areas of finance.
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Abstract

This chapter has two goals. Section 1 sketches the history of heavy tails in finance through
the author’s three successive models of the variation of a financial price: mesofractal,
unifractal and multifractal. The heavy tails occur, respectively, in the marginal distribution
only (Mandelbrot, 1963), in the dependence only (Mandelbrot, 1965), or in both (Mandel-
brot, 1997). These models increase in the scope of the “principle of scaling invariance”,
which the author has used since 1957.

The mesofractal model is founded on the stable processes that date to Cauchy and Lévy.
The unifractal model uses the fractional Brownian motions introduced by the author. By
now, both are well-understood.

To the contrary, one of the key features of the multifractals (Mandelbrot, 1974a, b) re-
mains little known. Using the author’s recent work, introduced for the first time in this
chapter, the exposition can be unusually brief and mathematically elementary, yet covering
all the key features of multifractality. It is restricted to very special but powerful cases:
(a) the Bernoulli binomial measure, which is classical but presented in a little-known fash-
ion, and (b) a new two-valued “canonical” measure. The latter generalizes Bernoulli and
provides an especially short path to negative dimensions, divergent moments, and divergent
(i.e., long range) dependence. All those features are now obtained as separately tunable as-
pects of the same set of simple construction rules.
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My work in finance is well-documented in easily accessible sources, many of them repro-
duced in Mandelbrot (1997 and also in 2001a, b, ¢, d). That work having expanded and
been commented upon by many authors, a survey of the literature is desirable, but this is
a task I cannot undertake now. However, it was a pleasure to yield to the entreaties of this
Handbook’s editors by a text in which a new technical contribution is preceded by an in-
troductory sketch followed by a simple new presentation of an old feature that used to be
dismissed as “technical”, but now moves to center stage.

The history of heavy tails in finance began in 1963. While acknowledging that the suc-
cessive increments of a financial price are interdependent, I assumed independence as a
first approximation and combined it with the principle of scaling invariance. This led to
(Lévy) stable distributions for the price changes. The tails are very heavy, in fact, power-
law distributed with an exponent o < 2.

The multifractal model advanced in Mandelbrot (1997) extends scale invariance to allow
for dependence. Readily controllable parameters generate tails that are as heavy as desired
and can be made to follow a power-law with an exponent in the range 1 < o < 0o. This last
result, an essential one, involves a property of multifractals that was described in Mandel-
brot (1974a, b) but remains little known among users. The goal of the example described
after the introduction is to illustrate this property in a very simple form.

1. Introduction: A path that led to model price by Brownian motion (Wiener or
fractional) of a multifractal trading time

Given a financial price record P(¢) and a time lag dr, define L(¢,dt) =log P(t + dr) —
log P (t). The 1900 dissertation of Louis Bachelier introduced Brownian motion as a model
of P(¢). In later publications, however, Bachelier acknowledged that this is a very rough
first approximation: he recognized the presence of heavy tails and did not rule out depen-
dence. But until 1963, no one had proposed a model of the heavy tails’ distribution.

1.1. From the law of Pareto to infinite moment “anomalies” that contradict the Gaussian
“norm”

All along, search for a model was inspired by a finding rooted in economics outside of
finance. Indeed, the distribution of personal incomes proposed in 1896 by Pareto involved
tails that are heavy in the sense of following a power-law distribution Pr{U > u} =u"".

However, almost nobody took this income distribution seriously. The strongest “conven-
tional wisdom” argument against Pareto was that the value o = 1.7 that he claimed leads
to the variance of U being infinite.

Infinite moments have been a perennial issue both before my work and (unfortunately)
ever since. Partly to avoid them, Pareto volunteered an exponential multiplier, resulting in

Pr{U > u} = u"%exp(—Bu).
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Also, Herbert A. Simon expressed a universally held view when he asserted in 1953 that
infinite moments are (somehow) “improper”. But in fact, the exponential multipliers are
not needed and infinite moments are perfectly proper and have important consequences. In
multifractal models, depending on specific features, variance can be either finite or infinite.
In fact, all moments can be finite, or they can be finite only up to a critical power g.i; that
may be 3, 4, or any other value needed to represent the data.

Beginning in the late 1950s, a general theme of my work has been that the uses of sta-
tistics must be recognized as falling into at least two broad categories. In the “normal”
category, one can use the Gaussian distribution as a good approximation, so that the com-
mon replacement of the term, “Gaussian”, by “normal” is fully justified. To the contrary,
in the category one can call “abnormal” or “anomalous”, the Gaussian is very misleading,
even as an approximation.

To underline this distinction, I have long suggested — to little effect up to now — that the
substance of the so-called ordinary central limit theorem would be better understood if it
is relabeled as the center limit theorem. Indeed, that theorem concerns the center of the
distribution, while the anomalies concern the tails. Following up on this vocabulary, the
generalized central limit theorem that yields Lévy stable limits would be better understood
if called a fail limit theorem. This distinction becomes essential in Section 8.5.

Be that as it may, I came to believe in the 1950s that the power-law distribution and
the associated infinite moments are key elements that distinguish economics from classical
physics. This distinction grew by being extended from independent to highly dependent
random variables. In 1997, it became ready to be phrased in terms of randomness and
variability falling in one of several distinct “states”. The “mild” state prevails for classical
errors of observation and for sequences of near-Gaussian and near-independent quantities.
To the contrary, phenomena that present deep inequality necessarily belong to the “wild”
state of randomness.

1.2. A scientific principle: scaling invariance in finance

A second general theme of my work is the “principle” that financial records are invariant by

dilating or reducing the scales of time and price in ways suitably related to each other. There

is no need to believe that this principle is exactly valid, nor that its exact validity could ever

be tested empirically. However, a proper application of this principle has provided the

basis of models or scenarios that can be called good because they satisfy all the following

properties:

(a) they closely model reality,

(b) they are exceptionally parsimonious, being based on very few very general a priori
assumptions, and

(c) they are creative in the following sense: extensive and correct predictions arise as con-
sequences of a few assumptions; when those assumptions are changed the consequences
also change. By contrast, all too many financial models start with Brownian motion,
then build upon it by including in the input every one of the properties that one wishes
to see present in the output.
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1.3. Analysis alone versus statistical analysis followed by synthesis and graphic output

The topic of multifractal functions has grown into a well-developed analytic theory, making
it easy to apply the multifractal formalism blindly. But it is far harder to understand it and
draw consequences from its output. In particular, statistical techniques for handling multi-
fractals are conspicuous by their near-total absence. After they become actually available,
their applicability will have to be investigated carefully.

A chastening example is provided by the much simpler question of whether or not fi-
nancial series exhibit global (long range) dependence. My claim that they do was largely
based on R/S analysis which at this point relies heavily on graphical evidence. Lo (1991)
criticized this conclusion very severely as being subjective. Also, a certain alternative test
Lo described as “objective” led to a mixed pattern of “they do” and “they do not”. This
pattern being practically impossible to interpret, Lo took the position that the simpler out-
come has not been shown wrong, hence one can assume that long range dependence is
absent.

Unfortunately, the “objective test” in question assumed the margins to be Gaussian.
Hence, Lo’s experiment did not invalidate my conclusion, only showed that the test is
not robust and had repeatedly failed to recognize long range dependence.

The proper conclusion is that careful graphic evidence has not yet been superseded.
The first step is to attach special importance to models for which sample functions can be
generated.

1.4. Actual implementation of scaling invariance by multifractal functions: it requires
additional assumptions that are convenient but not a matter of principle, for
example, separability and compounding

By and large, an increase in the number and specificity in the assumptions leads to an
increase in the specificity of the results. It follows that generality may be an ideal unto
itself in mathematics, but in the sciences it competes with specificity, hence typically with
simplicity, familiarity, and intuition.

In the case of multifractal functions, two additional considerations should be heeded.
The so-called multifractal formalism (to be described below) is extremely important. But
it does not by itself specify a random function closely enough to allow analysis to be
followed by synthesis. Furthermore, multifractal functions are so new that it is best, in a
first stage, to be able to rely on existing knowledge while pursuing a concrete application.
For these and related reasons, my study of multifractals in finance has relied heavily on
two special cases.

One is implemented by the recursive “cartoons” investigated in Mandelbrot (1997) and
in much greater detail in Mandelbrot (2001c).

The other uses compounding. This process begins with a random function F(8) in which
the variable 6 is called an “intrinsic time”. In the key context of financial prices, 6 is
called “trading time”. The possible functions F (#) include all the functions that have been
previously used to model price variation. Foremost is the Wiener Brownian motion B(¢)
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postulated by Bachelier. The next simplest are the fractional Brownian motion By () and
the Lévy stable “flight” L(z).

A separate step selects for the intrinsic trading time a scale invariant random functions
of the physical “clock time” ¢. Mandelbrot (1972) recommended for the function 6(¢) the
integral of a multifractal measure. This choice was developed in Mandelbrot (1997) and
Mandelbrot, Calvet and Fisher (1997).

In summary, one begins with two statistically independent random functions F(6) and
0(t), where 6(¢) is non-decreasing. Then one creates the “compound” function F[6(#)] =
¢(t). Choosing F(6) and 8(¢) to be scale-invariant insures that ¢ (#) will be scale-invariant
as well. A limitation of compounding as defined thus far is that it demands independence
of F and 6, therefore restricts the scope of the compound function.

In a well-known special case called Bochner subordination, the increments of 6(¢) are
independent. As shown in Mandelbrot and Taylor (1967), it follows that B[6(¢)] is a Lévy
stable process, i.e., the mesofractal model. This approach has become well-known. The
tails it creates are heavy and do follow a power law distribution but there are at least two
drawbacks. The exponent « is at most 2, a clearly unacceptable restriction in many cases,
and the increments are independent.

Compounding beyond subordination was introduced because it allows « to take any
value > 1 and the increments to exhibit long term dependence. All this is discussed else-
where (Mandelbrot, 1997 and more recent papers).

The goal of the remainder of this chapter is to use a specially designed simple case to
explain how multifractal measure suffices to create a power-law distribution. The idea is
that L(z, df) = de(r) where ¢ = By[0(r)]. Roughly, du(z) is |[dBg|'/H. In the Wiener
Brownian case, H = 1/2 and du is the “local variance”. This is how a price that fluctuates
up and down is reduced to a positive measure.

2. Background: the Bernoulli binomial measure and two random variants: shuffled
and canonical

The prototype of all multifractals is nonrandom: it is a Bernoulli binomial measure. Its
well-known properties are recalled in this section, then Section 3 introduces a random
“canonical” version. Also, all Bernoulli binomial measures being powers of one another,
a broader viewpoint considers them as forming a single “class of equivalence”.

2.1. Definition and construction of the Bernoulli binomial measure

A multiplicative nonrandom cascade. A recursive construction of the Bernoulli binomial
measures involves an “initiator” and a “generator”. The initiator is the interval [0, 1] on
which a unit of mass is uniformly spread. This interval will recursively split into halves,
yielding dyadic intervals of length 2. The generator consists in a single parameter u,
variously called multiplier or mass. The first stage spreads mass over the halves of every
dyadic interval, with unequal proportions. Applied to [0, 1], it leaves the mass u in [0, 1/2]
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and the mass v in [1/2, 1]. The (k + 1)-th stage begins with dyadic intervals of length 27X,
each split in two subintervals of length 27%~1. A proportion equal to u goes to the left
subinterval and the proportion v, to the right.

After k stages, let g9 and ¢1 =1 — @ denote the relative frequencies of 0’s and 1’s in
the finite binary development¢ = 0.8 8, . . . Bx. The “pre-binomial”” measures in the dyadic
interval [d¢] = [z, r + 2] takes the value

i (de) = ukooyker,

which will be called “pre-multifractal”. This measure is distributed uniformly over the
interval. For k — oo, this sequence of measures p(df) has a limit @ (dr), which is the
Bernoulli binomial multifractal.

Shuffled binomial measure. The proportion equal to u now goes to either the left or
the right subinterval, with equal probabilities, and the remaining proportion v goes to the
remaining subinterval. This variant must be mentioned but is not interesting.

2.2. The concept of canonical random cascade and the definition of the canonical
binomial measure

Mandelbrot (1974a, b) took a major step beyond the preceding constructions.

The random multiplier M. In this generalization every recursive construction can be
described as follows. Given the mass m in a dyadic interval of length 2%, the two subin-
tervals of length 2751 are assigned the masses Mym and Mom, where M and M, are
independent realizations of a random variable M called multiplier. This M is equal to u or
v with probabilities p=1/2and 1 — p =1/2.

The Bernoulli and shuffled binomials both impose the constraint that M; + M> = 1. The
canonical binomial does not. It follows that the canonical mass in each interval of duration
27k is multiplied in the next stage by the sum M; 4+ M> of two independent realizations
of M. That sum is either 2u (with probability p?), or 1 (with probability 2(1 — p) p), or 2v
(with probability 1 — p?).

Writing p instead of 1/2 in the Bernoulli case and its variants complicates the nota-
tion now, but will soon prove advantageous: the step to the TVCM will simply consist in
allowing 0 < p < 1.

2.3. Two forms of conservation: strict and on the average

Both the Bernoulli and shuffled binomials repeatedly redistribute mass, but within a dyadic
interval of duration 2%, the mass remains exactly conserved in all stages beyond the k-th.
That is, the limit mass . (¢) in a dyadic interval satisfies g (df) = p(dt).

In a canonical binomial, to the contrary, the sum M; + M5 is not identically 1, only its
expectation is 1. Therefore, canonical binomial construction preserve mass on the average,
but not exactly.
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The random variable S2. In particular, the mass ([0, 1]) is no longer equal to 1. Itis a
basic random variable denoted by 2 and discussed in Section 4.

Within a dyadic interval dr of length 27, the cascade is simply a reduced-scale version
of the overall cascade. It transforms the mass p(df) into a product of the form w(df) =
Wi (dr)$2(dt) where all the §2(d¢) are independent realizations of the same variable £2.

2.4. The term “canonical” is motivated by statistical thermodynamics

As is well known, statistical thermodynamics finds it valuable to approximate large systems
as juxtapositions of parts, the “canonical ensembles”, whose energy only depends on a
common temperature and not on the energies of the other parts. Microcanonical ensembles’
energies are constrained to add to a prescribed total energy. In the study of multifractals,
the use of this metaphor should not obscure the fact that the multiplication of canonical
factors introduces strong dependence among . (d¢) for different intervals dz.

2.5. In every variant of the binomial measure one can view all finite (positive or negative)
powers together, as forming a single “class of equivalence”

To any given real exponent g # 1 and multipliers u and v corresponds a multiplier M, that
can take either of two values ug = Yu® with probability p, and v, = rv$ with probability
1 — p. The factor v is meant to insure pu, + (1 — p)v, = 1/2. Therefore, [pué +
(1 —p)v8]=1/2, thatis, ¥ = 1/[2EM¥]. The expression 2E M will be generalized and
encountered repeatedly especially through the expression

1(q) = —logy[pu? + (1 — p)v?] — 1 = —log, (2EMY).

This is simply a notation at this point but will be justified in Section 5. It follows that
Y =277® hence

ugzugZT(g) and vgzngT(g).

Assume u > v. As g ranges from 0 to o0, ug ranges from 1/2 to 1 and v, ranges from
1/2 to 0; the inequality ug > v, is preserved. To the contrary, as g ranges from 0 to oo,
Vg < ug. For example, g = —1 yields

1/u 1/v
Ug=————=v and vo=—"—"—=u
1/u+1/v 1/v+1/v

Thus, inversion leaves both the shuffled and the canonical binomial measures un-
changed. For the Bernoulli binomial, it only changes the direction of the time axis.

Altogether, every Bernoulli binomial measure can be obtained from any other as a re-
duced positive or negative power. If one agrees to consider a measure and its reduced
powers as equivalent, there is only one Bernoulli binomial measure.
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In concrete terms relative to non-infinitesimal dyadic intervals, the sequences represent-
ing log u for different values of g are mutually affine. Each is obtained from the special
case g = 1 by a multiplication by g followed by a vertical translation.

2.6. The full and folded forms of the address plane

In anticipation of TVCM, the point of coordinates # and v will be called the address of a
binomial measure in a full address space. In that plane, the locus of the Bernoulli measures
is the interval defined by 0 < v, O <u, andu +v=1.

The folded address space will be obtained by identifying the measures (u, v) and (v, u),
and representing both by one point. The locus of the Bernoulli measures becomes the
interval defined by the inequalities 0 < v <u andu +v =1.

2.7. Alternative parameters

In its role as parameter added to p = 1/2, one can replace u by the (“information-
theoretical”) fractal dimension D = —ulog, u — vlog, v which can be chosen at will in
this open interval ]0, 1[. The value of D characterizes the “set that supports” the measure.
It received a new application in the new notion of multifractal concentration described in
Mandelbrot (2001c). More generally, the study of all multifractals, including the Bernoulli
binomial, is filled with fractal dimensions of many other sets. All are unquestionably posi-
tive. One of the newest features of the TVCM will prove to be that they also allow negative
dimensions.

3. Definition of the two-valued canonical multifractals

3.1. Construction of the two-valued canonical multifractal in the interval [0, 1]

The TVCM are called two-valued because, as with the Bernoulli binomial, the multiplier M
can only take 2 possible values # and v. The novelties are that p need not be 1/2, the
multipliers # and v are not bounded by 1, and the inequality u + v # 1 is acceptable.

For u 4+ v # 1, the total mass cannot be preserved exactly. Preservation on the average
requires

1
EM:pu—i—(l—p)v:E,

hence0 < p=(1/2—-v)/(u —v) < 1.

The construction of TVCM is based upon a recursive subdivision of the interval [0, 1]
into equal intervals. The point of departure is, once again, a uniformly spread unit mass.
The first stage splits [0, 1] into two parts of equal lengths. On each, mass is poured uni-
formly, with the respective densities M and M, that are independent copies of M. The
second stage continues similarly with the interval [0, 1/2] and [1/2, 1].
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3.2. A second special two-valued canonical multifractal: the unifractal measure on the
canonical Cantor dust

The identity EM = 1/2 is also satisfied by u = 1/2p and v = 0. In this case, let the lengths
and number of non-empty dyadic cells after k stages be denoted by Ar =2~¥ and Nj. The
random variable Nj follows a simple birth and death process leading to the following
alternative.

When p > 1/2, ENy = (EN)* = 2p)* = (dr)!°2?P)_ To be able to write EN; =
(dt)~P, it suffices to introduce the exponent D = —log(2p). It satisfies D > 0 and de-
fines a fractal dimension.

When p < 1/2, to the contrary, the number of non-empty cells almost surely vanishes
asymptotically. At the same time, the formal fractal dimension D = —log(2p) satisfies
D <0.

3.3. Generalization of a useful new viewpoint: when considered together with their
powers from —oo to 0o, all the TVCM parametrized by either p or 1 — p form a
single class of equivalence

To take the key case, the multiplier M ! takes the values

_ 1/u _ v _ u
T2 —p)jv) 20tu) 1 T w1

It follows that pu_; + (1 — p)v—; =1/2 and u_1 /v—1 = v/u. In the full address plane,
the relations imply the following: (a) the point (#_1, v—_1) lies on the extension beyond
(1/2, 1/2) of the interval from (u, v) to (1/2, 1/2) and (b) the slopes of the intervals from 0
to (u, v) and from O to (u—1, v—1) are inverse of one another. It suffices to fold the full phase
diagram along the diagonal to achieve v > u. The point (#_1, v_1) will be the intersection
of the interval corresponding to the probability 1 — p and of the interval joining O to (u, v).

3.4. The full and folded address planes

In the full address plane, the locus of all the points (u, v) with fixed p has the equation
pu + (1 — p)v = 1/2. This is the negatively sloped interval joining the points (0, 1/2p)
and ([1/2(1 — p)],0). When (u, v) and (v, u) are identified, the locus becomes the same
interval plus the negatively sloped interval from [0, 1/2(1 — p)] to (1/2p, 0).

In the folded address plane, the locus is made of two shorter intervals from (1, 1) to both
(1/2p,0) and ([1/2(1 — p)], 0). In the special case u + v = 1 corresponding to p = 1/2,
the two shorter intervals coincide.

Those two intervals correspond to TVCM in the same class of equivalence. Starting
from an arbitrary point on either interval, positive moments correspond to points to the
same interval and negative moments, to points of the other. Moments for g > 1 correspond
to points to the left on the same interval; moments for 0 < g < 1, to points to the right on
the same interval; negative moments to points on the other interval.
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For p # 1/2, the class of equivalence of p includes a measure that corresponds tou = 1
and v =[1/2 — min(p, 1 — p)]/[max(p, 1 — p)]. This novel and convenient universal
point of reference requires p # 1/2. In terms to be explained below, it corresponds to
Omin = —logu =0.

3.5. Background of the two-valued canonical measures in the historical development of
multifractals

The construction of TVCM is new but takes a well-defined place among the three main
approaches to the development of a theory of multifractals.

General mathematical theories came late and have the drawback that they are accessible
to few non-mathematicians and many are less general than they seem.

The heuristic presentation in Frisch and Parisi (1985) and Halsey et al. (1986) came
after Mandelbrot (1974a, b) but before most of the mathematics. Most importantly for
this paper’s purpose, those presentations fail to include significantly random constructions,
hence cannot yield measures following the power law distribution.

Both the mathematical and the heuristic approaches seek generality and only later con-
sider the special cases. To the contrary, a third approach, the first historically, began in
Mandelbrot (1974a, b) with the careful investigation of a variety of special random mul-
tiplicative measures. I believe that each feature of the general theory continues to be best
understood when introduced through a special case that is as general as needed, but no
more. The general theory is understood very easily when it comes last.

In pedagogical terms, the “third way” associates with each distinct feature of multifrac-
tals a special construction, often one that consists of generalizing the binomial multifractal
in a new direction. TVCM is part of a continuation of that effective approach; it could have
been investigated much earlier if a clear need had been perceived.

4. The limit random variable 2 = u ([0, 1]), its distribution and the star functional
equation

4.1. The identity EM = 1 implies that the limit measure has the “martingale” property,
hence the cascade defines a limit random variable 2 = 1([0, 1])

We cannot deal with martingales here, but positive martingales are mathematically attrac-
tive because they converge (almost surely) to a limit. But the situation is complicated be-
cause the limit depends on the sign of D =2[—pulog,u — (1 — p)vlog, v].

Under the condition D > 0, which is discussed in Section 9, what seemed obvious is
confirmed: Pr{$2 > 0} > 0, conservation on the average continues to hold as k — oo, and
£2 is either non-random, or is random and satisfies the identity E£2 = 1.

But if D < 0, one finds that £2 = 0 almost surely and conservation on the average holds
for finite k but fails as k — oo. The possibility that £2 = 0 arose in mathematical esoterica
and seemed bizarre, but is unavoidably introduced into concrete science.
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4.2. Questions

(A) Which feature of the generating process dominates the tail distribution of £2? It is
shown in Section 6 to be the sign of max(u, v) — 1.

(B) Which feature of the generating process allows §2 to have a high probability of be-
ing either very large or very small? Section 6 will show that the criterion is that the
function t(q) becomes negative for large enough ¢.

(C) Divide [0, 1] into 2¥ intervals of length 2%, Which feature of the generating process
determines the relative distribution of the overall £2 among those small intervals? This
relative distribution motivated the introduction of the functions f(«) and p(«), and is
discussed in Section 8.

(D) Are the features discussed under (B) and (C) interdependent? Section 10 will address
this issue and show that, even when £2 has a high probability of being large, its value
does not affect the distribution under (C).

4.3. Exact stochastic renormalizability and the “star functional equation” for §2

Once again, the masses in [0, 1/2] and [1/2, 1] take, respectively, the forms M;£2; and
M>S$2,, where M1 and M» are two independent realizations of the random variable M and
£21, and £2, are two independent realizations of the random variable 2. Adding the two
parts yields

2 =21M; + §2,M>.

This identity in distribution, now called the “star equation”, combines with E£2 = 1 to
determine £2. It was introduced in Mandelbrot (1974a, b) and has since then been investi-
gated by several authors, for example by Durrett and Liggett (1983). A large bibliography
is found in Liu (2002).

In the special case where M is non-random, the star equation reduces to the equation
due to Cauchy whose solutions have become well-known: they are the Cauchy—Lévy stable
distributions.

4.4. Metaphor for the probability of large values of §2, arising in the theory of discrete
time branching processes

A growth process begins at + = 0 with a single cell. Then, at every integer instant of time,
every cell splits into a random non-negative number of N cells. At time k, one deals with
a clone of Ny cells. All those random splittings are statistically independent and identically
distributed. The normalized clone size, defined as Ny/EN {‘ has an expectation equal to 1.
The sequence of normalized sizes is a positive martingale, hence (as already mentioned)
converges to a limit random variable.

When E'N > 1, that limit does not reduce to 0 and is random for a very intuitive rea-
son. As long as clone size is small, its growth very much depends on chance, therefore
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the normalized clone size is very variable. However, after a small number of splittings, a
law of large numbers comes into force, the effects of chances become negligible, and the
clone grows near-exponentially. That is, the randomness in the relative number of family
members can be very large but acts very early.

4.5. To a large extent, the asymptotic measure §2 of a TVCM is large if, and only if, the
pre-fractal measure (1 ([0, 1]) has become large during the very first few stages of
the generating cascade

Such behavior is suggested by the analogy to a branching process, and analysis shows that
such is indeed the case. After the first stage, the measures u1([0, 1/2]) and w1([1/2, 1])
are both equal to u? with probability p*, uv with probability 2p(1 — p), and v> with
probability (1 — p)?. Extensive simulations were carried out for large k in “batches”, and
the largest, medium, and smallest measure was recorded for each batch. Invariably, the
largest (resp., smallest) §2 started from a high (resp., low) overall level.

5. The function 7 (g): motivation and form of the graph

So far t(g) was nothing but a notation. It is important as it is the special form taken
for TVCM by a function that was first defined for an arbitrary multiplier in Mandelbrot
(19744, b). (Actually, the little appreciated Figure 1 of that original paper did not include
q < 0 and worked with —7(g), but the opposite sign came to be generally adopted.)

5.1. Motivation of T(q)
After k cascade stages, consider an arbitrary dyadic interval of duration dr = 27X, For
the k-approximant TVCM measure 1y (dt) the g-th power has an expected value equal to
[pu? + (1 — p)v91¥ = (EM?}*. Its logarithm of base 2 is
k
log, {[pu? + (1 — p)v?]"} = klog,{ pu? + (1 — p)v?}
= log, (dN)[7(q) + 1].

Hence

Epd(dr) = dn)" @,

5.2. A generalization of the role of §2: middle- and high-frequency contributions to
microrandomness

Exactly the same cascade transforms the measure in d¢ from pi(dt) to w(dt) and the
measure in [0, 1] from 1 to £2. Hence, one can write

p(dr) = pui(dr)$2(dr).
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Fig. 1. The full phase diagram of TVCM with coordinates u and v. The isolines of the quantity p are straight
intervals from (1/{2(1 — p)},0) to (0, 1/{2p}). The values p and 1 — p are equivalent and the corresponding
isolines are symmetric with respect to the main bisector u = v. The acceptable part of the plane excludes the
points (u, v) such that either max(u, v) < 1/2 or min(u, v) > 1/2. Hence, the relevant part of this diagram is
made of two infinite halfstrips reducible to one another by folding along the bisector. The folded phase diagram
of TVCM corresponds to v < 0.5 < u. It shows the following curves. The isolines of 1 — p and p are straight
intervals that start at the point (1, 1) and end at the points (1/{2p},0) and (1/{2(1 — p)}, 0). The isolines of D
start on the interval 1/2 < u < 1 of the u-axis and continue to the point (oo, 0). The isolines of gi; start at the
point (1,0) and continue to the point (co, 0). The Bernoulli binomial measure corresponds to p = 1/2 and the
canonical Cantor measure corresponds to the half line v =0, u > 1/2.

In this product, frequencies of wavelength > dt, to be described as “low”, contribute
1k ([0, 11), and frequencies of wavelength < dr, to be described as “high”, contribute £2.

5.3. The expected “partition function” Y Eu?(d;r)

Section 6 will show that E$27 need not be finite. But if it is, the limit measure w(dt) =
i (dr) 2 (dr) satisfies

Epd(dr) = (dt)" P EQ4.

The interval [0, 1] subdivides into 1/dt intervals d;# of common length dt. The sum of
the g-th moments over those intervals takes the form

Ex(dt) = ZE;ﬂ dit) = (dt)" P EQ1.

Estimation of ©(q) from a sample. 1t is affected by the prefactor §2 insofar as one must
estimate both t(q) and log E£29.
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5.4. Form of the t(q) graph

Due to conservation on the average, EM = pu + (1 — p)v = 1/2, hence t(l) =
—log,[1/2] — 1 = 0. An additional universal value is 7(0) = —log,(1) — 1 = —1. For
other values of g, t(q) is a cap-convex continuous function satisfying t(q) < —1 for
g <0.

For TVCM, a more special property is that 7(g) is asymptotically linear: assuming
u > v, and letting g — oo:

t(g)~—log, p—1—gqlogu and t(—gq)~ —log,(1 —p)—1+4gqglogv.

The sign of u — 1 affects the sign of logu, a fact that will be very important in Section 6.

Moving as little as possible beyond these properties. The very special tau function of the
TVCM is simple but Figure 2 suffices to bring out every one of the delicate possibilities first
reported in Mandelbrot (1974a), where —t(q) is plotted in that little appreciated Figure 1.

Other features of T that deserve to be mentioned. Direct proofs are tedious and the short
proofs require the multifractal formalism that will only be described in Section 11.

u =0.55

u=1.25

-3

Fig. 2. The function t(g) for p =3/4 and varying g. By arbitrary choice, the value g =1 is assigned u = 1, from
which follows that g = —1 is assigned to the case v = 1. Behavior of 7(g) for the value g > 0: as ¢ — —o0, the
graph of 7(g) is asymptotically tangent to T = —g log, v, as ¢ — o0, the graph of 7(q) is asymptotically tangent
to T = —q log, u. Those properties are widely believed to describe the main facts about 7(g). But for TVCM they
do not. Thus, 7(g) is also tangent to T = goh, and T = qozr’;i - Beyond those points of tangency, f* becomes < 0.
For g > 1, that is, for u > 1, t(g) has a maximum. Values of ¢ beyond this maximum correspond to opin < O.
Because of the capconvexity of 7(g), the equation 7(g¢) = 0 may, in addition to the “universal” value g = 1,
have a root gt > 1. For u > 2.5, one deals with a very different phenomenon also first described in Mandelbrot

(19744, b). One finds that the construction of TVCM leads to a measure that degenerates to 0.
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The quantity D(q) = t(q)/(q — 1). This popular expression is often called a “general-
ized dimension”, a term too vague to mean anything. D(q) is obtained by extending the
line from (g, ) to (1, 0) to its intercept with the line g = 0. It plays the role of a critical
embedding codimension for the existence of a finite g-th moment. This topic cannot be
discussed here but is treated in Mandelbrot (2003).

The ratio t(q)/q and the “accessible” values of q. Increase g from —oo to 0 then to
~+o00. In the Bernoulli case, 7(g)/q increases from amax to 0o, jumps down to —oo for
g = 0, then increases again from —oo to apin. For TVCM with p # 1/2, the behavior
is very different. For example, let p < 1/2. As ¢ increases from 1 to oo, 7(g) increases
from 0 to a maximum ¢, ., then decreases. In a way explored in Section 10, the values of

max?

o >k are not “accessible”.

max

5.5. Reducible and irreducible canonical multifractals

Once again, being “canonical” implies conservation on the average. When there exists a
microcanonical (conservative) variant having the same function f(«), a canonical mea-
sure can be called “reducible”. The canonical binomial is reducible because its f(«) is
shared by the Bernoulli binomial. Another example introduced in Mandelbrot (1989b) is
the “Erice” measure, in which the multiplier M is uniformly distributed on [0, 1]. But the
TVCM with p # 1/2 is not reducible.

In the interval [0, 1] subdivided in the base b = 2, reducibility demands a multiplier M
whose distribution is symmetric with respect to M = 1/2. Since u > 0, this implies u < 1.

6. When u > 1, the moment E 27 diverges if ¢ exceeds a critical exponent ¢i;
satisfying t(q) = 0; $2 follows a power-law distribution of exponent g

6.1. Divergent moments, power-law distributions and limits to the ability of moments to
determine a distribution

This section injects a concern that might have been voiced in Sections 4 and 5. The canon-
ical binomial and many other examples satisfy the following properties, which everyone
takes for granted and no one seems to think about: (a) 2 =1, E29 < oo, (b) t(g) > 0 for
all g > 0, and (c) t(q)/q increases monotonically as g — +o0.

Many presentations of fractals take those properties for granted in all cases. In fact, as
this section will show, the TVCM with u > 1 lead to the “anomalous” divergence E §29 =
oo and the “inconceivable” inequality 7(g) < 0 for g¢rit < ¢ < 00. Also, the monotonicity
of t(q)/q fails for all TVCM with p # 1/2.

Since Pareto in 1897, infinite moments have been known to characterize the power-law
distributions of the form Pr{X > x} = x ~%«it, But in the case of TVCM and other canonical
multifractals, the complicating factor L(x) is absent. One finds that when u > 1, the overall
measure §2 follows a power law of exponent g.ri; determined by t(gq).
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6.2. Discussion

The power-law “anomalies” have very concrete consequences deduced in Mandelbrot
(1997) and discussed, for example, in Mandelbrot (2001c).

But does all this make sense? After all, 7(g) and E §29 are given by simple formulas and
are finite for all parameters. The fact that those values cannot actually be observed raises a
question. Are high moments lost by being unobservable? In fact, they are “latent” but can
be made “actual” by a process is indeed provided by the process of “embedding” studied
elsewhere.

An additional comment is useful. The fact that high moments are non-observable does
not express a deficiency of TVCM but a limitation of the notion of moment. Features
ordinarily expressed by moments must be expressed by other means.

6.3. An important apparent “anomaly”: in a TVCM, the q-th moment of 2 may diverge

Let us elaborate. From long past experience, physicists’ and statisticians’ natural impulse
is to define and manipulate moments without envisioning or voicing the possibility of their
being infinite. This lack of concern cannot extend to multifractals. The distribution of the
TVCM within a dyadic interval introduces an additional critical exponent g that satis-
fies gerit > 1. When 1 < gt < 00, which is a stronger requirement that D > 0, the g-th
moment of (dt) diverges for g > gcrit-

A stronger result holds: the TVCM cascade generates a measure whose distribution fol-
lows the power law of exponent gcrit.

Comment. The heuristic approach to non-random multifractals fails to extend to random
ones, in particular, it fails to allow gt < 0o. This makes it incomplete from the viewpoint
of finance and several other important applications.

The finite gt has been around since Mandelbrot (1974a, b) (where it is denoted by «)
and triggered a substantial literature in mathematics. But it is linked with events so extra-
ordinarily unlikely as to appear incapable of having any perceptible effect on the gener-
ated measure. The applications continue to neglect it, perhaps because it is ill-understood.
A central goal of TVCM is to make this concept well-understood and widely adopted.

6.4. An important role of T(q): if ¢ > 1 the q-th moment of §2 is finite if, and only if,
t(q) > 0; the same holds for w(dt) whenever dt is a dyadic interval

By definition, after k levels of iteration, the following symbolic equality relates indepen-
dent realizations of M and w. That is, it does not link random variables but distributions

2 (10, 1) = My (10, 11) + Myue—1 (10, 11).

Conservation on the average is expressed by the identity Eux—1([0, 1]) = 1. In addition,
we have the following recursion relative to the second moment.

Ep?(10,11) = 2EM*[Ep_, (10, 11)] + 2EM?[ Egu—1 (10, 11) .
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The second term to the right reduces to 1/2. Now let k — oo. The necessary and suffi-
cient condition for the variance of ([0, 1]) to converge to a finite limit is

2(EM2) <1 inotherwords 7(2)= —logz(EMz) —1>0.

When such is the case, Kahane and Peyriere (1976) gave a mathematically rigorous
proof that there exists a limit measure ([0, 1]) satisfying the formal expression

1
2

Ep ([0’ 1]) - 2(1—27@)°

Higher integer moments satisfy analogous recursion relations. That is, knowing that all
moments of order up to g — 1 are finite, the moment of order ¢ is finite if and only if
(q) > 0.

The moments of non-integer order ¢ are more delicate to handle, but they too are finite
if, and only if, 7(g) > 0.

6.5. Definition of qcrit; proof that in the case of TVCM qcrit s finite if, and only if, u > 1
Section 5.4 noted that the graph of 7(g) is always cap-convex and for large g > 0,

t(q) ~ —logy (pu?) + —1~ —log, p— 1 —qlogy u.

The dependence of 7(g) on g is ruled by the sign of u — 1, as follows.

e The case when u < 1, hence amin > 0. In this case, 7(g) is monotone increasing and
7(g) > 0 for g > 1. This behavior is exemplified by the Bernoulli binomial.

e The case when u > 1, hence amin < 0. In this case, one has 7(g) < 0 for large ¢. In ad-
dition to the root g = 1, the equation t(g) = 1 has a second root that is denoted by gcrit.

Comment. In terms of the function f(«) graphed on Figure 3, the values 1 and gcyi¢ are
the slopes of the two tangents drawn to f(«) from the origin (0, 0).

Within the class of equivalence of any p and 1 — p; the parameter g can be “tuned” so
that g begins by being > 1 then converges to 1; if so, it is seen that D converges to 0.
e Therefore, the conditions gt = 1 and D = 0 describe the same “anomaly”.

In Figure 1, isolines of gt are drawn for g¢ris = 1, 2, 3, and 4. When ¢ = 1 is the only
root, it is convenient to say that g = 00. This isoset g¢rjt = 00 is made of the half-line
{fv=1/2and u > 1/2} and of the square {0 <v < 1/2,1/2 <u < 1}.

6.6. The exponent qcrit can be considered as a macroscopic variable of the generating
process

Any set of two parameters that fully describes a TVCM can be called “microscopic”. All
the quantities that are directly observable and can be called macroscopic are functions of
those two parameters.
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f(a)

f(o)=1

\ *
Fig. 3. The functions f(«) for p =3/4 and varying g. All those graphs are linked by horizontal reductions or
dilations followed by translation and further self-affinity. It is widely anticipated that f(«) > 0 holds in all cases,

but for the TVCM this anticipation fails, as shown in this figure. For g > 0 (resp., g < 0) the left endpoint of f(«)
(resp., the right endpoint) satisfies f () < 0 and the other endpoint, f () > 0.

For the general canonical multifractal, a full specification requires a far larger number
of microscopic quantities but the same number of macroscopic ones. Some of the latter
characterize each sample, but others, for example g.rit, characterize the population.

7. The quantity «: the original Holder exponent and beyond

The multiplicative cascades — common to the Bernoulli and canonical binomials and
TVCM - involve successive multiplications. An immediate consequence is that both the
basic w(dt) and its probability are most intrinsically viewed through their logarithms.
A less obvious fact is that a normalizing factor 1/log(d¢) is appropriate in each case.
An even less obvious fact is that the normalizations log i/ logdr and log P/logdt are of
far broader usefulness in the study of multifractals. The exact extend of their domain of
usefulness is beyond the goal of this chapter, but we keep some special cases that can be
treated fully by elementary arguments.

7.1. The Bernoulli binomial case and two forms of the Holder exponent: coarse-grained
(or coarse) and fine-grained

Recall that due to conservation, the measure in an interval of length dr = 27k is the same
after k stages and in the limit, namely, @ (dt) = i (dt). As a result, the coarse-grained
Holder exponent can be defined in either of two ways,

w(dr) = log 1(dr)
log(dr)
G(dn) = log jux (dr)

log(dt)
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The distinction is empty in the Bernoulli case but prove prove essential for the TVCM.
In terms of the relative frequencies ¢ and ¢ defined in Section 2.1,

a(dt) = a(dr) = alpo, p1) = —polog, u — @1 log, v
= —go(logy u — log, v) — logv.

Since u > v, one has 0 < apin = —logy, u <o =& < amax = —log, v < 0o. In particu-
lar, @ > 0, hence & > 0. As dt — 0, so does w(dt), and a formal inversion of the definition
of o yields

p(dr) = (dn)“.

This inversion reveals an old mathematical pedigree. Redefine ¢y and ¢ from denoting
the finite frequencies of 0 and 1 in an interval, into denoting the limit frequencies at an
instant ¢. The instant ¢ is the limit of an infinite sequence of approximating intervals of
duration 2%, The function 1 ([0, t]) is non-differentiable because limg;_, o 1 (d?)/dt is not
defined and cannot serve to define the local density of u at the instant dr.

The need for alternative measures of roughness of a singularity expression first arose
around 1870 in mathematical esoterica due to L. Holder. In fractal/multifractal geometry
this expression merged with a very concrete exponent due to H.E. Hurst and is continually
being generalized. It follows that for the Bernoulli binomial measure, it is legitimate to
interpret the coarse «s as finite-difference surrogates of the local (infinitesimal) Holder
exponents.

7.2. In the general TVCM measure, o # &, and the link between “o” and the Hélder
exponent breaks down; one consequence is that the “doubly anomalous”
inequalities amin < 0, hence & < 0, are not excluded

A Holder (Hurst) exponent is necessarily positive. Hence negative &s cannot be interpreted
as Holder exponents. Let us describe the heuristic argument that leads to this paradox and
then show that & < 0 is a serious “anomaly”: it shows that the link between “some kind
of o and the Holder exponent requires a searching look. The resolution of the paradox is
very subtle and is associated with the finite g introduced in Section 6.5.

Once again, except in the Bernoulli case, £2 # 1 and p(dr) = ug (dr)$2(dr), hence

log £2(dr)

dr) = a(dr
o(d) =a(dn) + logdz.

In the limit dt — O the factor log = §2/log(d¢) tends to 0, hence it seems that o = &.
Assume u > 1, hence amin < 0 and consider an interval where &(dt) < 0. The formal
equality

“up(dr) = (dn)®”
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seems to hold and to imply that “the” mass in an interval increases as the interval length
—> 0. On casual inspection, this is absurd. On careful inspection, it is not — simply because
the variable dr = 2% and the function 4 (dr) both depend on k. For example, consider the
point ¢ for which @9 = 1. Around this point, one has py = upr—1 > pg—1. This inequality
is not paradoxical.

Furthermore, Section 8 shows that the theory of the multiplicative measures introduces
@ intrinsically and inevitably and allows & < 0.

Those seemingly contradictory properties will be reexamined in Section 9. Values of
w(dr) will be seen to have a positive probability but one so minute that they can never be
observed in the way « > O are observed. But they affect the distribution of the variable 2
examined in Section 4, therefore are observed indirectly.

8. The full function f(«) and the function p («)

8.1. The Bernoulli binomial measure: definition and derivation of the box dimension
function f(x)

The number of intervals of denumerator 2% leading to ¢ and ¢ is N(k, o, ¢1) =
k!/(kgo)!(ke1)!, and dr is the reduction ratio r from [0, 1] to an interval of duration dr.
Therefore, the expression

_log Nk, go, @1) __ loglk!/(keo)! (kepn)!]

is of the form f(k, o, ¢1) = —log N/logr. Fractal geometry calls this the “box similar-
ity dimension” of a set. This is one of several forms taken by fractal dimension. More
precisely, since the boxes belong to a grid, it is a grid fractal dimension.

The dimension function f (). For large k, the leading term in the Stirling approximation
of the factorial yields

klirgo Sk, 00, 1) = f(@o, 1) = —@olog, po — ¢11o0g, ¢1.

8.2. The “entropy ogive” function f(a); the role of statistical thermodynamics in
multifractals and the contrast between equipartition and concentration

Eliminate ¢y and ¢; between the functions f and @ = —¢glogu — @1 logv. This yields in
parametric form a function, f(«). Note that 0 < f(«) < min{«, 1}. Equality to the right is
achieved when ¢o = u. The value o where f = « is very important and will be discussed
in Section 9. In terms of the reduced variable g9 = (@ — &min)/(¥max — &min), the function
f (o) becomes the “ogive”

F(@0) = —gology o — (1 — o) log, (1 — o).
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This f(go) can be called a universal function. The f () corresponding to fixed p and
varying g are affine transforms of f (¢0), therefore of one another. The ogive function f
first arose in thermodynamics as an entropy and in 1948 (with Shannon) entered com-
munication theory as an information. Its occurrence here is the first of several roles the
formalism of thermodynamics plays in the theory of multifractals.

An essential but paradoxical feature. Equilibrium thermodynamics is a study of various
forms of near-equality, for example postulates the equipartition of states on a surface in
phase space or of energy among modes. In sharp contrast, multifractals are characterized
by extreme inequality between the measures in different intervals of common duration dz.
Upon more careful examination, the paradox dissolves by being turned around: the main
tools of thermodynamics can handle phenomena well beyond their original scope.

8.3. The Bernoulli binomial measure, continued: definition and derivation of a function
p(a) = f(a) — 1 that originates as a rescaled logarithm of a probability

The function f(«) never fully specifies the measure. For example, it does not distinguish
between the Bernoulli, shuffled and canonical binomials. The function f(«) can be gener-
alized by being deduced from a function p (@) = f () — 1 that will now be defined. Instead
of dimensions, that deduction relies on probabilities. In the Bernoulli case, the derivation
of p is a minute variant of the argument in Section 8.1, but, contrary to the definition of f,
the definition of p easily extends to TVCM and other random multifractals.

In the Bernoulli binomial case, the probability of hitting an interval leading to ¢ and ¢
is simply P (k, ¢o, ¢) = N (k, ¢o, (p1)27k = k!/(k(po)!(k(pl)!ka. Consider the expression

_log[P(k, 0. p1)]

k! 9 .
ok, o, ¢1) Tog(dr)

which is a rescaled but not averaged form of entropy. For large k, Stirling yields

klggop(k, @0, 91) = (@0, ¥1) = —@o logy wo — ¢1log, g1 — 1

= f(a) — 1.

8.4. Generalization of p(a) to the case of TVCM; the definition of f (a) as p(x) + 1 is
indirect but significant because it allows the generalized f to be negative

Comparing the arguments in Sections 8.1 and 8.2 link the concepts of fractal dimension
and of minus log (probability). However, when f () is reported through f(«) = p(o) + 1,
the latter is not a mysterious “spectrum of singularities”. It is simply the peculiar but proper
way a probability distribution must be handled in the case of multifractal measures. More-
over, there is a major a priori difference exploited in Section 10. Minus log (probability)
is not subjected to any bound. To the contrary, every one of the traditional definitions of
fractal dimension (including Hausdorff—Besicovitch or Minkowski—Bouligand) necessar-
ily yields a positive value.



Ch. 1:  Heavy Tails in Finance for Independent or Multifractal Price Increments 25

The point is that the dimension argument in Section 8.1 does not carry over to TVCM,
but the probability argument does carry over as follows. The probability of hitting an in-
terval leading to ¢o and ¢; now changes to P (k, ¢o, ¢1) = p(pok)!/(keo)!(ke1)! One can
now form the expression

log[ P (k, o, ¢1)]

k =—
ok, o, 1) Tog(dr)

Stirling now yields
p(po, 1) = lim p(k, ¢o, ¢1)
k— 00

= {—golog, po — ¢110g, 91} + {@olog, p + @1 logy(1 — p)}.

In this sum of two terms marked by braces, we know that the first one transforms (by
horizontal stretching and translation) into the entropy ogive. The second is a linear function
of ¢, namely go[log, p —log,(1 — p)] + log, (1 — p). It transforms the entropy ogive by
an affinity in which the line joining the two support endpoints changes from horizontal to
inclined. The overall affinity solely depends on p, but ¢y depends explicitly on u# and v.

This affinity extends to all values of p. Another property familiar from the binomial
extends to all values of p. For all u and v, the graphs of p(«), hence of f(«) have a
vertical slope for g = t-00.

Alternatively, p(¢o, ¥1) = —¢ology[@o/p] — ¢1logyle1 /(1 — p)].

8.5. Comments in terms of probability theory

Roughly speaking, the measure u is a product of random variables, while the limit
theorems of probability theory are concerned with sums. The definition of o as
log . (dt)/log(dt) replaces a product of random variables M by a weighted sum of ran-
dom variables of the form log M. Let us now go through this argument step by step in
greater rigor and generality. One needs a cumbersome restatement of o (dr).

The low frequency factor of i (dt) and the random variable H)oy,. Consider once again
a dyadic cell of length 27 that starts at r = 0.8 . .. Bx. The first k stages of the cascade
can be called of low frequency because they involve multipliers that are constant over
dyadic intervals of length df =27k or longer. These stages yield

ur(dr) =MBOMB1, B2) - MBi, ..., Br) = HM-
We transform py (dr) into the low frequency random variable

 loglu(dn)]
oY = T og(dr)

1
= g[— logy M(B1) —logy M(B1, B2) — -+ ].
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We saw in Section 4.5 that the first few values of M largely determine the distribution
of £2. But the last expression involves an operation of averaging in which the first terms
contributing to w(dr) are asymptotically washed out.

8.6. Distinction between “center” and “tail” theorems in probability

The quantity oy (df) = @plog, u — @1 log, v is the average of a sum of variables —log M;
but why is its distribution is not Gaussian and the graph of p(«) is an entropy ogive rather
than a parabola? Why is this so? The law of large numbers tells us that oy (df) almost
surely converges to its expectation which tells us very little. A tempting heuristic argu-
ment continues as follows. The central limit theorem is believed to ensure that for small
dt, Hiow(df) becomes Gaussian, therefore the graph of log p(dr) should be expected to be
a parabola. This being granted, why is it that the Stirling approximation yields an entropy
ogive — not a parabola?

In fact, there is no paradox of any kind. While the central limit theorem is indeed central
to probability theory, all it asserts in this context is that, asymptotically, the Gaussian rules
the center of the distribution, its “bell”. Renormalizations reduce this center to the imme-
diate neighborhood of the top of the p(«) graph and the central limit theorem is correct in
asserting that the top of the entropy ogive is locally parabolic. But in the present context
this information is of little significance. We need instead an alternative that is only con-
cerned with the tail behavior which it ought to blow up. For this and many other reasons,
it would be an excellent idea to speak of center, not central limit theorem. The tail limit
theorem is due to H. Cramer and asserts that the tail consisting in the bulk of the graph is
not a parabola but an entropy ogive.

8.7. The reason for the anomalous inequalities f () <0 and o < 0 is that, by the
definition of a random variable p(dt), the sample size is bounded and is prescribed
intrinsically; the notion of supersampling

The inequality p(«) < —1 characterizes events whose probability is extraordinarily small.
The finding that this inequality plays a significant role was not anticipated, remains difficult
to understand and appreciate, and demands comment.

The common response is that even extremely low probability events are captured if one
simply takes a sufficiently long sample of independent values. But this is impossible, even
if one forgets that, in the present uncommon context, the values are extremely far from
being statistically independent. Indeed, the choice the duration dr = 2% has two effects.
Not only does it fix the distribution of 1 (dt), but it also sets the sample size at the value
N = 1/dr = 2k, Roughly speaking, a sample of size N can only reveal values having a
probability greater than 1/N, which means p(«) > —1.

In summary, it is true that decreasing dr to 27¥~! increases the sample size. But it
also changes the distribution and does so in such a way that the bound p = —1 remains
untouched.
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This bound excludes du items of information that correspond to f () < O (for example,
the value of gt when finite). Those items remain hidden and latent in the sense that they
cannot be inferred from one sample of values of 1 (df). Ways of revealing those values, su-
persampling and embedding, are examined in Mandelbrot (1989b, 1995) and forthcoming
Mandelbrot (2003).

Figure 3 shows, for p = 3/4, how the graph of f(«) depends on g.

8.8. Excluding the Bernoulli case p =1/2, TVCM faces either one of two major
“anomalies”: for p > —1/2, one has f (ctmin) = 1 +1og, p > 0 and
Sf(amax) = 1+1ogy (1 — p) <O0; for p < 1/2, the opposite signs hold

The fact that the values of p(min) = f (¢min) — 1 and p(max) = f(emax) — 1 are loga-
rithms of probabilities confirms and extends the definition of p(¢) = f(«@) — 1 as a limit
rescaled probability. Here, those endpoint values of f(«) are independent of g and the
affinity that deduces them from the entropy ogive (with ends on the horizontal axis) char-
acterizes the class of equivalence of p and 1 — p. If, and only if, p = 1/2 and u +v = 1, that
is, in the familiar Bernoulli binomial case, one has p(¢¢min) = p(@max) =log,(1/2) = —1
hence f(min) = f(¢max) = 0. When u + v # 1, one of the endpoints satisfies f > 0 and
the other satisfies f < 0. Sections 8.9 and 10 shall examine the sharply differing conse-
quences of those inequalities.

8.9. The “minor anomalies” f(otmax) > 0 or f(omin) > 0 lead to sample function with a
clear “ceiling” or “floor”

Suppose that f(omin) =0 and f(emax) = 0, as is the case for p = 1/2. Then, using terms
often applied to the printed page — but after it has been turned 90° to the side — the sample
functions are “non-justified” or “ragged” for both high and low values. That is, the values
tend to be unequal; one is clearly larger than all others, a second is clearly the second
largest, etc.

To the contrary, TVCM with p # 1/2 yield either f(omax) > 0 or f(amin) > 0. Sample
functions have a conspicuous “ceiling” (resp., a “floor””). That is, a largest (resp., smallest)
value is attained repeatedly for values of ¢ belonging to a set of positive dimension. To
use the printers’ vocabulary, when one side is “ragged” the other is “justified”. On visual
inspection of the data, the ceiling is always visible; the floor merges with the time axis,
except when one plots log[u(d?)].

9. The fractal dimension D = /(1) = 2[—pulog, u — (1 — p)vlog, v] and
multifractal concentration

The function f (o) satisfies f(«) < «, with equality f(«) =« whena = D = 7/(1). From
the value of @ = D follows one of the most important properties of multifractals. Mandel-
brot (2001d) proposed to call it “multifractal concentration”. This section will first examine
its opposite, which is asymptotic negligibility.
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9.1. In the Bernoulli binomial measures weak asymptotic negligibility holds but strong
asymptotic negligibility fails

Recall that during construction, the total binomial measure of [0, 1] remains constant and
equal to 1. But the first few stages of construction make its distribution become very un-
equal and a few values that stand out as sharp spikes. After k stages, the maximum measure
is u*, which is far larger than the minimum measure v*. From the relations

2k =dr, 2k — N, —logyu=oamin<1, and —log,v=0amin>1,
it follows that

Mk — b(* log, u)(—k) — (dt)amin — N*amin_

In words: even the maximum u* tends to 0. This is a weak form of asymptotic negligi-
bility following a power-law.

The preceding result holds for every multifractal for which there is an oy, > O that
plays the same role as in the binomial case. (In more general multifractals the same role is
held by some o, > max{dmin, 0}.)

Similarly, the total contribution of any fixed number of largest spikes is asymptotically
negligible.

9.2. For the Bernoulli or canonical binomials, the equation f (o) = a has one and only
one solution; that solution satisfies D > 0 and is the fractal dimension of the
“carrier” of the measure

We now proceed to the total contribution of a number of spikes that is no longer fixed but
increases with N. In the simplest of all possible worlds, many spikes would have been more
or less equal to the largest, and the sum of all the other spikes would have been negligible.
If so, the sum of N%min gpikes would have been of the order of N%min N™%min — ],

While the world is actually more complicated there is an element of orderliness. The
equality ¢o = u is achieved for @ = f(a) = —ulogu — vlogv = D. For finite but large k,
it follows that

ik, go, 1) ~ 275 =272 and  N(kigo, p1) ~ 2@ =2*P.
Hence,
k1o, @1)N (k1gop1) is approximately equal to 1.
Actually, this product is necessarily < 1 but the difference tends to 0 as k — oco. That
is, an increasingly overwhelming bulk of the measure tends to “concentrate” in the cells

where o = D. The remainder is small, but in the theory of multifractals even very small
remainders are extremely significant for some purposes.
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9.3. The notion of “multifractal concentration”

A key feature of multifractals is a subtle interaction between number and size that is elabo-
rated upon in Mandelbrot (2001d). Section 9.2 showed that the contributions that are large
are too few to matter. The small contributions are very numerous, but so extremely small
that their total contribution is negligible as well. The bulk of the measure is found in a
rather inconspicuous intermediate range one can call “mass carrying”. Since D > apip, the
NP spikes of size N~P are far smaller than the largest one. Separately, each is asymp-
totically negligible. But their number N is exactly large enough to insure that their total
contribution is nearly equal to the overall measure 1. When a sample is plotted, this range
does not stand out but it makes a perfect match between size and frequency.

Practically, the number of visible peaks is so small compared to N that a combination
of the peaks and the intermediate range is still of the order of N”. The combined range
has the advantage of simplicity, since it includes the N largest values. Note that the peaks
tend to be located in the midst of stretches of values of intermediate size.

9.4. The case of TVCM with p < 1/2, allows D to be positive, negative, or zero

Using the alternative expression for f(«) given in Section 8.4, the identity f(«) = o de-
mands the equality of the two expressions

Yo @1
f@)=—¢o logzl:;j| — @1 10g2|:1 j| and o= —g@glog,u — ¢ilog,v.

The solution is, obviously, g9 = pu and ¢ = (1 — p)v. The sum ¢ + ¢ is 1, as it must.
Hence, D = —pulog, u — (1 — p)vlog, v, as announced. The novelty is that TVCM allow
D>0, D=0,and D <0.

Familiar role of D under the inequality D > 0. Mandelbrot (1974a, b) obtained the
following criterion, which has become widely known and includes the TVCM case. When
positive, D is the fractal dimension of the “set that supports” the measure. Figure 1 shows
isolines of D for D =0, 1/4,1/2, and 3/4. The isoline for D = 1 is made of the interval
{u =1, 0 <v < 1} and the half-line {v =1, u > 1}. The key result is that, contrary to the
Bernoulli binomial case, the half line 1 < g < co subdivides into up to three subranges of
values.

Largely unfamiliar consequence of the inequality D < 0. For all non-random multifrac-
tals, /(1) > 0. A casual acquaintance with multifractals takes for granted that this is not
changed by randomness. But Mandelbrot (1974a, b) also allows for an alternative possi-
bility, which has so far remained little known. The example of TVCM shows that, in a
canonical case, the formally evaluated D can be negative. In the example of TVCM, D is
negative when the point (u, v) falls in a domain to the bottom right of the folded phase
diagram in Figure 1. The consequences of D < 0 are drastic: the multifractal reduces to 0
almost surely and is called degenerate.

A classical “pathological limit” as metaphor. This limit behavior of the distribution of
u seems incompatible with the fact that £y = 1 by definition. But in fact, no contradiction
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is observed. A convincing idea of the distribution is provided for each p, by the behavior
of the g — oo limit of the weights #$27(®) and v827(®). This recalls a classical counterex-
ample of analysis, namely, the behavior for k — oo of the variable P defined as follows:
Py = k with the probability 1/k and Py = 0 with the probability 1 — 1/k. For finite k, one
has E P, = 1. But in the limit k — 00, Ps, =0, hence E Po, = 0, so that in the limit the
expectation drops discontinuously from 1 to 0. In practice, the preasymptotic measure is
extremely small with a high probability and huge with a tiny probability.
The condition D = 0. It defines the threshold of degeneracy.

10. A noteworthy and unexpected separation of roles, between the “dimension
spectrum” and the total mass 2 ; the former is ruled by the accessible « for
which f(«) > 0, the latter, by the inaccessible « for which f(x) <0

Brought together, Sections 4, 7, 8, and 9 imply, in plain words, that what you do not nec-
essarily see may affect you significantly. This section serves to underline that the notion
of canonical multifractal is very subtle and deserves to be well-understood and further
discussed.

10.1. Definitions of the “accessible ranges” of the variables: qs from g%, to qp., and os

fromaZ. to ap .., the accessible functions t*(q) and f* (o)

Mandelbrot (1995) worked to introduce to the function f*(«) = max{0, f(«)}. That is,
e Intheinterval [, ,ar. ] where f(a) >0, f*(a) = f();
e When f(o) <0, f*(@)=0.

The graph of f*(«) is identical to that of f(«) except that the “tails” with f < 0 are
truncated so that f* > 0. In terms of 7(g), the equality f () =0 corresponds to lines that
are tangent to the graph of 7(g) and also go through (0, 0). In the most general case, those
lines’ slopes are o, and o, and the points of contact are denoted by gy, (satisfying
>0) and ¢, (satisfying <0). Therefore, the function f*(«) corresponds to the following
truncated function 7*(g).

e Wheng < gy, T°(q) = opaxd;
e When g <q < {qpma T7(q)=7(q);
e When g > g, T°(q) =a)..q.

In other words, the graph of 7* is identical to that of T except that beyond ¢, or ¢
it follows the tangents that go through the origins. Therefore it is straight.

For the TVCM, one has either oy, = omax With g, = —00, or «
= 00.

*

in = @min With

*
9max

10.2. A confrontation

Section 4 noted that the largest values of £2([0, 1]) are generated when a sample cascade
begins with a few large values. Section 7 noted that the value of £2([0, 1]) — irrespective of
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size — ceases, for k — 00, to have any impact on «. Section 8 noted that, again for k — oo,
values of « such that f(«) < 0 have a vanishing probability of being observed. Section 9.1
followed up by defining the accessible function f(«). Section 9 returned to large values of
£2([0, 1]) and noted their association with gt < 0o. The values of « they involve satisfy
a < 0, hence a fortiori f () < 0. Those values do not occur in multifractal decomposition,
yet they are extremely important.

10.3. The simplest cases where f (o) > 0 for all a, as exemplified by the canonical
binomial

Here, the large values of §2 are ruled by the left-most part of the graph of f (). That is, the
same graph controls those large values and the distribution of £2([0, 1]) among the 1/d¢
intervals of length dr.

10.4. The extreme case where f(a) <0 and o < 0 both occur, as exemplified by TVCM
when u > 1

Due to the inequality f (o) < «, the graph of f(«) never intersects the quadrant where
a <0and f > 0. The key unexpected fact is that the portions of f(«) within other quad-
rants play more or less separate roles. In the TVCM case, those quadrants are parts of one
(analytically simple) function. But in general they are nearly independent of each other.

The function f (o) was defined as having a graph that lies in the non-anomalous quadrant
a >0 and f > 0. This f determines completely the multifractal decomposition of our
TVCM measure, in particular, the dimension D and the exponents g , g, @ and
a;;ax'

To the contrary, gt is entirely determined by the doubly anomalous left tail located in
the quadrant characterized by f(«) <0 and o < 0. A priori, it was quite unexpected that
this quadrant should exist and play any role, least of all a central role, in the theory of
multifractals. But in fact, g.i; has a major effect on the distribution, hence the value of the
total measure in an interval.

10.5. The intermediate case where omin > 0 but f(«) < 0 for some values of o

When p < 1/2, but u < 1 so that gt = 0o and all moments are finite, large values of
1 have a much lower probability than when u > 1. As always, however, their probability
distribution continues to be determined by the left tail of the probability graph where f < 0.

11. A broad form of the multifractal formalism that allows ¢ <0 and f(x) <0

The collection of rules that relate 7(q) to f(«) is called “multifractal formalism”. TVCM
was specifically designed to understand multifractals directly, thus avoiding all formalism.
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However, general random multifractals more than TVCM demand their own broad multi-
fractal formalism. Once again, the most widely known form of the multifractal formalism
does not allow randomness and yields f («) > 0, but the broad formalism first introduced
in Mandelbrot (1974a, b) concerns a generalized function for which f(«) < 0 is allowed.

11.1. The broad “multifractal formalism” confirms the form of f («) and allows
f (o) <0 for some o

Through a point on the graph of coordinates g and t(q), draw the tangent to that graph.
Under wide conditions, the tangent’s slope is «(¢g) and its intercept by the ordinate axis is

—f(q). Thus

d d
a(q)=$ and  — f(g)=1(q) — g LD,
q dg

Through the quantities «(g) and f(g), a function f () is defined by using g as parame-
ter.

The slope f'(«) is the inverse of the function a(g). The tangent of slope f’(o) inter-
sects the line o = 0 at the point of ordinate —t(g). The D(q) tangent’s equation being
—1(q) + qa, its intersection with the bisector satisfies the condition —t + g = «, hence
D =1(gq)/(q — 1). This is the critical embedding dimension discussed in Section 5.4.

11.2. The Legendre and inverse Legendre transforms and the thermodynamical analogy

The transforms that replace ¢ and 7(g) by « and f (), or conversely, are due to Legendre.
They play a central role in thermodynamics, as does already the argument that yielded
f (o) and p (@) in the original formalism introduced in Mandelbrot (1974a, b).
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Abstract

It is of great importance for those in charge of managing risk to understand how financial
asset returns are distributed. Practitioners often assume for convenience that the distribu-
tion is normal. Since the 1960s, however, empirical evidence has led many to reject this
assumption in favor of various heavy-tailed alternatives. In a heavy-tailed distribution the
likelihood that one encounters significant deviations from the mean is much greater than
in the case of the normal distribution. It is now commonly accepted that financial asset
returns are, in fact, heavy-tailed. The goal of this survey is to examine how these heavy
tails affect several aspects of financial portfolio theory and risk management. We describe
some of the methods that one can use to deal with heavy tails and we illustrate them using
the NASDAQ composite index.
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1. Introduction

Financial theory has long recognized the interaction of risk and reward. The seminal work
of Markowitz (1952) made explicit the trade-off of risk and reward in the context of a port-
folio of financial assets. Others such as Sharpe (1964), Lintner (1965), and Ross (1976),
have used equilibrium arguments to develop asset pricing models such as the capital asset
pricing model (CAPM) and the arbitrage pricing theory (APT), relating the expected return
of an asset to other risk factors. A common theme of these models is the assumption of nor-
mally distributed returns. Even the classic Black and Scholes option pricing theory (Black
and Scholes, 1973) assumes that the return distribution of the underlying asset is normal.
The problem with these models is that they do not always comport with the empirical ev-
idence. Financial asset returns often possess distributions with tails heavier than those of
the normal distribution. As early as 1963, Mandelbrot (1963) recognized the heavy-tailed,
highly peaked nature of certain financial time series. Since that time many models have
been proposed to model heavy-tailed returns of financial assets.

The implication that returns of financial assets have a heavy-tailed distribution may be
profound to a risk manager in a financial institution. For example, 30 events may occur
with a much larger probability when the return distribution is heavy-tailed than when it
is normal. Quantile based measures of risk, such as value at risk, may also be drastically
different if calculated for a heavy-tailed distribution. This is especially true for the highest
quantiles of the distribution associated with very rare but very damaging adverse market
movements.

This chapter serves as a review of the literature. In Section 2, we examine financial
risk from an historical perspective. We review risk in the context of the mean—variance
portfolio theory, CAPM and the APT, and briefly discuss the validity of their assumption
of normality. Section 3 introduces the popular risk measure called value at risk (VaR).
The computation of VaR often involves estimating a scale parameter of a distribution. This
scale parameter is usually the volatility of the underlying asset. It is sometimes regarded as
constant, but it can also be made to depend on the previous observations as in the popular
class of ARCH/GARCH models.

In Section 4, we discuss the validity of several risk measures by reviewing a proposed
set of properties suggested by Artzner, Delbean, Eber and Heath (1999) that any sensible
risk measure should satisfy. Measures satisfying these properties are said to be coherent.
The popular measure VaR is, in general, not coherent, but the expected shortfall measure
is. The expected shortfall, in addition to being coherent, gives information on the expected
size of a large loss. Such information is of great interest to the risk manager.

In Section 5, we return to risk, portfolios and dependence. Copulas are introduced as a
tool for specifying the dependence structure of a multivariate distribution separately from
the univariate marginal distributions. Different measures of dependence are discussed in-
cluding rank correlations and tail dependence. Since the use of linear correlation in finance
is ubiquitous, we introduce the class of elliptical distributions. Linear correlation is shown
to be the canonical measure of dependence for this class of multivariate distributions and
the standard tools of risk management and portfolio theory apply.
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Since the risk manager is concerned with extreme market movements we introduce ex-
treme value theory (EVT) in Section 6. We review the fundamentals of EVT and argue
that it shows great promise in quantifying risk associated with heavy-tailed distributions.
Lastly, in Section 7, we examine the use of stable distributions in finance. We reformu-
late the mean—variance portfolio theory of Markowitz and the CAPM in the context of the
multivariate stable distribution.

2. Historical perspective

2.1. Risk and utility

Perhaps the most cherished tenet of modern day financial theory is the trade-off between
risk and return. This, however, was not always the case, as Bernstein’s (1996) narrative
on risk indicates. In fact, investment decisions used to be based primarily on expected re-
turn. The higher the expected return, the better the investment. Risk considerations were
involved in the investment decision process, but only in a qualitative way, stocks are more
risky than bonds, for example. Thus any investor considering only the expected payoff EX
of a game (investment) would, in practice, be willing to pay a fee equal to EX for the right
to play.

The practice of basing investment decisions solely on expected return is problematic,
however. Consider the game known today as the Saint Petersburg Paradox, introduced in
1728 by Nicholas Bernoulli. The game involves flipping a fair coin and receiving a payoff
of 2"~ roubles' if the first head appears on the nth toss of the coin. The longer tails
appears, the larger the payoff. While in this game the expected payoff is infinite, no one
would be willing to wager an infinite sum to play, hence the paradox. Investment decisions
cannot be made on the basis of expected return alone.

Daniel Bernoulli, Nicholas’ cousin, proposed a solution to the paradox ten years later.
He believed that, instead of trying to maximize their expected wealth, investors want to
maximize their expected utility of wealth. The notion of utility is now widespread in eco-
nomics.? A utility function U : R — R indicates how desirable is a quantity of wealth W.
One generally agrees that the utility function U should have the following properties:

(1) U is continuous and differentiable over some domain D.

(2) U'(W) > 0 for all W € D, meaning investors prefer more wealth to less.

(3) U"(W) <0 forall W € D, meaning investors are risk averse. Each additional dollar of
wealth adds less to the investors utility when wealth is large than when wealth is small.

In other words, U is smooth and concave over D. An investor can use his utility function

to express his level of risk aversion.

' In fact, it was ducats (Bernstein, 1996).

2 For introductions to utility theory see for example Ingersoll (1987) or Huang and Litzenberger (1988).
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2.2. Markowitz mean—variance portfolio theory

In 1952, while a graduate student at the University of Chicago, Harry Markowitz (1952)
produced his seminal work on portfolio theory connecting risk and reward. He defined
the reward of the portfolio as the expected return and the risk as its standard deviation
or variance.® Since the expectation operator is linear, the portfolio’s expected return is
simply given by the weighted sum of the individual assets’ expected returns. The variance
operator, however, is not linear. This means that the risk of a portfolio, as measured by the
variance, is not equal to the weighted sum of risks of the individual assets. This provides a
way to quantify the benefits of diversification.

We briefly describe Markowitz’ theory in its classical setting where we assume that the
assets distribution is multivariate normal. We will relax this assumption in the sequel. For
example, in Section 5.3, we will suppose that the distribution is elliptical and, in Sec-
tion 7.1, that it is an infinite variance stable distribution.

Consider a universe with n risky assets with random rates of return X = (X1, ..., X,),
with mean g = (u1, ..., 4n), covariance matrix ¥ and portfolio weights w = (wq, ...,
w,,). If X is assumed to have a multivariate normal distribution X ~ A/ (u, X), then the re-
turn distribution of the portfolio X, = w1 X is also normally distributed, X » ~N(1p, 0,%)

where 1, = wlp and 0,% = w! Xw. The problem is to find the portfolio of minimum vari-
ance that achieves a minimum level a of expected return:

minw! Xw
w
such that wip >a, (D)
elw=1.
Heree=(1,..., 1) and T denotes a transpose. The last condition in (1),

n
eTw=Zwi =1,

i=1

indicates that the portfolio is fully invested. Additional restrictions are usually added on the
weights* and the problem is generally solved through quadratic programming. By varying
the minimum level a of expected return, a set of portfolios X, is chosen, each of which is
optimal in the sense that an investor cannot achieve a greater expected return, p, =EX,
without increasing his risk, o,. The set of optimal portfolios corresponds to a convex curve
(0p,EX)) called the efficient frontier. Any rational investor making decisions based only
on the mean and variance of the distribution of returns of a portfolio would only choose

3 I practice, one minimizes the variance, but it is convenient to view risk as measured by the standard deviation.
4 For example, w; > 0, in other words no short selling. Without the additional constraints, the problem can be
solved as a system of linear equations.
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o

Fig. 1. The efficient frontier (op, it p). In the case when only risky assets R are available, the frontier traces out

a convex curve in risk-return space. The inclusion of a risk-free asset r, has a profound effect on the efficient set.

In this case, all efficient portfolios will consist of linear combinations of » and some risky portfolio R, where
(oR, i R) lies on the efficient frontier.

to own portfolios on this efficient frontier. The specific portfolio he chooses depends on
his level of risk aversion.’ If the universe of assets also includes a risk-free asset which
the investor may borrow and lend without constraint, then the optimal portfolio is a linear
combination of the risk-free asset r and a certain risky portfolio X g on the efficient fron-
tier. As shown in Figure 1, this line is tangent to the convex risky asset efficient frontier
at the point (or, EXg). The risky portfolio therefore maximizes the slope of this linear
combination,

E(Xg) —r
max ———.

w O’XR

)

Again, the specific weights given to the risk-free and risky assets depend on the individual
investors level of risk aversion.

2.3. CAPM and APT

The mean—variance portfolio theory of Markowitz describes the construction of an optimal
portfolio, in the mean—variance sense, for an individual investor. It requires only estimates

5 One can reconcile maximizing expected utility with the mean—variance portfolio theory of Markowitz, but
one has to assume either a quadratic utility function or that returns are multivariate normal or, more generally,
elliptical. (Elliptical distributions are introduced in Section 5.3.) For example, if returns are multivariate normal
and if X, and X, are the returns of two linear portfolios with the same expected return, then for all utility
functions U with properties listed in Section 2.1,

EU(Xp,) >EU(Xp,) ifandonlyif o3 <op,.

See for example Ingersoll (1987).
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for each asset mean return, and the covariance between assets.® If all investors act in a way
consistent with Markowitz’ theory, then under additional assumptions, one will be able to
learn something about the trade-off between risk and return in a market in equilibrium.”
This is what the CAPM does.

The capital asset pricing model (CAPM) is an equilibrium pricing model [see Sharpe
(1964) and Lintner (1965)] which relates the expected return of an asset to the risk-free
return, to the market’s expected return and to the covariance between the market and the
asset. In addition to assuming that market participants use the mean—variance framework,
the model makes two additional major assumptions. First, the market is assumed friction-
less. This means that securities are infinitely divisible, there exist no transaction costs, no
taxes, and there are no trading restrictions. Second, the investors beliefs are homogeneous.
This means investors agree on mean returns and covariances for all assets in the market.

The efficient frontier in Figure 1 depended on the investors’ belief. Under the CAPM
assumptions, since all investors assume the same expected return and covariances for all
assets in the market, they all have the same (risky) efficient frontier. However, the indi-
vidual investors choice of the optimal risky portfolio still depends on the investors own
level of risk aversion. Additionally, with the inclusion of a risk-free asset, we saw that the
investors portfolios become dramatically more simple. Each investor can own only two as-
sets: the risk-free asset and an optimal risky portfolio, with the relative weights depending
on the investors appetite for risk. But since each investor holds the same optimal portfolio
of risky assets, and since the market is assumed to be in equilibrium, this optimal risky
portfolio must be the market portfolio. Thus Figure 1 applies with R = M, where M de-
notes the market portfolio. M consists of all risky assets held in proportion to their overall
market capitalization. Letting X »; denote the return on the market portfolio, X; denote the
return of asset i, and r denote the risk-free return, the CAPM establishes the following
relationship:

E(X; —r)=BEXp —1), (3)
where
o COV(X,',XM) (4)
T VarXy

The CAPM thus relates in a linear way the expected premium EX; — r of holding the risky
asset i over the risk-free asset to the expected premium EXjy; — r of holding the market
portfolio over the risk-free asset. The constant of proportionality is the asset’s beta. The
coefficient B; is a measure of asset i’s sensitivity to the market portfolio. The expected

6 For a universe of n assets it is necessary to compute n(n — 1) /24 n covariances. This means that if the universe
under consideration consists of n = 1000 assets, it is necessary to estimate over 500000 covariances.
7 By market equilibrium, we mean a market place where security prices are set so that supply equals demand.
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premium for asset i is greater than that of the market if §; > 1 and less if §; < 1. But if
Bi > 1, then the risk will be greater. Indeed, if we assume that

Xi—r=6i(Xyu—r)+ei, &)
where ¢; is such that Eg; = 0 and Cov(e;, X7) = 0, then we have (3) and
oy, =Biox, + 0. (6)

Equation (5) is often known as a single factor model for asset returns. Notice from (6)
that the asset’s risk is the sum of two terms, the systematic or market risk ,61.20)2(1% and the

unsystematic or residual risk aszl_. For a portfolio X, with weights w = (w1, ..., w,), one
gets similarly 0)2(17 = ,812,6)2(”1 + 0_82]’ where B, = Y_!_, w;B;. If one additionally assumes
that Cov(g;, €j) = 0 for all i # j then the residual risk is

n
2 _ 2 2
o, = E w;og . @)
i=1

It is bounded by c/n for some constant c, if for example, w; = 1/n, and hence the port-
folio’s residual risk can be greatly reduced by diversification. The investor, for example, is
only rewarded for bearing systematic or market risk, that is, he can expect a higher return
than the market only by holding a portfolio which is riskier (8, > 1) than the market.

In the CAPM, all assets are exposed to a single common source of randomness, namely
the market. The arbitrage pricing theory (APT) model, due to Ross (1976), is a general-
ization of the CAPM in which assets are exposed to a larger number of common sources of
randomness. The APT differs from the CAPM in that the mean—variance framework that
led to (5) is now replaced by the assumption of a multifactor model

Xi=ai+Bitfi+- -+ Bikfc+& ®)

for generating security returns. All assets are exposed to the k sources of randomness
fi» J=1,...,k, called factors. Additionally, each asset i is exposed to its own specific
source of randomness ¢;. The equilibrium argument used in the CAPM led to the central
result (3). In the APT, the equilibrium assumption takes a slightly different form, namely,
one assumes that the market is free of arbitrage. The major result of the APT then relates
the expected premium of asset i to its exposure B;; to factor j, and to each factor premium
Aj, j=1,... k. Specifically

EX; =r+ Bith1 + - - + Bikh, )

where A, j =1, ...k, is the expected premium investors demand for bearing the risk of
factor j. Notice that the factor premiums A ; are the same for each security, and it is the
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Fig. 2. Left: Empirical probability density function (pdf) for NASDAQ standardized returns (solid) versus the
normal distribution (dot—dash) over the period February 1971 to February 2001. Right: Corresponding quan-

tile—quantile (QQ) plot with quantiles of the normal distribution on the abscissa and empirical quantiles on the
ordinate. Returns are expressed as a %.

exposure f;; to each factor that depends on the security. Additionally if k =1 in (8) and if
we assume the existence of a risk-free asset r, fi{ = X and that ; are uncorrelated with
each other and the market, then | = E(Xj; — r) and we get back the CAPM.

2.4. Empirical evidence

Markowitz’s mean—variance portfolio theory, as well as the CAPM and APT models, rely
either explicitly or implicitly on the assumption of normally distributed asset returns.’
Today, with long histories of price/return data available for a great many financial assets,
it is easy to see that this assumption is inadequate. Empirical evidence suggests that asset
returns have distributions which are heavier-tailed than the normal distribution. Figure 2
illustrates this for the NASDAQ.? The quantile—quantile (QQ) plot'? shows clearly that the
distribution tails of the NASDAQ are heavier than the tails of the normal distribution. As
early as 1963, Mandelbrot (1963) and Fama (1965) rejected the assumption of normality
for other heavier-tailed distributions. In his 1963 paper, Mandelbrot not only confirmed the
poor fit of the normal distribution, but proposed the model which is known today as the
stable model for asset returns.

8 As noted before, the multivariate normal assumption is consistent with maximizing expected utility.

9 The daily NASDAQ time series, the corresponding returns and their maxima and minima are displayed in
Figure 16. The time series starts in February 1971 and ends February 2001 (actually from February 08, 1971 to
January 26, 2001). The corresponding empirical statistics can be found in Table 1.

10 A quantile—quantile (QQ) plot is a graphical check to see if two distributions are of the same type. Two random
variables X and Y are said to be of the same type if their distributions are the same up to a change in location and

scale. That is X 4 aY + b for some a € RT, b € R. Since the QQ plot plots quantiles of two distributions, if they
are of the same type, the plot should be linear. In this case we are checking whether the empirical distribution of
NASDAQ standardized returns and the hypothesized normal distribution are of the same type.
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Table 1
Empirical statistics for daily returns (as %) of several financial assets: the S&P 500 index, the USD/British pound
exchange rate, the Thai Baht/USD exchange rate and the NASDAQ composite index

Asset Period Mean Std. dev. Skewness Kurtosis!! Min Max

S&P 500 01/51—03/2001 0.033 0.870 —1.61 43.9 —-229 8.71

USD/GBP 02/1985-02/2001 0.006 0.677 0.043 3.40 —4.13 4.59

TB/USD 02/85—03/2001 0.011 0.663 4.22 158 —8.57 17.8

NASDAQ 02/1971-02/2001 0.044 1.08 —0.523 15.5 —12.0 13.3
10'

Fig. 3. Ratio of tail probabilities P(T > ko) /P(X > ko) plotted in units of k. Here T ~ 4 and X is normal, both
with variance o2, T is more likely to take large values than X.

Recall that if the normal distribution is valid, then about 95% of the observations would
lie within two standard deviations of the mean, and about 99% would lie within three
standard deviations of the mean. In financial time series, large returns (both positive and
negative) occur far too often to be compatible with the normal distribution assumption.
The distribution of the financial return series are characterized not only by heavy tails, but
also by a high peakedness at the center. In the Econometric terminology, they are said to
be leptokurtotic.

To the risk manager trying to guard against large losses, the deviation from normality
cannot be neglected. Suppose for example that daily returns are distributed as a stable
distribution with 4 degrees of freedom (denoted 4) and a variance given by o2. Since this
distribution has a much heavier tail than a normal distribution with the same variance,
as one moves farther out into the tail of the distribution, rare events occur much more
frequently. Figure 3 shows how much more likely rare events occur under the 74 assumption
than under the normal, when rare is defined in terms of standard deviations.

1 In this chapter we use as definition of kurtosis

EX —px)*

KX == Sax2

)

so that the normal distribution has a kurtosis of zero. Heavy tails, therefore, will lead to positive kurtosis.
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3. Value at risk

In the early 1990s, a number of financial institutions (J.P. Morgan, Bankers Trust, ...)
proposed a new risk measure to quantify by a single number the firms aggregate exposure
to market risk. This measure, commonly known today as value at risk (VaR), is now used to
measure not only market risk but other forms of risk to which the firm is exposed, such as
credit, operational, liquidity, and legal risk. VaR is defined as the loss of a financial position
over a time horizon t that would be exceeded with small probability 1 — «, that is,

P(Loss > VaR) < 1 — «. (10)

The confidence level « is typically a large number'? between 0.95 and 1.

To define VaR precisely, let X be the random variable whose cumulative distribution
function Fx describes the negative profit and loss distribution (P&L) of the risky financial
position at the specified horizon time t. Negative values of X correspond now to profits and
positive values of X correspond to losses. This is a useful convention in risk management
since there is then no ambiguity when discussing large losses (large values of X correspond
to large losses).

Formally, value at risk is a quantile of the probability distribution Fy, that is roughly,
the x corresponding to a given value of 0 <@ = Fx(x) < 1.

Definition 3.1. Let X be the random variable whose cumulative distribution function Fy
describes the negative profit and loss distribution (P&L) of the risky financial position
at the specified horizon time 7 (so that losses are positive). Then, for a confidence level
O<a<l,

VaRa(X)zinf{x|FX(x)>oz}. (11)
We set, avoiding technicalities
VaRy (X) = Fy ' (@),

where Fy ! denotes the inverse function of F. x 13 (see Figure 4). Hence the value VaR, (X)
over the horizon time T would be exceeded on the average 100(1 — «) times every 100t
time periods.

12 I statistics, o and 1 — o are usually interchanged because «, in statistics, denotes typically the Type 1 hy-
pothesis testing error and is chosen small. The corresponding confidence level is then 1 — «.

13 This is strictly correct when Fy is strictly increasing and continuous. Otherwise, one needs to use the gener-
alized inverse of Fy, denoted F ;(_ , and defined as

Fy (@)=inf{x | Fx(x) >a}, O<a<l.

The definition (11) of VaRy(X) is then VaRy(X) = F;(a). Thus, if Fy(x) =« for xo < x < xq, then
VaRy(X) = F;(a) =x-
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VaR VaR
o [o)

1 2

Fig. 4. VaRy (X) for different cumulative distributions functions (cdfs) of the loss distribution X. The cdf on the
right corresponds to an asset with discontinuous payoff, for example a binary option. See Definition 3.1.

Because of its intuitive appeal and simplicity, it is no surprise that VaR has become the
de facto standard risk measure used around the world today. For example, today VaR is
frequently used by regulators to determine minimum capital adequacy requirements. In
1995, the Basle Committee on Banking Supervision!* suggested that banks be allowed
to use their own internal VaR models for the purpose of determining minimum capital
reserves. The internal models approach of the Basle Committee is a ten day VaR at the
o = 99% confidence level multiplied by a safety factor of at least 3. Thus if VaR = 1M,
the institution is required to have at least 3M in reserve in a safe account.

The safety factor of three is an effort by regulators to ensure the solvency of their insti-
tutions. It has also been argued, see Stahl (1997) or Danielsson et al. (1998), that the safety
factor of three comes from the heavy-tailed nature of the return distribution. Since most
VaR calculations are based on the simplifying assumption that the distribution of returns
are normal,!> how bad does this assumption effect VaR? Assume that the Profit and Loss
(P&L) distribution is symmetric and has finite variance o-2. Then regardless of the actual
distribution, if X represents the random loss over the specified horizon time with mean
zero, Chebyshev’s inequality gives

1
PIX < —.
[X > co] )

So if we are interested in VaR bounds for a = 0.99, setting 1/2¢? = 0.01 gives ¢ = 7.071,
and this implies VaR?i’agg(X ) =7.0710. If the VaR calculation were done under the as-

sumption of normality (Gaussian distribution) then VaRO([}a 099(X) = 2.3260, and so if

the true distribution is indeed heavy-tailed with finite variance then the correction for
VaRy—0.99 of three is reasonable, since 3 x 2.3260 = 6.9780.

14 See Basle Committee on Banking Supervision (1995a, 1995b). Basle is a city in Switzerland. In French, Basle
is Bale, in German, it is Basel. Basle is the old name for the city. The accent in Bale stands for the s that has been
dropped from Basle.

15 See for example the RiskMetrics manual (RiskMetrics, 1996).
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3.1. Computation of VaR

Before we discuss how VaR, (X) is computed, we need to say a few words about X. Typ-
ically X represents the risk of some aggregated position which is influenced by many
underlying risk factors Y1, ..., Yy,

X=f...,Y). (12)

The functional form of the dependence of X on the factors Y7, ..., Yy is usually never
known exactly, but it may be approximated in several standard ways depending on the
nature of the position. For example, f is linear in the case of a portfolio of straight equity
positions. The function f is non-linear, for example, if the portfolio contains a call option
on an equity since the value of the call changes non-linearly with respect to a change in
the underlying asset. The usual procedure is to approximate the change in the calls value
with respect to its underlying by the options delta. For small changes in the underlying
such an approximation is reasonable. However for large changes in the underlying, the
approximation can be quite bad. In an effort to improve the approximation, a second order
term is sometimes added, the options gamma. This second order approximation is referred
to as the delta—gamma approximation.

In practice, the VaR of a risky position X is calculated in one of three ways: through
historical simulation, through a parametric model, or through some sort of Monte Carlo
simulation. Each way involves assumptions and approximations and it is the responsibility
of the user to be aware of them. The risk manager who blindly performs the model calcu-
lations does so at his or her peril. For a full treatment of the commonly used procedures for
the calculation of VaR, see Jorion (2001), Dowd (1998) or Wilson (1998). See Duffie and
Pan (1997) for a discussion of heavy tails and VaR calculations. We now describe the three
ways of calculating VaR.

3.1.1. Historical simulation VaR

The historical simulation model uses the historical returns of assets currently held in the
portfolio in order to calculate VaR.'© First, returns over the horizon time t are constructed
for each asset in the portfolio using historical price information. Then portfolio returns
are computed using the current weight distribution of assets as though the portfolio had
been held during the whole historical period which is being sampled. The VaR is then
read from the historical sample by using the order statistics. For example, if 1000 time
periods are sampled, then 1000 portfolio returns are calculated, one for each time period.
Let X E,l) > X 5,2) > X 5,1000) be the order statistics of these returns, where losses are

positive. Then VaRy—0.95(X ) = X 5,50). The size of the sample is chosen by the user, but
may be constrained by the available data for some of the assets currently held.

16 Over a fixed time horizon, VaR may be reported in units of rate of return (%) or of currency (profit and loss)
since these are essentially the same, up to multiplication by the initial wealth/value.
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The model is simple to implement and has several advantages. Since it is based on his-
torical prices it allows for a non-linear dependence between assets in the portfolio and un-
derlying risk factors. Also since it uses historical returns it allows for the presence of heavy
tails without making assumptions on the probability distributions of returns of the assets in
the portfolio. There is therefore no model risk. In addition, there is no need to worry about
the dependence structure of assets within the portfolio since it is already reflected in the
price and return data.

The drawbacks are typical of models involving historical data. There may not be enough
data available and there may be no reason to believe that the future will look like the
past. For example, if the user would like to compute VaR for regulatory requirements, then
T = 10 days. With about 260 business days, there are only 26 such observations in each
year, four years worth of data are required to get about 100 historical simulations. This
is the absolute minimum necessary to calculate VaR with o = 0.99, since with 100 data
points, there is but a single observation in the tail. If one or several of the assets in the
portfolio have insufficient histories then adjustments must be made. For example, some
practitioners bootstrap from the shorter return histories in order to take advantage of the
longer histories on other assets.

When working only with historical data it is important to realize that we are assuming
that the future will look like the past. If this assumption is likely to be unrealistic, the VaR
estimate may be dangerously off the mark. For instance, if the sample period or window
is devoid of large price changes, then our historical VaR will be low. But it will be large
if there were large price fluctuations during the sample period. As large price fluctuations
leave the sample window, the VaR will change accordingly. This yields a highly variable
estimate and one which does not take into account the current financial climate. The defi-
ciencies of historical simulation notwithstanding, its ease of use makes it the most popular
method for VaR calculations.

3.1.2. Parametric VaR

The parametric VaR model assumes that the returns possess a specific distribution, usu-
ally normal. The parameters of the distribution are estimated using either historical data or
forward looking option data.

Example 3.1. Assume that over the desired time horizon 7 the (negative) return distribu-
tion of a portfolio is given by Fx ~ N (ur, arz). Then the value at risk of portfolio X for
horizon t and confidence level o > 0.5 is given by

VaRy (X) = inf{x | Fx(x) > a} = Fx'(@) = pr + 0.0~ (@),

where @1 (@) is the « quantile of the standard normal distribution.

More generally, if the (negative) return distribution of X is any Fx with finite mean .
and finite variance o2, then

VaRy (X) = ¢ + 014q, (13)
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where g4 is the o quantile of the standardized version of X. In other words, g, = F' )~; ! (@)
where X = (X — p¢) /0.

If the VaR is computed under the assumption that returns are light-tailed, say normal,
when in fact they are heavy tailed, say #, (Student-¢ distribution with v degrees of free-
dom), the risk may be seriously underestimated for high confidence levels. This is because
for large «, Fn;imal(oz) < F,:l(a), so that the value of x that achieves Fjormal(x) = « is
smaller than the value of x that achieves F; (x) = «. It is thus very important that the
return distribution be modelled well. A wide variety of parametric distributions can be
considered.

Within the portfolio context, the most easily implemented parametric model is the so
called delta-normal method, where the joint distribution of the risk factor returns is mul-
tivariate normal and the returns of the portfolio are assumed to be a linear function of
the returns of the underlying risk factors. In this case the portfolio returns are themselves
normally distributed.

Example 3.2. Take a portfolio of equities whose (negative) returns are given by X, =
w1 X1 + -+ + w, X, where w; is the weight given to asset i and X; is the assets (neg-
ative) return over the horizon in question. Assume (X1, ..., X;) ~ N(0, X). Then, for
ae(0.5,1),

VaRy (X ) = &~ (a)V W Sw =/ VaR, T pVaR,,

where VaR, = (VaR,(w1X1), ..., VaR,(w, X)) is the vector of the individual weighted
asset VaRs and p is the asset return correlation matrix. See Dowd (1998) for details.

When the number of assets is large, the central limit theorem is often invoked in defense
of the normal model. Even if the individual asset returns are non-normal, the central limit
theorem tells us that the weighted sum of many assets should be approximately normal.
This argument may be disposed of in various ways. Consider, for example, the empirical
distribution of daily returns of a large diversified index such as the NASDAQ, which is
clearly heavy-tailed (see Figure 2). From a probabilistic point of view it is not at all obvious
that the assumptions of the central limit theorem are satisfied. For example, if the returns
do not have finite variance, there may be convergence to the class of stable distributions.

The class of stable distributions (also known as «-stable or stable Paretian) may be
defined in a variety of ways. More will be said about them in Section 7. We define, at
this stage, a stable distribution as the only possible limiting distribution of appropriately
normalized sums of independent random variables.

Definition 3.2. The random variable X has a stable distribution if there exists a sequences
of i.i.d. random variables {¥;} and constants {a,} € R and {b,} € R* such that

Yi+...4+Y
%—an—%X asn — oQ. (14)
n
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The stable distribution of X in (14) is characterized by four parameters («, o, 8, 1) and
we write X ~ Sy (B, 0, ). The parameter o € (0, 2] is called the index of stability or the tail
exponent and controls the decay in the tails of the distribution. The remaining parameters
o, B, u control scale, skewness, and location respectively. If the ¥; have finite variance (the
case in the usual CLT) then o = 2 and the distribution of X is Gaussian. For all @ € (0, 2)
the distribution is non-Gaussian stable and possess heavy tails.

Example 3.3. Properties of weekly returns of the Nikkei 225 Index over a 12 year period
are examined in Mittnik, Rachev and Paolella (1998). The authors fit the return distribution
using a number of parametric distributions, including the normal, Student-¢ and stable. Ac-
cording to various measures of goodness of fit, the partially asymmetric Weibull, Student-#
and the asymmetric stable provide the best fit. The fit by the normal is shown to be rela-
tively poor. The stable distribution, in addition, fits best the tail quantiles of the empirical
distribution, which is a result most relevant to the calculation of VaR.

The central limit theorem typically assumes independence. Although it has extensions
to allow for mild dependence, this dependence must be sufficiently weak. In fact, for a
given number of assets, the greater the dependence, the worse the normal approximation.
This affects the speed of the convergence. Since a VaR calculation involves the tails of the
distribution, it is most important that the approximation hold in the tails. However, even
when the conditions for the central limit theorem hold, the convergence in the tail is known
to be very slow. The normal approximation may then only be valid in the central part of the
distribution. In this case, the return distribution may be better approximated by a heavier-
tailed distribution such as the Student-¢ or hyperbolic whose use in finance is becoming
more common.

The hyperbolic distribution is a subclass of the class of generalized hyperbolic distri-
butions. The generalized hyperbolic distributions were introduced in 1977 by Barndortf-
Nielsen (1977) in order to explain empirical findings in geology. Today these distributions
are becoming popular in finance, and in particular in risk management. Two subclasses, the
hyperbolic and the inverse Gaussian, are most commonly used. Both these subclasses may
be shown to be mixtures of Gaussians. As such, they possess heavier tails than the normal
distribution but not as heavy as the stable distribution. For an introduction to generalized
hyperbolic distributions in finance, see for example Eberlein and Keller (1995), Eberlein
and Prause (2002) or Shiryaev (1999).

3.1.3. Monte Carlo VaR

Monte Carlo procedures are perhaps the most flexible methods for computing VaR. The risk
manager specifies a model for the underlying risk factors, which incorporates somehow
their dependence. For example, the risk factors in (12) may be described by the stochastic
differential equation

4y ? =y (u” dr + 0" aw?), (15)
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fori=1,...,d, where W; = (W,(l), el Wt(d)) is a multivariate Wiener process. Once pa-
rameters of the model are estimated, for example by using historical data, or option implied
estimates, the risk factors paths are then computer generated, thousands of paths for each
risk factor. Each set of simulated paths for the risk factors yields a portfolio path and the
portfolio is priced accordingly. Each computed price of the portfolio represents a point on
the portfolio’s return distribution. After many such points are obtained the portfolio’s VaR
may then be read off the simulated distribution.

This method has the advantage of being extremely versatile. It allows for heavy tails,
non-linear payoffs and a great many other user specifications. Within the Monte Carlo
framework, risk managers may use their own pricing models to determine non-linear pay-
offs under many different scenarios for the underlying risk factors. The method has also
the advantage of allowing for time varying parameters within the risk factor processes. See
for example Broadie and Glasserman (1998).

There are two major drawbacks to Monte Carlo methods. First, they are computationally
very expensive. Thousands of simulations of the risk factors may have to be carried out for
results to be trusted. For a portfolio with a large number of assets this procedure may
quickly become unmanageable, since each asset within the portfolio must be valued using
these simulations. Second, the method is prone to model risk. The risk factors and the
pricing models of assets with non-linear payoffs may both be mis-specified. And, as is the
case of the parametric VaR, there is the risk of mis-specifying the model parameters.

3.2. Parameter estimation

The parametric and Monte Carlo VaR methods require parameters to be estimated. When
one is interested in short time horizons, the primary goal is to estimate the volatility and
covariance/correlation.!” We outline some of the common estimation techniques here.

3.2.1. Historical volatility

There are two different approaches to modelling volatility and covariance using only his-
torical data. The more common approach gives constant weights to each data point. It
assumes that volatility and covariance are constant over time. The other approach attempts
to address the fact that volatility and covariance are time dependent by giving more weight
to the more recent data points in the sample window.

First assume that variances and covariances do not to change over time. Take a large
window of length # in which historical data on the risk factors is available. Let Y; ;, be the
return of factor i at time period #;. The variance of factor i and covariance of factors i and
Jj are then computed by giving equal weights to each data point in the past. The n-period
estimates at time 7 for the variance and covariance

T-1 | T
Z (Yir — fv)?, Whereﬂn=; Z Yi:, (16)

t=T—n t=T—n

R 1
&2

i =

n—1

17 For example, over short time horizons, the mean return is usually assumed to be zero.
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and

T-1
. 1 . .
%ij =7 Z Yip — py) (Y — iy;) (17)
t=T—-n

respectively.'® Since equal weight is given to each data point in the sample, the estimated
volatility and covariance change only slowly. If one keeps the window length fixed, the
estimated values will rise or fall as new large returns enter the sample period and old large
returns leave it. This means that even a single extreme return will affect the estimates in
the same way, whether it occurred at time 7 — 1 or time 7 — n. The estimated variance and
covariance, therefore, are greatly influenced by the choice of the window size n.

Another stylized fact of financial time series, however, is that volatility itself is volatile.
With this in mind, another historical estimate of variance and covariance uses a weighting
scheme which gives more weight to more recent observations. The corresponding estimates
of variance and covariance are

T-1
GHT) = Y a(Yiy— fix),
t=T—n
T-1
Gij(T) =Y e(Yiy — fuy)(Yj — iy,
t=T—n

where the weights o, ZIT:_TI_H o; = 1, are chosen to reflect current volatility conditions. In
particular, more weight is given to recent observations: 1 > ar_1 > ar—2 > -+ > ar_, >
0. The model using exponentially decreasing weights, such as that used by RiskMetrics, is
probably the most popular. In RiskMetrics, the volatility estimator is given by

Gi(Ty= | (1=2) Y MYz — i), (18)

t=1

where the decay factor A is chosen to best match a large group of assets.!® The covariance
estimate is similar. RiskMetrics chooses A = 0.94 in the case of daily returns.

18 The normalization constant n — 1 gives an unbiased estimate. It is sometimes replaced by n in order to corre-
spond to the maximum likelihood estimate.
19 In this estimate it is assumed that the decay parameter A and window length n are such that the approximation

=1~
2 1=

t=1

is valid.
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The choice (18) allows the forecast of the next periods volatility given the current infor-
mation, and hence to make parametric VaR calculations given the current information. To
see this, assume that the time 7' (negative) return distribution X7 is being modelled by

XrLor7r. (19)

where Z;, t € Z, is an innovation process, that is a sequence of i.i.d. mean zero and unit
variance random variables. Letting ; denote the filtration?® we have

o0
2 2
OrF =1 =24 Z’vxi,r—z
1=0

=1 =MXF+2(1 = N(XF_| +AXF_, + A2 X5 54+

2 2
= (1 - )\’)XT +)\’O'T‘]:T71'

This allows us to make our VaR calculation depend on the conditional return distribution
Fx, 17 It VaROT(‘Irl (X) denotes the estimated value at risk for X at confidence level «
for the period 7' + 1 at time T, then, by (19),

VaRT ™ (X) = o7 417, s

where ¢, is the o quantile of the innovation process Z; 1. In RiskMetrics Z is N'(0, 1), in
which case the return process X; is conditionally normal.?!

The modelling of the volatility using exponential weights and the assumption of condi-
tional normality has two major effects. First, the volatility estimator, which is now truly
time varying, attempts to account for the local volatility conditions by giving more weight
to the most recent observations. It also has a second less obvious, but no less profound
effect on the calculation of VaR. Even though the conditional return distribution may be
assumed to be normal (thin-tailed) within the VaR calculation, the unconditional return
distribution will typically have heavier tails than the normal. This result is not surprising
since we may think of our time ¢ return as being sampled from a normal distribution with
changing variance. This means that our unconditional distribution is more likely to fit the
empirical returns and thus to provide a better estimate of the true VaR.

3.2.2. ARCH/GARCH volatilities

The ARCH/GARCH class of conditional volatility models were first proposed by Engle
(1982) and Bollerslev (1986) respectively. We will again assume that the (negative) return

20 Conditioning over Fr means conditioning over all the observations Xy, ..., Xr.

21 RiskMetrics allows the assumption of conditional normality to be relaxed in favor of heavier-tailed conditional
distributions. For example the conditional distribution of returns may be mixture of normals or a generalized error
distribution, that is, a double sided exponential.
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process to be modelled is of the form (19) where Z, are i.i.d. mean zero, unit variance
random variables representing the innovations of the return process. In the GARCH(p, ¢q)
model,?? the conditional variance is given by

P q
2 2 2
o =ap+ E o X+ E Bjoi_;-
j=1

i=1

In its most common form, Z; ~ N(0, 1), so that the returns are conditionally normal.
Just as in the exponentially weighted model for volatility (see Section 3.1.1), the GARCH
model with a conditionally normal return distribution can lead to heavy tails in the uncon-
ditional return distribution. In the case of the GARCH(1, 1) model

X; =0:Z;, where Z, ~N(0,1)1iid.,

2 2 2
of =ag+a1X;_| + Bi1o,_y,

it is straightforward to show that under certain conditions>® the unconditional centered
kurtosis is given by

_ Ex} B 6o
(EX?)? 1 — B} — 201 B —3a}’

which for most financial return series will be greater than zero. For example, in the case

of a stationary ARCH(1) model, X; = /a0 + oelthlet, with a9 > 0 and o1 € (0,2¢€Y),
where y is Euler’s constant,>* Embrechts, Kliippelberg and Mikosch (1997) show that the
unconditional distribution is formally heavy-tailed, that is

P(X >x)~cx™%, x— o0, (20)

where /2 > 0 is the unique solution to the equation A (u) = %F(u + %) =1.

The ARCH/GARCH models allow for both volatility clustering (periods of large volatil-
ity) and for heavy tails. The GARCH(1, 1) estimated volatility process o; for the NASDAQ
is displayed in Figure 5. The assumption of conditional normality can be checked, for ex-

22 The ARCH( p) model first proposed by Engle is equivalent to the GARCH(p, 0) model later proposed by
Bollerslev. The advantage of the GARCH model over the ARCH model is that it requires fewer parameters to be
estimated, because AR models (ARCH) of high order are often less parsimonious than ARMA models (GARCH)
of lower order.

23 These conditions are o 1 + B1 < | to guarantee stationarity, and 30{% + 20181 + ﬁlz < 1 for K > 0. Both are
generally met in financial time series.

24 Euler’s constant y is given by y = limn_mo(zzzl % —Inn) and is approximately y ~ 0.577.
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Fig. 5. GARCH(, 1) volatilities o; for NASDAQ.
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Fig. 6. Quantile—quantile (QQ) plot of the conditionally normal GARCH(1,1) standardized ex post innovations
for NASDAQ with the A/(0, 1) distribution.

ample, by examining a QQ plot of the ex post innovations, that is Z = X,/6;. Figure 6
displays the QQ plot of Z, in the traditional, conditionally normal GARCH(1,1) model for
the NASDAQ. The fit of the GARCH(1,1) conditionally normal model in the lower tail is
poor, showing the lower tail of Z, is heavier than the normal distribution.

If the distribution of the historical innovations Z;_,, ..., Z; is heavier-tailed than
the normal, one can modify the model to allow a heavy-tailed conditional distribution
Fx, . ]:r.25 In Panorska, Mittnik and Rachev (1995) and Mittnik, Paolella and Rachev
(1997), returns on the Nikkei index are modelled using an ARMA-GARCH model of the
form

r s
X,:ao—i-ZaiX,,i—i—s,—i—ijet,j 201
i=1 j=1

(contrast with (19)), where &; = 0, Z;, with Z; an i.i.d. location zero, unit scale heavy-
tailed random variable. The conditional distribution of the return series Fx, 7 _, is given

25 For example the GARCH module in the statistical software package SPlus allows for three different non-
Gaussian conditional distributions. As long as the user can estimate the GARCH parameters, usually through
maximum likelihood, there are virtually no limits to the choice of the conditional distribution.
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by the distribution type of Z;. The ARMA structure in (21) is used to model the conditional
mean E(X;|F;_1) of the return series X,. The GARCH structure is imposed on the scale
parameter® o; through

p q
2 2 2
o =ap+ E aie;_; + E ,Bjatfj.
j=l1

i=1

Several choices for the distribution of Z; are tested. In the case where Z; are realizations
from a stable distribution, the GARCH model used is

P q
or =00+ Y _aileiil+ ) Bjoi-j,
i=1 j=l1

and the index of stability exponent « for the stable distribution is constrained to be greater
than one.

Using several goodness of fit measures, the authors find that it is better to model the con-
ditional distribution of returns for the Nikkei than the unconditional distribution, since the
unconditional distribution cannot capture the observed temporal dependencies of the return
series.2” Within the tested models for Z;, the partially asymmetric Weibull, the Student-z,
and the asymmetric stable all outperform the normal. In order to perform reliable value
at risk calculations one must model the tail of the distribution Z; particularly well. The
Anderson—Darling (AD) statistic can be used to measure goodness of fit in the tails. Let-
ting Femp(x) and Fpyp(x) denote the empirical and hypothesized parametric distributions
respectively, the AD statistic

AD = sup |Femp(x) - thp(x)|
xeR \/thp(x)(l — Fhyp(x))

gives more weight to the tails of the distribution. Using this statistic, as well as others,
the authors propose the asymmetric stable distribution as the best of the tested models for
performing VaR calculations at high quantiles.

The class of ARCH/GARCH models have become increasingly popular for computing
VaR. The modelling of the conditional distribution has two immediate benefits. First, it
allows for the predicted volatility (or scaling) to use local information, i.e., it allows for
volatility clustering. Second, since volatility is allowed to be volatile, the unconditional
distribution will typically not be thin-tailed. This is true, as we have seen, even when the
conditional distribution is normal.

26 1n their model o; is to be interpreted as a scale parameter, not necessarily a volatility, since for some of the
distributional choices for Z;, the variance may not exist.
27 The type of the conditional distribution is that of Z;, the unconditional distribution is that of X;.
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There now exist many generalizations of the class of ARCH/GARCH models. Models
such as EGARCH, HGARCH, AGARCH, and others, all attempt to use the local volatil-
ity structure to better predict future volatility while trying to account for other observed
phenomenon. See Bollerslev, Chou and Kroner (1992) for a review. The time series of
returns {X;};ez in (19) is generally assumed to be stationary. In a recent paper, Mikosch
and Stérica (2000) show that this assumption is not supported, at least globally, by the
S&P 500 from 1953 to 1990 and the DEM/USD foreign exchange rate from 1975 to 1982.
The authors show that when using a GARCH model the parameters must be updated to
account for changes of structure (changes in the unconditional variance) of the time series.
A method for detecting these changes is also proposed. Additionally, they show that the
long range dependence behavior associated with the absolute return series, another of the
so called stylized facts of financial time series, may only be an artifact of structural changes
in the series, that is, to non-stationarity.

Stochastic volatility models are not limited to the class of ARCH/GARCH models and
their generalizations. Other models may involve additional sources of randomness. For
example, the model of Hull and White (1987)

dY;, = nY, + o, ¥, dw,
av, = vV, + &V, dw?,

where 0> = V; and (W,(l), W,(z)) is a bivariate Wiener process, introduces a second source

of randomness through the volatility. The two sources of randomness W,(l) and W,(z) need
not be uncorrelated. Again, the introduction of a stochastic scaling generally leads to an
unconditional return distribution which is leptokurtotic. See Shiryaev (1999), for an intro-
duction to stochastic volatility models in discrete and continuous time.

3.2.3. Implied volatilities

The parametric VaR calculation requires a forecast of the volatility. All of the models ex-
amined so far have used historical data. One may prefer to use a forward looking data
set instead of historical data in the forecast of volatility, for example options data, which
provide the market estimate of future volatility. To do so, one could use the implied volatil-
ity derived from the Black—Scholes model. In this model, European call options prices
C; =C(8, K, r,0, T —t) are an increasing function of the volatility o. The stock price S;
at time ¢, the strike price K, the interest rate r and the time to expiration 7 — ¢ are known
at time ¢. Since o is the only unknown parameter/variable, we may then use the observed
market price C; to solve for o. This estimate of o is commonly called the (Black—Scholes)
implied volatility. The Black—Scholes model, however is imperfect. While o should be
constant, one typically observes that o depends on the time to expiration 7 — ¢ and on the
strike price K. For fixed T — ¢, the implied volatility 0 = o (T — ¢, K) as a function of
the strike price K is often convex, a phenomenon known as the volatility smile. To obtain
volatility estimates it is common to use at-the-money options, where S; = K, since they
are the most actively traded and hence are thought to provide the most accurate estimates.
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3.2.4. Extreme value theory

Since VaR calculations are only concerned with the tails of a probability distribution, tech-
niques from Extreme Value Theory (EVT) may be particularly effective. Proponents of
EVT have made compelling arguments for its use in calculating VaR and for risk manage-
ment in general. We will discuss EVT in Section 6.

4. Risk measures

We have considered two different measures of risk: standard deviation and value at risk.
Standard deviation, used by Markowitz and others, is still commonly used in portfolio
theory today. The second measure, VaR, is the standard measure used today by regulators
and investment banks. We detailed some of the computational issues surrounding these
measures but have not discussed their validity.

It is easy to criticize standard deviation and value at risk. Even in Markowitz’s pioneer-
ing work on portfolio theory, the shortcomings of standard deviation as a risk measure
were recognized. In Markowitz (1959), an entire chapter is devoted to semi-variance®® as
a potential alternative. In Artzner et al. (1997), for example, measures based on standard
deviation are criticized based on their inability to describe rare events and VaR is criticized
because of its inability to aggregate risks in a logical manner. In two now famous papers
(Artzner et al., 1997, 1999) on financial risk, the authors propose a set of properties any
reasonable risk measure should satisfy. Any risk measure which satisfies these properties
is called coherent. We shall now introduce these properties and indicate why the risk mea-
sures described above are not coherent.

4.1. Coherent risk measures

Suppose that the financial position of an investor will lead at time T to a loss X,2° which is
arandom variable. Let G be the set of all such X. A risk measure p is defined as a mapping
from G to R. Intuitively, for a given potential loss X in the future we may think of p(X) as
the minimum amount of cash that we need to invest prudently today (in a reference instru-
ment) to be allowed to take the position X.3% A risk measure p may be coherent or not.

Definition 4.1. Given a reference instrument with return r, possibly random, a risk mea-
sure p satisfying the following four axioms is said to be coherent:

28 1n order to put the accent on (negative) returns above the mean, semi-variance is defined as
~ 2
ox =El(X —EX) l{x-gx;]"

29 Losses are positive and profits negative. This is at odds with the authors’ original notation.

30 The authors refer to X as risk and axiomatically define acceptance sets which are sets of acceptable risks, and
proceed to define measures of risk as describing the risks proximity to the acceptance set.
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Translation invariance. For all X € G and all « € R, we have p(X + ar) = p(X) + «.
This means that adding the amount « to the position, and investing it prudently, reduces
the overall risk of the position by «.

Subadditivity. For all X| and X, € G, p(X| + X2) < p(X1) + p(X2). Hence a merger
does not create extra risk. This is the basis for diversification.

Positive homogeneity. For all A > 0 and all X € G, p(AX) = Ap(X). This requires that
the risk scales with the size of a position. If the size of a position renders it illiquid, then
this should be considered when modelling the future net worth.

Monotonicity. For all X and Y € G with X > Y, we have p(X) > p(Y). If the future net
loss X is greater, then X is more risky.

The term coherent measure of risk has found its way into the risk management vernac-
ular. It is defined, for example, in the second edition of Philippe Jorion’s Value at Risk
(Jorion, 2001).

Note that the axioms of translation invariance and monotonicity rule out standard devi-
ation as a coherent measure of risk. Indeed, since ox+or = 0y, translation invariance fails,
and since o also penalizes the investor for large profits as well as large losses, monotonic-
ity fails as well. Consider, for example, two portfolios X and Y which are identical except
for the free lottery ticket held in Y. We have X > Y, since there is no down-side to the free
ticket and therefore the potential losses in Y are smaller than in X. Nevertheless, the stan-
dard deviation measure assigns to Y a higher risk, hence monotonicity fails. Markowitz’s
alternative risk measure semi-variance is not coherent either because it is not subadditive.

4.2. Expected shortfall

VaR is not a coherent measure of risk because it fails to be subadditive in general. One can
indeed easily construct scenarios [see Albanese (1997)] where for two positions X and Y
it is true that

VaRy (X + Y) > VaRy(X) + VaRy (Y).

This is contrary to the risk managers feelings, that the overall risk of different trading desks
is bounded by the sum of their individual risks. In short, VaR fails to aggregate risks in a
logical manner. In addition, VaR tells us nothing about the size of the loss that exceeds it.
Two distributions may have the same VaR yet be dramatically different in the tail.

Hence neither the standard deviation nor VaR are coherent. On the other hand, the ex-
pected shortfall, also called tail conditional expectation, is a coherent risk measure. Intu-
itively, the expected shortfall addresses the question: given that we will have a bad day,
how bad do we expect it to be? It is a more conservative measure than VaR and looks at the
average of all losses that exceed VaR. Formally, the expected shortfall for risk X and high
confidence level « is defined as follows:
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Definition 4.2. Let X be the random variable whose distribution function Fx describes the
negative profit and loss distribution (P&L) of the risky financial position at the specified
horizon time 7 (thus losses are positive). Then the expected shortfall for X is

Se(X) =E(X|X > VaRy(X)). (22)

Suppose, for example, that a portfolio’s risk is to be calculated through simulation. If
1000 simulations are run, then for o = 0.95, the portfolios VaR would be the smallest
of the 50 largest losses. The corresponding expected shortfall would be estimated by the
numerical average of these 50 largest losses. Expected shortfall, therefore, tells us some-
thing about the expected size of a loss exceeding VaR. It is subadditive, coherent and puts
fewer restrictions on the distribution of X, requiring only a finite first moment to be well
defined. Additionally, it may be reconciled with the idea of maximizing expected utility.
Levy and Kroll (1978) show that for all utility functions U with the properties described in
Section 2.1 and all random variables X and Y (representing losses) that

EU(—X) >EU(=Y) <= So(X) < Se(Y) forall « € (0, 1).

Expected shortfall can be used in portfolio theory as a replacement of the standard de-
viation if the distribution of X is normal, or more generally, elliptical. As we will see in
Section 5.3, in this case any positive homogeneous translation invariant risk measure will
yield the same optimal linear portfolio for the same level of expected return.

Unlike standard deviation, expected shortfall, as defined in (22), does not measure devi-
ation from the mean. Bertsimas, Lauprete and Samarov (2000) define shortfall®! as

sa(X) =E(X|X > VaRy (X)) — EX. (23)

The subtraction of the mean makes it more similar to the standard deviation oy =
VE(X —EX)? and again, as far as portfolio theory is concerned, in the case of ellipti-
cal distributions, one obtains the same optimal portfolio for the same level of expected
return if one uses s, to measure risk. In fact, it can be shown that for a linear portfolio
Xp =w1 X +---+w, X, of multivariate normally distributed returns X ~ N(p, X), that

(@ ()
—O

Sa(Xp) = T

P

where ¢ (x) and @ (x) are respectively, the pdf and cdf of a standard normal random vari-
able evaluated at x. In other words,

arg min w' X'w = arg min s, (W'X),
Aw=b Aw=b

31 We still assume losses are positive. This is at odds with the authors notation.
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for all @ € (0, 1), where Aw = b is any set of linear constraints, including constraints that
do not require all portfolios to have the same mean. Note, however, that s, is not coherent
since it violates the axioms of translation invariance and monotonicity.

5. Portfolios and dependence

The measure of dependence most popular in the financial community is linear correla-
tion.3? Its popularity may be traced back to Markowitz’ mean variance portfolio theory
since, under the assumption of multivariate normality, the correlation is the canonical mea-
sure of dependence. Outside of the world of multivariate normal distributions, correlation
as a measure of dependence may lead to misleading conclusions (see Section 5.2.1).33 The
linear correlation between two random variables X and Y, defined by

Cov(X,Y)
oxO0y ’

p(X,Y)= (24)

is a measure of linear dependence between X and Y. The word linear is used because
when variances are finite, p(X, Y) = +£1 if and only if Y is an affine transformation of X
almost surely, that is if Y = aX + b a.s. for some constants a € R \ {0}, and b € R. When
the distribution of returns X is multivariate normal, the dependence structure of the returns
is determined completely by the covariance matrix X or, equivalently, by the correlation
matrix p. One has ¥ = [o]p[o] where [o] is a diagonal matrix with the standard deviations
o on the diagonal.

When returns are not multivariate normal, linear correlation may no longer be a mean-
ingful measure of dependence. To deal with potential alternatives, we will introduce the
concept of copulas, describe various measures of dependence and focus on elliptical distri-
butions. For additional details and proofs, see Embrechts, McNeil and Straumann (2001),
Lindskog (2000b), Nelsen (1999), Joe (1997) and Fang, Kotz and Ng (1990).

5.1. Copulas

When X = (X1, ..., X;,) ~ N (i, X), the distribution of any linear portfolio of the X;’sis
normal with known mean and variance. In the non-normal case, the joint distribution of X,

F(xi,...,xp) =P(X1 <x1, ..., Xn < xp)

is not fully described by its mean and covariance. One would like, however, to describe the
joint distribution by specifying separately the marginal distributions, that is, the distribution
of the components X1, ..., X,, and the dependence structure. One can do this with copulas.

32 Also known as Pearson’s correlation.
33 Linear correlation is actually the canonical measure of dependence for the class of elliptical distributions. This
class will be introduced shortly and may be thought of as an extension of multivariate normal distributions.
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Definition 5.1. An n-copula is any function C: [0, 1]" — [0, 1] satisfying the following

properties:

(1) Forevery u = (uy,...,up) in [0, 1]7" we have that C(u) = 0O if at least one component
uj=0and C(w) =u;ifu=(1,...,1,u;1,...,1).

(2) Foreverya,b € [0,1]" such thata < b

2 2
Do Y N C @y, ug,) 20, (25)

i1=1 in=1
where ujy =ajanduj=bjforj=1,...,n.

Corollary 5.1 below provides a concrete way to construct copulas. It is based on the fol-
lowing theorem due to Sklar [see Sklar (1996), Nelsen (1999)], which states that by using
copulas one can separate the dependence structure of the multivariate distribution from the
marginal behavior.

Theorem 5.1 (Sklar). Let F be an n-dimensional distribution function with marginals
Xj~Fjfor j=1,...,n. Then there exists an n-copula C:[0, 11" — [0, 1] such that for
every x = (x1,...,x,) € R",

F(x1,....xp) = C(Fi(x1), ..., Fa(xy)). (26)

Furthermore, if the F; are continuous then C is unique. Conversely, if C is an n-copula
and F; are distribution functions, then F in (26) is an n-dimensional distribution function
with marginals F;.

The function C is called the copula of the multivariate distribution of X. Assuming continu-
ity of the marginals F;, j =1, ..., n, we see that the copula C of F is the joint distribution
of the uniform transformed variables F;(X ),

Clut,...,un)=F(F ' up), ..., Fy ' uy)). (27)

Corollary 5.1. If the F; are the cdfs of U(0, 1) random variables, then xj = F;(x;),
0 <xj <1, and (26) becomes F(x1,...,x,) = C(x1,...,x,). Therefore the copula C
may be thought of as the cumulative distribution function (cdf) of a random vector with
uniform marginals.

Copulas allow us to model the joint distribution of X in two natural steps. First, one
models the univariate marginals X ;. Second, one chooses a copula that characterizes the
dependence structure of the joint distribution. Any n-dimensional distribution function can
serve as a copula. The following examples relate familiar multivariate distributions to their
associated copulas and marginals.
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Example 5.1. Suppose X7, ..., X, are independent then
Fxy,..oox) =PX1 <xp,..., Xp <xp)
=PX; <xp) - P(Xp < xp)
= Fi(x1) - Fu(xp).

<
<

Hence, in the case of independence, C(u1,...,u,) = uy---u, for all (uy,...,u,) €
[0, 17"
Example 5.2. Suppose (X1, ..., X,) is multivariate standard normal with linear correla-

tion matrix p. Let @ (z) =P(Z < z) for Z ~ N (0, 1). Then
F(xt,....,xp) =P(X1 <x1,..., X,y <xp)
=P(FI(X1) < Fi(x1), ..., Fa(Xy) < Fu(xn))
= CFH (DD, ... P(xn)).

where
1 &~ (up) o w4
C%%uy,....u )=7/ / e 25 P Sds (28)
g VeI J s oo
is called the multivariate Gaussian copula.
Example 5.3. Suppose (X1, ..., X,;) is multivariate ¢ with v degrees of freedom and linear

correlation matrix p.34 Let#,(x) =P(T < x) where T ~ t,,. Then
Fxy,...,xp) =PX1 <x1,..., X < x0)
= ]P)(FI(XI) < Fi(xy), ..., Fp(Xp) < Fn(xn))
= C;)U(tu(xl)a -~-atv(xn)),

where
i o I 17 ) /tﬂ(un) (1 . STp1S>(v+n>/2dS
| = s
P S Y Wi (L oo v

(29)

is called the multivariate #, copula.

3 Its cdf is given by (29) where the upper limits 7, 1 (uy), ..., t, 1 (up) are replaced by x1, ..., x, respectively.
A multivariate #, is easy to generate. Generate a multivariate normal with covariance matrix ¥ and divide it by

N X% /v where x§ is an independent chi-squared random variable with v degrees of freedom.
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In Examples 5.2 and 5.3, |p| denotes the determinant of the matrix p. In these examples,
the copulas were introduced through the joint distribution, but it is important to remem-
ber that the copula characterizes the dependence structure of the multivariate distribution
through (26). The Gaussian and #, copulas (28) and (29) exist separately from their asso-
ciated multivariate distributions.

Example 5.4. The bivariate Gumbel copula CﬁGu is given by

CS(u1, u2) = exp|—[(—nun) /P + (—Inuz) ]}, (30)

where 0 < 8 < 1 is a parameter controlling the dependence, 8 — 0% implies perfect de-
pendence (see Section 5.2.3), and 8 = 1 implies independence.

Example 5.5. The bivariate Clayton copula Cgl is given by
- - -1
CSur,u2) = (u,” +uy’ —1)7VF, 31)

where 0 < 8 < 0o is a parameter controlling the dependence, 8 — 0 implies indepen-
dence, and § — oo implies perfect dependence. This copula family is sometimes referred
to as the Kimeldorf and Sampson family.

Both the Gumbel and Clayton copulas are strict Archimedean copulas. Archimedean cop-
ulas are defined as follows. Let ¢ : [0, 1] — [0, 00) with ¢ (0) = oo and ¢p(1) = 0 be a con-
tinuous, convex, strictly decreasing function. The transformation ¢_1¢ maintains the uni-
form 1-dimensional distribution since ¢~ '¢(u) = u, u € [0, 1]. To obtain a 2-dimensional
distribution function use instead of ¢ ~'¢ (), u € [0, 1], the function ¢! (¢ (1) + ¢ (v)),
u,vel0,1].

Definition 5.2. A strict Archimedean copula with generator ¢ is of the form

Cu,v)=¢"(pw) +¢ ), u,vel0,1]. (32)

Example 5.6. The function ¢ (¢) = (—In nHlB 0 < B < 1, generates the bivariate Gumbel
copula Cg“ (see Example 5.4).

Example 5.7. The function ¢(r) = (+# — 1)/8, 8 > 0, generates the bivariate Clayton
copula Cgl (see Example 5.5).

Example 5.8. The function ¢ (1) = —In((e #* — 1)/(e # — 1)), B e R\ {0}, generates the
bivariate Frank copula

(e Pu — (e P — 1))

CFr(u,v)z—lln 1+
B B eF—1

[see Frank (1979)].
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If ¢ (0) < oo, then the term strict in Definition 5.2 is dropped and ¢~ 1(s)in (32)is replaced
by the pseudo-inverse ¢[_1](s) which equals ¢_1 (s)if 0 < s < ¢(0) and is zero otherwise.

Example 5.9. The function ¢(r) =1 — ¢, t € [0, 1], satisfies ¢(0) = 1 and hence
dI=U() = max(1 —1,0). It generates the non-strict Archimedean copula

C(u,v) =max(u +v—1,0).

The class of Archimedean copulas has many nice properties, including various simple
multivariate extensions. For more on Archimedean copulas see Lindskog (2000b), Nelsen
(1999), Joe (1997) and Embrechts, Lindskog and McNeil (2001).

Figure 7 illustrates how the choice of a copula can affect the joint distribution. Each
figure shows contours of constant density of a bivariate distribution (X, Y) with standard
normal marginals and linear correlations p &~ 0.7. The differences in the distributions is
due to the choice of the copula. [For an introduction on the choice of a copula, see Frees
and Valdez (1998).]

3 3
2 2

1 1

0 0

-1 -1

-2 -2

I 0 1 2 3 Sy 2 0 1 2 3
3 3

2 2

1 1

0 0 %

- -

_2 -2

S o 0 1 > 3 I 0 1 > 3

Fig. 7. Contours of constant density for different bivariate distributions with standard normal marginals. All have
roughly the same linear correlation, and differ only in their copula. Clockwise from upper left: Gaussian, #,,
Gumbel, Clayton. See Examples 5.2-5.5 for the copula definitions.
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The following theorem provides a bound for the joint cdf.

Theorem 5.2 (Fréchet). Let F be the joint cdf of distribution with univariate marginals
Fi,...,F,. Thenforallx e R"

max{0, Fi(x1) + -+ Fp(xn) —(n — D} < F(xp,...,x0)
CL(F1(x1)seees Fn(xn)) C(F1(x1)ees Fn (X))
< mln{F](.XI), ey Fn(xn)} M

Cu(Fi(x1),.e; Fn(xn))

The function Cy (u; ..., u,) is a copula for all n > 2, but the function Cy, (u1, ..., uy) is
a copula for n = 2 only. If n =2, the copulas C; and Cy are the bivariate cdf’s of the
random vectors (U, 1 — U) and (U, U) respectively, where U ~ U (0, 1).

Another important property of copulas is their invariance under an increasing transfor-
mation of the marginals.

Theorem 5.3. Let X1,...,X, be continuous random variables with copula C. Let
o1, ..., 0 be strictly increasing transformations. Then the random vector (a1(X1), ...,
on(X,)) has the same copula C as (X1, ..., Xy).

5.2. Measures of dependence

As already mentioned, linear correlation is the only measure of dependence involved in
the mean—variance portfolio theory. This theory assumes, either implicitly or explicitly,
that returns are multivariate normal. This assumption seems implausible today given the
many complex financial products in the marketplace and the empirical evidence against
normality. Without the restrictive assumption of normality, is linear correlation still an
appropriate measure of dependence?

Linear correlation is often used in the financial community to describe any form of
dependence. As illustrated in Embrechts, McNeil and Straumann (2001, 1999), linear cor-
relation is often a very misunderstood measure of dependence. Consider the following
example.

Example 5.10. Figure 8 represent 10000 simulations from bivariate distributions (X, Y)r
and (X, Y)r. In both cases X and Y have a standard normal distribution with (approxi-
mately) the same linear correlation p & 0.7. Thus, on the basis of the marginal distributions
and linear correlation, the two distributions are indistinguishable. The two distributions are
however clearly different. If positive values represent losses, the distribution on the right is
clearly of greater concern to the risk manager since large losses in X and Y occur simulta-
neously. The two distributions differ only in their copula.

In the figure on the left the dependence structure is given by the bivariate Gaussian
copula. Since the marginals are standard normal, this means that distribution is the bivariate
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5 T 5

-5 0 5 -5 0 5

Fig. 8. Simulation of 10000 realizations from bivariate distributions both with standard normal marginals and
linear correlation of p &~ 0.7. The distribution on the left has a Gaussian copula, on the right a Gumbel copula.
Compare the shapes with those illustrated in Figure 7, where the population distribution is used.

standard normal distribution with the given correlation coefficient. The copula in the figure
on the right the Gumbel copula given in (30) with 8 = 1/2. Various values of § were tried
until the simulation sample linear correlation was p &~ 0.7.

We now briefly describe several measures of dependence which may be useful to the
risk manager. Again the reader in encouraged to look at the above references, especially
Embrechts, McNeil and Straumann (2001) for details.

5.2.1. Linear correlation

The linear correlation coefficient p, defined in (24), is a commonly misused measure of
dependence. To illustrate the confusion involved in interpreting it, consider the following
classic example. Let X ~ N (u, o2) and let Y = X2. Then p(X,Y) =0, yetclearly X and
Y are dependent. Unless we are willing to make certain assumptions about the multivariate
distribution, linear correlation can therefore be a misleading measure of dependence. Since
the copula of a multivariate distribution describes its dependence structure we would like
to use measures of dependence which are copula-based. Linear correlation is not such a
measure.

5.2.2. Rank correlation

Two well-known rank correlation measures which are copula based and have better prop-
erties than linear correlation are the Kendall’s tau and Spearman’s rho.

Definition 5.3. Let (X1, Y]) and (X3, ¥2) be two independent copies of (X, Y). Then ,
denoted pr, is given by

pr(X,Y) =P[(X| — X2)(Y1 — Y2) > 0] = P[(X1 — X2)(Y1 — Y2) <0].
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If the marginal distributions Fy and Fy of X and Y are continuous and if F is the
bivariate distribution function of (X, Y) with copula C, then p; can be expressed in terms
of C as follows [see Embrechts, McNeil and Straumann (2001)]:

1,1
pT(X,Y)=4// C(u,v)dC(u,v) — 1.
0J0

Definition 5.4. Let X ~ Fy and Y ~ Fy. Spearman’s correlation, denoted pg, is the linear
correlation of Fy(X) and Fy(Y), that is,

ps(X,Y) = p(Fx(X), Fy(Y)).

Spearman’s correlation can also be expressed in a form similar to Definition 5.3 [see Lind-
skog (2000b)]. Let (X1, Y1), (X2, Y2) and (X3, Y3) be three independent copies of (X, Y).
Then

ps(X,¥) =3(P[(X1 — X2)(Y1 — ¥3) > 0] = P[(X1 — X2)(¥1 — Y3) <0]).

If the marginal distributions are continuous, pg is related to the copula of the joint distrib-
ution as follows:

1,1
pS(X,Y)=12// C(u,v)dudv — 3.
0J0

Whereas linear correlation is a measure of linear dependence, both Kendall’s tau and
Spearman’s rho are measures of monotonic dependence. Since they are copula based, they
are invariant under strictly increasing transformations.>> Indeed, if «y, oy are strictly in-
creasing transformations, then

pr(a1(X1), 02(X2)) = pe (X1, X2),
ps(a1(X1), @2(X2)) = ps(X1, X2), but
p(ar(X1). a2(X2)) # p(X1, X2).

5.2.3. Comonotonicity

An additional important property of these rank correlations is their handling of perfect de-
pendence. By perfect dependence we mean intuitively that X and Y are monotone functions
of the same source of randomness. Recall that in the bivariate case, the Fréchet bounds Cp,
and Cy in Theorem 5.2 are themselves copulas. The following theorem shows that if the
copulais Cr or Cy then X and Y are perfectly dependent.

35 Recall that invariance under increasing transformations is a property of copulas.
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Theorem 5.4 (Embrechts, McNeil and Straumann, 2001). Suppose that the copula C of
(X, Y) is either Cy, or Cy. Then there exist monotone functions o and  and a random
variable Z such that

X, 7)< (2(2), B(2)).

If C =Cy then o and B are increasing and decreasing respectively. If C = Cy, then both
o and B are increasing.

X and Y are said to be countermonotonic if they have copula Cy. If they have copula
Cy, they are said to be comonotonic. In fact, when Fx and Fy are continuous,

C=C, = Y=T(X)as, T=F " o(l—Fx)\,

C=Cy = Y=TX)as, T=F,'oFx /.

Kendall’s tau and Spearman’s rho handle perfect dependence in a reasonable manner.
Indeed,

Theorem 5.5 (Embrechts, McNeil and Straumann, 2001). Let (X, Y) ~ F with continuous
marginals and copula C. Then

(X, Y)=—-1 <— psX,¥)=—-1 <— C=(,
<= X andY are countermonotonic,
(X, Y)=1 — psX,Y)=1 <+ C=Cy
<= X and Y are comonotonic.

The following theorem due to Hoffding and Fréchet deals with linear correlation. See
Embrechts, McNeil and Straumann (2001) for its proof.

Theorem 5.6. Let (X, Y) be a random vector with marginals non-degenerate Fx and Fy

and unspecified dependence structure. If X and Y have finite variance, then

(1) The set of possible linear correlations is a closed interval [ pmin, Pmax] With pmin < 0 <
Pmax-

(2) The extremal linear correlation p = pmin is attained iff X and Y are countermonotonic;
P = Pmax I8 attained iff X and Y are comonotonic.

3) pPmin =—1 <& X and —Y are of the same type;36 Pmax = 1 < X and Y are of the same

type.

The following example shows that linear correlation does not handle perfect dependence
in a reasonable manner.

36 Recall that two random variables are the same type if their distributions are the same up to a change in location
and scale.
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Fig. 9. Range of maximal and minimal linear correlation in Example 5.11. The x-axis is in units of o. As o
increases, both the maximal and minimal linear correlations tend to zero.

Example 5.11 (Embrechts, McNeil and Straumann, 2001). Let X ~ Lognormal(0, 1) and
Y ~ Lognormal(0, o) with o > 0. By Theorem 5.6, p = ppin and p = pmax When X

and Y are countermonotonic and comonotonic respectively. By Theorem 5.4, (X,Y) 4
(@(2), B(Z)), and in fact, (X,Y) 4 (e, %) when X and Y are countermonotonic
and (X,Y) 4 (e%,e°%) when X and Y are comonotonic, where Z ~ A(0, 1). Hence
Pmin = p(e?,e7%) and ppax = p(e?,e°%) where Z ~ N(0, 1). Using the properties of
the lognormal distribution, these maximal and minimal correlations can be evaluated ex-
plicitly and one gets

e 7 —1 e? —1

Pmin = = s Pmax > .
V=1 -1 V=1 =1

As o increases, the maximal and minimal linear correlation both tend to zero even though
X and Y are monotonic functions of the same source of randomness. This is illustrated in
Figure 9.

5.2.4. Tail dependence

There is a saying in finance that in times of stress all correlations go to one.>’” While
it shows that the financial community uses linear correlation to describe any measure of
dependence, it can also serve as motivation for the next measure of dependence, known as
tail dependence.

Bivariate tail dependence measures the amount of dependence in the upper and lower
quadrant tail of the distribution. This is of great interest to the risk manager trying to guard
against concurrent bad events in the tails.

37 See Cizeau, Potters and Bouchaud (2001) for example.
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Definition 5.5. Let X ~ Fx and Y ~ Fy and observe that as o« — 17, F;l(a) — 00 and
Fy '(@) > oo. The coefficient of upper tail dependence Ay is

(X, V)= lim P(Y > F, ' (@)X > Fy' () (33)

a—1-

provided the limit exists. If Ay = 0, then X and Y are said to asymptotically independent
in the upper tail. If Ay € (0, 1], then X and Y are asymptotically dependent in the upper
tail. The coefficient of lower tail dependence Xy, is similarly defined:

AL(X,Y) = 1ing+P(Y < Fy ' (@1X < Fy''(@)).
o—

Since
Au(X,Y)
i LT PO Fyl(@) —P(Y < Fy (@) + P(X < Fy'(@), Y < Fy H(@)
= 1mm )
a1~ 1-P(X < Fy'(@))

Ay, as well as Ay, can be expressed in terms of copulas. Let (X, Y) have continuous distri-
bution F with copula C. It is easily seen that the coefficient of upper tail dependence Ay
can be expressed as

XYy = tim S99 (34)

a—>1- 1 —«

where C(a, @) = 1 — 2a + C(a, &).*® Similarly,

C )
(X V)= lim S*%
a—0t o

Example 5.12. Recall the simulation Example 5.10. In this example, both distributions
had the same marginal distributions with the same linear correlation. Yet the distributions
were clearly different in the upper tail. This difference came from the choice of copula and
may now be quantified by using the notion of upper tail dependence. In Figure 8 on the
left, F(x,y) = C/?a(q) (x), @(y)), @ denotes the standard N (0, 1) cdf and Cga is given by

38 1f (U, Up)T ~ C then

E(ul,uz):IP(Ul >up,Up>up)=1—uy —ur+C(uy,un).
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(28) that is, the distribution is a bivariate standard normal with linear correlation p = 0.7.
The coefficient of upper tail dependence can be calculated explicitly,>®

xA/1— ,0)
J1+p
which is a general characteristic of Gaussian copulas. This means that if we go far enough

out into the tail then extreme events occur independently in X and Y. In the figure of the
right,

Au(X,Y)=2 lim 5( -0,
X—>00

F(x,y)=Cg"(@(x), @(y)),

with CﬂGu given by (30), where the dependence parameter 8 was chosen to give (approxi-

mately) the same linear correlation.*” In the case of the Gumbel copula a simple calculation
shows that for all 0 < 8 < 1, the coefficient of upper tail dependence is

(X, Y)=2-28

Hence, for the Gumbel copula, Ay #0 for0 < 8 < 1.

Suppose the risk manager tries to account for heavy tails of a distribution by simply
modelling the joint distribution as a multivariate #,. He will not get Ay = 0 as in the case
of the multivariate normal distribution.

Example 5.13. If (X, Y) ~ 1, with any linear correlation p € (—1, 1) then it can be shown
(Embrechts, McNeil and Straumann, 2001) that

- (etna-p
Au(x,n—zrm(,/ s )

Hence for all p € (—1, 1) there is upper tail dependence of the bivariate #,. The stronger
the linear correlation and the lower the degrees of freedom, the stronger the upper tail
dependence.

5.3. Elliptical distributions

There are distributions other than multivariate normal where linear correlation can be used
effectively. These are the spherical, or more generally, the elliptical distributions. Elliptical
distributions extend in a natural way the class of multivariate normal distributions. Linear
correlation (when it exists) will still be the canonical measure of dependence, yet elliptical
distributions can display heavy tails.

39 @(x)=1-@(x), and, below 7, (x) = 1 — 1, (x).
40 The dependence parameter S of the bivariate Gumbel copula is related to Kendall’s tau by pr =1 — B.
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We shall define first the spherical distributions. These extend the class of standard mul-
tivariate normal distributions with zero correlations (Fang, Kotz and Ng, 1990; Embrechts,
McNeil and Straumann, 2001).

Definition 5.6. The random vector X € R" is said to be spherically distributed if

rx<x vreom,

where O(n) is the group of n x n orthogonal matrices.

In other words, the distribution of X is invariant under rotation of the coordinates. Here
are further characterizations.

Theorem 5.7. The random vector X € R" has a spherical distribution iff its characteristic

function Wx satisfies one of the following equivalent conditions:

(1) ¥x(I't) = ¥x(t) VI € O(n);

(2) There exists a function ¢(-): Rt — R such that ¥x(t) = ¢(t't), that is, Wx(t) =
oo, tiz), where t = (t1, ..., t,). Alternatively, spherical distributions admit a sto-
chastic representation, namely, X € R" has a spherical distribution iff there exists a
non-negative random variable R and random vector U independent of R and uni-
Sformly distributed over the unit hypersphere S, = {s € R" | ||s|| = 1} such that

X< RU. (35)

Example 5.14. Let X ~ A(0,1,,) then
Wy (t) = e~/ — o=(/DTL 1)

and so ¢ (u) =e /2, Additionally, R ~ /2 in the stochastic representation (35).

The function ¢ is called the characteristic generator of the spherical distribution. We
write

X~ 5,(¢)

to indicate that X € R" is spherically distributed with generator ¢. Note that if X possesses
a density, then Theorem 5.7 requires that it is of the form

fx) =g (x"x) =g(Zx?>
i=1

for some non-negative function g. The curves of constant density are spheroids in R”.
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Table 2
Partial list of spherical distributions used in finance

Type pdf f(x) or ch.f. ¥ (t)

Normal fx)=c exp(—xTx /2)

ty F) =c(1 4+ xTx/v)~0+m/2

Logistic fx)=c exp(—xTx)/[l + exp(—xTx)]2

Scale mixture F® =c[§° "2 exp(—x"x/21)dG(1), G(1) ac.df.
Stable laws v(t)= exp{r(tTt)"‘/z}, O<a<2andr >0

Example 5.15. If X € R" has a multivariate 7, distribution with zero correlation, then

v+n T\ —(v+n)/2
foy= 3 ( ﬂ) .

r(3)(vr)/2
X is therefore spherically distributed.

Table 2 gives a partial list of the spherical distributions used in finance.

Recall that if X ~ A(0,1,,), then Y = u + AX has a multivariate normal distribution
with mean g and covariance matrix ¥ = AAT. Elliptical distributions are defined from
spherical distributions in a similar manner. They are affine transformations of spherical
distributions.

Definition 5.7. Let X € R", u € R”, and ¥ € R™*". Then X has an elliptical distribution
with parameters p and ¥ if

X £ +AY,
where Y ~ Sy (¢), and A € R"**, ¥ = AAT, with rank(X) = k.
Since the characteristic function of X may be written
W () =i o (7 1),
we use the notation
X~ Eqy(p, X, ¢).
In this representation only u is uniquely determined. Since both ¥ and ¢ are determined
up to a positive constant ¥ may be chosen to be the covariance matrix if variances are fi-

nite (which we assume here). An elliptically distributed random variable X ~ E, (n, X, ¢)
is thus described by its mean, covariance matrix and its characteristic generator. If X pos-
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sesses a density, then it is of the form
@ =127 g(x - E 7 x - p) (36)
so that contours of constant density are ellipsoids in R” 4!
The following theorem describes some properties of linear combinations, marginal dis-

tributions and conditional distributions of elliptical distributions.

Theorem 5.8 (Fang, Kotz and Ng, 1990). Let X ~ E, (1, X, ¢).
(1) If BeR™" and v € R™, then

v+BX~ E,(v+Bu,BZB', ¢).
Hence any linear combination of elliptically distributed variates is elliptical with the

same characteristic generator.
(2) Partition X, u,and X into

(o) em) ()
where X e R™, [L(l) eR" and X1 e R™*™ 0 <m <n. Then
XD~ Ey(nV, Z11,0), XO~En(1®, 220, 9).
Hence all marginals of an elliptical distribution are also elliptical with the same gen-
erator.
(3) Fartition X, p,and X as above and assume that X is strictly positive definite. Then
XDX® =xP ~ Ep (112, 2112, 6),
where
mio=n+ 2712272_21 (X(()z) —n?), Xia=211- 2712272_212721-

Hence the conditional distribution of XV given X® is also elliptical, though with
different generator.**

41 For example if rank(X) =n and Y has density of the form g(yTy).
42 The form of the generator ¢ can be related to ¢ through the stochastic representation of an elliptically distrib-
uted random vector in (35). See Fang, Kotz and Ng (1990) for details.
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The importance of the class of elliptical distributions to risk management can be seen in
the following theorem. It indicates that the standard approaches to risk management apply
to a linear portfolio with elliptically distributed risk factors.

Theorem 5.9 (Embrechts, McNeil and Straumann, 2001). Suppose X ~ E, (i, X, ¢) with
finite variances for all univariate marginals. Let

n
P= Z=ZwiXi}w,-eR
i=1

be the set of all linear portfolios. Then:
(1) (Subadditivity of VaR.) For any two portfolios Z1, Z> € P and 0.5 <« < 1,

VaRy(Z1 4+ Z3) < VaRy(Z1) 4+ VaRy (Z3).
(2) (Equivalence of variance and any other positive homogeneous risk measure.) Let p be
any real valued, positive homogeneous risk measure depending only on the distribution
of a random variable X. Then for Z1,Z, € P,

p(Z1 —EZ)) < p(Zy-BZy) < o} <o},

(3) (Markowitz risk minimizing portfolio.) Let p be as in (2), but also translation invari-
ant, and let

n n
&= Z:Zw,'Xi w,-eR,Zw,-:l, EZ=r
i=1

i=1

be the subset of portfolios with the same expected return r. Then

. . 2
argmin p(Z) = argmino;.
gZeSp( ) gZeS z

The theorem?*? states that:

43 Because of the importance of Theorem 5.9 and because its proof is illuminating and straightforward we shall
sketch it. It is based on the observation that (Z, Z3) is elliptical and so portfolios Z1, Z, and Z{ + Z, are all of
the same type. Let gy, 1/2 <« < 1, denote the o quantile of the corresponding standardized distribution. Then

VaRy(Z1) =EZ| + 07, qa,
VaRo(Z3) = EZ + 07, qa,

VaRo(Z1 + Z3) = EZ, +EZy + 07,472,490
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e For any linear portfolio of elliptical risk factors, VaR is a coherent measure of risk.

o If the risk factors are elliptical, the linear correlation is the canonical measure of depen-
dence.

e For elliptical risk factors, the Markowitz mean variance optimal portfolio, for a given
level of expected return, will be the same regardless of whether the risk measure is given
by the variance, VaR, expected shortfall or any other positive homogeneous, translation
invariant risk measure. Hence, all the usual techniques of portfolio theory and risk man-
agement apply.

e It may be strange at first that the expected shortfall S, (X), for example, which does
not involve subtraction of the mean (see (22)), can be used instead of the variance in
Markowitz’ risk minimization portfolio theory. This is because one considers a set of
portfolios &, all of the same mean. Since Sy (X — EX) = Sy (X) — EX and since EX is
the same for all portfolios X in &, the term EX can be ignored.

Note that elliptical distributions are not required to be thin-tailed. The multivariate normal

is but one elliptical distribution. The risk manager may well feel that the risk factors under

consideration are better modelled using a heavy-tailed elliptical distribution.** The usual
techniques then apply, but the risk of a linear portfolio will be greater than if the risk factors
were assumed multivariate normal.

6. Univariate extreme value theory

Managing extreme market risk is a goal of any financial institution or individual investor.
In an effort to guarantee solvency, financial regulators require most financial institutions to
maintain a minimum level of capital in reserve. The recommendation of the Basle Commit-
tee (1995b) of a minimum capital reserve requirement based on VaR is an attempt to man-
age extreme market risks. Recall that VaR is nothing more that a quantile of a probability

. . d
but 07,17, <0z, + 0z, and g4 > 0, proving (1). Next, note that there exists a > 0 such that Z; —EZ; =

a(Z,—EZj),sothata <1 & 012 < 022. Since the risk measure p is assumed positive homogeneous and depends
only on the distribution of Z,

p(Z1 —EZy) = p(a(Zy —EZy)) = ap(Zy —EZ;)
and hence
p(Z1 —BZ)<p(Zy—EZy)) = a<l > o} <o (37

which proves (2). Now consider only portfolios in £. Then (37) holds with EZ| = EZ, = r. However, using
translation invariance of p, p(Z; —r) = p(Z;) — r for j =1, 2. This gives

p(ZN)<p(Zy) = a§1<a§2

proving (3).

44 In a recent paper, Lindskog (2000a) compares estimators for linear correlation showing that the standard
covariance estimator (17) performs poorly for heavy-tailed elliptical data. Several alternatives are proposed and
compared.
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distribution. The minimum capital reserve is then a multiple of this high quantile, usually
computed with o = 0.99. Therefore it is very important to attempt to model correctly the
tail of probability distribution of returns (profit and losses). The primary difficulty is that
we are trying to model events about which we know very little. By definition, these events
are rare. The model must allow for these rare but very damaging events. Extreme value
theory (EVT) approaches the modelling of these rare and damaging events in a statistically
sound way. Once the risks have been modelled they may be measured. We will use VaR
and Expected Shortfall to measure them.

Extreme value theory (EVT) has its roots in hydrology, where, for example, one needed
to compute how high a sea dyke had to be to guard against a 100 year storm. EVT has
recently found its way into the financial community. The reader interested in a solid
background may now consult various texts on EVT such as Embrechts, Kliippelberg and
Mikosch (1997), Reiss and Thomas (2001) and Beirlant, Teugels and Vynckier (1996).
For discussions of the use of EVT in risk management, see Embrechts (2000) and Diebold,
Schuermann and Stroughair (2000).

The modelling of extremes may be done in two different ways: modelling the maxi-
mum of a collection of random variables, and modelling the largest values over some high
threshold. We start, for historical reasons, with the first method, called block maxima.

6.1. Limit law for maxima

The Fisher—Tippett theorem is one of two fundamental theorems in EVT. It does for the
maxima of i.i.d. random variables what the central limit theorem does for sums. It provides
the limit law for maxima.

Theorem 6.1 (Fisher-Tippett, 1928). Let (X,) be a sequence of i.i.d. random variables
with distribution F. Let M, = max (X1, ..., Xy). If there exist norming constants ¢, > 0
and dy, € R and some non-degenerate distribution function H such that

My =dn d, py

Cn

then H is one of the following three types:

. 0 x <0,
Frechet qja(x):{exp{—xa}, 0, a >0,
o
(- <
Weibull %(x):{exp{ (=0} x<0, a>0,
1, x>0,

Gumbel A(x) = exp{—e_x}, x eR.

The distributions @,,, ¥,, and A are called standard extreme value distributions. The ex-
pressions given above are cumulative distribution functions. The Weibull is usually defined
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Fig. 10. Densities of the generalized extreme value distribution Hg. Left: Weibull with § = —0.5. Middle: Gum-
bel with & = 0. Right: Fréchet with &£ =0.5.

as having support (0, co) but, in the context of extreme value theory, it has support on
(—00, 0), as indicated in the theorem. These distributions are related:

1
X~®, <— hX*~A —}’\'Wa.

A one-parameter representation of these distributions (due to Jenkinson and von Mises)
will be useful. The reparameterized version is called the generalized extreme value (GEV)
distribution.

exp{—(1+&x)"15}, £ #£0,

He (x) {exp{_ex}7 £—0.
where 1 4+ &£x > 0. The standard extreme value distributions @4, ¥,, and A follow by
taking& =a~! > 0,& = —a~! <0, and & = 0 respectively.* There densities are sketched
in Figure 10. The parameter § is the shape parameter of H. Since for any random variable
X ~ Fx and constants @ € R and o > 0, the distribution function of X = u + o X is
given by F(x) = Fx((x — u)/o), we can add location and scale parameters to the above
parameterization, and consider

X—p
He i o(x)= HS(T>.

If the Fisher—Tippett theorem holds, then we say that F is in the maximum domain of
attraction of H and write F' € MDA(H ). Most distributions in statistics are in MDA (Hg)
for some &. If FF € MDA(Hg) and § =0 or F € MDA(H¢) and & < 0, then F is said to
be thin-tailed or short-tailed respectively. Thin-tailed distributions (§ = 0) include the nor-
mal, exponential, gamma and lognormal. Short-tailed distributions (¢ < 0) have a finite

45 Consider, for example, the Fréchet distribution where & = a1 > 0. Since the support of He is 1 4+£&x >0,
one has

1

H, 1) =exp{—(1+a )™ =ds(1+an)

for1+a 1x>0.
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right-hand end point and include the uniform and beta distributions. The heavy-tailed dis-
tributions, those in the domain of attraction of the Fréchet distribution, F' € MDA(Hg), for
& > 0, are of particular interest in finance. They are characterized in the following theorem
due to Gnedenko.

Theorem 6.2 (Gnedenko, 1943). The distribution function F € MDA(Hg) for § > 0 if and
onlyif Fx)=1—-F(x)= x_l/gL(x)for some slowly varying function L.46

Distributions such as the Student-¢, «-stable and Pareto are in this class. Note thatif X ~ F
with F' e MDA(Hg), & > 0 then all moments EX P are infinite for 8 > 1 /&. Note also that
& < 1 corresponds to o > 1, where « is as in Theorem 6.1.

6.2. Block maxima method

We now explain the block maxima method, where one assumes in practice that the max-
imum is distributed as Hg , ». The implementation of this method requires a great deal
of data. Let X1, X2, ..., X, be daily (negative) returns and divide them into m adjacent
blocks of size n. Choose the block size n large enough so that our limiting theorem results
apply to M,(,]) =max(Xj—1)n+1s---» X(j—Dntn) for j =1,...,m. Our data set must then
be long enough to allow for m blocks of length n. There are three parameters, &, u and o,
which need to be estimated, using for example maximum likelihood based on the extreme
value distribution. The value of m must be sufficiently large as well, to allow for a rea-
sonable confidence in the parameter estimation. This is the classic bias-variance trade-off
since for a finite data set, increasing the number of blocks m, which reduces the variance,
decreases the block size n, which increases the bias. Once the GEV model H , . is fit
using M,(,l), RN M,Sm), we may estimate quantities of interest.

For example, assuming n = 261 trading days per year, we may want to find Rae; «, the
daily loss we expect to be exceeded in one year every k years.*” If this loss is exceeded in
a given day, this day is viewed as an exceedance day and the year to which the day belongs
is regarded as an exceedance year. While an exceedance year has at least one exceedance
day, we are not concerned here with the total number of exceedance days in that year. This
would involve taking into consideration the propensity of extremes to form clusters. Since
we want Mo to be less than Roe1 x for k — 1 of k years, Rye1 x is the 1 — 1/k quantile of
Mg :

R =inf
261,k {V 3

P(Mag1 <r) > 1 — 1}. (38)

46 The function L is said to be slowly varying (at infinity) if

L(tx)
im =
x—00 L(x)

1, Vt>0.

47 Note the obvious hydrological analogy: How high to build a sea dyke to guard against a k year storm.
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If we assume that M1 has approximately the Hg , » distribution, the quantile Roe1 x is
given by

k

o 1\ *
=M+g<(—1n<1—%)) —1>, £#0, (40)

since the inverse function of y = exp{—(1 + £x)) V& is x = (1/6)[(—Iny)~¢ —1]. Con-
fidence intervals for Rye x may also be constructed using profile log-likelihood func-
tions. The idea is as follows. The GEV distribution Hg ,, » depends on three parameters.
Substitute Rje1,x for w using (40) and denote the reparameterized H as Hg gy, ;.0 af-
ter some abuse of notation. Then obtain the log-likelihood L(&, Rye1 k, 0| M1, . e M,,)
for our m observations from Hg g, ,.o- Take Ho: Rogix = r as the null hypothesis
in an asymptotic likelihood ratio test and let @y = (£ € R, Ry1x =71, o € RT) and
O = (£ €R, Rys14 €R, o € RT) be the constrained and unconstrained parameter spaces
respectively. Then under certain regularity conditions we have that

_ 1
Rag1 k= Hs,;,a(l — —) (39)

—2[supL(6|M1, o My) —supLO|M,, ..., Mm)] ~ 2
6 )

as m — oo where 6 = (&, Ra1.k,0) and X12 is a chi-squared distribution with one
degree of freedom. Let LéE,r6) = supg, L(O|M1, ..., My) and L(é,ﬁzﬁl’k,a‘) =
supg L(6|Mj, ..., M,,) denote the constrained and unconstrained maximum log-likelihood
values respectively. The o confidence interval for Rae « is the set

A A~ 1
{r: L(s, r, &) = L(és R261,k7&) - EX]Z(O[)}!

that is, the set r for which the null hypothesis cannot be rejected for level . See McNeil
(1998a) or Kéllezi and Gilli (2000) for details.

Example 6.1. We have 7570 data points for the NASDAQ, which we subdivided into m =
31 blocks of roughly n = 261 trading days. (The last block, which corresponds to January
2001, has relatively few trading days, but was included because of the large fluctuations.)
Estimating the GEV distribution by maximum likelihood leads to £=0.319, i =2.80 and
& = 1.38. The value of & corresponds to & = 1 /é‘ = 3.14, which is in the expected range
for financial data. The GEV fit is not perfect (see Figure 11). Choosing k = 20 yields an
estimate of the twenty year return level 1/6\261,20 = 9.62%. Figure 12, which displays the
log-likelihood corresponding to the null-hypothesis that 1/6\261,20 =r, where r is displayed
on the abscissa, also provides the corresponding confidence interval.
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5 10 15
Fig. 11. The GEV distribution H; 6 fitted using the 31 annual maxima of daily (negative, as %) NASDAQ
returns.

5 10 15 20 25
Fig. 12. The profile log-likelihood curve for the 20 year return level Rog1 29 for NASDAQ. The abscissa dis-
plays return levels (as %) and the ordinate displays log-likelihoods. The point estimate Rp¢1 20 = 9.62% corre-

sponds to the location of the maximum and the asymmetric 95% confidence interval, computed using the profile
log-likelihood curve, is (6.79%, 21.1%).

6.3. Using the block maxima method for stress testing

For the purpose of stress testing (worst case scenario), it is the high quantiles of the daily
return distribution F that we are interested in, not those of M,,. If the X; ~ F have a
continuous distribution, we have

1
HJJ(Aln < Rn,k) =1- E

If they are also i.i.d.,
HJJ(Aln < Rn,k) = (P(X < Rn,k))na

where X ~ F, and hence

1 1/n
P(X <Ruyi)= (1 - z) . 41)
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This means that R, x is the (1 — 1/k)!/" quantile of the marginal distribution F. Suppose
we would like to calculate VaR at very high quantiles for the purposes of stress testing. The
block size n has been fixed for the calibration of the model. This leaves the parameter k
for the R, x return level free. High o quantiles, xo, = F -1 (o), of F may then be computed
from (41) by choosing a = (1 — 1/k)V/" thatis k =1/(1 — ™). Hence

VaRy(X) = Ry, wherek = (42)

1—an’
For the NASDAQ data, our choice of k = 20, corresponds to

@ =0.9998 and VaRy—0.9998(X) = Ra61.20 = 9.62%.

In practice « is given, and one chooses k = 1/(1 — &), then computes R  using (40) and
thus one obtains VaRy (X) = Ry k-

We assumed independence but, in finance, this assumption is not realistic. At best, the
marginal distribution F can be viewed as stationary. For the extension of the Fisher—Tippett
theorem to stationary time series see Leadbetter, Lindgren and Rootzén (1983, 1997) and
McNeil (1998a). See McNeil (1998b) for a non-technical example pertaining to the block
maxima method and the market crash of 1987.

6.4. Peaks over threshold method

The more modern approach to modelling extreme events is to attempt to focus not only the
largest (maximum) events, but on all events greater than some large preset threshold. This
is referred to as peaks over threshold (POT) modelling. We will discuss two approaches
to POT modelling currently found in the literature. The first is a semi-parametric approach
based on a Hill type estimator of the tail index (Beirlant, Teugels and Vynckier, 1996;
Danielsson and de Vries, 1997, 2000; Mills, 1999). The second approach is a fully para-
metric approach based on the generalized Pareto distribution (Embrechts, Kliippelberg and
Mikosch, 1997; McNeil and Saladin, 1997; Embrechts, Resnick and Samorodnitsky, 1999).

6.4.1. Semiparametric approach

Recall that F is in the maximum domain of attraction of the Fréchet distribution if and
only if Fx(x) =x~%L(x) for some slowly varying function L. Suppose Fx is the dis-
tribution function of a loss distribution over some time horizon, where we would like to
calculate a quantile based risk measure such as VaR. Assume for simplicity that the distri-
bution of large losses is of Pareto type

PX>x)=cx % «o>0, x> x. (43)

The semiparametric approach uses a Hill type estimator for & and order statistics of histor-
ical data to invert and solve for VaR.
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We first focus on VaR. Let X > X@ > ... > X® be the order statistics of an histori-

cal sample of losses of size n, assumed i.i.d. with distribution Fy. If X is of Pareto type in
the tail and X **1) is a high order statistic then for x > X **D,

Fx(x) _ X e
FX(X(kH))_ X (k+1) )

The empirical distribution function estimator F x(X%**+1) = k/n suggests the following
estimator of Fy in the upper tail,

k X -
Fx(x)=1-— <X(k+1)> for x > X*+D,

By inverting thlS relation, one can express x in terms of Fx (x), so that fixing g =
F: Fx(x) one gets X = VaR (X). The value of g should be large, namely, g = F x(x) >
F(X®+tD)y =1 —k/n. This ylelds

1/a
VaR, (X) =X(k+”<%(1 —q)) . (a4)

We obtained an estimator for VaR but it depends on k through X%+ on the sample
size n and @&. To estimate o, Hill (1975) proposed the following estimator & 1) which is
also dependent on the order statistics and sample size:

k -1

. . 1 .

~(Hill) _ ~Hil) _ k+1

g = g." _<EZ;IHX(1)_IHX( )> . (45)
i=

The consistency and asymptotic normality properties of this @ H1) estimator are known
in the i.i.d. case and for certain stationary processes. There are however, many issues sur-
rounding Hill-type estimators, see for example Beirlant, Teugels and Vynckier (1996),
Embrechts, Kliippelberg and Mikosch (1997) and Drees, de Haan and Resnick (2000).

To obtain VaR,(X), one also needs to choose the threshold level X *k+D) o, equiva-
lently, k. Danielsson et al. (2001) provide an optimal choice for k by means of a two stage
bootstrap method. Even in this case, however, optimal means merely minimizing the as-
ymptotic mean squared error, which leaves the user uncertain as to how to proceed in the
finite sample case. Traditionally the choice of k is done visually by constructing a Hill plot.

The Hill plot {(k, & n"): k= 1,...,n— 1} is a visual check for the optimal choice of k.

( 11)

The choice of k and therefore of &, ,, , is inferred from a stable region of the plot since

48 We write here VaR, and not VaR since now « represents the heavy-tail exponent.
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Hill plot AltHill plot

10 T T 14 T T T
12}

8 .
10}

I_{ 6 .. :;:e,:" 8

6 N

4
4}

2 : - 2 i .

0 100 200 300 400 0 0.2 0.4 0.6 0.8 1
k 6

Fig. 13. Hill plots for the NASDAQ data set. Left: The Hill plot {(k, & ") k =1, ..., n — 1). Right: The AltHill

plot{(®, &%g)n* 0 <6 < 1}. The Hill plot is difficult to read, whereas the AltHill plot gives the user an estimate

of &AhHill ~3.

in the Pareto case, where (43) holds, &ﬁiil)n

the more general case

is the maximum likelihood estimator for «. In

1—F(x)~x"%L(x), x— 00, a>0, (46)

where L is a slowly varying function, the traditional Hill plot is often difficult to interpret.
Resnick and Stiricd (1997) suggest an alternative plot, called an AltHill plot by plotting
{@, &ngﬁ‘)n): 0 <0 < 1} where [n?] denotes the smallest integer greater than or equal
to n’. This plot has the advantage of stretching the left-hand side of the plot, which cor-
responds to smaller values of k, often making the choice of k easier. See Figure 13 for
examples of the Hill and AltHill plots for the ordered negative returns X /) for the NAS-
DAQ.

6.4.2. Fully parametric approach

The fully parametric approach uses the generalized Pareto distribution (GPD) and the sec-
ond fundamental theorem in EVT by Pickands, Balkema and de Haan. The GPD is a two-
parameter distribution

Ex -1/
1_(1+F> , £#0,

1—exp<—%>, £=0,

where an additional parameter 8 > 0 has been introduced. The support of G¢ g(x)isx >0
for £ > 0and 0 < x < —B/£ for £ < 0. The distribution is heavy-tailed when £ > 0. GPD
distributions with 8 = 1 are displayed in Figure 14.

Ge p(x) =
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0.5

0 2 4 6 8 0o 2 4 6 8

Fig. 14. GPD distribution functions Gé,ﬁ’ all with 8 = 1. Left: £ = —0.5, Middle: £ =0, Right: £ = 0.5, which
corresponds to a location adjusted Pareto distribution with o = 2.

Definition 6.1. Let X ~ F with right-end-point xr = sup{x € R | F(x) < 1} < oo. For
any high threshold u < x define the excess distribution function

F,x)=P(X—u<x|X>u) forO<x <xr—u. “@7n
The mean excess function of X is then
ex(w)=EX —u|X > u). (48)

If X has exceeded the high level u, F, (x) measures the probability that it did not exceed
it by more than x. Note that for 0 < x < xr — u, we may express F, (x) in terms of F,

F _F(u+x)—F(u)
u(x) = 1——F(u)’

and the mean excess function ex () may be expressed as a function of the excess distribu-
tion F, as

ex(u) = /XF?uxdFu(x).
0

The following theorem relates F, to a GPD through the maximum domain of attraction of
a GEV distribution. In fact, it completely characterizes the maximum domain of attraction
of He.

Theorem 6.3 (Pickands, 1975, Balkema and de Haan, 1974). Let X ~ F. Then for every
& e R, X e MDA(Hs) if and only if

lim  sup |Fu(x) — Geguy(x)| =0

UNXF O<x <xp—u

for some positive function B.
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This theorem says that the excess distribution F;, may be replaced by the GPD distribu-
tion G when u is very large. To see how it can be used, note that by (47) above, we may
write

FxX)=FWF,(x —u) (49)

for x > u. Assuming that u is sufficiently large, we may then approximate F, by Gg¢ gw)
and use the empirical estimator, for F(M),

=~ N, “
F(u) = 7” where N, = Z; 1ix;>u)
=

and where n is the total number of observations. The upper tail of F(x) may then be
estimated by

~ N -l
F(x)zl_F:1__“<1+éx'3M> for all x > u. (50)
n

This way of doing things allows us to extrapolate beyond the available data which would
not be possible had we chosen an empirical estimator for F(x), x > u. We can therefore
deal with potentially catastrophic events which have not yet occurred.

The parameters £ and B of the GPD G¢ g(,) may be estimated by using, for example,
maximum likelihood once the threshold u has been chosen. The data points that are used
in the maximum likelihood estimation are X;, —u, ..., X; —u where X;, ..., X;, are the
observations that exceed u. Again there is a bias-variance trade-off in the choice of u. To
choose a value for u, a graphical tool known as the mean excess plot (u, ex (1)) is often
used.

The mean excess plot relies on the following theorem for generalized Pareto distribu-
tions.

Theorem 6.4 (Embrechts, Kliippelberg and Mikosch, 1997). Suppose X has GPD distri-
bution with £ < 1 and B. Then, for u < xp,

B+&u
1—¢°

ex(u) = B+Eu>0.

The restriction £ < 1 implies that the heavy-tailed distribution must have at least a finite
mean.

If the threshold u is large enough so that F;, is approximately G¢ g then, by Theo-
rem 6.4, the plot (u, e(u)) is linear in u. How then is one to pick #? The mean excess
plot is a graphical tool for examining the relationship between the possible threshold u# and
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the mean excess function ey (#) and checking the values of # where there is linearity. In
practice it is not ex (1), but its sample version

Z:'l:l(Xi - M)+
>imt Lixisu)

which is plotted against u. After using the mean excess plot to pick the upper threshold u
one obtains an estimator of the tail of the distribution by applying (50). For the NASDAQ
data, since linearity seems to start at relatively small values of u (Figure 15), we choose
u = 1.59 which corresponds to the 95% of the empirical NASDAQ return distribution.

To obtain VaR, (X) for VaR,(X) > u, one simply inverts the tail estimator (50), which
yields

ex(u) =

VaRy (X) = B((x 1 N 1 51
aR ( )—M+§<<N—M( —06)> - ) (51

Since expected shortfall is a risk measure with better technical properties than VaR we
would like to find an estimator for it which uses our GPD model of the tail. Recalling the
definitions of the expected shortfall (22) and the mean excess function (48) we have that

Se(X) = VaRy (X) + ex (VaRy (X)).

Since the excess distribution F, is approximated by a GPD G¢ g(,) with & < 1 then, ap-
plying Theorem 6.4, we get for VaR,(X) > u,

B+ EWMVaRy(X) —u) _ B+ VaRy(X) —&u

Su(X) = VaRy (X) + o ¢

This suggests the following estimator for expected shortfall,

(N PRI LY (52)
1—&  1-¢

0 5 10

Fig. 15. Sample mean excess plot (u, ey (u)) for NASDAQ.
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where £, = VaRy(X) may be obtained by using (51). As in the case of block maxima,
confidence intervals for VaR, and S, may be constructed using profile log-likelihood func-
tions.

6.4.3. Numerical illustration

To illustrate the usefulness of EVT in risk management, we consider the following exam-
ple. Let X1, ..., X, represent the daily negative returns of the NASDAQ index over most
of its history from February 1971 to February 2001, which gives a time series of n = 7570
data points.

The price and return series are displayed in Figure 16. Let XV > ... > X be the
corresponding order statistics. Suppose the risk manager wants to obtain value at risk and
expected shortfall estimates of the returns on the index at some high quantile. Assume that
{X;}i_, are i.i.d. so that Theorem 6.1 holds. Then, using Theorem 6.3, we model the tail
of the excess distribution F, by a GPD G¢ g and use (49) to model the distribution F'(x)

6000 T T T T T T T T T T
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T

2000

1971 1974 1976 1979 1982 1984 1987 1990 1993 1995 1998
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1 1
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Fig. 16. Time series of NASDAQ daily prices, (log) returns and annual maxima and minima daily returns given

as a percent for the period February 1971 (when it was created) to February 2001. If Py is the price (level) at

time ¢, the returns are defined as 1001n(P;/P;_1) and expressed as %. The crash of 1987 is clearly visible. The
NASDAQ price level peaked in March of 2000.
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of the observations for all x > u. We use Theorem 6.4 and the sample mean excess plot,
Figure 15, to pick the high threshold u = 1.59%. This leaves us with k = 379 observa-
tions from which we estimate the parameters of the GPD by maximum likelihood. The
estimates give & = 0.189 and B = 0.915. The model fit is checked by using a QQ plot
displayed in Figure 17. Accepting the model, we go on to calculate the value at risk and
expected shortfall for various high quantiles « by using (51) and (52). The results for the
NASDAQ are plotted in Figure 18 (solid lines). If one had assumed that the observations
were normally distributed (dashed lines), both the VaR and the expected shortfall would
have been significantly underestimated for high quantiles.

For example at the o = 0.99 confidence level, VaRy(X) = 6.59% under the normal
model versus VaRa (X) = 8.19% for the GPD model For the expected shortfall the differ-
ence is even more dramatic. For the normal model, S (X) =7.09% versus S (X)=10.8%
for the GPD model. This is to be expected, since under the assumption of normality it may
be shown (Embrechts, Kliippelberg and Mikosch, 1997) that

Su _
—-1 asa— 1",
VaR,
1.01 15 -
1 :
10}- —_—
0.99 S
5}- et
0.98 /
0.97 : 0 :
0 5 10 15 0 5 10 15

Fig. 17. For the NASDAQ return data (as %), there were 379 exceedances above the high threshold u = 1.59%.
These are fitted with a GPD distribution G £p with € =0.189 and B = 0.915. Left: The fitted GPD distribution
(dark curve) and the empirical one (dotted curve). Right: QQ-plot of sample quantiles versus the quantiles of the

fitted G ¥ distribution.

095 096 097 098 099 1 095 096 097 098 0.99 1

Fig. 18. Risk estimates for NASDAQ in percent returns versus «. Left: Value at risk VaRy, for GPD (solid) and

normal (dashed). Right: Expected shortfall Sy, for GDP (solid) and normal (dashed). The parameters of the GPD

are fitted by maximum likelihood using 30 years of data. The sample mean and volatility of the normal distribution
are computed by (16) using the most recent year of daily observations.
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whereas for the GPD model

So 1 _
— ——— asa— 1.
VaRy 1-&

These results indicate that for very high quantiles, the expected shortfall S, and the value
at risk VaR, are comparable under normality, but for the GPD with § < 1, §, tends to be
larger than VaR,,.

6.4.4. A GARCH-EVT model for risk

In order to invoke Theorems 6.1 and 6.3 in the numerical illustration above it was necessary
to assume that the (negative) returns {X,};cz were i.i.d. However, from inspection of Fig-
ures 16 and 19, it is apparent that this assumption is unrealistic. The time series of returns
is characterized by periods of varying volatility, that is, the time series is heteroscedastic.
The heteroscadicity of the time series may cause problems for the estimation of the para-
meters of the GPD model since we would expect the high threshold u to be violated more
often during periods of high volatility. Smith (2000) suggests using Bayesian techniques
to model time-varying GPD parameters. In this section, we review a model proposed by
McNeil and Frey (2000) which extends the EVT methodology to models of financial time
series that allow for stochastic volatility and apply this model to the NASDAQ data set.

1 _ 1
O5F e .............. SRR
OF==sn = aoee e e¥ ==
-0.5 - -0.5 . .
10 20 30 0 10 20 30
1 1
O5F v .......................... J 05F v ............ ..............
0 ' 0 I:"I'e";III--I'--;-.AY'.---
-0.5 : -0.5 : -
0 10 20 30 0 10 20 30

Fig. 19. Sample auto correlation functions with lags on the abscissa and sample autocorrelation on the ordinate:

returns (top left), squared returns (bottom left), GARCH innovations (top right), squared GARCH innovations

(bottom right). The sample consists of 1000 daily returns for the NASDAQ ending February 2001. Horizontal
lines indicate the 95% confidence bands (+1.96/./n) corresponding to Gaussian white noise.
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Recall from Section 3.2.2 that the standard GARCH(1,1) model is given by*’

X; =o0:Z;, where Z; ~ Fz1iid., (53)
612 =O(0+C(1Xt2_1 +,310’t2_1. (54)

Since the time ¢ 4 1 volatility 0,41 is known at time ¢ we have that
VaR, (X;+1|F7) := inf{x eR| Fx, 7 (x) = oz} =01+12a> (55)
where zo = F, '(@). The same argument shows that the conditional expected shortfall
Sa(Xig11F) :=E(Xi 111 Xr g1 > VaRy (X1 411 F0). Fi) = 0141 E(Z|Z > za).

Traditionally the innovation distribution Fz is assumed normal. Figures 6 and 20 show
that this assumption may still underestimate the tails of the loss portion of the distribution.
McNeil and Frey propose a two step procedure to estimate VaR and expected shortfall
of the conditional distribution. First they use a GARCH(1,1) model for the volatility of
the (negative) return series {X;}. This gives a series of model implied innovations Z; =
X;/or. Second, EVT is used to model the tails of the distribution of these innovations.
This approach has the obvious benefit that the resulting innovations Z; are much closer to
satisfying the requirements of Theorems 6.1 and 6.3 than is the original series. We illustrate
the methodology with an example using the NASDAQ data.
(1) Let (x;—p+1,--.,X:—1, %) be n daily negative returns of the NASDAQ. We take>?
n = 1000 and use pseudo-maximum-likelihood (PML) to estimate the model parame-
ters § = (0, o1, ,BAl) in (54) under the assumption®! that F7z is normal in (53). The

parameter vector 0 depends on the true distribution of (X;—_,+1, ..., X;—1, X;), which
20 5
10 . .
’ / 0
o7 .
5 -5 0 5 10 % -2 0 2 4

Fig. 20. QQ plots versus the normal for returns (left) and innovations (right) in Figure 19. Notice that the lower
(loss) tail of the innovations are still heavier than the normal distribution.

49 Since the NASDAQ series appears to have a zero conditional mean we do not set X; = s + oy Z; and model
the mean p;, for example as an AR(1) process p; = ¢pX;_1.

50 we keep the sample size moderate in order to avoid the IGARCH effect, that is a1 + 1 = 1, corresponding to
non-stationarity. See Mikosch and Starica (2000) for details.

51 The term pseudo refers to the fact that one is not maximizing the true likelihood.
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is assumed stationary, and on the distribution Fz used to compute the likelihood func-
tion.”> When we assume F is normal we fit a model whose distributional assumptions
we do not believe. Under standard regularity conditions this is justified since 9 is a con-
sistent estimator of # (in fact, asymptotically normal) even if Fz is non-normal. See
Gouriéroux (1997) and references therein for details.

(2) The model innovations (Zr—p+1s.--»2r—1,2t) = (Xt—n+1/0t—n+1»--+»Xt—1/01—1,
x;/6;) are now calculated. If the model is tenable, these innovations should be i.i.d.
Figure 19 shows that while the i.i.d. assumption is not realistic for the series of returns,
it is defensible for the series of innovations.”> While the returns appear uncorrelated,
their squares clearly are not, and hence the returns are dependent. The GARCH inno-
vations and their squares appear uncorrelated. The i.i.d. assumption is therefore more
tenable.

(3) Examination of the QQ plot of the innovations in Figure 20 reveals that the loss tail is
heavier than that of the normal. Therefore the EVT tools of Section 6.4.2 are now ap-
plied to the innovations (z;—n+1, - - -, Zr—1, 2r). Let 7MW <o < 2™ be the order statis-
tics of the innovation sample. We choose the threshold # = 1.79, again corresponding
to the 95% of the empirical distribution of innovations, which leaves k = 50 observa-
tions (z("*kH), o z(")), from which to estimate the GPD parameters by maximum
likelihood. The estimates give § =0.323 and 8 = 0.364.

Observe that & = 0.323 corresponds to a heavier tail than £ = 0.189 which we found in

Section 6.4.3. We are fitting here, however, over a particularly volatile period of 1000 days

of the NASDAQ ending February 2001, whereas in Section 6.4.3, we considered nearly 30
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5.8% 0=.95 violations
-20+ ) 1% a=199 violatiqns ) .
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Fig. 21. Backtest results for the GARCH-EVT methodology of McNeil and Frey. Under the assumption that the

model correctly estimates the conditional quantiles we expect violations 5% and 1% of the time for « = 0.95 and

o = 0.99 respectively. VaR for « =0.95 and o = 0.99 are given by the solid and dotted lines respectively. We
obtain 5.8% violations of the o = 0.95 level and 1% violations of the o = 0.99 level.

52 The condition o 1 + B < 1 is sufficient for stationarity of the GARCH model. We found &y = 0.080, & =
0.181 and ,31 =0.811. However, as indicated in the sequel, the GARCH model is constantly updated, and hence
is never used on an infinite horizon.

53 Ljung-Box tests also found no evidence against the i.i.d. assumption for the innovations.



94 B.O. Bradley and M.S. Tagqu

years worth of returns where for the majority of the time the NASDAQ was significantly
less volatile (see Figure 16).

Since the model is assumed stationary, we could, in principle, use the estimated GARCH
parameters to compute 6;41|F; using (54) for # beyond February 2001. Using z, corre-
sponding to the GPD distribution G¢ g, we would obtain, by using (55), \7517201 Xi+11F1)
for ¢ beyond February 2001. In practice, however, stationarity is not always assured and in
any case one wants to use the most recent data available in order to calibrate the model.

In order to backtest the methodology we use the most recent 500 days in our NASDAQ
data set. For each day, t + 1, in this data set we use the previous n = 1000 days (negative)
returns (X;—p+1,..., Xr—1, Xy) to calibrate the model and estimate VaRy(X;41|F;) for
o =0.95 and o = 0.99 using the steps above. We compare \7417?0( (X¢+411F:) with the actual
loss x;+1. A violation, at the « level, is said to occur whenever x;4+1 > \75-17?0{ (Xi+11F1).
Results for the period ending February 2001 are given in Figure 21.

7. Stable Paretian models

The works of Mandelbrot (1963) and Fama (1965) introduced the use of stable distribu-
tions to finance. The excessively peaked and heavy-tailed nature of the return distribution
led the authors to reject the standard hypothesis of normally distributed returns in favor of
the stable distribution. Since this time, the stable distribution has been used to model both
the unconditional, and conditional return distributions. In addition, portfolio theories and
market equilibrium models have been constructed using it. For an in depth introduction to
the general properties of stable distributions see Samorodnitsky and Taqqu (1994) and the
upcoming text Nolan (2001). A major reference for applications in finance is Rachev and
Mittnik (2000).

In Definition 3.2, the stable distribution Sy (o, 8, i) is defined as the limiting distribution
of the sum of i.i.d. random variables. Like the normal distribution, stable distributions are
closed under addition, and are often defined by this property. Recall thatif X; ~ N (1, 012)
and X, ~ N (u2, 022) are independent then X + X, ~ AV (u1 + o, 012 + 022). Similarly, for
stable random variables, if X ~ S, (o1, B1, 11) and X, ~ Sy (02, B2, (£2) are independent,
then X1 4+ X3 ~ Sy (o, B, ) where

Bio' + paoy

1/a
o= (o +o¥ , = , = U1+ uo.
( 1 2) B 6f‘+0§‘ M=K T U2

It is in this sense that the stable distribution is a natural heavy-tailed alternative to the
normal distribution. However, a common criticism of the stable distribution is that their
tails are too heavy. One has P(X > x) ~ ¢cox™ as x — o0. For 0 < o < 2, this implies
that E|X|? < o0 if 0 < p < «. In particular, EX? = 0o, that is, all non-Gaussian stable
distributions have infinite variance.

The stable distributions can be defined and parameterized in different ways. One way
to specify a stable distribution is through its characteristic function. This is helpful since
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in general there exists no closed form for the probability density function,>* which his-
torically, has been an impediment to their widespread use. Today, however, there are effi-
cient computer programs to evaluate their densities using fast Fourier transform methods
(Rachev and Mittnik, 2000; Nolan, 2001).

Definition 7.1. A random variable X is said to have a stable distribution if there are para-
meters « € (0,2], 0 €[0,00), B € [—1, 1] and u € R such that its characteristic function
has the following form:

exp{—a“|t|°‘<1 —iB(signt) tan % +im>} fora # 1,
Ux(t) = (56)

2
exp{—a|t|(l—l—i,B—(signt)lnltl)—Hptt} fora =1.
T

If both the skewness and location parameters 8 and u are zero, X is said to be symmetric
stable, which is denoted X ~ S«S, and its characteristic function takes the simple form

Wy () =e 7 11,

If X ~ SaS, then it is characterized completely by its index of stability o and its scale
parameter o. If @ = 2, the Gaussian case, then the scale parameter is o = ,/ % Var(X).

7.1. Stable portfolio theory

In Section 2.2 we introduced the mean—variance portfolio theory of Markowitz. The model
assumed that the distribution of asset returns is multivariate normal, and provides effi-
cient portfolios, that is, portfolios with maximum expected return for a given level of risk,
where risk is measured by the variance of the portfolio. It is possible to extend the ideas
of portfolio theory to the case where asset returns have a multivariate stable distribution,
even though, variances are now infinite. We need first to define a stable random vector and
specify its characteristic function.

Definition 7.2. The random vector X = (X1, ..., X,,) is said to be a stable random vector
in R" if for any a, b > 0 there exists ¢ > 0 and d € R” such that

aXi +bXoLcX +d, (57)

where X ;, j =1, 2, are independent copies of X.

54 The exceptions to this rule are the distributions S (o, 0, 1), S1(0, 0, 1),and Sy /2(0, 1, ) which correspond
to the Gaussian, Cauchy and Lévy distributions respectively.
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The constants in (57) are related by ¢* = a® 4 b*, where « € (0, 2] is the index of stability.
Setting n = 1 in (57) yields one of the alternate definitions of a stable random variable
alluded to earlier. In the case of a stable random vector, the scale and skewness parameters
o and B are replaced by a finite measure 'y on the unit hypersphere in R". For convenience
here, let (-, -) denote the inner product so that (¢, s) = Z?:l fi5;.0°

Theorem 7.1. Let 0 < o < 2. Then X = (X1, ..., Xy) is a stable random vector with

index of stability o if and only if there exists a finite measure I'xy on the unit hypersphere
Sp = {s e R"|||s|| = 1} and a vector p € R" such that

o .. T .
exp{—/ (£, 5)] <1—151gn((t,s))tan T)Fx(ds)—i—l(t,u)}, a#l,
s
V()= !
exp{—/ }(t,s)|<1+i%sign((t,s))ln}(t,s)|>1’x(ds)—i—i(t,u)}, a=1.
Sn
(58)

The pair (I'x, p) is unique.
The measure Iy is called the spectral measure of the stable random vector X and specifies

the dependence structure. If X is SaS in R”, then the characteristic function takes the
simple form

wam:exp{—/s \(t,s>|“rx<ds)},

where I" is the unique symmetric spectral measure. The expression in (58) for the char-
acteristic function is also valid for the normal case o = 2. When o = 2, it reduces to
Wy (t) =exp{— fSn |(¢, s)|2FX(ds)} but in this case [y is no longer unique. To get a feel-
ing for Iy, suppose X = (X1, X7) and that the distribution is Gaussian. Then

2 2
/ (2, )] F(xl,xz)(ds)=/ |(t151 4+ 1252) | Tx,, x) (ds)
S Sz
=t{o{ 4+ 2111201 2 + o},

where

af:fs s?ix, x,y(ds), i=1,2, and al,zzfsslszr(xl,xz)(ds),
2 2

55 Previously we wrote Ts instead of (t,s).
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and where integration over the circle S means integration on {s = (s1, 52) | sl2 + s% =1}.
One recognizes the normal characteristic function with Var X = 2012, Var Xp = 2022 and
Cov(X1, X2) =207 ,2. Since different choices of I'(x,, x,) can yield the same values for 0’12,
022 and o7 2, the choice of 'y is not unique in the Gaussian case.

As in the case of a normal random vector, if X is multivariate stable with index of
stability 0 < o < 2, then all linear combinations of the components of X are stable with
the same «. So, if X is a stable random vector in R”, and w € R”, we know that Y =
(w,X) =", w;X; is Su(oy, By, y). Using the characteristic function (58), it can be
shown [see Samorodnitsky and Taqqu (1994), Example 2.3.4], that

1/
oy = (/S \(w,s)|°‘rx(ds)> , (59)

By — fSn [(w, s)|%sign(w, s) 'y (ds)
T W)@ Tk ds)

(W, 1) fora #1,
Ky = (w,u)—%/(w,s)ln|(w,s)|FX(ds) fora = 1.
S,

: (60)

(61)

In the mean—variance portfolio theory, the risk to be minimized for any level of expected
return is given by the portfolios’ variance. If the asset returns are assumed multivariate
stable with index of stability 0 < o < 2 then the variance is infinite and cannot be used. In
the stable portfolio theory, it is assumed that 1 <« <2, EX = u and that X — u ~ SaS.
Let w be the vector of weights for the risky portfolio X, = (w, X). Given the relationship
between the scale parameter and the variance in the Gaussian case (that is, stable with
o = 2), it is natural to use the scale parameter ox, of the resulting stable distribution
instead of the standard deviation. It is given by (59). This brings us to the corresponding
stable portfolio problem:

1/a
minoy, = </ |(w,s)|a1"X(ds)>
w S,

such that (w, u) > a, (62)
(w,e) =1.

The risk measure ox, = o(w x) is a convex function of w and the problem is generally
solved using sequential quadratic programming. See Belkacem (1997) and Rachev and
Mittnik (2000) and references therein for details of the procedure and on the estimation
of the index of stability, spectral measure and scale parameters. If a risk free asset is in-
cluded in the asset universe, then we end up with a maximization problem similar to (2) in
Section 2.2, but where the risk measure is the scale parameter oy, of the risky portfolio.
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7.2. Stable asset pricing

Since there exists a portfolio theory under the assumption of a multivariate stable distri-
bution of asset returns (1 < o < 2), it is natural to ask whether there exists an analogous
CAPM. The answer is positive, and it was first introduced by Fama (1970). For recent
descriptions of the stable CAPM see Belkacem, Lévy Véhel and Walter (1996) and, of
course, Rachev and Mittnik (2000).

The assumptions behind the stable CAPM are the same as in the Gaussian case in Sec-
tion 2.3 with the assumption of joint normality of asset returns replaced by that of jointly
stable asset returns with index of stability « € (1, 2). That is, we assume EX = p and that
X — p ~ SaS. Recall from the traditional CAPM and Equations (3) and (4), that the ex-
pected premium of holding the risky asset i over the riskless asset is proportional to the
expected premium of holding the market portfolio over the riskless asset. The constant of
proportionality was the risky assets beta given by (4). In the stable CAPM, we require
an alternative measure of dependence since covariances do not exist. Naturally, the scale
parameter o replaces the standard deviation.

The covariation is a natural alternative to the covariance in the stable case when
1 <« < 2. This measure possesses many, but not all, of the useful properties of covari-
ance in the Gaussian case. We define and present several of the properties of covariation.
Details may be found in Samorodnitsky and Taqqu (1994) and Rachev and Mittnik (2000).

Definition 7.3. Let X; and X; be jointly SaS with 1 < o < 2 and let I'(x, x,) be the
spectral measure of the random vector (X1, X2). The covariation of X on X» is given by

[X1, X2]o = / 51587V My xy) (ds) (63)
2

where s'”) denotes the signed power s'P) = |s|P (signs).

In the Gaussian case o = 2 it reduces to
1
[X1, X2]r = 7 Cov(Xy, X2). (64)

Note, however, that whereas in the Gaussian case the dependence structure is fully char-
acterized by the covariance, in the stable one needs to use Iy, and the covariation does
not fully characterize the dependence structure. We now derive the stable CAPM under the
preceding assumptions, following Belkacem, Lévy Véhel and Walter (1996).

Consider a portfolio of a riskless asset with rate of return r and a risky asset X; with
weights w and 1 — w respectively. The expected rate of return of the portfolio X, = wr +
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(I —w)X; is then EX, = wr + (1 — w)EX;, and its risk, as given by its scale parameter,
isop=(1—w)o; % The risk-return trade-off is then given by

EX,'—V

Oi

EX,=r+ op (65)

after setting w = 1 — 0),/0;. Under the assumptions of CAPM, investors have homoge-
neous beliefs, that is, they all agree on the multivariate stable parameters. This means that
all investors hold the market portfolio (as in Section 2.3) as their risky asset and the risk-
return trade-off (65) becomes

EXy —
EX,=r+—L""5 (66)
oM

where Xy and oy are the rate of return and scale parameter respectively of the market.

Now consider the suboptimal portfolio X, = wX; + (1 — w) Xy obtained by adding to
the market portfolio a certain position in asset i (the portfolio is optimal if w = 0). Since
X — p ~ SaS we know that X; — p; and Xy — pp are jointly SaS. By properties of
symmetric stable random vectors this means that X, ~ Sy (0p, 0, 1), where the scale and
location parameters are given by (59) and (61), that is

al‘;‘ = |ws1 + 1 - u))sz|a1"(xl.,xp)(ds1, dsy), (67)
N
pp =EXp =wpui + (1 —w)py, (68)

respectively. Differentiating with respect to w gives

o
—L =i — . (69)
ow
do, 1 oy
ow o 050',0;_1 ow
1 -1
— a_I/(sl—sz)(wsl—l—(l—w)sz)(a 'Tx,.x,) (dsi, dsa). (70)
op S5

So evaluating (69) and (70) at w = 0 and using Definition 7.3 we get

oy i — )
w=0 [Xl'va]Ol_O'](é’

op

9o, 7n

_ B/Lp/iiap
dw /! dw

w=0

56 Note that if X ~ Sa (0, B, ) then aX + b ~ Sy (|alo, sign(a)B,ap +b) if | <« <2.
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o

Fig. 22. The stable efficient frontier. The portfolio X, = wX; + (1 — w) Xy is suboptimal, and hence must be
dominated by the efficient frontier.

since at w = 0 the portfolio X, becomes Xy and o, becomes o). Moreover, in mar-
ket equilibrium the trade-off between risk and return is given by (66), so that the slope
op/dop, at w =01is given by (upy — r)/oy (see Figure 22). Hence

pm —r  og (i — w)

om  [Xi, Xula —o0fy 7
This may be rewritten in the familiar CAPM form (3) as
E(X; —r)=BEXyu —1),
where now, in the stable case,
fi = [Xi;)iM]a. (73)
M

Note that if we assume Gaussian returns, then X — u ~ SaS with o = 2, and by using
(64), we recover

- Cov(Xi, Xu)
"7 Var(Xy)

that is, the traditional CAPM result.
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Abstract

Stable distributions are a class of probability distributions that allow heavy tails and skew-
ness. In addition to theoretical reasons for using stable laws, they are a rich family that
can accurately model different kinds of financial data. We review the basic facts, describe
programs that make it practical to use stable distributions, and give examples of these dis-
tributions in finance. A non-technical introduction to multivariate stable laws is also given.
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1. Basic facts about stable distributions

Stable distributions are a class of probability laws that have intriguing theoretical and prac-
tical properties. Their applications to financial modeling comes from the fact that they
generalize the normal (Gaussian) distribution and allow heavy tails and skewness, which
are frequently seen in financial data. In this chapter, we focus on the basic definition and
properties of stable laws, and show how they can be used in practice. We give no proofs;
interested readers can find these in Zolotarev (1986), Samorodnitsky and Taqqu (1994),
Janicki and Weron (1994), Uchaikin and Zolotarev (1999), Rachev and Mittnik (2000) and
Nolan (2003).

The defining characteristic, and reason for the term stable, is that they retain their shape
(up to scale and shift) under addition: if X, X1, X», ..., X,, are independent, identically
distributed stable random variables, then for every n

X1+X2+"'+Xngcnx+dn (D

for some constants ¢, > 0 and d,,. The symbol £ means equality in distribution, i.e., the
right- and left-hand sides have the same distribution. The law is called strictly stable if d, =
0 for all n. Some authors use the term sum stable to emphasize the stability under addition
and to distinguish it from other concepts, e.g., max-stable, min-stable, etc. The normal
distributions satisfy this property: the sum of normals is normal. Likewise the Cauchy laws
and the Lévy laws (see below) satisfy this property. The class of all laws that satisfy (1)
is described by four parameters, which we call (, B, y, §), see Figure 1 for some density
graphs. In general, there are no closed form formulas for stable densities f and cumulative
distribution functions F, but there are now reliable computer programs for working with
these laws.

The parameter « is called the index of the law or the index of stability or characteristic
exponent and must be in the range 0 < « < 2. The constant ¢, in (1) must be of the form
nl/® The parameter B is called the skewness of the law, and must be in the range —1 <
B < 1. If B =0, the distribution is symmetric, if 8 > 0 it is skewed toward the right, if
B < 0, it is skewed toward the left. The parameters o and 8 determine the shape of the
distribution. The parameter y is a scale parameter, it can be any positive number. The
parameter § is a location parameter, it shifts the distribution right if § > 0, and left if
5 <0.

A confusing issue with stable parameters is that there are multiple definitions of what
the parameters mean. There are at least 10 different definitions of stable parameters, see
Nolan (2003). The reader should be careful in reading the literature and verify what pa-
rameterization is being used. We will describe two different parameterizations, which we
denote by S(«, 8, v, d0; 0) and S(e, B, y, 81; 1). The first is what we will use in all our
applications, because it has better numerical behavior and intuitive meaning. The second
parameterization is more commonly used in the literature, so it is important to understand
it. The parameters o, 8 and y have the same meaning in the two parameterizations, only
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y
00 02 04 0.6

02 03 04

0.0 0.1

02 03 04

0.0 0.1

Fig. 1. Standardized stable densities for different o« and B in the S(e, B, 1,0;0) parameterization. The top
graph includes a Lévy(1l, —1) =S(1/2,1,1,0;0) =S(1/2,1, 1, —1; 1) graph and the middle graph includes a
Cauchy(1,0) =S(1,0,1,0;0) =S(1,0, 1,0; 1) graph.

the location parameter is different. To distinguish between the two, we will sometimes
use a subscript to indicate which parameterization is being used: do for the location pa-
rameter in the S(e, B, v, §o; 0) parameterization and §; for the location parameter in the
S(a, B, y, 81; 1) parameterization.
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Definition 1. A random variable X is S(«, B, y, do; 0) if it has characteristic function
Eexp(iuX) 2)
APAT : o : l—a .
expl —y*|ul®|1+ipB tanT (51gnu)(|yu| - 1) +idou ), o #l1,

2
exp<—y|u||:l+i,8;(signu)ln(y|u|)i| +i80u>, a=1.

Definition 2. A random variable X is S(«, B, y, 81; 1) if it has characteristic function

exp<—y°‘|u|°‘[1 —ipB (tan ?)(signu)} +i81u>, a#l,

Eexp(iuX) = 5 3)
exp(—ylul[l—i—iﬁ—(signu)lnlul}+i<31u>, a=1.
b4
The location parameters are related by
To o
§1+ Bytan—, o #l, do—Bytan—, oF#l,
2 2
so= 2 §1= 2 “)
S1+B—yhny, oa=1, So—B—yhy, a=1.
i i

Note that if 8 = 0, the parameterizations coincide. When 8 # 0, the parameterizations dif-
fer by a shift yftan =%, which gets infinitely large as @ — 1. In particular, the mode of
a S(«, B, vy, 61; 1) density tends toward oo (if sign(e — 1) > 0) or —oo (otherwise) as
o — 1. When « is near 1, computing stable densities and cumulatives in this range is nu-
merically difficult and estimating parameters is unreliable. From the applied point of view,
it is preferred to use the S(«, 8, v, 8o; 0) parameterization, which is jointly continuous in
all four parameters. The arguments for using the S(«, 8, y, §1; 1) parameterization are his-
torical and algebraic simplicity. It seems unavoidable that both parameterizations will be
used, so users of stable distributions should know both and state clearly which they are
using.

There are three cases where one can write down closed form expressions for the density
and verify directly that they are stable — normal, Cauchy and Lévy distributions.

Example 1 (Normal or Gaussian distributions). X ~ N (u, o?)ifithasa density

fx)= ! ex (_M> —00 <X <0
_mG p 202 s .

Gaussian laws are stable with ¢ = 2 and = 0; more precisely N (u, 02) =8S(,0, a/ﬁ,
n;0)=8(2,0, cr/ﬁ, w; 1).
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Example 2 (Cauchy distributions). X ~ Cauchy(y, §) if it has density

1 14
==, —00 Q.
fx) T2+ (x—0)2 <x<
Cauchy laws are stable with ¢ = 1 and B = 0; more precisely, Cauchy(y,d) =
S(1,0,y,6;0)=8(1,0,y,8; 1.

Example 3 (Lévy distributions). X ~ Lévy(y, §) if it has density

f(x)= Léexp(—¢) §<x <00
' V2r (x —6)3/2 2x—8)) .

These are stable witha =1/2, 8 =1;

1 1
Lévy(y, ) =S<§, L,y,y +36; 0) =S<E, 1,y,8; 1).

The graphs in Figure 1 show several qualitative features of stable laws. First, stable
distributions have densities and are unimodal. These facts are not obvious: since there is
no general formula for stable densities, indirect arguments must be used and it is quite
involved to prove unimodality. Second, the —B curve is a reflection of the 8 curve. Third,
when o is small, the skewness is significant, when « is large, the skewness parameter
matters less and less. The support of a stable density is either all of (—oo, 00) or a half-
line. The latter case occurs if and only if 0 < @ < 1 and B = 41 or —1. More precisely, the
support of density f(x|«, B, y,§; k) fora S(a, 8,48, y; k) law is

Ta
I:S—ytanT,oo>, a<l, B=+1, k=0,

Ta
(—oo,8+ytan7:|, a<l, B=-1,k=0,

[8, 00), a<l, B=+1, k=1,
(=00, 48], a<l, B=-1,k=1,
(=00, 00), otherwise.

In particular, to model a positive distribution, a S(e, 1, §, 0; 1) distribution with @ < 1 is
used.

When o = 2, the normal law has light tails and all moments exist. Except for the normal
law, all stable laws have heavy tails with an asymptotic power law (Pareto) decay. The term
stable Paretian distributions is used to distinguish the o < 2 cases from the normal case.
For X ~S(, 8,1,0;0) withO <o <2 and —1 < 8 < 1, then as x — oo,

P(X >x)~cy(1+B)x7%,
f(xle, B50) ~ acy (1 + g)x— @D,
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where ¢y = I'(a)(sin 5*) /7. When = —1, the right tail decays faster than any power.
The left tail behavior is similar by the symmetry property mentioned above.

One consequence of these heavy tails is that only certain moments exist. This is not
a property restricted to stable laws: any distribution with power law decay will not have
certain moments. When « < 2, it can be shown that the variance does not exist and that
when « < 1, the mean does not exist. If we use fractional moments, then the p-th absolute
moment E|X|? = f [x|P f(x)dx exists if and only if p < «. We stress that this is a popu-
lation moment, and by definition it is finite when the integral just above converges. If the
tails are too heavy, the integral will diverge. In contrast, the sample moments of all orders
will exist: one can always compute the variance of a sample. The problem is that it does
not tell you much about stable laws because the sample variance does not converge to a
well-defined population moment (unless o = 2).

If X, X1, X, are i.i.d. stable, then for any a, b > 0,

aXi+bX>LeX 44,

for some ¢ > 0, —oo < d < oo. This condition is equivalent to (1) and can be taken as a
definition of stability. More generally, linear combinations of independent stable laws with
the same o are stable: if X; ~S(a, B;,y;,0;; k) for j =1,...,n, then

arX1+axXa+ -+ an Xy ~S(e, B,y, 8 k), (5)
where B = (31 Bj(signapla;yj|*)/ 2y lajv|% v¥=3"_ lajy;l% and
T
> 8 +ypran—-, k=0, a1,
2
= ZSj —l—ﬁ;ylny, k=0, a=1,
> 8 k=1.
This is a generalization of (1): it allows different skewness, scales and locations in the

terms. It is essential that all the as are the same: adding two stable random variables with
different s does not give a stable law.

2. Appropriateness of stable models

Stable distributions have been proposed as a model for many types of physical and
economic systems. There are several reasons for using a stable distribution to describe
a system. The first is where there are solid theoretical reasons for expecting a non-Gaussian
stable model, e.g., reflection off a rotating mirror yielding a Cauchy distribution, hitting
times for a Brownian motion yielding a Lévy distribution, the gravitational field of stars
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yielding the Holtsmark distribution; see Feller (1975) and Uchaikin and Zolotarev (1999)
for these and other examples. The second reason is the Generalized Central Limit Theo-
rem, see below, which states that the only possible non-trivial limit of normalized sums of
independent identically distributed terms is stable. It is argued that some observed quanti-
ties are the sum of many small terms, e.g., the price of a stock, and hence a stable model
should be used to describe such systems. The third argument for modeling with stable dis-
tributions is empirical: many large data sets exhibit heavy tails and skewness. The strong
empirical evidence for these features combined with the Generalized Central Limit The-
orem is used to justify the use of stable models. Examples in finance and economics are
given in Mandelbrot (1963), Fama (1965), Embrechts, Kliippelberg and Mikosch (1997),
and Rachev and Mittnik (2000). Such data sets are poorly described by a Gaussian model,
some can be well described by a stable distribution.

The classical Central Limit Theorem says that the normalized sum of independent, iden-
tical terms with a finite variance converges to a normal distribution. The Generalized Cen-
tral Limit Theorem shows that if the finite variance assumption is dropped, the only possi-
ble resulting limits are stable. Let X1, X», X3, ... be a sequence of independent, identically
distributed random variables. There exists constants a, > 0, b, and a non-degenerate ran-
dom variable Z with

an (X1 + -+ Xp) — by -2 ©6)

if and only if Z is stable. A random variable X is in the domain of attraction of Z if
there exists constants a, > 0, b, such that (6) holds when X1, X5, X3, ... are independent
identically distributed copies of X.

The Generalized Central Limit Theorem says that the only possible distributions with
a domain of attraction are stable. Characterizations of distributions in the domain of at-
traction of a stable law are in terms of tail probabilities. The simplest is: if X is a random
variable with x* P(]X| > x) — ¢ > 0 for some 0 < @ <2 as x — oo, then X is in the
domain of attraction of an «-stable law.

Even if we accept that large data sets have heavy tails, is it ever reasonable to use a
stable model? One of the arguments against using stable models is that they have infinite
variance, which is inappropriate for real data that have bounded range. However, bounded
data are routinely modeled by normal distributions which have infinite support. The only
justification for this is that the normal distribution gives a usable description of the shape
of the distribution, even though it is clearly inappropriate on the tails for any problem
with naturally bounded data. The same justification can be used for stable models: does a
stable fit gives an accurate description of the shape of the distribution? The variance is one
measure of spread; the scale y in a stable model is another. Perhaps practioners are so used
to using the variance as the measure of spread, that they automatically retreat from models
without a variance. The parameters § and y can play the role of the scale and location
usually played by the mean and variance. For the normal distribution, the first and second
moment completely specify the distribution; for most distributions they do not.
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We propose that the practitioner approach this dispute as an agnostic. The fact is that
until recently we have not really been able to compare data sets to a proposed stable model.
The next Section shows that estimation of all four stable parameters is feasible and that
there are methods to assess whether a stable model accurately describes the data. In some
cases there are solid theoretical reasons for believing that a stable model is appropriate; in
other cases we will be pragmatic: if a stable distribution describes the data accurately and
parsimoniously with four parameters, then we accept it as a model for the observed data.

3. Computation, simulation, estimation and diagnostics

Until recently, it was difficult to use stable laws in practical problems because of computa-
tional difficulties. Most of these difficulties have been resolved by the program STABLE,'
which can compute stable densities, cumulative distribution functions and quantiles. The
basic method used in the program are described in Nolan (1997). Later improvements to
the program include incorporating the Chambers, Mallows and Stuck (1976) method of
simulating stable random variables, improved accuracy in the calculations, and estimation
of stable parameters from data sets. Except for o close to 0, it is now possible to quickly
and accurately work with stable distributions. We will not discuss details of these programs
here, but will focus on the practical problems of estimation and assessing goodness of fit.

The basic estimation problem for stable laws is to estimate the four parameters
(o, B, y,6) from an i.i.d. sample X1, X7, ..., X,. Because of numerical problems with the
1-parameterization, we will always use the O-parameterization in estimation. If desired, the
parameter 61 can be estimated by using (4). There are several methods available for this
basic estimation problem: a quantile method of McCulloch (1986), a fractional moment
method of Ma and Nikias (1995), sample characteristic function (SCF) method of Kogon
and Williams (1998) based on ideas of Koutrouvelis, and maximum likelihood (ML) esti-
mation of DuMouchel (1971) and Nolan (2001). These methods have been compared in a
large simulation study, Ojeda (2001), who found that the ML estimates are almost always
more accurate, with the SCF estimates next best, followed by the quantile method, and
finally the moment method. The ML method has the added advantage that one can give
large sample confidence intervals for the parameters, based on numerical computations of
the Fisher information matrix.

Perhaps just as important as methods of estimation, are diagnostics for assessing the
fit. While a Kolmogorov—Smirnov goodness-of-fit test statistic can be computed, giving a
correct significance level to such a test when comparing a data set to a fitted distribution is
an involved problem. However, one can adapt standard exploratory data analysis graphical
techniques to informally evaluate the closeness of a stable fit. We have found that com-
paring smoothed data density plots to a proposed fit gives a good sense of how good the
fit is near the center of the data. P-P plots allow a comparison over the range of the data.

1 The program STABLE is available at www.mathstat.american.edu and following the “Faculty” link to the

author’s homepage.
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For technical reasons we recommend the “variance stabilized” P—P plot of Michael (1983).
We found Q-Q plots not as satisfactory for comparing heavy tailed data to proposed fit.
One reason for this is visual — by definition a heavy tailed data set will have many more
extreme values than a typical sample from finite variance population. This forces a Q—Q
plot to be visually compressed, with a few extreme values dominating the plot. Also, the
heavy tails imply that the extreme order statistics will have a lot of variability, and hence
deviations from an ideal straight line Q—Q plot are hard to assess. The next section shows
some examples of these techniques on financial data, more examples can be found in Nolan
(1999, 2001).

There are methods for more complicated estimation problems involving stable laws.
For example, regression models with stable residuals have been described by McCulloch
(1998) for the symmetric stable case and Ojeda (2001) for the general case. The prob-
lem analyzing time series with stable noise is discussed in Section II of Adler, Feldman
and Taqqu (1998), in Nikias and Shao (1995), and in Rachev and Mittnik (2000). McCul-
loch (1996) and Rachev and Mittnik (2000) give methods of pricing options under stable
models.

4. Applications to financial data

The first example we consider is the British Pound vs. German Mark exchange rate. The
data set has daily exchange rates for the 16 year period from 2 January 1980 to 21 May
1996. The log of the successive exchange rates was computed as y; = In(x;+1/x;), yielding
4,274 y; values. The ML parameter estimates with 95% confidence intervals are 1.495 +
0.047 for o, —0.182 £ 0.085 for S, 0.00244 £ 0.00008 for y and 0.00019 £ 0.00013 for &p.
Figure 2 shows a P—P plot and density for the data vs. the stable fit. The third curve in the
density plot is the normal/Gaussian fit to the data.

The next example is another exchange rate one, this time from a developing country.
This data set consists of monthly exchange rates between the US Dollar and the Tanzanian
Shilling, from January 1975 to September 1997. The log of the successive exchange rates
were computed as above for this monthly data, giving a data set with n =213 points. The
ML parameter estimates with 95% confidence intervals are 1.088 = 0.185 for «, 0.112 &
0.251 for B, 0.0300 £ 0.0055 for y and 0.00501 £ 0.00621 for §p. The more extreme
fluctuations of the Tanzanian Shilling exchange rate show up in the smaller estimate of «
and in the larger estimate of y. Figure 3 shows the diagnostics, with the third curve again
showing a normal/Gaussian fit.

The third example is from the stock market. McCulloch (1997) analyzed 40 years of
monthly stock price data from the Center for Research in Security Prices (CRSP). The
data set is 480 values of the CRSP value-weighted stock index, including dividends and
adjusted for inflation. The ML estimates with 95% confidence intervals are 1.855 4+ 0.110
for o, —0.558 £0.615 for 8,2.711£0.213 for y, and 0.871 £ 0.424 for §¢. Figure 4 shows
the goodness of fit.

Stable distributions may be a useful tool in Value at Risk (VaR) calculations. The goal of
VaR calculations is to assess the risk in an asset by estimating population quantiles. Stable
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Fig. 2. P-P plot and density plot for Pound vs. Mark exchange rate data. On the density plot, the dotted curve is
the smoothed data, the solid curve is the stable fit, the dashed curve is a normal fit.
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Fig. 3. P-P plot and density plot for the Tanzanian Shilling/US Dollar exchange rate.

distributions have two advantages over normal distributions: they can explicitly model both
the heavier tails and asymmetry that are frequently found in financial data. Sometimes
the normal distribution can give reasonable VaR estimates, because the sample variance
is inflated by the extreme values in the sample. If one is lucky, the poor fitting normal
distribution may approximate certain quantiles well, at the cost of poorly approximating
other quantiles. Additionally, some practioners compensate for the heavy tail behavior by
“adjusting” a normal quantile estimate by some empirical factor. If a stable distribution
gives a more accurate fit to the sample, then it is more likely to accurately predict the VaR
values. In order to compare different fits, a plot like Figure 5 can be useful. It uses the
Deutsch Mark exchange rate data (log ratios of successive values) described above.
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Fig. 5. VaR comparison of quantiles for the Deutsch Mark exchange rate data (circles), quantiles predicted by
the stable fit (solid line), and quantiles predicted by the normal distribution (dotted line).

5. Multivariate stable distributions

This section is about d-dimensional stable laws. Such random vectors will be denoted by
X = (X1q,..., Xg). The definition of stability is the same as in (1): for i.i.d. X, X1, Xo, ...,

d
X +Xp+ -+ X, =a, X+ by, (N
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for some a, > 0, and some vector b,, € R?. As in one dimension, an equivalent definition

is that aX, + bXs < ¢X +d forall a, b > 0.

If X is a stable random vector, then every one-dimensional projection u- X =Y " u; X; is
a one-dimensional stable random variable with the same index « for every u. The phrase
“jointly stable” is sometimes used to stress the fact that the definition forces all the compo-
nents X ; to be univariate «-stable with one «. Conversely, suppose X is a random vector
with the property that every one-dimensional projection u - X is one-dimensional stable,
e.g.,u- X~ S(a, (W), f(u), y(u),s(u); 1). Then there is one « that is the index of all pro-
jections, i.e., @(u) = « is constant. If & > 1, then X is stable. If @ < 1 and the location

parameter function §(u) and the vector of location parameters § = (81, 83, ..., 84) of the
components X1, X2, ..., X4 (all in the 1 parameterization) are related by
S(uy=u-§, (3)

then X is stable. The point here is that we have a way of determining joint stability in terms
of univariate stability and, when « < 1, Equation (8).

We note that (8) holds automatically when « > 1, so the condition is only required
when o < 1. Furthermore, (8) is necessary when o # 1, so it cannot be dropped. There
are examples, e.g., Section 2.2 of Samorodnitsky and Taqqu (1994), where o < 1 and all
one-dimensional projections are stable, but (8) fails and X is not jointly stable.

One way of parameterizing multivariate stable distributions is to use the above results
about one dimensional projections. For any vector u € R?,

u-X~S(a, B), y(w),8(w); k), k=0,1.

Thus we know the (univariate) characteristic function of u - X for every u, and hence the
joint characteristic function of X. Therefore o and the functions 8(-), y(-) and §(-) com-
pletely characterize the joint distribution. In fact, knowing these functions on the sphere
S? = {u € R?: |u| = 1} characterizes the distribution.

The functions B(-), y (-) and 8 (-) must satisfy certain regularity conditions. The standard
way of describing multivariate stable distributions is in terms of a finite measure A on ¢,
called the spectral measure. Let X = (X1, ..., X4) be jointly stable, say

u-X~S(a, Bu), y(u),8(w); k), k=0,1.

Then there exists a finite measure A on S¢ and a location vector § € R? with

1/a
)/(U)=(/ Iu'SI"‘A(dS)> ,
Sd

fsd [u-s|%sign(u - s) A(ds)
Jga - s|¥ A(ds)

B(u) = ; €))
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§-u, k=1, a #1,
2

5-u——/(u-s)ln|u-s|A(ds), k=1, a=1,
T Jsd

5 tan k=0, ¢ #1
S(u) = -U+<an7>ﬂ(0)y(u), =0, a#1,

6-u—g/ (u-s)In(u-s)A(ds)
T Jsd

+%ﬂ(u)y(u)lny(u), k=0, a=1.

Thus another way to parameterize is X ~ S(«, A, §; k), k =0, 1. If one knows A, then
the above equations specify the parameter functions 8(-), ¥ (-) and §(-). Going the other
direction is more difficult. If one recognizes a certain form for the parameter functions,
then one can specify the spectral measure. In the general case, one can numerically invert
the map A — (B(-), y(-), 6(-)) to get a discrete approximation to A.

It is possible for X to be non-degenerate, but singular. For example, X = (X1, 0) is
formally a two-dimensional stable distribution if X is univariate stable, but it is supported
on a one-dimensional subspace. In what follows, we will always assume that X is non-
singular that is, it has a density on R?. It can be shown that the following are equivalent:

(i) X is non-singular,
(i) y (u) > O for all non-zerou € R?, and
(iii) span support(A) = RY.

For « > 1, the support of non-singular stable X is all of RY. When o < 1, it can be
all of R? or a cone, depending on the spectral measure. For A is a subset of R, define
CCH(A) = closed convex hull of A = closure of

[x=aibi+---+a,b, R ar,...,a, €A, bi,...,by >0}

Note that we only take positive linear combinations of elements of A, so this is not gener-
ally the closed span of A. The translate of a cone is denoted by CCH(A) + 6 = {x+8: x €
CCH(A)}. Then the support of X ~ S(«, A, 8; 1) is

__J CCH(support(A)) +8, o<1,
supportX = {Rd, a1

For example, in the two-dimensional case, if the spectral measure is supported in the first
quadrant, o« < 1, and § = 0, then the support of the corresponding stable distribution is
contained in the first quadrant, i.e., both components are positive.

The tail behavior of X is easiest to describe in terms of the spectral measure. It is best
stated in polar form: let A C S¢, then

P(X € CCH(A), IX| > 1) _ A(A)
s P(X[> 1) ~ Ay
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The tail behavior of the densities is more intricate. In the radially symmetric case,
f(x) ~ c|x|~@+®) a5 |x| — oco. In other cases, the tail behavior can have very differ-
ent behavior in different directions. For example, in the bivariate independent case, the
joint density factors f(x1,x2) = f1(x1) f2(x2). The one-dimensional results above show
f(x,0) ~ c1x~U+9 along the x-axis, but f(x, x) ~ cox 217 along the diagonal. The

Fig. 6. Density surface and level curves for “triangle” example of a bivariate stable law.
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Fig. 7. Contour plots for bivariate stable densities with independent S(«, 8, 1, 0; 1) components. The plots show
o =0.6, 8 =0 in upper left, « = 0.6, = | in upper right, « = 1.6, 8 =0 in lower left, and « = 1.6, B =1 in
lower right.
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general case is complicated, depending on the nature (discrete, continuous) and spread of
the spectral measure.

We now give some examples of bivariate stable densities, see the next section for infor-
mation on their computation. In all cases, the shift vector § = 0.

Example 4. The first example uses o = 1.2 and a discrete spectral measure with three
unit point masses, distributed on the unit circle at angles 7 /3, 7 and —r /3. A plot of the
density surface and level curves are given in Figure 6. The triangular spread of the spectral
measure shows up in the triangular shape of the level curves. The contour plot reveals more
about the shape of the surface, so the following examples will show only the contour plots.

Example 5. Figure 7 shows the contour plots of the independent components cases when
a=0.6, 1.6 and g =0, 1. Note that the upper right graph has « < 1 and is supported in
the first quadrant.

Example 6. Figure 8 shows a mix of different contours, mostly to show the range of
possibilities. The upper left plot shows an elliptically contoured stable distribution with
a = 1.5 and “covariation matrix”

1.0 0.7
k= (0.7 1.0)'

Y o~
> O > ©o
o o
2 4 0o 1 2
X
[} [l
[\ Y
> o > O
o o
L] ©
3 2 4 0 1 2 3 3 2 44 0 1 2 3
X X

Fig. 8. Contours of miscellaneous bivariate stable distributions.
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The upper right plot shows a o = 0.8 stable distribution with discrete spectral measure
having point masses at angles —m/9, /6, /3, /2 and uniform weight A; = 0.3. The
lower left plot uses o = 0.7 with a discrete spectral measure with point masses at angles
/9, 4w /9, 10m/9, 137 /9 of weight 0.75, 1, 0.25, 1. The lower right plot uses the same
discrete spectral measure as the lower left, but with o = 1.5.

There are some general statements that can be made about the qualitative behavior of
multivariate stable densities. For fixed o, central behavior is determined by overall spread
of the spectral measure: if the spectral mass is highly concentrated the density is close
to singular, with large values near the center; if the spectral mass is more evenly spread
around the sphere, the density is less peaked. On the tails, behavior is determined by the
exact distribution of the spectral measure, with the contour lines bulging out in directions
where the spectral measure is concentrated. This tail effect is more pronounced for small
values of «, where distributions can be highly skewed, and becomes less pronounced as «
approaches 2, where contours are all rounded into ellipses.

6. Multivariate computation, simulation, estimation and diagnostics

The computational problems are challenging, and not solved for general multivariate sta-
ble distributions. The problems are caused by the both the usual difficulties of working
in d dimensions and by the complexity of the possible distributions: spectral measures
are an uncountable set of “parameters”. The graphs above were computed by the program
MVSTABLE (available at the same web-site noted above), which only works in 2 dimen-
sions and has limited accuracy. Density calculations are based on either numerically invert-
ing the characteristic function as described in Nolan and Rajput (1995) or by numerically
implementing the symmetric formulas in Abdul-Hamid and Nolan (1998).

One class of accessible models is when the spectral measure is discrete with a finite
number of point masses:

AC) =) il (s)). (10)

j=1

This class is dense in the space of all stable distributions: given an arbitrary spectral mea-
sure A1, there is a concrete formula for n and a discrete spectral measure A, such that the
densities of the corresponding stable densities are uniformly close on RY.

In the case of a discrete spectral measure, the parameter functions B(-), y(-) and §(-)
are computed as finite sums, rather than (d — 1)-dimensional integrals, which makes
all computations easier. It also makes simulation simple in an arbitrary dimension: X ~
S(a, A, §; k) where A is given by (10) can be simulated by the vector sum

n
XL 3 z;s; + 8,
j=1
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where Zy, ..., Z, are i.i.d. univariate S(«, 1, 1, 0; k) random variables.

Another example where computations are more accessible is the elliptically contoured,
or sub-Gaussian, stable distributions described in Section 8. Such densities are easier to
compute and simulation is straightforward. Certain sub-stable distributions are also easy to
simulate: if @ < a1, X is strictly «q-stable and A is positive (/a1 )-stable, then Al g
«-stable. Since sums and shifts of multivariate stables are also multivariate stable, one can
combine these different classes to simulate a large class of multivariate stable laws.

There are several methods of estimating for multivariate stable distributions. If you know
the distribution is isotropic (radially symmetric), then Problem 4, p. 44 of Nikias and Shao
(1995) gives a way to estimate o and then the constant scale function/uniform spectral
measure from fractional moments. In general one should let the data speak for itself, and
see if the spectral measure A is constant. The general techniques involve some estimate of
o and some estimate of the spectral measure A= ZZL 1ALy (se), sk € S4. Rachev and
Xin (1993) and Cheng and Rachev (1995) use the fact that the directional tail behavior
of multivariate stable distributions is Pareto, and base an estimate of A on this. Nolan,
Panorska and McCulloch (2001) define two other estimates of A, one based on the joint
empirical/sample ch. f. and one based on the one-dimensional projections of the data.

Using the fact that one-dimensional projections are univariate stable gives a way of
assessing whether a multivariate data set is stable by looking at just one-dimensional pro-
jections of the data. Fit projections in multiple directions using the univariate techniques
described above, and see if they are well described by a univariate stable fit. If so, and if
the o’s are the same for every direction (and if o < 1, the location parameters satisfy (8)),
then a multivariate stable model is appropriate. We will illustrate this in examples below.

For the purposes of comparing two multivariate stable distributions, the parameter func-
tions («, B(u), y (u), §(u)) are more useful than A itself. This is because the distribution
of X depends more on how A distributes mass around the sphere than exactly on the mea-
sure. Two spectral measures can be far away in the traditional total variation norm (e.g.,
one can be discrete and the other continuous), but their corresponding parameter functions
and densities can be very close.

The diagnostics suggested for assessing stability of a multivariate data set are:

e Project the data in a variety of directions u and use the univariate diagnostics described
in Section 3 on each of those distributions. Bad fits in any direction indicate that the data
is not stable.

e For each direction u, estimate the parameter functions «(u), (u), y (u), 6(u) by ML
estimation. The plot of «(u) should be a constant, significant departures from this indi-
cate that the data has different decay rates in different directions. (Note that y (t) will be
a constant iff the distribution is isotropic.)

e Assess the goodness-of-fit by computing a discrete A by one of the methods above.
Substitute the discrete A in (9) to compute parameter functions. If it differs from the
one obtained above by projection, then either the data is not jointly stable, or not enough
points were chosen in the discrete spectral measure approximation.

These techniques are illustrated in the next section.
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Fig. 9. Projection diagnostics for the German Mark and Japanese Yen exchange rates.
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7. Multivariate application

Here we will examine the joint distribution of the German Mark and the Japanese Yen.
The data set is the one described above in the univariate example. We are interested in both
assessing whether the joint distribution is bivariate stable and in estimating the fit.

Figure 9 shows a sequence of smoothed density, g—q plot and variance stabilized p—p
plot for projections in 8 different directions: 7 /2, n/3, v /4, /6,0, — 7 /6, —7 /4, —7 /3.
(We restrict to the right half plane because projections in the left half plane are reflections
of those in the right half plane.) These projections are similar to Figure 2, in fact the fifth
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Fig. 10. Estimation results for the German Mark and Japanese Yen exchange rates.



Ch. 3:  Modeling Financial Data 125

row of Figure 9 is exactly the same as Figure 2. Except on the extreme tails, the stable fit
does a good job of describing the data.

The projection functions «/(t), B(t), ¥ (t), and §(t) were estimated and used to compute
an estimate of the spectral measure using the projection method. The results are shown in
Figure 10. It shows a discrete estimate of the spectral measure (with m = 100 evenly spaced
point masses) in polar form, a cumulative plot of the spectral measure in rectangular form,
and then four plots for the parameter estimates («(t), 8(t), y (t), §(t)). Also on the a(t)
plot is a horizontal line showing the average value of all the estimated indices which is
taken as the estimate of the common « that should come from a jointly stable distribution.
The plots of S(t) and y (t) also show the skewness and scale functions computed from the
estimated spectral measure substituted into (9). These curves, which are based on a joint
estimate of the spectral measure, are indistinguishable from the direct, separate estimates
of the directional parameters.

The fitted spectral measure was used to plot the fitted bivariate density shown in Fig-
ure 11. The spread of the spectral measure is spiky, and masks a pattern that is more ob-
vious in the density surface: the approximate elliptical contours of the fitted density. This
suggests modeling the data by a sub-Gaussian stable distribution, a topic discussed in the
next section.

Some comments on these plots. The polar plots of the spectral measure show a unit circle
and lines connecting the points (8, r;), where 6; =27 (j —1)/m andr; =1+ (X /Amax),
where Apax = maxA;. The polar plots are spiky, because we are estimating a discrete
object. What should be looked at is the overall spread of mass, not specific spikes in the
plot. In cases where the spectral measure is really smooth, it may be appropriate to smooth
these plots out to better show it’s true nature. In cases where the measure is discrete, i.e.,
the independent case, then one wants to emphasize the spikes. So there is no satisfactory
general solution and we just plot the raw data.

Finally, most graphing programs will set vertical scale so that the graph fills the graph.
This emphasizes minor fluctuations in the data that are not of practical significance. In the
graphs below, the vertical scales for the parameter functions «(t), B(t), y (t) are respec-
tively [0, 2], [—1, 1], and [0, 1.2 x max y (t)]. These bounds show how the functions vary
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Fig. 11. Estimated density surface and level curves for a bivariate stable fit to the German Mark and Japanese
Yen exchange rates.
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over their possible range. For §(t), we used the bounds [—1.2 x max|é(t)], 1.2 x max|§(t)|],
which visually exaggerates the changes in (t). A scale that depends on max y (t) may be
more appropriate.

8. Classes of multivariate stable distributions

There may be cases where we believe that a multivariate sample has certain structure. If so,
we can fit a stable model that takes this into account. This may give a more parsimonious
fit to the model, especially if the data set is high dimensional. Below we fill focus on
elliptically contoured distributions and see that it is computationally accessible. The idea
here is to estimate an « and a matrix R so that the scale function is closely approximated by
y (u) = (uRu)*/2. The principle can be generalized to other special classes of distributions.
Given some parametric model for the scale function y (-), one can fit parameters, or use a
nonparametric model (smoothing or loess) for the scale. Or, one can assume a special form
of the spectral measure A(-), which determines the scale function y (-). The methods of
estimation described above do this implicitly, by assuming A is discrete as in (10). This
can be adapted in many ways. If we assume the components of the data are independent,
then we can only allow point masses at “poles”, i.e., where the coordinate axes intersect
the sphere. If we assume the spectral measure is concentrated on some smaller region, then
one can allow point masses only in that region.

If we assume the spectral measure is continuous, then one can use some particular model
for its density, say as a sum of terms like A(ds) = >_;_, A(s) ds, where the density terms
Ak (-) in the sum have some accessible form. If the goal is a computationally accessible
model, then an ad hoc approach may be useful. First compute a fit using a discrete spectral
measure. If there are clearly defined point masses that are isolated, then include them and
try to model the rest as an elliptical model, or using some spectral density.

Since the foreign exchange data seems to be approximately elliptically contoured, there
may be interest in categorizing such stable distributions. The main practical advantage to
this is that all d-dimensional elliptically contoured stable distributions are parameterized by
o and a symmetric, positive definite d x d matrix. Since the matrix is symmetric, there are
a total of 1 4+ d(d 4 1)/2 parameters. This is quite different from the general stable case,
which involves an infinite dimensional spectral measure. Even a discrete approximating
measure involves a much larger number of terms: if a “polar grid” is used with each of the
angle directions divided up evenly with k subintervals, then there are k<“~! point masses to
be estimated.

For X an non-singular symmetric «-stable random vector, the following are equivalent:
e Xiis elliptically contoured around the origin.

e X is sub-Gaussian, i.e., X £ A!/2G, where A ~ S(a, 1, ,0; 1) and G ~ N(0, R).
e The characteristic function is E exp(iu - X) = exp(—(uRuT)"‘/ 2, for some symmetric,

positive definite matrix R.

There is a “random volatility” interpretation of sub-Gaussian distributions. Think of G
as an underlying multivariate normal model for the returns on d assets with random scale
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A'/2_In general, A can be any positive random variable, but the product will be a-stable
only when A is itself a positive («/2)-stable random variable.

Computations with elliptically contoured stable distributions is much simpler than the
general stable case. All calculations are essentially reduced to one-dimensional problems:
the linear transformation Y = R~!/2X gives a radially symmetric distribution. With a radi-
ally symmetric density, one only needs to compute it along some one-dimensional ray. In
symbols, f(x) = det(R)~/2f(|R™/?xT|,0,0,...,0) = c(R)g(|[R~'/>x'|). The univari-
ate function g can be computed for arbitrary dimension d by numerically evaluating the

univariate integral
o cosma \2/®
P 15 2 5 O; 1 dt.
2 4

We next describe ways of assessing a d-dimensional data set to see if it is approximately
sub-Gaussian and then estimating the parameters of a sub-Gaussian vector.

First perform a one-dimensional stable fit to each coordinate of the data using one of the
methods described above, to get estimates @i = (aj, ﬁi, Vi Si). If the «;’s are significantly
different, then the data is not jointly «-stable, so it cannot be sub-Gaussian. Likewise, if
the B;’s are not all close to 0, then the distribution is not symmetric and it cannot be sub-
Gaussian.

If the ¢;’s are all close, form a pooled estimate of o = (Zflzl «;)/d = average of the

g(x) — (zn)—dﬂ/‘x’e_ﬂ/(zr)f(t
0

indices of each component. Then shift the data by s = (31, 32, o Sd) so the distribution
is centered at the origin.

Next, test for sub-Gaussian behavior. This can be accomplished by examining two-
dimensional projections because of the following result. If X is a d-dimensional sub-
Gaussian «-stable random vector, then every two-dimensional projection

Y=(T1,Y2) =(a;-X a2 - X), (1)

(aj,ap € Rd) is a two-dimensional sub-Gaussian «-stable random vector. Conversely,
suppose X is a d-dimensional a-stable random vector with the property that every two-
dimensional projection of form (11) is non-singular sub-Gaussian. Then d-dimensional X
is non-singular sub-Gaussian «-stable.

Estimating the d(d + 1)/2 parameters (upper triangular part) of R can be done in at
least two ways. For the first method, set r;; = yl.z, i.e., the square of the scale parameter
of the i-th coordinate. Then estimate r;; by analyzing the pair (X;, X;) and take r;; =
(y2(1, 1) —rii—rjj)/2, where y (1, 1) is the scale parameter of (1, 1) - (X;, X;) = X; + X ;.
This involves estimating d + d(d — 1)/2 = d(d + 1) /2 one-dimensional scale parameters.

For the second method, note that if X is «a-stable sub-Gaussian, then E exp(iu - X) =
exp(—(uRu")*/?), so

[—In E exp(iu - X)]Z/a =uRu' = Zu?m + ZZuiujrij.
i

i<j
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This is a linear function of the ;;’s, so they can be estimated by regression. This method
may be more accurate because it uses multiple directions, whereas the first method uses
only three directions: (1,0), (0,1) and (1,1). If a two-dimensional fit has already been done,
then one has already estimated y (u) on a grid. Note that uRu" = y2(u) is the square of
the scale parameter in the direction u. Sample estimates of y*(u) on a grid of u points can
be used for the middle term above. In both methods, checks should be made to test that the
resulting matrix R is positive definite.

The first method was used to estimate the matrix R for the Deutsche Mark—Japanese
Yen data set considered above. The estimated matrix R was

S 6(5.9552 4.0783
k=10 (4.0783 13.9861)‘

The plot of y (t) shown in the lower left corner of Figure 10 also shows ,/ tRtT as a dashed

line. It is virtually indistinguishable from the curve of y (t), supporting the idea that a sub-
Gaussian stable fit does a good job of fitting the bivariate data.

9. Operator stable distributions

A brief discussion of operator stable laws is given next. The class of operator stable distrib-
utions allows different components of X to be stable with different indices o;. It is defined
by replacing the real scale term a,, in (7) with a matrix scale term A, see Jurek and Mason
(1993) or Meerschaert and Schefler (2001). This may be of use in analyzing a portfolio,
where different assets have different characteristics, e.g., some have Gaussian behavior and
some have heavy tailed behavior, possibly with different tail behavior.

One subclass of the operator stable distributions is obtained by building up from in-
dependent groups of «-stable laws: suppose (X1, ..., X4,) has a di-dimensional o -stable
distribution, (Xg4,+1,..., Xd,+4,) has a dp-dimensional «p-stable distribution, ...,
(Xdy+dyt-tdp_141> - - -» Xdj+--+d,) has a di-dimensional ai-stable distribution. If all
these groups of distributions are independent, then the vector X = (Xy,..., Xq),
d=d| +---+di, has a d-dimensional operator stable law. Also, for any d x d matrix
A, the vector Y = AX is an operator stable law. (One usually requires A to be invertible,
otherwise the resulting Y will not be d-dimensional.)

10. Discussion

We have shown that estimation of general stable parameters is now feasible. The diagnos-
tics show that some financial sets with heavy tails are well described by stable distributions.
While they do not give a perfect fit, stable models can give a much better fit than Gaussian
models.
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In practice, the decision to use a stable model should be based on the purpose of the
model. In cases where a large data set shows close agreement with a stable fit, confident
statements can be made about the population. In other cases where there is a poor fit, one
should not use a stable model. These models are not a panacea — not all heavy tailed data
sets can be well described by stable distributions. In intermediate cases, one could tenta-
tively use a stable model as a descriptive method of summarizing the general shape of the
distribution, but not try to make statements about tail probabilities. In such problems, it
may actually be better to use the quantile parameter estimates rather than ML estimates,
because the former tries to match the shape of the empirical distribution and ignores the
top and bottom 5% of the data.

In multivariate problems where the dimension is large, it will be very difficult to model
with a stable distribution unless there is some special structure. If some components are
independent, then they should be separated out and analyzed alone. If the dependent com-
ponents are elliptically contoured or have some other special structure, then Section 8
discusses a way to analyze them. In the general stable case, one may try to group the com-
ponents into smaller dependent groups, estimate within groups, and then try to characterize
dependence between groups. We are not aware of work on this topic.
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Abstract

Paretian stable distributions have had a relatively successful career in modeling of financial
data. We discuss statistical issues common in modeling multivariate portfolios with focus
on the estimation of the spectral measure that is important for estimation of the risk and
dependence structure of a portfolio. We also briefly discuss alternative multivariate stable
models for financial portfolios and estimation of their parameters.
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1. Introduction

Statistical analysis of multivariate Paretian stable portfolios presents numerous practical
and theoretical challenges. Perhaps the most common practical issues in the modeling of
stable portfolios include diagnostics of the stable hypothesis and estimation of the index of
stability (or tail index) o and the stable spectral measure I'. The index of stability o deter-
mines the overall properties of a multivariate stable distribution and the spectral measure
I' governs the dependence structure between the components of a stable portfolio. In this
work, although we will briefly discuss diagnostics for a stable model and estimation of the
index of stability, we will focus on the estimation of the spectral measure.

The fundamental work in the sixties of Mandelbrot [see, e.g., Mandelbrot (1963a, 1963b,
1967)] and Fama (1965a) led to development of a large field of research in the theory
and applications of Paretian stable models in finance and economics. For example, the
problem of derivative pricing for stable Paretian returns was considered in Dostoglou and
Rachev (1999), Janicki et al. (1997), Hurst, Platen and Rachev (1999), Karandikar and
Rachev (1995), Rachev and Riischendorf (1994), Rachev and Samorodnitsky (1993), risk-
management issues were treated in Bassi, Embrechts and Kafetzaki (1988), Gamrowski
and Rachev (1996), Mittnik, Rachev and Paolella (1998), while the problem of comput-
ing optimal portfolios when the returns have Paretian stable distributions was presented
in Bawa, Elton and Gruber (1979), Belkacem, Véhel and Walter (2000), Chamberlain,
Cheung and Kwan (1990), Gamba (1999), Fama (1965b), Press (1982), Rachev and Han
(2000), Ziemba (1974). For an extensive exposition of this subject and further references
we invite the reader to peruse a recent volume of Rachev and Mittnik (2000) containing
over 1000 references.

The properties of stable distributions that make them attractive for modeling include
domains of attraction and stability. Domains of attraction add robustness to the stable
model. We can not expect that the observed data follows exactly the distribution specified
by the modeler. In fact, any model is an approximation of the underlying distribution of the
process generating the data. As an approximation any model has a domain of applicabil-
ity where its fit to the observations is reasonable and justified. Domain of attraction for a
stable model contains many distributions with properties close to the specified stable law.
Therefore, a stable distribution provides good approximation for a wide range of observed
data. More importantly, decisions will essentially not be affected by using a stable approx-
imation as the model instead of the true distribution. Additionally, it is possible to check
whether or not a distribution is in the domain of attraction of a stable model by examining
only its tails because the tails completely determine domain of attraction (see Sections 2.1).

Stability implies existence of an overall parameter, the index of stability o, that remains
unchanged across all scales (sampling intervals). This is beneficial because in univariate
modeling we can focus on the estimation of only one parameter that controls the main
properties of the underlying distribution. In the multivariate case, the index of stability is
still crucial, but it is not enough to describe all of the important properties of the stable
model. To describe a multivariate portfolio, it is necessary to estimate its spectral measure
which carries the information about the dependence structure and risk. The dependence
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structure and tests for association between the returns on different assets require an esti-
mate of the spectral measure [see Lee, Rachev and Samorodnitcky (1990a, b)]. The risk
of a stable portfolio is usually measured by its scale parameter which is defined as a func-
tional of the spectral measure [see Section 2.5 and Rachev and Mittnik (2000)] and «. Here
again, estimates of the spectral measure prove necessary for both modeling and decision
making processes.

Our chapter is organized as follows. In Section 2 we define stable distributions and re-
view their properties, particularly those relevant to financial modeling and estimation of
parameters. In Sections 3, 4, and 5 we discuss estimation of the index of stability (the tail
index), spectral measure, and scale parameter, respectively. Then, in Section 6, we present
some other heavy tailed multivariate laws related to Paretian stable distributions that have
found applications in mathematical finance. We review existing estimation procedures for
these laws and introduce new estimators. Finally, in Section 7, we apply some of the pro-
cedures discussed in this work to financial data sets and further discuss some practical
statistical issues related to stable modeling.

2. Multivariate stable laws

A random vector X = (X1, ..., X4) in R is stable (Paretian stable, a-stable) if it obeys the
stability property, that is for any n > 2 there is some « € (0, 2] and a vector D,, such that

Xi+-+X, £n/*X +D,, (1)

where the X;’s are i.i.d. copies of X [see, e.g., Samorodnitsky and Taqqu (1994)]. Parame-
ter « is called index of stability. Stable vectors do not admit densities or distribution func-
tions in a closed form (with a few exceptions) and are usually described in terms of their
characteristic functions (Fourier transforms), which are of the form [see, e.g., Samorodnit-
sky and Taqqu (1994)]:

(D(t) — Eei(t,X) — e—Ia (t)+i(t,m)’ (2)

where m € R? is the shift parameter (the mean for o > 1) while
I () = /s wa,1((t, 5)) T (ds). (3)
d

Here, Sy is the unit sphere in RY, I is a finite measure on S4, called the spectral measure,
the quantity (t,s) = s is the inner product in R¢, and

|| (1 —iB sign(u) tan %) fora #1,

4
lu|(1 +ip 2 sign(u) log |u|) fora = 1. @

a)a,ﬂ(“) = !

We denote the distribution of a stable r.v. X with the ch.f. (2) by Sy (m, I').
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The index of stability « € (0, 2] determines the tail of the stable law and can be thought
of as a shape parameter. When o = 2 we obtain the special case of multivariate normal dis-
tribution, while when « < 2, the probability P(X; > x) associated with each component
X of an a-stable r.v. X decreases like the power function x™% as x increases to infinity.
Spectral measure I' controls the dependence among the components of X. The latter are
independent if and only if I' is discrete and concentrated on the intersection of S; with the
coordinate axes.

2.1. Domains of attraction

Stable laws are the only possible limiting distributions of scalar-normalized sums of i.i.d.
random vectors. A random vector X is said to be in the domain of attraction of a multivari-
ate stable r.v. Y if for some a,, > 0 and b, € R the following convergence in distribution
holds

an X1+ +X) +by > Y asn— oo, )

where the X;’s are i.i.d. copies of X. By the stability property (1) it is clear that any stable
r.v. belongs to its own domain of attraction. The domain of attraction of a stable law with
index o = 2 (the normal law) includes all distributions with finite second moments for
which the convergence in (5) coincides with the classical Central Limit Theorem. The
domain of attraction of a nonnormal stable law admits the following characterization due
to Rvageva! (1962), and plays a crucial role in estimating the spectral measure I'.

Proposition 2.1. A random vector X on R? belongs to the domain of attraction of some
full? stable Sy (m, T') law with a < 2 if and only if V (r) = P(||X|| > r) is regularly vary-
ing at infinity with index —a and

= - (©6)

X
P(— € D given | X|| > r
V(r) I'(Sq)

) _ PX/IX| €D, |IX|>r) I(D)
I1X]

as r — oo for all Borel subsets D of the sphere Sy with I'(0D) = 0.

In other words, the tail behavior of X in the direction of D is determined by the spectral
measure of the set D.

1 The original proof in Rvaceva (1962) seems to contain an error; for a corrected proof and a more modern

treatment (in terms of regular variation), see Meerschaert and Scheffler (2001).
2 The probability distribution of a random vector X on RY is Sfull if (t, X) is nondegenerate for every t # 0.
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2.2. Strictly stable and symmetric stable vectors

A r.v. X is strictly stable if the relation (1) is valid with D, = 0. This holds if the shift
vector m is zero for @ # 1 and if

f ST (ds) = 0 )
Sa

if « =1 [see, e.g., Samorodnitsky and Taqqu (1994)]. A r.v. X is said to be symmetric
stable if it is stable and the probabilities P(X € A) and P(—X € A) are the same for all
Borel sets A of R?. Then, the spectral measure I' of X is symmetric and the ch.f. (2)
reduces to

B(t) = Jsa | EINTE) .

2.3. One-dimensional case

In one dimension, the unit sphere is the set {—1, 1} and the ch.f. (2) reduces to
¢ (1) =Eel'X = el @us®), ©)

where the parameter « is the index of stability as before, § € [—1, 1] is the skewness
parameter, parameters 1 € R and o > 0 control location and scale, respectively, and wy, g
is given by (4). We shall use the notation Sy, (o, B, 1) to denote the stable distribution given
by the ch.f. (9). Strictly stable laws in one dimension correspond to u = 0 for o £ 1 and
B =0 for o = 1. Symmetric univariate stable laws are strictly stable with u = g = 0. Stable
distributions are supported on the entire real line, except when o < 1 and |8| = 1, when
we obtain totally skewed distributions concentrated on (i, 00) for g =1 and (—o0, p) for
p=-1

The following moment formula from Samorodnitsky and Taqqu (1994), is useful in es-
timating parameters of multivariate stable laws [cf. Nikias and Shao (1995)].

Proposition 2.2. Let X ~ S, (o, 8,0) with a € (0,2) and 8 =0 for « = 1. Then for any
p € (0, @) we have

E|X|? =0?C, (10)
where

20101 = p/a)
pJo u=P=1sin?udu

(§amn(pn <))
x cos| —arctan| Stan — | ). (11)
o 2

an )p/(zoo

C=C(pB, p) = (1+f32tanz7
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2.4. Discrete spectral measure

An important special class of stable laws are those with a discrete spectral measure. A mea-
sure I' is discrete if

k
ra)=>5(A)y. (12)

j=1
where the s;’s are k points on the unit sphere, s denotes a point mass at s,

1 ifseA,
8s(A) = { (13)

0 otherwise,

and y; > 0 for j =1,2,..., k. If the spectral measure I' has form (12), then the corre-
sponding ch.f. is straightforward to compute, because in this case I, in (3) takes the form:

k
L) =" ou1(it.s;)y). (14)
j=1

Because of the simple form of their ch.f.’s, stable laws with discrete spectral measures are
much easier to handle in practice than the general ones. In particular, their computer simu-
lation is straightforward, whereas exact algorithms for simulation of general stable vectors
are not available. The simulation of stable variates with discrete spectral measure is based
on the following representation from Modarres and Nolan (1994) [see also Samorodnitsky
and Taqqu (1994), Example 2.3.6].

Proposition 2.3. Let X ~ Sy (m, I') with I of the form (12). Then

k
m-+ >y, Vs, o1,

4 j=1

X (15)

k
2
m+Z)/j<Vj + ;logyj)sj fa=1,
j=1

where the V;’s are ii.d. totally skewed, one-dimensional standard stable variables

Se(1,1,0).

Since there exist exact algorithms for simulating one-dimensional stable variates [see,
e.g., Weron (1996)], representation (15) can be used to generate d-dimensional stable vec-
tors with discrete spectral measure.
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Another important aspect of stable laws with discrete spectral measure is their role
in approximating general stable distributions. As shown in Byczkowski, Nolan and Ra-
jput (1993) every stable distribution can be approximated by one with a discrete spectral
measure.

Proposition 2.4. Given a stable vector X ~ Sy(m, I') in R¢ with density p, for every

& > 0 there exists a positive integer k = k(e,d, a, I'), points s1, ..., Sk on the unit sphere
S4, and positive constants y1, . . ., vk such that
sup [p(x) — p*(x)| <, (16)
xeRd

where p* is the density of the stable distribution on R¢ with a discrete ' given by (12).

The value of k is given explicitly in Byczkowski, Nolan and Rajput (1993). Because of
the above approximation, in practice one usually restricts attention to laws with discrete
spectral measure, see Nolan (1998) for further discussion.

2.5. Linear combinations and risk of a financial portfolio

Return on a d-asset portfolio can be modeled as a linear combination
(b, X) =b1 X1+ -+ baXy A7)

of the stable vector of returns on individual assets X and the vector of weights b indicating
the portion with which each asset enters the portfolio. The properties of a portfolio can
then be studied via properties of linear combinations of stable random variables.

It is well known that all linear transformations (17), which include marginal distributions
of stable vectors, are again stable. In particular, linear combinations of a stable r.v. X =
(X1,...,Xq) ~ Sq(m, I') are univariate stable S, (op, Bp, Up), Where

1/
abz{/ \(b,s)\"‘r(ds)} , (18)
Saq

_ [5, 10,5)| sign((b, s))I"(ds)
", Ib.s)e T (ds)
(b, m) fora # 1,

) 19)

M= homy — 2 / (b.s)log|(b.s)|(ds) fora=1. (20)
T S4

Parameter o} is often called the risk of a stable portfolio. We would like to note here, that
it is necessary to have information about the spectral measure I' in order to estimate that
risk. For the motivation and more discussion of the definition of risk please see Rachev and
Mittnik (2000).
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2.6. Densities

All fully d-dimensional stable laws are absolutely continuous and admit bounded unimodal
densities. In general there are no closed form expressions for stable densities. For numerical
stable density computations one can use the following integral representation of stable
densities due to Abdul-Hamid and Nolan (1998).

Proposition 2.5. Let X ~ S, (m, I') be a nondegenerate stable random vector in R? with
d > 1, and let os, Bs and s be given by (18)—(20). Then the density of X admits the
following form:

(1) Fora #1,
(x —m,s) _d
p(x) = g 8a,d ———:;————,ﬂs og “ds, (21)
d S
where
1 © o
ga.d(v, B) = (ZT)‘I/O cos<vu — Bu® tan ﬂ%)ud_l e " du. (22)
(i1) Fora =1,
X—m,S) — us + (2/m)Bsos log o, _
p(X):/; gl,d(( ) MSG( / ﬁS S g S,ﬂs>as ddS, (23)
d S
where
1 * 2 d—1 _.—u
gl’d(vyﬁ)zw‘/o cos| vu — ;ﬁulogu u e " du. (24)

As remarked by Nolan (1998), this representation is more suitable for approximating
multivariate stable densities than the numerical inversion of the stable ch.f. [see Nolan and
Rajput (1995)], since g4 is a function of two variables regardless of the dimension d and
it is the same for any stable random vector.

2.7. An alternative parameterization

Note that the spectral measure is not necessarily a probability measure on S;. An alterna-
tive parameterization introduces a scale parameter

o={r©s}"

(25)
and the normalized measure

T'(ds) = o “I'(ds), (26)
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so that T’ (Sqg) =1 [see, e.g., Davydov and Paulauskas (1999)]. With this new normalized
spectral measure, the ch.f. (2) takes the form

<p(t) — e—Ja Iy (t)+i(t,m)’ (27)

where I, is as before (with T in place of I'). We now have four parameters: the stability in-
dex « € (0, 2], the scale parameter o > 0, the shift parameter m € R¢, and the normalized
spectral measure T'. We shall use the notation Si(o,m, r ) for the distribution correspond-
ing to the ch.f. (27).

2.8. Association

A strong form of positive dependence of the components of a d-dimensional r.v. X =
(X1,...,Xq) is the association, introduced in Esary, Proschan and Walkup (1967). The
components of X are said to be associated if for any functions f, g: RY — R, nondecreas-
ing in each coordinate, we have

Cov{ f(X),g(Y)} =0 (28)

whenever covariance exists. Normal variables are associated if and only if they are non-
negatively correlated (Pitt, 1982). Association of stable variables has been characterized in
terms of the spectral measure in Lee, Rachev and Samorodnitsky (1990a).

Proposition 2.6. Let X = (Xq,..., Xg)' ~ Sy(m, I'), where 0 <a < 2. Then X1, ..., Xy
are associated if and only if

r(s;)=o, (29)
where
S, = {s: (81, ...,8q) € Sq: for somei, je{l,...,d}, si >0ands; < O}. (30)

Thus, bivariate stable vectors are associated if and only if their corresponding spectral
measure is concentrated on the first and third quadrants.

Remark. Other notions of positive dependence include positive upper orthant dependence
(PUOD) and positive lower orthant dependence (PLOD). The variables X1, ..., X, are
PUQOD if

PXi>x1,...,Xg>x3) 2 P(X1>x1)---P(Xg > xq) (31
for any x1, ..., x4, and they are PLOD if

P(X1<x1,...,Xqg <xq) 2 P(X1 <x1)-- P(Xg < x4), (32)
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so that the variables are likely to take on larger or smaller values together. It is well known
that association implies both PUOD and PLOD, but one cannot in general reverse these
implications. However, as shown in Lee, Rachev and Samorodnitsky (1990a), for stable
random vectors association is equivalent to PUOD and also to PLOD, so that all of the
above notions of positive dependence are equivalent.

The components of X = (X1, ..., Xy) are said to be negatively associated if for any
1 <k < d and any functions f : RF > R, g: RI~% - R, nondecreasing in each coordinate,
we have

Cov{f(Y), g(Z)} <0 (33)
whenever the covariance exists, where Y and Z are any k and (d — k)-dimensional sub-

vectors of X [see Alam and Saxena (1982)]. The negative association of stable random
vectors was characterized in Lee, Rachev and Samorodnitsky (1990a).

Proposition 2.7. Let X = (X1,..., Xg) ~ Sy(m, I'), where 0 <a < 2. Then X1, ..., Xy
are negatively associated if and only if

r(sf)=0, (34)
where
Sy ={s=(s1,....50) € Sg: sisj >0 for some i # j}. (35)

Thus, a bivariate stable vector has negatively associated components if and only if the
corresponding spectral measure is concentrated on the second and forth quadrants.

3. Estimation of the index of stability

In this section we address the issue of estimating the tail index «. We start with the case
when the sample comes from a univariate «-stable distribution, and then consider a more
general situation where the observations are not necessarily stable, but asymptotically have
a stable-Pareto tail with index «, that is

PXi>x)=1—-Fx)~x"“L(x), (36)
where L is some slowly varying function. Given a multivariate heavy tailed data set

Xi,...,X,, one can apply the methods of this section to one-dimensional samples cor-
responding to the norms ||X;|| or the projections (X;, b) for some b € R4,
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3.1. Estimation of univariate stable parameters

Estimating the parameters of stable distributions is a challenging problem due to the fact
that the densities and distributions functions of these laws are not available in closed form.
Various estimation methods have been developed over the last 30 years, most of them
requiring numerical approximations.

Since the stable characteristic function can be written in a closed form, several esti-
mation techniques are based on fitting the sample characteristic function to its theoretical
counterpart. The substantial collection of papers in this area started with Press (1972b),
and include Arad (1980), Feuerverger and McDunnough (1977, 1981a, b), Kogon and
Williams (1998), Koutrouvelis (1980, 1981), Paulson and Delehanty (1984, 1985), Paul-
son, Holcomb and Leitch (1975). As noted by McCulloch (1996), these estimation pro-
cedures were reported by practitioners to have high efficiency relative to the maximum
likelihood approach. However, some of these methods are quite complex and require the
practitioner to choose certain arbitrary parameters. A discussion and comparative study of
these approaches can be found in Kogon and Williams (1998).

The maximum likelihood (ML) method for the stable case was first proposed by Du-
Mouchel (1971, 1973), who also discussed the asymptotic properties of the estimators. To
approximate the loglikelihood function DuMouchel (1971) employed fast Fourier trans-
form (FFT) for the central part of the data and series expansions for the tails. See also Du-
Mouchel (1975, 1983) for numerical approximation of the Fisher information matrix and
further comments on this approach. Since this early work, various numerical procedures for
approximating stable densities have been developed, which now permit an efficient com-
putation of the likelihood function without the grouping procedure of DuMouchel (1971).
For the ML in the symmetric case, see Brorsen and Yang (1990), McCulloch (1979, 1998).
Asymmetric stable ML was treated in Brorsen and Preckel (1993), Liu and Brorsen (1995),
Mittnik et al. (1999), Nolan (2001), Stuck (1976). As noted in Mittnik et al. (1999), one ad-
vantage of the ML approach over most other methods is its ability to handle generalizations
to dependent or not identically distributed data arising in financial modeling (for example,
regression or various time series models with stable disturbances). An implementation of
the ML method for such generalizations can be found in Liu and Brorsen (1995) (stable
GARCH), Mittnik, Rachev and Paolella (1998) (ARMA models driven by asymmetric sta-
ble distributions), and Brorsen and Preckel (1993), McCulloch (1998) (linear regression).
In the last section of our chapter, we utilize the maximum likelihood numerical procedures
of Nolan (1998), applicable for the most general i.i.d. stable case (available on the author’s
web site).

Numerous other methods of estimating stable parameters have been suggested. Per-
haps the most commonly used estimators in empirical work are quantile procedures of
Fama and Roll (1971) for the symmetric case and their modifications to the general case
obtained by McCulloch (1986). Buckle (1995) proposed sampling based Bayesian in-
ference for stable laws, see also Qiou and Ravishanker (1995), Ravishanker and Qiou
(1998) for further extensions and discussion of the Bayesian approach. Nikias and
Shao (1995) derived moment estimators based on sample fractional moments. Compu-
tationally simple estimators based on the modified method of scoring were proposed in
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Klebanov, Melamed and Rachev (1994). For further references on estimating stable para-
meters, see, e.g., McCulloch (1996), Rachev and Mittnik (2000). Comparative studies of
various estimators for stable parameters include Akgiray and Lamoureux (1989) and more
recent Hopfner and Riischendorf (1999), Kogon and Williams (1998).

3.2. Estimation of the tail index o

Assume that we have a one-dimensional random sample X1, ..., X, satisfying (36) and
belonging to the domain of attraction of an «-stable distribution. There is a large body
of literature concerning estimation of the tail index «. Many common estimators of « are
based on a subset of the sample order statistics,

X< < X (37

Below we sketch few standard and some recent methods for estimating « and give refer-
ences for many others.

3.2.1. The Hill estimator

The Hill estimator [see Hill (1975)] along with its various modifications is perhaps the most
common way of estimating the tail thickness o« of a financial data set [see, e.g., Jansen and
de Vries (1991), Koedijk, Schafgans and de Vries (1990), Loretan and Phillips (1994),
Phillips (1993)]. The estimator uses the k largest order statistics,

k —1

R 1

aHil = <E Z:llog X@ug1-j) —log X(n—k)) , (38)
J:

and arises as the conditional maximum likelihood estimator for the Pareto distribution
P(X > x) = Cx™“. With the proper choice of the sequence k = k(n), the estimator is con-
sistent and asymptotically normal, see, e.g., Beirlant and Teugels (1989), Csorgé and Ma-
son (1985), de Haan and Resnick (1998), Deheuvels, Haeusler and Mason (1988), Goldie
and Smith (1987), Haeusler and Teugels (1985), Hall (1982), Hall and Welsh (1984, 1985),
Mason (1982). For further discussion and extensions, see, e.g., Csorgd, Deheuvels and Ma-
son (1985), Csorgd and Viharos (1995), Dekkers and de Haan (1993), Dekkers, Einmahl
and de Haan (1989).

An obvious problem with the Hill estimator and its generalizations discussed below is
the practical choice of k. Generally, we must have

k
k—o0o and ——>0 asn— o0 (39)
n

to achieve strong consistency and asymptotic normality. In practice, one usually plots val-
ues of the estimator against the values of k (obtaining the so-called Hill plot) and looks for
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a stabilization (flat spot) in the graph. An alternative, more informative method of doing a
Hill plot, is described in Drees, de Haan and Resnick (2000), Resnick and Starica (1997).
We refer the readers to Danielsson, Jansen and de Vries (1996), Embrechts, Kliippelberg
and Mikosh (1997), Kratz and Resnick (1996), Mittnik and Paolella (1999), Rachev and
Mittnik (2000), Resnick (1998), Resnick and Stdricd (1997) and references therein for
more details on this and related tail estimators.

3.2.2. A shifted Hill’s estimator

Noting that the Hill estimator is scale invariant but not shift invariant, Aban and Meer-
schaert (2001) proposed the modification that is shift invariant. Their method consists of
conditional maximum likelihood estimation for the shifted Pareto distribution P(X > x) =
C(x —s)™%, and yields the estimators:

‘ -1
1 A
<% Z log(X{j) —$) —log(X{iy) — s)]) , (40)
j=1
(X(kﬂ) Y, 4D

where § is obtained by solving the equation
(X5 —H =@+ k! Z(Xm H~! (42)
j=1

over the set § < X* (k1) Here the starred variables indicate the order statistics taken in the
decreasing order:

Xy =2 X (43)
Numerical procedures are required to compute the estimators.

3.2.3. The Pickands estimator and its modifications

Pickands (1975) introduced a tail estimator of the form

log?2
o8 4k <n,

Qpick = ;
T log(X (k1) — X—2kt1)) — 102(X (1—2k+1) — X (n—dk+1))
(44)

see also Drees (1996), Rosen and Weissman (1996). Noting its poor performance on sam-
ples from stable distributions, Mittnik and Rachev (1996) introduced a modification of (44)



Ch. 4:  Statistical Issues in Modeling Multivariate Stable Portfolios 145

based on Bergstrom expansion of stable distribution function [see Bergstrom (1952), and
also Janicki and Weron (1994)]. Their unconditional Pickands estimator is of the form

_ log?2
10g X (n—k+1) —log X(u—2k41)

aup (45)

We refer the readers to Rachev and Mittnikl (2000) for further discussion on the practical
performance and other modifications of the Pickands estimator.

3.2.4. Least-squares estimators

Taking the logarithm of both sides in relation (36) we observe that for large values of x
the points with abscissa logx and ordinate log(1 — F(x)) should approximately fall on a
straight line with slope —a. Using the k largest order statistics X,+1—j, j =1,...,k, we
can examine the plot of log X, 11— versus

log & ~ log(1 = F(Xu+1-))) (46)

and visually estimate the slope of the resulting line. This graphical approach was suggested
by Mandelbrot (1963b).

Using these upper order statistics one can estimate the slope by the classical least-
squares method [see Kratz and Resnick (1996), Schultze and Steinebach (1996)]. Below
we briefly describe the estimators obtained in Schultze and Steinebach (1996). Assuming
that in (36) we have L(x) = e¢ (which is the case for stable distributions), Schultze and
Steinebach (1996) applied the method of least squares to estimate the intercept ¢/« and
the slope 1/« of a straight line fit to

c 1 n
log Xpy1-j~— + —log—

L j=1,... .k (47)
a T

This resulted in the following estimator of «:

k k k -1
(1 1 n 1 n
O‘]Es) = |:E Zlog ; log Xy41-j — 2 Zlog ; ZloanH,j
j=1 j=1 j=1

1 k PR 1 k n 2
x zng i zZlogj . (48)
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Another estimator was obtained in Schultze and Steinebach (1996) by the least squares
method under the assumption of zero intercept in (47):

k k

N n n

“1(425) = E logjloan_H_j E logzj. (49)
Jj=1 j=1

Finally, Schultze and Steinebach (1996) proposed yet another estimator of « resulting from
expressing (47) in the form

n
alogX,i1-j~c+log—, j=1,...,k, (50)
J

and minimizing the sum of squares

k 2\ 2
Z (ozloan+1j —c—log —,) .

j=1 /

This produced:

k k k
1 n 1 n
~(3)
ag = |:% E 1logjlogX,,_H_j - a2 E 110g7 E llogX,1+1_ji|
j= j= j=

k k 29-1
1 1
x [Engzxnﬂj - (Engxnﬁj) } : 51)
j=1 j=1

Consistency and asymptotic normality of the above estimators are established in Schultze
and Steinebach (1996) and Csorgé and Viharos (1997), respectively [see also Kratz and
Resnick (1996) for similar results on their QQ estimator].

3.2.5. The M-S method

Meerschaert and Scheffler (1998) introduced a simple robust estimator for the tail index «
that is based on the asymptotics of the sum and utilizes the entire sample not just the largest
order statistics. The estimator is based on the idea that if X;’s are i.i.d. and belong to the
domain of attraction of an a-stable law with 0 < o < 2 (and their distribution function
satisfies (36)), then their sample variance,

Ag_l - '_—2
& _n;(xq, %), (52)



Ch. 4:  Statistical Issues in Modeling Multivariate Stable Portfolios 147

converges to an «//2-stable (totally skewed) r.v. Y:

nl=2e52 4y (53)

Taking the logarithm on both sides of (53) we obtain the convergence

1 1
210gn< —) 4 log?Y, (54)

O o
where

11 log 62
Tzogn—i—oga (55)
o 2logn

is the Meerschaert—Scheffler (M—S) estimator of 1/«. The estimator is consistent and its
asymptotic distribution is that of log Y for some totally skewed «/2 positive stable r.v. Y.
Moreover, the estimator applies to certain dependent data. Comparing its performance with
that of Hill’s estimator, Meerschaert and Scheffler (1998) concluded that it works as well
as the latter in most cases, and substantially better when applied to stable data, see Meer-
schaert and Scheffler (1998) for further details.

4. Estimation of the stable spectral measure

4.1. Tail estimators

A method of estimating the spectral measure of a stable r.v. Y based on a random sample
X1, Xn (56)

from the domain of attraction of Y was proposed by Rachev and Xin (1993) and Cheng
and Rachev (1995). The method, referred to as the Rachev—Xin—Cheng (RXC) method
by Nolan and Panorska (1997), is based on the limiting relation in Proposition 2.1. To
estimate I' (D), where I' is the (normalized) spectral measure of Y [cf. parameterization
(27)], choose a large value of r and calculate the proportion of the X;’s with the norm
exceeding r that belong to the set D when normalized, that is

#HXi/1IXi |l € D and || X;| > r}

T (D)=
) X = 1)

(57)

Equivalently, we can choose an integer k = k(n) < n/2 and consider the set

X Il - 1 (58)
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of the k largest order statistics connected with the corresponding sample of the norms:
IXtll, - Xl (39)

Then, the RXC estimator of I' is the discrete measure on S, that assigns the mass of 1/k
to each of the unit vectors
X;, Xi,
> . A

(60)

The authors suggest taking about 20% of the largest order statistics. Under appropriate
technical conditions the estimator is strongly consistent and asymptotically normal.

A similar method was recently proposed by Davydov et al. (2000) and discussed further
in Davydov and Paulauskas (1999). We refer to this approach as the Davydov—Paulauskas—
Rackauskas (DPR) method. Assuming that the sample (56) is actually from an «-stable
distribution with a zero shift vector m and a symmetric (normalized) spectral measure I,
and the sample size n is a perfect square n = k2 for some integer k, the method consists
of splitting the data into k£ groups of k variables each, choosing a vector with the largest
norm within each group, leading to a set of k vectors X, ..., X, and again estimating I’
by the empirical measure based on the unit vectors (60). The consistency and asymptotic
normality of the resulting estimators,

f(D)—lzk:]I (X’f ) (61)
k=P )

j=1

is established in Davydov and Paulauskas (1999).

Both RXC and DPR methods do not assume any prior knowledge of o and are well
suited for the S} (m, o, I') parameterization, as they provide estimators for the normal-
ized spectral measure. Once the spectral measure and the index o are estimated, the scale
parameter ¢ can be estimated by methods described in Section 5.

4.2. The empirical characteristic function method

The method described below, proposed in Nolan, Panorska and McCulloch (2001) and
investigated in Nolan and Panorska (1997), assumes that the sample comes from an o-
stable distribution with shift vector m equal to zero. First, estimate the index of stability
and center the data by the sample mean (if « > 1) or sample median (if « < 1). In Nolan,
Panorska and McCulloch (2001) the value of o was estimated by the average % 27: 145,
where &; is an estimate of the index obtained from a univariate sample X1, ..., X,; (the
quantile method of McCulloch (1986) was used to obtain these). Then, the method uses
the sample to estimate the exponent [, of the stable ch.f. (2) (with m = 0):

Io(t) = —log @, (1), (62)
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-~

where the quantity @, is the sample characteristic function,

~ A
PD,(t)=— X)),
n) =23 (63)
j=1
For some grid ty, ..., ty € Sy, the quantity
Iecr = (Lt ..., L(to) (64)

is the empirical ch.f. (ECF) estimate of I,. If I' is a discrete measure of the form (12),
then the exponent I, is given by (14), and we can estimate y = (y1, ..., yx)" by solving
the following system of linear equations:

I =Ay, (65)

where I = Igcr is an estimate of I, given by (64) and A is a k x k (complex) matrix
laijli, j=1,..k with

aij = w1 ((ti. 7). (66)

If the grid is chosen so that the inverse of A exists, then the solution of the system (65)
isy=A4"11.

For a general spectral measure, divide the unit sphere into k£ non-overlapping patches
A with some central points s;, where j =1, ..., k, and consider an approximation of I
of the form (12), where y; = I'(A ;) (which is always possible in view of Proposition 2.4).
When d = 2, it is convenient to take the arcs

2n(j —3/2) 2n(j—1/2
Ao (FUSD 22G-1D] -
k k
centered at
2n(j —1 2n(j —1
sj:<cos n(]k ),sin n(]k )>eSd, j=1,... k. (68)

We would again estimate I, by (64) and solve the system (65) to obtain the estimates of
the weights y;.

As reported in Nolan and Panorska (1997), in practice there are some problems with
the direct implementation of the above method; the matrix A may be ill-conditioned and
the solution of the system (65) may include negative or complex numbers (although the
values of y; must be real and positive). Thus, in practice one should restate the problem as
a constrained quadratic programming problem,

minimize |1 — Ay|| = (I — Ay) (I — Ay) subjectto y >0, (69)
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which guarantees a nonnegative solution y. We refer the readers to Nolan (1998), Nolan
and Panorska (1997), Nolan, Panorska and McCulloch (2001) for examples and further
discussion of these issues.

4.3. The projection method

The projection (PROJ) method was introduced in McCulloch (1994) and studied in Nolan
and Panorska (1997), Nolan, Panorska and McCulloch (2001). As before, assume that the
data have been shifted so that the parameter m is zero. The method is similar to the ECF
method, since we estimate the weights y; at s; of a discrete spectral measure I' of the
form (12) by solving the linear system of Equations (65). However, the PROJ method uses
a different value of I, the estimate of I,, obtained from estimators of univariate stable
parameters applied to a one-dimensional sample

Xi,t), . X ty),  j=1,....k, (70)

where tq, ..., ty € Sy is a suitably chosen grid on the unit sphere. More precisely, for each
t € R? the r.v. (X1, t) is one-dimensional stable with parameters given by (18)—(20) and
ch.f.

1/f(lxl) — Eeiu(t,X) — Eei(ut,X) — Q)(ut) — e—Ia(ut)’ (71)

where I, is the characteristic exponent of the X;’s. Now, we can estimate the scale ot i)
and skewness ,BA(tj) (and also the shift /l(tj) if = 1) of the univariate stable law corre-
sponding to the sample (70), and use them to estimate the ch.f. (9) of this univariate law.
Then, we can equate the above estimate with the right-hand side of (71) with u =1 to
estimate the quantity I, on the grid ty, ..., t:

6"‘(t.,~)<1 —if(t;)tan ?) fora # 1,

& (t) (1 —ia(t))) fora = 1.

In(t)) = (72)

For the index o McCulloch (1994) recommend using the pooled estimate obtained by
averaging the univariate estimates obtained for each of the univariate samples (70). Thus,
the PROJ estimate of I, on the grid ty, ..., t; is the quantity

Teroy = (In(t0). - In(t0)) . (73)
Now, the weights y; of the spectral measure are obtained as before by solving the sys-

tem (65). For examples and further discussion, please see McCulloch (1994), Nolan and
Panorska (1997), Nolan, Panorska and McCulloch (2001).
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5. Estimation of the scale parameter

Let us consider the problem of estimating the scale parameter o of the stable S (o, m, I')
distribution given by the ch.f. (27) (where I' is the normalized spectral measure). As be-
fore, we shall assume that the distribution is strictly stable with o > 1, so that m = 0. We
extend the moment estimators of Davydov and Paulauskas (1999) who considered the case
of symmetric spectral measure.

Note that it X ~ S¥(0,0,I') then Y = o IX ~ S¥(1,0,T), so that forany 0 < p < «
we have

E|X||P =o?C(a, T, p), (74)
where
C(a, I, p) =E|Y|? (75)

is independent of o and can be computed for a given values of @ and I'. Then, approxi-
mating E||X]|? by the corresponding sample moment we obtain

1/p

bn = nc(ar Zu F1 L (76)

Alternatively, we might use moment estimator for univariate stable variables on the i.i.d.
observations

(X1, t), ..., Xy, t) 77

for some t € RY. Then, by (18), (19), the above variables are univariate Sy (¢, B¢, 0), where

1/a
o =0{/ I s>|“r<ds)} (78)
Sd

and

[, 1{t8)| sign((t. )T (ds)
- fs [{t, s)|*T (ds)

(79)

Then, for any 0 < p < o, we have

E[(X,t)|" =0”C(et, Bt. p)Ci (e, T, p), (80)
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where C (¢, B, p) is given by (11) and

pla
cl(a,r,p)=!fs |<t,s>|°‘r(ds)} ) 81)
d

Now, approximating (80) with the sample p-moment we obtain the following estimator
ofo:

n 1/p
1
..,n: X’t P . o
’ {”C(asﬁt,p)cl(a,l”,p);|< J >| } (82)

6. Extensions to other stable models

In this section we briefly discuss two generalizations of multivariate stable laws that often
compete with them in modeling financial data: the v-stable laws that arise as limiting dis-
tributions in the random summation scheme and operator stable laws arising as limits in
ordinary summation (5) but normalized by linear operators a,,.

6.1. v-stable laws

Let X1, X>, ... be a sequence of i.i.d. random vectors in R4 and let vp, p €(0,1), be
a family of integer-valued random variables independent of the X;’s. Assuming that v,
converges to infinity (in probability) as p — 0, we can study the limiting distributions of
the random sums

Vp
apy (Xj+by,), (83)

j=1

where a, >0 and b, € R4 Tt follows from transfer theorems [see, e.g., Rosifiski (1976)]
that if the variables pv, converge in distribution to a positive r.v. Z with the Laplace
transform A(s) = Eexp(—sZ) and the X ’s are in the domain of attraction of some a-stable
distribution with ch.f. @, then the random sums (83) will converge to a random variable
with the ch.f. of the form

v (t) = A(—log ®(t)). (84)

The variables with the ch.f. (84), referred to as the v-stable laws — see, e.g., Klebanov
and Rachev (1996), Kozubowski and Panorska (1998, 1999b), can be described by the
same parameters as the corresponding stable laws: the tail index «, location vector m, and
spectral measure I'. Strictly v-stable laws are given by (84) with a strictly stable ch.f. @.
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We use the notation vy (m, I') for the distribution corresponding to the ch.f. (84) with @
given by (2).

The v-stable laws are essentially location-scale mixtures of stable laws [see, e.g.,
Kozubowski and Panorska (1998)] and for a light-tailed r.v. Z have the same tail behav-
ior as the corresponding stable laws. More precisely, the tail behavior of each coordinate
of a v-stable r.v. X is of the form P(Xj; > x) = O(x~) as x — oo under the following
conditions [see Kozubowski and Panorska (1996, 1998)]:

e EZ < oo if X is strictly v-stable,

e EZV* < ooanda # 1 or E|Zlog Z| < oo and & = 1, if X is not strictly v-stable.
Under the above conditions, the same tail behavior applies to every linear combinations
(X, b) of X, the order statistics of the vector X (as well as their absolute values), and the
norm ||X||, see Kozubowski and Panorska (1998) for details. Note that these conditions are
satisfied, for example, by the geometric stable laws discussed below.

Remark. Although the tails of v-stable laws are essentially of the same type as those of
stable distributions, v-stable densities may behave very differently near the mode than their
stable counterparts (may be more peaked, or even infinite) which may lead to an improved
fit when modeling financial data.

Kozubowski and Panorska (1999b) showed that if the spectral measure is discrete, then
truly d-dimensional v-stable random vectors admit a representation similar to that of stable

laws given in Proposition 2.3:

Proposition 6.1. Let Y ~ v, (m, I') with I of the form (12) and 0 < o < 2. Then

k
zm+ 2"y "y s, ifa#1,
y< T (85)
2
Zm+Z)Y | Vi+ =log(y;2) |vjs; ifa=1,
m + ;[ J+n og(y; )}y.,s., ifa

where the V;’s are ii.d. totally skewed, one-dimensional standard stable variables
S« (1, 1,0), independent of Z.

Thus, v-stable random variates are straightforward to simulate if I' is discrete. Distri-
butions with general I' can be approximated by those with discrete spectral measure [see
Kozubowski and Panorska (1999b)] as in the stable case, so that in practice we can restrict
attention to the case with discrete I'.

6.1.1. Geometric stable laws

An important special case are the limiting distributions of (83) when the variables v,, are
geometric with mean 1/p in which case the variables pv, converge to a standard expo-
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nential variable with the Laplace transform A(s) = (1 + s)~!. We then obtain the class of
geometric stable law (GS) laws GSy (m, I') with the ch.f.

W) = (14 Io(t) —i(t,m)) ", (86)

where m € R? and I, is given by (3). In financial applications, where these laws have
been successfully applied [see, e.g., Kozubowski and Panorska (1999a), Kozubowski and
Rachev (1994), Mittnik and Rachev (1991, 1993a)] the r.v. v, represents the moment when
the probabilistic structure governing the returns changes, so that the random sum

Vp

SOX; (87)
j=1

represents the total return up to this random time. In case o« = 2, we obtain the multivariate
Laplace distribution [see, e.g., Kozubowski and Podgérski (2000)], which may be partic-
ularly well suited for financial applications due to its simplicity and flexibility [see, e.g.,
Kozubowski and Podgdérski (2001)], although the tails of these laws, being heavier than
Gaussian tails, are not as heavy as those of stable and geometric stable laws. More infor-
mation on theory and applications of GS laws can be found in Kozubowski and Rachev
(1999).

6.1.2. Statistical issues

Most estimation procedures for stable laws can be extended to the corresponding v-stable
distributions. For simplicity we consider the problem of estimating o and I' of a strictly
geometric stable distribution given by the ch.f. (86) with m = 0 and « # 2, based on a
random sample

Yi,....Y,. (88)

For estimating «, the tail estimators of Section 3.2 can be applied to one-dimensional
samples corresponding to (88) by taking the norms of the Y;’s or their projections (Y;, b)
for some b € RY. These apply regardless of whether the sample is actually geometric stable
or only belongs to a geometric stable domain of attraction. Alternatively, assuming that the
Y, ’s are geometric stable, one can use estimators for univariate geometric stable parameters
[see, e.g., Kozubowski (1983, 2001), Rachev and Mittnik (2000)] applied to the projections
(Yi, b).

To estimate the spectral measure I', one can use the RXC tail estimator discussed in
Section 4.1 since geometric stable distributions have the same domains of attraction as the
corresponding stable laws (that have the same « and I'), see, e.g., Klebanov and Rachev
(1996). Alternatively, the empirical characteristic function method discussed in Section 4.2
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can be modified to accommodate the geometric stable case. Assuming that the sample (88)
is from a GS distribution, we estimate the exponent I, of the GS ch.f. (86) as follows:

A 1
Io(t) = 5.0 1, (89)

where ¥ n 1s the sample characteristic function (63) based on the Y;’s. The rest is the same
as in the stable case. For some grid ty, ..., t; € Sy, the quantity (64) is the empirical ch.f.
(ECF) estimate of 1. If I is a discrete measure of the form (12), then I, is given by (14),
and we can estimate ¥ = (y1,..., %)’ by solving the system of linear equations of the
form (65), where I = fEcp is an estimate of I, given by (64) and A is a k x k (complex)
matrix with the entries specified in (66). If the inverse of A exists, then the solution of the
system (65) is y = A~!1. To avoid the same numerical problems as in the stable case, in
practice one should restate the problem as a constrained quadratic programming problem
(69). The projection method of Section 4.3 can be extended similarly.

6.2. Operator stable laws

If we have a heavy-tail multivariate data with different tail indexes in different directions,
then the multivariate stable (as well as the v-stable) laws are no longer appropriate to
model such data. Instead, we can consider the class of multivariate laws with stable mar-
ginal distributions, introduced in Resnick and Greenwood (1979), that arise as limiting
distributions in the summation scheme (5) where the scaling factors are diagonal matri-
ces, diag(au1, - .., anq), for some positive a,;’s. The resulting limiting marginally stable
random vectors X possess a stability property similar to (1),

where the X;’s are i.i.d. copies of X, E is a diagonal matrix

1 1
E:diag(—,...,—), 0<a;<2,i=1,....d, 91)
o oy

called the characteristic exponent of X, and n¥ denotes the diagonal matrix
nE=diag(nl/°”,...,nl/“d). (92)

Remark. More general operator stable (OS) laws arise as the limits in (5) when the sums
are normalized by some linear operators a, [see Sharpe (1969)]. For a comprehensive
review of the theory of OS laws see Jurek and Mason (1993).
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Marginally stable OS laws satisfying (90) with the characteristic exponent E of the form
(91) can be described in terms of their characteristic function. If all «’s are strictly between
one and two, we have

D (t) = exp{C/ foo (ei<"’ES> —1—ilt, rEs))C:—;r(ds) +i(t, m)}, (93)
Sa/0

where m € R is the shift parameter, C > 0 controls the scale, and I' is a probability
measure on the unit sphere S; (the normalized spectral measure, also called the mixing
measure). If all the o’s of the characteristic exponent E in (91) are equal, then (93) reduces
to the stable ch.f. with the same spectral measure. We use the notation OS(m, C, E, I') to
denote the distributions with the ch.f. (93) with E given by (91). Similarly to the stable
case, the measure I' determines the dependence among the components of a marginally
stable vector. For example, if X ~ OS(m, C, E, I') is positively or negatively associated,
then the spectral measure I' satisfies the condition (29) or (34), respectively [see Mittnik,
Rachev and Riischendorf (1999)].

6.2.1. Statistical issues

Estimating the parameters of an OS(m, C, E, I') distribution is similar to the stable case.
Since all marginal distributions are univariate stable, one can obtain estimates of the «;’s
by using the methods for univariate stable laws (see Section 3.1) for each of the d samples

Xij, .., Xnj, j=1,....d. 94)

For samples from a domain of attraction of an OS law we can again consider univariate
samples (94) and apply the methods of Section 3.2, or use the moment estimator of E
based on the sample covariance matrix [see Meerschaert and Scheffler (1999)].

To estimate C and I', one can use a generalization of the tail estimator of the spectral
measure for stable laws described in Section 4.1 [see Mittnik, Rachev and Riischendorf
(1999), Scheffler (1999)]. First, write each of the data points (different than zero) in the
unique form

X; =t (X)) s, (95)
where 7(X;) > 0 is the “radius” of X; and s; is a point on the unit sphere S, [these are the
so-called Jurek coordinates, see Jurek (1984)]. Next, for some integer k = k(n) consider
the k largest of the (X;)’s, that is the k largest order statistics

10, GORRIS 10. 69 (96)

corresponding to the random sample

T(X1), ..., t(Xp). o7



Ch. 4:  Statistical Issues in Modeling Multivariate Stable Portfolios 157

Then, the estimator of I is the discrete measure on S, that assigns the mass of 1/k to each
of the unit vectors

Sips ey Sip (98)

corresponding to these order statistics via (95). Thus, the probability assigned by the esti-
mated spectral measure I" to a set A € Sy is the fraction of the points (98) falling in the set
A.The corresponding estimator of C is

C=~(Y"), (99)
where Y* is the k-th largest of the values (97). More details regarding the estimation of I

(including the asymptotic properties of estimators) can be found in Mittnik, Rachev and
Riischendorf (1999), Scheffler (1999).

7. Applications

In this section we present an example of fitting bivariate financial data sets with stable mod-
els. We fit a bivariate stable and a bivariate operator stable models to two data sets. Our
data consists of 1162 daily DAX30 Index (DAX), FTSE100 Index (UKX), and S&P500
Index (SPX) prices for the period from 1/1/95 to 11/3/99. The raw indexes are first trans-
formed into log-returns by taking natural logarithms of the quotients of their consecutive
values. We analyze log-returns (1161 observations) X; = In(Y;/Y;—1), where the Y;’s are
the raw daily index prices. The goal is to fit reasonable models to the bivariate vectors
(DAX, UKX) and (UKX, SPX). This section is modeled after Nolan and Panorska (1997).

We start with Exploratory Data Analysis (EDA) which focuses on general properties
of the data with particular attention to the amount of variability in each data set. We first
plot the log-returns of individual indexes as time series (see Figure 1). The plots show
relatively large number of high spikes in the returns which points out to high volatility and
the possibility that the log-returns’ innovations are non-Gaussian.

The next step is to plot density histograms (total area under a density histogram equals
one) of the log-returns and check for indications of long tails which again suggest more
variability than allowed by a Gaussian distribution. It helps at this time to fit a Gaussian
distribution to the data and overlay the histogram with the fitted Gaussian density curve.
Fitting a Gaussian model amounts to estimating its mean and standard deviation from the
data using the sample mean and sample standard deviation. We also check for unimodality
and symmetry of the data. The density histograms of the univariate log-returns overlayed
with the Gaussian (and stable) models’ densities are presented in Figure 2.

We note that the histograms are much more peaky in the center and have heavier tails
than the Gaussian models. Since the histograms are fairly symmetric and unimodal, the
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Time series plots of the daily log-returns for the three indexes (1/1/95-11/3/99). Top panel: DAX
log-returns. Middle panel: UKX log-returns. Bottom panel: SPX log-returns.
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two distributional problems (sharp center peaks and long tails) with the Gaussian model
could be alleviated by the stable approach. The next step in model fitting is deciding if we
should use stable or operator stable models. To answer that question we have to estimate
the tail indexes « for all three financial indexes’ log-returns. If the «’s for a pair of indexes
are the same, we fit a stable law to their bivariate distribution, otherwise we work with
an operator stable model. To fit univariate stable models to the indexes’ log-returns we
estimated their parameters using maximum likelihood procedure of Nolan (2001) and its
numerical implementation (STABLE 2.16) due to Nolan and available on his web page. We
report the parameters according to the parametrization used by Samorodnitsky and Taqqu
(see (9)). Estimation results are summarized in Table 1.

We used STABLE 2.16 to compute densities of the stable models with the estimated pa-
rameters. To evaluate and compare stable and Gaussian fit we overlayed density histograms
of the data with stable and Gaussian densities of the models. The results appear in Figure 2.

We note much better fit of the stable models. From now on we will work under the
assumption that the individual stock indexes have univariate stable distributions. Since the
tail parameters for DAX and UKX and for DAX and SPX are different, we model bivariate
distribution of DAX and UKX using an operator stable distribution. The tail parameters for
UKX and SPX appear to be the same and thus we will fit a bivariate stable model to UKX
and SPX data. To fit these bivariate models we need estimates of the spectral measures
for both DAX-UKX and UKX-SPX portfolios. To fit an operator stable distribution, we
estimated the spectral measure using the method described in Section 6.2. The estimated
cumulative normalized (total mass equal to one) spectral measure in radian coordinates
is presented in Figure 3. Since the spectral measure seems to be concentrated on the first
and third quadrants, we conclude that these variables are positively associated (see our
comments in Section 6.2). Conversion to Jurek coordinates was performed using a Fortran
program due to Meerschaert (personal communication), all other numerical and graphical
work was done by the authors in Splus2000 Professional.

To estimate the bivariate stable spectral measure for the UKX-SPX portfolio we used
all four methods described in Section 4: the tail estimators (RXC and DPR), the projection
method (PROJ) and the empirical characteristic function method (ECF). The numerical
implementation of the RXC, PROJ and ECF estimation procedures was done with the
program MVSTABLE (Version 2.0) of Nolan available on J.P. Nolan’s web site? with 40
weights, that is using a 40 points estimation grid on the unit circle. The DPR estimator

Table 1
Index alpha beta gamma delta
UKX 1.28 0 0.0055 0.0004
DAX 1.57 0.31 0.0076 0.0041
SPX 1.28 0 0.0058 0.001

3 See http://academic2.american.edu/~jpnolan/ for Stable 2.16 and MVSTABLE programs.
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Fig. 2. Density histograms with Gaussian (solid line) and stable (dashed line) fitted densities. Top panel: DAX
log-returns. Middle panel: UKX log-returns. Bottom panel: SPX log-returns.
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Fig. 4. Estimates of the stable spectral measure for (UKX, SPX) vector: Solid line — RXC estimator, dotted line
— ECF estimator, long-dashed line — PROJ estimator, and short-dashed line — DPR estimator.

was computed for the first 1,156 (= 342) observed vectors of UKX-SPX log-returns (from
1/1/95 to 10/26/99). Numerical work for the DPR estimator was done by the authors. The
graph of the estimated cumulative normalized spectral measure in radian coordinates for
DAX-SPX is given in Figure 4.

As the spectral measure appears to be concentrated in the first and third quadrants we
believe that UKX and SPX are positively associated (see Proposition 2.6).

To check the goodness of fit of our model we suggest methods described in Nolan and
Panorska (1997). These include plotting parameters (e.g., scale) of one-dimensional pro-
jections of the sample (in several directions) computed first directly from the projected
sample and then using the estimate of the spectral measure. A good fit will be indicated by
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general agreement between the parameters of these projections computed using two differ-
ent methods. For a more detailed discussion of the choice of gridsize and its relationship
with the goodness of fit, we refer the reader to Nolan and Panorska (1997).

To summarize, we performed EDA and fit two data sets (DAX, UKX) and (UKX, SPX)
with bivariate operator stable and stable models. The indexes seem to be positively as-
sociated, which is an important information in constructing a portfolio. The estimates of
the stable spectral measures can be used to estimate risk of a portfolio using the methods
described in Section 2.5.
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Abstract

We discuss jump-diffusion type models for financial market as well as methods for pricing
and hedging of contingent claims in such markets. We consider both, asset price and term
structure models, and deal also with situations when there is a stochastic volatility corre-
lated with the jumps and when one has very small time scales, i.e., high frequency data.
To make the presentation possibly self-contained, in a preliminary section we recall some
basic notions from stochastic analysis for jump-diffusions.

Keywords

jump-diffusions, Poisson point processes, marked point processes, Cox processes, hidden
processes, martingale measures, market price of risk, pricing and hedging in incomplete
markets, market completion, risk minimization, stochastic volatility, high frequency data,
computing expectations of functionals of jump-diffusions
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1. Introduction

Most of the standard literature in Finance, in particular for pricing and hedging of contin-
gent claims, is based on the assumption that the prices of the underlying assets follow a
diffusion-type process, in particular a geometric Brownian motion (GBM).

Documentation from various empirical studies shows that such models are inadequate,
both in relation to their descriptive power, as well as for the mispricing that they might
induce. The contributions to the present volume deal with various generalizations of the
basic GBM; here we concentrate on the fact that returns of various asset prices and interest
rates may exhibit a jumping behaviour. We thus study possible superpositions of jump and
diffusion processes, namely what is called jump-diffusion processes. Jump-diffusions form
a particular class of Levy processes. Our purpose here is not to study the general case of
a Levy driving process, but rather to concentrate on the specific aspects of the subclass
of jump-diffusions. Jump-diffusion models have also some intuitive appeal in that they
let prices and interest rates change continuously most of the time, but they also take into
account the fact that from time to time larger jumps may occur that cannot be adequately
modeled by pure diffusion-type processes.

Among the earlier empirical studies, documenting a jumping behaviour in prices and
interest rates, one may quote Ball and Torous (1985), Jorion (1988). There are also studies,
such as Babbs and Webber (1997), putting forward specific sources of jumps in interest
rates like moves by central banks. On the other hand, a first approach developing further
the basic Black and Scholes (BS) model with the inclusion of jumps appears to be that of
Merton (1976). Since the introduction of jumps in the BS model implies that derivative
prices are no longer determined by the principle of absence of arbitrage alone, Merton
solved the pricing problem by assuming that the jump risk was not systematic. This was
later criticized by showing that such an assumption is equivalent to the existence of a
market portfolio, that contains the underlying asset and that does not present a jumping
behaviour [for a discussion on this point see, e.g., Bjork and Naslund (1998)]. Further
studies then appeared showing that jumps in stock returns are indeed systematic. Another
early approach is that in Cox and Ross (1976), where the market remains however complete
since the authors consider just a simple jump-type process with fixed jump amplitude and
thus with a single source of randomness. One of the major purposes of this chapter is now
to try to give an overview of the state of the art of jump-diffusion modeling in stock and
bond markets as well as of the corresponding approaches for pricing and hedging.

It was further documented in empirical studies [see, e.g., Bakshi, Cao and Chen (1997)]
that a combination of jumps and stochastic volatility leads to even better fits and allows to
avoid implied volatility skews. Stochastic volatility models are treated elsewhere and so in
this chapter we limit ourselves to stochastic volatility in conjunction with jump-diffusion
modeling, also because empirical documentation gives evidence for a jump-type behaviour
in the volatility and of a correlation between jumps in volatility and jumps in prices. In fact,
as mentioned, e.g., in Naik (1993), it is natural to expect that, if the volatility jumps, also
the price should jump. A further purpose of the present chapter is then to discuss issues
related to such more general jump-diffusion-stochastic-volatility modeling.
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On very small time scales actual prices do not really change continuously over time,
but rather at discrete random points in time in reaction to trade and/or significant new
information. We shall show that also such situations can be captured by models featuring a
combination of diffusion and jump processes, that is however different from the canonical
jump-diffusion processes.

The outline of the chapter is as follows. In Section 2 we recall some preliminary notions
from stochastic analysis for jump-diffusion processes, such as a martingale representation
result and generalized versions of the Ito formula as well as of the Girsanov measure trans-
formation. We limit ourselves to those notions that will be used in the sequel. In Section 3
we then describe various market models based on jump-diffusion representations. More
precisely, in line with the introductory remarks above, we shall consider first canonical
jump-diffusion models for stock and bond markets, then consider jump-diffusions cor-
related with stochastic volatility and, finally, combinations of diffusions and jumps to de-
scribe high frequency data. In Section 4 we discuss existence and uniqueness of martingale
measures in a jump-diffusion setting, exhibiting also the market price of (jump-diffusion)
risk. Some emphasis is given to the notion of completion of the market as a tool to obtain
a unique martingale measure. In this context it is also pointed out that uniqueness of a
martingale measure does not necessarily always imply completeness of the market in the
sense of hedging, namely that every claim can be duplicated by a self financing portfolio.
In Section 5 we then concentrate on hedging in jump-diffusion market models having two
goals in mind: first, investigating whether and when a market, that has been completed to
yield a unique martingale measure, is also complete in the sense of hedging. Second, to
study the hedging problem when the market cannot be completed or market completion
is inappropriate. In such cases there is always some residual risk and so one may want to
choose a strategy such as to minimize a criterion related to this risk. Finally, Section 6 is
devoted to the problem of pricing in jump-diffusion market models. With jumps and/or
stochastic volatility, the market is incomplete. The principle of absence of arbitrage alone
is then insufficient to define uniquely a price and so the preference structure of investors
has to come into play to determine a pricing measure. From the point of view of pure pric-
ing, the problem reduces formally to that of determining a specific martingale measure. In
Section 6.1 we mention various approaches to this effect, related to the literature, in par-
ticular approaches based on market completion and on the relationship between the choice
of a hedging criterion and that of a martingale measure. Once a martingale measure has
been chosen, there remains the problem of the actual computation of the expectation of the
discounted claim and this is dealt with in Section 6.2.

Unavoidably, this overview of the state of the art may turn out to be incomplete and
reflects the specific interests and competences of the author. Among the topics that are
not discussed here, we just mention the American-type options in a jump-diffusion setting
[for this see, e.g., Mulinacci (1996), Pham (1997)] and Portfolio Optimization [see, e.g.,
Framstad, Oeksendal and Sulem (2001) and references therein]. The same has to be said
about the references to the literature: while we have tried to take into account a good deal
of recent papers on the subject, we have only quoted a small selection of previous papers
in order to keep the list within a reasonable size. Still, we hope to have succeeded in giving
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a sufficiently comprehensive account on models and methods related to jump-diffusions in
financial markets.

2. Preliminaries

In this section we recall basic definitions and results needed for the study of jump-diffusion
models, limiting ourselves to multivariate (univariate) and marked point processes and
assuming that the reader is familiar with the corresponding notions concerning diffusion
processes. In addition to the basic definitions we recall here a martingale representation
result and discuss the Ito formula and Girsanov’s measure transformation, generalized to
jump-diffusion processes. The main reference for this section is Brémaud (1981), from
which most of the contents of the section are taken.

2.1. Univariate point processes (Poisson jump processes)

A point process is intended to describe events that occur randomly over time. It can be
represented as a sequence of nonnegative random variables

0=To<T1 <Th<---,

where the generic 7, is the n-th instant of occurrence of an event. One makes the usual
assumption of nonexplosion, according to which

Too =1lim 1 T, = +o00.
The process may equivalently be represented via its associated counting process N; where

Ny=n ifte[T,, Tyy1), n>0, orequivalently, N, =) li7,<). (1)
n>1

It counts the number of events up to and including time 7. The nonexplosion condition
becomes N; < oo for ¢t > 0. Both, 7;, and N;, are defined on some probability space
(82, F, P) with a filtration F; to which N; is adapted.

A point process N; is called a Poisson point process if

(i) No=0;
(i1) M; is a process with independent increments;
(iii) N; — N, is a Poisson random variable with a given parameter Ay ;.

Usually one assumes Ag ; = f; Ay du for a deterministic function A;; the latter is called
the intensity of the Poisson point process N;. If JF; is the filtration F, generated by N;,
and X; = 1, then N; is called a standard Poisson process. It is also easily seen that, if N;
is a Poisson process with intensity A; = A, then T;,4+1 — T,, are i.i.d., exponential random
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variables with parameter A. A natural interpretation of the intensity and of this latter prop-

erty comes from relating the above setup with the usual Poisson model, that is based on the

following assumptions:

(a) the probability of one change/jump in an interval of length A is A - A 4 0(A);

(b) the probability of two or more changes/jumps in an interval of length A is 0(A);

(c) the number of changes/jumps in nonoverlapping intervals are stochastically indepen-
dent.

In this setup one can in fact consider the two “dually” related random variables:

(1) A discrete random variable X describing the number of changes/jumps in a time inter-

val of given length T and having as distribution the usual Poisson distribution, i.e.,

ATHX
(k') e keN.

P{X=k)=

(2) A continuous random variable T describing the time that is needed to obtain k succes-
sive changes/jumps and for which the distribution is of the Gamma-type with density

Mo
H)y=——-=u""'e ™, T>0.
fr@® NO) e >

The parameter A is the same in both cases and corresponds to the A in assumption (a)
above.

It will be convenient to consider also the case when the intensity of a Poisson process is
itself an adapted process being driven by some background process. This can be explained
by a two-step randomization procedure: first one draws at random a trajectory of the back-
ground process, say Z;; then one generates a Poisson process with intensity A, = A(¢#, Z;),
where the dependence also on ¢ allows to incorporate seasonality effects. We now have a
Poisson process N; conditionally on Z; and it is called a doubly stochastic Poisson process,
or a Cox process [see Cox (1955)]. Formally, we require that the random intensity A, is Fo-
measurable, i.e., fozo C Fo. For additional details of the intensity of a Poisson process we
refer to Brémaud (1981).

Notice that the above characterizations (i)—(iii) of a Poisson process parallel those of
a Wiener process: both are processes with independent increments; the increments of a
Wiener process are normally distributed, while those of a Poisson process are Poisson dis-
tributed. The Wiener process is the basic building block for processes with continuous
trajectories, the Poisson process is a basic building block for processes with jumping tra-
jectories. On the other hand, while the Wiener process is itself a martingale, a Poisson
process as such is not. It becomes a martingale if one subtracts from N; the process given
by its mean. Indeed,

t
M, =N, — f Ag ds ()
0
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is an F;-martingale by the Fp-measurability of A;, assuming in addition that E{ fé Ay du}
< 00. By (iii) one then has in fact

t
E{N,—Ns|fs}=E{/ Ao dum} 3)

which implies that E{N,} < co and that M; in (2) is an J;-martingale. Equality (3) admits
a generalization in the form

E{/OOCSdNS}zE{/OOCSASds} 4)
0 0

that has to be valid for all nonnegative, F;-predictable processes C; and as such character-
izes a doubly stochastic Poisson process with intensity A, [see Brémaud (1981)].

2.2. Multivariate and marked point processes

Let 7, be a (univariate) point process and Y, n > 1, a sequence of random variables with
valuesin {1, 2, ..., K}, all defined on the same (§2, F, P). Foreachk =1, ..., K we may
then consider the counting process

N; (k) := Z Lz, < Ly, =ky-
n>1

Each N (k) is a univariate point process and the various N;(k)’s have no common jumps,
i.e., AN;(k)AN;(h) =0, V¢ > 0 and all k£ # h. Analogously to the case of univariate point
processes, here too we have now two equivalent representations, either as the double se-
quence (T, Y,)n>1 or as the K-vector process N; = (N;(1), ..., N;(K)) and this process
is called a multivariate, more precisely a K -variate point process. As in the univariate case,
here too we shall mainly use the representation as the K-vector process N; and we have
formula (2) with M; a K-vector and A; the K-vector intensity process whose components
are the individual intensities of the components N; (k) of N;.

Considering the representation (7}, Y,,), we may interpret 7, as the n-th occurrence of
some phenomenon and Y, as an attribute or mark of this phenomenon. We may then speak
of (T,,, Y,) as a marked point process, or space-time point process and extend its definition
to allow Y, to take values in a general measurable mark space (E, £). We synthesize the
foregoing in the following

Definition 2.1. An E-marked point process is a double sequence (7}, Y;,),>1 where
(1) T, is a (univariate) point process;
(ii) Y, is a sequence of E-valued random variables.

Obviously, the univariate and multivariate point processes are special cases of a marked
point process.
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Generalizing the representation of a multivariate point process in the form of the
K -vector process N;, we associate to each A € £ the counting process

Ni(A) =" 1ir,<nliv,ea)
n>1

and let simply N; := N;(E). Considering the filtration
FN=0{Ns(A); s<t, AcE}
define the associated (random) counting measure
p((0,1], A) = N;(A), 1>0, A€E, (5)

which is o-finite under the assumption of nonexplosion of 7,,. This measure allows to
obtain more concise expressions via integrals of the form

t N
/O/E H(s,y)p(ds,dy) = Z H(T,, Y)li1,<n = ZH(Tm Yn). (6)

n>1 n=1

Again, we may represent an E-marked point process equivalently as the double sequence
(T,, Yy) or as the counting measure p(ds, dy).

To introduce now the intensity process in this more general setup, assume that for each
A € &, the point process N;(A) admits the intensity A;(A). This then leads to a measure-
valued intensity A;(dy) so that, generalizing (4), one has

E{ f f H(s,y>p(ds,dy>}=E{ / / H(s,y)xsmy)ds} )
0 E 0 E

that has to be valid for all nonnegative F;-predictable E-marked processes H (given a
filtration F; on £2, F;-predictability here means measurability with respect to P(F;) ® £
where P (F;) is the predictable o -field on (0, co) x £2). We have also the generalization of
(2) in the form

Q(dssdy):p(dssdy)_)\b(dy)dsv (8)

where g (ds, dy) is a (signed) measure-valued martingale in the sense that

t
// H(s, y)q(ds,dy)
0JE

is a (P, F;)-martingale (local martingale) for each F;-predictable E-marked process H,
satisfying appropriate integrability conditions. The most common form of intensity is

Ai(dy) = Aim;(dy), 9
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where A; is nonnegative F;-predictable and represents the intensity of the Poisson process
N;(E), while m;(dy) is a probability measure on E (typically, the Y, will be i.i.d., in-
dependent of N;(E)). The pair (X;, m;(dy)) is called the (P, F;)-local characteristics of
p(ds, dy).

Notice finally that, as in the univariate case, we may let A;(dy) depend on some driving
Fo-measurable random process Z;, leading to a doubly stochastic marked point process.
If, in the representation (9), A, is a deterministic time function, the marked point process is
called a marked Poisson process.

2.3. Martingale representation

Martingale representation results are widely used in Finance, especially when it comes to
solving hedging problems. For pure “Wiener-martingales” we have in fact the well-known
result that every square integrable martingale with respect to the filtration generated by a
Wiener process is, up to an additive constant, a stochastic integral of the Ito type. We shall
now recall a corresponding result for point-process martingales that we formulate in the
most general case of a marked point process. We have in fact the following theorem [see
Theorem VIII, T8 in Brémaud (1981)]

Theorem 2.2. Let (2, F,F;, P) be a probability space satisfying the “usual assump-
tions” where F; = Fo N~ FI with FP the filtration generated by a marked point process,
represented by the counting measure p(dt,dy). Then any (P, F;)- martingale M; admits
the representation

t
M, = Mo + fo fE H(s, y)q(ds. dy) (10)

with g () as in (8) and H an integrable (with respect to A (dy)) F;-predictable E-marked
process. This representation is essentially unique.

In the case of a multivariate (and therefore also univariate) point process, the repre-
sentation (10) becomes

K
M=o+ Y [ HGEN 0 = 0 ds), (an
k=170

where [H;(1), ..., H/(K)] is F;-predictable with H, (k) integrable with respect to A; (k).

This representation result can be generalized according to Jacod and Shiryaev (1987) to
include martingales that are simultaneously “Wiener” and point-process martingales and
that will have some relevance later on.

Theorem 2.3. Given a Wiener process w; and a marked point process p(ds, dy), let

Fri=o{ws, p((0,s1,A),B; 0<s<t, Ac&, BeN}
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with N the collection of P-null sets from F. Then any (P, F;)-local martingale M; has
the representation

t t
M, = Mo + / ¢ dus + / f H(s, )(p(ds, dy) — A (dy) ds). (12)
0 0JE

where ¢; is predictable and square integrable and H is an F;-predictable E-marked
process, integrable with respect to A;(dy).

2.4. Exponential formula; generalized Ito formula

With the definition of a marked point process and of integrals in the form of (6), we may
now consider processes of the general type

t t t
Xz=Xo+/ Otsds+/ ﬁsdws-i-// y (s, y)p(ds, dy) (13)
0 0 0JE

that are called jump-diffusion processes and where the coefficients satisfy the implicit in-
tegrability conditions, B; is adapted and y (¢, y) is predictable in the sense as defined pre-
viously. As usual, we may rewrite (13) in differential form and consider, more specifically,
differential equations of the type

dX, = Xt_<ozt dr + B, dwy, +/ y (¢, y)p(dt, dy)), (14)
E

where we write X,_ with r— because of the predictability requirement in the last coefficient
and where y (¢, y) > —1. Notice that [see (6)] the last term in (14) can also be written as

/EJ/(L y)p(dt,dy) =y (t, Yr) dN;, (15)

where N, = N;(E) = p((0,t], E) is the total number of jumps and Y; denotes the piece-
wise constant, left-continuous time interpolation of the sequence Y,. Notice also that, in
the case of a multivariate (in particular univariate) point process, this last term in (14) takes
the form

K

fE y (1, y)p(s,dy) =) i (k) dN; (k). (16)

k=1

We shall not discuss here in detail equations of the form (14), in particular the uniqueness of
their solutions, but limit ourselves to show that a solution to (14) is given by the following
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Exponential formula

t 1 t t
X =X0exp|:/ <as — Eﬁf) ds—i—/ Bs dws—i—/ 10g(1+y(s, YS)) dNS:|
0 0 0

N

13 t
= Xoexp|:/0 <ozs - %ﬂf) ds +f0 Bs dwsi| ]_[(1 + ¥ (T, Yn)). (17)

n=1

While the diffusion part in this expression follows from the usual Ito formula, the jump
part follows from the so-called exponential formula of Stieltjes—Lebesgue Calculus [see
Theorem T4 of Appendix A4 in Brémaud (1981)], but it can also be obtained from the
generalized Ito formula as we shall show next. For this purpose let a process X; satisfy the
general Equation (13). Given a C!2-function F(z, X), we have the generalized Ito formula

AF(, X)) = O+ Fx Qo di + 3 Prx QB2+ Fx (OB duy
+[F(t. Xi—+y (. Y1) — F(t, X;-)]dN, (18)
that, in the specific case of (14), becomes
dF (1, X;) = Fi(-)dr + Fx () X, dt + %FXX(-)X,zﬂf dr + Fx ()X, B, dw,
+[F(t. X~ (14 y (. Y)) — Ft, X;—)]dN; (19)
and where, again, N, = N;(E) = p((0,¢], E) and (-) stands for (¢, X;); the pedices in F

denote partial derivatives. Notice that, if (19) is written in integral form, for the last term
on the right we have the two equivalent representations

t N;
fo [F(s. Xs— (1 4+ (s, ¥5))) = F(s, Xs )] dNg = Y [F(Tn, X1,,) = F(T, X)),

n=1
where the right-hand side remains the same also in the more general case of (18).
We shall now use the generalized Ito formula (19) to obtain the solution (17) of Equa-
tion (14). Choosing F (¢, X) =log X, from (19) and (14) we have
1
dF = a,df — E,Btzdt + Brdw; +log(1+y (1, Y,)) dN,
from which
t 1 t t
log X; = log Xo —i—/ <as - E,Bf) ds —i—/ Bs dwg —i—/ log(1 4 y (s, Ys—)) dNj,
0 0 0
(20)

i.e., we obtain (17) by taking the exponential on both sides in (20).
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2.5. Absolutely continuous transformation of measures

We recall that in the classical case of Wiener driven diffusion processes, the Girsanov-type
measure transformation concerns a translation of the Wiener process that in turn induces a
change in the drift of the diffusion equation. In view of its generalization below, we recall
here the basic result of Girsanov’s transformation, conveniently reformulated for a finite
time horizon ¢ € [0, T].

Theorem 2.4 (Girsanov’s measure transformation). Given a filtered probability space
(82, F,F, P) with F = Ut Fi, lett € [0, T with T given and 6; be a square integrable
predictable process. Define L = (L;) by

st =Lt9t dw,, LO: 1, (21)

and suppose that, for all t, E¥{L;} = 1. Then there exists a probability measure Q on F,
equivalent to P, with dQ = Lt dP such that

dw; =6, dr + dw?2, (22)

where u)tQ is a Q-Wiener process.

Conversely, if F; = F}°, then every probability measure Q, equivalent to P, has the
above structure.

Notice that the second statement relies on martingale representation and requires thus
the filtration F; to be the one generated by the Wiener process.

As mentioned, Girsanov’s measure transformation allows to change the drift in a diffu-
sion equation. In fact, suppose that under P we have

dXt = Cl[Xt dr + O'[X[ dw,

and that we would like to change to a measure Q ~ P (~ meaning equivalent to), under
which the same X; satisfies

dXt = r,X, dr +GtXt dth

In this case just take 6; = crt_l (ry —ay).

If, besides a Wiener w;, we now have also a marked point process represented by a
counting measure p(dz, dy), a Girsanov-type measure transformation allows, in addition
to the translation of the Wiener, to perform also a change in the intensity process of the
point process part. We have [see Theorem VIII, T10 in Brémaud (1981), see also Bjork,
Kabanov and Runggaldier (1997)]

Theorem 2.5. On the finite time interval [0, T'] let p(dt, dy) be an E-marked point process

with (P, F;)-local characteristics (A, m;(dy)). Let ¥; > 0 be F;- predictable and h; (y) >
0 an F;-predictable E-indexed process such that, P-a.s. and for all t € [0, T],

t
f Wy ds < 00: / e (0)me(dy) = 1.
0 E
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Define L; = Lt(l) . sz) where Lt(l) satisfies (21) and sz) satisfies

dL? = fE (Vi (y) — 1) LPq(dr. dy) (23)
with q(dt,dy) = p(dt,dy) — Asm(dy)dt — the martingale measure associated with

p(dt, dy). IfEP {L;z)} =1 for all t, then all the statements of Theorem 2.4 hold true in ad-
dition to the fact that p(dt, dy) has the (Q, F;)-local characteristics (s Ms, b (¥)m(dy)).

Notice that, using (21) and (23), we have for the Radon—Nikodym derivative L,

dL, =d(L" - L) =L dL? + P dL)

— L6, dwy + Lo /E (Wehe () — D)g(dr.dy), Lo=1. (24)

Using the exponential formula (17), we have that a solution of (24) is given by

1 t t
L, :exp{——/ 952ds+/ Gsdws}
2 Jo 0

Ni

t
x exp{ / / (1= Wshs () Aems(dy) ds} [T1Wh1, ). (25)
0JE nel
In the case of a multivariate (in particular univariate) point process (N;(1), ..., N;(K))

with (P, F;)-intensities (A; (1), ..., A;(K)), consider an F;-predictable process (¢ (1), ...,
1 (K)) such that, P-a.s. and for 7 € [0, T1, Y5, [ ¥ (k)As (k) ds < oo. Define then L{”
by

K

AL = (¥ (k) — 1) L2 (AN (k) = (k) ) 20
k=1

instead of by (23) making also corresponding changes in (24) and (25) for the Radon—
Nikodym derivative L;, namely

1 rt t K t N (k)
L, = exp{—E/ 62 ds +/ 0, dws} H[exp{/ (1 — W (k) A (k) ds} [T vz (k)}.
0 0 — 0 n=
k=1 1 @
Then, under Q, the intensities become (¥, (1)A; (1), ..., ¥ (K)A:(K)).

Notice, finally, that a condition to have E P {Lt(z)} =1 can be found in Theorem VIII,
T11 of Brémaud (1981).



182 W.J. Runggaldier
3. Market models with jump-diffusions

In this section we introduce various jump-diffusion type models that were studied in the
literature and that we shall be dealing with in the sequel. In the first two subsections we dis-
cuss, for asset price and term structure models respectively, the canonical jump-diffusion
models in which there are two additive terms: a diffusion term and a jump term. In the last
two subsections we then discuss diffusion/jump-diffusion models with stochastic volatil-
ity, where the latter is also described in terms of a jumping process. In addition, in the last
subsection we model asset price behaviour on very small time scales where actual prices
do not change continuously in time but rather at discrete random time points in reaction
to trades and significant information. This then leads to a rather peculiar combination of
diffusion and jump processes.

3.1. Asset-price and term structure models with additive jumps

As mentioned in the Introduction, the asset price evolution can perhaps be adequately
described by a GBM for most of the time, but from time to time a large jump may occur and
this cannot be adequately captured by a GBM. It appears thus natural to introduce models,
where a jump process can be superimposed on a GBM, e.g., by adding to the diffusion
term also a jump term. In a first subsection we discuss this modeling issue in the context
of asset prices, while in the second subsection we concentrate on interest rate modeling.

3.1.1. Asset price models with jumps

In this section we adapt the outline of Section 7.2 in Lamberton and Lapeyre (1997). Let
the price S; of a risky asset jump at the random times 77, ..., T, ... and suppose that the
relative/proportional change in its value at a jump time is given by Y1, ..., Y,, ... respec-
tively. We may then assume that, between two jump times, the price S; follows a Black and
Scholes model for a Wiener process wy, that 7, are the jump times of a Poisson process
N; with intensity A; and that Y}, is a sequence of random variables with values in (—1, 00).
This description can be formalized by letting, on the intervals [T, T,,+1),

dS; = 8; (u; dt + oy dwy) (28)
while, at # = T}, the jump is given by AS, = S, — Sy~ = Sy Yy so that
ST,, = ST{ (1 + Yn) (29)

which, by the assumption that ¥,, > —1, leads always to positive values of the prices. Using
the standard Ito formula to obtain the solution to (28) as well as a recursive argument based
on (29), it is easily seen that, at the generic time ¢, S; can be given the following equivalent
representations

t 0_2 t Ni
S,:Soexp[/ <M—7&>ds+f osdw{| l_[(1+Y,,)
0 0 n=l
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t 2 t Nt
:Soexp[/ (pLS — %) ds—i—/ oy dws—i—Zlog(l—i—Yn)]
0 0

n=1

t 2 t t
=Soexp[ f (us—%>ds+ f o, duy + / 1og(1+Ys>d1vs}, (30)
0 0 0

where, as before, Y; is obtained from Y,, by a piecewise constant and left continuous time
interpolation. By the generalized Ito formula (19), the process S; in (30) is easily seen to
be a solution of

dSt :Stf[/.;bt dt+0't dwt +Yt dN[] (31)

This equation corresponds to (28) with the addition of a jump term and is a particular case
of the general jump-diffusion model (14) ((15)) when y (¢, y) = y. In what follows we shall
thus consider the more general version of (31) given by

dStZSt—[Mt dt + oy dwt+y(taYt)dNt] (32)

that corresponds to (14) in the version of (15) and can thus equivalently be represented as

ds, = St|:Mt dt + oy dwy +/ y(t, y)p(dt, dY)i|- (33)
E

If the marked point process is in particular a multivariate (or univariate) point process
(N¢(1), ..., Ni(K)), then (32) ((33)) takes the form (see also (16))

K
ds; = 5 [m dr +ordw; + )y (k) dN <k>] (34)
k=1
We finally point out that the marked point process in (32) ((33)) may be doubly stochastic
in the sense specified in Sections 2.1 and 2.2 and this allows for further flexibility when it
comes to modeling.

Remark 3.1. Occasionally, in the financial literature one finds model (32) ((33)) written
in the form

dS; = S;—[pr dt + o dwy + dJi],

N
n=1

where, in the specific case when (32) reduces to (31), J; :=)_ Y,,, while in the general

case J; := Zflv': 1 ¥ (T, Yp). Furthermore, in models of the form (31) one may find the last

term Y; dN; written as (Y; — 1) dVy; in this latter case, instead of (29), we would then have
ST, = ST[ Y, = ST[ Yz,.

3.1.2. Term structure models with jumps

Among the basic objects in term structure models we have the zero-coupon bonds with
prices p(t,T) (the price, at ¢, of a bond maturing at 7), forward rates f(¢,7) (the
rate, contracted at ¢, for instantaneous borrowing at 7), and the short rate r(¢). There



184 W.J. Runggaldier

exist some well-known relationships among these quantities, in particular f(¢,7) =
—dlogp(t,T)/dT; r(t) = f(¢,t). Since interest rates, and therefore also bond prices may
indeed jump, one may consider the following jump-diffusion models for the above three
quantities

dr(t):a,dt—i—b,dwt—i—/ c(t,y)p(de,dy), (35)
E
df(t, T)=a(, T)dt +0o(t, T)dwz+/ 8@, T; y)p(de,dy), (36)
E
E

where the differential is with respect to the time argument ¢, not the maturity 7. Notice
that only (37) has the factor p(¢—, T') also in the right-hand side. This guarantees (see the
exponential formula (17)) positivity of p(¢, T) as it should be since p(¢, T) is the price of
an asset; the interest rates r(¢), f (¢, T) need not necessarily be positive. Given the well-
known relationships between the three quantities in (35)—(37), there obviously has to exist
a relationship also between the coefficients in these models. This relationship can be found
in Proposition 2.2. of Bjork, Kabanov and Runggaldier (1997).

So far we have mentioned only continuously compounded interest rates. In financial
markets also discretely compounded or simple rates such as LIBOR rates play an important
role. Given a fixed accrual period §, denote by L(¢, T) the forward rate, contracted at
t < T, for the interval from 7 to T + §. Jump-diffusion models for L(¢, T') are studied in
Glasserman and Kou (1999) under the form

dL(t,T) = L(t—, T)[u(t, T)dt + o (¢, T)dw, +dJ (1, T)], (38)

where (see Remark 3.1) J (¢, T) = Z;];/; 1 ¥ (T, Yy) for a given marked point process repre-
sented by the double sequence (7}, Y;) [for a more general setup beyond jump-diffusions

see Jamshidian (1999)]. Notice that the relationship

1 T+8
Lt T)= g[exp{/T f(t,s)ds} - 1} (39)

between discretely and continuously compounded forward rates induces a relationship be-
tween the coefficients of the corresponding dynamic equations (36) and (39).

3.2. Jump-diffusion models driven by hidden jump processes

As mentioned in the introduction, empirical studies have led to consider also combinations
of jumps and stochastic volatility, where the volatility presents a jump-type behaviour and
is possibly also correlated with the jumps in the prices. As pointed out in Naik (1993), it
is in fact natural to expect that, when the volatility jumps, also the price should jump. One
can capture these aspects by a jump-diffusion model, where the coefficients depend on a
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hidden/latent jump process Z; that affects also the intensity of the marked point process in
the jump term (doubly stochastic marked point process). Formally, and limiting ourselves
to asset price models of the form of (33) (that are equivalent to (32) and include (34)), we
then have

ds; = St—[ﬂt(zt)df + 01 (Z;) dwy, +/ y(t,y; Z,—)p(de, d)’)i|, (40)
E

where Z; is any jump process with non-predictable jumps (could also be a Markov jump
process) and p(dt, dy) is the counting measure of a doubly stochastic marked point process
with intensity X;(Z;_, dy). Notice that Z; affects the jump part both through the intensity
as well as through the proportional jump sizes and it affects them in a predictable way.

3.3. Asset prices as diffusions sampled at the jump times of a jump process

As was mentioned in the Introduction, on very small time scales the real asset prices do not
change continuously over time, but rather only at discrete random points in time in reaction
to trades and/or significant new information. This makes jump processes attractive also for
modeling high frequency data and here we give a description of such a modeling approach
according to Frey and Runggaldier (2001, 1999). Marked point processes as models for
high frequency data were also studied independently by various authors in the recent lit-
erature [see, e.g., Geman, Madan and Yor (1999), Rogers and Zane (1998), Rydberg and
Shephard (1999)]. The models in Frey and Runggaldier (2001, 1999) are more in the spirit
of jump-diffusions in that they consider a combination, although not an additive one, of a
diffusion and a jump process as follows: given is a background price process of the diffu-
sion type and this process is then sampled according to the random jump times of a jump
process. This setup allows also to incorporate a possible correlation between (stochastic)
volatility and price jumps in the way mentioned in the previous section, by letting again
Z; be a hidden process that drives the volatility of the background diffusion process and at
the same time also the intensity of the (doubly stochastic) jump process that determines the
random sampling times. In more formal terms, the logarithm A; of the background price
process is supposed to satisfy

dAt =/ UVt (Zt) dwt (41)

with w; a Wiener process independent of Z;. The process Z; is the hidden or latent state
variable process that can be interpreted as modeling the rate at which new information is
absorbed by the market. It may be given as a diffusion or as a finite state Markov process.
Next consider a univariate doubly stochastic Poisson process (a Cox process) N; with
intensity A, = X;(Z;_). The time dependence of this A as well as of v in (41) is introduced
to incorporate systematic patterns in trading activity. The actual price process is now such
that its logarithm L, satisfies

L, = AT,,,] fort € [Ty-1,Ty) 42)
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with 7, the jump times of N,. The given model can thus be interpreted as a stochastic
volatility model, evaluated at random times 7,,. It is easily seen that the process L, in (42)
satisfies

dL, = (A, — Azy, ) dN,, 43)

where Ty,_ is the time of the last jump strictly prior to ¢ and it is thus a marked point

process with local characteristics (A;(Z;), N(0, f;N vy ds)) where NV (m, o2) denotes a

Gaussian r.v. with mean m and variance o2.

Notice that we may choose an intensity of the form
(2 =1 + 027, (44)

so that N; can be seen as the sum N; = Nt(l) + Nt(z) of two independent jump processes:

N,(l) with deterministic intensity At(l) corresponding to noise trading and Nt(z) correspond-
ing to informed trading.

One interesting aspect of the above model is that it makes it clear how sample path prop-
erties matter when it comes to volatility estimation: the volatility in a diffusion model, i.e.,
its quadratic variation, can be approximated arbitrarily well by the sum of the observed
squared increments. For the given piecewise constant processes the empirical quadratic
variation is useless for volatility estimation, even if computed over very small time inter-
vals.

We finally point out that the definition, that was given in Section 2 concerning a doubly
stochastic Poisson process, in particular that ; is Fo-measurable, has as consequence the
fact that N; and Z; cannot have common jumps and that the actual trading activity, namely
the realization of the point process N;, does not affect the law of Z;. In economic terms
this means that, in the given model, trading is caused purely by exogenous factors such as
fundamental information, and not by the observed past trading activity.

4. Martingale measures: Existence and uniqueness
(Market price of risk and market completion)

In each of the models discussed in Section 3, individual asset prices are driven by at least
two independent sources of randomness so that the corresponding market models are in-
complete. Based on the extended Girsanov-type measure transformation recalled in Sec-
tion 2.5, in this section we shall discuss existence and, where applicable, uniqueness of
martingale measures, thereby exhibiting also the market price of (jump-diffusion) risk.
Uniqueness of the martingale measure will be mainly related to completion of the market.
We want to point out that, as will be shown in more detail in the next Section 5 on hedg-
ing, it is not necessarily true that, if a market is completed to yield a unique martingale
measure, then it is also genuinely complete in the sense that every contingent claim can be
duplicated by a self financing portfolio. In fact, for marked point process with an infinite
mark space, i.e., with an infinite number of sources of randomness, it will be shown in
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Section 5.1.2 that uniqueness of the martingale measure implies only some form of ap-
proximate completeness. In this Section 4 we shall limit ourselves to the jump-diffusion
asset price and term structure models of Section 3.1. In Section 4.1 below we treat the case
of jump-diffusion models for asset prices and show that the market can relatively easily be
completed to yield a unique martingale measure if the jump part corresponds to a marked
point process with a finite number of marks (multivariate point processes). For an infinite
number of marks the situation is studied in more detail in Section 4.2 below in the context
of term structure models.

4.1. The case of jump-diffusion asset price models

We start with a jump-diffusion model, where the jump part corresponds to a univariate
Poisson point process with P-intensity A;, namely (see (34) for K = 1)

dS; = S;—[us dt + oy dw; + yr dN;]
= Si—[(ue + yihe) dt + 07 dw; + y, dM; | (45)
with (see (2)) M; = N, — fé Asds the P-martingale corresponding to N;. The Radon—
Nikodym derivative for an absolutely continuous change of measure from P to Q, that

implies a translation of the Wiener by 6; and a change of the Poisson intensity from A; to
Yy, is (see (27) for K =1)

t t t
L, = exp{/o |:(1 — Ys)As — %93:| ds +/O 05 dwg +/0 log s dNS}. (46)

Defining the Wiener and Poisson martingales w,Q and MtQ by (see (22) and (2))

dw? = dw, — 6, dt, 7
0 _ 4N, — (47)
dM =dN; — YA de
the dynamics of S; under Q become
ds; = St—[(l/«t + 010 + Y A) dt + 0y dw;Q + dM;Q]- (48)

Taking as numeraire the usual money market account B;, where dB; = r; Bt dr, we imme-
diately see that Q is a martingale measure, i.e., a measure under which S = B, s isa
martingale, if 6; and ¥, > 0 are chosen such that e + 016y + vii Ay = ry. From here we
see that, for each pair (6;, ¥;) with ¥, > 0 arbitrary and

0, = G;_l(”t — e — Vi¥ihe), (49)

we obtain a martingale measure, i.e., we can obtain infinitely many martingale measures,
one for each choice of ;.
Concerning the market price of risk p;, from (45) and (49) we have

Pt =y + Vide — 1 = Viht — 010y — ViUt hy = —010; — viA (Yp — 1) (50)
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from where we see that (—6;) can be interpreted as risk premium per unit of diffusion
volatility, whereas —A; (¥, — 1) can be interpreted as risk premium per unit of jump volatil-
ity. On an arbitrage-free market all assets have, at a given time ¢, the same diffusion- and
jump-risk premia and they determine, via the Girsanov transformation, i.e., via (46), the
equivalent martingale measure Q.

We obtained infinitely many martingale measures because, for a single risky asset, we
had two independent sources of randomness. One may thus expect that, by adding a further
asset, one can complete the market to obtain a unique martingale measure. Consider then,
in addition to S; in (45), an asset with price S, satisfying

dS; = Si—_[j; dt + &, dw; + 7 AN, (51

Notice that S; could correspond to the price of a derivative asset with underlying S;. In
fact, if one is given the explicit expression of this derivative price in terms of §;, i.e.,
S, = F(t,S;), then (51) is straightforwardly obtained from (45) by use of the generalized
Ito formula (19). Since the two risk premia 6; and A;(y¥; — 1) have to be the same for all
assets, we may impose (49) on both assets with prices S; and S; respectively, namely

0, =0, re — i — yWih) =611t — i — Vi he) (52)

from where one immediately gets

re(or — 01) + (U0 — Ot jds)

wt)\t = — — (53)
OtYt — V10t
Inserting this expression in (49) it follows that
6, = vilite —ro) = vilpe —ri) (54)

O1Yt — Yi0i
We have thus obtained unique risk premia and, consequently, a unique martingale measure
provided the coefficients in (45) and (51) are such that o;y; — y,0; # 0 and that ¥, A; in
(53) is positive.

With the unique martingale measure we may expect to have also obtained a complete
market in the sense that, by investing in a self financing way in the two assets with prices
S; and S;, one can duplicate any claim. In Section 5.1.1 we shall show that, for the given
market model, this is indeed the case.

It is easily seen that, if the jump part in the jump-diffusion model corresponds to a
multivariate Poisson process, i.e., if instead of (45) we have (see (34))

K
s, = S;_ [u, dt +ordw, + Y yi(k)dN, (k)]
k=1

K K
=S [(u + > vilon (k)) dt+ ) yi(k)dM, (k)} (55)

k=1 k=1
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with M, (k) = N;(k) — fé As (k) ds, then the previous results admit a straightforward exten-
sion. In particular, (49) becomes

K
6 =0, (rt — = > vk (k))\z(k)> (56)
k=1
and the market price of risk is
K
pr=—010; — Y yi (k) (k) (¥ (k) — 1). (57)
k=1

This time the generic k-th term y; (k)A; (k) (¥ (k) — 1) on the right can be interpreted as
risk premium per unit of jump volatility of type k.

Again we obtain infinitely many martingale measures by choosing freely ¥, (k) > 0,
(k=1,...,K), and 6, according to (56). Having now K + 1 independent sources of ran-
domness, we may expect that one can complete the market by adding K further assets to
obtain a unique equivalent martingale measure. This can be done along the lines of (52)—
(54) although this time the calculations are more complicated and the conditions on the
coefficients more cumbersome.

Finally, we consider the more general model (33) (or, equivalently, (32)) with a possibly
infinite number of marks. Using the P-martingale measure ¢(-) in (8), by analogy to (45)
and (55) we may rewrite (33) as

ds; =Sz[m dt + oy dwz+/ J/(t,y)p(dt,dy)}
E
=St—[<m+/ )/(t,y)/\z(dy)> dr + oy dwz+/ J/(t,y)q(dt,dy)}- (58)
E E

Using the particular form of the intensity given in (9), we also have

/E y (@& r(dy) =y withy, = fE y (@, y)m:(dy) (59)
and so (58) becomes, quite analogously to (45),

dsS; = 8- |:(/L, + YiAr) dt 4+ or dw; + /E y (¢, y)q(dt, dy)i|. (60)

Consider then, instead of (46), the more general Radon—-Nikodym derivative (25) that we
rewrite here in the form analogous to (46) as

t 1 t
L= eXP{/O |:(1 - szsljls))\s - %63:| ds +/() 05 dw, +/() log(wshs(Ys)) dNS}a
(61)
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where hy = / g hs(y)ms(dy). Define next the Wiener and jump martingales w,Q and
q2(dt,dy) by (see (22) and (8), (9) as well as (47))

dw? = dw, — 6, dr,

4 (62)
q=(dr,dy) = p(dr,dy) — i Achi (y)mi(dy) dz.

The dynamics of S; under Q then become

ds; = St—I:(lLt + 0,6, + Ftwt)\t) dt + oy dth +/ y(t, y)qQ(dt, dy)j|, (63)
E

where I} = fE y(t, y)h;(y)m;(dy). The measure Q is now a martingale measure if 6, and
Y > 0as well as h;(y) > 0 are chosen so that u; + 0,6, + Ft%)»t =r,, which leads to the
following relation corresponding to (49)

0 =0, (re — e — T h). (64)

Again, this leads to infinitely many martingale measures but, unless the mark space is finite,
to complete the market in order to obtain a unique equivalent martingale measure one needs
infinitely many assets. We shall discuss this situation in more detail in the context of bond
markets in the next subsection.

To complete the analogy with the previous cases, notice that this time the market price
of risk becomes (by (60) and (64))

Pt =y +Vihe — T =ViA — 010 — Ewt)"t =—0:0; — )\t(Ftlﬁt — )

= —ob; —M/E)/(t,y)[lﬁzhz(y)— 1]m,(dy). (65)

This time one may interpret [ h;(y) — 1]m,(dy) as risk premium per unit of jump volatility
of type y.

In this latter context of a more general model of type (45) we want to point out that
a methodology to obtain all equivalent martingale measures has also been worked out in
Prigent (2001).

We close this subsection by mentioning that, depending on the purpose, one can single
out some specific martingale measures among the various possible ones in a jump-diffusion
model, where the market has not been completed. As an example, the construction of the
so-called minimal martingale measure in a univariate Poisson jump diffusion model can
be found in Runggaldier and Schweizer (1995). From a more practical point of view, an
obvious possibility is always that of calibrating the model to market data.

4.2. The case of jump-diffusion term structure models

Consider first a term structure model where, under a given measure P, the (continuously
compounded) forward rates f (¢, T) and the (zero coupon) bond prices p(t, T) satisfy (36)
and (37) respectively, namely

df(t, T)=a,T)dt +0o(t,T)dw; +/ 8(t, T; y)p(de,dy), (66)
E
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dp(t,T)=p(t—, T){m(t, T)d:r +v(t, T)dw; +/ n(t, T;y)p(dt, dy)}. (67)
E

We shall also make the ad hoc assumptions that all objects are specified in a way to guar-
antee the validity of the various operations that will have to be performed, such as differ-
entiation under the integral sign and interchange of the order of integration.

For later use we recall from Bjork, Kabanov and Runggaldier (1997) the relationship
between the coefficients in (66) and (67): if f (¢, T) satisfies (66), then p(z, T') satisfies
(67) with

1
m(t, T)=r(t)+ A, T) + 5||S(t, |7,
o(t, T) = S, T), (68)
n(t,T;y) =ePCT) 1,
where r(t) = f(t,t) is the short rate and
T
A, T)= —/ a(t,s)ds,
t
T
S T) =~ / o(t,5)ds, (69)
t
T
D(t,T;y)=—/ 8(t,s;y)ds.
t

In the given bond market there are, at least theoretically, infinitely many assets, namely the
bonds for all possible maturities 7 > ¢. A martingale measure Q is now a measure under
which all these bond prices, discounted with respect to the money market account, are
(local) martingales. We are therefore not even sure whether in such a given market model
there exists a martingale measure and so our first purpose is to investigate the existence of
such a measure.

Following essentially Bjork, Kabanov and Runggaldier (1997) and considering general
marked point processes, we also take the general form of the Radon—Nikodym derivative
L;, namely (see (24) where, for simplicity, we put ¢, = 1)

AL, = L,6,dw, + L, fE (hs() — 1)q (s, dy), (10)
where (see (8) and (9))
q(ds,dy) = p(ds,dy) — A;m;(dy), (71)

i.e., we assume that, under P, the local characteristics of the marked point process
p(ds, dy) are (A;, m;(dy)). By Theorem 2.5 we know that, under the measure Q that cor-
responds to L; in (70), the local characteristics become (A, h;(y)m;(dy)) so that, defining
(see also (62))

q9(dt, dy) = p(dt,dy) — Ach(y)m(dy) ds
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the bond prices p(t, T') satisfy, under Q, the dynamics

dp(t,T) = p(t—, T)”m(t, T)+v@, T)0 + A / n(t, T; y)hz(y)mt(dy)} dr
E

+u(t, T)dw,Q+/ n(t,T;y)qQ(dt,dy)}. (73)
E

A necessary condition for the existence of martingale measure Q is then that there ex-
ist a predictable process 6; and a predictable E-indexed process /;(y) = 0 such that the
conditions of Theorem 2.5 hold and

m(t,T)+ v, T)0; + M/En(t, T y)hi(y)m:(dy) =r(1). (74)

Notice that this implies for the market price of risk a relation analogous to (65), namely

o= m(t. T) + /En(t, T; y)mi(dy) — (1)
S— T)Gt—/\,/En(t, T: y)[he(y) — 1]m(dy). (73)

We shall now translate condition (74), involving the coefficients of (67), into a condition
involving the coefficients of (66), namely of the forward rates. Using (68), condition (74)
becomes

A(t, T)+%||S(t, T)||2+S(t, T)9t+/ hs(Vv(t, T;dy)=0 (76)
E

with v(z, T; dy) := (eP®TY) — 1)A;m,(dy) and with A, S and D as in (69).

When building a term structure model it is often convenient to specify all objects di-
rectly under a martingale measure Q and this obviously imposes some restrictions on the
coefficients in the models. Concentrating on forward rates, assume that we want model
(66) to be valid under a martingale measure Q, i.e., we are postulating that P = Q and so
we have to choose 6, =0, h;(y) = 1. Notice now that (76) has to hold for all maturities so
that, inserting the above choices of 6; and h;(y) and differentiating with respect to 7', we
obtain (using also (69)) the following necessary condition

T
alt, T)=ol(t, T)/ a(t,s)ds—/ 8, T;y)ePET b, (y)my(dy) (77)
t E

which is a clear extension of the classical Heath—Jarrow—-Morton drift condition for the
pure diffusion case.

Having investigated the existence of a martingale measure, we may next look for condi-
tions implying its uniqueness. Concentrating again on forward rates, a necessary condition
for the existence of a martingale measure has been seen to be the existence of a predictable
6; and a predictable E-indexed h;(y) > 0 such that relation (76) holds. Quite obviously
then, if (76) admits a unique solution in 6; and A;(y), the martingale measure is unique.



Ch. 5:  Jump-Diffusion Models 193

To formalize this fact, consider the following linear operator [for technical details, that for
simplicity we neglect here, we refer to Bjork, Kabanov and Runggaldier (1997)]

Ke:(0,h(y)) = S(t, )0 +/ h(y) (P — 1)a,m, (dy). (78)
E

The operator K; is an integral operator of the first kind and we refer to it as martingale
operator. The martingale measure is then unique if and only if, dP, df-a.e., we have

KerC, =0. (79)

We may now wonder whether, in the present context of infinitely many sources of ran-
domness, the uniqueness of the martingale measure implies completeness in the sense that
every contingent claim can be replicated by a self financing portfolio. The answer is no;
in fact, as we shall mention in Section 5.1.2 below, we obtain only a form of approximate
completeness.

We finally remark that the relationship (39) between discretely and continuously com-
pounded forward rates has allowed Glasserman and Kou (1999) to carry over the just men-
tioned results for continuously compounded forward rates also to the case when one has
simple forwards instead. In fact, a model of the term structure of simple forwards L(¢, T')
(see (38)) is defined in Glasserman and Kou (1999) to be arbitrage-free, if it can be em-
bedded in an arbitrage-free model of instantaneous forwards f (¢, T') via (39).

5. Hedging in jump-diffusion market models

In the previous section we have seen that, as a consequence of its incompleteness, in a
jump-diffusion market model we have in general infinitely many martingale measures.
We have then investigated the method of market completion as a tool to obtain a unique
martingale measure. On the other hand, from the second fundamental theorem of asset
pricing one has that, in general, if a market admits a unique equivalent martingale measure,
then it is also complete in the sense that every contingent claim can be hedged by a self
financing portfolio.

We shall investigate the hedging problem in a jump-diffusion market model having in
mind two goals: for the first goal, in the context of asset price models, we shall show in
Section 5.1.1 that completed market models with a unique martingale measure are com-
plete also in the sense of hedging if there are only a finite number of marks for the jumping
component (there is a finite number of sources of randomness). If however there are an in-
finite number of marks (an infinite number of sources of randomness) then, in the context
of bond markets, in Section 5.1.2 we shall show that the completed market models with a
unique martingale measure are only approximately complete in the sense of hedging.

In the context of the first goal we also want to add here that Jensen (1999) approximates
a given jump-diffusion market model, having an infinite number of marks, by a sequence
of jump-diffusion models with a finite number of marks that are therefore complete also in
the sense of hedging.
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For the second goal, in Section 5.2 we shall consider the case when one cannot have
a complete market or when it is not appropriate to complete it. In such a case one has
to determine the hedging strategy according to some specific hedging criterion. We shall
consider the (local) risk minimization and the related minimum variance criteria and show
that they lead to hedging strategies that are quite natural extensions of those in complete
markets. While so far only the models of Section 3.1 have been further investigated, the
discussion in Section 5.2 will center mainly around the model of Section 3.3.

In part, this section can also be seen as preliminary to the next Section 6 on pricing.
In fact, if a market is complete in the sense of hedging, then by the criterion of absence
of arbitrage the initial value of the self financing and hedging strategy has to correspond
to the arbitrage-free price of the contingent claim. If the market cannot be completed, the
criterion of absence of arbitrage alone is not sufficient to define a price and the preference
structure of the investors has to come into play. Since, typically, the initial value of a hedg-
ing portfolio satisfying a specific hedging criterion can be expressed as expectation of the
discounted claim under a specific martingale measure, the choice of a hedging criterion im-
plies also the choice of a martingale measure and thus of a pricing kernel. We shall discuss
these issues in more detail in Section 6.1 below.

5.1. Hedging when the market is completed
5.1.1. Asset-price models

In this subsection we consider the univariate jump-diffusion model of Section 4.1. We
had seen that, considering in addition to the asset with price S; satisfying (45), also the
asset with price S; satisfying (51) with coefficients such that ¥, A; in (53) is positive and
orvr — Y:0r # 0, then there exists a unique martingale measure Q corresponding to the
choice of ¥; and 6; according to (53) and (54). Basing ourselves on Jeanblanc-Piqué and
Pontier (1990), we show now that in this situation any claim can be hedged with a self
financing portfolio.

Given a maturity 7', consider as claim a (square-integrable) random variable Hr, mea-
surable with respect to Fr, where F; := o {Sp, §0, wg, Ny, s < t}, completed with the null
sets. In addition to the two risky assets with prices S; and S;, we suppose given also a
nonrisky asset, whose price we take for simplicity identically equal to 1 (equivalent to as-
suming all prices discounted with respect to the nonrisky asset). An investment strategy is
then a triple @, = [¢y, q_St, n:], where n; denotes the number of units of the nonrisky asset
held in the portfolio at time ¢ and ¢y, (ﬁt are the number of shares of the two risky assets
respectively. Let ¢y, rﬁt be predictable and n; be adapted. The value, at time ¢, of a portfolio
corresponding to the strategy @ is then

Vo (t) = ¢St + ¢St + 1y (80)

We want @ to be such that the corresponding portfolio is self financing and duplicates the
claim, i.e., that it satisfies

{d%(r) = ¢, dS, + ¢, dS;, (81)
Vo(T)=Hr.
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It follows from Section 4.1 that, under the unique martingale measure Q, the di_scounted
prices of the two risky assets, that for simplicity we continue denoting by S; and S;, are the
martingales satisfying

{ dSt = St_[O't dth —+ ]/t thQ],

_ _ (82)
s, = 8-[6,dw? + 7, dM 2],

where th_and M,Q are as in (47) with ¥, A, and 6; according to (53) and (54). Replacing
dS; and dS; from (82) in (81), it follows that also Vg (¢) is a (Q, F;)-martingale satisfying

t t
Vo (t) = Vo (0) + / [¢s S50 + @5 S505] dw? +/ [@psSs—ys + PsSs—¥s] thQ-
0 0
(83)
Consider next the (Q, F;)-martingale
M(1t) := EC{Hr|F;}. (84)

By the martingale representation theorem (see Theorem 2.3 applied here to the particular
case of a univariate Poisson point process) there exist two J;-predictable processes E,(l)
and é,(z) such that

t t
M(t) = M(0) + f eMdw? + f P dme. (85)
0 0

Comparing (83) and (85), one sees immediately that, by putting
Vo (0) = M(0) = E9{Hr | Fo) (86)

and choosing ¢;, ¢, such that (integrating with respect to a Wiener process one may change
S; into S;_)

{¢tSt—Gt +(5t§t—o_'t = t(l),
StV + G Si—7i = t(2)
we have Vg (t) = M(t). Since M (T) = Hr by definition, with the choices (86) and (87) we
obtain a self financing and hedging strategy (the value of 7, follows from (80)). Notice that,
in order to obtain a unique solution of (87), we have to require that o;y; — y;0; # 0, which
is exactly one of the conditions required after (53) and (54) to obtain a unique equivalent
martingale measure.

What we have just shown is an existence result leading to the completeness (in the
sense of hedging) of the given market when the martingale measure is unique. To actually

(87)

determine the hedging strategy, we need an explicit expression for the processes Et(l) and
t(z) that, in the case of a simple claim of the form Hr = H (ST, §T), can be obtained
by analogy to the pure diffusion case using the generalized Ito formula (19). Due to the

Markov property of (S;, S;), we may in fact put
M) =M(; S, S) = EC{H(St, S1)|F ). (88)
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Formula (19) then leads to
dM (1) = [Mt(~) + %MSS(.)SZ,af + %Mgg(ﬁt{&f + Mg5Si—Si—0:6;
+ (M5 Si— (1 + ), Si— (L +71)) — M(t; Si—, §;-)
RO Mg<~)%)wt} dt + [Ms()Si01 + Mg(1)5:6:] dw?
+[M(1; S— (U + 70, S (1 + 7)) — M(t; S,—, S,-) ] dM 2. (89)
Since M(t) is a Q-martingale, the drift (finite variation) term in (89) has to vanish and so

it follows from (89) and (85) that

£V = Ms(t; S, ) Si00 + My (t; S, S Si64,
D = M(t; S (L4710, Si—(L+ 7)) = M(1; Si—, §;-).

For a related result see also Shirakawa (1990). We conclude this subsection by pointing out
that, analogously to Section 4.1, the procedure that we have described here for the case of
a univariate point process can quite naturally be extended to the case of multivariate point
processes, provided the market is completed with the addition of an appropriate number of
further assets.

(90)

5.1.2. Term structure models

We consider the term structure model discussed in Section 4.2 assuming that the condition
for uniqueness of the martingale measure given by the injectivity (see (79)) of the integral
operator /C; in (78) is satisfied. This subsection is mainly based on Bjork, Kabanov and
Runggaldier (1997) [see also Jarrow and Madan (1999) for a related approach].

In this market, where the basic assets are zero-coupon bonds with prices p(¢, T') for any
maturity 7 > ¢ in addition to a nonrisky asset (money market account B;), we have first to
define a portfolio.

Definition 5.1. On the given bond market a portfolio is a pair (1;, & (dT)) where
(1) n; is predictable;
(ii) Vi, & (-) is a signed finite measure on [#, 00).

Intuitively, n; is the number of units of the riskfree asset held in the portfolio at time ¢,
& (dT) is the “number” of bonds, with maturities in [T, T + dT), held at time ¢. Some
integrability assumptions are also required, but we leave them here as implicit. The value
process of the portfolio (7, &), discounted with respect to By, is

Vz(ﬂ,§)=nz+/ p(t, T)&(dT) o1
t

where, with some abuse of notation, we denote by p(z, T') also the discounted value of a
T -bond.
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Definition 5.2. The portfolio (1, &) is self-financing if

dvi(n, §) =/ &dT)dp(,T). (92)
t

The integral in the right-hand side in (92) needs an appropriate definition. Justified by
the development in Bjork et al. (1997), we shall simply replace here dp(z, T) in (92) by
its expression under the (unique) martingale measure. To obtain this expression, recall
the condition (77) (or, equivalently, (76) with 8; =0, h;(y) = 1) on the coefficients of
the forward rate dynamics in order that these dynamics hold under a martingale measure.
Translating, via (68), these conditions back to the bond price dynamics and taking also into
account the definition of ¢ Q (dt, dy) in (72), one has

dp(t,T) = p(t—, T)[S(t, T)dw? +f (LT 1)qQ(dt,dy)j| (93)
E

(recall that we take here for p(¢, T) the discounted values). Given a contingent claim
Hr € Fr, that we assume here to be bounded, the conditions for self financing and perfect
hedging can be expresses as (combining (92) with (93))

Vo0, €) = Vo, &) + / / £, AT)p(s. T)S(s. T) dw?

/// E(dT)p(s—, T)(eP® T — 1)g2(ds, dy),

Vr(n,§) = Hr,

where the inner integral is with respect to 7' and the outer with respect to s.
Paralleling the development in the previous Section 5.1.1, consider next the (Q, F;)-
martingale

M(t) := E2{Hr|F;} (95)

(94)

which, by the martingale representation Theorem 2.3, admits the representation (see (12)
under the measure Q)

t t
M(1) = M(0) + f ¢y dw? + / / H(s, y)q%(ds, dy) (96)
0 0JE

for predictable (and appropriately integrable) ¢ and H. Comparing (94) with (96) one sees
that, by putting
Vo(i. ) = M(0) = E¢{Hr | Fo) 07
and choosing & (dT') such that
o
/ &WT)p, T)St, T)=d¢r,
t

o (98)
/ §WAT)p—,T)(POTY —1) = H(@, y)
t
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we have V;(n, &) = M (¢) and, in particular, V7 (1, §) = Hr, i.e., we have obtained a self
financing and hedging strategy (the value of 7, follows from (91)). Everything now hinges
upon the (unique) solvability of (98). To this effect consider the integral operator I} im-
plicit in the left-hand side of (98), namely

KCFiE - [ f;oop(l, T)S(t, T)ET) :|
t LOO p(t_, T)(eD(I,T;.) _ 1)E(dT)
so that the conditions (98) become
Kie = [H‘ft _J . o

The integral operator ICi will be called hedging operator and the market is complete if
KC} is surjective. Combining this result with that of Section 4.2 on the uniqueness of the
martingale measure, namely (79), we may synthesize them into

99)

Proposition 5.3. For the given term structure model (66), (67) we have that
(1) the martingale measure is unique, if the martingale operators IKC; in (78) are injective;
(i) the market is complete if the hedging operators KCf in (99) are surjective.

It turns out that the operators K are adjoint to KC;. If the spaces, on which they act,
are finite-dimensional, then the injectivity of X', implies surjectivity of X} and thus that
uniqueness of the martingale measure implies completeness. Unfortunately, our spaces
here are infinite-dimensional and so, due to the duality relationship (Ker )+ = cl(ImK*)
between bounded linear operators, the injectivity of K; implies denseness of /C;. In other
words, the uniqueness of the martingale measure implies only an approximate complete-
ness. For details we refer to Bjork, Kabanov and Runggaldier (1997).

For the case when the mark space E is infinite, Bjork, Kabanov and Runggaldier (1997)
also give a characterization of the hedgeable claims, based on a Laplace-transform tech-
nique and under assumptions that hold, e.g., in the case of an affine term structure. When
the mark space E is finite, in Bjork, Kabanov and Runggaldier (1997) it is furthermore
shown that, under appropriate assumptions, any claim can be hedged with a finite number
of bonds, whose maturities can be chosen in an essentially arbitrary way and such that they
remain fixed as the running time ¢ varies.

5.2. Hedging when the market is not complete

If one cannot have a complete market or market completion is not appropriate, one has
to accept some residual risk, due either to non-self-financing or nonperfect hedging, and
choose an investment strategy that minimizes the unhedgeable risk. For this purpose vari-
ous criteria have been proposed and here we describe one such criterion for the case of a
slight variant of the market model described in Section 3.3.

We assume here that the actual price S; of the risky asset satisfies a model of the form
of (41), namely

dS; = Siv'vi (Z;) dwy, (101)
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where Z; is supposed to be a diffusion-type process of the form
dZ; = o (Zy) dr + f1(Z;) dwy (102)

for a Wiener w;, independent of w;. Given a univariate, doubly stochastic Poisson process
N; with intensity A; = A;(Z;), suppose that the prices of the risky asset can only be ob-
served at the jump times 7;, of N, i.e., the observation process Y; is given by (see (43))

dYt == (St - STN,,)dNt (103)
so that the information of the hedger can be modeled by the filtration
-7:1Y =0{Ns, Yy s <t} CFr =0{S0, Zo, ws, Wy, Ny; s <1},

Notice that the only difference with respect to the model described in Section 3.3 is that
here the actual price process S; varies continuously in time according to (101), but is ob-
served only at the discrete time points 7, ; there, the process according to (101) is only a
background process and the actual price process is given by the values of the background
process, sampled at the time points 7,, according to (103). Notice also that, according to
(101), the process S; is implicitly assumed to be a (P, F;)-martingale. On one hand, this
will make our hedging procedure below applicable; on the other hand it can be justified by
assuming that [see, e.g., Becherer (2001)] S; is discounted with respect to a P-numeraire
portfolio, which is a tradable numeraire such that the discounted assets become martingales
with respect to the original measure P.

Our hedging criterion will be that of (local) risk minimization according to Follmer
and Sondermann (1986), Follmer and Schweizer (1991), that keeps the requirement of
perfect hedging and relaxes the self financing requirement into mean self financing. More
precisely, considering as strategy a pair (1, &) of F) -predictable processes with 7, and
&; denoting the number of units of the numeraire and the given asset respectively, that are
held in the portfolio at time 7, we give the following

Definition 5.4. Assuming prices are discounted with respect to the numeraire, define
Vi=V:(n,€) :=&S; +n, as value process,
Cr=Ci(n,€):=V; — [y &dS, as cost process.

Notice that, if C;(n, §) = const., the strategy (n, §) is self financing. We shall now relax
this assumption by allowing C; (1, &) to be a (P, F))-martingale and, given a (square-
integrable) claim H (St) (already discounted with respect to the numerarire), determine a
hedging strategy (n*, £*) that, forallt =T, (n =1, 2, ...), minimizes

RY (1,&) = E{(Cr(n,&) = C:(n, ©))*|FY } (104)

with respect to the hedging strategies (1, &) for which C;(n, &) is a (P, fty)—martingale.
The strategy (n*, £*) will be called an F -risk minimizing strategy.

Notice that there is a close relationship between risk minimizing strategies in the just
specified sense and variance-minimizing strategies that are self financing and minimize the
variance of the residual hedging error.
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To compute an JF, -risk minimizing strategy we shall proceed in two steps following
Frey and Runggaldier (1999) [see also Fischer, Platen and Runggaldier (1999) and Frey
(2000)]. In the first step we determine an F;-risk minimizing strategy, namely a risk mini-
mizing strategy where the (hypothetical) information of the hedger corresponds to the full
filtration F;, instead of the subfiltration .7-",Y . For this purpose define the P-martingale

g(t, S, Z) == E{H(Sp)|F:}, (105)

where the notation is justified by the Markov property of (S;, Z;). Assuming sufficient
regularity of g(-), we proceed analogously to the last part of Section 5.1.1 applying Ito’s
formula to g(¢, S;, Z;) thereby obtaining

T
H(Sr) = g(0, So,Zo)+/0 [2:() + gz (e ()] dr

1 2, 1 2
+/ [Egss(-)vz(-)St +582z0)f; (-)} dr
0

T T
+/O gs(-)dSz+/0 8z ()B: () dwy. (106)

Since g(¢, S;, Z;) is a P-martingale, the finite variation terms in (106) vanish, leading to

T
H(Sr) = g(0, So. Zo) + / gs(t. Sy, Z,)dS, + MY (107)
0

which is of the form of a Kunita—Watanabe decomposition of H (St), namely a decompo-
sition of the form

T
H(Sr) = Ho +/ £H ds, + MY, (108)
0

where M# is a P-martingale that, due to the independence of w; and wy, is orthogonal to
the P-martingale S. It then follows from Follmer and Sondermann (1986) and Féllmer and
Schweizer (1991) that the F;-risk minimizing strategy is given by

&7 =gl =gs(t, 5. Zp),
109
{nfzg(t,st,Zt)—étht ( )

so that V,(n”, &%) = g(t, St, Z;). This strategy appears as a very natural extension of the
classical Black Scholes strategy in the pure diffusion case. Notice that, to actually deter-
mine (nt]: , E,]: ) and its value, one needs to compute g(¢, S, Z;), which can be achieved
either by computing the expectation in (105) (numerical simulations may be used) or by
solving the PDE that results from (106) by setting equal to zero the finite variation terms.
Details can be found in Frey and Runggaldier (1999).

Coming to the second step, it follows from a general result in Schweizer (1994) [see also
Di Masi, Platen and Runggaldier (1995)] that the .7-",Y -risk minimizing strategy is obtained
by projecting the F;-risk minimizing strategy onto the subfiltration .7-",Y . This projection
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property, which is due to the quadratic nature of the risk minimizing criterion, makes this
latter criterion very attractive every time one has to deal with partial information. More
precisely, the }}Y -risk minimizing strategy (n*, £*) is given by

& = E{v(Z)S?e7 (S, Zo|FL}  E{v(Z) 2| FL Y,
nf =E{H(Sr) — & S|FY}.

Notice that, according to the model, the hedger will compute the strategy (n*, £*) only at
the jump times 7;, of N;, when he receives new information [for details and a stochastic
filtering-type algorithm to compute the projection in (110) see again Frey and Runggaldier
(1999)].

We close the section mentioning that, for a standard jump-diffusion model of the type
of Section 3.1.1 with a marked point process, a self financing strategy that minimizes the
variance of the residual hedging error can be found in Chapter 7 of Lamberton and Lapeyre
(1997).

(110)

6. Pricing in jump-diffusion models

6.1. General aspects

With the introduction of jumps and/or stochastic volatility the market becomes incomplete.
Consequently, the principle of absence of arbitrage does not lead to a uniquely defined
price. One obtains actually an entire range of prices [see Eberlein and Jacod (1997), Bel-
lamy and Jeanblanc (2000)] and the preference structure of the investors has to come into
play to determine the pricing measure. From the point of view of pure pricing, the prob-
lem then reduces to determining a specific martingale measure or, equivalently, the market
price of risk. To this effect there are various possibilities and in this section we mention
some of them, the last two of which will be discussed in more detail.

(i) Historically it appears that a first approach to pricing in markets that are incomplete
due to jumps in the prices and to a jumping volatility has been based on general
equilibrium with a representative agent [see, e.g., Ahn and Thompson (1988), Naik
and Lee (1990), Ahn (1992)].

(i) A somewhat related and rather recent approach is that of pricing by utility maximiza-
tion, in which the density of the martingale measure (the pricing kernel) is related to
the marginal utility of terminal wealth [see, e.g., Frittelli (2000) and the references
therein; for a specific jump-diffusion setting see Miyahara (1998)].

(iii) An alternative possibility is given by more econometric-type approaches based on es-
timating/filtering the market price of risk on the basis of market data. Related to such
an approach is the approach described in Herzel (1998) for a diffusion model with a
volatility that may jump at a random time and where the price of a European call turns
out to be a monotone function of a parameter A characterizing the martingale mea-
sures. There exists then a unique A* consistent with the option price thus allowing to
price all the other derivatives consistently with this option. This corresponds basically
to completing the market with the given option.
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(iv)

v)
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Approaches based on market completion. In the previous Section 4.1 we have dis-
cussed various ways to complete both stock as well as bond markets of the jump-
diffusion type. As we have seen, this completion leads always to a unique martingale
measure, but it does not necessarily imply also completeness in the sense that every
claim can be hedged with a self financing portfolio. On the other hand, the unique-
ness alone of an equivalent martingale measure is already sufficient to obtain a unique
arbitrage-free price of a claim as the expectation of its discounted value under this
measure. In all cases where one achieves also completeness in the sense of hedging
(essentially all cases except when there are an infinite number of sources of random-
ness) then, always by absence of arbitrage, the (unique) initial value of the self fi-
nancing and hedging portfolio has to coincide with the price computed as expectation
under the unique martingale measure. The approach based on market completion has
been widely used an implemented in various economic setups and here we mention
just Shirakawa (1990, 1991), Jeanblanc-Piqué and Pontier (1990), Naik (1993), Mer-
curio and Runggaldier (1993), Jarrow and Madan (1995, 1999). It has the advantage to
lead to a unique price on the basis of the principle of absence of arbitrage alone, with-
out having to make assumptions on a non-priced jump risk and without the need to
introduce a general equilibrium model. On the other hand it requires that the stochas-
tic evolution of more than just the underlying asset has to be specified and, without
specific criteria, the completion may occasionally be rather arbitrary.

In the previous Section 5, in the context of hedging it was mentioned that, if the
market cannot be completed, then one has to accept some residual risk and it be-
comes natural to determine the hedging strategy on the basis of a risk minimization
criterion. On the other hand, in the previous point (iv) we recalled the fact that, in a
complete/completed market the initial value of a self financing and hedging portfo-
lio has to coincide with the arbitrage-free price of the claim. By analogy, it appears
then natural to define as price of a claim in a noncomplete market the initial value of
a portfolio minimizing a given hedging criterion. Quite typically, the initial value of
such a portfolio turns out to be the expectation of the discounted value of the given
claim under a specific martingale measure. In other words, there is a correspondence
between hedging criteria and martingale measures and the choice of a specific pric-
ing measure can be based on the choice of a specific hedging criterion. An approach
along these lines appears thus related to the pricing approach by utility maximization,
mentioned in point (ii) above. As an example, let us point out that the criterion of
risk minimization discussed in Section 5.2 leads to the so-called minimal martingale
measure that was already mentioned at the end of Section 4.1. It has been further
shown in Runggaldier and Schweizer (1995) that, if in a jump-diffusion model claims
are priced according to the minimal martingale measure, then convergence of asset
prices implies convergence of option prices. This stability result for prices computed
according to the minimal martingale measure makes the risk minimization criterion
discussed in Section 5.2 an attractive criterion for hedging. [For further extensions of
this stability property see Prigent (1999), Hubalek and Schachermayer (1998).]
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6.2. Computational aspects

Assume that for a jump-diffusion model we have selected a specific martingale measure
according to one of the approaches mentioned in the previous Section 6.1. We have then
to compute the expectation of the (discounted value of the) claim under this martingale
measure. In this section we shall mention some of the possible methods to accomplish this.

We consider first the univariate jump-diffusion model (45) under a generic martingale
measure O with intensity of the Poisson process N; given by v;A,. If O corresponds to the
unique martingale measure obtained from a market completion as in Section 4.1, then ¥, A;
has to be taken according to (53). For simplicity we assume that all the prices are already
discounted and so we can put r; = 0. The dynamics of S; under Q are given by (see (48),
(49), (47))

dS; = Si—[=yrere di + o dw? + v, dN; . (111)

We want to compute the value of a European call option, namely E2{(S7 — K)*}. For this
purpose we adapt an approach from Mercurio and Runggaldier (1993), assuming first that
in (111) we have y; = y, i.e., the jump coefficient is constant [for this case see also Aase
(1988)]. We have

EQ{(Sr — K)T}) = E2{E2{(Sr — K)*INT}}. (112)

For a fixed k, i.e., when Ny =k (k=0, 1, ...), using the exponential formula (17) for the
specific case when (14) is given by (111), we have

T 1 T
S = 5 eklog(1+7) exp[_ f <y1psxs + Eaf) ds + f oy deQ} (113)
0 0
namely
log S\ ~ N (s mr, 0%) (114)

with

r 1
mr =log So + klog(l+y) —/ (J/%)\s + — Sz) ds,
0

2
2 ! 2
GT:/O o, ds,

ie., S;k) is lognormal with mean and variance given by m7 and or respectively. Next
compute (with @ (-) the cumulative standard Gaussian distribution function)

(115)

400
V= ELI(SE k)T = [ (e = K) N (s of) dx
og

1 oo — L (x—mp)? K [T%° ——G-mp)?
= e'e 71 dx — — e T dx
27-[0-]% logk 207 Jlogk
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2
_ emT%U%q;(mT +o5 — logK) 3 K@(mT - 10gK>
or or

=1+ )Gk, So) (116)
with

T
G (k, So) =SoeXp(—/ Y Ushs dS><P(X) - D(y), 17
0

(14 y)*

where

_ log(So(1+ »*/K) Ty pns + Loy ds

VS o2ds (118)
y=x— ,/fOTGSst.

Coming back to (112) we then have

0 k
EC{(Sr — K)T} = EC{V{"} =3 (1 + )Gk, so)(% e_H> (119)
k=0 '

with H = fOT YsAgs ds. Notice that, for actual computations, the infinite sum in the right in
(119) has to be truncated at a sufficiently large positive integer.

The result for y; = y can be easily extended to the case when y; is a piecewise constant
deterministic time function. To this effect, given a positive integer m and a subdivision
0=ty <t' <--- <ty =T,let

m
v =yl )+ viler m@®; ;> =1, (120)
j=1
Furthermore, let P; (j =1, ..., m), be independent Poisson random variables with param-

eters H; = f;,{, Yy ds. The generalization of formula (119) is then
j—1

EC{(Sr — K)T}

00 m m o CH K
= Z exp|:2kjlog(1+yj)]G(k1,...,km,So)l_[[((ij))' e_Hfj| (121)
j=1 '

j=1

with

D(y),
(122)

T
Gk, ... km, So) = Soex <—/ (m) ‘)\ds><1§(x)——.
1 ms D0 0 €Xp ) Ve Wshs 1_[7:1(1_’_)0),{]
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where

log(So [T71 (1 + % /K) [ (=7 Wshs + Lo2) ds
X =

[ o2 ds (123)
y=x —,/fOTGSst.

Coming finally to the case of a more general deterministic time function y; for the jump
coefficient, we assume that there exist piecewise constant deterministic time functions yt(m)
and ot(m) such that

vty 6™ b o asm— oo, (124)

Consider then a sequence of fictitious risky assets, whose (discounted) values St(m) are
martingales with respect to the same martingale measure Q as is Sy in (111), namely they
satisfy

For each of the processes St(m) we can compute

o = E2{(sy" — K)T) (126)
according to (121)—(123). In Mercurio and Runggaldier (1993) it is now shown that

lim v{™ = vy = E{(Sy — K)*}, (127)

m— o0

i.e., if y; is a generic time function, that can be approximated from below by a sequence
of piecewise constant time functions, then the corresponding option value can be approxi-
mated arbitrarily closely by computable expressions. In Mercurio and Runggaldier (1993)
it is also shown that, for given m, v(()m) can be interpreted as initial value of a mean self
financing and risk minimizing portfolio in the sense of Section 5.2 when the asset price
evolves in discrete time according to the process St(m) of (125), evaluated at the discrete
time points #;. In line with the last part of point (v) of the previous Section 6.1, we may thus
consider the approximating values v(gm)
to the minimal martingale measure.
After having discussed the univariate jump-diffusion model (45), we turn now to the
general jump-diffusion model with a marked point process and which can equivalently be
represented either by (32) or (33). We opt here for the representation (32). i.e.,

dS; = 8- dr + o7 dw;, + y (1, Y1) AN, ]. (128)

as option values themselves, computed according

In what follows we shall make the further

Assumption 6.1.
(1) y@,Y) =y(Yy),ie., y is independent of the current time;
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(ii) considering the representation of the marked point process as double sequence
(T, Yn), assume that T, is independent of Y, and the Y, form a sequence of inde-
pendent random variables, the generic one Y, having law m(dy).

The driving marked point process has thus local P-characteristics (A;, m(dy)).

Suppose that we have chosen a specific martingale measure Q and that we want to
compute vy = EQ{H(ST)} where, typically, we may have H(S) = (S — K)™. For this
purpose, in what follows we adapt a procedure from Chapter 7 in Lamberton and Lapeyre
(1997).

Recall first from Theorem 2.5 that a general absolutely continuous measure transforma-
tion from P to Q transforms the P-local characteristics into Q-local characteristics of the
form (Y As, h; (y)m(dy)). Recalling furthermore (63) with (62) and (64), it is easily seen
that, under the measure Q corresponding to the above local characteristics, the discounted
value of S; satisfies

dS; = Si—[~TiA, dt + or dw? + ¥ (¥,) AN, (129)

where we have put I, = f £ Y (h:(y)m(dy) and A+ = ¥ ;. Using the exponential formula
(17) to integrate (129), that is of the form of (14) with the representation (15), one imme-
diately finds that, for a given initial asset price Sy, the value vy(Sp) of the claim H (St) is
given by

Nt

T 2
vo(So):EQ{H<Soexp[—/ (Ft)»t—i- )dt—i—/ o dw, }H +J/(Y) )}
0

- (130)

Next let

T 52 T
V(S := EQ{H<Soexp|:—/ édt+/ G,dw,Q:D} (131)
0 0

so that, for H(S) = (§ — K)T, the V(8p) is given by the Black—Scholes formula, i.e.,
V (So) = BS(Sp). With the use of V (Sp) we can now write

T Nr
vo(so)zEQ{v<soexp[—f I dtj| l_[(1+y(Yn))>}
0

n=1

00 T k Hk
= ZEQ{V(Soexp[ / T dt} ]_[ +y(Yy) )}(Feﬂ> (132)
k=0 ’

where, due to the local characteristics under Q, we have H = fOT YsAs ds and where the
expectation is with respect to the joint distribution of the Y, that in Assumption 6.1 were
supposed to be independent. This latter expectation can be explicitly computed in special
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cases, in more complicated cases one has to use simulations. Again, for the actual compu-
tations, the infinite sum has to be truncated at a sufficiently large positive integer.

We close this section by mentioning that in Glasserman and Kou (1999), for the term
structure models of simple forwards in the jump-diffusion setup described therein, the
authors study the pricing of some derivative securities after having characterized arbitrage-
free dynamics. The derivative prices are also used to investigate what types of patterns in
implied volatilities are produced through jumps.
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Abstract

Distributions that have tails heavier than the normal distribution are ubiquitous in finance.
For purposes such as risk management and derivative pricing it is important to use rela-
tively simple models that can capture the heavy tails and other relevant features of financial
data. A class of distributions that is very often able to fit the distributions of financial data
is the class of generalized hyperbolic distributions. This has been established in numer-
ous investigations, see, e.g., Eberlein ad Keller (1995), Bibby and Sgrensen (1997), Hurst
(1997), Eberlein, Keller and Prause (1998), Rydberg (1999), Kiichler et al. (1999), Jiang
(2000), and Barndorff-Nielsen and Shephard (2001c). The class of generalized hyperbolic
distributions includes the standard hyperbolic distributions, the normal inverse Gaussian
distributions, the scaled ¢-distributions and the variance-gamma distributions. The use of
scaled ¢-distributions in finance was studied by Praetz (1972) and Blattberg and Gonedes
(1974), while Madan and Seneta (1990) introduced the variance-gamma distributions in
the financial literature. The normal distribution appears as a limit of generalized hyper-
bolic distributions. The tail behaviour of the generalized hyperbolic distributions thus span
a range from Gaussian tails via exponential tails to the power tails of the ¢-distributions.

In Section 1 we present the generalized hyperbolic distributions and their most impor-
tant properties. We also discuss the generalized inverse Gaussian distributions which play
an important role in the theory of generalized hyperbolic distributions and processes. This
class of distributions is also of interest in its own right as a model of positive quantities in
finance. Its right-hand tail behaviour spans a range from exponential decrease to a Pareto
tail. In the following sections we present a number of stochastic process models for which
the marginal distributions or the distributions of increments (or both) are generalized hyper-
bolic. The models are increasingly complex. They are thus able to fit an increasing number
of the stylized features of financial data. The well established features of financial data are
for instance reviewed in Barndorff-Nielsen (1998) and Rydberg (2000). In Section 2 we
discuss Lévy process models, while in Section 3 we discuss models defined by stochastic
differential equations. These include classical diffusion models and Ornstein—Uhlenbeck
models driven by Lévy processes as well as superpositions of such models. In the final
Section 4 we present generalized hyperbolic stochastic volatility models.
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1. Hyperbolic and related distributions

In this section we present the generalized hyperbolic distributions and describe their most
important properties. We will also discuss the generalized inverse Gaussian distributions
which play an important role in the theory of generalized hyperbolic distributions and
processes. As mentioned earlier, this class of distributions is also of independent interest
as a model of positive quantities in finance. We will present a few examples of how well
these distributions fit financial data.

1.1. The generalized hyperbolic distribution

The generalized hyperbolic distributions were introduced by Barndorff-Nielsen (1977) and
include, among others, the hyperbolic distributions, the normal-inverse Gaussian (NIG)
distributions, the scaled t-distributions and the variance-gamma distributions. We shall
discuss these sub-classes in more detail later. First we present the generalized hyperbolic
distributions and their properties.

A generalized hyperbolic distribution has five parameters. If X follows a generalized
hyperbolic distribution we write

X~HM, o B8, w.

The probability density function of a generalized hyperbolic distribution is given by

(y/8)* ,kal/z(“m) L eP—w)

V2K, (8y) (V8 + (x — )2 /o) 112

x € R, (D

where y2 =a?— ,82, and K, is the modified Bessel function of the third kind with index A.
Definitions and results concerning Bessel functions are collected in an appendix.
The parameter domain for the class of generalized hyperbolic distributions is given by

§>0, a>0, o>>p>% ifr>0,
§>0, a>0, a’>p% ifr=0,

§>0, a>0, o’*>=p% ifr<O.

In all cases i € R. If § = 0 or &> = B> the generalized hyperbolic density in (1) is de-
fined as the limit expression obtained by using (A.5). Note that if 8 is equal to zero, the
distribution is symmetric.

The class of generalized hyperbolic distributions is closed under affine transformation.
Thatis, if X ~ H(A, o, 8,8, ) and Y is defined as Y = a X + b, for some positive a, then
we have that

o p
Y~H(A, —,—,ab,au+b). 2)
a a
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From (2) we also see that the parameter X is invariant under affine transformations of a
generalized hyperbolic random variable.

From (A.3) it follows that the mode points for the generalized hyperbolic distribution
are solutions to the equation

X— Ky—3p(ay/82 4+ (x — )2 B 3)

VG- Kioipa/+ G —pw?) @

If B =0, it follows immediately that the distribution is unimodal with mode point p. If
A > %, the ratio of the modified Bessel functions in (3) increases monotonically from 0
to 1, and therefore the distribution is unimodal. See Blasild (1978) for further discussion
of features of the generalized hyperbolic density function.

The Laplace transform of the generalized hyperbolic distribution is given by

y* - K (Syz)

L(z) =e"*- ,
v} Ki(y)

1B +zl <a, 4)

where y2 = a? — (B + z). From (A.3) we get that

8B Kir1(8)
EX = _ 5
HE K6y )
and
Var x  SKi+169) ﬂ282<Kx+2(3V)_KA2+1(5V)). ©
yKiGy) 2\ KaBy)  K2(6y)

Expressions for the skewness and kurtosis involve modified Bessel functions in a rather
complicated way and can be found in Barndorff-Nielsen and Blasild (1980).

Sometimes it is useful to reparametrize the generalized hyperbolic density in terms of
the parameters A, 7, ¢, 8, and u, where T = §/y and ¢ = §y. Using this parametrization,
the generalized hyperbolic density has the form,

VT KmipQVTH V4 (G - )/9)?) RISV
V2TSKi () (V14 ((x — m)/8)2 /N T+ T2)1/2=4 ’

xeR. (D)

The parameters 7, ¢, and A are invariant under affine transformations of a random variable
following the generalized hyperbolic distribution. More precisely, the result equivalent to
(2)isthat Y ~ H(A, 1,¢,ad,an+ b). From this result we see that § is a scaling parameter
and p is a location parameter. In Figure 1 generalized hyperbolic densities are drawn for
different values of A, 7, and ¢. In all cases the mean value is O and the variance is 1. The
tail behaviour of the distributions is more easily seen in Figure 2, where the logarithm of
the same densities are plotted.
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Fig. 1. Generalized hyperbolic densities with mean O and variance 1 for different values of the parameters A, 7,

and ¢.
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Fig. 2. The logarithm of generalized hyperbolic densities with mean 0 and variance 1 for different values of the
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We shall now consider the important special cases of the generalized hyperbolic distri-
bution mentioned earlier. The hyperbolic distributions is the subclass obtained when A is
equal to 1. With X equal to 1 in (1), we get the following expression for the density of a
hyperbolic distribution,

I -
2055K1(8y)exp{ am+ﬁ(x M)}, x eR. (8)

From (8) we see that the logarithm of the density of a hyperbolic distribution is a hyperbola,
which should be compared to the parabolic log-density of the normal distribution. The
name of the hyperbolic distribution stems from this observation. In fact, the definition of
the hyperbolic distributions was inspired by the empirical finding by the founding father
of the physics of wind blown sand, Brigadier R.A. Bagnold, that the log-density of the
distribution of the logarithm of the grain size of natural sand deposits looks more like a
hyperbola than like a parabola, as had previously been assumed by geomorphologists, see
Bagnold (1941).

For the hyperbolic distributions Equation (3), which determines the mode points of the
generalized hyperbolic distribution, simplifies to

X — U _E

2+x—-—w? o

b

implying that the distribution is unimodal with mode point

S
x:u—i——'B.
4

Letting § tend to zero and using (A.5), we get the asymmetric Laplace distribution as a
special case of the hyperbolic distribution, that is,

2 2
@ =P pa-w—al-ul y cR
200

The normal distribution can also be obtained as a limit case of the hyperbolic distribution.
Letting o, 8 — 00 in such a way that §/a — o2, we get, using (A.6), the normal density:

I he-w?
o2
We 2 , xeR

According to Barndorff-Nielsen et al. (1985) we have that the skewness (y1) and the
kurtosis (y») for large values of ¢ and small values of 8/« satisfy that

(1, 72) ~ (3%, 38%),
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where

—7'3/05 and 5—71
= Tre BViET

Based on this observation Barndorff-Nielsen et al. (1985) suggested that the parameters
x and & are natural measures of asymmetry and “kurtosis” for the hyperbolic distribution.
Note that they are invariant under location-scale transformations. The parameters x and &
vary in the so-called shape triangle defined by

{(x.&) eR*|0< x| <& < 1}. ©)

Note that the normal and the (possibly skew) Laplace distributions are obtained as limit
distributions when £ — 1 and & — 0, respectively. In Figure 3 hyperbolic log density
functions are plotted for different values of x and £ in the shape triangle.

In Figure 4 a histogram based on 2666 observations of the daily returns of IBM-stocks
(returns are increments on a logarithmic scale of the stock prices) in the period from 1 Jan-
uary 1990 to 20 March 2000 is given. Each point indicates the mid-point of the top of a
column in the histogram. The best generalized hyperbolic, hyperbolic, and normal densities
are superimposed on the histogram. The parameter values corresponding to the generalized

1.00  —

0.75 §<

0.25 —

0.00 —

-0.25  —

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3. Hyperbolic log densities with mean O and variance 1 for different values of the parameters x and &
(—0.8,—-0.6,...,0.8 for x and 0.0,0.25, ..., 1.0 for &). The log densities are placed at the corresponding values
of x and &.
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0.0
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Stock returns

Fig. 4. A histogram of 2666 daily IBM-stock returns. Superimposed are the best fitting generalized hyperbolic,

hyperbolic, and normal densities. The parameter values corresponding to the generalized hyperbolic density are

o =5.174, B =0.0048, § = 0.0262, u = 0.0002, and A = —1.933. The parameter values corresponding to the
hyperbolic density are « = 82.26, § = 3.725, § = 0.0060, and p = —0.0007.

hyperbolic density are « = 5.174, g = 0.0048, § = 0.0262, 1 = 0.0002, and A = —1.933.
For the hyperbolic density the parameter values are o = 82.26, 8 = 3.725, § = 0.0060,
and pu = —0.0007. In Figure 5 the logarithms of the same histogram points and the same
densities are plotted.

Log-histograms and log-densities are very useful when the interest is focussed on tail
behaviour. From Figures 4 and 5 it is evident that a heavy-tailed distribution such as a gen-
eralized hyperbolic or hyperbolic distribution provides a good fit to the data, and certainly
a much better fit than the normal distribution, in particular in the tails. A plot like Figure 5,
which emphasizes differences in tail behaviour, reveals that the extreme tails of the his-
togram are a bit heavier than those of the fitted generalized hyperbolic distribution. There
is no reason to be overly concerned about this minor discrepancy, because, first, it should be
remembered that it is measured on a logarithmic scale, and secondly, the two log-histogram
points in the extreme left tail are based on only 1 and 2 observations, respectively, while
each of the two points in the extreme right tail represents 2 observations.

The normal-inverse Gaussian (NIG) distributions is the subclass obtained for A equal
to — % The density of the normal-inverse Gaussian distribution is given by

as 5 K (a/82 4 (x — )?) Bl
ﬂ V8 (x = p)? ’

xeR. (10)



Ch. 6:  Hyperbolic Processes in Finance 219

——  Generalized hyperbolic
''''''''' Hyperbolic
—-—-- Normal /

Log-density

-10

T T T T T T

-0.15 -0.10 -0.05 0.0 0.05 0.10

Stock returns

Fig. 5. The logarithm of the histogram in Figure 4 of 2666 daily IBM-stock returns. Superimposed are the loga-
rithms of the best fitting generalized hyperbolic, hyperbolic, and normal densities. The parameter values are as in
Figure 4.

If the distribution of X has density function (10), we write
X ~NIG(a, 8,8, ().

If we let o tend to zero, it follows from (A.5) that the NIG-distribution converges to the
Cauchy distribution with location parameter  and scale parameter §.
The Laplace transform of a NIG-distribution is especially simple:

L(z) =etH0r=r) g4 7] <, (11)

where yz2 =a? — (B + 2)*. Expressions for the mean and variance are also simple in the
case of a NIG-distribution:

5B Sa?
EX=u+ —, VarX=—3.
Y 14

The skewness is 38a?fy > and the kurtosis is 38 (a® + 48%)y ~’. Although these ex-
pressions are quite simple, it is also for the NIG-distributions informative to use the shape
triangle, which can be defined in complete analogy with that for the hyperbolic distribu-
tions, see, e.g., Rydberg (1997). In Figure 6 NIG log-density functions are drawn for dif-
ferent values of x and £ in the shape triangle defined in the same way as for the hyperbolic
distribution.
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Fig. 6. Normal-inverse Gaussian log densities with mean 0 and variance 1 for different values of the parameters x
and £ (—0.8,—-0.6,...,0.8 for x and 0.0,0.25, ..., 1.0 for &). The log-densities are placed in the shape triangle
at the corresponding values of x and &.

Finally, but not least, the class of normal-inverse Gaussian distributions is closed under
convolution when the parameters « and § are fixed, that is if X; and X, are independent
so that X; ~ NIG(«, B, i, i), i = 1,2, then we have that

X1+ X2 ~NIG(a, 8,81 + 62, 41 + 2). (12)

Only two subclasses of the generalized hyperbolic distributions are closed under convo-
lution. The other class with this important property is the class of variance-gamma (VG)
distributions, which is obtained when § is equal to 0. This is only possible when A > 0 and
o > |B]. The variance-gamma distributions (with 8 = 0) were introduced in the financial
literature by Madan and Seneta (1990). Another and perhaps more natural name for the
full class is the normal-gamma (NG) distributions. The density function is given by

yZA

T ey

where I' denotes the gamma-function. If X follows a variance-gamma distribution, we
write

—uPK i p(aly — ul) T xeR, (13)

X ~VGh, a, B, 1.
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The reader is reminded that the parameter domain is A > 0, « > |8]| > 0 and i € R. The
Laplace transform of a VG-distribution is simple:

2A
L(z) =e“2<y1) . 1B+l <a. (14)

Z

where again yz2 = a2 — (B + 2)%. From (14) (or from (5) and (6)) it easily follows that

2B 21 B\?
Y Y Y

The class of variance-gamma distributions is closed under convolution when « and 8 are
fixed. If X; and X, are independent random variables such that X; ~ VG(A;, o, B, ui),
i =1, 2, then we have that

X1+ X, ~ VG + A2, , B, 1 + u2). (15)

This convolution property follows from (14).

By (A.6), the tails of a VG-distribution decrease as |x|*~!e ®*+A* when x — Fo00.
The logarithm of the densities of variance-gamma distributions are plotted for different
values of X in Figure 7. In all cases 8 = 0, the mean is zero, and the variance is one. From
this figure appears a disadvantage of the class of VG-distributions. The probability density
is very peaked at the centre for A < 1, while for A > 1 the tail-behaviour does not fit the tails
found in typical financial data like those in Figure 5 as well as other generalized hyperbolic
distributions like for instance the NIG-distribution.

We will finally consider the subclass of the generalized hyperbolic distributions that
is obtained when « = |B|, or equivalently y = 0. This is only possible when A < 0 and
8 > 0. It is convenient to introduce the reparametrization v = —2A. For y = 0 we obtain
the density function

e ) K(v+1)/2(|,8|\/ 82+ (x — M)z) L1
VA2UDRN(W/2) (/524 (x — /1B D2 ’

where v > 0,8 > 0, 8 € R and i € R. A natural name for this distribution is the asymmetric
scaled t-distribution, as will soon be clear. From (A.6) it follows that when g is positive, the
left-hand tail decreases as |x|~("/2+D ¢28% while the right-hand tail decreases as x ~"/2+ 1D,
When g is negative, the behaviour of the two tails is interchanged. The expectation exists
provided v > 2, and the variance exists when v > 4. More generally, the n-th moment
exists when v > 2n. The Laplace transform of the distribution given by (16) is

x eRR, (16)

iz (82 2B))"2Ky2(—8z2(z + 2B))
T(v/2)2v/21

(17)
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Fig. 7. The logarithm of the densities of variance-gamma distributions with 8 = 0, mean 0, and variance 1 for
different values of the parameter A.

with domain —28 < z < 0 when 8 > 0 and 0 < z < —28 when < 0. When g =0, the
domain is the set {0}, and we obtain the density function

C((v+1)/2)

ST (W/2)(1 + ((x — w)/8)H)w+D/2° xeR,

which is the well-known density of the scaled ¢-distribution with v degrees of freedom.

1.2. The generalized inverse Gaussian distribution

The second class of distributions, that we consider in this section, is the class of gener-
alized inverse Gaussian (GIG) distributions. The GIG-distributions are described by three
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parameters and defined on the positive half axis. The generalized inverse Gaussian density
is of the form

/O Lo 1, 2
721()\(8)/)')( -exp{ 2(5x +y x)}, x> 0. (18)

The parameter domain is given by

6>0, y=0, ifi<0,
6>0, y=>0, ifaA=0,
620, y=>0, ifr>0.

The class of generalized inverse Gaussian distributions was first proposed in 1946 by Eti-
enne Halphen, who used it to model the distribution of the monthly flow of water in hy-
droelectric stations, see Seshardi (1997). The class was rediscovered by Sichel (1973) who
used it to construct mixtures of Poisson distributions and by Barndorff-Nielsen (1977) who
used it to construct the class of generalized hyperbolic distributions, but also realized its
broad usefulness and initiated an in depth study of the class. We shall return to the relation
to the generalized hyperbolic distributions later. The generalized inverse Gaussian distribu-
tions were briefly mentioned by Goog (1953) as an intermediate between Pearson’s curves
of Type III and V. The class of generalized inverse Gaussian distributions was investigated
extensively in Jgrgensen (1982).

Using (A.5) we see that for A > 0 and y > 0 the gamma distribution emerges as limit
distribution when § tends to zero, that is we get the following density for positive A and y,

(v2/2)* )

o) x> 0.

Similarly, the inverse gamma distribution with density given by

(2/8H)* WSS BIRCIRVE:
'(—=1) ’

x >0,

is obtained when y tends to zero for A < 0 and § > 0. This distribution has a tail of the
Pareto type. Finally, for A = —% we get the inverse Gaussian distribution with density

function given by

8

e =8y o .
27 x3 ’
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The generalized inverse Gaussian distributions are unimodal with mode point given by

A—=14+(h—1)2482y2
yz

> 0,
82
—_— if y =0.
20— %) v
If X has a generalized inverse Gaussian distribution, we write X ~ GIG(A, §, y). In Fig-
ure 8 generalized inverse Gaussian densities are plotted for different values of A and
w = dy. In all cases the variance is 1.
The Laplace transform of the GIG(A, 8, y)-distribution is

Ki(wy/1—=2z/y?)
L(z) =

C Ki(w)(1—2z/y2)*/?

19)

for § > 0 and ¥ > 0. The domain of L is z < y%/2 when A > 0 and z < y2/2 when 4 < 0.
In the cases § = 0 or y = 0, the Laplace transform is obtained from (19) by (A.5). For
5=0,

27\ y?
L = 1_ D) ) A
© ( J/2> ‘=2

- 3 — 1

2 A=—2 z A=—3
% 9 FEE
° o b o
o o
a = w = 0.5
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Fig. 8. Generalized inverse Gaussian densities with variance 1 for different values of the parameters A and
w=_48y.
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which is the well-known Laplace transform of the gamma-distribution. For y = 0 we ob-
tain

_782
L= 2K; (v —25827)

= TCn otz ©S 0-

For positive values of § and y the moments of X are given by
(8 Ky,
EX~’=<—> Kirj@) j=1,2,.... (20)
y/) Kiw)

When either § or y is zero, the moments of X are also known and are obtained as limits of
(20). The variance of X is given by

VarX = <§>2(K”2(‘”) _ K*2+1(w)>. 21)
Y K (o) K% (w)

In Figure 9 a histogram of 307 monthly observations of interest rates in the period from
June 1964 to December 1989 is given along with a fitted generalized inverse Gaussian
density corresponding to the parameter values § = 0.2693, y = 11.23, and A = —7.0707.
More precisely, the data are annualized monthly yields of U.S. one-month Treasury bills.
The same data set was studied in Chan et al. (1992).

There is the following important relationship between the generalized hyperbolic distri-
bution and the generalized inverse Gaussian distribution, which was, in fact, how the gen-
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Fig. 9. A histogram of 307 monthly interest rates. The generalized inverse Gaussian density with parameters
8 =0.2693, y = 11.23, and A = —7.0707 is superimposed.
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eralized hyperbolic distribution was originally derived in Barndorff-Nielsen (1977). The
generalized hyperbolic distribution is a normal variance—mean mixture where the mixing
distribution is generalized inverse Gaussian. What is meant by this is that if

X|W=w~N(u+pw, w),

and W ~ GIG(}, 8, y), then the marginal distribution of X will be generalized hyperbolic,
X ~H(, a,B,8, 1), where o> = 2+ 2. This property provides a possible interpretation
of non-Gaussian stochastic variation described by a generalized hyperbolic distribution.

As special cases we have that the normal-inverse Gaussian distribution appears when
the mixing distribution is an inverse Gaussian distribution, and the variance-gamma dis-
tribution emerges as a normal variance—-mean mixture where the mixing distribution is a
gamma distribution. This explains the names of the distributions. The asymmetric scaled
t-distribution is a normal variance—-mean mixture with an inverse gamma mixing distrib-
ution. As a special case we get the well-known result that the ¢-distribution is a normal
variance mixture (8 = 0) with an inverse gamma mixing distribution.

The mixing result implies that there is the following simple relationship between the
Laplace transform, L x, of the generalized hyperbolic distribution H (%, &, B, 8, 1t) and that

of the GIG(A, 8, /a? — B2)-distribution, Ly :

Lx(z) =e* -LW(,Bz+ %22)

Barndorff-Nielsen and Halgreen (1977) showed that generalized inverse Gaussian dis-
tributions are infinitely divisible. Using that the generalized hyperbolic distributions are
normal variance-mean mixtures with generalized inverse Gaussian mixing distributions,
they also proved that generalized hyperbolic distributions are infinitely divisible. Halgreen
(1979) showed that generalized hyperbolic distributions and generalized inverse Gaussian
distribution are even self-decomposable. In the following section, the properties of infinite
divisibility and self-decomposability will turn out to be important because they allow the
construction of certain hyperbolic stochastic process models.

1.3. Statistical inference

Inference for the parameters when dealing with independent and identically generalized
hyperbolic or generalized inverse Gaussian distributed observations should be based on the
likelihood function. The C-program HYP described in Blasild and Sgrensen (1992) can be
used for maximum likelihood estimation in the situation where independent and identi-
cally (possibly multi-dimensional) hyperbolic distributed observations are considered. The
program HYP also has the facility of basing the inference on the multinomial likelihood
function obtained by only observing the number of observations in given intervals. More
precisely, if Iy, ..., I; are disjoint intervals with union the entire real line and y; denotes
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the number of observationsin /;, j =1,..., k, then the multinomial log-likelihood func-
tion is given by

k
e, B,8, 1) = yjlogp;, (22)
Jj=1

where p; is the probability that a hyperbolic distributed random variable takes a value
in /;, that is,

= 4 St c—w? o
= ], 2wk, 6y SPUTAVE - —mw}d =1,....k.
bi /1,- 203K, (3y) exp{—oy/82 + (x — w2+ px —wldx, j=1,...,

(23)

Inference based on grouped observations from other distributions can of course be car-
ried out in a similar way using (22) and the equivalent of (23). Kiichler et al. (1999) note
that if the observations are not independent then inference based on the multinomial like-
lihood function for grouped observations will be more robust to effects of the dependence
than inference based on the original likelihood function for independent observations.

2. Lévy processes

A homogeneous Lévy process X is a stochastic process with Xo = 0 and with the property
that its increments over non-overlapping time intervals are independent. Moreover, the
increment, X, — X, over any time interval of length ¢ has the same distributions as X;.
The homogeneous Lévy processes are also called processes with independent, stationary
increments or additive processes. The mathematical theory of Lévy processes can be found
in Bertoin (1996) or Sato (1999). An example of a Lévy process that is well-known from,
for instance, the Black—Scholes—Merton option pricing theory is the Brownian motion (or
Wiener process), where the increments are normally distributed.

For every generalized hyperbolic distribution there exists a homogeneous Lévy process
X such that the probability distribution of the value of the process, X;, at a fixed time point
t is that particular generalized hyperbolic distribution. A thorough review of the theory of
these generalized hyperbolic Lévy processes and their application in finance can be found
in Eberlein (2001), see also Prause (1999) and Eberlein and Raible (2001). The distribu-
tions that can appear as the distribution of the instantaneous value of a homogeneous Lévy
process are exactly those that have the property called infinite divisibility. As mentioned
in Section 1 the generalized hyperbolic distributions are infinitely divisible. Usually, the
distribution of the value X, at a time point s different from ¢ will not be generalized hy-
perbolic. However, in the case of the NIG and VG distributions, the convolution properties
(12) and (15) imply that the value of the Lévy process will be NIG-distributed, respec-
tively VG-distributed, at all time points. This makes the NIG and VG Lévy processes more
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natural generalized hyperbolic Lévy processes than the other generalized hyperbolic Lévy
processes. Simulation of the NIG Lévy process was studied in Rydberg (1997).
A generalized hyperbolic Lévy processes can be written in the form

Xt :)\,[+Zt,

where Z; is a pure jump martingale with infinitely many small jumps in every finite time
interval, however small. The behaviour of Z; is reflected in the so-called Lévy measure,
see (27) and the discussion following this formula. The Lévy measure of the generalized
hyperbolic distribution is

ePx ( r® exp(—|x[/2y + a?)

W(fo 72y (JHEV/2) + Y2 (6J/2Y))

q(0)= ghx oo exp(—|x[y/2y +a?) 4
W/o T2y (J2, GV + Y2, (6429)

dy + Ae_“|x|> if A >0,
(24)
if A <0.

Here J, and Y, denote Bessel functions of the first and second kind, respectively, see the
appendix. The Lévy measure was essentially found by Halgreen (1979), see also Prause
(1999). For the NIG-distribution this expression simplifies to

q(x) =7 salx| 7 K1 (alx]) e, (25)

where K is a modified Bessel function of the third kind. The behaviour near zero is par-
ticularly important, so the following expansion for generalized hyperbolic distributions
(Raible, 2000) is useful:

x2g(x) = £+L1/2|x|+%x+0(|x|) (26)
T 2 T

as x — 0. We see that for every generalized hyperbolic distribution the Lévy measure has
infinite mass in every neighbourhood of the origin. The process Z; is given by

1
Z; = // x(pLX(du, dx) —g(x)du dx), 27
0 JR\{0}

where the integer-valued random measure X is defined by

uX(dr,dx) =) " 1(ax, 208 ax,)(dt, dx).

s>0

Here ¢, denotes the Dirac measure at a, and AX; = X; — X_ is the jump of the process
X at time s (for most time points AX; = 0). Integrals of the type (27) are treated in,
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e.g., Jacod and Shiryaev (1987) or Protter (1990). The random measure 1% is Poissonian
with intensity measure g (x) dx dz. This implies that for any closed interval A that does not
contain the origin, the number of jumps in the time interval [0, #] with a size that belongs
to A, i.e.,

N = ¥ (10,11, A),

is a Poisson process with intensity | 49 (x)dx, which is a finite number. In particular, N,A is
Poisson distributed with mean value ¢ f 4 q(x)dx. As the boundary of the interval A tends
to zero, the mean value goes to infinity, cf. (26). It is interesting to note that a generalized
hyperbolic Lévy process has no continuous Brownian motion component and has infinitely
many jumps on every time interval.

The generalized hyperbolic Lévy processes do, however, have a nice relation to the
Brownian motion. Let B be a standard Brownian motion, and let t(¢) be a Lévy process
for which the distribution of t(1) is a generalized inverse Gaussian distribution. Then the
process

Xi =pt + Bt(t) + By (28)

is a generalized hyperbolic Lévy process. Because the increments of t are generalized in-
verse Gaussian distributed and hence can only be positive, the process t is increasing and
can thus be interpreted as a time that increases with a randomly varying speed. A process
T with this property is called a subordinator, and the construction (28) is called subordi-
nation. The randomly increasing time T has been interpreted as an operational time or a
business time reflecting, for instance, the volume of trade at an exchange. Some times a lot
is happening at the exchange and the business time increases rapidly. At other times the
exchange is tranquil and the business time goes only slowly. That the distribution of X
is generalized hyperbolic follows because this distribution is a variance-mean mixture of
normal distributions where the mixing distribution is the generalized inverse Gaussian dis-
tribution, see Section 1.2. The fact that a Lévy process t exists such that t(1) is generalized
inverse Gaussian distributed follows because these distributions are infinitely divisible, as
mentioned in Section 1. In the case of a NIG-distribution, the construction by subordina-
tion can be done in the following simple way (Barndorff-Nielsen, 1998). Let (U;, V;) be a
two-dimensional standard Brownian motion starting at (0, 0) and with drift vector (8, y),
where y > 0. Let 7(#) denote the first time the second component V attains the value
8t > 0 with § > 0. Then {z(¢): ¢ > 0} is an inverse Gaussian Lévy process, and

X =pt + Uz

is a NIG-Lévy process. Specifically, X; is NIG(«a, B, 8t, ut) distributed, where o =

VB v
Construction of financial models by subordination was first proposed by Praetz (1972)
who used a scaled z-distribution to model stock returns and obtained a good fit to weekly
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returns from the Sydney Stock Exchange. This is a particular example of a generalized
hyperbolic distribution where the mixing distribution is an inverse gamma distribution, see
Section 1.1. Praetz attributed the mixing of normals to the change in activity at the ex-
change. Clark (1973) and Epps and Epps (1976) found that there is a dependency between
trading volume and the variance of returns, but did not suggest generalized hyperbolic
models. These finding have been confirmed by Ané and Geman (2000). In Madan and
Seneta (1990), Madan and Lime (1991) and Madan and Chang (1996) the so-called vari-
ance gamma model is introduced and studied as a model for share market returns. This
model is the generalized hyperbolic Lévy process with a gamma mixing distribution. For
a discussion of the subordination approach in finance, see, e.g., Hurst, Platen and Rachev
(1997).

The use of generalized hyperbolic Lévy processes to model the prices of stocks and other
assets and the corresponding theory of option pricing has been thoroughly investigated by
Eberlein and Keller (1995), Keller (1997), Eberlein, Keller and Prause (1998) and Eberlein
and Prause (2002). Eberlein and Jacod (1997) proved that the set of equivalent martingale
measures is large and that the corresponding price range is the entire non-arbitrage interval.
A theory of the term structure of interest rates based on the hyperbolic Lévy process was
developed in Eberlein and Raible (1999). A useful review can be found in Eberlein (2001).

For the processes discussed in this section, estimation based on observations at equidis-
tant discrete time points is as easy as estimation for independent generalized hyperbolic
distributions, because the increments of the process between the observation times are
independent. Usually one would use a Lévy process for which the increments are general-
ized hyperbolic and then estimate the parameters, for instance by means of the computer
program mentioned in Section 1.3. A simple check of the fit of the model to the data
can be made as follows. If, for instance, the data are daily observations, then it should
be checked that the distributions calculated from the estimated model of the increments
over a number of suitably chosen longer time spans fit the corresponding increments cal-
culated from the data. For the NIG and VG Lévy processes these distributions are sim-
ply given by the formulae (12) and (15). For an example of this procedure, see Eberlein
(2001).

3. Stochastic differential equations

In this section we present various methods for constructing diffusion processes with gen-
eralized hyperbolic and generalized inverse Gaussian marginal distributions. A diffusion
process is the solution of a stochastic differential equation driven by a Wiener process.
Estimation of parameters based on discrete-time observations of a diffusion process is
considered too. Furthermore, we consider Ornstein—Uhlenbeck type processes driven by
Lévy processes and models given as sums of processes defined by stochastic differential
equations.
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3.1. Diffusion models

We consider a one-dimensional diffusion process {X;} and suppose that it is the unique
weak solution to the stochastic differential equation

dX; =b(X;; 0)dt + o (X;; 0)dW;, (29)

where o (x; 0) is positive for all x in the state space (I,7) (—oo <l <r < o00)and all 6 in
some p-dimensional parameter space ®. We will focus on ergodic diffusions and denote
the density of the corresponding invariant probability measure by 1ig.

Diffusion processes with a specific marginal distribution are typically constructed by
determining drift » and diffusion coefficient o so that the invariant distribution is of the
required type. This method will result in the appropriate marginal distribution for large
values of ¢ or for all # provided that the initial distribution is equal to the invariant distri-
bution (i.e., Xo ~ wp). Under mild conditions we have the following relationship between
the drift, diffusion coefficient, and the density of the invariant distribution,

()
2b(x;9)—v’(x;9)=v(x;9)u9—, l<x<r e, (30)
e (x)

where v denotes the squared diffusion coefficient, v(x; 6) = o2(x:0).
Using (30), Bibby and Sgrensen (2001) discussed a method for constructing diffusion
processes with a prescribed marginal (invariant) distribution. Letting the drift be given by

1 d
b(x:0) = Eu(x; 9)alog[v(x; 0) f(x)],

where f is a function that is integrable on the interval (I, r), it was shown under some
regularity conditions that the diffusion process given by (29) has invariant density jg pro-
portional to f, irrespective of the choice of the function v. Bibby and Sgrensen (2001) also
considered the special case where

v(x;0) = azf(x)f’(, a2>0, k €0, 1],

in particular the situation where the invariant density was hyperbolic. This led to the fol-
lowing stochastic differential equation,

(X — )

V8 4+ (Xr — p)?

where f is proportional to the hyperbolic density function given by (8), that is

fx) =exp[—ay/82 + (x — )2 + B(x — w)].

dx, = %#(1 — ) f(X) [/3 - }‘” +of(X)T2dW,, (D)
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Note that the drift is towards the mode point of the hyperbolic distribution, p + 88/y. The
diffusion process given by (31) was successfully used to describe the logarithm of the price
of VW-stocks after a linear trend had been subtracted.

In Bibby and Sgrensen (1997) the special case where k = 1 was considered in the situ-
ation of a hyperbolic invariant density. Note that this results in a diffusion process with no
drift, that is the solution to the stochastic differential equation given by

dX; =66XP{%0!\/ 8+ (X —w)? — %ﬂ(Xz —M)}th~ (32)

It turns out that this is an example of a local martingale which is not a martingale. Also
the hyperbolic diffusion process given as the solution of (32) was fitted successfully to
the logarithm of stock-prices (minus a linear trend) in Bibby and Sgrensen (1997). The
construction leading to the hyperbolic diffusion (31) can obviously be made similarly for
any generalized hyperbolic distribution. In the special case « = 1, this was done in Ryd-
berg (1999), where the corresponding NIG-diffusion was fitted successfully to stock prices
(minus a linear trend).

In Kiichler et al. (1999) a hyperbolic diffusion process with constant diffusion coefficient
was discussed. This corresponds to letting the function v be equal to a constant 2, or to
k =01n (31), and gives the following stochastic differential equation,

X —p
V2 (X, — )

The hyperbolic diffusion process given by (33) was first proposed in Barndorff-Nielsen
(1978).

For values of k between the two extremes 0, corresponding to stationarity being obtained
by pure reversion, and 1, where stationarity is obtained by pure diffusion, both these effects
are present to varying degrees.

Serensen (1997b) considers the construction of diffusion processes with a generalized
inverse Gaussian invariant distribution. If v is a positive function, then the solution to the
stochastic differential equation

1
dX, = 502[/3 —a i|dt+adW,. (33)

2
dX, = <v(x,>v’(X,) + %v(mz[@ — DX - y? + %‘SZX’_ZD <

+ U(Xt)th (34)

will have a generalized inverse Gaussian invariant density given by (18) under suitable
regularity conditions on v. The focus in Sgrensen (1997b) is on the special case where
v(x) = kx® for constants o > 0 and « > 0. With this choice of diffusion coefficient, the
diffusion process is the solution to the stochastic differential equation given by

dX, = (BiX2 7" = B X2 4 B3 X7V dr + 1 X4 dW,, (35)
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where

1 1 1
p1= EKz(/\ — 1)+« B2 = Z(KV)Z, B3 = Z(KB)Z'

Note that if & = % and 83 = 0, then the diffusion process is the solution to

dX; = (B1 — B Xy) dt + /X, AW, (36)

that is the Cox—Ingersoll-Ross process (CIR-process) used in finance to model short term
interest rates, see Cox, Ingersoll Jr. and Ross (1985).

A completely different way of constructing hyperbolic diffusion models was proposed
in Jensen and Pedersen (1999). These authors consider processes given by X; = h(Y;),
where Y is a stationary Ornstein—Uhlenbeck process:

dYt Z—QYtdt+Tth

with @ > 0 and t > 0. Suppose F is the distribution function of a given probability dis-
tribution, and let @ denote the distribution function of the standard normal distribution.
If 72 = 2¢ and h(y)=F Lo (v)), then the distribution of X; will have the distribution
function F. If, in particular, F is the distribution function of a generalized hyperbolic dis-
tribution, we obtain a generalized hyperbolic diffusion process. Unfortunately, there is no
explicit expression for the distribution function of a generalized hyperbolic distribution. An
advantage of this approach is that there is an expression for the transition density involv-
ing the function /. Since the distribution function of a generalized hyperbolic distribution,
and hence &, can be calculated numerically, it is relatively easy to calculate the likelihood
function, which is usually not the case for diffusion models. A disadvantage is that the drift
and diffusion coefficients of the diffusion process X are not explicit functions.

3.2. Statistical inference for diffusion processes

Inference for discretely observed diffusion processes is made difficult by the fact that the
likelihood function is generally not tractable. In recent years many different methods have
been proposed to overcome this obstacle. We will here briefly discuss the methods most
commonly used in connection with financial data. For an excellent overview of a wide
variety of procedures for estimating parameters based on discretely observed diffusions,
see H. Sgrensen (2000).

Approximate likelihood methods are considered by Pedersen (1995), Ait-Sahalia (2002),
and Poulsen (1999). In Pedersen (1995) it is shown that the likelihood function can be cal-
culated to any given precision using simulations and the Euler approximation in a clever
way. Unfortunately, the method is very computer intensive. Honoré (1997) successfully
applied the Pedersen method to the CKLS-model for interest rates (proposed by Chan et
al. (1992)). In Ait-Sahalia (2002) an analytical approximation to the likelihood function
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based on a truncated Hermite expansion is developed. Poulsen (1999) obtained an ap-
proximation to the likelihood function by numerically solving the Chapman—Kolmogorov
forward equations. He used his method to fit the CKLS-model to interest rate data. Asymp-
totic results for the maximum likelihood estimator based on discrete time observations of
a diffusion model were derived in Dacunha-Catelle and Florens-Zmirou (1986).

Inference for diffusion processes based on martingale estimating functions is considered
in Bibby and Sgrensen (1995, 1996, 1997). For observations Xy, , Xs,, ..., X;, the martin-
gale estimating functions introduced in Bibby and Sgrensen (1995, 1996) are of the form

Gu(®) = gi(X,_: )X, —Eo(X;|X,,_))]
i=1

+ 3 i (Xo [ (Xy — Eo(X41X,,_)) = Varg (X, 1X,,_)]. (37)
i=1

Note that in analogy with the unknown score function, G, is a sum of functions of con-
secutive pairs of observations, and G,, is a martingale with respect to the natural filtration.
The conditional expectations in (37) can easily be calculated using simulations, and an es-
timator for the parameter 6 is then obtained by solving the equation G, () = 0. In Bibby
and Sgrensen (1995) the resulting estimator is shown to be consistent and asymptotically
normal as the number of observations tends to infinity. An optimal choice of the functions
gi and h; as well as simpler approximately optimal functions that are useful in practice
are given in Bibby and Sgrensen (1995, 1996). As mentioned earlier the hyperbolic dif-
fusion process given by (32) was fitted to the log-prices of stocks after a linear trend had
been subtracted in Bibby and Sgrensen (1997). The parameters in this hyperbolic diffusion
model were estimated using the martingale estimating function

“ v(Xy_,50)
K. (0)= ; (t — l‘i—l)U(IXti,ﬁ 9)3 [(Xti - Xl‘i—l)z - E@((Xti - Xl‘i—l)letifl)]’

where v is the squared diffusion coefficient and a dot denotes differentiation with respect to
the parameter 8. This is an approximately optimal modification of (37) taking into account
that the diffusion has no drift.

Kessler and Sgrensen (1999) considered martingale estimating functions based on eigen-
functions of the infinetisimal generator of the diffusion process. The advantage of such
martingale estimating functions is that they are adapted to concrete models and are easy to
calculate in cases where the eigenfunctions are explicitly known. Unfortunately this is not
often the case.

It is usually easy to obtain an estimator from a simple estimating function of the form

Fa®) =) f(Xy:0),

i=1
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where the function f satisfies that flr f(x,0)up(x)dx =0 with py denoting the density
of the invariant probability measure. Such simple estimating functions were studied by
Hansen and Scheinkman (1995), Kessler (2000), and Jacobsen (2001). The advantage of
these estimating functions is that they are indeed simple and fast to work with because it
is straightforward to explicitly find functions f with the property needed. The main disad-
vantages are that only parameters appearing in the invariant density can be estimated using
simple estimating functions and that the estimators may be far from efficient because the
dependence structure in the data is ignored. An improved version of the simple estimating
function where each term in the sum depends on a pair of consecutive observations was
considered by Hansen and Scheinkman (1995) and Jacobsen (2001). Optimality questions
were treated in Kessler (2000) and Jacobsen (2001). For the improved version it is also not
possible to estimate all parameters, see the discussion in Hansen and Scheinkman (1995).
A review of estimating function inference for diffusion models can be found in Sgrensen
(1997a) and Bibby, Jacobsen and Sgrensen (2002).

Indirect inference procedures based on auxiliary models and extensive simulations were
proposed by Gouriéroux, Monfort and Renault (1993) and Gallant and Tauchen (1996).
These procedures have gained some popularity in the finance literature under the name
of the efficient method of moments. However, the quality of the estimators depend on the
choice of the auxiliary model, which is not a straightforward matter.

Finally, Bayesian MCMC-methods have been applied to diffusion models by Eraker
(2001) and Elerian, Chib and Shepard (2001). In these methods, the likelihood function is
calculated in a way similar to that in Pedersen (1995).

3.3. Ornstein—-Uhlenbeck processes

A stochastic process X is called a process of the Ornstein—Uhlenbeck type, if it satisfies a
stochastic differential equation of the form

dXt - _)\-Xt dt + dZt, (38)

where A > 0 and where the driving process Z is a homogeneous Lévy process. It is not
difficult to see that

t
X,=e MXo+ / e M4z, (39)
0

If X is stationary and square integrable, the autocorrelation function of X is
p(u) = exp(—Au). (40)

When the process Z is the standard Wiener process, the solution X is the usual Ornstein—
Uhlenbeck process. Ornstein—Uhlenbeck type processes have been studied by Wolfe
(1982), Sato and Yamazato (1982, 1984) and Sato, Watanabe and Yamazato (1994); see
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also Jurek and Vervaat (1983), Jurek and Mason (1993), and Barndorff-Nielsen, Jensen
and Sgrensen (1998). A necessary and sufficient condition for (38) to have a stationary
solution is that E(log(1 + |Z(1)])) < oco.

For every generalized hyperbolic distribution there exists a stationary Ornstein—
Uhlenbeck type process such that for all # >> 0 the distribution of X is the given generalized
hyperbolic distribution. The same is true for all generalized inverse Gaussian distributions.
This is because these distributions have the property called self-decomposability, as dis-
cussed in Section 1. The Lévy process driving the NIG Ornstein—Uhlenbeck type process
was studied by Barndorf-Nielsen (1998), while the process driving the symmetric variance-
gamma Ornstein—Uhlenbeck type process, was found by Jiang (2000). For symmetric dis-
tributions, the driving Lévy process is, in the case of the NIG Ornstein—Uhlenbeck process,
the sum of a NIG Lévy process and a compound Poisson process, while for the variance-
gamma Ornstein—Uhlenbeck process, it is simply a compound Poisson process.

As for most ordinary diffusion processes, the likelihood function is usually not explicitly
available for processes of the Ornstein—Uhlenbeck type. Since these processes are Markov
processes, a simple and natural approach to statistical inference goes via estimating func-
tions based on conditional moments defined in analogy with those discussed in Section 3.2.

3.4. Compound processes

Quite often, the exponentially decreasing autocorrelation function (40) is too simple to fit
financial data. However, models with a much more flexible covariance structure are easily
obtained by summing independent Ornstein—Uhlenbeck type processes, as was proposed
by Barndorff-Nielsen, Jensen and Sgrensen (1998). The process

Xe=X{" 44+ X", (41)

where the processes Xt(i), i =1,...,m, are independent Ornstein—Uhlenbeck type
processes given by

dxV =3, xDdr +az® (42)
for independent Lévy processes Z ,(i), i =1,...,m, has an autocorrelation function of the
form

pu) =Prexp(—Aiu) + -+ Dy exp(—Anuu), (43)

where @; is proportional to the variance of X (’), and @| + - - -+ &, = 1. A much better fit
to financial data than that obtained by (40) can often obtained even for m = 2. Examples
can be found in Barndorff-Nielsen, Jensen and Sgrensen (1998) and Barndorff-Nielsen and
Shephard (2001c).

For every generalized hyperbolic distribution and for every generalized inverse Gaussian
distribution there exists a stationary process X of the form (41), (42) such that for all # > 0
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the distribution of X; is that particular distribution. Again this is because these distrib-
utions are self-decomposable, see Barndorff-Nielsen, Jensen and Sgrensen (1998). More
complex types of superpositions of Ornstein—Uhlenbeck type processes were investigated
in Barndorff-Nielsen (2001).

The construction (41) can be made for diffusion models with linear drift and non-linear
diffusion coefficient too, see Bibby, Skovgaard and Sgrensen (2002). As an example, sup-
pose we want a stationary stochastic process with autocorrelation function (43) for given
values of A1, ..., A, and @1, ..., @y, and such that the marginal distribution of X, is a
gamma distribution with shape parameter « and scale parameter . This can be obtained
by defining m independent processes as the stationary solutions to

dx = =1 (X — @) dr + /282X dw ), (44)

i =1,...,m. Each of the processes, X,(i), is a CIR-process, (36), which is a particular

example of the generalized inverse Gaussian diffusions given by (35). Since X t(l) is gamma
distributed with shape parameter «®; and scale parameter S, it follows that X, defined by
(41) has the required gamma distribution, and since the autocorrelation function of X ,(’) is
exp(—A;u), the autocorrelation function of the sum X; is given by (43). This construction
will come in handy in Section 4, where processes of the type (41) will be used as models
for stochastic volatility.

Empirical autocorrelations that might be interpreted as an indication of long range de-
pendence, may often alternatively be approximated very well by autocorrelation functions
of the type (43). However, if a model with genuine long range dependence is desirable, a
NIG-process of this type can be constructed as follows.

LetXW, i=1,2,...,bea sequence of independent NI/G Ornstein—Uhlenbeck processes
with NIG-parameters («, B, 0, §;), where

§; ~ i~1=20-H),

for some H € (0, 1), and all with the same value of the drift parameter A. Barndorff-Nielsen
(1998) showed that the process

oo
Xi=y X (45)
i=1

which is stationary and well-defined as a mean-square limit, has as its marginal distribu-
tion the NIG distribution with parameters («, 8,0, §), where § = Zfil 8;. Moreover, its
autocorrelation function r () satisfies

r(u) ~ Luyu 201,

for some slowly varying function L. Thus if % < H < 1, the process X exhibits long range
dependence with exponent H. The construction of long range dependent processes by a



238 B.M. Bibby and M. Sgrensen

sum of the type (45) is similar to a construction proposed by Cox (1984). Almost the same
construction was used in Barndorff-Nielsen, Jensen and Sgrensen (1990). The construction
(45) can also be applied to a sequence of independent stationary NIG-diffusions given as
solutions of stochastic differential equations defined in analogy to (31).

Likelihood inference for the various compound processes considered here is complicated
by the fact that the likelihood function is not explicitly available. A feasible alternative is
provided by prediction-based estimating functions, see M. Sgrensen (2000).

4. Stochastic volatility models
A generalization of the Black—Scholes model for the logarithm of an asset price

dth(/,L-l—ﬂO'z)dt-'-O'th, (46)

that takes into account the empirical finding that the volatility o' varies randomly over
time is a stochastic volatility process:

dX; = (u+ Bu) dt + /v dW,. (47)
Here the volatility v, is a stochastic process that cannot be observed directly. If the data are

observations at the time points Ai, i =0, 1,2, ..., n, then the returns ¥; = X;o — X(i—1)a
can be written in the form

Yi = A+ BSi +/SiAi, (48)
where
iA
5 = f oy dr, (49)
(i-DHA

and where the A;s are independent, standard normal distributed random variables. If the
integrated volatility S; is independent of A;, and if it is generalized inverse Gaussian
distributed, then the distribution of the return Y; is generalized hyperbolic. This follows
from the representation of the generalized hyperbolic distributions as variance—mean mix-
tures of normal distributions mentioned in Section 1.2. Unfortunately, no continuous time
process v with the property that the integrated volatility (49) is exactly generalized inverse
Gaussian distributed is presently known. Therefore we will instead consider models where
the volatility process v is stationary with v; generalized inverse Gaussian distributed. For
small values of A, the distribution of S; will then be close to a generalized inverse Gaussian
distribution, and hence the distribution of ¥; will be close to a generalized hyperbolic dis-
tribution. Thus we obtain models that are not exactly generalized hyperbolic, but which
have marginal distribution with much the same tail properties when A is not too large.
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When A tends to infinity, the distribution of A’l/z(Yi — uA — BS;) = 4/Si/AA; tends
to a normal distribution with mean zero and variance equal to the mean volatility, E(v;),
provided that the process v is ergodic. This is in accordance with the empirical finding that
the distribution of returns over short periods have heavy tails and are well approximated by
generalized hyperbolic distributions, whereas the distribution of returns over long periods
is close to a normal distribution. Limit theorems relating, for small A, the distribution of
Y; to the generalized hyperbolic distribution obtained by assuming that S; is exactly gen-
eralized inverse Gaussian distributed are given in Genon-Catalot, Jeantheau and Larédo
(1998). A rather different type of discrete time stochastic volatility models with exactly
generalized hyperbolic distributed returns was proposed in Banrdorff-Nielsen (1997). It
should be noted that stochastic volatility models can be interpreted as being obtained by
subordination. Here the operational time or business time is the integral of the volatility
process T(t) = fot vy ds, which can be interpreted as discussed in Section 2.

A simple specification of the volatility process v is to assume that it is one of the station-
ary and ergodic generalized inverse Gaussian diffusions defined in Section 3 as the solution
of (35). A particularly simple choice is to assume that v is the stationary CIR-model given
by (36), for which v; is gamma-distributed so that a variance-gamma stochastic volatility
model is obtained. This model was proposed by Hull and White (1988) and was considered
further by Heston (1993). Its advantage is that analytically it is relatively tractable. For in-
stance, all moments and mixed moments can be found explicitly, see, e.g., M. Sgrensen
(2000). A problem is that because of the linear drift, the autocorrelation function is an ex-
ponential function, whereas it is a well-established empirical fact that the autocorrelation
function of the volatility process decreases more slowly than a single exponential func-
tion. Under relatively weak regularity conditions a diffusion model has an exponentially
decreasing autocorrelation function. A sufficient condition is that it is p-mixing, for which
simple conditions are given in Jeantheau and Larédo (2000). For this reason, stochastic
volatility models with a diffusion volatility process can usually not fit the autocorrelation
of the volatility process well.

In applications where the autocorrelation of the volatility process is important, a solution
is to use the construction in Section 3.4, i.e., to define the volatility process as the sum

o= ™, (50)

where vt(l), e vt(m) are independent CIR-processes, with v,(i) defined like the process X @
given by (44). Also in this case a variance-gamma model is obtained, which is exactly as
analytically tractable as the variance-gamma model just discussed, but the autocorrelation
structure of the volatility process (50) is given by (43) and is thus very flexible. This ap-
proach is studied for more general diffusion models in Bibby and Sgrensen (2002).

It has been found empirically that for equities a fall in the price is associated with an
increase in the future volatility. This phenomenon is referred to as leverage, Black (1976)
and Nelson (1991). Stochastic volatility models of the form (47), where the Wiener process
driving the price process is independent of the volatility process, as we have so far assumed,
cannot deal with leverage, because for such a model the future fluctuations of the volatility
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are independent of the present price. We can, however, easily generalize the model to allow
for the leverage phenomenon. Again we let the volatility process v be given by (50), and
denote the Wiener process driving the kth CIR-process vt(k) by B®. Then we define the
log-price process by

dX; = (u + Buy) di + /v; AW, 51
where W is the standard Wiener process

~  W,+pB
W, = Nt S
V1+ p?

with p € R and

o) (m)

_ B ...+ B

BF%. (52)
m

A lengthy calculation shows that for 8 = 0 the covariance between Y; and Y:2+ y (G=1is

p R —Aj
——————— ) bre MY,
\/1+p2«/ﬁ,§

Here

by =+/28 e)‘kA(l - ef)‘kA)z)\k_yzE(\/ v{k)vl ) >0,

where B is the shape parameter of the gamma distribution of the volatility, and Ay is the
speed of reversion of the kth volatility component. We see that the correlation between
Y; and Yi2+ j is negative if p < 0, which is exactly what we wanted. For p = 0 there is
no leverage effect as expected. Note that the effect decreases as j tends to infinity. The
decrease is of the same type as that of the autocorrelation function (43), but with different
weights. It is thus very flexible and can in particular be slow.

Barndorff-Nielsen and Shephard (2001b, ¢) proposed to model the volatility process v as
an Ornstein—Uhlenbeck type process, i.e., a solution to the stochastic differential equation
(38). Such a process can be chosen stationary with a generalized inverse Gaussian marginal
distribution, as discussed in Section 3.3. Processes of this type have the advantage that the
drift is linear and the coefficient in front of the driving Lévy process is constant, which,
analogous to the situation for the classical Wiener-driven Ornstein—Uhlenbeck process,
implies an unusual analytic tractability. For instance the integrated volatility, which is a
key quantity in finance, has the simple structure

t
f veds = A7 ((Ze — Zg) — (v — vy)),
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where s < ¢, and where Z is the driving Lévy process. This relation implies, for instance,
that stochastic volatility processes of this type can be simulated as accurately as the volatil-
ity process can be simulated. This is because the random variables S;, given by (49), are
simple functions of the processes Z and v. An efficient method of simulating Ornstein—
Uhlenbeck type processes is based on results by Rosinski (1991) and Rosisiski (2001), see
the exposition in Barndorff-Nielsen and Shephard (2001b).

Barndorff-Nielsen and Shephard (2001a) have studied the distributional properties of
integrated Ornstein—Uhlenbeck type processes in detail. For the Ornstein—Uhlenbeck type
volatility process with inverse Gaussian marginal distributions they found that while the
integrated volatility process is not distributed exactly as the inverse Gaussian distribution,
its tails have the same behaviour as this distribution. This implies that the returns will have
the expected NIG tail behaviour.

For an Ornstein—Uhlenbeck type volatility process v, the autocorrelations of the discrete
time processes S; and Yl.2 have the following simple form. Here S; is given by (49), while
Y; denotes the return given by (48).

cor(S;, Si+j) = dexp(—AA(j — 1)), (53)
and

cor(Y7, Y% ;) =cexp(—rA(j — 1)), (54)
where

_ _ 2
|>d— [1 —exp(—ArA)]
2[exp(—rA) — 1 +AA]
[1 —exp(—1A)]?
= > 07
6lexp(—AA) — 1 + AA]+2(LA)2 (£ /w)?

=c

with £ and w denoting the mean and variance of the volatility v;. Therefore, as dis-
cussed in Barndorff-Nielsen and Shephard (2001c), S and Y 2 are constrained ARMA(1, 1)
processes with common autoregressive parameter, and with the moving average root be-
ing stronger for S than for ¥2. The ARMA structure implies that the return process Y is
weak GARCH(1, 1) in the sense of Drost and Nijman (1993). Note that the formulae (53)
and (54) also hold for the stochastic volatility model discussed above, where the volatility
process is a CIR-diffusion. Hence for this model, the processes S and Y2 have the same
ARMA structure.

Barndorff-Nielsen and Shephard (2001c) also proposed a model with a Lévy-driven
Ornstein—Uhlenbeck volatility process that allows for the leverage phenomenon. The log-
price is modelled by

dX; = (u + Bv) dt + v, dW, + pdZ,, (55)
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where Z, = Z, — E(Z,) is the centered version of the Lévy process Z that drives the
volatility process. This model has properties similar to those of the model with leverage
discussed above (when m = 1). It is not a generalized hyperbolic model in the sense of
the other stochastic volatility models in this section because of the term pdZ,. It is not
clear to what extend the model is approximately hyperbolic. A complication is that the
log-price process is a diffusion with jumps rather than a classical diffusion process driven
by a Wiener process.

As already mentioned in Section 3.3, the autocorrelation function of an Ornstein—
Uhlenbeck type process decreases exponentially, which, as also mentioned earlier, is faster
than what is typically found in financial data. Volatility processes of the form (50), where
vt(l), cens v,(m) are independent, stationary Ornstein—Uhlenbeck type processes such that
the marginal distribution of v is a generalized inverse Gaussian distribution, have a much
more flexible autocorrelation structure. That such a volatility process exists was discussed
in Section 3.4. Stochastic volatility models of this type often provide a much better fit to fi-
nancial data. An example of this is given in Barndorff-Nielsen and Shephard (2001c¢). Also
models where the volatility process is a sum of independent Ornstein—Uhlenbeck processes
are analytically tractable.

Statistical inference for stochastic volatility models cannot easily be based on the likeli-
hood function as it is not explicitly available and quite hard to simulate. Harvey, Ruiz and
Shephard (1994) proposed a pseudo-likelihood method based on a Gaussian approxima-
tion that allowed them to apply the Kalman filter. More recently, likelihood based methods
for stochastic volatility models have been proposed by Kim, Shephard and Chib (1998),
and simulation based Bayesian methods using Markov chain Monte Carlo have been de-
veloped by Elerian, Chib and Shephard (2001) and Eraker (2001). A new and quite sim-
ple way of obtaining an approximate likelihood function for stochastic volatility models,
which seems very promising, has been proposed by H. Sgrensen (2001). The method takes
advantage of the fact that lag-k conditional densities are relatively easy to obtain by sim-
ulation for stochastic volatility models. Other methods are the indirect inference methods
of Gouriéroux, Monfort and Renault (1993), Galant and Tauchen (1996), and Gallant and
Long (1997). The prediction-based estimating functions of M. Sgrensen (2000) can be
applied to all models discussed in this section, while the estimators proposed by Genon-
Catalot, Jeantheau and Larédo (1999) based on limit results (where the time between ob-
servations goes to zero) in Genon-Catalot, Jeantheau and Larédo (1998) are developed for
volatility processes of the diffusion type. Recently methods based on realized volatility
have been proposed, see Gloter (1999) and Banrdorff-Nielsen and Shephard (2002). Sur-
veys that discuss the literature on stochastic volatility models up to 1995 can be found in
Ghyseles, Harvey and Renault (1996) and Shephard (1996).
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Appendix

In this appendix a few definitions and results concerning Bessel functions are collected.
The modified Bessel function of the third kind with index A € R can be defined by the
following integral representation,

1 [ r=1 —x+u=12
K)"(x)zi u" e du, x>0.
0

The modified Bessel function has the following properties:

K_y(x) = Ky (x), (A.D)
2\

Kyr1(x) = 7KA(X) + Ky—1(x), (A2)
A

K; (x) =—;KA(X)—KA—1(X)- (A.3)

Fora=n+1/2,n=0,1,2,..., we have that

Knsipto = | e i+ Z oo, (A4)

For small values of the argument it holds that
Ky (x)~T)2* 1x™  x 10, ifr>0. (A.5)
Similarly, we have for large values of the argument that

Ky (x) = T, 1+4A2—1+(4A2—1)(4A2—9)
M=o ¢ 8x 21(8x)2

(422 — 1)(4A2 — 9)(41% — 25) N
31(8x)3 o }

(A.6)
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The Bessel function of the first kind with index A € R can be defined for x > 0 by

1 b4 . )\' o0 )
Jr(x) = —/ COS(x sin(u) — Au) du — M/ e ¥ sinh(u)—Au du.
T Jo T

For A > —% we have

2(x/2)* 2)h=1/2
J(x) = fF()»—i—l/Z)/ (11— cos(xu)du, x€eR,

where I' denotes the gamma function.
The Bessel function of the second kind with index A € R can be defined for x > 0 by

o0

1 (7 1 .
Yi(x) = ;/ sin(x sin(u) — Au) du — ;/ [eM +e M cos(kn)] e ¥ sinh() q;,
0 0

The function Y) (x) is often alternatively denoted N, (x) and is sometimes called Weber’s
function. The relationship between J; (x) and Y) (x) is

Jr(x)cos(Am) — J_y(x)
sin(Amr)

Y (x) =

In connection with the NIG-distribution, it is useful to know that

/2 [ 2
Jipx) = Esin(x) and Yi2(x)=— Ecos(x).
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Abstract

The chapter examines the use of stable Paretian distributions in modeling market and credit
Value at Risk (VaR). The in-sample- and forecast-evaluations show that stable market VaR
modeling outperforms the “normal” modeling for high values of the VaR confidence level.
The chapter also develops a new technique for estimating correlation, constructs a new
method for simulating portfolio values, and assesses portfolio VaR in various cases of credit
instruments’ distributions: independent, symmetric dependent, and skewed dependent.
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1. Introduction

One of the most important tasks of financial institutions is evaluating the exposure to mar-
ket and credit risks. Market risks arise from variations in prices of equities, commodities,
exchange rates, and interest rates. Credit risks refer to potential losses that might occur be-
cause of a change in the counterparty’s credit quality such as a rating migration or a default.
The dependence on market and credit risks can be measured by changes in the portfolio
value, or profits and losses. A commonly used methodology for estimation of risks is the
Value at Risk (VaR). In the text below, the market VaR implies the VaR measurements
associated with market risks and the credit VaR means the VaR linked to credit risks.

A VaR measure is the highest possible loss over a certain period of time at a given
confidence level. For example, if the daily VaR for a given portfolio of assets is reported to
be $2 million at the 95 percent confidence level, it means that, without abrupt changes in
the market conditions, one-day losses will exceed $2 million 5 percent of the time.

Formally, a VaR = VaR; ; is defined as the upper bound of the one-sided confidence
interval:

Pr[AP(1) < —VaR]=1—c, (1)

where c is the confidence level and AP (t) = A P;(7) is the relative change (return) in the
portfolio value over the time horizon .

AP(t) =Pt +7)— P(t),

where P(t) =1logS(¢), S(¢) is the portfolio value at ¢, the time period is [¢, T'], with
T —t =7, and ¢ is the current time.

The essence of the VaR computations is estimation of low quantiles in the portfolio
return distributions. The VaR techniques suggest different ways of constructing the port-
folio return distributions. The traditional methods are the parametric method, historical
simulation, Monte Carlo simulation, and stress-testing. One of the parametric approaches,
the variance—covariance method, is based on the normal assumption for the distribution
of financial returns. However, financial data often violate the normality assumption. The
empirical observations exhibit “fat” tails and excess kurtosis. The historical method does
not impose distributional assumptions but it is not reliable in estimating low quantiles of
AP with a small number of observations in the tails. The performance of the Monte Carlo
method depends on the quality of distributional assumptions on the underlying risk fac-
tors. A well-known methodology of constructing credit portfolio return distributions is the
CreditMetrics™ product of J.P. Morgan.! It is based on the rating transition model of
Jarrow, Lando and Turnbull (1997) and assumptions that joint credit quality changes are
driven by joint movements of firms’ assets values.

I See Gupton, Finger and Bhatia (1997).
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The existing methods do not provide satisfactory evaluation of VaR. The main drawback
is inadequate approximation of distributional forms of portfolio returns. Given the nature
(heavy tails, excess kurtosis, and skewnessz) of empirical financial data, the stable Paretian
distributions seem to be the most appropriate distributional models.?

The chapter examines the use of stable Paretian distributions in modeling market and
credit VaR. The stable distributions are described by four parameters: « tail index, B skew-
ness, i location, and o scale. Modeling with such parameters will depict fat tails and
skewness of distributions. Empirical analysis reported here confirms that, indeed, stable
modeling captures heavy-tailedness and asymmetry of financial returns, and, therefore,
produces more accurate risk estimates. The in-sample- and forecast-evaluations show that
stable market VaR modeling outperforms the “normal” modeling for high values of the VaR
confidence level. The stable distributions possess the additivity property: a linear combi-
nation of independent stable (or jointly stable) random variables with stability index « is
again a stable random variable with the same «. The additivity property provides analytic
formulas for parameters of portfolio returns. In the case of independent instruments, the
formulas are simple and can be used for estimating portfolio risk without simulations. An
analyst can employ “independent” risk measurements as lower bounds of portfolio risk
estimates. A symmetric stable random variable can be interpreted as a transformation of
a normal random variable. Based on this property, a new technique is developed here for
estimating correlation. A stable random variable can be decomposed into the “symmetry”
and “skewness” parts. Building on this feature, we construct a new method for simulat-
ing a distribution of portfolio values. We apply this method for portfolio risk evaluation in
various cases of credit instruments’ distributions: independent, symmetric dependent, and
skewed dependent.

The remainder of the chapter is organized as follows. In Section 2 we discuss com-
putation of VaR using the variance—covariance method, which is based on the normality
assumption for the distribution of financial returns. Section 3 provides a finance-oriented
description of stable distributions. In Section 4 we estimate the market VaR measurements
employing normal and stable modeling of financial returns.* Section 5 investigates stable
modeling of credit returns and discusses risk assessment for individual credit instruments.
Section 6 considers portfolio risk estimation for independent portfolio assets and derives
lower bounds for risk measurements. Sections 7 and 8 present, respectively, evaluation of
portfolio risk in two cases of dependent portfolio instruments’: symmetric and skewed.
Section 9 describes a main framework of the one-factor model. Section 10 discusses credit
risk evaluation for portfolio assets. Section 11 explains portfolio credit risk estimation.
Section 12 states conclusions.

2 Skewness is most pronounced in distributions of value changes of credit instruments. For references, see
Gupton, Finger and Bhatia (1997), Federal Reserve System Task Force on Internal Credit Risk Models (1998),
Basle Committee on Banking Supervision (1999).

3 Cheng and Rachev (1995), Chobanov et al. (1996), Fama (1965), Gamrowski and Rachev (1994, 1995a, b),
Mandelbrot (1962, 1963a, b, 1967), McCulloch (1996), Mittnik and Rachev (1991, 1993a, b), Mittnik, Rachev
and Chenyao (1996), Mittnik, Rachev and Paolella (1998).

4 See also Gamrowski and Rachev (1996).



Ch. 7:  Stable Modeling of Market and Credit Value at Risk 253

2. “Normal” modeling of VaR

From the definition of VaR = VaR; . in Equation (1), the VaR values are obtained from the
probability distribution of portfolio value returns:

—VaR
1—C=FAP(—V3R)=/ fap(x)dx,

—00

where Fap(x) = Pr(AP < x) is the cumulative distribution function (cdf) of portfolio
returns in one period, and f4p (x) is the probability density function (pdf) of AP .5

If the changes in the portfolio value are characterized by a parametric distribution, VaR
can be computed using the distribution parameters. In this section we review “normal”
modeling — a parametric method based on the normal distribution assumption. It is often
called the variance—covariance method. We describe applications of the methodology for
computing VaR of a single asset and portfolio VaR.

2.1. VaR for a single asset

Assume that a portfolio consists of a single asset, which depends only on one risk factor.
Traditionally, in this setting, the distribution of asset returns is assumed to be the univariate
normal distribution, identified by two parameters: the mean, u, and the standard devia-
tion, o. The problem of calculating VaR is then reduced to finding the (1 — ¢)-th percentile
of the standard normal distribution z{_.:

X* 2l—c
1—c=/ g(x)dx:/ ¢(z)dz=N(z1_¢), with X*=z1_.0 + u,
—0Q —o0

where ¢ (z) is the standard normal density function, N (z) is the cumulative normal distrib-
ution function, X is the portfolio return, g(x) is the normal distribution function for returns
with mean p and standard deviation o, and X* is the lowest return at a given confidence
level c.

In many applications investors assume that the expected return p equals 0. This as-
sumption is based on the conjecture that the magnitude of p is substantially smaller than
the magnitude of the standard deviation ¢ and, therefore, can be ignored. Then we have

X*=7z1_.0 and, therefore, VaR=—YpX*=—Yyz;_.0,

where Y is the initial portfolio value.

SIf fap(x) does not exist, then VaR can be obtained from the cdf Fpp.
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2.2. Portfolio VaR

If a portfolio consists of many assets, the computation of VaR is performed in several steps.
Portfolio assets are decomposed into “building blocks”, which depend on a finite number of
risk factors. Exposures of the portfolio securities are combined into risk categories. Then,
the total portfolio risk is obtained by aggregating risk factors and their correlations. We
denote:

e X, is the portfolio return in one period,

e N is the number of assets in the portfolio,

e X; is the i-th asset return in one period (t = 1), X; = AP(1) = P;(1) — P;(0), where P;

is the log-spot price of asset i, i =1, ..., N. More generally, X; can be the risk factor
that enters linearly® in the portfolio return.
e w; is the i-th asset’s weight in the portfolio,i =1, ..., N.

The portfolio return is

N
X,,:Zw,-X,-.

i=1

In matrix notation,

X,=w'X,
where
— T _ T
w_(wlaw27~'~awN) ’ X_(X15X25'~'5XN) .

Then the portfolio variance is

N N N
V(Xp) = ngw = Z w,-za,-i + Z Z Wi W;pij0i0;,
i=1 i=1 j=1
i#]
where o;; is the variance of returns on the i-th asset, o; is the standard deviation of returns
on the i-th asset, p;; is the correlation between the returns on the i-th and the j-th assets,
X is the covariance matrix, ¥ =[o0;;], 1 <i <N, 1< j < N.
If all portfolio returns are jointly normally distributed, the portfolio return, as a linear
combination of normal variables, is also normally distributed. The portfolio VaR based on
the normal distribution assumption is

VaR = —Ypz1-c0(Xp),

6 If the risk factor does not enter linearly (as in a case of an option), then a linear approximation is used.
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where o (X ) is the portfolio standard deviation (the portfolio volatility),

o(X,) =/V(X,).

Thus, risk can be represented by a combination of linear exposures to normally distrib-
uted factors. Hence, estimation of risk reduces to evaluation of the covariance matrix of
portfolio risk factors (in the simplest case, individual asset returns).

The simplicity of normal modeling explains its common use for VaR computation de-
spite the fact that financial data often violate the normality assumption. We conjecture that
stable distributions are more adequate distributional models. In the following sections we
analyze the stable modeling of market and credit VaR. We begin the analysis with provid-
ing a finance-oriented description of stable distributions.

3. A finance-oriented description of stable distributions

In this part we describe parameters and some finance-oriented properties of stable distrib-
utions. We also examine methods of estimating parameters of stable laws.

3.1. Parameters and properties of stable distributions

A random variable R is said to be stable’ if for any a > 0 and b > O there exist constants
¢ > 0and d € R such that

ARy +bRr L cR+d,

where Ry and R, are independent copies of R and £ denotes the equality in distribution.

In general, stable distributions do not have closed form expressions for the density and
distribution functions. Stable random variables (R) are commonly described by their char-
acteristic functions:

PR(6) = E(exp(iR0)) = exp{—a“|9|°‘(1 —iBsign(6) tan ?) + iu@}, ifas£1,
PR(0) = E(exp(iR0)) = exp{—a|9| <1 + iﬂ% sign(@) ln9> + iue}, ifa=1,

where « is the index of stability, 0 < o <2, B is the skewness parameter, —1 < <1, o
is the scale parameter, o > 0, and p is the location parameter, u € R. To indicate the
dependence of a stable random variable R on its parameters, we write R ~ Sy (8, o, u). If

7 Often R is called a-stable or Pareto stable or Pareto—Lévy-stable (for « < 2).
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the index of stability « = 2, then the stable distribution reduces to the Gaussian distribution.
In empirical studies, the modeling of financial return data is done typically with stable
distributions having 1 < a < 2.3 Stable distributions are unimodal and the smaller « is, the
stronger the leptokurtic feature of the distribution (the peak of the density becomes higher
and the tails are heavier). Thus, the index of stability can be interpreted as a measure of
kurtosis. When « > 1, the location parameter p measures the mean of the distribution. If
the skewness parameter B = 0, the distribution of R is symmetric and the characteristic
function is

DR(0) = E(exp(iR0)) = exp{—c®|0|* +iub}.

If B > 0, the distribution is skewed to the right. If 8 < 0, the distribution is skewed to the
left. Larger magnitudes of 8 indicate stronger skewness. If 8 =0 and © = 0, then the stable
random variable R is called symmetric a-stable (sas). The scale parameter (the volatility)
o allows any stable random variable R to be expressed as R = o Ry, where R( has a
unit scale parameter, and the same index of stability « and skewness parameter 8 as R.
The scale parameter generalizes the definition of standard deviation. The stable analog of
variance is the variation: vy = o“.

In VaR estimations we are interested in investigating the behavior of the distributions in
the tails. The fails of the stable (non-Gaussian) distributions have a power decay and are
characterized by the following properties:

lim AYP(R > A) =kq

A—400

1+ﬂa°‘
2

and

1—
lim A*P(R <—)A)=ky T'BG“,

A—>—+00
where

l—«

k=15 "0 cos(za/2)’

2
ifor#1, ke ==, ifa=10
T

The p-th absolute moment, E|R|P = [;° P(IR|? > x)dx, is
e finiteif p <a ora =2, and
e infinite otherwise.

8 The financial returns modeled with -stable laws exhibit finite means but infinite variances.
9 Note that, in contrast to the normal case, the tails of the non-Gaussian (Pareto) stable distributions are much
fatter, which will be an important issue in estimating VaR.
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Thus, the second moment of any non-Gaussian stable distribution is infinite.
Stable distributions possess the additivity property: a linear combination of independent
stable random variables with stability index « is again a stable random variable with the

same C(.IO

Example. If Ry, R, ..., R, are independent stable random variables with stability index
o, Ri ~ S4(Bi,oi, i), then R = Z?:l w; R; is a stable random variable with the same «
and parameters:

(@ifa#1,

o= ((lwl |0'l)a +---+ (lwnlan)a)l/a,

g sign(w;) 1 (|wi]o1)® + - + sign(wp) Bn (|wn|0w)*
(wilo)® +-- -+ (Jwalon)® ’

w=wipr + -+ Wplhn;

b ifa=1,

o =lwilor + -+ |wyl|on,

B = sign(wy)Bi|wiloy + -+ - + sign(wy) By |wnlon

lwilop + -+ |wy|oy

2
W=wWip + -+ Wa by — ;(wl In|wilo1Br + -+ + wp ln|wn|0'n,3n)-

Since the Pareto-stable distributions have infinite variances, one cannot estimate risk
by variance and dependence by correlations. We shall introduce variance- and covariance-
similar notions for stable laws. These notions are based on the multivariate assumptions of
stable distributions.

A random vector R of dimension d is stable if for any a > 0 and b > 0 there exist ¢ > 0
and a d-dimensional vector D such that

aR 4+ bRy L ¢R+ D,

where R; and R, are independent copies of R.

If a random vector is stable with « > 1, then it means that all components of the vec-
tor are stable with the same index of stability and any linear combination (for example,
portfolio returns) is again stable.!!

10 This property is shared only by normal and stable laws, and is the main advantage of the use of stable laws for
portfolio returns.

11 We shall model the dependence structure of the vector of returns (R, ..., Ry) of a portfolio by assuming that
(R, ..., Ry) is an a-stable vector.
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The characteristic function of a d-dimensional vector is given by:
(a)ifa#1,

Pr(0) = Pr(61,62,....64)
= Eexp(i0"R)

= exp{—/ |9Ts‘a<1 —isign(67s) tan ?)F(ds) +i9TpL},
Saq
b)ifa=1,
Dp(0) = exp{—/ |6Ts| <1 + iE sign(OTs) ln|9Ts|>F(ds) + iQT/,L},
Sd T

where I' is a bounded nonnegative measure on the unit sphere Sy, s is the integrand unit
vector (s € Sz) and w is the shift vector. The measure I” is named a spectral measure. Let
H be the distribution function of I". Then, the characteristic function in polar coordinates

is as follows

(@ ifa#1,

T T 2
@R(G)zexp{—|9|a// / |cos(@, ¥)|*
0 JO 0

x (1 —sgn(cos(6, ¥))) tan ? dH (y) + iQTpL},
b ifa=1,
T e 2
@R(Q)zexp{—|9|°‘// / |cos(@, ¥)|*
0Jo 0
X (1 - sgn(cos(@, w)));ln(,o|cos(9, 1//)|) dH (y) + iOTM},

where for 6 given by its polar coordinates, 8 (p singy - - -singg—_1, psingy - - -singg_n x
CoSPg—1, psingy ---singg_3cos¢pi—2, ..., pcos¢i), we denote

d—1 d—2
cos(0, V) = < H sin ¢; sin Wi) + < H sin ¢; sin lp,-) COSPg—1COSYq_1
i=1

i=1
+ -4 cos¢icosy.
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If o > 1, then w is the mean vector, © = E' R. The scale parameter of a linear combina-
tion of the components of a stable vector R satisfies the relation:

o“(wTR) =oc“(wWiR1 + - +wyRy) =/ ‘wTs|a1"(ds).
Sd

Viewing R = (Ry, ..., Ry) as the vector of individual returns in a portfolio with weights
Wi, ..., Wy, oo‘(wTR) will be the portfolio risk-measure. As we defined above, v, = c®
is the variation, the stable equivalent of variance. Similarly to the traditional interpretation
of covariance as an indicator of dependence, one can use the covariation to estimate the
dependence between two sas distributions:

1 d0c* (w1 Ry + waR»)
o Jwq

[Ri; R2le =

=/ sisi N ds),

w=0; wy=1

where (R1, Ry) is a sas vector (1 <« <) and x k= |x|k sgn(x) (signed power). The ma-
trix of covariations [R;; Rjly, 1 <i <d, 1< j <d, determines the dependence structure
among the individual returns in the portfolio.

3.2. Estimation of parameters of stable distributions'?

We shall examine the methods of estimating the stable parameters and their applicability
in VaR computations, where the primary concern is the tail behavior of distributions. It has
been proposed that it is more useful to evaluate directly the tail index (the index of stability)
instead of fitting the whole distribution. The latter method is claimed to negatively affect
the estimation of the tail behavior by its use of “center” observations. We shall describe
both approaches: tail estimation and entire-distribution modeling. We suggest a method,
which combines the two techniques: it is designed for fitting the overall distribution with
greater emphasis on the tails.

3.2.1. Tail estimation

Tail estimators for the index of stability « are based on the asymptotic Pareto tail behavior
of stable distributions.'> We shall consider the following estimators of tail thickness: the
Hill, the Pickands, and the modified unconditional Pickands.!4

12 Eor additional references on estimation of the four parameters of stable univariate laws, see Chobanov et
al. (1996), Gamrowski and Rachev (1994, 1995a, b), Klebanov, Melamed and Rachev (1994), Kozubowski and
Rachev (1994), McCulloch (1996), Mittnik and Rachev (1991), Rachev and SenGupta (1993). For the multivariate
case estimation of: the spectral measure, the index of stability, the covariation and tests for dependence of stable
distributed returns, see Cheng and Rachev (1995), Gamrowski and Rachev (1994, 1995a, b, 1996), Heathcote,
Cheng and Rachev (1995), Mittnik and Rachev (b), Rachev and Xin (1993).

13 See Section 3.1.

14 For details on the Hill, Pickands, and the modified unconditional Pickands estimators, see Mittnik, Paolella
and Rachev (1998c) and references therein.
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The Hill estimator!? is described by

1
% Zﬁ:l ln(XrH»lfj:n) —In Xy kn ’

aHil =

where X ., denotes the j-th order statistic of sample X1,..., X ,,;16 the integer k points
where the tail area “starts”. The selection of k is complicated by a tradeoff: it must be
adequately small so that X,,_., is in the tail of the distribution; but if it is too small, the
estimator is not accurate. The disadvantage of the estimator is the condition to explicitly
determine the order statistic X, _x.,. It is proved that, for stable Paretian distributions,
the Hill estimator is consistent and asymptotically normal. Mittnik, Paolella and Rachev
(1998c) found that, the small sample performance of &yi; does not resemble its asymptotic
behavior, even for n > 10000 (see Figure 1'7). It is necessary to have enormous data series
in order to obtain unbiased estimates of «, for example, with ¢ = 1.9, reasonable estimates
are produced only for n > 100000 (see Figure 2'®). Alternatives to the Hill estimator are
the Pickands and the modified unconditional Pickands estimators.
The “original” Pickands estimator'® takes the form

In2
&Pick = 1 , 4k <n.
In(Xy—k+1:0 — Xn—2k+1:n) — IN(Xn—2k1:0 — Xn—dk+1:0)

The Pickands estimator requires choice of the optimal k, which depends on the true
unknown «. Mittnik and Rachev (1996) proposed a new tail estimator named “the modified
unconditional Pickands (MUP) estimator”, &yvup. An estimate of « is obtained by applying
the nonlinear least squares method to the following system:

ky = X», Xl_lkl + ¢,

where
- —2a —o —2a
n—k+1:n Xn7k+1:n n—3k+1:n Xn73k+1:n
Xl = s X2 . )
—a X—Za —a X—Za
n—2k+1:n n—2k+1:n n—4k+1:n n—4k+1:n

15 Hil (1975).

16 Given a sample of observations X1, ..., X, we rearrange the sample in increasing order X{., < -+ < Xy,
then the j-th order statistic is equal to X ;.

17 1 Figure 1, the true value of « is 1.9, the sample size is n = 10000; the x-axis shows values of k from
1 to n/2 = 5000. Notice that the estimator for & = &(k(n),n) is unbiased when lim,_, o (k(n)/n) — 0. So,
unbiasedness of the estimator requires very small values of k. However, for a small value of k, the variance of the
estimator is large. A close look at the estimator & (k, n) suggests value of & around 2.2, whereas & = 1.9.

18 1 Figure 2, the true « is again 1.9, the sample size is n = 500,000, k =1,...,n/2 = 250,000. One can see
that, for very small values of k, « &~ 1.9.

19 pickands (1975).
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Hill estimator with 95% confidence bounds
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Fig. 1. Hill estimator for 10 000 standard stable observations with index o = 1.9.
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Fig. 2. Hill estimator for 500 000 standard stable observations with index o =1.9.
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k-1 3k —1
k1_|:2k—1:|’ and kz_[4k—1]'

Mittnik, Paolella and Rachev (1998c¢) found that the optimal k for &yup is far less depen-
dent on « than in the case of either the Hill or Pickands estimators. Studies demonstrated
that @mup is approximately unbiased for o € [1.00, 1.95) and nearly normally distributed
for large sample sizes. The MUP estimator appears to be useful in empirical analysis.

3.2.2. Entire-distribution modeling

We shall describe the following methods of estimating stable parameters with fitting the
entire distribution: quantile approaches, characteristic function (CF) techniques, and max-
imum likelihood (ML) methods.

Fama and Roll (1971) suggested the first quantile approach based on observed properties
of stable quantiles. Their method was designed for evaluating parameters of symmetric sta-
ble distributions with index of stability « > 1. The estimators exhibited a small asymptotic
bias. McCulloch (1986) offered a modified quantile technique, which provided consistent
and asymptotically normal estimators of all four stable parameters, for o € [0.6,2.0] and
B € [—1, 1]. The estimators are derived using functions of five sample quantiles: the 5%,
25%, 50%, 75%, and 95% quantiles. Since the estimators do not consider observations in
the tails (below the 5% quantile and above the 95% quantile), the McCulloch method does
not appear to be suitable for estimating parameters in VAR modeling.

Characteristic function techniques are built on fitting the sample CF to the theoretical CF.
Press (1972a, b) proposed several CF methods: the minimum distance, the minimum r-th
mean distance, and the method of moments. Koutrouvelis (1980, 1981) developed the iter-
ative regression procedure. Kogon and Williams (1998) modified the Koutrouvelis method
by eliminating iterations and limiting the estimation to a common frequency interval .2’ CF
estimators are consistent and under certain conditions are asymptotically normal.?!

Maximum likelihood methods for estimating stable parameters differ in a way of com-
puting the stable density. DuMouchel (1971) evaluated the density by grouping data and
applying the fast Fourier transform to “center” values and asymptotic expansions — in
the tails. Mittnik, Rachev and Paolella (1998) calculated the density at equally spaced
grid points via a fast Fourier transform of the characteristic function and at intermedi-
ate points — by linear interpolation. Nolan (1998a) computed the density using numeri-
cal approximation of integrals in the Zolotarev integral formulas for the stable density.>?
DuMouchel (1973) proved that the ML estimator is consistent and asymptotically normal.
In Section 4 we analyze applicability of the ML method in VAR estimations.

20 For additional references, see Arad (1980), Feuerverger and McDunnough (1981), Mittnik, Rachev and
Paolella (1998), Paulson, Holcomb and Leitch (1975).

21 Heathcote, Cheng and Rachev (1995).

22 For additional references, see Mittnik et al. (1997).
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3.2.3. Tail estimation: Fast Fourier transform method

Tail estimation using the Fourier Transform (FT) method is based on fitting the character-
istic function in a neighborhood of the origin t = 0. Here we use the classical tail estimate:

a
P<X < —1> < P<|X| > l) < 5/ (1 —Re{fx(®)})dt, foralla >0,
a a a Jo
where Re{ fx (¢)} is the real part of the characteristic function fx () and the constant K =
1/(1 —sin1) < 1/7. Precise estimation of the characteristic function guarantees accurate
tail estimation, which leads to an adequate evaluation of VaR.

Suppose that the distribution of returns r is symmetric-a-stable,?? that is: the character-
istic function of r is given by

H S — et |2
fr(t) — Eelrt — eltpL |ct| )

If « > 1,2 then, given observations ryq,...,r,, we estimate u by the sample mean
n=r= % i, ri. For large values of n, the characteristic function of observations

R; =r; —r approaches fr(t) = e~letl®, Consider the empirical characteristic function of
the centered observations: fg ,(t) = % > 7_, e’ Because the theoretical characteristic
function, fr(?), is real and positive, we have that

n | 1<
SR (2) ZRG(— E elet> =— E cos(Rkt).
n n
k=1 k=1

Now the problem of estimating « and c is reduced to determining & and ¢ such that
M Mg B
/ |fR’" — Jr(t @, é)| Z/ ‘— Zcos(Rkt) — e~ @)% 4t
’ o 17 k=1

is minimal, where M is a sufficiently large value.
The realization of the FT method is performed in the following steps:

Step 1. Given the asset returns ry, ..., r,, compute the centered returns R; =r; — r, i =
= 1 n
1,...,n, where 7 = Yo
Step 2. Construct the sample characteristic function

\ 1 ¢
fa)= - Zcos(Rktj),
k=1

23 Empirical evidence suggests that 8 does not play a significant role for VAR estimation.
24 As we have already observed, in all financial return data, fitting an «-stable model results in o > 1, which
implies existence of the first moment.
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where t; = j%, j=1,..., 7, km is the maximal value of ¢, T is the number of grid
points on (0, Kn].25
Step 3. Do the search for best & and ¢ such that

T

1< .
>3 cosun) —en "
n

j=11" k=1

is minimal.

4. VaR estimates for stable distributed financial returns

In this section we consider a stable VaR model, which assumes that the portfolio return
distribution follows a stable law. We derive “stable” VaR estimates and analyze their prop-
erties applying in-sample and forecast evaluations. We use “normal” VaR measurements
as benchmarks for investigating characteristics of “stable” VaR measurements.

We conduct analysis for various financial data sets:

the Yen/British Pound (BP) exchange rate,

the BP/US$ exchange rate,

the Deutsche Mark (DM)/BP exchange rate,

the S&P 500 index,

the DAX30 index,

the CAC40 index,

the Nikkei 225 index,

the Dow Jones Commodities Price Index (DJCPI).

A short description of the data is given in Table 1.

4.1. In-sample evaluation of VaR estimates

In this part we evaluate stable and normal VaR models by examining distances between the
VaR estimates and the empirical VaR measures.
By a formal definition of VaR in Equation (1), VaR estimates, VaR; ., are such that

Pr[AP,(t) < —VaR, |~ 1 —c, (2)

where c is the confidence level, A P;(t) is the relative change in the portfolio value over
the time horizon 7, i.e., AP, (t) = R; ; is the portfolio return at moment ¢ over the time
horizon t and ¢ is the current time.

25 For computation purposes, we have chosen « = 20 and t = 10000. In the realization of the FT method
we selected the following grid steps At: if 0 <t < 1, ht =207/50000: if ¢t > 1, ht = 207 /1000. In order
to emphasize the tail behavior, we refined the mesh near + = 0 and named that approach FT-Tail (FTT): if
0<r<0.1, ht =20m/100000; if 0.1 <t < 1.0, ht =207/10000; if t > 1, ht = 207/1000. The numerical
results are reported in Section 4.
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Table 1
Financial data series

Series Source Number of observations Time period Frequency
Yen/BP Datastream 6285 1.02.74-1.30.98 Daily (D)
BP/US$ D. Hindanov 6157 1.03.74-1.30.98 D
DM/BP Datastream 6285 1.02.74-1.30.98 D
S&P 500 Datastream 7327 1.01.70-1.30.98 D
DAX30 Datastream 8630 1.04.65-1.30.98 D
CAC40 Datastream 2756 7.10.87-1.30.98 D
Nikkei 225 Datastream 4718 1.02.80-1.30.98 D
DICPI Datastream 5761 1.02.76-1.30.98 D

For the purpose of testing VaR models financial regulators advise to choose a time hori-
zon of one day, so we take T = 1. In the text below, if the time horizon is not stated explic-
itly, it is assumed to equal one day. At each time ¢, an estimate VaR; is obtained using w
recent observations of portfolio returns R;—1, Ri—2, ..., Ri_jy:

VaR; = VaR(R;—1, Ri—2, ..., Ri—jw). 3)

The lw parameter is called the window length. In this subsection, VaR is estimated em-
ploying the entire sample of observations, i.e., /Iw = N, where N is the sample size. Hence,
we do not point out the present time 7.

We obtain “stable” (“normal”) VaR measurements at the confidence level c in two steps:

(1) fitting empirical data by a stable (normal) distribution,
(ii) calculating a VaR as the negative of the (1 — ¢)-th quantile of a fitted stable (normal)
distribution.

“Stable” fitting is implemented using three methods: maximum likelihood (ML), Fourier
Transform (FT), and Fourier Transform-Tail (FTT).2® Estimated parameters of densities
and corresponding confidence intervals are presented in Table 2. In the FT and FTT fitting
we assume that distributions of returns are symmetric, i.e., the skewness parameter S is
equal to zero. Since the index of stability & > 1 for our data series, the location parameter
W is approximated by the sample mean. The ML estimates were computed applying the
STABLE program by J.P. Nolan.?” The confidence intervals (CI) for the FT and FTT para-
meter estimates were derived using a bootstrap method with 1000 replications.?® Empirical
analysis showed that a set of 1000 replications is:

(1) satisfactory for constructing 95% CI;
(ii) insufficient for obtaining reliable 99% CI.

26 Evaluation of parameters of stable distributions is provided in Section 3.2.

27 The STABLE program is described in Nolan (1997).

28 For references on bootstrapping, see Heathcote, Cheng and Rachev (1995); for discussion on CI based on ML
parameter estimates, see Nolan (1998a).
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Parameters of stable and normal densities?

Table 2

S.T. Rachev et al.

Series Normal Stable
Mean  Standard Method o B I o
deviation
Yen/BP —-0.012 0.649 ML 1.647 —0.170 —0.023 0.361
FT 1.61 —0.018 0.34
[1.57,1.66] [—0.095,0.015] [0.33,0.36]
[1.55,1.68] [—0.178,0.025] [0.33,0.37]
FTT 1.50 —0.018 0.32
[1.46,1.55] [—0.131,0.034] [0.31,0.34]
[1.44,1.64] [—0.261,0.070] [0.31,0.39]
BP/US$ 0.006 0.658 ML 1.582 0.038 0.007 0.349
FT 1.57 0.006 0.33
[1.53,1.65] [—0.096,0.045] [0.32,0.36]
[1.51,1.75] [—0.393,0.065] [0.32,0.47]
FTT 1.45 0.006 0.31
[1.41,1.51] [—0.134,0.070] [0.30,0.33]
[1.40,1.62] [—0.388,0.097] [0.30,0.47]
DM/BP —0.012 0.489 ML 1.590 —0.195 —0.018 0.256
FT 1.60 —-0.012 0.24
[1.54,1.75] [—0.064,0.013] [0.23,0.26]
[1.53,1.75] [—0.165,0.022] [0.23,0.27]
FTT 1.45 —0.012 0.23
[1.41,1.55] [—0.114,0.038] [0.22,0.26]
[1.40,1.77] [—0.402,0.061] [0.22,0.40]
S&P 500  0.032 0.930 ML 1.708 0.004 0.036 0.512
FT 1.82 0.032 0.54
[1.78,1.84] [—0.013,0.057] [0.53,0.54]
[1.77,1.84] [—0.062,0.067] [0.53,0.55]
FTT 1.60 0.032 0.48
[1.56,1.65] [—0.066,0.078] [0.47,0.49]
[1.54,1.66] [—0.120,0.095] [0.46,0.50]
DAX30 0.026 1.002 ML 1.823 —0.084 0.027 0.592
FT 1.84 0.026 0.60
[1.81,1.88] [—0.015,0.050] [0.59,0.60]
[1.80,1.89] [—0.050,0.057] [0.58,0.62]
FTT 1.73 0.026 0.57
[1.69,1.77] [—0.031,0.061] [0.56,0.58]
[1.68,1.79] [—0.124,0.073] [0.56,0.59]
CAC40 0.028 1.198 ML 1.784 —0.153 0.027 0.698
FT 1.79 0.028 0.70
[1.73,1.85] [—0.050,0.088] [0.68,0.73]
[1.71,1.87] [—0.174,0.103] [0.67,0.74]

4 The Cls right below the estimates are the 95% Cls, the next CIs are the 99% Cls.
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Table 2
(Continued)
Series Normal Stable
Mean Standard Method o B " o
deviation
FTT 1.76 0.028 0.69
[1.71,1.84] [—0.053,0.091] [0.67,0.72]
[1.69,1.87] [—0.394,0.101] [0.66,0.77]
Nikkei 0.020 1.185 ML 1.444 —0.093 —0.002 0.524
225 FT 1.58 0.02 0.59
[1.53,1.64] [—0.127,0.102] [0.57,0.62]
[1.52,1.67] [—0.421,0.130] [0.57,0.69]
FTT 1.30 0.02 0.49
[1.26,1.47] [—0.451,0.316] [0.47,0.69]
[1.05,1.67] [—1.448,0.860] [0.47,1.10]
DJCPI 0.006 0.778 ML 1.569 —0.060 0.003 0.355
FT 1.58 0.006 0.35
[1.53,1.66] [—0.026,0.100] [0.34,0.37]
[1.52,1.67] [—0.140,0.120] [0.33,0.39]
FTT 1.49 0.006 0.33
[1.44,1.55] [—0.160,0.062] [0.32,0.36]
[1.44,1.69] [—0.396,0.100] [0.32,0.46]

In our experiments, sets of 1000 replications generated:
(1) 95% CI for a and o whose bounds coincided up to two decimal points; 95% CI for u
with slightly varying bounds;

(ii) varying 99% CI, with insignificant variation of left limits.
VaR measurements were calculated at confidence levels ¢ = 99% and ¢ = 95%. The
99% (95%) VaR was determined as the negative of the 1% (5%) quantile. For calculating
stable quantiles we used our program, built on the Zolotarev integral representation form
of the cumulative distribution function. The 99% and 95% VaR estimates are reported in
Tables 3 and 4, respectively. Biases of stable and normal VaR measurements are provided

in Table 5.2°

We accompany our computations with plots of:

e daily price levels,
e daily returns,

o fitted empirical, normal, and stable densities with the ML, FT, and FTT estimated para-

meters,

e daily empirical, normal, and stable VAR* estimates at the 99% and 95% confidence

levels.30

29 Biases are computed by subtracting the empirical VAR from the model VAR estimates.
30 The VAR* numbers are the negative values of the VAR estimates, VAR* = —VAR.
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Combined plots of densities and VaR estimation are displayed in Figures 3—10. In order
to illustrate that confidence intervals for the FT parameter estimates are sufficiently narrow,
we show stable densities and VaR measures at boundary values of confidence intervals for
QYen FT and &yen Fr in Figures 11-14.

As Figures 3—10 demonstrate, the VaR estimates obtained at confidence level ¢ = 95%
seem to belong to the area between the “tail” and the “center”. The VaR at level ¢ =99%
is really in the tail area. Hence, we compare performance of stable and normal models
separately for the cases ¢ =95% and ¢ = 99%.

In general, the stable modeling (ML, FT, and FTT) provided evaluations of the 99%
VaR greater than the empirical 99% VaR (see Figures 3—10, Tables 3 and 4). It underes-
timated the sample 99% VaR in the applications of two methods: FT — for the CAC40,
S&P 500, and DAX30 indices, and ML — for the DAX30 index. Biased downwards sta-
ble VaR estimates were closer to the true VaR than the normal estimates (see Table 5).
Among the methods of stable approximation, the FT method provided more accurate VaR
estimates for 7 data sets (see Table 5). For all analyzed data sets, the normal modeling un-
derestimated the empirical 99% VaR. Stable modeling provided more accurate 99% VaR
estimates: mean absolute bias3! under the stable (FT) method is 42% smaller than under
the normal method.

At 95% confidence level, the stable VaR estimates were lower than the empirical VaR
for all data sets. The normal VaR measurements exceeded the true VaR, except the Yen/BP
exchange rate series (see Table 6). For the exchange rate series (Yen/BP, BP/USS$, and
DM/BP), the normal method resulted in more exact VaR estimates. For the S&P 500,
DAX30, CAC40, and DJCPI indices, stable methods underestimated VaR, though the esti-
mates were closer to the true VaR than the normal estimates. Mean absolute biases under
stable and normal modeling are of comparable magnitudes.

In-sample examination of VaR models showed:

o the stable modeling generally results in conservative and accurate 99% VaR estimates,
which is preferred by financial institutions and regulators,32

e the normal approach leads to overly optimistic forecasts of losses in the 99% VaR esti-
mation,

e from a conservative point of view, the normal modeling is acceptable for the 95% VaR
estimation,

o the stable models underestimate the 95% VaR. In fact, the stable 95% VaR measurements
are closer to the empirical VaR than the normal 95% VaR measurements.

The next step in evaluating VaR models is analysis of their forecasting characteristics.

31 Let bp,s be a bias of a VaR estimate: by,s = VaR,; s — VaREmpirical,s- The mean absolute bias equals
MABy,, = (Zle |bm,s1)/8, where m denotes normal, stable-ML, stable-FT, and stable-FTT methods, and s —
a series.

32 In the 99% VaR estimation for data series from Table 1, mean absolute bias under the stable modeling was
42% smaller than under the normal modelling.
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270

Estimated Density

Estimated Density

Stable and normal fitting

S.T. Rachev et al.

3 1 | Empirical Density
——  Stable-ML
- -—- Stable-FT N
® N
o 7 — —- Normal g
©
o
<
o
N
o
o |
o
T T T T T
-6 -4 2 0 4
Yen/BP Daily Returns, (%)
VaR estimation
[Ye]
(\! -
--------- Empirical Density
—— Stable-ML (SML) Vi
& 4 ~— - Stable-FT (SFT) /
° . /
Normal y
© /
S VAR* Quantile SML SFT Normal Empirical /|
99% 1% 2.247 2112 1.528 1.979 // '
95% 5% 1.033 0.968 1.086 1.103 | /

Yen/BP Daily Returns, (%)

Fig. 4. VAR estimation for the Yen/BP exchange rate.




Ch. 7:  Stable Modeling of Market and Credit Value at Risk

Estimated Density

Estimated Density

0.8 1.0

0.6

0.2 0.4

0.0

0.15

0.10

0.05

0.0

Stable and normal fitting

271

Empirical Density '
Stable-ML i
Stable-FT \
Normal

BP/US$ Daily Returns, (%)

VaR estimation

Empirical Density
Stable-ML (SML)
Stable-FT (SFT)
Normal

VAR* Quantile SML SFT Normal Empirical

99%
95%

1% 2221 2200 1.526 1.774
5% 0.981 0.944 1.077 1.038

T%SFT 19E %N
T

L SFT

-2.5

-2.0 -1.5

BP/US$ Daily Returns, (%)

Fig. 5. VAR estimation for the BP/US$ exchange rate.




272

Estimated Density

Estimated Density

0.3 0.4 0.5

0.2

0.1

0.0

0.04 0.06 0.08

0.02

S.T. Rachev et al.

Stable and normal fitting

--------- Empirical Density
—— Stable-ML
- -—- Stable-FT
—_— Normal
T T T T
-10 -5 0 5
CACA40 Daily Returns, (%)
VaR estimation
/ /
--------- Empirical Density /|
—— Stable-ML (SML) /o ,
- ——- Stable-FT (SFT) // ]
- Normal Vi U
S
VAR* Quantile SML SFT Normal Empirical //
9% 1% 3.195 3.019 2.760 3.068 Vi
95% 5% 1.756 1.734 1.943 1.819 //

CAC40 Daily Returns, (%)

Fig. 6. VAR estimation for the CAC40 index.



Ch. 7:  Stable Modeling of Market and Credit Value at Risk 273

Stable and normal fitting

--------- Empirical Density
g A —— Stable-ML
- ——- Stable-FT
— — -  Normal
2z
g .
8 3
el
2
©
E
3
oo
o
o |
o
T T T T T T
-15 -10 5 0 5 10
Nikkei 225 Daily Returns, (%)
VaR estimation
/ /
o | | Empirical Density /| )
S ——  Stable-ML / I
---- Stable-FT A
——- Normal Iy
© / | 1/
.‘é‘ QA / H Y
g ° VAR* Quantle SML  SFT Normal Empirical / |,’1
o 99% 1%  4.836 3.842 2,737 3.428 / ,'|/
3 3 95% 5% 1731 1.666 1.929 1.856 / l/
E o '
@
w
(8}
S
o
o
o

Nikkei 225 Daily Returns, (%)

Fig. 7. VAR estimation for the Nikkei 225 index.



274 S.T. Rachev et al.

Stable and normal fitting

o | | ¢ Empirical Density
S —— Stable-ML
—--—-- Stable-FT
— — - Normal

2
(7]
&5 <
a o
el
2
[
£
k71
o

o

o

o

T T T T T T T
-20 -15 -10 -5 0 5 10
S&P 500 Daily Returns, (%)
VaR estimation

o

(\! —

o - .

--------- Empirical Density
—— Stable-ML (SML)
o - - —- Stable-FT (SFT)
s — —-  Normal

VAR* Quantiles SML SFT Normal Empirical
99% 1% 2,559 2200 2.131 2293
95% 5% 1.309 1.308 1.497 1.384

Estimated Density
0.10
|

0.05
I

S&P 500 Daily Returns, (%)

Fig. 8. VAR estimation for the S&P 500 index.



Ch. 7:

Estimated Density

Estimated Density

0.5 0.6

0.2 0.3 0.4

0.1

0.0

0.02 0.04 0.06 0.08 0.10

0.0

Stable Modeling of Market and Credit Value at Risk 275
Stable and normal fitting
--------- Empirical Density §
—— Stable-ML
—-—-—- Stable-FT
—— Normal
T T T T
-10 -5 0 5
DAX30 Daily Returns, (%)
VaR estimation
_________ — iy
Empirical Density | ,
——  Stable-ML | /|-
---- Stable-FT i A
— —-  Normal | {
/ y |
VAR* Quantile SML SFT Normal Empirical / '
9% 1% 2464 2375 2306 2.564 // | |
95% 5% 1449 1451 1623 1.508 i .
' SFT=SNLL

Fig. 9. VAR estimation for the DAX30 index.

-2.5

DAX30 Daily Returns, (%)



276 S.T. Rachev et al.

Stable and normal fitting

o | |
A I B Empirical Density
—— Stable-ML
© —---- Stable-FT
° — —-  Normal
2
? .
8 o
el
2
©
£ <
‘(7)‘ o
L
N
o
Qo
o
T T T T T
-10 -5 0 5 10
DJCPI Daily Returns, (%)
VaR estimation
. . /
o | | T Empirical Density /
s —— Stable-ML (SML) /
---- Stable-FT (SFT) /
— — - Normal /{
2 ya
2 o . . . / |
s T VAR* Quantiles SML SFT Normal Empirical V% !
g 99% 1% 2446 2285 1.804 2.053 / | !
e 95% 5%  1.031 0994 1274 1.066 7 . A
£ |
I
w 0
3 ‘ ,
o ! ’
= Mt
T

DJCPI Daily Returns, (%)

Fig. 10. VAR estimation for the DJCPI index.



Ch. 7:  Stable Modeling of Market and Credit Value at Risk

Density

Density

hd
o

06

0.4

0.2

0.0

0.02 0.04 0.06 0.08 0.10 0.12

0.0

277

——  StableFT Fit{FT)
———  StbleFT a Lefalgha (FT-LA)
——=  StbleFT a Right-dpha F T-RA)

Parameters FT FTLA FT-RA
alpha 1.61 1.57 1.66
beta 0.00 0.00 0.00
mu -0.018 -0.018 -0.018
signa  0.34 0.34 0.34

6 4 2 0 2 4
Returns, (%)
Fig. 11. Stable fitting at limiting values of a confidence interval for alpha.
—— Stable-FT Fit (FT)
-------- Stable-FT at Left-alpha (FT-LA) /
———- Stable-FT at Right-alpha (FT-RA)
VAR® Quantile FT FT-LA  FT-RA
99% 1% -2112 -2289 -1.913
95% 5% -0.968 -0.997 -0.937
FT-LA PT" FT-RA
T T T T
-2.5 2.0 -1.5 -1.0
Returns, (%)

Fig. 12. VAR estimation at limiting values of a confidence interval for alpha.
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Fig. 14. VAR estimation at limiting values of a confidence interval for sigma.
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Table 3

Empirical, normal, and stable 99% VaR estimates®

279

Series 99% VaR
Empirical Normal Stable
ML FT FTT
Yen/BP 1.979 1.528 2.247 2.112 2.494
[1.968, 2.252] [2.276, 2.736]
[1.919, 2.415] [2.230, 2.836]
BP/US$ 1.774 1.526 2.221 2.200 2.668
[2.014, 2.412] [2.436, 2.925]
[1.956, 2.593] [2.358, 3.029]
DM/BP 1.489 1.149 1.819 1.520 1.996
[1.190, 1.712] [1.792,2.211]
[1.179, 1.742] [1.700, 2.329]
S&P 500 2.293 2.131 2.559 2.200 2.984
[2.117, 2.358] [2.757, 3.243]
[2.106, 2.470] [2.700, 3.336]
DAX30 2.564 2.306 2.464 2.375 2.746
[2.260, 2.502] [2.557,2.949]
[2.240, 2.569] [2.523,2.997]
CAC40 3.068 2.760 3.195 3.019 3.144
[2.753, 3.364] [2.788, 3.504]
[2.682, 3.520] [2.700, 3.841]
Nikkei 225 3.428 2.737 4.836 3.842 6.013
[3.477, 4.254] [5.190, 6.701]
[3.367, 4.453] [4.658, 19.950]
DICPI 2.053 1.804 2.446 2.285 2.603

[1.955, 2.423]
[1.916, 2.474]

[2.382,2.870]
[2.288, 3.035]

4 The ClIs right below the estimates are the 95% Cls, the next CIs are the 99% Cls.

4.2. Forecast-evaluation of VaR estimates

In this section we investigate the forecasting properties of stable and normal VaR modeling
by comparing predicted VaR with observed returns.

We test the null hypothesis that Equation (1) for a time horizon of 1 day (r = 1) holds
at any time ¢:

Pi[AP; < —VaR;]=1—c¢, 4

where A P; is the relative change (return) in the portfolio value, i.e., AP, = R; is the port-
folio return at moment ¢, VaR, is the VaR measure at time ¢, c is the VaR confidence level,
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Table 4
Empirical, normal, and stable 95% VaR estimates?®

Series 95% VaR
Empirical Normal Stable
ML FT FTT
Yen/BP 1.103 1.086 1.033 0.968 0.995
[0.926,1.047] [0.937,1.132]
[0.911,1.186] [0.911,1.329]
BP/US$ 1.038 1.077 0.981 0.944 0.986
[0.898,1.072] [0.917,1.158]
[0.876,1.599] [0.895,1.588]
DM/BP 0.806 0.816 0.772 0.687 0.748
[0.652,0.749] [0.695,0.894]
[0.641,0.894] [0.678,1.418]
S&P 500 1.384 1.497 1.309 1.308 1.319
[1.275,1.361] [1.265,1.423]
[1.265,1.411] [1.246,1.503]
DAX30 1.508 1.623 1.449 1.451 1.452
[1.415,1.500] [1.405,1.521]
[1.402,1.533] [1.395,1.650]
CAC40 1.819 1.943 1.756 1.734 1.734
[1.653,1.837] [1.647,1.845]
[1.621,1.944] [1.616,2.288]
Nikkei 225 1.856 1.929 1.731 1.666 1.840
[1.570,1.839] [1.582,2.512]
[1.558,2.280] [1.500,5.022]
DJCPI 1.066 1.274 1.031 0.994 1.011
[0.888,1.047] [0.944,1.188]
[0.870,1.200] [0.915,1.615]

4 The Cls right below the estimates are the 95% ClIs, the next Cls are the 99% Cls.

t is the current time, t € [1, T'], and T is the length of the testing interval. The test is per-
formed by checking whether Pr[R; < —VaR,] is reasonably close to 1 — ¢, where VaR; is
the estimate of VaR,. Recall that VaR, is computed using the last /w observations.3?

Let b; be the indicator function 1{ R, < —VaR;}, 1 <t < T. If Equation (4) holds, then

1, probability =1 —c,

br=1{R < —VaR,} = {O, probability = c.

33 See Equation (3).
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Table 5
Biases of normal and stable 99% VaR estimates

Series 99% VaR;, — 99% VaRgmpirical
Normal Stable

ML FT FTT
Yen/BP —0.451 0.268 0.133 0.515
BP/US$ —0.248 0.447 0.426 0.894
DM/BP —0.340 0.330 0.031 0.507
S&P 500 —0.162 0.266 —0.093 0.691
DAX30 —0.258 —0.100 —0.189 0.182
CAC40 —0.308 0.127 —0.049 0.076
Nikkei 225 —0.691 1.408 0.414 2.585
DJCPI —0.249 0.393 0.232 0.550
Mean absolute bias 0.338 0.416 0.196 0.750

Table 6
Biases of normal and stable 95% VaR estimates
Series 95% VaR;u — 95% VaRgmpirical”
Normal Stable
ML FT FTT

Yen/BP —0.017 —0.070 —0.135 —0.108
BP/US$ 0.039 —0.057 —0.094 —0.052
DM/BP 0.010 —0.034 —0.119 —0.058
S&P 500 0.113 -0.075 -0.076 —0.065
DAX30 0.115 —0.059 —0.057 —0.056
CAC40 0.124 —0.063 —0.085 —0.085
Nikkei 225 0.073 —0.125 —0.190 —0.016
DJCPI 0.208 —0.035 -0.072 —0.055
Mean absolute bias 0.087 0.065 0.104 0.070

2 m denotes normal, stable-ML, stable-FT, and stable-FTT methods.

Let us denote by E the number of exceedings (R; < —VaR,)3* over the testing interval
[1, T']. If Equation (4) is valid, then the variable £ = Zthl b, has a binomial distribution.
We can formulate a testing rule: reject the null hypothesis at level of significance x if

E E

Z (f)(l —o)el g % or Z <f)(1 —o)fel T >1- %

=0 t=0

34 In nominal levels, an exceeding implies a case when actual losses exceeded the predicted losses.
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Table 7
Admissible VaR exceedings and exceeding frequencies

VaR confidence Length of a testing Admissible VaR Admissible VaR
level, ¢ interval, T exceedings, E frequencies, E/T (%)
Significance level, x Significance level, x
5% 1% 5% 1%
95% 500 [17,33] [14,36] [3.40,6.60] [2.80,7.20]
1500 [61,89] [56,94] [4.07,5.93] [3.73,6.27]
99% 500 [2,8] [0,10] [0.40,1.60] [0.00,2.00]
1500 [9,21] [6,23] [0.60,1.40] [0.40,1.53]

For large T and sufficiently high VaR confidence levels, the binomial distribution can be
approximated by the normal distribution. Hence, the testing rule for large T is: reject the
null hypothesis at level of significance x if

E<T(—-c¢)—z1—xpyT(—c)c or E>T(l—c)+z1-xp2¢/T(1—0)c,

where z, is the p% standard normal quantile. The bounds of admissible VaR exceedings
E and exceedings frequencies, E/ T, for testing at level of significance 5% and 1% are
provided in Table 7.

We examined forecasting properties of stable and VaR models for data series described
in Table 1. In testing procedures we considered the following parameters:

e window lengths /w = 260 observations (data over lyear) and /w = 1560 observations

(data over 6 years),

e lengths of testing intervals 7 = 500 days and 7 = 1500 days.

Evaluation results are reported in Tables 8 and 9. We indicate by the bold font the num-
bers, which are outside of acceptable ranges.

From Table 8 we can see that normal models for the 99% VaR computations commonly
produce numbers of exceedings above the acceptable range, which implies that normal
modeling significantly underestimates VaR (losses). At window length of 260 observa-
tions, stable modeling is not satisfactory. It provided permissible number of exceptions
only for the BP/US$ and DJCPI series. At sample size of 1560 and testing interval of
500 observations, exceedings by the stable-FT method are outside of the admissible in-
terval for the S&P 500, DAX30, and CAC40 indices. Testing on the longer interval with
T = 1500 showed that numbers of “stable” exceptions are within permissible range. Ta-
ble 8 demonstrates that increasing the window length from 260 observations to 1560 ob-
servations reduces the number of stable-FT exceedings. In contrast, extending the win-
dow length for normal models does not decrease E, in some cases, even elevates it. Re-
sults illustrate that stable modeling outperforms normal modeling in the 99% VaR estima-
tions.

The 95% VaR normal estimates (except the DAX30 series), obtained using 260 observa-
tions, are within the permissible range. Increasing the window length generally worsens the
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Table 8
99% VaR exceedings

Series Length of a testing 99% VaR exceedings
interval, T Window length = 260 obs. Window length = 1560 obs.
Normal FT Normal FT

E E/T% E E/T% E E/T(% E E/T %)

Yen/BP 500 15 3.00 13 2.60 10 2.00 2 0.40
1500 40 1.67 34 2.27 45 3.00 21 1.40
BP/US$ 500 10 2.00 5 1.00 1 0.20 0 0.00
1500 26 1.73 13 0.86 17 1.33 5 0.33
DM/BP 500 18 3.60 14 2.80 17 3.40 8 1.60
1500 45 3.00 33 2.20 50 3.33 19 1.27
S&P 500 500 17 3.40 13 2.60 25 5.00 13 2.60
1500 35 2.33 27 1.80 28 1.87 14 0.93
DAX30 500 21 4.20 14 2.80 19 3.80 18 3.60
1500 41 2.73 29 1.93 25 1.67 20 1.33
CAC40 500 16 3.20 14 2.80 14 2.80 13 2.60
1500 34 2.27 29 1.93 17 1.63 19 1.27
Nikkei 225 500 15 3.00 14 2.80 13 2.60 7 1.40
1500 31 2.07 23 1.53 26 1.73 10 0.67
DJCPI 500 12 2.40 7 1.40 15 3.00 10 2.00
1500 29 1.93 15 1.00 28 1.87 17 1.13

normal VaR measurements. The stable-FT method provided sufficient 95% VaR estimates

for the Yen/BP and BP/USS$ exchange rates and the CAC40 and Nikkei 225 indices.
A study of the predictive power of VaR models suggests that:

o the normal modeling significantly underestimates 99% VaR,

o the stable method results in reasonable 99% VaR estimates,

e 95% normal measurements are in the admissible range for the window length of 260
observations. Increasing /w to 1560 observations might deteriorate the precision of the
estimates.

5. Stable modeling and risk assessment for individual credit returns

Recall that the stable distributions are characterized by four parameters: «-tail index,
B-skewness, p-location, and o -scale. Modeling with such parameters allows for heavy tails
and skewness of the distributions. Our empirical analysis confirms that, indeed: (i) credit
returns exhibit asymmetry and heavy-tails; (ii) stable modeling captures these features of
the returns.
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Table 9
95% VaR exceedings

Series Length of a testing 95% VaR exceedings
interval, T Window length = 260 obs. Window length = 1560 obs.
Normal FT Normal FT

E E/T% E E/T(%) E E/T% E E/T %)

Yen/BP 500 35 7.00 38  7.60 27 5.40 31 6.2
1500 94 6.27 104  6.93 109 7.27 122 8.13
BP/US$ 500 33 6.60 45  9.00 10 2.00 17 3.40
1500 73 4.87 96 6.40 46 3.07 57 3.80
DM/BP 500 32 6.40 38 7.60 29 5.80 37 7.40
1500 89 5.93 114  7.60 105 7.00 139 9.27
S&P 500 500 34 6.80 39 7.80 43 8.60 47 9.40
1500 79 5.27 98 6.53 62 4.13 69 4.60
DAX30 500 47 9.40 50 10 42 8.40 45 9.00
1500 98 6.53 109 7.27 62 4.13 79 5.27
CAC40 500 32 6.40 34 6.80 31 6.20 32 6.40
1500 81 5.40 87 5.80 51 4.90 82 5.47
Nikkei 225 500 37 7.40 40 8.00 28 5.60 33 6.60
1500 85 5.67 90 6.00 68 4.53 87 5.80
DJCPI 500 29 5.80 35 7.00 37 7.40 46 9.20
1500 70 4.67 93  6.20 77 5.13 108 7.20

The “assets” used in the study are the Merrill Lynch indices of the US government and
corporate bonds with maturities from one to 10 years and credit ratings from “BB” to
“AAA”. Returns on indices are modeled as stable-distributed: R; ~ Sy, (07, Bi, i), where
i=1,...,21. Some analysis of the indices is provided in Table 10. Daily returns series
are illustrated on Figure 15 and in Appendix A. The benchmark for assessment of the
stable model properties is the “normal” model, i.e., approximation of returns by normal
distributions. By categorization of stable distributions, a normal distribution has a tail index
o =2 and a symmetric distribution has a skewness parameter § = 0. Values of o < 2
indicate thicker tails than the tails of the normal distribution. In general, as « is smaller, the
tails are heavier and the peak of the density is higher. If 8 < 0, the distribution is skewed
to the left. If 8 > 0, the distribution is skewed to the right. Larger absolute magnitudes
of B point to stronger skewness. The stable and normal parameter estimates for the bond
indices are presented in Table 10. For all 17 considered indices, the tail index « is less than
two, which reveals heavy-tailedness, and the skewness parameter 8 is below zero, which
implies skewness to the left. The fitted empirical, stable, and normal densities of indices
are displayed in Figure 16 and in Appendix A.
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Table 10
Normal and stable parameter estimates of bond indices

Index? Rating or ~ Maturity Normal Stable

issuer (year) Mean St. dev. Tail index Skewness Location Scale

o B I o

G102 US gov-t 1-3 0.026 0.096 1.696 —0.160 0.029 0.055
G202 US gov-t 3-5 0.030 0.204 1.739 —0.134 0.036 0.122
G302 US gov-t 5-7 0.032 0.275 1.781 —0.134 0.032 0.169
G402 US gov-t 7-10 0.033 0.352 1.808 —-0.172 0.033 0.218
ClAl AAA 1-3 0.027 0.096 1.654 —0.080 0.053 0.027
C2A1 AAA 3-5 0.029 0.175 1.695 —0.112 0.029 0.099
C3A1 AAA 5-7 0.032 0.249 1.710 —0.116 0.031 0.145
C4A1 AAA 7—-10 0.032 0.319 1.739 —0.155 0.031 0.190
Cl1A2 AA 1-3 0.028 0.099 1.686 —0.105 0.027 0.056
C2A2 AA 3-5 0.029 0.177 1.722 —0.111 0.029 0.104
C3A2 AA 5-7 0.032 0.250 1.757 —0.121 0.032 0.150
C4A2 AA 7-10 0.033 0.325 1.778 —0.148 0.033 0.198
CI1A3 A 1-3 0.028 0.098 1.688 —0.135 0.027 0.056
C2A3 A 3-5 0.030 0.180 1.702 —0.122 0.029 0.104
C3A3 A 5-7 0.032 0.255 1.743 —0.133 0.033 0.151
C4A3 A 7-10 0.033 0.333 1.753 —0.167 0.033 0.199
ClA4 BBB 1-3 0.029 0.112 1.653 —0.113 0.029 0.054
C2A4 BBB 3-5 0.032 0.183 1.662 —0.042 0.033 0.096
C3A4 BBB 5-7 0.034 0.249 1.690 —0.125 0.035 0.140
C4A4 BBB 7—-10 0.035 0.316 1.694 —0.136 0.035 0.180
HOA1 BB 1-3 0.027 0.185 1.686 —0.252 0.042 0.104

4 Each index set, except HOA1, includes 2418 daily observations from 3.13.90 to 7.29.99. Source of index series:
Merrill Lynch, used with permission.

In order to assess riskiness of the individual credit series and properties of stable mod-
eling in the credit risk evaluation, the 99% and 95% Value at Risk (VaR) measurements
were computed. The stable and normal VaR estimates are reported in Table 11. Normal
VaR measurements are given for comparison purposes. The differences between empirical
and modeled VaR are given in Appendix B, Table B.1. The VaR evaluation for the bond
indices is illustrated on Figures 17 and in Appendix A. Results of VaR estimations lead to
the following conclusions:>

Since credit returns have skewed and heavy-tailed distributions, VaR measurements pro-
vide more adequate indication of risk than symmetric measurements (standard deviation
or, in case of stable distributions, scale parameter) do.

35 This section computes “in-sample” VaR. Hence, the conclusions discuss in-sample VaR properties.
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Fig. 17. VAR estimation for the HOA1 index.

o the stable modeling produces conservative and accurate 99% VaR estimates, which is
preferred by financial institutions and regulators. “Conservative” VaR estimates exceed
empirical VaR, which implies that forecasts of losses were greater than observed losses,

o the stable modeling underestimates the 95% VaR,

e the normal modeling gives overly optimistic forecasts of losses in the 99% VaR esti-
mation,

o the normal modeling is acceptable for the 95% VaR estimation.

The stable modeling for high values of the VaR confidence level is superior because it
adequately describes heavy tails and skewness in the data. Our empirical analysis demon-
strates advantages of stable modeling in evaluation of riskiness of single credit returns
series. The next step is to examine properties of stable modeling in evaluation of portfolio
risk.

6. Portfolio credit risk for independent credit returns

Suppose that a portfolio includes n credit assets. Then, the portfolio return is given by
Rp = Z?:l w; R;, where R; is the return on the i-th asset, w; is the weight of the i-th
asset,i=1,...,n, Z:-l: 1 w; = 1. The modeling in this section assumes that distributions
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Table 11
Empirical, normal, and stable VaR estimates for bond indices

Index 99% VaR estimates 95% VaR estimates

Empirical Normal Stable Empirical Normal Stable
G102 0.242 0.198 0.275 0.127 0.132 0.119
G202 0.518 0.446 0.576 0.303 0.306 0.283
G302 0.739 0.609 0.747 0.412 0.421 0.399
G402 0.928 0.785 0.932 0.545 0.545 0.518
ClAl 0.238 0.196 0.284 0.129 0.130 0.119
C2A1 0.437 0.377 0.509 0.244 0.258 0.236
C3Al1 0.687 0.548 0.734 0.369 0.378 0.353
C4A1 0.883 0.712 0.931 0.480 0.494 0.467
Cl1A2 0.237 0.201 0.285 0.132 0.134 0.125
C2A2 0.443 0.382 0.505 0.254 0.261 0.244
C3A2 0.663 0.550 0.689 0.373 0.380 0.355
C4A2 0.870 0.722 0.890 0.482 0.501 0.474
Cl1A3 0.237 0.207 0.286 0.135 0.134 0.125
C2A3 0.469 0.390 0.530 0.260 0.267 0.248
C3A3 0.705 0.560 0.719 0.376 0.386 0.361
C4A3 0.893 0.741 0.949 0.487 0.514 0.485
ClA4 0.262 0.231 0.290 0.124 0.155 0.119
C2A4 0.478 0.392 0.511 0.243 0.268 0.228
C3A4 0.711 0.545 0.741 0.361 0.375 0.343
C4A4 0.862 0.702 0.960 0.467 0.486 0.451
HOA1 0.557 0.403 0.570 0.258 0.277 0.245

of R; are: (i) independent «-stable and (ii) characterized by the same index of stability,
R; ~ Sq(oR;, BR;» 0),36 i =1,...,n. The additivity property of independent stable random
variables provides analytic formulas for parameters of portfolio returns Rp. The formulas
lead to estimates of portfolio parameters and risk without simulations. In practice, the
“independent” risk measurements are lower bounds of portfolio risk.

By the additivity property of stable distributions, a linear combination of independent
stable random variables is again a stable random variable. Therefore, Rp = Z?:l w; R;
follows a stable law:

RP ~ Sa(aRP! ﬁvao)v

36 We assume that a > 1 (this assumption is always supported by the empirical studies) and the mean pug; =0.
If wg; # 0, we “center” the R; observations: R;k =R; — pupg;-
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where « is the tail index, og, is the scale parameter S, is the skewness parameter,

0 1/
ORp = [Z(|wi|UR,-)a:| ,

i=1
Yo [sign(w;) Br; (|wilog,)*]
Yo (wilog)® '

ﬁRP =

Thus, the distribution of the portfolio returns is characterized by three parameters: tail
index (index of stability) o, skewness g, and scale og,. The parameter « is exogenous.
Estimation of B, and o, can be implemented in three steps:

Step 1: Find estimates of og, and Bg; by stable fitting sets of R;;, t =1,...,T, i =
1,...,n.
Step 2: Evaluate portfolio parameters o, and Bg,:

n 1/
SRy = [Zawﬂ&m)“] : 5)

i=1

S [sign(wi) Br; (|wil6r,)]
Yo (wilog)®

(6)

ﬂRP =

Having estimates of parameters of the portfolio credit risk, 6, and ,3 Rp. the portfolio
VaR is the negative of the appropriate quantile of the R p-distribution.

As an illustration of the method, portfolio risk is estimated for equally weighted returns
on indices of the investment grade corporate bonds: C1A1, C2A1, C3A1, C4Al, Cl1A2,
C2A2, C3A2, C4A2, C1A3,C2A3, C3A3, C4A3, C1A4, C2A4, C3A4, and C4A4.37 De-
scription of indices is given in Table 10 of Section 5. By assumption, the indices are
(i) characterized by the same tail index « and (ii) independent. Fix « at 1.708, the av-
erage of the « values for the bond return series (see Table 10), and recalculate other stable
parameters: Bg;, 1R;, and og,. New estimates are reported in Table 12. The condition re-
quiring the same tail index « for all analyzed series does not appear to be very restrictive:
new parameter estimates (given in Table 12) do not differ much from the previous para-
meter estimates (reported in Table 10); the new stable VaR estimates (see Table B.2 in
Appendix B) are close to the initial stable VaR measurements (Table 11).

The p estimates are all small. Further on, we shall assume p = 0. Portfolio pa-
rameters following formulas (1), (2) are 6y, = 0.659, ,éUp = —0.125. Thus, ﬁp ~

37 A digit after letter “C” denotes the maturity band: 1 — from 1 to 3 years, 2 — from 3 to 5 years, 3 — from 5 to
7 years, 4 — from 7 to 10 years; a digit after letter “A” denotes credit rating: 1 — “AAA”, 2 — “AA”, 3 — “A”, 4 —
“BBB”.
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Table 12
Stable fitting of the bond indices with fixed o

Bond indices Maturity Stable parameters at o = 1.708

(years)
B I o
Cl1A1 1-3 —0.084 0.027 0.054
C2A1 3-5 —0.111 0.029 0.099
C3A1 5-7 —0.116 0.031 0.144
C4A1 7—10 —0.146 0.031 0.188
Cl1A2 1-3 —0.107 0.027 0.057
C2A2 3-5 —0.105 0.029 0.103
C3A2 5-7 —0.098 0.033 0.148
C4A2 7—-10 —0.128 0.032 0.194
C1A3 1-3 —0.144 0.027 0.057
C2A3 3-5 —0.120 0.030 0.104
C3A3 5-7 —0.125 0.032 0.149
C4A3 7—-10 —0.151 0.032 0.196
Cl1A4 1-3 —0.118 0.029 0.054
C2A4 3-5 —0.045 0.033 0.098
C3A4 5-7 —0.128 0.035 0.141
C4A4 7-10 —0.143 0.035 0.180

S1.708(0.659, —0.125, 0). The portfolio c% VaR is calculated as the negative of the (1 — ¢)-
th quantile of the R p-distribution. For the analyzed portfolio, the 99% VaR equals 3.518
and the 95% VaR equals 1.757. As credit returns typically have the non-negative depen-
dence structure, the assumption of independence for single credit returns results in the low-
est VaR measurement, the lower bound for portfolio VaR estimates. The upper bound of
the portfolio VaR measurements is given by the non-diversified VaR, the sum of the stand-
alone VaR values.® For our portfolio, the non-diversified stable 99% VaR is 9.813 and the
non-diversified stable 95% VaR is 4.733. Analysis in Section 5 showed the 99% stable VaR
estimates slightly exceed the empirical 99% VaR, whereas the 95% stable VaR evaluation
underestimates the empirical 95% VaR. Therefore, 9.813 is a biased upwards estimate of
the portfolio non-diversified 99% VaR and 4.733 is a biased downwards measurement of
the portfolio non-diversified 95% VaR.

7. Stable modeling of portfolio risk for symmetric dependent credit returns

In this section we suppose that distributions of credit returns are symmetric «-stable and
dependent. We interpret a symmetric random variable as a transformation of a normal ran-

38 The stand-alone VaR is the VaR for the individual asset.
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dom variable. Based on this interpretation, we develop a new methodology for correlation
estimation. We apply the methodology for portfolio risk assessment.

We evaluate portfolio risk by determining portfolio VaR: (i) simulating a distribution of
the Rp = Z:-l: | w; R; values; (ii) finding a certain quantile of the Rp distribution, say, the
1% quantile, which corresponds to the 99% VaR confidence level. The aim of simulations
is to project possible portfolio return values Rp at time 7 + 1 given: (i) observations

of individual returns over time: R;1, Rj2, ..., RiT, i =1,...,n; (il) weights of portfolio
assets wi, ..., w,. The simulations must account for dependence among individual credit
returns R;, i =1, ..., n. A traditional approach of quantifying dependence is to calculate

the covariance matrix. Under the o-stable assumption for distributions of R;, computation
of the covariance matrix is impossible.

We suggest a new method for deriving the dependence (association) structure. The
method assumes that R; are symmetric strictly stable: R; ~ S, (0g;,0,0). A symmetric
a-stable (SaS) random variable can be interpreted as a random rescaling transformation
of a normal random variable (see Property 1 below). If a collection of Sa.S variables is
obtained by applying a similar transformation to dependent normal variables, the depen-
dence structure among variables will remain. Thus, the dependence among SaS random
variables can be explained by the dependence among underlying normal random variables.

Property 1.3° Assume that:
(i) G is a normal random variable with a zero mean:

G ~ $(06,0,0) = N(0,203),
(i1) Y is a symmetric a-stable random variable, o < 2:
Y ~ S(X(GY7 Oa 0)5

(iii) S is a positive %-stable random variable:

2 2/a
S~Sa/2<0—§(cos<ﬂ>> ,1,0),
oG 4

(iv) S and G are independent.
Then, the symmetric «-stable random variable Y can be represented as a random rescal-
ing transformation of the normal random variable G:

Y = SY2G.

Simulations of the portfolio return values Rp can be divided into two fragments:

39 Property 1 is a slightly modified version of Proposition 1.3.1 in Samorodnitsky and Taqqu (1994).
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(i) generating individual returns R; with the same dependence structure as the R;’s. We
derive the dependence among R; supposing that R; ~ S, (og,, 0, 0). Based on Prop-
erty 1, R; can be expressed as a transformation of a normal random variable:

R; = 5;"%Gi, (7)
where
Gi ~ 82(06;,0,0) = N(0,203, ), ®)

o Izgl. o\ ki
Sl NSO[RI./Z _2 COS{ —— 7150 ) (9)
oG, 4

S; is independentof G;, i =1, ...,n.
Random rescaling transformations of normal variables G; into R; preserve the depen-
dence structure. Hence, the dependence among R; can be explained by the dependence
among G;, i =1,...,n. Based on this property, we generate dependent normal vari-
ables 5,-, maintaining the initial dependence,40 then, we generate ﬁi = §,.1/ zéi, where
g,- is a simulgted value of S!L}
(ii) computing Rp =) '_, w; R;.
The simulations are performed according to the following algorithm:*!

Step 1: Estimate stable parameters of R;: og,, Or;, IR 2

Step 2: “Center” the R; observations: R} = R; — jug,. Further on, we shall assume ug;, =
0 and consider R} as R; : R; ~ SaR,- (0r;,0,0), i=1,...,n.

Step 3: Assume: (i) R; can be decomposed according to expressions (7)—(9); (ii) the co-
variance matrix of (G;)1<;<x is equal to the covariance matrix of truncated (R;)1<i<n-
Evaluate the covariance matrix of (G;)1gign attime T + 1, X7y = {cijr+17r}, i =

1,..., n,j=1,...,n,using exponential weighting:
K
rer=1=0)) 0" Rir_y. (10)
k=0
K
irynr==0—=0)> 0" Rir kR4, (1)
k=0

40 variables G, which enter formulas (1) and (8), are not observable. We suppose the dependence structure of
Gaussian variables (G;) gy 1s “inherited” from the dependence structure of truncated values of stable variables
(Ri)1<i<n- Because we believe that the “outliers” are very important for the description of the dependence
structure, we take the truncation value for R; sufficiently large.
41 The algorithm is implemented in the Mercury Software Package for Market Risk (VaR). See Rachev et al.
(1999).
42 This section assumes Br. =0.

1
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where T 4 1|T denotes a forecast for time 7 4 1 conditional on information up to
time T'; 6 is a decay factor, 0 < 6§ < 1; K is a number of observations’ lags. Exponential
weighting (6), (7) allows to account for volatility and correlation clustering (GARCH
effects).*? Formulas (6), (7) can be expressed in recursive (GARCH-type) form:*

2 2 2
Cirenr =0¢ -1+ =R 1,

2 2
Ciirryr =0¢rir—1 T (L =R TR 7.

Step 4: Generate a value of the multivariate normal random variable G = (G, Ga, . . .,
G ) with the covariance matrix X741.
Step 5: Simulate values of stable random variables

20'1%1_ To 2/aRi .
SiNSaRl./2 —5 | cos| — ,1,0), i=1,...,n.
c; 4

Step 6: Compute ﬁi = Sl.l/zGi, i=1,...,n.
Step 7: Calculate Rp =) ", w; R;. _
Step 8: Repeat Steps 4—7 a large number of times to form an R p-distribution.

Obtain a portfolio VaR measurement as the negative of a specified quantile of the Rp-
distribution.

We evaluate portfolio risk for equally weighted returns on indices of the investment
grade corporate bonds: C1A1, C2A1, C3A1, C4Al, C1A2, C2A2, C3A2, C4A2, C1A3,
C2A3,C3A3,C4A3,C1A4, C2A4, C3A4, and C4A4. Description of indices is given in Ta-
ble 10 of Section 5. We impose an assumption that returns on these indices are symmetric-
a-stable. We compute the 99% and 95% VaR measurements in two procedures: (i) simu-
lation of portfolio returns following the above described algorithm; (ii) calculation of the
99% (95%) VaR as the negative of the 1% (5%) quantile. In step 3 of the portfolio re-
turns simulations, derivation of the covariance matrix X741, we used different truncation
points and decay factor values. In order to estimate accuracy of simulations, we calculate
the Kolmogorov Distance (KD) and Anderson—Darling (AD) statistics:

’

KD = sup|F,(x) — Fy(x)
X

AD — sup{ [ Fe(x) — Fy(x)] }’

VFe(x)(1 = Fe(x))

where F,(x) is the empirical cumulative density function (cdf) and Fj(x) is the simulated
cdf. The computation results are summarized in Table 13.

43 An exponential weighting methodology follows the RiskMetrics’ exponentially weighted moving average
model. See Longerstaey and Zangari (1996).
44 Formulas are adapted from Longerstaey and Zangari (1996).
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Table 13
Portfolio VaR for symmetric dependent credit returns

Decay Truncation Portfolio VaR Kolmogorov Anderson—
factor 0 points (%) distance Darling
99% VaR 95% VaR
0.85 10-90 7.508 4.886 3.880 0.086
5-95 7.7717 5.153 3.736 0.093
No 8.286 5.346 4.859 0.111
0.94 10—-90 7.793 5.147 3.556 0.081
5-95 8.076 5.248 4.362 0.104
1-99 8.389 5.434 5.650 0.128
No 8.114 5.252 5.212 0.117
0.975 10—-90 8.028 5.036 3.452 0.077
5-95 8.166 5.318 9.085 0.234
1-99 8.469 5.493 5.805 0.130
No 8.516 5.470 7.274 0.167

The 99% VaR estimates in Table 13 are within the 99% VaR range (3.518,9.813) derived
in Section 6. At each truncation band, increasing the decay factor leads to higher values
of the 99% VaR. Thus, as the decay factor grows, the 99% VaR generally rises. At each
value of the decay factor, in general, reduction of truncated observations produced higher
VaR numbers. We explain the latter observation by positive correlation in tails (concurrent
extreme events). Consideration of a larger number of tail observations results in higher
VaR. The KD and AD statistics, in general, decline with smaller decay factors. We examine
how selection of the decay factor and the truncation method affects estimation of marginal
risks. The marginal risk is a risk added by an asset to the portfolio risk. It is computed
as the difference between the portfolio risk with an analyzed asset and the portfolio risk
without the asset. We report the examination results in Table 14.

The decay factor of 0.85 does not produce cases “Marginal VaR > Stand-alone VaR”
and “Within one maturity band, higher ratings contribute more risk”. In sum, the decay
factor = 0.85 results in the lower KD and AD statistics and does not lead to irregular
cases; the no-truncation method better accounts for correlation in tails. Hence, we would
recommend the choice of the decay factor = 0.85 and the no-truncation method.

In Table 15 we report marginal 99% VaR, stand-alone 99% VaR, and diversification
effects at the decay factor of 0.85 and the no-truncation method. Marginal VaR estimates
of Table 15 are consistent with the expectation that, for a given credit rating, bonds with
longer maturities contribute more risk. Having marginal VaR numbers, we can identify
concentration risks. We find that the C4A3 bond index makes the highest addition to the
portfolio 99% VaR: the C4A3 marginal VaR of 0.920 exceeds all other marginal VaR.
Marginal risks for all bond indices are smaller than stand-alone risks, which indicates that,
indeed, diversification reduces risk. From Table 15, we notice that the C4A1 and C3A4
bond indices have highest diversification effects.
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Table 14
Marginal risk for symmetric dependent credit returns

Decay factor ~ Truncation (%) Cases: Cases: Higher
Marginal VaR > ratings assets
Stand-alone VaR  contribute more risk

0.85 10-90
5-95

(=]

0.94 10—90
5-95
1-99

0.975 10—90
5-95
1-99
No

Z

=)
WNOOOWOoOoOOoOo
AR PO NNOOOOO

Table 15
Marginal VaR, stand-alone 99% VaR, and diversification effects for bond indices (decay
factor = 0.85, no truncation)

Bond indices Marginal VaR Stand-alone VaR Diversification effect

ClAl 0.199 0.284 0.085
C2A1 0.338 0.509 0.171
C3Al 0.572 0.734 0.162
C4A1 0.713 0.931 0.218
CIA2 0.245 0.285 0.040
C2A2 0.494 0.505 0.011
C3A2 0.575 0.689 0.114
C4A2 0.788 0.890 0.102
CI1A3 0.190 0.286 0.096
C2A3 0.403 0.530 0.127
C3A3 0.592 0.719 0.127
C4A3 0.920 0.949 0.029
Cl1A4 0.185 0.290 0.105
C2A4 0.338 0.511 0.173
C3A4 0.522 0.741 0.219
C4A4 0.803 0.960 0.157

We studied stable modeling of portfolio risk under the assumptions of the independent
and symmetric dependent instruments. In the next section we consider portfolio risk eval-
uation in the most general case — skewed dependent instruments.
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8. Stable modeling of portfolio risk for skewed dependent credit returns

We quantify portfolio risk Rp by generating a distribution of its possible values and deriv-
ing a portfolio VaR from the constructed distribution of Rp. In a case of portfolio assets
with skewed dependent credit returns, simulations of the Rp values should reflect the “cu-
mulative” skewness and maintain the dependence (association) among them. In order to
do that, we decompose single credit returns R; into two independent parts: the first part
accounts for dependence and the second — for skewness. Then, we obtain the portfolio
dependence and skewness components separately aggregating the dependence and skew-
ness parts of individual credit returns. Simulations of the portfolio credit returns values R p
can be divided into three portions: (i) generation of the portfolio dependence component
maintaining the dependence structure among individual credit returns, (ii) generation of the
portfolio skewness component, and (iii) computation of Rp as a sum of the two generated
components. Explanations of our methodology are provided below.

A stable random variable R ~ S, (o, 8, 0) can be decomposed (in distribution) into two
independent stable random variables R(1) and R®:

RLRM 4 RO,
where

R ~ Sy (01, 81,0),  RP ~ Sy(02, f2,0),

o:(af’—i—af‘)l/a, (12)
Bioy + Baoy
P= oy =
1 2

Suppose that: (i) RW isa symmetric stable variable: 81 = 0; (ii) 01 = 0, = o*. Then,
formulas (12) and (13) can be reduced to the following expressions:

o =2e5*, (14)
1
= —5. 15
B 2/32 (15)
From Equations (14) and (15), we have
o* =271, B =28.

In sum, a stable random variable R ~ S, (o, 8, 0) can be decomposed (in distribution)
into two independent stable random variables: symmetric R" and skewed R®:

RLRMD L RO, (16)
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where
R~ 5, (27"%5,0,0), (17)
R® ~s,(27"*5,28,0). (18)

Using methodology (16)—(18), we can divide individual credit returns R; ~ Sq,. (OR;,
Br;, 0) into the “dependence” and “skewness” parts. First, we partition R; into the “sym-
metry” and “skewness” fragments:

d
where

Ri(l) ~ SOfRf (zil/aRi oR;» 0, 0)’ lez) ~ SOfRf (zil/aRi OR;» 2BR;» 0)’

parts Ri(l) and Ri(z) are independent, i = 1, ..., n. Second, we suppose: (i) Ri(l), i=1,
..., n, are dependent and (ii) RI.(Z), i =1,...,n, are independent. Consequently, symmet-
ric terms R;l) explain dependence (association) among R;’s and terms Ri(z) account for
skewness of R;’s.

Based on Property 1 (see Section 7), Rl.(l) ~ SO‘R,» (2_1/"‘Ri oR;»0,0) can be written as a
transformation of a normal random variable:

Ri(l) _ S,-I/zGi,
where

Gi ~ $2(06,,0,0) = N(0,202.),

2—2/0[Ri O_R% To 2/0{Ri
S;NSQR,/2<72’(COS<—>> ,1,0),
i O_Gi 4

S; is independentof G;, i =1,...,n.

Random rescaling transformations of normal variables G; into Rl.(l) maintain the depen-
dence structure. Therefore, from the dependence among G;’s we can determine the depen-
dence among RI.( D or the dependence among R;.

Adding separately the dependence and skewness terms of R;’s, we obtain the two com-
ponents of the portfolio returns Rp:

Rp =R +RY, (19)

where RS =Y w; RV =" w; Sl.l/zGi is the “dependence” componentand R =

i

2) .
Y wi Rl.( ) is the “skewness” component.
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We simulate the Rp values based on decomposition (19): R p= ﬁg) + ﬁg). The simu-
lations are executed according to the next algorithm:*>

Step 1: Estimate stable parameters of R;: ag,, Br;, OR;» ILRi.

Step 2: “Center” the R; observations: lek = R; — R, . Further on, we shall assume g, =
0 and consider R} as R;: R; ~ SOIR,» (oR;» Br:»0), i=1,...,n.

Step 3: Evaluate the covariance matrix of normal random variables (G;)1<;gn at time
T+1, Xrq1={cijr+yr}, i=1,..., n, j=1,...,n, using exponential weighting:

K
2 k p2
Cireyr =1 —=6) 29 Ry
k=0

K

Cz'zj,T+1|T =(1-6) ZOkR;,T—kRj,T—k,
k=0

where T + 1|T denotes a forecast for time T + 1 conditional on information up to time 7;
0 is a decay factor, 0 < 8 < 1; K is a number of observations’ lags.

Step 4: Generate a value of the multivariate normal random variable G = (G, Ga, ...,
G,,) with the covariance matrix X71.

Step 5: Simulate values of stable random variables

2 1=2/ag; 012% o\ 2/ek;
Sj"’SaRi/2<Tl<COS<T)) ,1,0), l=1,,l’l

Step 6: Compute ﬁiﬂ) = Sil/zG,-, i=1,...,n.

Step 7: Generate ﬁfz) ~ Soue,- (2*1/‘”1‘ OR;»2BR;,0), i=1,...,n.

Step 8: Calculate Rp = Y w I?i(l) + >0 wi ﬁl.(Z).

Step 9: Repeat Steps 4-8 a large number of times to form an R p-distribution.

Derive a portfolio VaR estimate as the negative of a chosen quantile of the R p-distri-
bution.

We implement the suggested procedure (Step 1-Step 9) for the risk assessment of the
same portfolio of indices as in Section 7. We suppose that returns on indices are dependent
skewed-w-stable. The portfolio VaR estimates are presented in Table 16.

The 99% portfolio VaR estimates fall within the 99% VaR range (3.518, 9.813) of Sec-
tion 6. From Table 16, the VaR magnitude generally: (i) increases when the decay factor
0 increases from 0.85 to 0.94; (ii) declines when 6 changes from 0.94 to 0.975. Thus, the
decay factor 6 = 0.94 leads to more conservative VaR estimates. The 1%—-99% truncation
band appears to produce the lowest KD and AD statistics. Based on our observations, we

45 This algorithm is an extended version of the algorithm in Section 7.
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Table 16
Portfolio VaR for skewed dependent credit returns

Decay Truncation Portfolio VaR Kolmogorov Anderson—
factor 6 points (%) distance Darling
99% VaR 95% VaR
0.85 10-90 4.939 2.904 7.22 0.20
5-95 5.380 3.162 5.64 0.18
No 5.449 3.236 5.43 0.17
0.94 10—90 5.101 3.009 6.53 0.19
5-95 5.456 3.248 5.24 0.17
1-99 5.596 3.363 4.70 0.14
No 5.455 3.231 5.13 0.17
0.975 10—90 5.112 3.021 6.54 0.19
5-95 5.416 3.238 5.34 0.17
1-99 5.471 3.307 4.37 0.14
No 5.298 3.238 5.43 0.15

would recommend to employ 6 = 0.94 and the 1%-99% truncation band in VaR deriva-
tions under the assumption of skewed dependent credit returns. We computed marginal
VaRs for the same combinations of the decay factor and the truncation band as in Ta-
ble 16. The marginal VaR estimates were smaller than the corresponding stand-alone VaR
measurements, which supports feasibility of suggested procedure for simulating portfolio
returns.

We have applied stable modeling to the total risk assessment of credit returns. Below we
analyze stable modeling of isolated credit risk.

9. One-factor model of portfolio credit risk

In this section we outline a one-factor model for quantifying portfolio credit risk. The
model is built on two postulations: (i) constituent parts of the credit returns are the credit-
risk-free part and the credit risk premium; (ii) the credit risk spread follows a stable law.
Applying the one-factor model, in the following sections we quantify credit risk for single
instruments and then estimate portfolio credit risk as a cumulative result of stable distrib-
uted individual credit risks.

Similarly to the previous sections, we assume that a portfolio includes n assets. Then,
the portfolio return is given by Rp = Z?:l w; R;, where R; is the return on the i-th asset,
w; is the weight of the i-th asset, i =1, ..., n, Z?:l w; = 1. We conjecture that individual
returns R; depend on one credit-risk-free factor Y;:

Ri=a; +b;Y; + Us, (20)
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where a; and b; are constants, U; is the residual representing compensation for credit risk
and random noise,46 i=1,...,n.

Suppose the i-th portfolio instrument is a corporate bond of maturity v with returns R;.
There are two possible choices for an underlying credit-risk-free factor Y;: (i) returns on
a Treasury bond of the same maturity t; (ii) returns on a t-year bond with a credit rating
AAA. Then, the spread U; = R; — a; — b;Y; reflects charges for credit risk. If the j-th
portfolio asset is a swap with a counterparty that has a low credit rating, say BBB, we can
choose, as an underlying factor Y;, returns on a similar swap with a company that has a
credit rating AAA: Rj =aj +b;Y; + Uj, the term U; accounts for the credit risk of the
BBB-swap.

We impose the following assumptions on the components of model (20):

(i) Credit risk spreads U; are strictly stable, U; ~ Sau,» (ou;» Bu;» O),47 ay, > 1.

(ii) Default-free factors Y; are strictly stable, ¥; ~ Sayi (ov;, By;, 0),8 ay, > 1.
(iii) U; and Y; are independent of each other,i =1, ..., n.

Then, the portfolio return Rp can be decomposed into three components:
Rp=A+Yp+Up,

where Yp expresses aggregate effect of underlying factors, Up represents portfolio credit
risk,

n n n
A=Zwiai, YP:ZwibiYiv UpzzwiUi.

i=1 i=1 i=1

We evaluate the portfolio credit risk Up in two steps: (i) quantifying credit risk of each
asset U;; (ii) estimating U p as a cumulative result of individual U;,i =1, ..., n. Section 10
discusses credit risk evaluation for single portfolio assets. Section 11 examines portfolio
credit risk estimation under the assumptions of independent, symmetric dependent, and
skewed dependent credit risks.

10. Credit risk evaluation for portfolio assets

Approximations of the credit risk premium values U; for portfolio assets can be obtained
using model (20):

o~

Uiy = Rii — a; — bi Y, 1)

46 Wwe interpret the yield spread as the credit risk premium and include the noise factor into the credit risk part.
The noise factor could incorporate taxability, liquidity, and other premiums.

47 The shift of U; is, in fact, incorporated in a; .

48 Y; is the centered return. If the returns of portfolio instruments, Z;, are non-centered, then we take Y;; =
Ziy—Zi,t=1,...,T.
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where a; and ISi are the OLS estimates,
b = ZtT=1 Yizt ZtT=1 Rir — Zszl Yis ZtT=1 RitYir
T Yo Vg = (Eim Yi)?
b = TY i RiYi =3 Y 0 R
Ty Yy — (i Yi)?
i=1,....,n; t=1,...,T.

: (22)

(23)

Estimators a; and l;i, given by expressions (22) and (23), are unbiased.*’

We analyze credit risk of corporate bonds applying one-factor model (20). Assume that
returns on an index of the US corporate bonds, R;, are described by returns on a credit-
risk-free factor, Y;, and a credit spread, U;:

Ri=a;i +b;Yi + U,

where a; and b; are constants, i = 1, ..., 16. We examine returns on the same 16 indices
as in Section 5 (see Table 10): R; € {Rc1a1, Rc2at, Resal, Reaat, Reiaz, Reaaz, Resaz,
Rcanz, Rcias, Reaas, Resass Reaas, Reiasg, Reoad, Resag, and Regaq}. We choose, as
corresponding credit-risk-free factors, returns on the indices of US government bonds in
the same maturity band: ¥; € {Rg102, Rc202, RG302, RG402}.50 For example, if we con-
sider returns on the index of bonds with maturity from one to three years, Rciai, then the
returns on the index of the government bonds with maturity from one to three years, Rg102,
serve as the underlying credit-risk-free factor. We approximate the percentage return values
of the individual credit risks U;, following approach (21): (i) run OLS regressions of model
(20), (i1) compute the residuals’ series ﬁi. Coefficients of the OLS regressions are given in
Appendix B, Table B.3. Obtained sets of OLS credit risk premiums U; are plotted in Fig-
ure 18 and in figures of Appendix C. Empirical densities of U; are shown in Figure 19 and
in Appendix C. We observe that the credit risk spread series U; exhibit volatility clusters
and heavy tails. Such behavior of the individual returns sets can be captured by stable and
GARCH models.

Stable modeling of the credit risk premiums ﬁi, entailed values of @ < 1.6, 8 ~ 0, and
u ~ 0 (see Table 17). These values of parameter estimates indicate that credit risk spreads
of the corporate bonds’ indices are fat-tailed and almost symmetric. Table 17 presents the
following o and B values of the credit risks of the bond indices with a maturity band from
one to three years: AAA bonds: « = 1.333 and 8 = 0.011; AA bonds: o = 1.379 and
B8 =0.030; A bonds: « =1.393 and 8§ = —0.021; BBB bonds: @« = 1.412 and 8 = 0.004.

49 For analysis of asymptotic properties of OLS estimators (22) and (23) under the stable distribution assumption
for the disturbance term, see Gotzenberger, Rachev and Schwartz (1999).

50 A digit after letter “G” denotes the maturity band: 1 — from 1 to 3 years, 2 — from 3 to 5 years, 3 — from 5 to 7
years, 4 — from 7 to 10 years.
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Fig. 18. OLS credit risk premium of the C1A1 bond index.
Table 17
Stable and normal fitting of the OLS credit risk premiums of bond indices
OLS credit Maturity Normal Stable
risk of bond (years)
- Mean Standard o B % o
indices o
deviation
ClAl 1-3 0.0 0.045 1.333 0.011 0.000 0.017
C2A1 3-5 0.0 0.075 1.528 —0.089 —0.001 0.033
C3A1 5-7 0.0 0.096 1.590 —0.023 0.000 0.047
C4A1 7-10 0.0 0.116 1.456 —0.026 0.000 0.051
ClA2 1-3 0.0 0.037 1.379 0.030 0.001 0.015
C2A2 3-5 0.0 0.064 1.523 —0.074 0.000 0.029
C3A2 5-7 0.0 0.086 1.591 —0.060 0.000 0.044
C4A2 7-10 0.0 0.110 1.426 0.005 0.001 0.050
CIA3 1-3 0.0 0.038 1.393 —0.021 0.000 0.015
C2A3 3-5 0.0 0.069 1.483 —0.084 0.000 0.029
C3A3 5-7 0.0 0.098 1.519 —0.073 0.000 0.042
C4A3 7-10 0.0 0.124 1.366 —0.017 0.001 0.048
ClA4 1-3 0.0 0.074 1.412 0.004 0.001 0.018
C2A4 3-5 0.0 0.096 1.527 —0.024 0.001 0.033
C3A4 5-7 0.0 0.113 1.552 —-0.077 0.000 0.048
C4A4 7-10 0.0 0.1424 1.480 —0.055 0.001 0.055
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Fig. 19. Stable and normal fitting of C1A1 OLS-credit-risks.

04

303

Plots of the stable and normal fitting of the OLS credit risk spreads U; are shown on
Figure 19 and in Appendix C. Figures demonstrate that stable modeling well captures

excess kurtosis and heavy tails of the credit risks U;.

The GARCH approach models clustering of volatilities and fat tails, by expressing the
conditional variance as an explicit function of past information:

Rii=a;+biY;;+U,,
where

Ui,t =0i,t€it,

&ir ~N(,1),
P q
2 2 2
o =¢it Z YijOi—j T Z i Ui
Jj=1 Jj=1

i=1,....,n; t=1,...,T.

(24)

(25)
(26)

(27)

We shall name model (24)-(27) as a GARCH(p, q)-normal model because it is based
on the normality assumption for the disturbance term. In order to detect GARCH-
dependencies, we examine sample autocorrelation and partial autocorrelation functions of
the squared residuals 0, ;. Visual inspection of the correlograms suggests values of p and g.
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Fig. 20. Credit risks: OLS and GARCH.

Applying the Box—Jenkins methodology, we find that p = ¢ = 1 is adequate to capture
temporal dependence of volatilities:

Ufz =c¢i+ Vi"fz—l + i Uiz,t—l' (28)

Coefficients of model (24)-(26) and (28) with R; € {Rcia1, Rc2atl, Rc3al, Rcaat,
Rcia2, Rcoazs Rezazs Reanz, Reias, Rcaas, Re3as, Reaas, Reiad, Rcoag, Resas, and
Rcaaa} and Y; € {Rg102, RG202, RG302, RGaoz} are reported in Appendix B, Table B.4.
Densities of the GARCH(1,1)-normal residuals U; ; = \/c,- + i aft_l + n; Uiz,z—l X & are
displayed in Figures 20 and in Appendix D. Graphs demonstrate that the GARCH credit
risk series have lower peaks.

In the portfolio context, implementation of the GARCH models is computationally com-
plex because a number of parameters rapidly increases as the portfolio expands.>! Hence,
we evaluate portfolio credit risk Up based on stable modeling of individual credit risks with
accounting for GARCH effects by exponential weighting of observations.’? In estimation
of Up, we separately investigate cases of independent, symmetric dependent, skewed de-
pendent credit risks of portfolio instruments.

51 For references on the multivariate GARCH, see Engle and Kroner (1995).
52 An approach of modeling time-varying volatilities by exponential weighting follows the RiskMetrics’ expo-
nentially weighted moving average model described in Morgan (1995).
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11. Portfolio credit risk

In this section we follow the one-factor model of Section 9 and evaluate portfolio credit
risk as a cumulative effect of stable distributed individual credit risks. We impose dif-
ferent assumptions on their distributions: independent, symmetric dependent, and skewed
dependent. We show implementation of the approach on a portfolio of equally weighted
OLS-credit-risk premiums from Section 10.

11.1. Independent credit risks

Suppose credit-risk-premiums are: (i) characterized by the same tail index o; (ii) indepen-
dent. Then, by the additivity property of stable variables (see Section 3), the portfolio credit
risk Up = ), w; U; is stably distributed:

UP NS(X(O'UP,‘BUP,O),

where o is the tail index, oy, is the scale parameter, Sy, is the skewness parameter,

n 1/a

Oup = [Z('wilan)a] P (29)
i=1

> iy [sign(wi) Bu; (lwilov,)*]

30
Z?:l('w”a[/i)a ( )

Bup =

Consider a portfolio of equally weighted OLS-credit-risk premiums from Section 10.
Assume credit-risk-premiums are independent and have the same tail index «. We take
o = 1.472, the average of the o values for the credit-risk-premium series (see Table 17),
and recompute other stable parameters: Sy,, py;, and oy, . New estimates are reported in
Table 18. Similarly to returns on bond indices, a condition of the same tail index « for all
analyzed credit risk series does not seem to be very restraining: new parameter estimates
(Table 18) do not deviate much from the previous parameter estimates (Table 17).

Since obtained estimates of p are very small, we assume pu = 0. We evaluate portfo-
lio parameters applying formulas (29), (30): 6y, = 0.015, BUP = —0.038. Thus, Up ~
S1.472(0.015, —0.038, 0). The 99% (95%) credit VaR is derived as the negative of the 1%
(5%) quantile of the U p- distribution: the 99% (95%) VaR equals 0.125 (0.046). Having
analytic formulas for the Up parameters, we obtained estimates of portfolio credit risk
without simulations.

11.2. Symmetric dependent credit risks

In order to assess portfolio credit risk, we obtain portfolio credit VaR. It is computed in
two steps: (i) simulating a distribution of the Up = Y, w; U; values; (ii) inferring port-
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Table 18
Stable fitting of the OLS credit risk premiums with fixed «

OLS credit risk of Maturity Stable parameters at o« = 1.472

bond indices (years)
B u o
Cl1A1 1-3 0.000 0.000 0.018
C2A1 3-5 —0.090 —0.001 0.032
C3A1 5-7 —-0.019 0.000 0.045
C4A1 7—10 -0.019 0.001 0.052
Cl1A2 1-3 0.023 0.001 0.015
C2A2 3-5 -0.072 —0.001 0.029
C3A2 5-7 —0.039 0.000 0.042
C4A2 7—10 —0.004 0.000 0.051
C1A3 1-3 —0.040 0.000 0.015
C2A3 3-5 —0.084 0.000 0.029
C3A3 5-7 —0.067 0.000 0.041
C4A3 7—10 -0.032 0.001 0.049
Cl1A4 1-3 —0.010 0.001 0.019
C2A4 3-5 0.011 0.001 0.033
C3A4 5-7 —-0.071 —0.001 0.046
C4A4 7—10 —0.053 0.001 0.055

folio credit VaR from the simulated Up distribution. This section examines the case of
symmetric individual credit risks U;: U; ~ Sy, (0y,,0,0), i=1,...,n.
We simulate Up applying the methodology from Section 7:
(1) generate individual credit risks U; with the same dependence structure as the U;’s. We
express U; as a transformation of a normal random variable:

U, = Sl-l/zG,',
where

Gi ~ $(03,.0,0) = N(0.203,).

alzfi T 2/an
Si ~ Say, 12\ | cos| — , 1,0,
oG, 4

S; is independentof G;, i =1,...,n.

The dependence among U; can be explained by the dependence among G;, i =
1,...,n. We form dependent normal variables G;, preserving the initial dependence.

Next, we generate l~]i = §l.l/ zéi, where §i is a simulated value of S;;
(ii) calculate Up =)/, w;iU;.
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Table 19
Portfolio credit VaR for symmetric credit risks

Decay Truncation Portfolio VaR Kolmogorov Anderson—
factor 6 points (%) distance Darling
99% VaR 95% VaR
0.85 10-90 3.502 1.918 8.071 0.210
5-95 3.710 1.896 8.898 0.228
No 3.396 1.856 7.692 0.199
0.94 10—90 3.594 1.963 7.680 0.200
5-95 3.643 1.941 8.162 0.209
1-99 3.476 1.975 8.847 0.227
No 3.321 1.792 6.736 0.164
0.975 10-90 3.623 1.877 7.578 0.194
5-95 3.435 1.943 9.085 0.234
1-99 3.578 2.004 9.665 0.254
No 3.293 1.739 7.174 0.167

A portfolio credit VaR can be measured from the U p-distribution.

As an illustration of the approach, we estimate credit risk for a portfolio of equally
weighted OLS-credit-risk premiums of bond indices (see Section 10) assuming they are
symmetric.>® The estimation results are presented in Table 19. The portfolio credit VaR
does not demonstrate a certain pattern of dependence on the decay factor. For each de-
cay factor, reduction of the truncated observations does not seem to affect the portfolio
credit VaR in a particular fashion. The no-truncation method approach led to the small-
est VaR measurements. Possibly, the credit risk residuals of the investment grade indices
have negative correlations in far tails. Taking into account more observations with nega-
tive correlations reduces the VaR estimates. Since the decay factor does not influence the
VaR results in a specific way and the KD and AD statistics are smaller at the no-truncation
approach, in further analysis, we consider the no-truncation method and arbitrarily select
the decay factor of 0.85. Computation of the marginal VaR, stand-alone VaR, diversifica-
tion effects for the no-truncation approach and the decay factor = 0.85 is summarized in
Table 20.

From Table 20, highest contributions to portfolio credit risk are made by the C4A4,
C4A3, and C4A2 bond indices: their marginal 99% VaR equal 0.366, 0.295, and 0.296.
The credit risk premium of the C4A1 index displays the largest diversification effect.

11.3. Skewed dependent credit risks

For estimation of portfolio risk for the skewed dependent credit risks, we propose to em-
ploy the approach of Section 8: (i) split individual credit risks U; into the dependence and

53 The symmetry proposition is plausible: the skewness parameters of credit risks premiums of bond indices are
small (see Table 16).
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Table 20
Marginal VaR, stand-alone 99% VaR, and diversification effects for credit risk
premiums of bond indices (decay factor = 0.85, no truncation)

Bond indices  Marginal VaR  Stand-alone VaR  Diversification effect

ClAl 0.175 0.191 0.016
C2A1 0.203 0.251 0.048
C3Al 0.162 0.305 0.143
C4A1 0.145 0.441 0.296
CIA2 0.024 0.148 0.124
C2A2 0.153 0.222 0.069
C3A2 0.180 0.290 0.110
C4A2 0.296 0.453 0.157
Cl1A3 0.013 0.149 0.136
C2A3 0.097 0.244 0.147
C3A3 0.203 0.325 0.122
C4A3 0.295 0.507 0.212
ClA4 0.079 0.168 0.089
C2A4 0.091 0.243 0.152
C3A4 0.142 0.346 0.204
C4A4 0.366 0.457 0.091

skewness parts; (ii) find the portfolio dependence and skewness components by combining
the dependence and skewness parts of single credit risks; (iii) evaluate the portfolio credit
risk as a sum of the dependence and skewness fragments. Details are given below.

We divide individual credit risks U; ~ Sy, (oy;, Bu;,0) into the “dependence” and
“skewness” parts, applying methodology (16)—(18) (see Section 8):

d
U, = Ul-(l) + Ul-(z),
where

Ui(l) ~ Saui (2_1/% ou;, 0, 0)’ Ui(Z) ~ Saui (2—1/an ou;, 2Bu;.» 0)’

parts Ul.(l) and Ui(z) are independent, i = 1, ..., n. We assume: (i) Ul.(l), i=1,...,n,are
dependent and (ii) Ul.(z), i =1,...,n, are independent. Then, symmetric components Ul.(l)
explain dependence (association) among U;’s and components Ui(z) depict skewness of
U;’s.

By Property 1 (see Section 7), Ul.(l) ~ Say, (2~ ey oy;,0,0) can be interpreted as a
transformation of a normal random variable:

v =512,
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where

Gi ~ $2(06,,0,0) = N(0,202.),

2—2/ay; 0[2]_ N L
Si ~ Say. /2 72’ cos| — ,1,0),
i aGi 4

S; is independentof G;, i =1,...,n.

Random rescaling transformations of normal variables G; into Ul.(l) maintain the de-

pendence structure. Hence, we can derive the dependence among U i(l), or the dependence
among U;, from the dependence among G;’s.

Combining separately the dependence and skewness terms of U;’s, we obtain the two
components of the portfolio credit risk Up:

Up=Uy" +UY,
n n
1/2
U]()l) — ZwiUi(l) — Zwisi/ Gi,
i=1 i=1

n
2 2
Uy =Y wu?,

i=1

where US) is the “dependence” component and UI(DZ) is the “skewness” component. The
portfolio credit risk can be evaluated as a sum of the dependence and skewness frag-
ments.

We suggested methodologies for portfolio credit risk assessment and demonstrated their
applications on analysis of returns on bond indices. The methodologies can be employed
for risk evaluation of any financial instruments if they have fat-tailed and/or skewed distri-
butions.

12. Conclusions

The Value-at-Risk (VaR) measurements are widely applied to estimate the exposure to mar-
ket and credit risks. The traditional approaches to VaR computations — the delta method,
historical simulation, Monte Carlo simulation, and stress-testing — do not provide satisfac-
tory evaluation of possible losses. The delta-normal methods do not describe well financial
data with heavy tails. Hence, they underestimate VaR measurements in the tails. The his-
torical simulation does not produce robust VaR estimates since it is not reliable in approx-
imating low quantiles with a small number of observations in the tails. The stress-testing
VaR estimates are subjective. The Monte Carlo VaR numbers might be affected by model
misspecification.
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This work proposes the application of stable distributions in market and credit VaR es-
timation. Our empirical analysis verifies that stable modeling well captures skewness and
heavy-tails of market and credit returns and isolated credit risks. The superior fit allows
to derive accurate risk estimates. The in-sample- and forecast-evaluation shows that stable
VaR modeling outperforms the normal modeling for high values of the VaR confidence
level:

o the stable modeling generally produces conservative and accurate 99% VaR estimates,
which is preferred by financial institutions and regulators,

o the normal method leads to overly optimistic forecasts of losses in the 99% VaR estima-
tion,

o the normal modeling is acceptable for the 95% VaR estimation.

Based on the properties of stable distributions, we design new methods for the correla-
tion estimation and simulating portfolio values. We employ the methods in evaluation of
portfolio and marginal VaR for three cases of the credit returns: independent, symmetric
dependent, and skewed dependent. We suggest a one-factor model of credit risks. Applying
the one-factor model, we quantify credit risk for individual assets and then assess portfolio
credit risk as an aggregate effect of stable distributed individual credit risks.

The stable Paretian model, while sharing the main properties of the normal distribu-
tion leading to the CLT (Central Limit Theorem), provides at the same time superior fit
in modeling market and credit VaR. However, additional research is needed. Future work
is this direction will be construction of models that capture the features of financial em-
pirical data such as heavy tails, time-varying volatility, and short and long range depen-
dence.’* In order to describe thick tails, one can employ the conditional heteroskedastic
models based on the stable hypothesis.> ARMA-stable-GARCH models can incorporate
both heavy tails and time-varying volatility.’® The fractional-stable GARCH model can
capture all observed phenomena in financial data: heavy tails, time-varying volatility, and
short- and long-range dependence. An analysis of VaR estimation with ARMA-«-stable,
ARMA -stable-GARCH, and fractional-stable GARCH models will be provided elsewhere.

54 For some preliminary results see Liu and Brorsen (1995), Mittnik, Rachev and Paolella (1998), Mittnik,
Paolella and Rachev (1997, 1998a, b), Panorska, Mittnik and Rachev (1995).

55 These models are named as ARMA-a-stable models.

56 For discussion of stable-GARCH models see Panorska, Mittnik and Rachev (1995) and Mittnik, Paolella and
Rachev (1997).
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Appendix A. Stable modeling of credit returns in figures
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Fig. A.1. G302 daily returns.
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Fig. A.2. Stable and normal fitting of the G302 index.
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Appendix B. Tables
Table B.1
Deviations of VaR estimates for bond indices

Index 99% VaRpodel — 99% VaRempirical 95% VaRmodel — 95% VaRempirical

Normal Stable Normal Stable
G102 —0.044 0.033 0.005 —0.008
G202 —0.072 0.058 0.003 —0.020
G302 —0.130 0.008 0.009 -0.013
G402 —0.143 0.004 0.000 —0.027
ClAl —0.042 0.046 0.001 —-0.010
C2A1 —0.060 0.072 0.014 —0.008
C3A1 —0.139 0.047 0.009 —-0.016
C4A1 —0.171 0.048 0.014 —0.013
Cl1A2 —0.036 0.048 0.002 —0.007
C2A2 —0.061 0.062 0.007 —0.010
C3A2 —0.113 0.026 0.007 —0.018
C4A2 —0.148 0.020 0.019 —0.008
Cl1A3 —0.030 0.049 —0.001 —-0.010
C2A3 —0.079 0.061 0.007 —0.012
C3A3 —0.145 0.014 0.010 —-0.015
C4A3 —0.152 0.056 0.027 —0.002
ClA4 —0.031 0.028 0.031 —0.005
C2A4 —0.086 0.033 0.025 —0.015
C3A4 —0.166 0.030 0.014 —0.018
C4A4 —0.160 0.098 0.019 —0.016

HOA1 —0.154 0.013 0.019 —0.013
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Table B.2
Stable VaR estimates for bond indices with fixed «

S.T. Rachev et al.

Bond index 99% VaR 95%

Different o Fixed = 1.708 Different o Fixed o = 1.708
ClAl 0.284 0.257 0.119 0.116
C2A1 0.509 0.494 0.236 0.233
C3A1 0.734 0.732 0.353 0.351
C4Al 0.931 0.979 0.467 0.471
C1A2 0.285 0.273 0.125 0.123
C2A2 0.505 0.517 0.244 0.245
C3A2 0.689 0.747 0.355 0.360
C4A2 0.890 1.003 0.474 0.485
C1A3 0.286 0.277 0.125 0.124
C2A3 0.530 0.523 0.248 0.247
C3A3 0.719 0.763 0.361 0.365
C4A3 0.949 1.022 0.485 0.491
Cla4 0.290 0.260 0.119 0.116
C2A4 0.511 0.471 0.228 0.224
C3A4 0.741 0.716 0.343 0.340
C4A4 0.960 0.934 0.451 0.447

Table B.3
Coefficients of OLS regressions
Dependent variable ~ Variables Coeff. Dependent variable Variables Coeff.

R c 0.004723 ® c 0.003887

ClAl RG102 0.882424 C1A3 RG102 0.946025

R c 0.006183 ® c 0.005709

C2Al RGoo 0.770132 C2A3 RG202 0.816271

R c 0.005550 ® c 0.005051

C3Al RG302 0.835640 C3A3 RG302 0.853295

R c 0.003735 ® c 0.003806

C4Al RGao2 0.847226 C4A3 RG402 0.877039

R c 0.003357 ® c 0.006401

ClA2 RG102 0.951165 Clad4 RG102 0.874032

R c 0.005733 R c 0.009603

cza2 RG202 0.808308 C2a4 Rco02 0.760162

X c 0.004730 R c 0.008296

c3a2 RG302 0.853315 C3a4 RG302 0.804311

X c 0.004118 R c 0.007725

caaz RGa02 0.868154 C4ad RGao2 0.803091
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Table B.4
GARCH-normal coefficients
Dependent Variables Coeff. Std. errors Variance equation
variable Variables Coeff. Std. errors
Rcial C 0.003581 0.000525 C 2.50E—-05 2.02E-06
RG102 0.937996 0.004895 ARCH(1) 0.116681 0.003541
GARCH(1) 0.885367 0.002486
Reoatl c 0.004948 0.000981 c 7.67TE—05 5.76E—06
Rgo02 0.838944 0.003466 ARCH(1) 0.130119 0.005720
GARCH(1) 0.870004 0.004714
Rc3al C 0.004199 0.001331 C 0.000152 1.66E—05
RG302 0.893949 0.003650 ARCH(1) 0.130479 0.003970
GARCH(1) 0.866746 0.002716
Rcaal C 0.004014 0.001539 C 0.000355 3.22E-05
RGao2 0.887583 0.003538 ARCH(1) 0.153744 0.008756
GARCH(1) 0.830941 0.008452
Rcia2 c 0.002746 0.000411 c 4.77E—-06 7.97E—07
RG102 0.946016 0.003830 ARCH(1) 0.096428 0.002594
GARCH(1) 0.914737 0.002586
Rcaan C 0.004229 0.000885 C 1.34E-05 2.38E—06
Rgo02 0.890123 0.003547 ARCH(1) 0.056718 0.002501
GARCH(1) 0.943510 0.001441
Rc3az c 0.002970 0.001078 c 0.000609 4.66E—05
RG302 0.894861 0.003899 ARCH(1) 0.289805 0.017996
GARCH(1) 0.669240 0.015835
Rcapnn C 0.003420 0.001329 C 0.000302 2.42E-05
RG402 0.918195 0.003240 ARCH(1) 0.180168 0.009135
GARCH(1) 0.817444 0.007086
Rcia3 C 0.002271 0.000421 C 7.06E—06 9.92E-07
Rg102 1.003079 0.003215 ARCH(1) 0.137045 0.003494
GARCH(1) 0.887812 0.002061
Reoas c 0.005204 0.000664 c 2.01E—05 321E-06
Rgo02 0.903683 0.002247 ARCH(1) 0.124285 0.004417
GARCH(1) 0.905287 0.002271
Rc3az C 0.005840 0.001114 C 0.000223 2.20E-05
RG302 0.915408 0.003059 ARCH(1) 0.253670 0.007199
GARCH(1) 0.777935 0.004480
Rcaas C 0.004076 0.001308 C 0.000792 3.16E—05
RGa02 0.942102 0.002728 ARCH(1) 0.401945 0.015612
GARCH(1) 0.639974 0.007830
RCiA4 c 0.002450 0.00570 c —3.27E—06 5.58E—07
RG102 1.036861 0.003468 ARCH(1) 0.101918 0.001997
GARCH(1) 0.945209 0.000666
Rcoag C 0.007017 0.000839 C 5.77E-05 3.97E-06
R0z 0.879618 0.003199 ARCH(1) 0.231563 0.006013
GARCH(1) 0.841086 0.002770
Re3ag c 0.007452 0.001276 c 3.99E—05 7.17E—06
RG302 0.893645 0.003645 ARCH(1) 0.101316 0.003132
GARCH(1) 0.907304 0.002295
Rcans c 0.007402 0.001393 c 0.000194 1.72E—05
RGa02 0.887104 0.002892 ARCH(1) 0.179030 0.005716
GARCH(1) 0.840838 0.003809
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Appendix C. OLS credit risk evaluation for portfolio assets in figures
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Fig. C.1. OLS credit risk premium for the C1A2 bond index.
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Fig. C.2. Stable and normal fitting of C1A2 OLS-credit-risks.
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Fig. C.4. Stable and normal fitting of C1A3 OLS-credit-risks.
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Fig. C.6. Stable and normal fitting of C3A3 OLS-credit-risks.



Ch. 7:  Stable Modeling of Market and Credit Value at Risk

C1A4 Credit Risk Premium, (%)

Estimated Density

0.5

0.0

-0.5

-1.0

15

10

03/13/1990

T T T
03/13/1992

T T T
03/13/1994

Time

03/13/1996

03/13/1998
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Appendix D. GARCH credit risk evaluation for portfolio assets in figures
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Fig. D.1. C2A1 credit risks: OLS and GARCH.
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Fig. D.2. C3Al credit risks: OLS and GARCH.
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1. Introduction

Integrated Risk Management (IRM) is concerned with the quantitative description of risks
to a financial business. Whereas the qualitative aspects of IRM are extremely important, in
the present contribution we only concentrate on the quantitative ones. Since the emergence
of Value-at-Risk (VaR) in the early nineties and its various generalisations and refinements
more recently, regulators and banking and insurance professionals have build up a huge
system aimed at making the global financial system safer. Whereas the steps taken no
doubt have been very important towards increasing the overall risk awareness, continuously
questions have been asked concerning the quality of the safeguards as constructed.

All quantitative models are based on assumptions vis-a-vis the markets on which they
are to be applied. Standard hedging techniques require a high level of liquidity of the
underlying instruments, prices quoted for many financial products are often based on
“normal” conditions. The latter may be interpreted in a more economic sense, or more
specifically referring to the distributional (i.e., normal, Gaussian) behaviour of some un-
derlying data. Especially for IRM, deviations from the “normal” would constitute a prime
source of investigation. Hence the classical literature is full of deviations from the so-
called random walk (Brownian motion) model and heavy tails appear prominently. The
latter has for instance resulted in the firm establishment of Extreme Value Theory (EVT)
as a standard tool within IRM. Within market risk management, the so-called stylised
facts of econometrics summarise this situation: market data returns tend to be uncorre-
lated, but dependent, they are heavy tailed, extremes appear in clusters and volatility is
random.

Our contribution aims at providing tools for going one step further: what would be the
stylised facts of dependence in financial data? Is there a way of understanding so-called
normal (i.e., Gaussian) dependence and how can we construct models which allow to
go beyond normal dependence? Other problems we would like to understand better are
spillover, the behaviour of correlations under extreme market movements, the pros and
contras of linear correlation as a measure of dependence, the construction of risk measures
for functions of dependent risks. One example concerning the latter is the following: sup-
pose we have two VaR numbers corresponding to two different lines of business. In order
to cover the joint position, can we just add the VaR? Under which conditions is this always
the upper bound? What can go wrong if these conditions are not fulfilled? A further type
of risk where dependence play a crucial role is credit risk: how to define, stress test and
model default correlation. The present chapter is not solving the above problem, it presents
however tools which are crucial towards the construction of solutions.

The notion we concentrate on is that of copula, well known for some time within the
statistics literature. The word copula first appeared in the statistics literature 1959 (Sklar,
1959), although similar ideas and results can be traced back to Hoeffding (1940). Copulas
allow us to construct models which go beyond the standard ones at the level of dependence.
They yield an ideal tool to stress test a wide variety of portfolios and products in insurance
and finance for extreme moves in correlation and more general measures of dependence.
As such, they gradually are becoming an extra, but crucial, element of best practice IRM.
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After Section 2 in which we define the concept of copula in full generality, we turn in Sec-
tion 3 to an overview of the most important notions of dependence used in IRM. Sections 4,
5 and 6 introduces the most important families of copulas, their properties both method-
ological as well as with respect to simulation. Throughout these sections, we stress the
importance of the techniques introduced within an IRM framework. Finally in Section 7
we discuss some specific examples.

We would like to stress that the present chapter only gives a first introduction aimed at
bringing together from the extensive copula world those results which are immediately us-
able in IRM. Topics not included are statistical estimation of copulas and the modelling of
dependence, through copulas, in a dynamic environment. As such, the topics listed corre-
spond to a one-period point of view. Various extensions are possible; the interested reader
is referred to the bibliography for further reading.

2. Copulas

The standard “operational” definition of a copula is a multivariate distribution function de-
fined on the unit cube [0, 1]”, with uniformly distributed marginals. This definition is very
natural if one considers how a copula is derived from a continuous multivariate distribu-
tion function; indeed in this case the copula is simply the original multivariate distribution
function with transformed univariate marginals. This definition however masks some of
the problems one faces when constructing copulas using other techniques, i.e., it does not
say what is meant by a multivariate distribution function. For that reason, we start with a
slightly more abstract definition, returning to the “operational” one later. Below, we fol-
low Nelsen (1999) in concentrating on general multivariate distributions at first and then
studying the special properties of the copula subset. For further details we refer to Nelsen
(1999).

Throughout this chapter, for a function H, we denote by Dom H and Ran H the domain
and range respectively of H. Furthermore, a function f will be called increasing whenever
x < y implies that f(x) < f(y). We may also refer to this as f is nondecreasing. A state-
ment about points of a set S C R”, where S is typically the real line or the unit cube [0, 11",
is said to hold almost everywhere if the set of points of § where the statement fails to hold
has Lebesgue measure zero.

2.1. Mathematical introduction

Definition 2.1. Let Sy, ..., S, be nonempty subsets of R, where R denotes the extended
real line [—00, 00]. Let H be a real function of n variables such that Dom H = S; x --- x S,
and for a < b (ay < by for all k) let B =[a,b] (= [a1, b1] X --- X [a,, by]) be an n-box
whose vertices are in Dom H. Then the H-volume of B is given by

Vi (B) = sgn(c)H (0),
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where the sum is taken over all vertices ¢ of B, and sgn(c) is given by

1, if ¢ = ay for an even number of k’s,

sgn(c) = {

—1, if ¢x = ay for an odd number of k’s.

Equivalently, the H-volume of an n-box B = [a, b] is the n-th order difference of H
on B

Vi(B) = AJH(t) = Al - AL H(Y),
where the n first order differences are defined as
AZ’;H(t) =H(t,...,—1,Dks tkg 1y - on ) — H@1, ooy te—1, Qs e 15 -+ -5 Bn).

Definition 2.2. A real function H of n variables is n-increasing if Vg (B) > 0 for all
n-boxes B whose vertices lie in Dom H.

Suppose that the domain of a real function H of n variables is given by Dom H = S x
-+ X S, where each Sy has a smallest element a;. We say that H is grounded if H(t) =0
for all t in Dom H such that #; = ax for at least one k. If each S; is nonempty and has a
greatest element by, then H has marginals, and the one-dimensional marginals of H are the
functions Hy with Dom Hy = S and with Hy(x) = H(by,...,bk—1,x, bk+1, ..., by,) for
all x in Si. Higher-dimensional marginals are defined in an obvious way. One-dimensional
marginals are just called marginals.

Lemma 2.1. Let Sy,...,S, be nonempty subsets of R, and let H be a grounded
n-increasing function with domain S1 x --- x Sy,. Then H is increasing in each argument.

Lemma 2.2. Let Si,...,S, be nonempty subsets of R, and let H be a grounded
n-increasing function with marginals and domain Sy X --- X S,. Then, if x = (x1, ..., Xp)
andy = (y1,...,Yn) are any pointsin S; X --- X Sy,

n
|H(x) — H(y)| < |H(xx) — Hi(yw))-
k=1
For the proof, see Schweizer and Sklar (1983).

Definition 2.3. An n-dimensional distribution function is a function H with domain R"
such that H is grounded, n-increasing and H (oo, ..., 00) = 1.

It follows from Lemma 2.1 that the marginals of an n-dimensional distribution function
are distribution functions, which we denote Fy, ..., Fj,.
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Definition 2.4. An n-dimensional copula is a function C with domain [0, 1]" such that
(1) C is grounded and n-increasing.
(2) C has marginals Cx, k=1, 2, ..., n, which satisfy Cx(#) = u for all u in [0, 1].

Note that for any n-copula C, n > 3, each k-dimensional marginal of C is a k-copula.
Equivalently, an n-copula is a function C from [0, 1]" to [0, 1] with the following proper-
ties:

(1) For every uin [0, 1]*, C(u) = 0 if at least one coordinate of u is 0, and C (u) = uy if
all coordinates of u equal 1 except u.
(2) Forevery a and b in [0, 1]” such that a; < b; for all i, V¢ ([a, b]) > 0.

Since copulas are joint distribution functions (on [0, 1]"), a copula C induces a probabi-

lity measure on [0, 1]" via

VC([O,ul] x -+ x [0, un]) =C(uy,...,up)

and a standard extension to arbitrary (not necessarily n-boxes) Borel subsets of [0, 1]".
A standard result from measure theory says that there is a unique probability measure on
the Borel subsets of [0, 1]" which coincides with V¢ on the set of n-boxes of [0, 1]”. This
probability measure will also be denoted V.

From Definition 2.4 it follows that a copula C is a distribution function on [0, 1]"” with
uniformly distributed (on [0, 1]) marginals. The following theorem follows directly from
Lemma 2.2.

Theorem 2.1. Let C be an n-copula. Then for every u and v in [0, 1]*,
n
[Cv) —CW| <D o —wl.
k=1
Hence C is uniformly continuous on [0, 1]".

2.2. Sklar’s Theorem

The following theorem is known as Sklar’s Theorem. It is perhaps the most important result
regarding copulas, and is used in essentially all applications of copulas.

Theorem 2.2. Let H be an n-dimensional distribution iunction with marginals Fi, ..., Fy.
Then there exists an n-copula C such that for all x in R",

H(xl,...,xn)=C(F1(x1),..., Fn(xn))- (2.1
If Fr, ..., F, are all continuous, then C is unique; otherwise C is uniquely determined
onRan F; x --- x Ran F,. Conversely, if C is an n-copula and F1, ..., F, are distribution

functions, then the function H defined above is an n-dimensional distribution function with
marginals Fy, ..., Fy.

For the proof, see Sklar (1996).
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From Sklar’s Theorem we see that for continuous multivariate distribution functions, the
univariate marginals and the multivariate dependence structure can be separated, and the
dependence structure can be represented by a copula.

Let F be a univariate distribution function. We define the generalized inverse of F as
F~ o) = inf{x e R| F(x) >t} forall ¢ in [0, 1], using the convention infJ = —oco.

Corollary 2.1. Let H be an n-dimensional distribution function with continuous mar-
ginals Fy, ..., F, and copula C (where C satisfies (2.1)). Then for any u in [0, 1]",

Cur,...,un)=H(F7 @), ..., Fy uw).

Without the continuity assumption, care has to be taken; see Nelsen (1999) or Marshall
(1996).

Example 2.1. Let @ denote the standard univariate normal distribution function and let
@} denote the standard multivariate normal distribution function with linear correlation
matrix R. Then

Cur,....,un) =Pp(® ), ..., & "(uy))

is the Gaussian or normal n-copula.

2.3. The Fréchet—Hoeffding bounds for joint distribution functions

Consider the functions M", IT" and W" defined on [0, 1]" as follows:

M”(u) = min(”la M un)a
" () =uy---up,

W"(u) = max(u; +---+u, —n+1,0).

The functions M" and I1" are n-copulas for all n > 2 whereas the function W” is not a
copula for any n > 3 as shown in the following example.

Example 2.2. Consider the n-cube [1/2, 117" C [0, 17"

Vin ([3,1]") =max(1+---+1—n+1,00 —n max(§ + 1 +---+1—n+1,0)
+()max(3+5+14+-+1—n+1,0)+ -
+max(3+--+5—n+1,0)

=1-540+---+0.

Hence W" is not a copula for n > 3.
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The following theorem is called the Fréchet—Hoeffding bounds inequality (Fréchet, 1957).
Theorem 2.3. If C is any n-copula, then for every u in [0, 1]",

W () < C(u) < M"(u).

For more details, including geometrical interpretations, see Mikusinski, Sherwood and
Taylor (1992). Although the Fréchet—Hoeffding lower bound W”" is never a copula for
n > 3, it is the best possible lower bound in the following sense.

Theorem 2.4. For anyn >3 and any u in [0, 11, there is an n-copula C (which depends
on ) such that

C(u) = W (u).

For the proof, see Nelsen (1999), p. 42.

We denote by C the joint survival function for n random variables with joint distribu-
tion function C, i.e., if (Uj, ..., U,)T has distribution function C, then C(uy, ..., u,) =
P{U; > uy, ..., U, > uy}.

Definition 2.5. If C; and C; are copulas, C is smaller than C; (written C; < C) if
Ci(w) < C(w) and Ci(w) < Ca(w),
for all win [0, 1]".

Note that in the bivariate case, C(uj,u2) = 1 — u; — up + C(uy,u>) and hence,
Ci(ur,uz) < Co(uy, uz) if and only if Cy(uy, u2) < Ca(uy, ua).

The Fréchet-Hoeffding lower bound W? is smaller than every 2-copula, and every
n-copula is smaller than the Fréchet-Hoeffding upper bound M". This partial ordering of
the set of copulas is called a concordance ordering. It is a partial ordering since not every
pair of copulas is comparable in this order. However many important parametric families
of copulas are totally ordered. We call a one-parameter family {Cy} positively ordered if
Cy, < Cy, whenever 6 < 6;. Examples of such one-parameter families will be given later.

2.4. Copulas and random variables

Let Xq,..., X, be random variables with continuous distribution functions Fi, ..., Fj,
and joint distribution function H. Then (X1, ..., X,)T has a unique copula C, where C is
given by (2.1). The standard copula representation of the distribution of the random vector
(X1,..., Xn)T then becomes:

H(xp,.ooox0) =P{X1 < x1,..., X gxn}IC(Fl(Xl), cees Fn(xn))-
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The transformations X; — F;(X;) used in the above representation are usually referred
to as the probability-integral transformations (to uniformity) and form a standard tool in
simulation methodology. Since X1, ..., X, are independent if and only if H (x1, ..., x,) =
Fi(x1)---F,(x,) forall x1,...,x, in R, the following result follows from Theorem 2.2.

Theorem 2.5. Let (X4, ..., X,,)T be a vector of continuous random variables with copula
C, then X1, ..., X, are independent if and only if C = I1".

One nice property of copulas is that for strictly monotone transformations of the random
variables, copulas are either invariant, or change in certain simple ways. Note that if the
distribution function of a random variable X is continuous, and if « is a strictly monotone
function whose domain contains Ran X, then the distribution function of the random vari-
able a(X) is also continuous.

Theorem 2.6. Let (X4, ..., X,,)T be a vector of continuous random variables with copula
C.If fork =1, ..., n, ay is strictly increasing on Ran Xy, then also (a1(X1), ..., an(X,))T

has copula C.

Proof: Let F, ..., F, denote the distribution functions of Xy, ..., X, andlet Gy, ..., G,

denote the distribution functions of o1 (X1), ..., @, (X,), respectively. Let (X1, ..., X,)T
have copula C, and let (o1 (X1), ...,y (X )T have copula Cy,. Since «y is strictly increas-
ing,

Gr(x) =Plax(Xp) <x} =P{Xi <o ' (1)} = Fi(og ' ()
for any x in R, hence

C(X(Gl(-xl)a cees Gn(xn)) = P{C{l(Xl) X1 -0 (Xy) < xn}

X1 <o), X <oy o)}

P{
C(Fi(a; D), .., Fuley ' ()
C(G1(x1), ..., Gn(xn)).

Since X1, ..., X, are continuous, Ran G| = --- = Ran G, = [0, 1]. Hence it follows that
Cy=Conl0,1]".0

From Theorem 2.2 we know that the copula function C “separates” an n-dimensional
distribution function from its univariate marginals. The next theorem will show that there
is also a function, C , that separates an n-dimensional survival function from its univariate
survival marginals. Furthermore this function can be shown to be a copula, and this survival
copula can rather easily be expressed in terms of C and its k-dimensional marginals.
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Theorem 2.7. Let (Xq,...,X n)T be a vector of continuous random variables with copula
Cx,,..x,- Fori=1,...,n, let a; be strictly monotone on Ran X;, and let (a1(X1), ...,
on (X, )T have copula Cy (x,),...an(X,)- Furthermore let ay be strictly decreasing for
some k. Without loss of generality let k = 1. Then

Coi (X)), an (X)) @1, U2, .. Uy)
= Cay(X2),cooan(X) U2, -+ s Un) — Cx{ 0y (X2),coosan (X)) (L — U1, U2, ooy Uy).
Proof: Fori=1,...,n,let X; have distribution function F; and let | (X;) have distribu-

tion function G;. Then
Cay (XD),02(Xa),netn(X0) (G1(X1), -, G (xn)
:P{WI(XI) <X, .0 (Xn) <xn}
=P{X1 > o] (x1), 02(X2) <x2...., 0 (Xp) < X}
= ]P){‘X2(X2) <x2, ..., 05(Xp) < xn}

—P{X) <oy (1), 02(X2) <2, 0 (X)) < 3

= CXy.a0(Xa)an (X (1 = G1(x1), G2(x2), . .., Gu(xp)),

from which the conclusion follows directly. [J

By using the two theorems above recursively it is clear that the copula Cy, (X)), ..., (X,)
can be expressed in terms of the copula Cy,, . x, and its lower-dimensional marginals.
This is exemplified below.

n

Example 2.3. Consider the bivariate case. Let o be strictly decreasing and let o be
strictly increasing. Then

Coy (X1),00(X) U1, u2) = U2 — Cx; ay(x0) (1 —u1, uz)
=uy — Cx, x,(1 —uy, uz).
Let @1 and oy be strictly decreasing. Then
Coy (X)X U1, u2) = U2 — Cx; ay(x0) (1 —u1, uz)

=uy— (1 —uy — Cx, x,(1 —u1, 1 — uy))

=uy+uy —1+Cx, x,(1 —uy, 1 —uy).
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Here Cy, (x,),a2(X,) 1s the survival copula, 6, of (X1, X2)T, ie.,
H(x1,x2) =P{X| > x1, X2 > x2} = C(F1(x1), F2(x2)).

Note also that the joint survival function of n U (0, 1) random variables whose joint
distribution function is the copula C is Cuy, ..., up) = 6(1 — Uty ..., 1 —uy).

The mixed k-th order partial derivatives of a copula C, ok C(u)/duy - - - duy, exist for
almost all u in [0, 1]". For such u, 0 < 8"C(u)/8u1 ---duy < 1. For details, see Nelsen
(1999, p. 11). With this in mind, let

C(M], sun) :AC(uls ,Ltn)+SC(u1, '-'sun)v

where

up Up "

Ac(ul,...,un)zf / —C(s1,...,8,)dsy--- dsy,
0 o O0s1---08y

Sc(uy,...,up) =Cuy,...,up) —Ac(ui, ..., uy).

Unlike multivariate distributions in general, the marginals of a copula are continuous,
hence a copula has no individual points u in [0, 1]* for which V¢c(u) > 0. If C =
Ac on [0,1]", then C is said to be absolutely continuous. In this case C has den-
sity auﬁ)%'?aunc(”l’ ..., up). If C =S¢ on [0,1]", then C is said to be singular, and

aul‘?f'faunC(ul, ..., uy) = 0 almost everywhere in [0, 1]”. The support of a copula is the
complement of the union of all open subsets A of [0, 1]" with Vc(A) =0. When C is sin-
gular its support has Lebesgue measure zero and conversely. However a copula can have
full support without being absolutely continuous. Examples of such copulas are so-called
Marshall-Olkin copulas which are presented later.

Example 2.4. Consider the bivariate Fréchet—Hoeffding upper bound M given by
M (u, v) = min(u, v) on [0, 1]2. It follows that %M(u, v) = 0 everywhere on [0, 112 ex-
cept on the main diagonal (which has Lebesgue measure zero), and Vy,(B) = 0 for every
rectangle B in [0, 1]? entirely above or below the main diagonal. Hence M is singular.

One of the main aims of this chapter is to present effective algorithms for random variate
generation from the various copula families studied. The properties of the specific copula
family is often essential for the efficiency of the corresponding algorithm. We now present
a general algorithm for random variate generation from copulas. Note however that in most
cases it is not an efficient one to use.

Consider the general situation of random variate generation from the n-copula C. Let

Cr(uy,...,ux)=Cu,...,ur,1,...,1), k=2,...,n—1,
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denote k-dimensional marginals of C, with

Ci(u)=uy and Cy(ui,...,uy)=Cui,...,uy).

Let Uy, ..., U, have joint distribution function C. Then the conditional distribution of Uy
given the values of Uy, ..., Uix_1, is given by
Cilugluy, ..., up—1) =P{Ur <uglUy =uy, ..., U1 = ug—1}
_ MGk, up) T G )
- ouy---0ug_1 ouy---dug—_1 ’

given that the numerator and denominator exist and that the denominator is not zero. The
following algorithm generates a random variate (ug, ..., u ,,)T from C. Asusual, let U (0, 1)
denote the uniform distribution on [0, 1].

Algorithm 2.1.

e Simulate a random variate u from U (0, 1).
e Simulate a random variate uy from Ca(- | uy).

e Simulate a random variate u,, from C, (- | u1, ..., up—1).

This algorithm is in fact a particular case of what is called “the standard construction”. The
correctness of the algorithm can be seen from the fact that for independent U (0, 1) random
variables Q1, ..., Qn,

(01,C'(02101), ..., €71 (0101, C5 1 (02101, ..) "

has distribution function C. To simulate a value uy from Ci(-|uy,...,ux—1) in gen-
eral means simulating g from U (0, 1) from which u; can be obtained from the equa-
tion ¢ = Cy(ug|uy, ..., ux—1) by numerical rootfinding. When Ck_l(q|u1, ...,Ux—1) hasa

closed form (and hence there is no need for numerical rootfinding) this algorithm can be
recommended.

Example 2.5. Let the copula C be given by C(u,v) = (u=% + v —1)"1/% for 6 > 0.
Then

aC 1 o
Cop(vlu) = 8_u(u’ v) = —g(ufe +v70—1) 1/6 1(—9u*9*1)

_ (ue)(*lfe)/e(u—e 400 — 1)*1/9*1

_ (1 + ul (v79 _ 1))(—1—9)/9.
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Solving the equation g = Cy)1 (v|u) for v yields

CZ_\ll (q lu)=v= ((qfe/(H‘e) _ 1),/[70 + 1)71/0.

The following algorithm generates a random variate («, v)" from the above copula C.
e Simulate two independent random variates u and g from U (0, 1).
o Setv= (g~ _1),=0 4 1)1/8,

3. Dependence concepts

Copulas provide a natural way to study and measure dependence between random var-
iables. As a direct consequence of Theorem 2.6, copula properties are invariant under
strictly increasing transformations of the underlying random variables. Linear correlation
(or Pearson’s correlation) is most frequently used in practice as a measure of dependence.
However, since linear correlation is not a copula-based measure of dependence, it can often
be quite misleading and should not be taken as the canonical dependence measure. Below
we recall the basic properties of linear correlation, and then continue with some copula
based measures of dependence.

3.1. Linear correlation

Definition 3.1. Let (X, Y)T be a vector of random variables with nonzero finite variances.
The linear correlation coefficient for (X, ¥)7T is
Cov(X,Y)

PN = R Nar D) G-D

where Cov(X,Y) = E(XY) — E(X)E(Y) is the covariance of (X, Y)T, and Var(X) and
Var(Y) are the variances of X and Y.

Linear correlation is a measure of linear dependence. In the case of perfect linear depen-
dence, i.e., Y =aX + b almost surely fora € R\ {0}, b € R, we have [p(X,Y)| = 1. More
important is that the converse also holds. Otherwise, —1 < p(X, Y) < 1. Furthermore lin-
ear correlation has the property that

plaX + B,yY +98) =sign(ay)p(X, Y),
for a, y € R\ {0}, B, 8 € R. Hence linear correlation is invariant under strictly increasing
linear transformations. Linear correlation is easily manipulated under linear operations.

Let A, B be m x n matrices; a, b € R™ and let X, Y be random n-vectors. Then

Cov(AX +a, BY + b) = ACov(X,Y)B".
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From this it follows that for o € R",
Var (¢'X) = o’ Cov(X)e,

where Cov(X) := Cov(X, X). Hence the variance of a linear combination is fully deter-
mined by pairwise covariances between the components, a property which is crucial in
portfolio theory.

Linear correlation is a popular but also often misunderstood measure of dependence. The
popularity of linear correlation stems from the ease with which it can be calculated and it is
a natural scalar measure of dependence in elliptical distributions (with well known mem-
bers such as the multivariate normal and the multivariate 7-distribution). However most
random variables are not jointly elliptically distributed, and using linear correlation as a
measure of dependence in such situations might prove very misleading. Even for jointly
elliptically distributed random variables there are situations where using linear correlation,
as defined by (3.1), does not make sense. We might choose to model some scenario us-
ing heavy-tailed distributions such as #;-distributions. In such cases the linear correlation
coefficient is not even defined because of infinite second moments.

3.2. Perfect dependence

For every n-copula C we know from the Fréchet—-Hoeffding inequality (Theorem 2.3) that
Wi, .o un) SCQun, .o un) SM"(uy, .. up).

Furthermore, for n = 2 the upper and lower bounds are themselves copulas and we
have seen that W and M are the bivariate distributions functions of the random vectors
(U,1-0)" and (U, U)T, respectively, where U ~ U(0, 1) (i.e., U is uniformly distrib-
uted on [0, 1]). In this case we say that W describes perfect negative dependence and M
describes perfect positive dependence.

Theorem 3.1. Let (X,Y)T have one of the copulas W or M. Then there exist two
monotone functions a, : R — R and a random variable Z so that

(X.Y) =4 (2(2), B(2)),

with « increasing and B decreasing in the former case (W) and both o and B increasing
in the latter case (M). The converse of this result is also true.

For a proof, see Embrechts, McNeil and Straumann (2002). In a different form this result
was already in Fréchet (1951).

Definition 3.2. If (X, Y)T has the copula M then X and Y are said to be comonotonic; if
it has the copula W they are said to be countermonotonic.
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Note that if any of F' and G (the distribution functions of X and Y, respectively) have
discontinuities, so that the copula is not unique, then W and M are possible copulas. In the
case of F and G being continuous, a stronger version of the result can be stated:

C=W & Y=TX)as, T=G 'o(1-F) decreasing,
C=M <& Y=TX)as.,, T= G loF increasing.

Other characterizations of comonotonicity can be found in Denneberg (1994).

3.3. Concordance

Let (x,y)T and (%, )T be two observations from a vector (X, ¥)T of continuous random
variables. Then (x, y)T and (%, 7)T are said to be concordant if (x — %)(y — ¥) > 0, and
discordant if (x — x)(y — y) <O0.

The following theorem can be found in Nelsen (1999, p. 127). Many of the results in
this section are direct consequences of this theorem.

Theorem 3.2. Let (X, Y)T and ()? Y)T be independent vectors of continuous random
variables with joint distribution functions H and H, _respectively, with common marginals
F (ofX and X) and G (of Y and Y) Let C and C denote the copulas of X, T and
(X Y)T respectively, so that H(x,y) = C(F(x), G(y)) and H(x y) = C(F(x) G(y)).

Let Q denote the difference between the probability of concordance and discordance of
X, VT and (X, V)7, ie., let

0 =P{(x - X)(r - ¥) > 0} = P{(X - %) (¥ - 7) <0}.
Then

0=0(c,C) =4// C(u,v)dCu,v) — 1.
[0,112

Proof: Since the random variables are all continuous,
P{(X —X)(¥ —Y) <0} =1-P{(X - X)(¥ = ¥) > 0}
and hence Q = 2P{(X — X)(Y — ¥) > 0} — 1. But
P{(X - X)(y-Y)>0}=P{Xx>X, Y >V} +P{X <X,¥ <V},

and these probabilities can be evaluated by integrating over the distribution of one of the
vectors (X, Y)T or (X, Y)T. Hence

P{X>X,Y>V}=P{X <X,Y <Y}
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= // PIX <x,Y <y}dC(F(x),G(y))
R2

= //RZG(F()C), G())dC(F(x), G(»)).

Employing the probability-integral transforms # = F (x) and v = G(y) then yields
PIX>X,Y>Y}= // C(u, v)dC(u, v).
[0,112

Similarly,

]P{X<X,Y< ?} =//2P{i>X,Y>y}dC(F(x),G(y))
R
://R2 {1 — F(x) —G(y)+5(F(x),G(y))}dC(F(x)’ G(y))

=// {1—u—v+Cu,v)}dC(u,v).
(0,17

But since C is the joint distribution function of a vector (U, V)T of U (0, 1) random vari-
ables, E(U) =E(V) =1/2, and hence

1 1

P{X<§,Y<?}=1————+// C(u,v)dC(u, v)
2 2 [0’1]2

:// C(u,v)dC(u, v).
[0,172

Thus

P{(X-X)(Y -Y)>0}= 2// C(u, v)dC(u, v),
[0,1]2
and the conclusion follows. (]

Corollary 3.1. Let C, C, and Q be as given in Theorem 3.2. Then

(1) Q is symmetric in its arguments: Q(C, 5) = Q(a C).

(2) Q is nondecreasing in each argument: if C < C’', then Q(C, C) < o/, 6;)
(3) Copulas can be replaced by survival copulas in Q, i.e., Q(C, 5) = Q(a, O).
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The following definition can be found in Scarsini (1984).

Definition 3.3. A real valued measure « of dependence between two continuous random

variables X and Y whose copulais C is a measure of concordance if it satisfies the follow-

ing properties:

(1) « is defined for every pair X, Y of continuous random variables.

2) —1<kxy<l,kxx=1landky _x =—1.

(3) kx,y =kv,x.

(4) If X and Y are independent, then kx,y = k7 =0.

(5) k—x,y =Kx.—y = —Kx.y- _

(6) If C and C are copulas such that C < C, then k¢ < «g.

(7) If {(X,,Y,)} is a sequence of continuous random variables with copulas C,, and if
{Cr} converges pointwise to C, then lim, 0 k¢, = K-

Let « be a measure of concordance for continuous random variables X and Y. As a conse-
quence of Definition 3.3, if If Y is almost surely an increasing function of X, then kx y =
ky =1, and if Y is almost surely a decreasing function of X, then ky y = xw = —1.
Moreover, if o and 8 are almost surely strictly increasing functions on Ran X and RanY
respectively, then kq(x),(v) = kx,v-

3.4. Kendall’s tau and Spearman’s rho

In this section we discuss two important measures of dependence (concordance) known as
Kendall’s tau and Spearman’s rho. They provide the perhaps best alternatives to the linear
correlation coefficient as a measure of dependence for nonelliptical distributions, for which
the linear correlation coefficient is inappropriate and often misleading. For more details
about Kendall’s tau and Spearman’s rho and their estimators (sample versions) we refer to
Kendall and Stuart (1979), Kruskal (1958), Lehmann (1975), Capéraa and Genest (1993).
For other interesting scalar measures of dependence see Schweizer and Wolff (1981).

Definition 3.4. Kendall’s tau for the random vector (X, Y)T is defined as
(X, V) =P{(X - X)(Y - Y) >0} - P{(X - X)(¥ - ¥) <0},
where (X, ¥)T is an independent copy of (X, Y)T.

Hence Kendall’s tau for (X, Y)T is simply the probability of concordance minus the
probability of discordance.

Theorem 3.3. Let (X,Y)T be a vector of continuous random variables with copula C.
Then Kendall’s tau for (X, Y)T is given by

(X, Y) = Q(C, c>=4// C(u,v)dC(u,v) — 1.
(0,172
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Note that the integral above is the expected value of the random variable C(U, V'), where
U,V ~U(0, 1) with joint distribution function C, i.e., T(X, Y) =4E(C(U, V)) — 1.

Definition 3.5. Spearman’s rho for the random vector (X, Y)T is defined as
ps(X,Y) =3(P{(X - X)(Y —Y') > 0} = P{(X - X)(Y — ¥) <0}),
where (X, V)T, (X, V)T and (X', Y)T are independent copies.

Note that X and Y’ are independent. Using Theorem 3.2 and the first part of Corollary 3.1
we obtain the following result.

Theorem 3.4. Let (X,Y)T be a vector of continuous random variables with copula C.
Then Spearman’s rho for (X, Y)" is given by

pg(X,Y):?)Q(C,H):lZ// uvdC(u,v) —3
[

0,112

:12// C(u,v)dudv — 3.
[0,1]%

Hence,if X ~ Fand Y ~ G,andwe let U = F(X) and V = G(Y), then

os(X,Y) = 12// uvdCu,v) —3=12E(UV) -3
(0,172

_EWV)—-1/4  Cov(U,V)
12 Nar@)y/Var(V)
=p(F(X),G(Y)).

In the next theorem we will see that Kendall’s tau and Spearman’s rho are concordance
measures according to Definition 3.3.

Theorem 3.5. If X and Y are continuous random variables whose copula is C, then
Kendall’s tau and Spearman’s rho satisfy the properties in Definition 3.3 for a measure
of concordance.

For a proof, see Nelsen (1999, p. 137).

Example 3.1. Kendall’s tau and Spearman’s rho for the random vector (X, Y)T are invari-
ant under strictly increasing componentwise transformations. This property does not hold
for linear correlation. It is not difficult to construct examples, the following construction
is instructive in its own right. Let X and Y be standard exponential random variables with
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copula C, where C is a member of the Farlie-Gumbel-Morgenstern family, i.e., C is given
by

C(u,v)=uv+0uv(l —u)(1 —v),

for some 0 in [—1, 1]. The joint distribution function H of X and Y is given by
Hx,y)=C(1—e™*,1—-¢7).

Let p denote the linear correlation coefficient. Then

E(XY) —-EX)E(Y)
+/ Var(X)+/Var(Y)

p(X,Y) = =EXY) -1,

where
o0 OO
E(XY):// xydH (x,y)
0 Jo
o0 L OO
=/ / xy((1+0)e™ 7 —20e 277 —20e™ % +40e > ) dxdy
0 Jo
=1+ i
= e
Hence p(X,Y) =6/4. But

p(1—e X, 1—e) = ps(X, Y):lZ// C(u,v)dudv—3
[0,112

:12// (uv +Ouv(l —u)(1 —v))dudv —3
[0,1

=12 ! + i 3= o

436 3
Hence p(X, Y) is not invariant under strictly increasing transformations of X and Y and
therefore linear correlation is not a measure of concordance.

Although the properties listed under Definition 3.3 are useful, there are some additional

properties that would make a measure of concordance even more useful. Recall that for a
random vector (X, ¥)T with copula C,

The following theorem states that the converse is also true.
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Theorem 3.6. Let X and Y be continuous random variables with copula C, and let k
denote Kendall’s tau or Spearman’s rho. Then the following are true:

M kX, Y)=1C=M.

2) kX, Y)=—-1&C=W.

For a proof, see Embrechts, McNeil and Straumann (2002).

From the definitions of Kendall’s tau and Spearman’s rho it follows that both are in-
creasing functions of the value of the copula under consideration. Thus they are increasing
with respect to the concordance ordering given in Definition 2.5. Moreover, for continuous
random variables all values in the interval [—1, 1] can be obtained for Kendall’s tau or
Spearman’s rho by a suitable choice of the underlying copula. This is however not the case
with linear correlation as is shown in the following example from Embrechts, McNeil and
Straumann (2002).

Example 3.2. Let X ~ LN(0, 1) (Lognormal) and ¥ ~ LN(O, 62),0 > 0. Then Pmin =
p(eZ, e %) and Pmax = p(eZ, e’Z), where Z ~ N (0, 1). Pmin and pmax can be calculated,
yielding:

e 7 —1 e’ —1

Pmin = — F———, Pmax = —/—— ———>
l \/e—lx/eaz—l i «/e—lx/e‘fz—l

from which follows that limy — 5o Omin = liMy— 00 Pmax = 0. Hence the linear correlation
coefficient can be almost zero, even if X and Y are comonotonic or countermonotonic.

Kendall’s tau and Spearman’s rho are measures of dependence between two random
variables. However the extension to higher dimensions is obvious, we simply write pair-
wise correlations in an #n x n matrix in the same way as is done for linear correlation.

3.5. Tail dependence

The concept of tail dependence relates to the amount of dependence in the upper-right-
quadrant tail or lower-left-quadrant tail of a bivariate distribution. It is a concept that is
relevant for the study of dependence between extreme values. It turns out that tail depen-
dence between two continuous random variables X and Y is a copula property and hence
the amount of tail dependence is invariant under strictly increasing transformations of X
and Y.

Definition 3.6. Let (X, Y)T be a vector of continuous random variables with marginal
distribution functions F and G. The coefficient of upper tail dependence of (X, Y)T is

IimP{Y > G'w)|X > F'(w)} = v
u,/1
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provided that the limit Ay € [0, 1] exists. If Ay € (0, 1], X and Y are said to be asymp-
totically dependent in the upper tail; if Ay =0, X and Y are said to be asymptotically
independent in the upper tail.

Since P{Y > G~'(u) | X > F~'(u)} can be written as

I-PIX<F ')} —-PY <G'w}+PIX < F~ '), Y <G~ ')
1-P{X < F~lu) ’

an alternative and equivalent definition (for continuous random variables), from which it is
seen that the concept of tail dependence is indeed a copula property, is the following which
can be found in Joe (1997, p. 33).

Definition 3.7. If a bivariate copula C is such that

lim 1—2u+C(u,u) _s

i
u/1 1—u v

exists, then C has upper tail dependence if Ay € (0, 1], and upper tail independence if
Ay =0.

Example 3.3. Consider the bivariate Gumbel family of copulas given by
0 071/0
Co(u,v) =exp(—[(—Inw)’ + (= Inv)?]"""),
for & > 1. Then

1 =2u+Cu,u) 1—2u+exp(21/elnu) . 1—2u+u21/9

1—u 1—u 1—u

’

and hence

fig Lo 24t C@w) o a1/0, 201 _ o8
u 1 I1—u u/'l

Thus for 6 > 1, Cy has upper tail dependence.

For copulas without a simple closed form an alternative formula for Ay is more useful.
An example is given in the case of the Gaussian copula

o) rol(v) 1 2 _DRiyst 4 12
cunn= [ e,
—0Q —o0 27-[

exp 5
J1- R, 2(1 = Ryy)
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where —1 < Ri2 < 1 and @ is the univariate standard normal distribution function.
Consider a pair of U(0, 1) random variables (U, V) with copula C. First note that
P{V <v|U =u}=0C(u,v)/ou and P{V > v|U =u}=1— 9C(u,v)/du, and similarly
when conditioning on V. Then

C(u,u) . dC(u,u)
lim ———
u/1 1—u u/1 du

= — lim (—2+ iC(s, t)
as

u,/1

d
—C(s,t
+8t (s, 1)

S:t:u>

Furthermore, if C is an exchangeable copula, i.e., C(u, v) = C(v, u), then the expression
for Ay simplifies to

S=I=u

= lim (IP’{V > M|U=u} + P{U > M|V=Lt}).
u,/1

Ay =21mP{V > u|U = u}.
u,/'1

Example 3.4. Let (X,Y )T have the bivariate standard normal distribution function with
linear correlation coefficient p. Thatis (X, Y Y~ C(@), @ (v)), where C is a member of
the Gaussian family given above with Rj» = p. Since copulas in this family are exchange-
able,

Ay =210mP{V > u|U = u},
u,/'1

and because @ is a distribution function with infinite right endpoint,
IimP(V > ulU =u} = lim P{o~' (V) >x|®~ ' (U) =x]
u /1 X— 00

= lim P{X > x|Y = x}.
X—>00

Using the well known fact that Y| X = x ~ A (ox, 1 — p?) we obtain

— — — 1—
hy =2 lim ¢<7ﬂ) —2 lim qb(ivp)
smoo \ 1= p2)  Txooe \JT+p

from which it follows that Ay = 0 for Rj2 < 1. Hence the Gaussian copula C with p < 1
does not have upper tail dependence.

The concept of lower tail dependence can be defined in a similar way. If the limit
lim,\ o C(u, u)/u = A, exists, then C has lower tail dependence if A, € (0, 1], and lower
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tail independence if Ay = 0. For copulas without a simple closed form an alternative for-
mula for Az, is more useful. Consider a random vector (U, V)T with copula C. Then

. C(u,u) . dC(u,u)
Az = lim = lim
u\0 u uN\0 du

. d 0]
=1lim|{ —C(s,1) + EC(S, 1)

u\O \ s

s:t:u)

(]P’{V <ulU=u}+P{U < u|V=u}).

S=t=u
= lim
u\0

Furthermore if C is an exchangeable copula, i.e., C(u, v) = C(v, u), then the expression
for Ay simplifies to

A =21im P{V < u|U =u}.
u\0

Recall that the survival copula of two random variables with copula C is given by
Cwu,v)=u+v—14+C1—u,1-v),

and the joint survival function for two U (0, 1) random variables whose joint distribution
function is C is given by

f(u,v)zl—u—v—i—C(u,v):é(l—u,l—v).

Hence it follows that

. Cu,uw) . Cl-ul-u . Cluu
lim = lim = lim ,
u/1 1 —u u,/1 1—u uN\0 u

so the coefficient of upper tail dependence of C is the coefficient of lower tail dependence
of C. Similarly the coefficient of lower tail dependence of C is the coefficient of upper tail
dependence of C.

4. Marshall-Olkin copulas

In this section we discuss a class of copulas called Marshall-Olkin copulas. To be able to
derive these copulas and present explicit expressions for rank correlation and tail depen-
dence coefficients without tedious calculations, we begin with bivariate Marshall-Olkin
copulas. We then continue with the general n-dimensional case and suggest applications
of Marshall-Olkin copulas to the modelling of dependent risks. For further details about
Marshall-Olkin distributions we refer to Marshall and Olkin (1967). Similar ideas are con-
tained in Muliere and Scarsini (1987).
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4.1. Bivariate Marshall-Olkin copulas

Consider a two-component system where the components are subject to shocks, which
are fatal to one or both components. Let X; and X» denote the lifetimes of the two com-
ponents. Furthermore assume that the shocks follow three independent Poisson processes
with parameters A1, A2, A12 > 0, where the index indicates whether the shocks effect only
component 1, only component 2 or both. Then the times Z1, Z; and Z12 of occurrence of
these shocks are independent exponential random variables with parameters A1, A2 and A1
respectively. Hence

H(x1,x2) =P{X| > x1, X2 > x2}
=P{Z| > x1}P{Z, > xz}P{le > max(x1, xz)}.
Zhe univariate survival functions for X and X, are F(x]) = exp(—(A1 + A12)x1) and
Fo(x2) =exp(— (X2 + A12)x2). Furthermore, since max(xy, x2) = x1 4+ x2 — min(xy, x2),
H(x1,x2) = exp(— (A1 + A12)x1 — (A2 + A12)x2 + A2 min(x1, x2))
= F1(x1)F2(x2) min(exp(Ai2x1), exp(r12x2)).

Let a1 = A12/(A + A12) and oz = A12/(A2 + A12). Then exp(i2x1) = F(x) ™ and
exp(ri2x2) = F2(x2)~*2, and hence the survival copula of (X1, Xg)T is given by

Claroa) =t minu 17 ) = i} .},

This construction leads to a copula family given by

. 11—« 11—«
Cay s (1, uz) =min(u; uz, uyu, ) = -

1—ay oy o)
u; up, Uy iy,
o
uiuy 2, uy' <

o
Uy~

This family is known as the Marshall-Olkin family. Marshall-Olkin copulas have both an
absolutely continuous and a singular component. Since
92 u *, it > ugz,

——Con (U1, u2) =
1,02 ’ _
Ou1duz uzaz, u(f1<ugz,

the mass of the singular component is concentrated on the curve u‘f‘ = ugz in [0, 1]% as
seen in Figure 1.

Kendall’s tau and Spearman’s rho are quite easily evaluated for this copula family. For
Spearman’s rho, applying Theorem 3.4 yields:

IOS(Cotl,az) = 12//0 . ZC(xl,az(uvv)dev_3
[0,1]
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Marshall-Olkin
= R -
= ‘e . .
s_.,// -
. - LT S
/-f’.— . -
© : .
S e t
.o f" :
.. .:'.2/ . -*
.' ."-’f-' :
& 1 . /f':' .
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N . . [y .
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X

Fig. 1. A simulation from the Marshall-Olkin copula with A = 1.1, 1p =0.2 and A = 0.6.

1 u®1/% 1
= 12/ (/ ul_"”vdv+/ uv!~® dv) du —3
0 0 ue1/e2

RIAT %)

- 2001 + 200 — Oélc\{z‘

To evaluate Kendall’s tau we use the following theorem, a proof of which is found in Nelsen
(1999, p. 131).

Theorem 4.1. Let C be a copula such that the product (0C/0u)(dC/dv) is integrable on
[0, 112 Then

1 a 0
// C(u,v)dC(u,v):——// —C(u,v)—C(u,v)dudv.
[0,1]2 2 (0,172 Ou ou

Using Theorems 3.3 and 4.1 we obtain

T(Cal,az) = 4// Cal,az(“’ U) dCO{],O{z(ua U) -1
[0,112

1 d d
- 4(5 - //[o,m g o (4 0) 5 Conpa (0, 0) d”) !

(10%)

o) +or —ajon
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Thus, all values in the interval [0, 1] can be obtained for ps(Cq,,a,) and 7(Cq,,a,). The
Marshall-Olkin copulas have upper tail dependence. Without loss of generality assume
that o1 > arp, then

o Cu,u) . 1 —2u+u?min(u=%, u"")
lim = lim
u/1 1—u u /1 1—u
1 =2u+utu>
=lim—
u/1 1—u

and hence Ay = min(«, a2) is the coefficient of upper tail dependence.

4.2. A multivariate extension

We now present the natural multivariate extension of the bivariate Marshall-Olkin family.
Consider an n-component system, where each nonempty subset of components is assigned
a shock which is fatal to all components of that subset. Let S denote the set of nonempty
subsets of {1,...,n}. Let X1, ..., X, denote the lifetimes of the components, and assume
that shocks assigned to different subsets s, s € S, follow independent Poisson processes
with intensities A;. Let Z;, s € S, denote the time of first occurrence of a shock event
for the shock process assigned to subset s. Then the occurrence times Z; are independent
exponential random variables with parameters Ay, and X ; = miny. je; Z; for j =1,...,n.

There are in total 2" — 1 shock processes, each in one-to-one correspondence with a
nonempty subset of {1, ..., n}.

Example 4.1. Let n =4. Then

X1 =min(Z1, Z12, Z13, Z14, Z123, Z124, Z134, Z1234),
Xo =min(Zy, Z12, 223, Zo4, Z123, Z124, Z234, Z1234),
X3 =min(Z3, Z13, Z23, Z34, Z123, Z134, Z234, Z1234),

X4 =min(Zy, Z14, Z24, Z34, Z124, Z134, £234, Z1234).
If for example 113 =0, then Z13 = oo almost surely.

We now turn to the question of random variate generation from Marshall-Olkin
n-copulas. Order the / := |S| = 2" — 1 nonempty subsets of {1, ...,n} in some arbitrary
way, S1,...,5, and set Ay := Ay, (the parameter of Zy,) for k =1,...,/. The following
algorithm generates random variates from the Marshall-Olkin n-copula.
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Algorithm 4.1.
e Simulate / independent random variates vy, ..., v; from U (0, 1).
o Setx; =minigrgy, ey, qz0(—Invg/Ap),i=1,...,n.

e SetA, =" Hiesyh,i=1,....n.

e Setu; =exp(—A;x;),i=1,...,n.

Then (xq,..., x,)T is an n-variate from the n-dimensional Marshall-Olkin distribution
and (u1,...,u,)T is an n-variate from the corresponding Marshall-Olkin 7n-copula. Fur-
thermore, A; is the shock intensity “felt” by component i.

Since the (i, j)-bivariate marginal of a Marshall-Olkin n-copula is a Marshall-Olkin
copula with parameters

(£ () e ()

s:i€s, JES S: €S s:IE€s, JES s jEs

the Kendall’s tau and Spearman’s rho rank correlation matrices are easily evaluated. The
(i, j) entries are given by
oo 3aiaj

—  and ——M |
o +oj — oo 20li+20lj—0li()lj

respectively. As seen above, evaluating the rank correlation matrix given the full parame-
terization of the Marshall-Olkin n-copula is straightforward. However given a (Kendall’s
tau or Spearman’s rho) rank correlation matrix we cannot in general obtain a unique para-
meterization of the copula. By setting the shock intensities for subgroups with more then
two elements to zero, we obtain the perhaps most natural parameterization of the copula in
this situation. However this also means that the copula only has bivariate dependence.

4.3. A useful modelling framework

In general the huge number of parameters for high-dimensional Marshall-Olkin copulas
make them unattractive for high-dimensional risk modelling. However, we now give an
example of how an intuitively appealing and easier parameterized model for modelling de-
pendent loss frequencies can be set up, for which the survival copula of times to first losses
is a Marshall-Olkin copula.

Suppose we are interested in insurance losses occurring in several different lines of busi-
ness or several different countries. In credit-risk modelling we might be interested in losses
related to the default of various different counterparties or types of counterparty. A natural
approach to modelling this dependence is to assume that all losses can be related to a series
of underlying and independent shock processes. In insurance these shocks might be nat-
ural catastrophes; in credit-risk modelling they might be a variety of underlying economic
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events. When a shock occurs this may cause losses of several different types; the common
shock causes the numbers of losses of each type to be dependent. It is commonly assumed
that the different varieties of shocks arrive as independent Poisson processes, in which case
the counting processes of the losses are also Poisson and can be handled easily analytically.
In reliability such models are known as fatal shock models, when the shock always destroys
the component, and nonfatal shock models, when components have a chance of surviving
the shock. A good basic reference on such models is Barlow and Proschan (1975).
Suppose there are m different types of shocks and fore =1, ..., m, let {N () (1), t >0}
be a Poisson process with intensity A(¢) recording the number of events of type e occurring
in (0, ¢]. Assume further that these shock counting processes are independent. Consider
losses of n different types and for j =1,...,n, let {N;(#), t > 0} be a counting process
that records the frequency of losses of the jth type occurring in (0, ¢]. At the rth occur-

()

rence of an event of type e the Bernoulli variable 7; . indicates whether a loss of type j

Jsr
occurs. The vectors
(e) T
1= (... 1%))
forr=1,...,N® (#) are considered to be independent and identically distributed with a

multivariate Bernoulli distribution. In other words, each new event represents a new in-
dependent opportunity to incur a loss but, for a fixed event, the loss trigger variables for
losses of different types may be dependent. The form of the dependence depends on the
specification of the multivariate Bernoulli distribution with independence as a special case.
We use the following notation for p-dimensional marginal probabilities of this distribution
(the subscript r is dropped for simplicity):

(e)_.' (e)_.. (o . . . .
P(Ijl _zjl,...,ljp _l-jp)_pjl,.‘.,jp(l-]l’...’ljl’)’ zq,l,...,ljpe{O,l}.

We also write pﬁe)(l) = pﬁe) for one-dimensional marginal probabilities, so that in the

special case of conditional independence we have pj-f)_._ J.p(l, LoD = ]_[,f=1 pﬁ.}f). The
counting processes for events and losses are thus linked by

m N©()

Ni=32 3 17

e=1 r=1

Under the Poisson assumption for the event processes and the Bernoulli assumption for
the loss indicators, the loss processes {N;(¢), t > 0} are clearly Poisson themselves, since
they are obtained by superpositioning m independent (possibly thinned) Poisson processes
generated by the m underlying event processes. The random vector (Ni(t), ..., N, ()T
can be thought of as having a multivariate Poisson distribution.

The presented nonfatal shock model has an equivalent fatal shock model representation,
i.e., of the type presented in Section 4.2. Hence the random vector (X1, ..., Xn)T of times
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to first losses of different types, where X; =inf{r > 0| N;(#) > 0}, has an n-dimensional
Marshall-Olkin distribution whose survival copula is a Marshall-Olkin n-copula. From
this it follows that Kendall’s tau, Spearman’s rho and coefficients of tail dependence for
(X, Xj)T can be easily calculated. For more details on this model, see Lindskog and Mc-
Neil (2001).

5. Elliptical copulas

The class of elliptical distributions provides a rich source of multivariate distributions
which share many of the tractable properties of the multivariate normal distribution and
enables modelling of multivariate extremes and other forms of nonnormal dependences.
Elliptical copulas are simply the copulas of elliptical distributions. Simulation from ellip-
tical distributions is easy, and as a consequence of Sklar’s Theorem so is simulation from
elliptical copulas. Furthermore, we will show that rank correlation and tail dependence co-
efficients can be easily calculated. For further details on elliptical distributions we refer to
Fang, Kotz and Ng (1987) and Cambanis, Huang and Simons (1981).

5.1. Elliptical distributions

Definition 5.1. If X is a n-dimensional random vector and, for some 1 € R" and some
n X n nonnegative definite, symmetric matrix X', the characteristic function ¢x_, (t) of
X — 4 is a function of the quadratic form t' £'t, px_, (t) = ¢ (tT t), we say that X has an
elliptical distribution with parameters p, X' and ¢, and we write X ~ E, (u, X, ¢).

When n = 1, the class of elliptical distributions coincides with the class of one-
dimensional symmetric distributions. A function ¢ as in Definition 5.1 is called a char-
acteristic generator.

Theorem 5.1. X ~ E, (i, X, ¢) with rank(X) = k if and only if there exist a random
variable R > 0 independent of U, a k-dimensional random vector uniformly distributed on
the unit hypersphere {z € RF | 2¥z =1}, and an n x k matrix A with AAT = X, such that

X =4 u + RAU.

For the proof of Theorem 5.1 and the relation between R and ¢ see Fang, Kotz and Ng
(1987) or Cambanis, Huang and Simons (1981).

Example 5.1. Let X ~ N, (0,1,). Since the components X; ~N(0,1),i =1,...,n, are

independent and the characteristic function of X; is exp(—ti2 /2), the characteristic function
of X is

1 1
exp{—i(z‘l2 + - +t3)} =exp{—§tTt}.

From Theorem 5.1 it then follows that X ~ E,, (0, I,, ¢), where ¢ (1) = exp(—u/2).
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IfX~E,(u, X, ¢), where X is a diagonal matrix, then X has uncorrelated compo-
nents (if 0 < Var(X;) < 0o). If X has independent components, then X ~ N, (i, X). Note
that the multivariate normal distribution is the only one among the elliptical distribu-
tions where uncorrelated components imply independent components. A random vector
X~ E,(u, X, ¢) does not necessarily have a density. If X has a density it must be of
the form |Z‘|_1/ 2g((X — /,L)TE_I (X — w)) for some nonnegative function g of one scalar
variable. Hence the contours of equal density form ellipsoids in R”. Given the distribution
of X, the representation E,(u, X, ¢) is not unique. It uniquely determines p but X' and
¢ are only determined up to a positive constant. More precisely, if X ~ E, (i, X, ¢) and
X~ E,(u*, X*, ¢*), then

Wr=p,  Zr=cX. $%() =¢(é>,

for some constant ¢ > 0.
In order to find a representation such that Cov(X) = X', we use Theorem 5.1 to obtain

Cov(X) = Cov(i + RAU) = AE(R?) Cov(U)A",

provided that E(R?) < co. Let Y ~ N, (0,1,). Then Y =4 ||Y|U, where ||Y] is inde-
pendent of U. Furthermore Y12 ~ X,f, so E(|Y||?) = n. Since Cov(Y) = I,, we see that
if U is uniformly distributed on the unit hypersphere in R”, then Cov(U) =1I,,/n. Thus
Cov(X) = AATE(R?) /n. By choosing the characteristic generator ¢*(s) = ¢ (s/c), where
c =E(R?)/n, we get Cov(X) = X. Hence an elliptical distribution is fully described by
i, X and ¢, where ¢ can be chosen so that Cov(X) = X' (if Cov(X) is defined). If Cov(X)
is obtained as above, then the distribution of X is uniquely determined by E(X), Cov(X)
and the type of its univariate marginals, e.g., normal or #4, say.

Theorem 5.2. Let X ~ E,(u, X, @), let B be a g x n matrix andb € R9. Then
b+ BX~E,(b+ Bu, BXB", ¢).

Proof: By Theorem 5.1, b 4 BX has the stochastic representation
b+ BX=;b+ Bu-+ RBAU. O

Partition X, u and X' into
x=(x) w=(n) ==(2 %)

where X1 and p are r x 1 vectors and X' is a r X r matrix.
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Corollary 5.1. Let X~ E,(u, X, ¢). Then

Xi ~E (11, 211, ), Xo ~ Ep (U2, X22,9).

Hence marginal distributions of elliptical distributions are elliptical and of the same type
(with the same characteristic generator). The next result states that the conditional distribu-
tion of X given the value of X is also elliptical, but in general not of the same type as X.

Theorem 5.3. Let X ~ E, (i, X, ¢) with X strictly positive definite. Then

X1|X2=XNEi’(ll’ 2’¢)7

where I = 41 + 21222}1 (x— o) and > = i - 21222}1 2»1. Moreover, ¢~S =¢ if and
only if X ~ N (s, 2).

For the proof and details about b, see Fang, Kotz and Ng (1987). For the extension to the
case where rank(X) < n, see Cambanis, Huang and Simons (1981).

The following lemma states that linear combinations of independent, elliptically distrib-
uted random vectors with the same dispersion matrix X' (up to a positive constant) remain
elliptical.

Lemma 5.1. Let X ~Ey (u, X, ¢) and X ~ E,(it,cX, ¢~)) forc>0 {)e independent. Then
fora,beR, aX+bX~ E,(apn+bji, X, ¢p*) with ¢*(u) = ¢ (a*u)p(b>cu).

Proof: By Definition 5.1, it is sufficient to show that for all t € R"

PaxX+bX—ap—bji (t) = Qax—p) (t)(/’b(i_,}) ®
= ¢((at)" 2 (at))p((bt) " (c 2) (b))
= ¢(a’t" Tt)p(b2ct" £t). O

As usual, let X ~ E; (u, ¥, ¢). Whenever 0 < Var(X;), Var(X ;) < oo,

Cov(X;, X ;) Xij
p(Xi, Xj) = - = . :
VVar(Xj) Var(X;)  /ZiZj;

This explains why linear correlation is a natural measure of dependence between random
variables with a joint nondegenerate (X;; > O for all i) elliptical distribution. Throughout
this section we call the matrix R, with R;; = X;;/,/X;; X};, the linear correlation ma-
trix of X. Note that this definition is more general than the usual one and in this situation
(elliptical distributions) makes more sense. Since an elliptical distribution is uniquely de-
termined by u, X and ¢, the copula of a nondegenerate elliptically distributed random
vector is uniquely determined by R and ¢.
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One practical problem with elliptical distributions in multivariate risk modelling is that
all marginals are of the same type. To construct a realistic multivariate distribution for some
given risks, it may be reasonable to choose a copula of an elliptical distribution but different
types of marginals (not necessarily elliptical). One big drawback with such a model seems
to be that the copula parameter R can no longer be estimated directly from data. Recall
that for nondegenerate elliptical distributions with finite variances, R is just the usual lin-
ear correlation matrix. In such cases, R can be estimated using (robust) linear correlation
estimators. One such robust estimator is provided by the next theorem. For nondegenerate
nonelliptical distributions with finite variances and elliptical copulas, R does not corre-
spond to the linear correlation matrix. However, since the Kendall’s tau rank correlation
matrix for a random vector is invariant under strictly increasing transformations of the vec-
tor components, and the next theorem provides a relation between the Kendall’s tau rank
correlation matrix and R for nondegenerate elliptical distributions, R can in fact easily be
estimated from data.

Theorem 5.4. Let X~ E,(ju, X, ¢) withP{X; = u;} < 1 and P{X; = u;} < 1. Then

T(Xi, X)) = (1 -3 (X =x})2>%arcsin(R,-j), (5.1)

xeR

where the sum extends over all atoms of the distribution of X;. If rank(X) > 2, then (5.1)
simplifies to

2
t(Xi, Xj) = (1 = (P(X; = ui})°) ~arcsin(Ry;).

For a proof, see Lindskog, McNeil and Schmock (2001). Note that if P{X; = u;} =0 for
all i, which is true for, e.g., multivariate 7-distribution or normal distributions with strictly
positive definite dispersion matrices X', then

2
7(X;, Xj) = — arcsin(R;;)
= ,

foralli and j.

The nonparametric estimator of R, sin(77/2) (dropping the subscript for simplicity),
provided by the above theorem, inherits the robustness properties of the Kendall’s tau esti-
mator and is an efficient (low variance) estimator of R for both elliptical distributions and
nonelliptical distributions with elliptical copulas.

5.2. Gaussian copulas

The copula of the n-variate normal distribution with linear correlation matrix R is

CEw) =oR(P~ ), ..., 2 ),
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where @} denotes the joint distribution function of the n-variate standard normal distrib-
ution function with linear correlation matrix R, and @ ~! denotes the inverse of the distri-
bution function of the univariate standard normal distribution. Copulas of the above form
are called Gaussian copulas. In the bivariate case the copula expression can be written as

o) po(v) 1 2 _9Rirst 412
Cga(u,v)=f / 7exp{—¢}dsdt.
—00 —00 21 —sz

/1 2(1—R})

Note that Ry, is simply the usual linear correlation coefficient of the corresponding bi-
variate normal distribution. Example 3.4 shows that Gaussian copulas do not have upper
tail dependence. Since elliptical distributions are radially symmetric, the coefficient of up-
per and lower tail dependence are equal. Hence Gaussian copulas do not have lower tail
dependence.

We now address the question of random variate generation from the Gaussian copula
Cga. For our purpose, it is sufficient to consider only strictly positive definite matrices R.
Write R = AAT for some n x n matrix A, and if Z1, ..., Z, ~ N(0, 1) are independent,
then

1+ AZ~ Ny (i, R).

One natural choice of A is the Cholesky decomposition of R. The Cholesky decomposi-
tion of R is the unique lower-triangular matrix L with LLT = R. Furthermore Cholesky
decomposition routines are implemented in most mathematical software. This provides an
easy algorithm for random variate generation from the Gaussian n-copula Cga.

Algorithm 5.1.

e Find the Cholesky decomposition A of R.

e Simulate n independent random variates z1, . . ., z, from A(0, 1).
e Setx = Az.

e Setu; =d(x;),i=1,...,n.

o (up,...,un)T~CG.

As usual @ denotes the univariate standard normal distribution function.

5.3. t-copulas

If X has the stochastic representation

Xegut Y7, (5.2)

NS

where u € R"?, § ~ XE and Z ~ N, (0, X) are independent, then X has an n-variate ¢,-
distribution with mean p (for v > 1) and covariance matrix ﬁZ‘ (forv>2).Ifv<<2
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then Cov(X) is not defined. In this case we just interpret X as being the shape parameter
of the distribution of X.
The copula of X given by (5.2) can be written as

Clp@ =1 (1 ), o 1y (),

where R;; = X;;/,/ X Xj; for i, j € {1,...,n} and where t:}R denotes the distribution
function of \/vY/ /S, where S ~ XS and Y ~ N, (0, R) are independent. Here ¢, denotes

the (equal) marginals of 7] ., i.e., the distribution function of \/vY1/ V/'S. In the bivariate
case the copula expression can be written as

2 _DRiyst 4 2] HD/2
&} dsdr.

il el w) 1
tptwo= [y e
" —oo J-oo 2p [1-R3, v(l = Ryy)

Note that Rj; is simply the usual linear correlation coefficient of the corresponding bivari-
ate t,-distribution if v > 2.

If (X1,X z)T has a standard bivariate ¢-distribution with v degrees of freedom and linear
correlation matrix R, then X;|X| = x is #-distributed with v 4 1 degrees of freedom and

v+ x? )
E(X72| X1 =x) = Ryax, Var(X>| X1 =x) = o (1—R12).

This can be used to show that the ¢-copula has upper (and because of radial symmetry)
equal lower tail dependence:

Ay =2 lim P(X, > x| X1 =x)
x—00

_ 1\"?x—R
—2 lim tv+1(( vt 2) al 12x>
X—>00 v+ Xx ll_plz

.- v+ 1 1/2\/1—R12
=2 lim AV |
X—> 00

v/x2+1 VT+R12
_ o7 («/v-i—l«/l—Rlz)
v V14 Rip .

From this it is also seen that the coefficient of upper tail dependence is increasing in Rj2
and decreasing in v, as one would expect. Furthermore, the coefficient of upper (lower) tail
dependence tends to zero as the number of degrees of freedom tends to infinity for Rj» < 1.

Coefficients of upper tail dependence for the bivariate #-copula are given in Table 1. The
last row represents the Gaussian copula, i.e., no tail dependence.
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Table 1
VR —05 0 0.5 0.9 1
2 0.06 0.18 039 072 1
4 0.01 008 025 063 1
10 0.00 0.01 0.08 046 1
00 0 0 0 0 1

It should be mentioned that the expression given above is just a special case of a gen-
eral formula for the coefficient(s) of tail dependence for elliptical distributions with tail
dependence. It turns out that if X;; > 0 for all i and —1 < X};/,/X;; X;; < 1 for all
i # j, then the bivariate marginal distributions of an elliptically distributed random vector
X =4 u+ RAU ~ E,(u, X, ¢) has tail dependence if and only if R is so-called regu-
larly varying (at co). For more details, see Hult and Lindskog (2002), and for details about
regular variation in general see Resnick (1987) or Embrechts, Mikosch and Kliippelberg
(1997).

Equation (5.2) provides an easy algorithm for random variate generation from the
t-copula, C| p.

Algorithm 5.2.

e Find the Cholesky decomposition A of R.

e Simulate n independent random variates z1, . . ., z, from A(0, 1).
e Simulate a random variate s from XVZ independentof z1, ..., z,.

e Sety=Az.

e Setx= %y.

e Setu; =t,(x;),i=1,...,n.

o (ut,...,un)" ~C} .

Figures 2 and 3 show samples from bivariate distributions with Gaussian and 7-copulas.
In Figure 2, we have contrasted a real example (BMW-Siemens daily return data) with
simulated data using marginal #4 tails, corresponding Kendall’s tau (0.5) and varying cop-
ulas. Note that the Gaussian copula does not get the extreme joint tail observations clearly
present in the real data. The #,-copula seems to be able to do a much better job in that re-
spect. Indeed the #,-generated scatter plot shows most of the graphical features in the real
data. Note that these examples were only introduced to highlight the simulation procedures
and do not constitute a detailed statistical analysis. Figure 3 (a simulated example) further
highlights the difference between the Gaussian and ¢-copulas, this time with standard nor-
mal marginals.

The algorithms presented for the Gaussian and ¢-copulas are fast and easy to implement.
We want to emphasize the potential usefulness of 7-copulas as an alternative to Gaussian
copulas. Both Gaussian and #-copulas are easily parameterized by the linear correlation
matrix, but only ¢-copulas yield dependence structures with tail dependence.
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Fig. 2. The upper left plot shows BMW-Siemens daily log returns from 1989 to 1996. The other plots show
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Fig. 3. Samples from two distributions with standard normal marginals, R, = 0.8 but different dependence
structures. (X1,Y 1)T has a Gaussian copula and (X2, Y 2)T has a t>-copula.
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6. Archimedean copulas

The copula families we have discussed so far have been derived from certain families
of multivariate distribution functions using Sklar’s Theorem. We have seen that elliptical
copulas are simply the distribution functions of componentwise transformed elliptically
distributed random vectors. Since simulation from elliptical distributions is easy, so is sim-
ulation from elliptical copulas. There are however drawbacks: elliptical copulas do not
have closed form expressions and are restricted to have radial symmetry (C = C ). In many
finance and insurance applications it seems reasonable that there is a stronger dependence
between big losses (e.g., a stock market crash) than between big gains. Such asymmetries
cannot be modelled with elliptical copulas.

In this section we discuss an important class of copulas called Archimedean copulas.
This class of copulas is worth studying for a number of reasons. Many interesting para-
metric families of copulas are Archimedean and the class of Archimedean copulas allow
for a great variety of different dependence structures. Furthermore, in contrast to elliptical
copulas, all commonly encountered Archimedean copulas have closed form expressions.
Unlike the copulas discussed so far these copulas are not derived from multivariate distri-
bution functions using Sklar’s Theorem. A consequence of this is that we need somewhat
technical conditions to assert that multivariate extensions of Archimedean 2-copulas are
proper n-copulas. A further disadvantage is that multivariate extensions of Archimedean
copulas in general suffer from lack of free parameter choice in the sense that some of the
entries in the resulting rank correlation matrix are forced to be equal. At the end of this
section we present one possible multivariate extension of Archimedean copulas. For other
multivariate extensions we refer to Joe (1997).

There is much written about Archimedean copulas. For some background on bivariate
Archimedean copulas see Genest and MacKay (1986b). For parameter estimation and a
discussion on other statistical questions we refer to Genest and Rivest (1993). Good refer-
ences on Archimedean copulas in general are Genest and MacKay (1986a), Nelsen (1999),
Joe (1997). See also the webpage http://www.mat.ulaval.ca/pages/genest/ for further re-
lated work.

6.1. Definitions

We begin with a general definition of Archimedean copulas, which can be found in Nelsen
(1999, p. 90). As our aim is the construction of multivariate extensions of Archimedean
2-copulas, this general definition will later prove to be a bit more general than needed.

Definition 6.1. Let ¢ be a continuous, strictly decreasing function from [0, 1] to [0, co]
such that ¢(1) = 0. The pseudo-inverse of ¢ is the function ¢~ : [0, co] — [0, 1] given

by

o1 = {wm, 0<1<g(0),
0, 9((0) <t < oco.
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Note that ¢! is continuous and decreasing on [0, co], and strictly decreasing on
[0, ¢(0)]. Furthermore, !~ (¢ (1)) = u on [0, 1], and
_ t, 0<7<9(0),
o(¢! 1'(t))={
¢(0), @) <t <00

Finally, if ¢(0) = oo, then =11 = o~ !,

Theorem 6.1. Let ¢ be a continuous, strictly decreasing function from [0, 1] to [0, o]
such that ¢(1) =0, and let '~ be the pseudo-inverse of ¢. Let C be the function from
[0, 11?10 [0, 1] given by

Clu,v) = o) +9). ©6.1)
Then C is a copula if and only if ¢ is convex.

For a proof, see Nelsen (1999, p. 91).

Copulas of the form (6.1) are called Archimedean copulas. The function ¢ is called
a generator of the copula. If ¢(0) = oo, we say that ¢ is a strict generator. In this case,
el =¢~and C(u,v) = ¢~ (@) + ¢(v)) is said to be a strict Archimedean copula.

Example 6.1. Let ¢(t) = (—In7)?, where 6 > 1. Clearly ¢(t) is continuous and ¢(1) =
0. ¢'(t) = —9(—1nt)9’1%, so ¢ is a strictly decreasing function from [0, 1] to [0, co].

@”(t) >0 on [0, 1], so ¢ is convex. Moreover ¢(0) = 00, so ¢ is a strict generator. From
(6.1) we get

Co(u,v) = ¢~ (pw) + p()) = exp(=[(=Inw)? + (= Inw)?]""").

Furthermore C; = I1 and limy_, oo Cg = M (recall that IT(u,v) = uv and M (u,v) =
min(u, v)). This copula family is called the Gumbel family. As shown in Example 3.3
this copula family has upper tail dependence.

Example 6.2. Let ¢(t) = (t~% — 1)/, where 6 € [—1, o) \ {0}. This gives the Clayton
family

Co(u,v) =max([u79 +v7? — 1]71/9, 0).
For 6 > 0 the copulas are strict and the copula expression simplifies to

Co(u,v)=(u® +v0 —1)7" (6.2)
The Clayton family has lower tail dependence for 6 > 0, and C_1 = W, limy_,0 Cy = I1

and limp—_, oo Cy = M. Since most of the following results are results for strict Archimedean
copulas we will refer to (6.2) as the Clayton family.
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Example 6.3. Let ¢(r) = —In((e " — 1)/(e~? — 1)), where 6 € R \ {0}. This gives the
Frank family

e ¥ —1

—6u _ —6v _
Ce<u,v>=—$1n(1+(° Dee 1)>.

Frank copulas are strict Archimedean copulas. Furthermore
lim Coy=W, 1limCy=I1 and lim Coy=M.
60— —00 6—0 60— 00

Members of the Frank family are the only Archimedean copulas which satisfy the equation
C(u,v) = C(u, v) for so-called radial symmetry, see Frank (1979) for details.

Example 6.4. Let ¢(r) =1 — ¢ for  in [0, 1]. Then ¢{='(r) = 1 — ¢ for ¢ in [0, 1], and O
for r > 1; i.e., !~ (r) = max(1 — 7, 0). Since C(u, v) = max(u + v — 1,0) =: W(u, v),
we see that the bivariate Fréchet—-Hoeffding lower bound W is Archimedean.

6.2. Properties

The results in the following theorem will enable us to formulate multivariate extensions of
Archimedean copulas.

Theorem 6.2. Let C be an Archimedean copula with generator ¢. Then
(1) C is symmetric, i.e., C(u,v) = C(v,u) forallu,v in [0, 1].
(2) C is associative, i.e., C(C(u,v), w) =C(u, C(v,w)) forallu,v, w in [0, 1].

Proof: The first part follows directly from (6.1). For (2),
C(Cu,v), w) = (p(e (@) + ¢))) + p(w))
=N o) + () + p(w))
=" N o@) + ¢ (e o) + o)) = C(u, Cv,w)). O

The associativity property of Archimedean copulas is not shared by copulas in general
as shown by the following example.

Example 6.5. Let Cy be a member of the bivariate Farlie—Gumbel-Morgenstern family of
copulas, i.e., Cg(u, v) =uv +Ouv(l —u)(1 —v), for 6 € [—1, 1]. Then

1 11 1 1\ 1
a(yalss)#a(o(iz) )

for all 6 € [—1,1] \ {0}. Hence the only member of the bivariate Farlie—-Gumbel—
Morgenstern family of copulas that is Archimedean is I7.
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Theorem 6.3. Let C be an Archimedean copula generated by ¢ and let

K@) =Ve({w,v) €0, 117 Cu,v) < t}).
Then for any t in [0, 1],

@(1)
@'t

Kc(t)=1t— (6.3)

For a proof, see Nelsen (1999, p. 102).

Corollary 6.1. If (U, V)T has distribution function C, where C is an Archimedean copula
generated by ¢, then the function Kc given by (6.3) is the distribution function of the
random variable C(U, V).

The next theorem will provide the basis for a general algorithm for random variate gener-
ation from Archimedean copulas. Before the theorem can be stated we need an expression
for the density of an absolutely continuous Archimedean copula. From (6.1) it follows that

0
¢'(Clu, v))ac(u, v) = ¢ (),

a
¢'(Clu, v))%c(u, V) =¢'(v),

2

" ad d , a
¢"(Clu, U))a_uc(”’ V)5, Cuv) +¢ (Clu, v))mC(u, v) =0,
and hence
9 o, vy = PCu ) ECwECE Y ¢ (Cu,v)e W )
udv e @' (C(u,v)) = [/ (C(u, )P

Thus, when C is absolutely continuous, its density is given by

92 Clu, vy = — &€ ¢ W' @)

udv N [/ (C(u, v)]

(6.4)

Theorem 6.4. Under the hypotheses of Corollary 6.1, the joint distribution function
H(s,t) of the random variables S = ¢(U)/[o(U) + (V)] and T = C(U, V) is given
by H(s,t) =sKc(t) for all (s,t) in [0, 11%. Hence S and T are independent, and S is
uniformly distributed on [0, 1].
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Proof: [This proof, for the case when C is absolutely continuous, can be found in Nelsen
(1999, p. 104). For the general case, see Genest and Rivest (1993).] The joint density %(s, ¢)
of S and T is given by

2

dudv

d(u, v)
s, 1) |

h(s,t) = C(u,v)‘

where 92C (u, v)/dudv is given by (6.4) and d(u, v)/d(s, t) denotes the Jacobian of the
transformation ¢ (u) = s@(t), ¢ (v) = (1 — s)p(t). But

0u,v) _ 90’ ()
0. ¢ W'’

and hence

hs, 1) = <_‘P (D¢’ we (v)) <_ P’ (1) ) _ " 0e®)

[’ (1)]3 @ (W)p'(v) 4G
Therefore
¢’ (y)w(y) [ w(y)}’
H ydx=s|y— =sKc(1),
(.1 = // Tompr PEE T gy, T K@

from which the conclusion follows. [J

An application of Theorem 6.4 is the following algorithm for generating random variates
(u, v)T whose joint distribution is an Archimedean copula C with generator .

Algorithm 6.1.

e Simulate two independent U (0, 1) random variates s and q.

e Setr= Kgl (q¢), where K is the distribution function of C(U, V).

e Setu=¢"U(sp(t)) and v == (1 — 5)@(1)).

Note that the variates s and ¢ correspond to the random variables S and 7 in Theorem 6.4
and from the proof it follows that this algorithm yields the desired result.

Example 6.6. Consider the Archimedean copula family given by
Co(u,v) = (1 4 [(Mfl _ 1)9 + (vfl _ 1)9]1/9)71

generated by ¢y (1) = (t~! — 1)? for @ > 1. To generate a random variate from C we simply
apply Algorithm 6.1 with
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go()= (=" —1)",

o ') = (" +1)7,

_ 0; + 1 6 +1\°
chl(t)z ’2 - <12 )-9,-s.

6.3. Kendall’s tau revisited

Recall that Kendall’s tau for a copula C can be expressed as a double integral of C.
This double integral is in most cases not straightforward to evaluate. However for an
Archimedean copula, Kendall’s tau can be expressed as an (one-dimensional) integral
of the generator and its derivative, as shown in the following theorem from Genest and
MacKay (1986a).

Theorem 6.5. Let X and Y be random variables with an Archimedean copula C generated
by ¢. Kendall’s tau of X and Y is given by

1
_ @)
1% _1+4f0 o0 dr. (6.5)

Proof: Let U and V be U (0, 1) random variables with joint distribution function C, and
let K¢ denote the distribution function of C (U, V). Then from Theorem 3.3 we have

1
¢ =4E(C(U,V)) -1 =4/ tdKe(t) — 1
0

1 1
=4<[tKC(t)](l) —f Kc(t) dt) —1=3 —4f Kc(t)dt.
0 0
From Theorem 6.3 and Corollary 6.1 it follows that

@(1)
@'t

Kc(@)=t—-

Since ¢ is convex, ¢’ (t1) and ¢’ (¢ ~) exist forall 7 in (0, 1) and the set {t € (0, 1) | ¢’ (+T) #
@'(t7)} is at most countable (i.e., it has Lebesgue measure zero). Hence

1 1
@(1) ) / @)
=3—-4 — dr=1+4 dr. O
e /o<t g )T v Y
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Example 6.7. Consider the Gumbel family with generator ¢(r) = (—1Int)?, for 6 > 1.
Then ¢(1)/¢'(r) = (tInr) /6. Using Theorem 6.5 we can calculate Kendall’s tau for the
Gumbel family.

1+4/1tlntdt S /ltdt -
= —dr= —(|=mnt| — — =1—-—.
o o 0 o\l2 ], | 2 0

As a consequence, in order to have Kendall’s tau equal to 0.5 in Figure 2 (the Gumbel
case), we put 6 =2.

Example 6.8. Consider the Clayton family with generator ¢(f) = (=% — 1)/6, for 6
[—1,00) \ {0}. Then ¢(1)/¢' () = 7t —1)/6. Using Theorem 6.5 we can calculate
Kendall’s tau for the Clayton family.

1+4/1t0+1_tdt 12 ! i
Tp = = - — — - | = —
o , 0 o\6+2 2) 6+2

Example 6.9. Consider the Frank family presented in Example 6.3. It can be shown that
[see, e.g., Genest (1987)] Kendall’s tau is 79 = 1 — 4(1 — D1(6))/6, where Dy (x) is the
Debye function, given by

ko[~ i

for any positive integer k.

6.4. Tail dependence revisited

For Archimedean copulas, tail dependence can be expressed in terms of the generators.

Theorem 6.6. Let ¢ be a strict generator such that ¢~ belongs to the class of Laplace
transforms of strictly positive random variables. If (p_l/(O) is finite, then

Cu,v) =9 (o) +p(v))

does not have upper tail dependence. If C has upper tail dependence, then (p_l/(O) = —00
and the coefficient of upper tail dependence is given by

1700
ry=2—21im %
SN0 7 (s)
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Proof: [This proof can be found in Joe (1997, p. 103).] Note that

Clu,u) i L= 2 +o ' Qo)

lim = lim
u/1 1 —u u 1 1—u
—l/ 2
— 92— 21im ? 1( @ (u))
u/1 @7 (p(u))
—l/ 2
2 21im Y@
SN0 @71 (s)

If (p_l/(O) € (—00, 0), then the limit is zero and C does not have upper tail dependence.
Since <p’1/(0) is the negative of the expectation of a strictly positive random variable,
(p’l/(O) < 0 from which the conclusion follows. []

The additional condition on the generator ¢ might seem somewhat strange. It will however
prove quite natural when we turn to the construction of multivariate Archimedean copu-
las. Furthermore, the condition is satisfied by the majority of the commonly encountered
Archimedean copulas.

Example 6.10. The Gumbel copulas are strict Archimedean with generator ¢(f) =
(—1Int)?. Hence ¢! (s) = exp(—sl/‘g) and its derivative (p’l/(s) =—gl/0-1 exp(—sl/e)/e.
Using Theorem 6.6 we get
—17 _(ra)1/0
2 2
ro=2—21im &) o 9176}y SR )

—2_2llf,
sNO @7 1(s) sN\O exp(—s!/?)

see also Example 3.3.

Theorem 6.7. Let ¢ be as in Theorem 6.6. The coefficient of lower tail dependence for the
copula C(u,v) = ¢~ (o) + ¢(v)) is equal to

—17
2
§—>00 @ "(s)

The proof is similar to that of Theorem 6.6.

Example 6.11. Consider the Clayton family given by Cp (1, v) = (u™0 +v=0 —1)71/? for
0 > 0. This strict copula family has generator ¢ () = (t=% —1)/6. It follows that o~ (s) =
1+ Os)fl/g. Using Theorems 6.6 and 6.7 shows that Ay = 0 and that the coefficient of
lower tail dependence given by

—1/2 1420 —1/6—-1
ry ot ©CY (1 420)

¥y = A\ TaUS) T =18
s—oo @~ l/(s) Rt (1+6s5)-1/6-1 =2
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Example 6.12. Consider the Frank family given by

—Ou __ —0v __
Ce(u,v):—éln(l—i— e e_l@)(_el D)

for 6 € R\ {0}. This strict copula family has generator ¢ (t) = — In((e™?" — 1)/(e_0 —1)).
It follows that

=gl (=) wna oV UEE L

Since

e —1

-1/ _
¢ (0)= 7

is finite, the Frank family does not have upper tail dependence according to Theorem 6.6.
Furthermore, members of the Frank family are radially symmetric, i.e. C = C, and hence
the Frank family does not have lower tail dependence.

6.5. Multivariate Archimedean copulas

In this section we look at the construction of one particular multivariate extension of
Archimedean 2-copulas. For other multivariate extensions see Joe (1997). It should be
noted that in order to show that other multivariate extensions are proper copulas, we essen-
tially have to go through the same arguments as those given below.

The expression for the n-dimensional product copula 7", with u = (uq, ..., u,)T, can
be written as I[7" (W) = uq ...u, =exp(—[(—Inu1)+-- -+ (—Inu,)]). This naturally leads
to the following generalization of (6.1):

C"(w) = oo + - + p(un)). (6.6)
In the 3-dimensional case,

Cour,uz,u3) = ¢! Mg 0 o (01) + 9(u2)) + 9(u3)) = C(Clur, u2), u3),
and in the 4-dimensional case,

C4(u1,...,u4)
= g oo™ N p1) + @ u2)) + 9u3)) + ¢(us))
= C(C3(u1, uz, u3), us) = C(C(Clur, u2), u3), us).



374 P. Embrechts et al.

Whence in general, n > 3, C"(uy,...,u,) = C(C"’l(ul, Uz, ...,Un—1), Uy). This tech-
nique of constructing higher-dimensional copulas generally fails. But since Archimedean
copulas are symmetric and associative it seems more likely that C" as defined above, given
certain additional properties of ¢ (and ¢l~11), is indeed a copula for n > 3.

Definition 6.2. A function g(¢) is completely monotone on the interval / if it has deriva-
tives of all orders which alternate in sign, i.e., if it satisfies

o
(D! 8 >0

for all ¢ in the interior of / and k =0, 1,2, ....

If g: [0, c0) > [0, 00) is completely monotone on [0, 00) and there is a ¢ € [0, c0) such
that g(r) = 0, then g(¢) = 0 for all ¢ € [0, 0o). Hence if the pseudo-inverse (p[_” of an
Archimedean generator ¢ is completely monotone, then ¢l=!l(z) > 0 for all ¢ € [0, c0)
and hence o= = ¢~ 1.

The following theorem from Kimberling (1974) gives necessary and sufficient condi-
tions for the function (6.6) to be an n-copula.

Theorem 6.8. Let ¢ be a continuous strictly decreasing function from [0, 1] to [0, oo] such
that ¢(0) = oo and ¢(1) =0, and let 9~ denote the inverse of ¢. If C" is the function from
[0, 11" to [0, 1] given by (6.6), then C" is an n-copula for all n > 2 if and only if(p_l is
completely monotone on [0, co).

This theorem can be partially extended to the case where ¢ is nonstrict and =1 is m-
monotone on [0, oo) for some m > 2, that is, the derivatives of (p[_” alter sign up to and
including the mth order on [0, co). Then the function C" given by (6.6) is an n-copula for
2 < n < m. However, for most practical purposes, the class of strict generators ¢ such that
¢! is completely monotone is a rich enough class.

The following corollary shows that the generators suitable for extensions to arbitrary di-
mensions of Archimedean 2-copulas correspond to copulas which can model only positive

dependence.

Corollary 6.2. If the inverse ¢~ of a strict generator ¢ of an Archimedean copula C is
completely monotone, then C > I1, i.e., C(u,v) 2 uv for all u, v in [0, 1].

For a proof, see Nelsen (1999, p. 122).

While it is simple to generate n-copulas of the form given by (6.6), they suffer from a
very limited dependence structure since all k-marginals are identical, they are distribution
functions of n exchangeable U (0, 1) random variables. One would like to have a multivari-
ate extension of the Archimedean 2-copula given by (6.1) which allows for nonexchange-
ability. Such multivariate extensions are discussed in Joe (1997). We will now discuss one
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such extension in detail. Since any multivariate extension should contain (6.6) as a special
case, clearly the necessary conditions for (6.6) to be a copula has to be satisfied. In the light
of Theorem 6.8, we restrict ourselves to strict generators.

The expression for the general multivariate extension of (6.1) we will now discuss is
notationally complex. For that reason we will discuss sufficient conditions for the 3- and
4-dimensional extensions to be proper 3- and 4-copulas respectively. The pattern and con-
ditions indicated generalize in an obvious way to higher dimensions. The 3-dimensional
generalization of (6.1) is

o7 (@1 097 (@2(u1) + 92(u2)) + 91 (u3)), (6.7)

where ¢ and ¢; are generators of strict Archimedean copulas. The 4-dimensional gener-
alization of (6.1) is

o7 (01095 (92007 (03(u1) + 3(12)) + 02(u3)) + 91 (us)), (6.8)

where @1, ¢y and @3 are generators of strict Archimedean copulas. The expressions (6.7)
and (6.8) can be written as

Ci(Ca(ur uz),u3) and  Cy(Ca2(C3(ur,u2),u3), ug),

respectively, where C; denotes an Archimedean copula generated by ¢; .

If generators ¢; are chosen so that certain conditions are satisfied, then multivariate
copulas can be obtained such that each bivariate marginal has the form (6.1) for some i.
However, the number of distinct generators ¢; among the n(n — 1)/2 bivariate marginals
is only n — 1, so that the resulting dependence structure is one of partial exchangeability.

Clearly the generators have to satisfy the necessary conditions for the n-copula given by
(6.6) in order to make (6.7) and (6.8) valid copula expressions. What other conditions are
needed to make these proper copulas? To answer that question we now introduce function
classes £, and L. Let

Ly ={¢:[0,00) > [0, 11| ¢(0) =1, ¢(c0) =0, (—=1)/¢p >0,
j=1, ...,n},

n=1,2,...,00,with L being the class of Laplace transforms of strictly positive random
variables.
Also introduce

Lk = {w: [0,00) = [0,00) | w(0) =0, w(00) =00, (—1)/ ') >0,

n=1,2,...,00. Note that (p’l € L if ¢ is the generator of a strict Archimedean copula.

The functions in £ are usually compositions of the form w_l o¢ with yr, ¢ € L.
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Note also that with this notation, the necessary and sufficient conditions for (6.6) to be
a proper copula is that ¢ ~! € £, and that, if (6.6) is a copula for all n, then ¢! must
be completely monotone and hence be a Laplace transform of a strictly positive random
variable.

It turns out that if (pfl and ¢, I are completely monotone (Laplace transforms of strictly
positive random variables) and ¢ o @5 Le L%, then (6.7) is a proper copula. Note that
(6.7) has (1, 2) bivariate marginal of the form (6.1) with generator ¢; and (1, 3) and (2, 3)
bivariate marginals of the form (6.1) with generator ¢;. Also (6.6) is the special case of
(6.7) with ¢1 = ¢5. The 3-dimensional copula in (6.7) has a (1, 2) bivariate marginal copula
which is larger than the (1, 3) and (2, 3) bivariate marginal copulas (which are identical).

As one would expect, there are similar conditions for the 4-dimensional case. If o 1,
®; Uand ®3 Uare completely monotone (Laplace transforms of strictly positive random

variables) and ¢ o ¢, and p2005 lare in L%, then (6.8) is a proper copula. Note that all
3-dimensional marginals of (6.8) have the form (6.7) and all bivariate marginals have the
form (6.1). Clearly the idea underlying (6.7) and (6.8) generalize to higher dimensions.

Example 6.13. Let ¢;(¢) = (—lnt)ei with 6; > 1 fori =1,...,n, i.e., the generators of
Gumbel copulas. What conditions do we have to impose on 6, ... ., 8, in order to obtain an
n-dimensional extension of the Gumbel family of the form indicated above (expressions
(6.7) and (6.8)). It should first be noted that ¢, le Lo for all i, so (6.6) with the above

generators gives an n-copula for all n > 2. Secondly, ¢; o (p;ll (1) =1%/%+1 1f 6; /0, 41 ¢ N,
then the nth derivative of ¢; o <plf+11 () is given by

bi ( b —(n—1))t9f/9f+1".
Bi+1 Bi+1

Hence if 0;/6;+1 ¢ N, then ¢; o <plf+11 e L}, if and only if 6;/6;4+1 < 1. If 6;/6;41 € N,
then ¢; o <pf+11 € L% if and only if 6;/6; 11 = 1. Hence an n-dimensional extension of the
Gumbel family of the form indicated above, given by

exp{—([(_lnu1)92 + (—lnu2)92]9'/02 + (—lnu3)91)1/01}
in the 3-dimensional case, is a proper n-copulaif 61 < --- < 6y.
Example 6.14. Consider the Archimedean copula family given by
Co(u,v) = (1 + [(ufl _ 1)9 4 (vfl . 1)9]1/9)71
generated by ¢g(¢) = (¢~ — 1)? for 6 > 1. Set ¢;(t) = @, (t) fori =1,...,n. Can the

above copulas be extended to n-copulas of the form indicated by (6.7) and (6.8), and if
so under what conditions on 6y, ..., 6,7 By calculating derivatives of (pi_l and ¢; o (p;rll it
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follows that ¢, l'e Lo and g 0 (p;ll € L% if and only if 6; /6; 11 < 1. Hence the n-dimen-
sional extension of the above copulas are n-copulas if 9] < --- < 6.

Copulas of the above form have upper and lower tail dependence, with coefficients of
upper and lower tail dependence given by 2 — 2!/¢ and 27!/% respectively. One limiting
factor for the usefulness of this copula family might be that they only allow for a limited
range of positive dependence, as seen from the expression for Kendall’s tau given by 7 =
1—-2/(30),for6 > 1.

Note that the results presented in this section hold for strict Archimedean copulas. With
some additional constraints most of the results can be generalized to hold also for nonstrict
Archimedean copulas. However for practical purposes it is sufficient to only consider strict
Archimedean copulas. This basically means (there are exceptions such as the Frank family)
that we consider copula families with only positive dependence. Furthermore, risk models
are often designed to model positive dependence, since in some sense it is the “dangerous”
dependence: assets (or risks) move in the same direction in periods of extreme events.

7. Modelling extremal events in practice

7.1. Insurance risk

Consider a portfolio consisting of n risks X1, ..., X, representing potential losses in dif-
ferent lines of business for an insurance company. Suppose that the insurance company, in
order to reduce the risk in its portfolio, seeks protection against simultaneous big losses
in different lines of business. One suitable reinsurance contract might be the one which
pays the excess losses X; — k; fori € B C {1,...,n} (where B is some prespecified set of
business lines), given that X; > k; for all i € B. Hence the payout function f is given by

f((Xi k); i € B) = <]‘[1{Xi>ki})(2(x,- —k,->). (7.1)

ieB ieB

In order to price this contract the seller (reinsurer) would typically need to estimate
E(f((Xi,ki); i € B)). Without loss of generality let B = {1, ...,/} for [ < n. If the joint
distribution H of X1, ..., X; could be accurately estimated, calculating the expected value
of (7.1) (possibly by using numerical methods) would not be difficult. Unfortunately, accu-
rate estimation of H is seldom possible due to lack of reliable data. It is more realistic, and
we will assume this, that the data available allow for estimation of the marginals Fi, ..., F,
of H and pairwise rank correlations. The probability of payout is given by

o~ —

Hki,....k)=C(Fi(k1),..., Fi(kp), (7.2)

where H and C denotes the joint survival function and survival copula of X1, ..., X;. If
the thresholds are chosen to be quantiles of the X;s, i.e., if k; = Fl._l (a;) for all i, then the
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right-hand side of (7.2) simplifies to c (1—-ayq,...,1 —ap). Inareinsurance context, these
quantile levels are often given as return periods and are known to the underwriter.

For a specific copula family, Kendall’s tau estimates can typically be transformed into
an estimate of the copula parameters. For Gaussian (elliptical) n-copulas this is due to
the relation R;; =sin(wt(X;, X;)/2), where R;; = X;;/,/X;; Xj; with X' being the dis-
persion matrix of the corresponding normal (elliptical) distribution. For the multivari-
ate extension of the Gumbel family presented in Section 6.5 this is due to the relation
0 =1/(1 —t(X;, X;)), where 6 denotes the copula parameter for the bivariate Gumbel
copula of (X;, X J-)T. Hence, once a copula family is decided upon, calculating the prob-
ability of payout or the expected value of the contract is easy. However there is much
uncertainty in choosing a suitable copula family representing the dependence between po-
tential losses for the / lines of business. The data may give indications of properties such
as tail dependence but it should be combined with careful consideration of the nature of
the underlying loss causing mechanisms. To show the relevance of good dependence mod-
elling, we will consider marginal distributions and pairwise rank correlations to be given
and compare the effect of the Gaussian and Gumbel copula on the probability of payout
and expected value of the contract. To be able to interpret the results more easily, we make
some further simplifications: let X; ~ F for all i, where F is the distribution function of
the standard Lognormal distribution LN(0, 1), let k; = k for all i and let T(X;, X;) =0.5
for all i ## j. Then,

— l (1
H(k,...,k)=1+(—1)<1)C1(F(k))+~~~+(—1) (l)Cz(F(k),...,F(k)),

where Cp,, form =1,...,1 — 1, are m-dimensional marginals of C = C; (the copula of
(X1, ..., X))). In the Gaussian case,

Cu(FK),....F() =} (7 (FK))..... o ' (F(K)),

where @ Z‘m denotes the distribution function of m multivariate normally distributed random

variables with linear correlation matrix R, with off-diagonal entries sin(70.5/2) = 1/+/2.
¢ (P “L(F(k)),...,® 1 (F(k))) canbe calculated by numerical integration using the fact
that [see Johnson and Kotz (1972, p. 48)]

m o a—/pix\1"
@pl(a,...,a)=/w¢(x)|:¢<ﬁ):| dx,

where ¢ denotes the univariate standard normal density function. In the Gumbel case,

Cn(F(K), ..., F(k)) = exp{—[(=In F(k))" + -+ (= In F(0))"]"*}
=F"”,

where 6 = 1/(1 —0.5) =2.
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For illustration, let / =5, i.e., we consider 5 different lines of business. Figure 4 shows
payout probabilities (probabilities of joint exceedances) for thresholds k € [0, 15], when
the dependence structure among the potential losses are given by a Gaussian copula (lower
curve) and a Gumbel copula (upper curve). If we let k = F~1(0.99) ~ 10.25, i.e., pay-
out occurs when all 5 losses exceed their respective 99% quantile, then Figure 5 shows
that if one would choose a Gaussian copula when the true dependence structure between

0.0 02 04 06 08 1.0

Threshold

0.010 0.020 0.030

0.0

6 8 10 12 14
Threshold

Fig. 4. Probability of payout for / = 5 when the dependence structure is given by a Gaussian copula (lower curve)
and Gumbel copula (upper curve).

15

10

0 5 10 15
Threshold

Fig. 5. Ratios of payout probabilities (Gumbel/Gaussian) for / =3 (lower curve) and / =5 (upper curve).
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Fig. 6. Estimates of E(f (X1, X3, k)) for Gaussian (lower curve) and Gumbel (upper curve) copulas.

the potential losses X1, ..., X5 is given by a Gumbel copula, the probability of payout is
underestimated almost by a factor 8.

Figure 6 shows estimates of E(f (X, X2, k)) fork =1, ..., 18. The lower curve shows
estimates for the expectation when (X1, X2)T has a Gaussian copula and the upper curve
when (X1, X»)T has a Gumbel copula. The estimates are sample means from samples
of size 150000. Since F~'(0.99) ~ 10.25, Figure 6 shows that if one would choose a
Gaussian copula when the true dependence between the potential losses X; and X is given
by a Gumbel copula, the expected loss to the reinsurer is underestimated by a factor 2.

7.2. Market risk

We now consider the problem of measuring the risk of holding an equity portfolio over a
short time horizon (one day, say) without the possibility of rebalancing. More precisely,
consider a portfolio of n equities with current value given by

n
Vi = Zﬁisi,t,
i=1

where f; is the number of units of equity i and S;; is the current price of equity i. Let
A1 = —(Vig1 — Vi) / Vi, the (negative) relative loss over time period (¢, ¢ + 1], be our
aggregate risk. Then

n
Arpy = Z Vit8ir+1

i=1
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where y;; = B;Si.:/ V: is the portion of the current portfolio value allocated to equity i,
and §; ;41 = —(Sit+1 — Si.t)/Si+ is the (negative) relative loss over time period (¢, t + 1]
of equity i.

We will highlight the techniques introduced by studying the effect of different distrib-
utional assumptions for § := (81 141, ...,S,M_H)T on the aggregate risk A := A;41. The
classical distributional assumption on §, widely used within market risk management, is
that of multivariate normality. However, in general the empirical distribution of § has (one-
dimensional) marginal distributions which are heavier tailed than the normal distribution.
Furthermore, there is an even more critical problem with multivariate normal distributions
in this context. Extreme falls in equity prices are often joint extremes, in the sense that a
big fall in one equity price is accompanied by simultaneous big falls in other equity prices.
This is for instance seen in Figure 7, an example already encountered in Figure 2. Loosely
speaking, a problem with the multivariate normal distributions (or models based on them)
is that they do not assign a high enough probability of occurrence to the event in which
many thing go wrong a the same time — the “perfect storm” scenario. More precisely, daily
equity return data often indicate that the underlying dependence structure has the property
of tail dependence, a property which we know Gaussian copulas lack.

Suppose 8 is modelled by a multivariate normal distribution A, (i, X), where u and
XY are estimated from historical prices of the equities in the portfolio. There seems to
be much agreement on the fact that the quantiles of A = y T8 ~ N (yTu, yTZy) do not

BMW
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Fig. 7. Daily log returns from 1989 to 1996.
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capture the portfolio risk due to extreme market movements; see for instance Embrechts,
Mikosch and Kliippelberg (1997), Embrechts (2000) and the references therein. Therefore,
different stress test solutions have been proposed. One such “solution” is to choose ps and
X, in such a way that 8 ~ N, (g, X) represents the distribution of the relative losses of
the different equities under more adverse market conditions. The aim is that the quantiles

of Ay =yT8s ~ N(yTus, yT Xsy) should be more realistic risk estimates. To judge this
approach we note that

VaR

alpha

Fig. 8. Quantile curves: VaRa (@), VaR (a) and VaR px () from lower to upper.

VaR

—

e

0.95 0.96 0.97 0.98 0.99 1.00
alpha

Fig. 9. Quantile curves: VaR 5/ (cr) and VaR p* (o) from lower to upper.
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Fle) —yTus _ [yT Sy
F~Y o) —yTu yIZy’

where F and F; denotes the distribution functions of A and A; respectively. Hence the
effect of this is simply a translation and scaling of the quantile curve F~!(x). As a com-
parison, let §* have a #4-distribution with mean u and covariance matrix X and let A* be
the corresponding portfolio return. Furthermore let n = 10, u; = ps; = /J,;" =0,y =1/10
for all i and let 7(5;,6;) = I(Bf,éj) = 0.4, 1(dy,i,6s,j) = 0.6, X;; = sin(7wt(8;,6;)/2),
Xsij = 1.5sin(wt(8s,i, 8s,j)/2) for all i, j. Then Figure 8 shows from lower to upper the
quantile curves of A, A; and A* respectively. If A* were the true portfolio return, Fig-
ure § shows that the approach described above would eventually underestimate the quan-
tiles of the portfolio return. It should be noted that this is not mainly due to the heavier
tailed 74-marginals. This can be seen in Figure 9 which shows quantile curves of A* and
A’ = yT8', where §' is a random vector with #4-marginals, a Gaussian copula, E(8") = E(8)
and Cov(§’) = Cov(8).

There are of course numerous alternative applications of copula techniques to integrated
risk management. Besides the references already quoted, also see Embrechts, Hoeing and
Juri (2001) where the calculation of Value-at-Risk bounds for functions of dependent risks
is discussed. The latter paper also contains many more relevant references to this important
topic.
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Abstract

The use of GARCH models with stable Paretian innovations in financial modeling has
been recently suggested in the literature. This class of processes is attractive because it
allows for conditional skewness and leptokurtosis of financial returns without ruling out
normality. This contribution illustrates their usefulness in predicting the downside risk of
financial assets in the context of modeling foreign exchange-rates and demonstrates their
superiority over use of normal or Student’s # GARCH models.
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1. Introduction

Risk managers of financial institutions are particularly interested in the left — i.e., down-
side — tail of the return distribution of financial assets. To assess the short-term exposure
to market risks, they are required to evaluate future shortfall probabilities or value-at-risk
levels of financial investments. Such estimates can be based on the distribution of the re-
turns themselves. For example, ever since the pioneering works of Mandelbrot (1963) and
Fama (1965) there have been numerous studies investigating the appropriateness of the
stable Paretian distribution for modeling the unconditional distribution of asset returns [for
an overview, see, for example, Mittnik and Rachev (1993), McCulloch (1997)].

However, short-term prediction often benefits substantially when taking conditional
volatility into account. The GARCH class of conditional models has been widely and —
both from an academic and applied perspective — successfully used to model returns on
financial assets [see Palm (1997), Gouriéroux (1997), for surveys]. Although a station-
ary GARCH model with normally distributed innovations gives rise to an unconditional
distribution with higher (possibly nonexistent) kurtosis than the normal, it is often found
that residuals from estimated GARCH models of financial return data still tend to exhibit
nonnegligible kurtosis. To allow for this, other fatter tailed distributions for GARCH in-
novations have been considered in the literature, most notably the Student’s . Only very
recently has the stable Paretian distribution been considered in the context of modeling the
conditional heteroscedastic distribution of asset returns. Special cases of the model consid-
ered herein were developed by McCulloch (1985), Nelson (1990), Panorska, Mittnik and
Rachev (1995), and Mittnik, Rachev and Paolella (1998), while a more general case was
examined in Liu and Brorsen (1995), Paolella (1999) and Mittnik, Paolella and Rachev
(2000, 2002).

Like the Student’s ¢, the stable Paretian distribution includes the normal distribution as
a special, limiting case and permits heavy-tailed distributions for GARCH innovations.
However, the stable Paretian distribution allows for skewness, an attractive property in fi-
nancial applications not shared by the Student’s #. In addition to this practical aspect, the
stable Paretian distribution also has the appealing theoretical property that it is the only
valid distribution that arises as a limiting distribution of sums of independently, identically
distributed (iid) random variables. This is highly desirable, given that error terms in econo-
metric models are usually interpreted as random variables that represent the sum of the
external effects not being captured by the model.

This contribution investigates the use of asymmetric stable Paretian power GARCH
models for modeling downside risk and demonstrates that this model class is more suitable
than the class of Student’s t GARCH models, particularly when one uses a goodness-of-fit
criterion that focuses on the tails of the conditional distribution.

The remainder is organized as follows. Section 2 discusses GARCH processes with sta-
ble Paretian innovations and stationarity conditions. Section 3 reconsiders the empirical
analysis of the five exchange-rate series in Liu and Brorsen (1995) using the appropriate
measure for persistence of volatility and compares the goodness of fit of the estimated sta-
ble Paretian and Student’s 1 GARCH models. The problem of out-of-sample conditional
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density prediction with particular focus on predicting downside market risk is considered
in Section 4. Section 5 concludes.

2. GARCH-stable processes

Sequence y; is said to be a stable Paretian power GARCH process or, in short, an
S‘s GARCH(r §) process [see Panorska, Mittnik and Rachev (1995), Paolella (1999),
Rachev and Mittnik (2000)], if

ud

Vi =+ Crés, ~ Su,p(0,1) (1)
and
r N
=00+ Oilyi—i—ul’ +Y_¢ic;. 2)
— —

where Sy g (0, 1) denotes the standard asymmetric stable Paretian distribution with stable
index o, skewness parameter 8 € [—1, 1], zero location parameter, and unit scale parame-
ter. There exist several notational varieties of the stable Paretian distribution; we use the
same as in Samorodnitsky and Taqqu (1994) and Rachev and Mittnik (2000), whereby

. exp{—c“|t|°‘[1—iﬁsign(t)tan%“}+iat}, o,
/ e dH (x) = (3)

_ 2
o0 exp{—c|t|[1+iﬁ—sign(t)1n|t|:|+i8t}, ifa=1,
4

is the characteristic function and H denotes the distribution function corresponding to
Sa,(8, ¢). The density is symmetric for 8 = 0 and skewed to the right (left) for 8 > 0
(B < 0). Stable index «, which, in general, assumes values in interval (0,2], determines the
tail-thickness of the distribution. As o approaches 2, tails become thinner; and for o« =2
the standard stable Paretian distribution coincides with normal distribution N (0, 2). For
o < 2, g does not possess moments of order « or higher.

Mittnik, Paolella and Rachev (2002) derived sufficient conditions under which the
S‘s GARCH(r s) process has a unique strlctly stationary solution. These are given by
1<a<20<5<aco>0c,201—1 Lrr21,d;20,j=1,...,5,5 20, and
that the volatility persistence, Vs, defined by

r S
Vs:=EIZI"> 0+ _¢; (4)
i=1 j=1
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for Z ~ S4,4(0, 1), satisfies
Vs <L &)

Ifl <o <2and0 < § < «, they also showed that
1 ) 8
A, B3 :=E|Z|‘S = W_(;F(l — 5)(1 + riﬁ)a/(za) cos<5 arctanta,ﬂ), (6)

where 1, g := B tan(am/2) and

bif) .
ra —5)cos7, if § # 1,
T
2’

Vs = (7

if§=1.

Restrictions 1 <o < 2 and 0 < § < o not only appear to be satisfied for the data sets used
below, but also for other, even more volatile series, such as stock price indices and East
Asian currencies [see Mittnik, Rachev and Paolella (1998), Mittnik, Paolella and Rachev
(2000), respectively].

Analogous to the ordinary normal GARCH model (Engle and Bollerslev, 1986), we say
that y; is an integrated S(‘i’ ﬂGARCH(r, s) process, denoted S(‘i’ ﬂIGARCH(r, s), if, in (5),
Vs = 1. In practice, the estimated volatility persistence, Vs, tends to be quite close to one
for highly volatile series, so that an integrated model might offer a reasonable data descrip-
tion. Because both finite sample and even asymptotic properties of VS and the associated
likelihood ratio test statistics are not known [see, however, Mittnik, Paolella and Rachev
(2000)], it is not immediately clear how one can test for an integrated process. Instead
of formally testing, we suggest fitting both models and examining the change in various
goodness-of-fit statistics, most notably the Anderson—Darling statistic, which is particu-
larly relevant for assessing the models’ ability to successfully model the value-at-risk (see
Section 3.3 below).

3. Modeling exchange-rate returns

To examine the appropriateness of the stable GARCH hypothesis, we model returns' on
five daily spot foreign exchange rates against the U.S. dollar, namely the British pound,
Canadian dollar, German mark, Japanese yen, and the Swiss franc. The choice of exchange
rate allows us to compare our more general GARCH specification to that used by Liu and
Brorsen (1995), who set « = § in (2). However, our sample is somewhat larger than theirs,

1 We define the return r; in period ¢ by r; =100 x (In P; —In P;_1), where P; is the exchange rate at time .
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covering the period January 2, 1980 to July 28, 1994, yielding series of lengths 3681, 3682,
3661, 3621, and 3678, respectively. Serial correlation was found to be negligible, and, as is
common in practice, a GARCH(r, s) specification with r = s = 1 was sufficient to capture
serial correlation in the absolute returns. Therefore, we specify a model of the form

rt=/L+Ct‘9t7 (8)
c? =600+ 01lri—1 — M|8 +¢IC;S—1 ©)

for each of the five currencies.

3.1. Approximate maximum likelihood estimation

Evaluation of the probability density function (pdf) and, thus, the likelihood function
of the Sy g distribution is nontrivial, because it lacks an analytic expression. The maxi-
mum likelihood (ML) estimate of parameter vector § = (i, co, 60, 01, @1, @, 8, 8) for the
Sg’ ﬂGARCH(l, 1) models (8), (9) is obtained by maximizing the logarithm of the likeli-
hood function

T

L(o;rl,...,rT)zl_[cglsa,,g(”_“>, (10)

c
t=1 !

where co denotes the unknown initial value of ¢;.

The ML estimation we conduct is approximate in the sense that the stable Paretian den-
sity function Sy g ((r; — 1) /c;) needs to be approximated. To do so, we follow the algorithm
of Mittnik et al. (1999), which approximates the stable Paretian density via fast Fourier
transform of the characteristic function. DuMouchel (1973) shows that the ML estimator
of the parameters of the stable density is consistent and asymptotically normal with the
asymptotic covariance matrix being given by the inverse of the Fisher information matrix.
Approximate standard errors of the estimates can be obtained via numerical approximation
of the Hessian matrix.

Below, we will demonstrate that — for the five series under consideration — the
Sg’ ﬂGARCH(r, s) model outperforms its Student’s ¢ counterpart. However, it is of practi-
cal interest to know at least three things before adopting a new and more complex method:
first, how easy the stable ML estimation routine is to implement; second, whether it is
numerically well-behaved; and third, how fast it performs. When implemented in high-
level software which provide both FFT and linear interpolation routines (such as Matlab
and Splus), the algorithm becomes a straightforward programming exercise. Our experi-
ence has shown that the method is extremely well behaved, giving rise to numerical prob-
lems only for grossly misspecified and/or overspecified models (for which the Student’s ¢
GARCH model also has difficulties) or, in the case of the more general class of ARMA-
GARCH models, when there is near zero-pole cancellation in the ARMA structure — a
well-known difficulty in ARMA estimation.
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The satisfactory behavior of the algorithm is actually not surprising for at least two
reasons. First, there is no explicit numerical integration involved [as in the approach of
Liu and Brorsen (1995)] and, second, the method can be made arbitrarily accurate by the
choice of several tuning constants [recommendations for which are given in Mittnik et al.
(1999)]. Nevertheless, it is clear that the method will take longer than the (essentially closed
form) evaluation of the Student’s ¢ density. For the series considered in this paper, use
of a quasi-Newton minimization algorithm (BFGS, as implemented in Matlab 5.2) with
convergence tolerance of 10™* resulted in convergence after about 150 to 350 function
evaluations (including gradient calculations). Rather contrary to our initial expectations
— and fears —, the choice of initial values is of surprisingly little importance. Given any
“reasonable” set of values, say o« > 1.4, |8| < 0.7, |u| <0.2,6p > 0, 61 > 0 and ¢p; > 0.2,
convergence to the same respective maxima occurred for all five exchange-rate series under
consideration, and also for the vast majority of trials from simulation experiments. From a
purely numerical standpoint then, the method appears both highly reliable and “stable”.

Evaluation of the GARCH recursion requires presample values gy and cp. Following
Nelson and Cao (1992), one could set those to their unconditional expected values, i.e.,

N

& N
o= 0 ~ and £y = ACy. (11

1 =2 8,8 Yici0i— Zj‘:l b;

In the IGARCH case, (11) will be invalid, so we instead estimate co as an additional pa-
rameter. In fact, we chose to do this for all models considered here, as (11) will clearly be
problematic for nearly integrated GARCH models.

For the integrated model S‘S IGARCH(l 1), the restriction ¢ = 1 — Ay g 501 needs
to be imposed. Notice that thls entails evaluation of (4) at each iteration, as ¢ is also
dependent on values &, ﬂ and §.

We compare the Sg’ ﬂGARCH model to the most commonly used heavy-tailed variant of
the GARCH model, the Student’s -GARCH models in power form, say tf-GARCH(r, s),
given by

re =W+ ct&s, Sti’i‘(’it(‘)), (12)

r S
=00+ Oilri—ul’ + ) ¢jc) ;. (13)
— !
where ¢ (v) refers to the Student’s ¢ distribution with v degrees of freedom, i.e.,

( x2)—(v+l)/2
fx;v)=Ky| 1+ — (14)
V
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and

T+ D/2v!/2

K= VAT (v/2) (15

Assuming 0 < 8 < v and v > 1, taking unconditional expectations of c;s in (13) shows
that ch exists if E|T|° Y6+ Zj‘=1 ¢j <1, where T ~t(v) and

) —
s :=E|T|5=\/;F<¥)F<v2 8>F_1<%>. (16)

Analogous to (4), the measure of volatility persistence for t,‘f-GARCH(r, s) models is de-
fined to be

r N
Vic=hos ) 0+ ¢ (17)
i=1 j=1

Similar remarks regarding treatment of presample values and the imposing of the
IGARCH constraint apply to the Student’s  model as well.

3.2. Estimation results and volatility persistence

The parameter estimates of the models are presented in Table 1. Noteworthy are the esti-
mates of the skewness parameter 8: all ,3 values are (statistically) significantly different
from zero, although those for the British pound and German mark series are quite close to
zero. In addition, when | 8| < 0.3 and « is over 1.8, the amount of skewness is, for practical
purposes, slight. Skewness is most pronounced for the Japanese yen, for which @ = 1.81
and B = —0.418.

The persistence-of-volatility measure given in the last column of Table 1 reflects the
speed with which volatility shocks die out. A V-value near one is indicative of an in-
tegrated GARCH process, in which volatility shocks have persistent effects. Under the
Sq,p assumption, the models for the Canadian dollar (Vg = )»&’ A 3@1 + ¢A51 = 1.001) and

Japanese yen (\75 = 1.002) series would suggest that they are very close to being inte-
grated. Under the Student’s ¢ assumption, V; = A; 361 + ¢1 = 0.992 for the Canadian dol-

lar, which is also rather close to being integrated, while \7, is only 0.972 for the Japanese
yen. Thus, for these two currencies, the indications regarding persistence of volatility dif-
fer under the two distributional assumptions. For the other currencies, the measures are
strikingly close, most notably for the German mark (VS =V, = 0.969) and the Swiss franc

2 The condition v > 1 is analogous to requiring « > 1 in the stable Paretian case and implies existence of a finite
first moment of the innovations.
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Table 1
GARCH parameter estimates®

Intercept GARCH Distribution Persistence
parameters parameters measureP
nw 6o 01 o1 8 Shape Skew v
British
N —9.773e—3 8.085e—3  0.04132 0.9171 1.359 1.850  —0.1368 0.984
(0.012)  (2.39e—3) (6.42¢e—3) (0.0118)  (0.0892) (0.0245)  (0.0211)
t —2.312¢e-3 0.01190  0.06373 0.9071 1.457 6.218 - 0.976
(0.010)  (3.56e—3) (0.0115)  (0.0200) (0.167) (0.615)
Canadian
N 5.167e—3 1.034e—3  0.04710 0.9164 1.404 1.823 0.3577 1.001
(0.0614)  (3.12e—4) (6.63e—3) (0.0118)  (0.0143) (0.0104)  (0.0209)
t —2.240e—3 7.774e—4 0.06112 0.9118 1.793 5.900 - 0.992
(3.83e—3) (6.90e—4) (5.98¢—3) (7.27e—3) (0.0150) (0.0801)
German
N 2.580e—3  0.01525  0.05684 0.8971 1.101 1.892  —0.06779 0.969
(0.016)  (1.6le—3) (3.44e—3) (7.42e—3) (9.78e—3) (0.0216) (0.0184)
t 6.643e—3  0.01812  0.07803 0.8938 1.261 7.297 - 0.969
(9.2le—4) (2.25¢—3) (6.45¢e—3) (4.43e—3) (0.147) (0.186)
Japanese
N —0.01938 4.518e—3  0.06827 0.8865 1.337 1.814  —0.4175 1.002
(0.0166)  (1.12e—3) (7.91e—3) (0.0124)  (0.0132) (0.0107) (8.80e—3)
t 5.318e—3 9.949¢e—3 0.07016 0.8756 1.816 5.509 - 0.972
(8.87e—3) (3.03e—3) (0.0119)  (0.0205) (0.162) (0.461)
Swiss
N —2.677e—=3 0.01595  0.04873 0.9115 1.041 1.902  —0.2836 0.971
(0.0124)  (3.30e—3) (6.84e—3) (0.0132) (0.144) (0.0206) (0.0722)
t 8.275¢—3  0.02099  0.06825 0.9061 1.159 8.294 - 0.968

(0.0118) (3.91e—3) (6.85e—3) (7.25¢—3)  (0.179) (0.933)

4 Estimated models: ry = u + ¢y &, c? =6y +01lri—1 — wl® + ¢>1cf71. “Shape” denotes the degrees of freedom
parameter v for the Student’s ¢ distribution and stable index « for the stable Paretian distribution; “Skew” refers
to the stable Paretian skewness parameter . Standard deviations resulting from ML estimation are given in
parentheses.

by corresponds to VS in the stable Paretian and Vt in the Student’s ¢ case. V =1 implies an IGARCH model.

(Vg =0.971, f/\t = 0.968). It is interesting to note that, for each of these two currencies,
the log-likelihood values £; and Lg are also extremely close. These are discussed further
in the next section.

For all five series, we also estimated the models with the IGARCH condition imposed.
Table 2 shows the resulting parameter estimates. Not surprisingly, for those models for
which the persistence measure was close to unity, the IGARCH-restricted parameter es-
timates differ very little. For the remaining models, the greatest changes occur with the
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Table 2
IGARCH parameter estimates?

Intercept IGARCH Distribution
parameters parameters
" 6o 01 b1 8 Shape Skew
British
N —0.01023 7.050e—3 0.03781 09114 1.598 1.846 —0.1340
(0.0103) (1.79¢e—3)  (5.64e-3) - (0.0677) (0.0224) (0.0147)
t —3.033e-3 4.237e-3 0.05774 0.9130 1.949 5.543 -
(0.0101) (1.68e—3)  (9.83e—3) - (0.264) (0.484)
Canadian
N 5.148e—3 1.115e-3 0.04689 0.9154 1.404 1.823 0.3578
(3.65e—3) (2.14e—4)  (5.71e-3) - (0.0143) (0.0105) (0.0209)
t —2.098e—3 4.998¢e—4 0.06468 0.9146 1.796 5.890 -
(3.48e—3) (1.37e—4)  (7.54e-3) - (0.0226) (0.0838)
German
Sa,p 8.959%¢—3 9.666e—3 0.04518 0.8896 1.676 1.881 0.03944
(0.0113) (1.85e—3)  (6.10e—3) - (0.0662) (0.0217) (0.0930)
t 8.851e—3 5.505e—3 0.08124 0.9003 1.741 6.560 -
(0.0106) (1.60e—3) (0.0106) - (0.231) (0.676)
Japanese
N —0.01932 4.814e—3 0.06768 0.8858 1.336 1.814 —0.4175
(8.44e—-3) (9.75e—4)  (7.68e—3) - (0.0751) (0.0226) (0.0151)
t 6.136e—3 5.611e—3 0.06036 0.8689 2314 5.066 -
(8.57e—3) (1.31e—3) (0.0112) - (0.224) (0.410)
Swiss
N 3.823e—3 0.01111 0.03700 0.9009 1.724 1.889 —0.1703
(0.0127) (2.65e—3)  (5.40e-3) - (0.0419) (0.0169) (0.137)
t 9.130e—3 2.047e-3 0.07125 0.9347 1.166 8.194 -
(0.0119) (8.34e—4)  (9.13e-3) - (9.79¢-3) (0.0996)

4 Estimated models: ry = u + cr¢&¢, c;s =6+ 01lri—1 — wlf 4+ - AGl)cf_l with IGARCH condition dA)l =
11— ):él imposed. See footnote to Table 1 for further details.

power parameter § and, to a lesser extent, the shape parameters o and v. The former in-
crease, while the latter decrease under IGARCH restrictions.

It should also be noted that the restriction « = §, imposed by Liu and Brorsen (1995)
when estimating GARCH-stable models for the same five currencies, is not supported by
our results. This is important because, if § > «, the unconditional first moments of ¢; is
infinite for any o < 2. The knife-edge specification 6 = « does not only induce conceptual
difficulties, but also leads to a highly volatile evolution of the ¢; series in practical work.
For our estimates, we obtain 8 < &, which suggest that conditional volatility cf is a well-
defined quantity in the sense that E(c;s | ri—1,7r4-2,...) <oofor Vg < 1.
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3.3. Goodness of fit

We employ three likelihood-based and one empirical CDF-based criteria for comparing
the goodness of fit of the candidate models. The first is the maximum log-likelihood value
obtained from ML estimation. This value may be viewed as an overall measure of goodness
of fit and allows us to judge which candidate is more likely to have generated the data.
The second is the AICC [Hurvich and Tsai (1989), see also Brockwell and Davis (1991),
Equation (9.3.7)] given by

2T (k+1)

AICC=-2L+ ——,
+ T—-k-2

(18)

where k denotes the number of estimated parameters and 7 the number of observations.
This is the bias-corrected information criterion of Akaike (1973), which corrects the latter’s
tendency to overfit. Similarly, the SBC (Schwartz, 1978), defined as

SBC = —2L + kloi(T) , (19)

is a similar penalizing strategy which is commonly used.
The fourth criterion is the Anderson—Darling statistic [Anderson and Darling (1952), see
also Press et al. (1991), and Tanaka (1996)], given by

AD = sup IIis(X)—F(AX)I ’
reR S F()( = F(x))

where F. (x) denotes the cdf of the estimated parametric density, and F(x) is the empirical
sample distribution, i.e.,

(20)

T ~
1 rr—
FS(X)Z ? E I(-oqx]( tét )s
t=1

where Z(-) is the usual indicator function. The AD statistic weights discrepancies appro-
priately across the whole support of the distribution. This is especially important if one
is interested in determining conditional shortfall probabilities, i.e., the probability of large
investment losses, or so-called value-at-risk measures, where one focuses on the left tail of
the conditional return distribution.

Table 3 displays the aforementioned goodness-of-fit measures for the estimated models.
In both the unrestricted and IGARCH restricted cases, the inference suggested from the
maximum log-likelihood value £, and the AICC and SBC are identical. This is not too
surprising, given the large ratio of observations to parameters, and the fact that there is only
one parameter difference between the Student’s ¢ and stable Paretian GARCH models.
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Table 3
Goodness-of-fit measures of estimated models?

L AICC SBC AD
N t N t N t N t

Britain:

GARCH —3842.0 —3828.6 7700.0 7671.2 7684.0  7657.2 0.0375 0.0244

IGARCH —3842.3  —3837.1 7698.6  7686.2 7684.6  7674.2 0.0417  0.0420
Canada:

GARCH —159.92  —152.25 03359 0318.5 0319.9 0304.5 0.0532  0.0571

IGARCH —159.97 —153.71 03340 03194 0320.0 0307.4 0.0529  0.0633
Germany:

GARCH —3986.5 —3986.2 7989.0  7986.4 7973.0 79724 0.0368 0.345

IGARCH —3989.9 —3999.4 7993.8  8010.8 7979.8  7998.8 0.0506  0.200
Japan:

GARCH —3178.7  —3333.7 6373.4 6681.4 6357.4  6667.4 0.0401  0.0986

IGARCH —3178.8 —3334.6 6371.6  6681.2 6357.6  6669.2 0.0394  0.0793
Switzerland:

GARCH —4308.6  —4308.1 8633.2  8630.2 8617.2 8616.2 0.0457  0.287

IGARCH —4314.2 —4325.0 8642.4  8662.0 8628.4  8650.0 0.0460  0.278

& L refers to the maximum log-likelihood value; AICC is the corrected AIC criteria (18); SBC is the Schwarz
Bayesian criteria (19); and AD is the Anderson—Darling statistic (20).

It appears that £ significantly favors the Student’s 7 distribution for the British pound
(with values, in obvious notation, £; = —3828.6 and L5 = —3842.0) and the Cana-
dian dollar (£; = —152.25, L5 = —159.92). For the German mark (£; = —3896.2,
Ls = —3896.5) and the Swiss franc (£; = —4308.1, Ls = —4308.6), the log-likelihood
values, AICC and SBC are very close, albeit larger for the Student’s 7. On the other hand,
the Sy, assumption is favored quite strongly for the Japanese yen with L5 = —3178.7 as
compared to £; = —3331.7.

For the British pound, the AD statistic (AD; = 0.0244, ADg = 0.0375) slightly favors
the Student’s # model, in agreement with £, although the difference is relatively small. The
AD statistics for the remaining countries all favor the stable Paretian model, particularly
for the German mark (AD; = 0.345, ADg = 0.0368), the Japanese yen (AD; = 0.0986,
ADg = 0.0401) and the Swiss franc (AD; = 0.287, ADg = 0.0457). The usual caveat ap-
plies, in that, statistically speaking, it is not clear to what extent these differences are sig-
nificant. However, given virtually identical log-likelihood values, but AD statistics which
are several times smaller for the Sy, g distribution, one might safely conclude that, particu-
larly in the tails of the conditional distribution, the Sy, g model offers a distinct advantage,
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