
4.13. Remark.
(1) In case of k = 1 (one-step prediction) we shall simplify the
notation omitting the superscript (1).
(2) Observe that dividing (4.2) by γ(0) > 0 leads to an equivalent
SLE RnΦ(k)

n = ρ(k)
n expressed in terms of autocorrelation function

ρ(·) instead of the autocovariance function γ(·).
(3) Neither Γn nor γ(k)

n depends on t (by stationarity) and thus
hereafter we can assume t = n without the loss of generality.

4.14. Theorem (Durbin-Levinson algorithm for Φn).
Let X = {Xt | t ∈ Z} be a stationary time series with µX = 0
and autocovariance function γX(h) → 0 for h → ∞. If bXn+1 =
Φn,1Xn + · · · + Φn,nX1 is the best linear prediction as of Theo-
rem 4.12 then coefficients Φn,j and the mean square error vn =
E|Xn+1 − bXn+1|2 may be recursively computed as follows

Initial step with n = 0:

v0 = γX(0). (4.4a)

Recursive step with n > 0:

Φn,n =
�
γX(n)−

=0 for n=1z }| {
n−1X
j=1

Φn−1,j γX(n− j)
�
v−1

n−1, (4.4b)

vn = vn−1(1− |Φn,n|2), (4.4c)26664
Φn,1

Φn,2

...
Φn,n−1

37775 =

26664
Φn−1,1

Φn−1,2

...
Φn−1,n−1

37775− Φn,n

26664
Φn−1,n−1

Φn−1,n−2

...
Φn−1,1

37775 for n > 1.

(4.4d)

Proof. See [BD93, §5.2]. ¤



4.15. Definition. Let bX = PL(1,X1,...,Xn)X and bY = PL(1,X1,...,Xn)Y
where X, Y, X1, . . . , Xn ∈ L2 then ρ(X, Y |X1, . . . , Xn) := ρ(X −bX, Y − bY ) is called partial correlation coefficient of random
variables X and Y given X1, . . . , Xn.
Interpretation: partial correlation between X and Y given X1, . . . , Xn

is a correlation between X and Y cleaned of its part transmitted via
the influence of random variables X1, . . . , Xn.

4.16. Definition. Let X = {Xt | t ∈ Z} be a stationary time series
with autocorrelation function ρX(·). Then the partial autocorre-
lation function (pacf) αX(·) of X is defined as follows:

αX(0) = ρX(0) = 1,

αX(1) = ρX(1) = ρ(Xt+1, Xt)

αX(h) = ρ(Xt+h, Xt |Xt+1, . . . , Xt+h−1) for h ≥ 2.

4.17. Theorem. If X = {Xt | t ∈ Z} is a stationary time series with
µX = 0 and partial autocorrelation function αX(·) then αX(n) =
Φn,n for n ≥ 1 where Φn = [Φn,1, . . . , Φn,n]T is the solution to the
1-step best linear prediction problem as of eq. (4.2), i.e. bXn+1 =Pn

j=1 Φn,jXn+1−j.

Proof. See [BD93, §5.2]. ¤

Clearly, αX(h) may be computed recursively using the intermedi-
ate result (4.4b) of the Durbin-Levinson algorithm 4.14. Another
procedure is based on Cramer’s rule according to the next corollary.
Unfortunately, that method is computationally not much efficient
for large n.

4.18. Corollary. If the matrix Γn of eq. (4.2) is nonsingular, then

αX(n) = Φn,n =
detΓ∗n
detΓn

,

where Γ∗n := [Γ(:, 1), . . . , Γ(:, n− 1), γn].

2



4.19. Definition (ARMA process).
Stochastic process X = {Xt | t ∈ Z} is called ARMA process of
order p, q (0 ≤ p, q < ∞), we write X ∼ ARMA(p, q), if

Xt = Φ1Xt−1 + Φ2Xt−2 + · · ·+ ΦpXt−p| {z }
Autoregression component (AR)

+

+ Zt + Θ1Zt−1 + Θ2Zt−2 + · · ·+ ΘqZt−q| {z }
Moving average component (MA=Moving Average)

, (4.5a)

where Z := {Zt | t ∈ Z} ∼ WN (0, σ2) and Φp 6= 0, Θq 6= 0, σ 6= 0.
Rewriting (4.5a) into an equivalent form

Xt − Φ1Xt−1 − Φ2Xt−2 − · · · − ΦpXt−p =

= Zt + Θ1Zt−1 + Θ2Zt−2 + · · ·+ ΘqZt−q, (4.5b)

a short form may be used

Φ(B)Xt = Θ(B)Zt or Φ(z)X(z) = Θ(z)Z(z), (4.5c)

giving with Φ0 = Θ0 = 1

Φ(z) = 1− Φ1z − · · · − Φpzp,

Θ(z) = 1 + Θ1z + · · ·+ Θqz
q, z ∈ C.

4.20. Remark. In the preceding definition we assumed Θ0 = 1 with-
out the loss of generality, because otherwise it would be sufficient
to replace the original white noise by a modified one {Θ0Zt} ∼
WN (0, (Θ0σ)2), and the original Θi by Θi

Θ0
for i = 1, . . . , q.
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4.21. Remark (Special cases).

a) Autoregressive process (AR process):
X ∼ AR(p) = ARMA(p, 0) : Φ(B)Xt = Zt

because Θ(z) ≡ 1. Then

Xt = Φ1Xt−1 + Φ2Xt−2 + · · ·+ ΦpXt−p + Zt. (4.5d)

We admit p = ∞ provided that Φ := {Φj}∞j=1 ∈ `1.

b) Moving average process (MA process):
X ∼ MA(q) = ARMA(0, q) : Xt = Θ(B)Zt

because Φ(z) ≡ 1. Then

Xt = Zt + Θ1Zt−1 + Θ2Zt−2 + · · ·+ ΘqZt−q. (4.5e)

We admit q = ∞ provided that Θ := {Θj}∞j=1 ∈ `1.

c) White noise:
White noise is the only process which is both AR and MA
process:
X ∼ ARMA(0, 0) = AR(0) = MA(0) = WN (0, σ2) :
Xt = Zt.

d) General ARMA process:
X ∼ ARMA(p, q), 0 < p, q < ∞: True mixture of autore-
gressive and moving average components.

4.22. Definition.
X = {Xt | t ∈ Z}, X ∼ ARMA(p, q) is called causal ARMA
process if there exists ψ = {ψj}∞j=0,

P∞
j=0|ψj | < ∞ (i.e. ψ ∈ `1)

such that

Xt =
∞X

j=0

ψjZt−j (or in short form Xt = ψ(B)Zt), t ∈ Z. (4.6a)
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X is called invertible ARMA process if there exists π = {πj}∞j=0,P∞
j=0|ψj | < ∞ (i.e. π ∈ `1) such that

∞X
j=0

πjXt−j = Zt (or in short form π(B)Xt = Zt), t ∈ Z. (4.6b)

4.23. Remark.
Consequently, causality in this context says that ARMA process
X is also a time series generated by white noise {Zt} in the sense
of Remark 4.5(1), or X ∼ MA(∞) in our notation.
On the other hand, invertibility means that the white noise {Zt}
itself may be generated by the given ARMA process X, which is
equivalent with X ∼ AR(∞).
Above we assumed ψ0 = π0 = 1 again, which will be confirmed in
section 4.32 later on. There the main issue will be the computation
of the causal and invertible representation of an ARMA process.

4.24. Theorem (Autocovariance function of an MA process).
{Xt} ∼ MA(q), q ≤ ∞ is a stationary process having zero mean
µX = 0 and autocovariance function

γX(h) = σ2
qX

k=0

Θh+kΘk for h ≥ 0. (4.7a)

Hence for q < ∞ we get

γX(h) =

(
σ2Pq−h

k=0 Θh+kΘk for 0 ≤ h ≤ q

0 for h > q
(4.7b)

and in particular γX(q) = σ2Θq 6= 0 in view of Θ0 = 1.
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Proof. By Corollary 4.4 is {Xt} stationary and it holds

µX = µZ

qX
j=0

Θj = 0, because µZ = 0.

γX(h) =
qX

j,k=0

ΘjΘkγZ(h− j + k), where γZ(h) =

(
σ2 for h = 0

0 for h 6= 0
.

The only nonzero terms in the sum are with h − j + k = 0, i.e.
with j = h + k, which yields (4.7a)

γX(h) =
qX

k=0

Θh+kΘk γZ(0)| {z }
σ2

.

With q < ∞ we have Θh+k = 0 for h + k > q, or equivalently for
k > q − h, which allows us to rewrite (4.7a) as (4.7b). ¤

4.25. Corollary.

σ2
X = γX(0) = σ2

qX
k=0

|Θk|2.

σ2
X = σ2(1 + |Θ1|2 + |Θ2|2 + · · ·+ +|Θq|2) for q < ∞.

(4.8a)

ρX(h) =

Pq−h
k=0 Θh+kΘkPq

k=0|Θk|2 for h ≥ 0. (4.8b)

4.26. Theorem (Pacf of a causal AR process).
Let {Xt} ∼ AR(p), p < ∞ be a causal AR process. Then {Xt}
is stationary with zero mean µX = 0 and partial autocorrelation
function αX satisfying αX(p) = Φp 6= 0 and αX(h) = 0 for h > p.
Moreover bXt = Φ1Xt−1 + · · ·+ΦpXt−p = PL(Xt−1,...,Xt−p)Xt where
Φ1, . . . , Φp are precisely the 1-step best linear prediction coefficients.

Proof. In view of 4.23 and due to causality {Xt} ∼ MA(∞) is ze-
ro-mean stationary by 4.24. By (4.6a) is Xt =

P∞
j=0 ψjZt−j and
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consequently Xt ∈ L(Zt, Zt−1, . . . ) =: Lt (closure of a linear sub-
space in L2(Ω, A, P ) spanned by random variables Zu, u ≤ t).
Putting Φj = 0 for j > p, we can write for each n ≥ p in view
of (4.5d):

Xt =
nX

j=1

ΦjXt−j| {z }
∈Lt−1

+Zt.

Random variables Zt are uncorrelated: Zt ⊥ Zu for t 6= u. In par-
ticular Zt ⊥ Zu for u < t and thus Zt ⊥ Lt−1 by the continuity and
bi-linearity of inner-product in L2(Ω, A, P ). Applying the orthogo-
nal projection theorem we get bXt =

Pn
j=1 ΦjXt−j as a unique best

linear prediction Xt in terms of Xt−1, . . . , Xt−n for every n ≥ p.
By the Theorem 4.17 it holds α(p) = Φp and α(n) = Φn = 0 for
n > p. ¤

Figures 4.1, 4.2 and 4.3 show typical behaviour of estimated auto-
correlation and partial autocorrelation functions of simulated pro-
cesses AR(2), MA(2) and ARMA(2, 2), respectively. Dashed band
stands for the appropriate point confidence interval containing zero
with probability 0.95. We see that processes AR(2) on Fig. 4.1, or
MA(2) on Fig. 4.2, exhibit αX(h) ≈ 0, or ρX(h) ≈ 0 for h > 2 in ac-
cordance with theorems 4.26 and 4.24, respectively. Otherwise the
envelope of ρX(h), or αX(h) (with ARMA(2, 2) on Fig. 4.3 both of
them) exhibits exponential decay, eventually combined with oscil-
latory behaviour. It is because one can show that both ρX and αX

may be expressed in such cases as a linear combination of decreas-
ing geometrical sequences and/or cosine waves with geometrically
decreasing amplitudes.
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Figure 4.1. AR(2) : Φ = [0.5, 0.2], σ2 = 2.25.
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Sample path, n = 500
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Figure 4.2. MA(2) : Θ = [−0.5,−0.2], σ2 = 2.25.
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Sample path, n = 500
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Figure 4.3. ARMA(2, 2) : Φ = [0.5, 0.2], Θ =
[−0.6, 0.3], σ2 = 2.25.
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