TIME SERIES ANALYSIS II VÍTĚZSLAV VESELÝ Department of Statistics and Operations Research University of Malta * Email: vvese01@um.edu.mt CONTENTS • General notation and abbreviations • Discrete LTI-systems: impulse and frequency response, causality and stability • Mean square convergence of series Yt = YlTL-ao ipjXt-j • Best linear prediction (Yule-Walker system of equations) • Partial autocorrelation function • ARMA models for stationary time series, AR and MA models as their more simple case • Causality and invertibility for ARMA models • Identification, parameter estimation and verification for ARMA models • Asymptotic properties of some estimates • ARIMA and SARIMA models for time series with station-arity defects in the mean Date: September 25, 2008. 1Visiting lecturer, 2-nd semester from 4-th February to 12-th July 2002 1. General notation and abbreviations s := v ot v =: s ... denoting expression v by symbol s. iff stands for if and only if. Sets and mappings: • N, Z, R, C ... natural numbers, integers, real and complex numbers, respectively. • Zjv := {0,1,... , TV - 1} ... residuals modulo TV e N. • R+ ... the set of all non-negative real numbers. • exp X ... class of all subsets of the set X. • card M .. . cardinality of a set M. • (-)+ : R —> R+ ... mapping defined as (x)+ = max(0, x). • {a,tí), [a,b], (a,b], [a,b) .. .intervals on real line. 3(a,b) = {x\ min(a,6) < x < max(a,6)} J[a,6] = {a; | min(a,6) < x < max(a,6)}. • f(A) := {y e Y\y = f(x),x e A C X} ...range (image) of set A under mapping / : X —> Y. • /_1(ß) := {x e X I f (x) e B} C X ... inverse image of set 73 C Y under mapping / : X —> Y. • I a ■ ■ ■ indicator function of set A \j , • • • , Q>mj ] ... j-th column of matrix A using MATLAB style. 3 • A := [n;... ; rm] = [si,... , s„] ... forming matrix A row-by-row or columnwise using MATLAB style. • A > 0 (or A > 0) ... positively (semi)deflnite (non-negatively definite) matrix. • (x,y) := "}2™=1Xiyi = y*x ...scalar (inner) product of vectors x and y. • ||a;|| := \Z^2"=1\xi\2 = \J(x, x) ... Euclidean norm of vector x. Random variables and random vectors: • X ... random variable. • X := [Xi,... ,X„] ...(real) random vector, indexing conventions listed above for number vectors are adopted accordingly. • /it := /itx := EX ... expectation of random variable X. • fj, := /ix := EX := [EXi,... , EXn]T ... expectation of random vector X. • a2 := a\ := varX := E|X - EX|2 = E|X|2 - |EX|2 > 0 . .. variance of random variable X. • axY := cov(X, Y) := E(X - EX)(Y - EY) = EX Y -(EX)(EY) ... covariance of random variables X and Y. • Ex := varX := [cov^X,-)] = E(X-EX)(X-EX)T = EXXT-(EX)(EX)T .. . variance matrix of random vector X. • Exy := cov(X, Y) := [cov(Xi; Yj)] = E(X - EX)(Y -EY)T = EXYT - (EX)(EY)T ... covariance matrix of X and Y. It holds: • varX = cov(X,X). • cov(Y,X) = cov(X,Y). • COY(Y,rXr>Y,s Ys) = ErEs00^.^) and hence in particular: 4 • var(X + Y) = varX + cov(X, Y) + cov( Y, X) + varY = varX + 2cov(X, Y) + varY. • cov(X, X) = varX. • cov(Y, X) = cov(X, Y)T implies: • varX = (varX)T ... variance matrix X is symmetrical. • Given number vectors a and c, and matrices B and D of compatible sizes then cov(a+BX, c+DY) = cov(BX, DY) = B cov(X, Y) DT i).X = Y • var(a + BX) = cov(a + BX, a + BX) = cov(BX, BX) = Bvar(X)BT I). a = 0, B = bT • 0 < var(bTX) = bTvarXb implies: • varX > 0 ...variance matrix is non-negatively positive and consequently it has non-negative eigen i values Xi and its square root matrix E^ having eigen i values X? may be constructed such that: • cov(£rXr,£sYs) = £r£scov(Xr,Ys) and hence in particular: • var(X + Y) = varX + cov(X, Y) + cov(Y, X) + varY = varX + 2cov(X, Y) + varY. 5 References [1] Jiří Anděl. Statistická analýza časových rad. SNTL, Praha, 1976. [2] Peter J. Brockwell and Richard A. Davis. Introduction to Time Series and Forecasting. Springer-Verlag, New York, 2-nd edition, 2002. [3] Peter J. Brockwell and Richard A. Davis. Time Series: Theory and Methods. Springer-Verlag, New York, 2-nd edition, 1991 (corrected 2-nd printing 1993). [4] Peter J. Brockwell and Richard A. Davis. ITS M for Windows. A User's Guide to Time Series Modelling and Forecasting. Springer-Verlag, New York, 1994. 2 diskettes included. [5] James D. Hamilton. Time Series Analysis. Princeton University Press, Princeton, NJ 08540, 1994. [6] Lennart Ljung. SYSTEM IDENTIFICATION: Theory for the User. Prentice Hall, Inc., Englewood Cliffs, NJ, 1987. Doc. RNDr. Vítězslav Veselý, CSc., Department of Applied Mathematics and Computer Science, Masaryk University of Brno, Lipová 41a, 602 00 Brno, Czech republic. TEL.: +420-549498330, FAX: +420-549491720 E-mail address: vesely@math.muni.cz, URL: http://www.math.muni .cz/~vesely 6