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Preface

These lecture notes treat various versions of the so-called “fundamental theorem
of asset pricing”. Many students are familiar with statements about models for
financial markets saying that “absence of arbitrage” and the existence of an
“equivalent martingale measure” are in some sense equivalent. The purpose of
these notes is to present and explain mathematical results making such state-
ments precise.

We start with the relatively simple situation of models defined on a finite
underlying probability space, cf. Harrison and Pliska (1981). In this case a
mathematically precise and economically satisfactory fundamental theorem can
be derived using the separating hyperplane theorem. We then move to gen-
eral continuous time models, treating the theorem of Kreps (1981). The basic
idea behind this theorem is in fact similar to the finite case. However, since
the problem is now infinite-dimensional, it is technically much more involved
and it is necessary to involve topological considerations in the definition of “no
arbitrage”, called “no free lunch” by Kreps. Although Kreps’ theorem is sat-
isfactory from the mathematical perspective, the use of the weak∗-topology in
the definition of “no free lunch” destroys the economic interpretation of the re-
sult. We finally treat the fundamental theorem of Delbaen and Schachermayer
(1994), who work in the setting of asset prices modelled by locally bounded
semimartingales, and trading strategies modelled by predictable processes. In
this setting Kreps’ definition of “no free lunch” can be replaced by the condi-
tion of “no free lunch with vanishing risk”, which does not involve an unnatural
topology, and has a clear economic interpretation. The proof of the fundamental
theorem of Delbaen and Schachermayer (1994) is technically very involved, and
we only sketch the main arguments in these notes. In particular, we explain the
connection to the result of Kreps (1981).

The text is mainly based on Chapters 2, 5 and 8 and 9 of Delbaen
and Schachermayer (2006). The necessary results from functional analysis are
treated in the appendix, and are taken from Conway (1990) or Rudin (1991).

Readers are assumed to be familiar with basic topology, measure theo-
retic probability theory, martingale theory and stochastic integration theory,
the latter up to the level of stochastic integration of locally bounded predictable
processes relative to general semimartingales.

Amsterdam, fall 2006
HvZ
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1

A simple example

Consider a world with two time points, t = 0 (today) and t = 1 (tomorrow).
In this world there exists a bank where money can be deposited or borrowed at
zero interest and a stock is traded. The value S0 of the stock at time 0 equals
1 and the value S1 at time t = 1 equals the value u with probability p ∈ (0, 1)
and d < u with probability 1−p, respectively. Note that the stock price process
can be viewed as a stochastic process defined on an underlying probability space
(Ω,F ,P) with Ω consisting of just two elements, one corresponding to the stock
price going up, one to the price going down, F the power set of Ω and P the
probability measure that gives probability p to the event of the price going up
and 1− p to the event of the price going down.

A trader in this world can form a portfolio today consisting of a number
of units of money in the bank, call this ϕ0, and a number of stocks, call this ψ0.
Clearly, this portfolio is worth V0 = ϕ0 +ψ0 at time 0. When tomorrow comes,
the portfolio will have the new, random value V1 = ϕ0 + ψ0S1.

We say that there exists an arbitrage opportunity in this world if there
exists a portfolio (ϕ0, ψ0) as above such that the associated value process V
satisfies V0 = 0, V1 ≥ 0 and P(V1 > 0) > 0. Clearly, this corresponds to a
possibility of making a risk-free profit.

Proposition 1.0.1. There exist no arbitrage opportunities in this world if and
only if d < 1 < u.

Proof. If d < 1 < u then q = (1 − d)/(u − d) belongs to (0, 1) and hence the
probability measure Q under which the stock price moves up or down according
to the probability q instead of p is equivalent (i.e. mutually absolutely continu-
ous) to the underlying probability measure P (see Exercise 1). Now let (ϕ0, ψ0)
be a portfolio such that V0 = 0 and V1 ≥ 0. Then by construction we have
EQV1 = (ϕ0 + ψ0u)q + (ϕ0 + ψ0d)(1 − q) = ϕ0 + ψ0 = V0 = 0. Hence, since
V1 ≥ 0, we have Q(V1 > 0) = 0. But since the measures P and Q are equivalent,
it follows that P(V1 > 0) = 0 as well.

To prove the converse statement, suppose for instance that 1 ≤ d < u.
Then the stock always performs at least as good as money in the bank and there
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is a positive probability that it performs strictly better. Borrowing money from
the bank and investing it in stock then yields an arbitrage. Specifically, consider
the portfolio ϕ0 = −1, ψ0 = 1. The corresponding values process satisfies V0 = 0
and V1 is either d−1 or u−1, which is strictly positive with positive probability
in this case. The case d < u ≤ 1 can be handled similarly.

In the proof of the proposition we noted that in the case of no-arbitrage,
i.e. when d < 1 < u, the new underlying probability measure Q under which the
stock goes up with probability q = (1− d)/(u− d) is equivalent to the original
probability measure P. Observe that

EQS1 = uq + d(1− q) = S0.

In other words, the stock price process S = (S0, S1) is a martingale under Q
(relative to the trivial filtration F0 = {∅,Ω}, F1 = P(Ω)). Note that any other
equivalent measure Q′ is fully described by specifying a probability q′ ∈ (0, 1)
with which the stock goes up (Exercise 1 again). For such a measure Q′ we have

EQ′S1 = uq′ + d(1− q′) = q′(u− d) + d.

Hence if Q′ has the property that EQ′S1 = S0, then (1−d)/(u−d) = q′ ∈ (0, 1)
which is the same as saying that d < 1 < u. We just proved that this implies
absence of arbitrage opportunities.

We conclude that the condition for no-arbitrage can be reformulated in
terms of the existence of certain probability measures.

Proposition 1.0.2 (Fundamental theorem of asset pricing O). There ex-
ist no arbitrage opportunities in this world if and only there exists a probability
measure Q equivalent to the original probability measure P such that the stock
price process S = (S0, S1) satisfies EQS1 = S0.

For obvious reasons a probability measure Q as in the proposition is called
an equivalent martingale measure. Using this terminology the result asserts that
absence of arbitrage is equivalent to the existence of an equivalent martingale
measure. It turns out that (the appropriate version of) this result, often called
the fundamental theorem of asset pricing, is true in a very general setting. This
is of great interest, since it relates a fundamental economic notion (arbitrage)
to an important mathematical concept (martingales). As a result, martingale
theory plays a central role in the modelling of financial markets and pricing of
derivatives. In these notes we discuss the fundamental theorem of asset pricing
in increasingly general settings.
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1.1 Exercises

1. Show that two probability measures on a finite set are equivalent (i.e. mu-
tually absolutely continuous) if and only if they give positive probability
to the same singletons.
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2

Finite underlying
probability spaces

2.1 Description of the model and basic definitions

Consider a finite probability space (Ω,F ,P), with Ω = {ω1, . . . , ωn}, F = P(Ω)
and pi = P({ωi}) > 0 for every i. Suppose that on this probability space we
are given a filtration (Ft)t=0,...,T and a (d+ 1)-dimensional adapted stochastic
process S = (S(0)

t , . . . , S
(d)
t )t=0,...,T , where T is some finite positive integer.

Assume that FT = F .
We think of the components of S as the price processes of d + 1 different

financial assets, measured relative to the price of the 0-th asset, called a nu-
merair. Since we measure prices relative to the price of the numerair, the price
process S(0) equals 1 at all times.

A portfolio is a (d + 1)-dimensional, predictable process ϕ =
(ϕ(0)

t , . . . , ϕ
(d)
t )t=1,...,T . We think of ϕ(i)

t as the number of assets of type i that
is in the portfolio in the time interval (t− 1, t]. The requirement that ϕ is pre-
dictable means that at each time t−1, the portfolio is constructed using only the
information available up to that time, i.e. the trader can not look into the future.
The value process associated with a portfolio ϕ is the process V = (Vt)t=0,...,T

defined by

V0 =
d∑

i=0

ϕ
(i)
1 S

(i)
0 , Vt =

d∑
i=0

ϕ
(i)
t S

(i)
t , t ≥ 1. (2.1)

Clearly V is an adapted process. The value V0 is called the initial value of the
portfolio.

A special role is played by portfolios that do not involve injections or with-
drawals of money after time 0. Consider such a portfolio with value Vt−1 at
time t− 1. Just after t− 1 the portfolio is rebalanced, and the new value equals

d∑
i=0

ϕ
(i)
t S

(i)
t−1 = Vt −

d∑
i=0

ϕ
(i)
t (S(i)

t − S
(i)
t−1).
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If no money is injected or withdrawn this should equal Vt−1, hence

Vt − Vt−1 =
d∑

i=0

ϕ
(i)
t (S(i)

t − S
(i)
t−1) =

d∑
i=1

ϕ
(i)
t (S(i)

t − S
(i)
t−1)

(we use that S(0) equals 1 at all times).

Definition 2.1.1. A portfolio ϕ is called self-financing if its value process V
satisfies

Vt − Vt−1 =
d∑

i=1

ϕ
(i)
t (S(i)

t − S
(i)
t−1)

for all t ≥ 1.

We use the usual notation ∆f(t) = f(t) − f(t − 1) for a (possibly vector-
valued) function f on the integers. Moreover, we write 〈v, w〉 for the Euclidean
inner product of two vectors in Rd. Using that notation the preceding display
reads

∆Vt = 〈ϕt,∆St〉

and a self-financing portfolio satisfies the relation

Vt = V0 +
t∑

u=1

〈ϕu,∆Su〉 .

If we define the process ϕ · S by (ϕ · S)0 = 0 and (ϕ · S)t =
∑t

u=1 〈ϕu,∆Su〉 for
t ≥ 1, we can write

Vt = V0 + (ϕ · S)t

for a self-financing portfolio.
If we compare the definition of a self-financing portfolio with (2.1) we see

that for such a portfolio it holds that

ϕ
(0)
1 = V0 −

d∑
i=1

ϕ
(i)
1 S

(i)
0

and

∆ϕ(0)
t = −

d∑
i=1

∆ϕ(i)
t S

(i)
t−1, t ≥ 2.

Hence, if we specify the initial value V0 and (ϕ(1), . . . , ϕ(d)), the process ϕ(0)

describing the holdings in the numerair asset is completely determined by the
requirement that the portfolio is self-financing.
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2.2 Fundamental theorem of asset pricing

In this setting the definition of an arbitrage opportunity is as follows.

Definition 2.2.1. An arbitrage opportunity is a self-financing portfolio whose
value process V satisfies V0 = 0, VT ≥ 0 and P(VT > 0) > 0.

To prepare for the proof of the theorem below it is useful to reformulate
this in more geometric terms. Define the collection of random variables

K = K(S) = {(ϕ · S)T : ϕ predictable}.

Note that K is the set of all possible pay-offs of self-financing portfolios with
zero initial value. Denoting the collection of all integrable nonnegative random
variables on (Ω,F ,P) by L∞+ , absence of arbitrage is the same as the requirement
that K ∩ L∞+ = {0}. In our setting of finite Ω we can identify collections
of random variables with subsets of of Rn: simply identify a random variable
X with the vector of possible realizations (X(ω1), . . . , X(ωn)). For instance
L∞+ corresponds to the set {(x1, . . . , xn) : x1 ≥ 0, . . . , xn ≥ 0}. This way the
requirement K∩L∞+ = {0} of no-arbitrage translates into a geometric statement
about subsets of Rn.

By L∞ we denote the collection of all bounded random variables. Since Ω
is finite, bounded just means finite-valued, so that L∞ can be identified with
all of Rn.

We will see, as in the preceding chapter, that absence of arbitrage is equiv-
alent to the existence of an equivalent martingale measure, which is defined as
follows.

Definition 2.2.2. A probability measure Q on (Ω,F) is called equivalent mar-
tingale measure if it is equivalent to P (i.e. Q � P and P � Q) and S is
a (d-dimensional) martingale with respect to Q. The collection of equivalent
martingale measures is denoted by Me = Me(S).

Theorem 2.2.3 (Fundamental theorem of asset pricing I). There are no
arbitrage opportunities in this model if and only if there exists an equivalent
martingale measure.

Proof. Suppose first that there exists a martingale measure Q and let ϕ be a
self-financing portfolio whose value process V satisfies V0 = 0 and VT ≥ 0. Since
Ω is finite ϕ is bounded, hence V = V0 + ϕ · S is a Q-martingale (see Exercise
1). In particular, EQVT = EQV0 = 0, so VT = 0 with Q-probability one, but
then also P-almost surely.

Now assume that no arbitrage opportunities exist, so that K ∩ L∞+ =
{0}. Let A be the convex hull of the elements 1{ω1}, . . . , 1{ωn} in L∞. This
is a convex, compact subset of L∞, disjoint from K by assumption. Since the
latter is a linear subspace it is closed and convex, and hence we can apply the
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separating hyperplane theorem. This yields a vector q ∈ Rn and α, β ∈ R such
that

〈q, f〉 ≤ α < β ≤ 〈q, h〉 (2.2)

for all f ∈ K and h ∈ A. Since K is a linear space we can take α = 0 in this
display, i.e.

〈q, f〉 ≤ 0 < β ≤ 〈q, h〉

for all f ∈ K and h ∈ A (see Exercise 2). It follows that for every i we have
qi =

〈
q, 1{ωi}

〉
≥ β > 0, hence we can renormalize q such that it becomes a

vector of strictly positive probabilities adding up to 1. The last display then
remains true, but with β suitably normalized. The corresponding probability
measure Q, defined by Q({ωi}) = qi, is equivalent to P and satisfies EQf ≤ 0
for all f ∈ K. But since K is a linear space this implies that in fact EQf = 0
for all f ∈ K. By Exercise 3 if follows that S is a Q-martingale.

2.3 Single period versus multiperiod models

Recall our setting of a finite underlying probability space (Ω,F ,P) on which
we have a filtration (Ft)t=0,...,T and a d-dimensional adapted stochastic process
S = (S(1)

t , . . . , S
(d)
t )t=0,...,T describing the discounted asset prices. If T ≥ 2 this

is called a multiperiod model. It turns out that that absence of arbitrage in such
a model is equivalent to absence of arbitrage in all the single-period sub-models.

Theorem 2.3.1. There are no arbitrage opportunities in the full model if and
only if for every t, the one-period model (St, St+1), with respect to the filtration
(Ft,Ft+1), admits no arbitrage opportunities.

Proof. Suppose all the one-period models are free of arbitrage. Then by the
fundamental theorem there exist probability measures Qt on (Ω,Ft+1) such that
Qt is equivalent to P on Ft+1 and EQt(St+1 | Ft) = St. By the lemma following
the theorem we may assume that Qt|Ft

= P|Ft
. Now define the process L by

L0 = 1 and

Lt =
dQ0

dP
· · · dQt−1

dP
,

and define the measure Q by dQ = LT dP. Then Q ∈ Me (Exercise 4), hence
the full model is free of arbitrage by the fundamental theorem.

The following lemma applies to the general, multiperiod model, but in the
proof of the theorem it is applied only to single period models.

Lemma 2.3.2. Suppose there is no arbitrage. Let Q ∈ Me and define Zt =
EP(dQ/dP | Ft) and Lt = Zt/Z0. Then the measure Q∗ defined by dQ∗ = LT dP
belongs to Me and satisfies Q∗|F0 = P|F0 .
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Proof. Since Z is a martingale we have EP(ZT | Ft) = Zt for all t ≤ T . Hence
for A ∈ Ft and t ≤ T ,

Q(A) =
∫

A

ZT dP =
∫

A

Zt dP.

It follows that Zt = (dQ|Ft
)/(dP|Ft

). The fact that Q is equivalent to P now
implies that Zt > 0 for all t, and in particular that the process L is well defined.
Since Z is a positive P-martingale and Z0 is F0-measurable, L is a positive P-
martingale as well and therefore Q∗ is a probability measure equivalent to P.
The fact that S is a Q-martingale implies that SZ is a P-martingale (check!).
Since Z0 is F0-measurable, SL is a P-martingale as well. Using the fact that
Lt = (dQ∗|Ft

)/(dP|Ft
), we obtain that S is a Q∗-martingale (check!), hence

Q∗ ∈Me. Finally, the fact that L1 = 1 implies that Q∗|F0 = P|F0 .

2.4 Completeness

The FTAP does not say how many equivalent martingale measures there are in
the absence of arbitrage. We will see below that this is related to the notion of
completeness.

Definition 2.4.1. We call f ∈ L∞ attainable if f = a+(ϕ ·S)T for some a ∈ R
and predictable process ϕ. The model is called complete if every claim f ∈ L∞
is attainable.

So an attainable contingent claim f is a random pay-off at time T that can
be realized by following a self-financing strategy requiring some initial capital
a.

For the proof of the following theorem it is useful to introduce, in addition
to the set K, the set of random variables

C = {f ∈ L∞ : there exists a g ∈ K such that g ≥ f}.

This set is a cone1 containing K and it is easy to see that K ∩L∞+ = {0} if and
only if C ∩ L∞+ = {0} (see Exercise 5). Moreover, under no-arbitrage it holds
that K = C ∩ (−C) (Exercise 6).

Lemma 2.4.2. For any probability measure Q we have that S is a Q-martingale
if and only if EQg ≤ 0 for all g ∈ C.

1Recall that a subset C of a vector space is called a cone if for all x ∈ C and a ≥ 0, it
holds that ax ∈ C.
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Proof. Take g ∈ C, say g ≤ f for f ∈ K. Then if S is Q-martingale we have
EQf = 0 (see Exercise 1) and hence EQg ≤ 0.

If EQg ≤ 0 for all g ∈ C then for all f ∈ K it holds that EQf = 0, since
f ∈ C and −f ∈ C for f ∈ K. Hence, by Exercise 3, S is a Q-martingale.

Theorem 2.4.3. Assume there are no arbitrage opportunities. Then

K = {f ∈ L∞ : EQf = 0 for all Q ∈Me}.

Proof. The set C is convex and closed (see Exercise 7) and hence, by the
Bipolar Theorem, equals its own bipolar C00. Since C is closed under mul-
tiplication with positive scalars we have (see the appendix) C0 = {q ∈ Rn :
〈g, q〉 ≤ 0 for all g ∈ C}. Hence, by the Lemma preceding the theorem, the
collection Ma of probability measure Q such that S is a Q-martingale is con-
tained in C0, hence cone(Ma) ⊆ C0. By considering the elements −1{ωi} ∈ C
we see that every q ∈ C0 has nonnegative coordinates and hence is a nonnega-
tive multiple of a probability distribution. By the lemma again this probability
measure belongs to Ma. We conclude that cone(Ma) = C0. Now C0 is closed
under multiplication with positive scalars and hence C = C00 = {g ∈ Rn :
〈g, q〉 ≤ 0 for all q ∈ C0}. Combined with the preceding observations we obtain
C = {g ∈ Rn : EQg ≤ 0 for all Q ∈ Ma}. By Exercise 8 we have that Me is
dense in Ma and hence

C = {g ∈ Rn : EQg ≤ 0 for all Q ∈Me}. (2.3)

The proof is completed by using the fact that K = C ∩ (−C) (Exercise 9).

Corollary 2.4.4 (Completeness). Assume there are no arbitrage opportuni-
ties.

(i) The model is complete if and only if the equivalent martingale measure is
unique.

(ii) In case of completeness the representation f = a + f0 with a ∈ R and
f0 ∈ K of a claim f ∈ L∞ is unique.

Proof. (i). Suppose first that Me = {Q} and take f ∈ L∞. By Theorem 2.4.3
f − EQf ∈ K, hence f is attainable. Conversely, suppose we have Q1 6= Q2

in Me. Then there exists an f ∈ L∞ such that EQ1f 6= EQ2f . If this f were
attainable, there would exist an a ∈ R such that f − a ∈ K. By Theorem 2.4.3
this would imply that EQ1f = a = EQ2f , a contradiction.

(ii). Exercise 10.
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2.5 Change of numerair

Recall that in our model we have d + 1 traded assets and the processes
S(0), . . . , S(d) are the prices of these assets relative to the price of the 0-th asset,
the so-called numerair. Intuitively, absence or presence of arbitrage should not
depend on the choice of numerair. In this section we prove that this is indeed
the case.

Any asset with a strictly positive price at all times could be taken as a
numerair. More generally, we shall allow any self-financing portfolio of assets
with a strictly positive value at all times. Let ϕ be a predictable process and
consider the value process V = 1 + ϕ · S. Assume that almost surely Vt > 0
for all t. We can view this portfolio as a traded asset and use it to express the
value of our d+ 1 original assets. The new value process S̃ = (S̃(0), . . . , S̃(d)) is
given by

S̃(i) =
S(i)

V
, i = 0, . . . , d.

Theorem 2.5.1 (Change of numerair). Suppose the model S admits no
arbitrage opportunities. Then the model S̃ admits no arbitrage opportunities
either. It holds that Q ∈ Me(S) if and only the measure Q̃ defined by dQ̃ =
VT dQ belongs to Me(S̃).

Proof. We claim that that K(S̃) = V −1
T K(S). To see this, first observe that,

for every i,

∆S̃(i)
t =

1
Vt

(
∆S(i)

t − S̃
(i)
t−1∆Vt

)
.

It follows that for a given predictable process ψ, we have

(ψ · S̃)T =
∑

t

ft

Vt
,

with ft an Ft-measurable element of K(S), for every t. By the lemma following
the theorem it holds that ft/Vt = gt/VT for certain gt ∈ K(S). Hence, we have
the inclusion K(S̃) ⊆ V −1

T K(S). The converse inclusion follows by symmetry,
by considering the model S̃ and taking 1/V as numerair.

It now follows from the definition of arbitrage that the model S is free
of arbitrage if and only if this holds for S̃. To complete the proof, take an
equivalent probability measure Q. By Lemma 2.4.2 and Exercise 6 it holds that
Q ∈ Me(S) if and only if EQf = 0 for all f ∈ K(S). By the first part of the
proof, this holds if and only if EQVT f for all f ∈ K(S̃), which is the same as
saying that the measure Q̃ defined by dQ̃ = VT dQ belongs to Me(S̃).
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Lemma 2.5.2. For f an Ft-measurable element of K(S) and t ≤ T , it holds
that (VT /Vt)f ∈ K(S).

Proof. Observe that

VT

Vt
f = f +

T∑
s=t+1

f

Vt
∆Vs = f + (ψ · S)T ,

where
ψs =

f

Vt
ϕs1{s≥t+1}.

Since f is Ft-measurable the process ϕ is predictable, and it follows that
(VT /Vt)f ∈ K(S).

2.6 No-arbitrage pricing

Suppose that in our market we can buy the claim f ∈ L∞ at price a at time
t = 0. Then the collection of all claims that we can attain with 0 initial cost
changes from K to

Kf,a = span(K ∪ {f − a}).

In case of no-arbitrage it should hold, as before, that Kf,a ∩ L∞+ = {0}. This
leads us to the following definition.

Definition 2.6.1. We call a ∈ R an arbitrage free price for the claim f ∈ L∞
if Kf,a ∩ L∞+ = {0}.

Observe that if the claim f ∈ L∞ is attainable at price a, i.e. f − a ∈ K,
then Kf,a = K. In the absence of arbitrage we have K ∩ L∞+ = {0} and hence
in this case a is an arbitrage-free price for f . Moreover, any other value b 6= a
is not an arbitrage-free price for f (Exercise 11).

Theorem 2.6.2 (No-arbitrage pricing). Assume absence of arbitrage and
let f ∈ L∞. Define I = {EQf |Q ∈ Me}. The set I is the collection of all
arbitrage-free prices for f . Either I = {a}, in which case f is attainable at price
a, or I is a bounded, open interval, in which case f is not attainable.

Proof. Define

π(f) = inf{EQf |Q ∈Me}, π(f) = sup{EQf |Q ∈Me}.

Suppose π(f) = π(f) = a. Then by Theorem 2.4.3, f − a ∈ K, which
means that f is attainable at price a. Hence, by the remarks preceding the
theorem, a is the unique arbitrage-free price for f .
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Now assume π(f) < π(f). Since f is bounded and Me is convex, I =
{EQf |Q ∈ Me} is a bounded subinterval of R. Suppose a ∈ I. Then there
is a Q ∈ Me such that EQ(f − a) = 0. This implies that Kf,a ∩ L∞+ = {0}
(check). Hence, a is an arbitrage-free price for f . Conversely, suppose that
Kf,a ∩ L∞+ = {0}. Then by repeating the proof of Theorem 2.2.3 with Kf,a

in the place of K we find a Q ∈ Me such that EQg = 0 for all g ∈ Kf,a. In
particular, we see that EQ(f − a) = 0, hence a ∈ I. It remains to show that I
is an open interval. Set a = π(f), the right boundary point of I, and consider
the claim f − a. By definition we have EQ(f − a) ≤ 0 for all Q ∈ Me. Since
we have the representation (2.3) for the set C, it follows that f − a ∈ C. Hence
there exists a g ∈ K such that g ≥ f − a. Now suppose that a ∈ I. Then
there exists a Q∗ ∈ Me such that EQ∗f = a and hence EQ∗(g − (f − a)) = 0,
so that g = f − a. But this means that f − a ∈ K, i.e. f is attainable at price
a. Theorem 2.4.3 implies that I reduces to a singleton in that case, which leads
to a contradiction. We conclude that the right endpoint of I does not belong
to I. The left endpoint can be handled similarly (or by considering the claim
−f).

2.7 Example: binomial model

Consider a world with n time points, t = 0, . . . , n. In this world there exists a
bank where money can be deposited or borrowed at interest rate r > 0 and a
stock is traded. We denote the bank account process by B, so Bt = (1 + r)t.
The value X0 of the stock at time 0 equals 1 and given the stock has value Xt at
time t, the value Xt+1 at time t+ 1 equals uXt with probability p ∈ (0, 1) and
dXt with probability 1−p, respectively, where d < u are certain given numbers.
This model is called the binomial model.

Let us choose the bank account process B as numerair and denote the
discounted price processes by S(0) and S(1), so S(0) ≡ 1 and S(1)

t = Xt/Bt. Then
under the objective probability measure P described above we have S(1)

0 = 1
and given S(1)

t we have that S(1)
t+1 equals (u/(1 + r))S(1)

t with probability p and
(d/(1 + r))S(1)

t with probability 1− p.
We want to investigate the existence of arbitrage opportunities in this

model. According to Theorem 2.3.1, it suffices to consider the one-period model
we studied in Chapter 1. Proposition 1.0.1 (applied with d/(1 + r) in the place
of d and u/(1 + r) in the place of u) then implies that the binomial model is
free of arbitrage if and only if d < 1 + r < u. The considerations following
Proposition 1.0.1 show that the one-period model admits a unique martingale
measure, described by changing the probability with which the stock moves up
from p to q = (1 + r − d)/(u − d). This implies that the full, multi-period
model also admits only one martingale measure Q. Hence, by Corollary 2.4.4,
the model is complete.

In this complete model every claim f ∈ L∞ is attainable and by Theorem
2.6.2 its arbitrage-free price is given by the expectation of f under the martingale
measure. Recall that all of this is still relative to the chosen numerair, the bank
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account process B. Hence, a claim f should be interpreted as a pay-off of at
time T of f units of the bank account process. In ordinary money terms, this
is a pay-off of fBT = f(1 + r)T euros at time T . At time 0 this has the value
of EQf units of the bank account process. But B0 equals one euro, and hence
a pay-off of f(1 + r)T euros at time T is worth EQf euros at time 0. In other
words, a pay-off of f euros at time T is worth EQ(1 + r)−T f euros at time 0.

Putting this together we obtain the following result.

Proposition 2.7.1. The binomial model is free of arbitrage if and only d <
1 + r < u. In this case the model is complete and the arbitrage-free value at
time 0 of a claim paying f ∈ L∞ euros at time T is EQ(1 + r)−T f , where Q
is the probability measure obtained by changing the probability with which the
stock price moves up from p to q = (1 + r − d)/(u− d).
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2.8 Exercises

1. If S is a (multi-dimensional) martingale and ϕ is a (multi-dimensional)
bounded, predictable process, then ϕ · S is a martingale.

2. In the proof of Theorem 2.2.3, show that the fact that K is a linear space
implies that we can take α = 0 in (2.2).

3. If EQ(ϕ · S)T = 0 for every bounded, predictable process ϕ, then S is a
Q-martingale.

4. In the proof of Theorem 2.3.1, show that Q ∈Me.

5. Show that K ∩ L∞+ = {0} if and only if C ∩ L∞+ = {0}.

6. Show that under no-arbitrage, K = C ∩ (−C).

7. Let K be a linear subspace of Rn and L+ = {x ∈ Rn : x1 ≥ 0, . . . , xn ≥ 0}.

(a) For v1, . . . , vm ∈ Rn, show that the convex cone C = {
∑
civi : c1 ≥

0, . . . , cm ≥ 0} is closed. (Hint: Write C = {ax : a ≥ 0, x ∈ H},
where H = {

∑
civi : c1 ≥ 0, . . . , cm ≥ 0,

∑
ci = 1} is the convex hull

of the vi, and first prove that H is compact.)

(b) Show thatK+L+ is closed. (Hint: Say dim(K) = k and let f1, . . . , fn

be an orthonormal basis of Rn such that f1, . . . , fk is an orthonormal
basis of K. Using (a), show that the coordinates of the points of
K + L+ relative to this basis form a closed subset of Rn.)

8. Show that under no-arbitrage, Me is dense in Ma. (Here we identify
probability measures on Ω with points in Rn again.)

9. Supply the details of the last part of the proof of Theorem 2.4.3.

10. Prove Corollary 2.4.4.(ii).

11. Assume absence of arbitrage. Show that for a claim f ∈ L∞ that is
attainable at price a, the value a is the unique arbitrage-free price.

12. Consider a one-period model with a bank with zero interest and a stock
which has value 1 at time 0 and value s1, s2 or s3, respectively, at time
1, with probabilities p1, p2 or p3, respectively. Assume that s1 > s2 > s3
and the pi’s are non-zero and add up to 1.

(i) Give conditions on the values s1, s2, s3 characterizing absence of ar-
bitrage.

(ii) In case of absence of arbitrage, investigate whether the model is com-
plete or not.
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The Kreps-Yan theorem

3.1 Description of the model

Let S = (St)t∈[0,T ] be a (d + 1)-dimensional, cadlag, adapted, locally bounded
stochastic process, with T > 0 a fixed time horizon, defined on a probability
space (Ω,F ,P) endowed with a filtration (Ft)t∈[0,T ] satisfying the usual condi-
tions. As in the preceding chapter, we think of S = (S(0), . . . , S(d)) as describing
the value of d+1 financial assets, expressed relative to a chosen numerair, which
is the 0-th asset. In particular, we assume that S(0) ≡ 1.

By the classical theorems on regularity of continuous-time martingales, the
usual conditions on the filtration imply that (local) martingales have a cadlag
modification. Since the basic theorems of martingale theory are valid for right-
continuous martingales, the usual conditions ensure that we may apply the
classical theorems to the martingales that we encounter.

Observe that our setup includes the discrete-time case, simply take the
process S (and the filtration) to be constant on the intervals [t − 1, t) for inte-
gers t. If the underlying probability space is finite the process S is necessarily
uniformly bounded, and hence the present setup includes the setting of the
preceding chapter.

A first important question is which trading strategies we want to allow in
this model. At the very least we shall allow strategies in which the asset portfolio
is only rebalanced at a finite number of stopping times, in a predictable manner.

Definition 3.1.1. A d-dimensional process ϕ is called a simple trading strategy
if it is of the form

ϕt =
n∑

i=1

ϕi1(τi−1,τi](t),

where 0 = τ0 ≤ · · · ≤ τn ≤ T are finite stopping times and the ϕi are d-
dimensional, Fτi−1-measurable random variables.

The strategy is called admissible if, in addition, the stopped process Sτn

and the random variables ϕ1, . . . , ϕn are uniformly bounded.
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The interpretation of the definition is clear: ϕ(j)
i is the number of assets of

type j in the portfolio between times τi−1 and τi. As in the preceding chapter
we define the stochastic process ϕ · S by

(ϕ · S)t =
n∑

i=1

〈
ϕi, Sτi∧t − Sτi−1∧t

〉
, t ∈ [0, T ].

As before, ϕ · S should be interpreted as the value process of a self-financing
portfolio starting with 0 initial capital and following the trading strategy ϕ,
the adjustments of the positions in assets 1 to d being financed by taking the
appropriate amount from the “bank account”, modelled by the numerair asset
0.

Our first notion of no-arbitrage in this setting is the requirement that we
can not make a risk-free profit by following a simple, admissible strategy. We
proceed analogously to the finite case and first define the space

Ks = {(ϕ · S)T |ϕ simple, admissible}

of pay-offs that can be achieved with 0 initial capital, following a simple, ad-
missible self-financing trading strategy.

Definition 3.1.2. We say that S satisfies the condition of no-arbitrage with
simple strategies if Ks ∩ L∞+ (Ω,F ,P) = {0}.

A sufficient condition for the absence of arbitrage with simple strategies
is the existence of a so-called equivalent local martingale measure. This is, by
definition, a probability measure Q equivalent to the objective measure P such
that S is a local martingale under Q.

Proposition 3.1.3. If there exists an equivalent local martingale measure, S
admits no arbitrage with simple strategies.

Proof. Let Q be an equivalent local martingale measure. We first show that
for every simple, admissible strategy ϕ it holds that

EQ(ϕ · S)T = 0.

By Definition 3.1.1 it suffices to show that if 0 ≤ σ ≤ τ ≤ T are stopping times
such that Sτ is bounded and X is a bounded, d-dimensional, Fσ-measurable
random variable, then

EQ 〈X,Sτ − Sσ〉 = 0.

This can be derived from the optional stopping theorem (Exercise 1).
Now suppose we have f ∈ Ks, f ≥ 0, say f = (ϕ · S)T for a simple,

admissible ϕ. Then by the first part of the proof we have EQf = 0. Since f is
nonnegative it follows that f vanishes Q-a.s. and hence also P-a.s., since P and
Q are equivalent.
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The converse of this proposition is, unfortunately, not true. To have the
existence of a (local) martingale measure in this general continuous-time setting,
the absence of simple arbitrages is not strong enough.

Example 3.1.4. Consider a process S = (St)t∈[0,1] with S0 = 1 and that is
constant except for jumps at times tn = 1 − (n + 1)−1 for n = 1, 2, . . .. At
time tn the process S has a jump of magnitude 3−nZn, where Z1, Z2, . . . are
independent random variables with P(Zn = 1) = 1−P(Zn = −1) = 1/2+εn for
certain numbers εn ∈ (−1/2, 1/2). Since the process S is uniformly bounded,
it is a martingale under a measure Q if it local martingale (check!). But there
is only one probability measure under which S is a martingale, namely the
measure Q under which Q(Zn = 1) = 1 − Q(Zn = −1) = 1/2. Hence, by
Example B.2.4, there exists no equivalent local martingale measure if we choose
the εn such that

∑
ε2n = ∞. However, this model does satisfy the condition of

no-arbitrage with simple strategies. To see that, first observe that if a there is
a simple admissible arbitrage strategy, then there is simple arbitrage strategy
of the form ϕ = h1(σ,τ ], for stopping times σ ≤ τ ≤ 1 and a bounded Fσ-
measurable random variable h (Exercise 2). Moreover, we only have to consider
stopping times that take values in the collection of tn’s. Such a strategy has pay-
off V = h(Sτ −Sσ). Now observe that on the event An = {σ = tn−1, τ ≥ tn} we
have sign(Sτ − Sσ) = sign(Zn) = Zn, so sign(V ) = sign(h)Zn. By assumption
sign(V ) ≥ 0, so we get that

sign(h)1An
Zn ≥ 0.

Note that An ∈ Ftn−1 and hence, by definition of Fσ, sign(h)1An
is Ftn−1-

measurable. So sign(h)1An
and Zn are independent and in view of the preceding

display, it follows that sign(h)1An
= 0 a.s. (check) . Hence h = 0 on every event

An and therefore h = 0 on the event {τ > σ} = ∪nAn. �

3.2 Kreps-Yan theorem

As in Chapter 2 we can introduce the cone

Cs = {f ∈ L∞(Ω,F ,P) : there exists a g ∈ Ks such that g ≥ f}.

Then (see Exercise 5 of Chapter 2) no-arbitrage with simple integrands is equiv-
alent to Cs ∩ L∞+ (Ω,F ,P) = {0}. In the preceding section we remarked that
this condition is not strong enough to guarantee the existence of an equivalent
martingale measure. It turns out we have to replace the cone Cs by its closure
C with respect to the weak∗-topology on L∞(Ω,F ,P), the latter space viewed
as the dual of L1(Ω,F ,P).

Definition 3.2.1. We say that S satisfies the condition of no free lunch if
C ∩ L∞+ (Ω,F ,P) = {0}.
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Clearly this condition is stronger than the condition of no-arbitrage with
simple strategies. It gives us the following version of the fundamental theorem
of asset pricing.

Theorem 3.2.2 (Fundamental theorem of asset pricing II). The process
S satisfies the condition of no free lunch if and only if there exists an equivalent
local martingale measure.

Proof. Suppose first that there exists an equivalent local martingale measure Q.
Then by the first part of the proof of Proposition 3.1.3 it holds that EQf ≤ 0 for
all f ∈ Cs. Since the map f 7→ EQf is weak∗-continuous (check), the inequality
EQf ≤ 0 holds in fact for every f ∈ C. It follows that if f ∈ C, f ≥ 0, then
EQf = 0, so that f vanishes Q-a.s. and hence also P-a.s..

Now suppose that S satisfies the condition of no free lunch. For δ ∈ (0, 1),
define Bδ = {f ∈ L∞ : 0 ≤ f ≤ 1, Ef ≥ δ}. The set Bδ is a weak∗-closed
subset of the unit ball of L∞, the latter space viewed as dual of L1 (Exercise
4). Hence, by Alaoglu’s theorem it is weak∗-compact. Clearly, it is also convex.
By the separation theorem there exists a gδ ∈ L1 and α, β ∈ R such that

sup
f∈C

Egδf ≤ α < β ≤ inf
h∈Bδ

Egδh.

Since 0 ∈ C we have α ≥ 0. Since C is a cone, it follows that Egδf ≤ 0 for all
f ∈ C, hence

sup
f∈C

Egδf ≤ 0 < inf
h∈Bδ

Egδh.

Since C contains all negative functions in L∞ we have gδ ≥ 0 a.s.. Also observe
that 1 ∈ Bδ, so that Egδ > 0, and therefore gδ does not vanish almost surely.
We renormalize gδ such that Egδ = 1.

For every positive integer n we now define the probability measure Qn

by dQn = g2−n dP and Q =
∑
anQn, for a sequence an of positive numbers

such that
∑
an = 1. Note that if P(A) > 2−n then 1A ∈ B2−n and hence

Qn(A) > 0. It follows that P is absolutely continuous with respect to Q (check).
The fact that Q is absolutely continuous relative to P is immediate, and hence
P and Q are equivalent. To complete the proof observe that if f ∈ C, then
EQf =

∑
anEQn

f =
∑
anEg2−nf ≤ 0. This implies that S is a local martingale

under Q (Exercise 3).

3.3 Discussion

We saw in this chapter that in the general continuous-time setting, absence of
arbitrage with simple strategies is not sufficient for the existence of a (local)
martingale measure. The collection of pay-offs that can be attained with simple
strategies is somehow to small, and it turned out to be necessary to take the
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weak∗-closure of this set. While this is completely satisfactory from a mathe-
matical point of view, we should observe that it destroys the economic meaning
of Theorem 3.2.2. Since taking the weak∗-closure is not a very intuitive oper-
ation, the weak∗-closure of a collection of pay-offs of simple strategies is not
a set that can for instance be interpreted as a collection of pay-offs of “more
complex” strategies.

To obtain an economically meaningful result, we would prefer to replace
the weak∗-topology by a stronger, more intuitive one. It turns out that this
is possible if we are willing to restrict ourselves to asset prices that are semi-
martingales. Then the class of simple strategies can be enlarged in a natural
way, using the theory of integration with respect to semimartingales. Taking
the closure with respect to weak∗-topology can then be replaced by taking the
closure in the norm-topology of L∞, which is much more satisfactory from the
economic perspective.
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3.4 Exercises

1. Complete the first part of the proof of Proposition 3.1.3.

2. Show that if there exists a simple arbitrage strategy, there also exists an
arbitrage strategy of the form ϕ = h1(σ,τ ] with σ ≤ τ ≤ 1 stopping times
and h a bounded, Fσ-measurable random variable. (Hint: use induction
on the number of stopping times in the given simple strategy.)

3. Show that if the equivalent measure Q satisfies EQf ≤ 0 for all f ∈ C,
then it is an equivalent local martingale measure.

4. Show that the set Bδ defined in the proof of Theorem 3.2.2 is a weak∗-
closed subset of the unit ball of (L1)∗.
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The general theorem

4.1 Preliminaries on stochastic integration

In this chapter we will assume that the asset price process S is a one-dimensional
semimartingale, defined on some filtered probability space (Ω,F , (Ft),P) satis-
fying the usual conditions. We will consider all processes on a finite time interval
[0, T ], with the time horizon T > 0 fixed. As before, S is interpreted as the value
of an asset relative to a numerair asset, the numerair asset itself has the constant
value 1.

We will interpret a predictable process ϕ as a trading strategy, ϕt denoting
the number of non-numerair assets that we hold at time t. If ϕ is a simple
process of the form

ϕ =
∑

ϕi1(ti−1,ti](t),

for 0 = t0 < · · · < tn = T a deterministic partition of [0, T ] and ϕi bounded
and Fti−1-measurable, then, as explained in Chapter 2, the process

(ϕ · S)t =
∑

ϕi(Sti∧t − Sti−1∧t), t ∈ [0, T ],

can be interpreted as the value process of a self-financing portfolio starting with
0 initial capital and following the trading strategy ϕ, the adjustments of the
position of the non-numerair assets being financed by taking the appropriate
amount from the “bank account”, modelled by the numerair asset.

As the notation suggests, ϕ · S is exactly the stochastic integral process
of the locally bounded, predictable process ϕ relative to the semimartingale
S. Hence, using stochastic integration theory we can now go beyond simple
strategies. However, to retain an economically meaningful theory we have to
verify that for non-simple predictable processes, ϕ · S can still be interpreted
as the value process associated to the trading strategy ϕ. Since we are now
considering strategies that can involve continuous trading, we should consider
approximations to make this precise. For a fine enough partition 0 = t0 < · · · <
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tn = T of [0, T ], the strategy ϕ is well approximated by the simple strategy∑
ϕti−11(ti−1,ti] and the value process associated to this simple strategy equals∑

ϕti−1(Sti∧· − Sti−1∧·).

Hence, we want the latter process to be a good approximation of the integral
process ϕ · S. Thanks to the continuity property of the stochastic integral this
is indeed the case.

Lemma 4.1.1. Let ϕ be a left-continuous process. Then if 0 = tn0 < · · · <
tnkn

= T is a sequence of partitions of [0, T ] with mesh tending to 0, we have

sup
t∈[0,T ]

∣∣∣ ∑
ϕtn

i−1
(Stn

i ∧t − Stn
i−1∧t)− (ϕ · S)t

∣∣∣ P→ 0.

Proof. For every n, define the process ϕn by

ϕn =
∑

ϕtn
i−1

1(tn
i−1,tn

i ].

Then ϕn is left-continuous and adapted, hence locally bounded and predictable.
Since ϕ is left-continuous it holds that ϕn → ϕ on [0, T ]× Ω, and we have

|ϕn
t | ≤ sup

s≤t
|ϕs|.

The process on the right-hand side of the display is adapted and left-continuous,
hence predictable and locally bounded (cf. Exercise 5.53 in Van der Vaart’s
notes). The conclusion of the lemma now follows from Lemma 5.52 of Van der
Vaart’s notes.

Unfortunately, the definition of the stochastic integral of locally bounded
predictable processes with respect to semimartingales is still not general enough
for the next version of the FTAP. To extend the integral we first endow the
space of semimartingales with a topology. We denote by S(P) the space of all
P-semimartingales on our fixed filtered probability space. For X ∈ S(P) we
define

‖X‖S(P) = sup
|H|≤1

E(|(H ·X)T | ∧ 1),

where the supremum is over all predictable processes H that are uniformly
bounded by 1. It is easy to see that ‖ · ‖S(P) satisfies the triangle inequality
(check). It follows that we can define a metric d on S(P) by setting d(X,Y ) =
‖X − Y ‖S(P). The topology that this metric generates on S(P) is called the
semimartingale topology. Observe that Xn → X in this topology if and only if

(H ·Xn)T
P→ (H ·X)T

for all uniformly bounded predictable processes H (Exercise 1).
We can now use the semimartingale topology to extend the definition of

the stochastic integral. For a predictable process H and a positive integer n the
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process H1{|H|≤n} is bounded and predictable. Hence if X is a semimartingale
the stochastic integral process H1{|H|≤n} · X is well defined in the sense of
integration of locally bounded predictable processes (see for instance Van der
Vaart’s notes). If X ∈ S(P), the sequence of processes H1{|H|≤n} ·X belongs to
S(P) as well. If the sequence has a limit in S(P) (relative to the semimartingale
topology) we say that H is X-integrable and we denote the limit semimartingale
by H ·X. Observe that by Lemma 5.52 of Van der Vaart, the new definition of
H ·X coincides with the old one if H is locally bounded (check).

Since the FTAP involves changes of measure, it is useful to investigate how
stochastic integrals depend on the underlying probability measure. We write
(H ·X)P if we want to emphasize the dependence of the integral process on P.
For a simple predictable process it is clear that the stochastic integral does not
depend on the underlying measure at all. Now let H be a nonnegative, bounded,
predictable process and X a P-semimartingale and let Q be equivalent to P.
A general version of Girsanov’s theorem says that for equivalent probability
measures P and Q, the spaces S(P) and S(Q) of P- and Q-semimartingales
coincide, hence X is a Q-semimartingale as well. Now by standard measure
theory there exist a sequence of Hn of simple predictable processes, independent
of P, such that Hn ↑ H on [0,∞) × Ω. By Lemma 5.52 of Van der Vaart we
have that

(Hn ·X)t
P→ (H ·X)P

t

for all t ≥ 0. Hence, there exists a sequence kn → ∞ such that (Hkn · X)t →
(H · X)P

t , P-a.s.. Repeating the argument with Q instead of P we see that kn

has a further subsequence ln such that (Hln · X)t → (H · X)Q
t , Q-a.s.. But

P and Q are equivalent, so (H · X)P
t = (H · X)Q

t almost surely (relative to P
or Q). We conclude that for bounded predictable H and P and Q equivalent,
(H ·X)P and (H ·X)Q are indistinguishable. It can be shown that if P and Q
are equivalent, the semimartingale topologies induced on S(P) = S(Q) by P and
Q coincide. For a predictable process H we just observed that H1{|H|≤n} · X
does not depend on the probability measure. It follows that whether or not
a predictable process H is X-integrable only depends on the equivalence class
of the underlying probability measure P, and the same holds for the integral
processes H ·X.

Some care should be taken with integrands that are not locally bounded.
For the extended integral it is for instance no longer true that the integral with
respect to a local martingale is again a local martingale.

Example 4.1.2. Suppose we have a standard exponential random variable τ
and, independent of τ , a standard Bernoulli variable B, i.e. P(B = −1) = P(B =
1) = 1/2. Define the process M by Mt = B1{t≥τ}. Then M is a martingale
relative to its natural filtration (Ft) (Exercise 3). Now define the deterministic
process H by Ht = 1/t for t > 0. Then it holds that

(H1{|H|≤n} ·M)t =


0, t < τ

B

τ
1{τ≥1/n}, t ≥ τ.

It follows that H1{|H|≤n} ·M converges in the semimartingale topology to the
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process X given by

Xt =


0, t < τ

B

τ
, t ≥ τ,

and X = H ·M by definition (check!). Observe however that

E|Xt| = E
1
τ

1{t≥τ} =
∫ t

0

1
x
e−x dx = ∞,

hence X is not a martingale. It can be shown that X is not a local martingale
either (Exercise 4). �

4.2 No free lunch with vanishing risk and the FTAP

Replacing the general asset price process of the preceding chapter by a semi-
martingale will allow us to replace the economically meaningless condition of
no free lunch by the condition of no free lunch with vanishing risk.

As discussed in the preceding section, we think of a predictable process
as describing a self-financing trading strategy. We will assume that a trader
has a finite credit line, in the sense that her wealth always stays above some
deterministic (but possibly very negative) number. This is formalized by the
following definition.

Definition 4.2.1. An a-admissible strategy is an S-integrable predictable pro-
cess ϕ that satisfies (ϕ ·S) ≥ −a. An admissible strategy is a predictable process
that is a-admissible for some a > 0.

In order to formulate the condition of no free lunch with vanishing risk we
introduce the sets

K = {(ϕ · S)T : ϕ admissible},

which is a convex cone in the space L0 of finite-valued random variables (it is
not a linear space in general, since admissibility is a one-sided restriction), and
C = {f ∈ L∞ : there exists a g ∈ K such that g ≥ f}. By C we denote in this
chapter the closure of C with respect to the norm-topology of L∞.

Definition 4.2.2. We say that S satisfies the condition of no free lunch with
vanishing risk if C ∩ L∞+ = {0}.

Observe that this condition has a clear economic interpretation. If S does
not satisfy the condition, there exists for every small enough ε > 0 an admissible
strategy ϕ (depending on ε) such that for the pay-off we have (ϕ ·S)T > −ε and
P((ϕ · S)T > 0) > 0 (Exercise 2). Hence, if we are willing to take an arbitrarily
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small, but positive loss, we have a positive probability of receiving a strictly
positive pay-off.

We can now formulate the following version of the fundamental theorem of
asset pricing. The proof is discussed in the next section.

Theorem 4.2.3 (FTAP IIIa). If S = (St)t∈[0,T ] is a bounded, real-valued
semimartingale, then there exists an equivalent martingale measure if and only
if S satisfies the condition of no free lunch with vanishing risk.

If S is only locally bounded, the martingale measure has to be replaced by
a local martingale measure.

Corollary 4.2.4 (FTAP IIIb). If S = (St)t∈[0,T ] is a locally bounded, real-
valued semimartingale, then there exists an equivalent local martingale measure
if and only if S satisfies the condition of no free lunch with vanishing risk.

Proof. The sufficiency of no free lunch with vanishing risk follows from the
preceding theorem. Indeed, suppose it holds and let τn ↑ ∞ be stopping times
such that |Sτn | ≤ Kn, with Kn deterministic numbers. Define the new process
S̃ by

S̃ = S1[0,τ1] +
∑
n≥2

2−n 1
Kn

1(τn−1,τn] · S.

Then S̃ is a bounded semimartingale. Moreover, it satisfies the condition of no
free lunch with vanishing risk (Exercise 5). Hence, by the theorem, there exists
an equivalent probability measure Q such that S̃ is a Q-martingale. But then
the original process S is a Q-local martingale (Exercise 6).

The converse statement is proved as in Theorem 4.2.3, see the next section.

4.3 Sketch of proof of the fundamental theorem

4.3.1 The relatively easy half

We noted above that if M is a local martingale and H is M -integrable, then
H · M is not necessarily a local martingale anymore. The proof of the fact
that the existence of a martingale measure is sufficient for no free lunch with
vanishing risk uses a characterization of the martingality of H ·M . To explain
this characterization it is useful to first note that a local martingale M is in
fact locally uniformly integrable. Indeed, let τn be a localizing sequence for M ,
i.e. τn ↑ ∞ a.s. and every Mτn is a martingale. Then σn = τn ∧ n also satisfies
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σn ↑ ∞ a.s. and every Mσn is a uniformly integrable martingale. Moreover, if
we now consider the stopping time πn = σn ∧ inf{t : |Mt| > n} we have that

sup
t≤πn

|Mt| ≤ n+ |Mπn
|.

Since πn ≤ σn and Mσn is UI, the right-hand side of the display is integrable.
So we have proved the following useful lemma.

Lemma 4.3.1. A local martingale M is locally uniformly integrable. Moreover,
there exists a localizing sequence τn such that

E sup
t≤τn

|Mt| <∞

for all n.

Now consider a local martingale M and an M -integrable predictable pro-
cess H and suppose that H · M is a local martingale. For a localizing se-
quence τn such that E supt≤τn

|(H ·M)t| < ∞ we have supt |∆(H ·M)τn
t | ≤

2 supt≤τn
|(H ·M)t|, so ∆(H ·M)τn ≥ Zn, where Zn = −2 supt≤τn

|(H ·M)t|.
So we see that there exists a localizing sequence τn and integrable random vari-
ables Zn such that ∆(H ·M)τn ≥ Zn for all n. It turns out that the converse is
true as well.

Theorem 4.3.2. Let M be a local martingale and H a predictable processes
that is M -integrable. Then H · M is a local martingale if and only if there
exists a localizing sequence τn and integrable random variables Zn such that
∆(H ·M)τn ≥ Zn for all n.

We can now prove that the existence of an equivalent martingale measure
implies there is no free lunch with vanishing risk. Suppose there exists an
equivalent martingale measure Q and let ϕ be an a-admissible strategy. By the
observations in the preceding section the integral process ϕ ·S does not depend
on the underlying measure. Under Q the process S is a local martingale. Now
consider the stopping times τn = inf{t : (ϕ · S)t ≥ n}. Then τn ↑ ∞ and by the
admissibility of ϕ we have

∆(ϕ · S)τn
t = (ϕ · S)τn

t − (ϕ · S)τn
t− ≥ −(n+ a).

Hence, by the preceding theorem, ϕ · S is a Q-local martingale. Together with
the a-admissibility this implies that ϕ·S is in fact a Q-supermartingale (Exercise
7). It follows that for every f ∈ C we have EQf ≤ 0 and then also EQf ≤ 0 for
every f ∈ C. This implies that every f ∈ C ∩L∞+ vanishes Q-a.s., but then also
P-a.s..
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4.3.2 The much more difficult half

The essential step in the proof of the fact that no free lunch with vanishing risk
is sufficient for the existence of a martingale measure is the following theorem.

Theorem 4.3.3. If the bounded semimartingale S satisfies the condition of no
free lunch with vanishing risk, then the cone C is weak∗-closed.

Indeed, if we have this result we can argue as in the proof of Theorem
3.2.2 to find a probability measure Q equivalent to P such that EQf ≤ 0 for all
f ∈ C. It then follows that EQf = 0 for all f ∈ K. Since S is bounded it is
integrable. Moreover, for s ≤ t and A ∈ Fs the predictable process ϕ = 1A×(s,t]

is admissible, so (ϕ · S)T ∈ K and hence

EQ1A(St − St) = EQ(ϕ · S)T = 0,

which shows that S is a Q-martingale.
The proof of Theorem 4.3.3 is long and difficult. The first difficulty that

arises is that the weak∗-topology is in general not metrizable. This implies
that to show that a set is weak∗-closed, it is in general not enough to consider
converging sequences (in fact, one should consider nets). However, it turns out
that in the present context the situation is not that complicated, since we can
use the following consequence of the so-called Krein-Smulian theorem.

Theorem 4.3.4. Let (E, E , µ) be a finite measure space and C ⊆ L∞(µ) a
convex cone. Suppose that for each uniformly bounded sequence fn in C that
converges in measure to a function f , it holds that f ∈ C. Then C is weak∗-
closed.

So to prove Theorem 4.3.3 it suffices to consider a sequence hn in C such
that |hn| ≤ 1 for all n and hn

as→ h for some h ∈ L∞, and show that h belongs
to C. To prove that h ∈ C we have to find an f0 ∈ K such that h ≤ f0. To
that end it turns out to be useful to consider the set

D = {f : there exist 1-admissible ϕn such that (ϕn · S)T
as→ f, f ≥ h}.

It can be shown that this set contains a maximal element f0. So the random
variable f0 dominates h and is the almost sure limit of elements (ϕn ·S)T of K,
ϕn 1-admissible.

The remaining task is to show that f0 belongs to K itself. The first step is
the observation that convergence of ϕn ·S at the terminal time T in fact implies
convergence for all time points. To see this one first shows that as n,m→∞,

sup
t∈[0,T ]

|(ϕn · S)t − (ϕm · S)t|
P→ 0. (4.1)

The proof of this fact uses the 1-admissibility of the ϕn and the maximality
of f0. Next we want to apply some results on the semimartingale topology,
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but the preceding display does not imply that ϕn · S is a Cauchy sequence in
the semimartingale topology. A long and technical proof however shows that
for every n there exits a ψn in the convex hull of the processes ϕn, ϕn+1, . . .
such that ψn · S is a Cauchy sequence in the semimartingale topology. The
semimartingale topology can be shown to be complete, so that we now have
ψn · S → Z for some semimartingale Z. Moreover, Mémin’s theorem shows
that the semimartingale Z must necessarily be of the form Z = ψ · S for some
S-integrable predictable process ψ.

Observe that since ψn is a convex combination of ϕn, ϕn+1, . . ., the process
ψn is 1-admissible. Since the convergence in the semimartingale topology implies
that

(ψn · S)t
P→ (ψ · S)t

for all t ∈ [0, T ], it follows that ψ is 1-admissible as well. The fact that ψn is
a convex combination of ϕn, ϕn+1, . . . also implies that the almost sure limit of
(ψn · S)T equals the almost sure limit of (ϕn · S)T , which is f0 (Exercise 8).
Combined with the previous observations we conclude that f0 = (ψ · S)T , so
indeed f0 ∈ K.

4.4 Example: Itô processes

Suppose we have, on some filtered probability space (Ω,F , (Ft),P) satisfying
the usual conditions, continuous adapted processes B and X satisfying

Bt = exp
( ∫ t

0

rs ds
)
,

dXt = µtXt dt+ σtXt dWt,

where W is a standard Brownian motion and r, µ and σ are locally bounded
predictable processes. All processes are indexed by [0, T ] for some fixed time
horizon T > 0. We think of B as describing a bank account process with
(continuous, stochastic) interest rate rt, and X as describing the value of a
stock with local return rate µt and (possibly stochastic) volatility σt.

We use B as numerair, putting S = X/B. Integration by parts then gives
the stochastic differential equation

dSt = (µt − rt)St dt+ σtSt dWt

for the discounted process S (check). Now suppose that the Sharp ratio

θt =
µt − rt
σt

is uniformly bounded by a deterministic constant for all t ∈ [0, T ]. Then by the
classical Girsanov theorem, there exists a probability measure Q equivalent to
P under which the process

Bt = Wt +
∫ t

0

θs ds, t ∈ [0, T ],
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is a Brownian motion. Combining the definition of B with the SDE for S we
get

dSt = σtSt dBt.

In particular, we see that S is a Q-local martingale. Hence, by Corollary 4.2.4,
this model satisfies the condition of no free lunch with vanishing risk.

Observe that the classical Black-Scholes model corresponds to the special
case that r, µ and σ are deterministic and independent of time. The condition
on the Sharp ratio is then trivially satisfied, so we recover the well-known fact
that the Black-Scholes model is free of arbitrage (in the sense of no free lunch
with vanishing risk).
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4.5 Exercises

1. Show that Xn
P→ X if and only if E(|Xn −X| ∧ 1) → 0.

2. Show that if S does not satisfy the condition of no free lunch with vanishing
risk, there exists for every ε > 0 small enough an admissible strategy ϕε

with a pay-off satisfying (ϕε · S)T > −ε and P((ϕε · S)T > 0) > 0.

3. Show that the process M defined in Example 4.1.2 is a martingale.

4. Show that the process X in Example 4.1.2 is not a local martingale.

5. Show that the process S̃ in the proof of Corollary 4.2.4 satisfies the con-
dition of no free lunch with vanishing risk.

6. Show that the process S in the proof of Corollary 4.2.4 is a Q-local mar-
tingale.

7. Show that a local martingale that is bounded from below by a determin-
istic number is a supermartingale.

8. Show that in Section 4.3.2, we have the a.s. convergence (ψn · S)T → f0.



A

Elements of functional
analysis

A.1 Separating hyperplane theorem

Let v ∈ Rn and γ ∈ R be given and consider the set H = {x ∈ Rn : 〈v, x〉 = γ}.
For x ∈ H we have 〈

v, x− (γ/‖v‖2)v
〉

= 0,

so H = v⊥ + (γ/‖v‖2)v. The complement of H consists of the two sets {x :
〈v, x〉 < γ} and {x : 〈v, x〉 > γ} on the two “sides” of the hyperplane.

The following theorem says that for two disjoint, convex sets, one compact
and one closed, there exists two “parallel” hyperplanes such that the sets lie
strictly one different sides of those hyperplanes.

The assumption that one of the sets is compact can not be dropped (see
Exercise 1)

Theorem A.1.1 (Separating hyperplane theorem). Let K and C be dis-
joint, convex subsets of Rn, K compact and C closed. There exist v ∈ Rn and
γ1, γ2 ∈ R such that

〈v, x〉 < γ1 < γ2 < 〈v, y〉
for all x ∈ K and y ∈ C.

Proof. Consider the function f : K → R defined by f(x) = inf{‖x − y‖ : y ∈
C}, i.e. f(x) is the distance of x to C. The function f is continuous (check) and
since K is compact, there exists x0 ∈ K such that f attains its minimum at x0.
Let yn ∈ C be such that ‖x0 − yn‖ → f(x0). By the parallelogram law we have∥∥∥yn − ym

2

∥∥∥2

=
∥∥∥yn − x0

2
− ym − x0

2

∥∥∥2

= 1
2‖yn − x0‖2 + 1

2‖ym − x0‖2 −
∥∥∥yn + ym

2
− x0

∥∥∥2

.
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By convexity (yn + ym)/2 ∈ C, so that ‖(yn + ym)/2− x0‖ ≥ f(x0). Hence, we
have ∥∥∥yn − ym

2

∥∥∥2

≤ 1
2‖yn − x0‖2 + 1

2‖ym − x0‖2 − f2(x0).

The right-hand side of this display converges to 0 as n,m → ∞. So the yn

form a Cauchy sequence and hence they converge to some y0 ∈ Rn. Since C
is closed, y0 ∈ C. Let v = y0 − x0. Since K and C are disjoint, v 6= 0. It
follows that 0 < ‖v‖2 = 〈v, y0 − x0〉 = 〈v, y0〉 − 〈v, x0〉. It remains to show that
〈v, x〉 ≤ 〈v, x0〉 and 〈v, y0〉 ≤ 〈v, y〉 for all x ∈ K and y ∈ C.

Take y ∈ C. Since C is convex, the line segment y0 + λ(y − y0), λ ∈ [0, 1],
belongs to C. Since y0 minimizes the distance to x0, we have

‖y0 − x0‖ ≤ ‖y0 − x0 + λ(y − y0)‖

for every λ. By squaring this we find that

0 ≤ 2λ 〈y0 − x0, y − y0〉+ λ2‖y − y0‖2.

Dividing by λ and then letting λ→ 0 gives 〈v, y − y0〉 ≥ 0, as desired.
A similar argument shows that 〈v, x〉 ≤ 〈v, x0〉 for x ∈ K.

The polar C0 of a set C ⊆ Rn is defined as

C0 = {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ C}.

Note that in the special case that C is closed under multiplication with positive
scalars, we have C0 = {y ∈ Rn : 〈x, y〉 ≤ 0 for all x ∈ C} (check). For a given
x, the set C0

x = {z : 〈x, z〉 ≤ 0} is the set of all vectors that lie on the same
side of x⊥ as −x. The polar is in this case the intersection of all the sets C0

x for
x ∈ C.

To illustrate the bipolar theorem geometrically, consider a V -shaped set: C
the union of two rays emanating from the origin. Then one readily sees that
the polar of the polar of C precisely equals the convex hull of C. The general
result is as follows.

Theorem A.1.2 (Bipolar theorem). Let C ⊆ Rn contain 0. Then the
bipolar C00 = (C0)0 equals the closed convex hull of C.

Proof. It is clear that C00 is a closed, convex set containing C, so the closed
convex hull A of C is a subset of C00. Suppose that the converse inclusion does
not hold. Then there exists a point x0 ∈ C00 that is not in A. By the separating
hyperplane theorem there then exists a vector v ∈ Rn and γ1, γ2 ∈ R such that
〈x0, v〉 > γ1 > γ2 > 〈y, v〉 for all y ∈ A. Since 0 ∈ C ⊆ A we have γ1 > 0.
Dividing by γ1 shows there exists a vector v ∈ Rn such that 〈x0, v〉 > 1 > 〈y, v〉
for all y ∈ A. The second inequality implies that v ∈ C0, and then the first one
implies that x0 6∈ C00, which gives a contradiction.
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A.2 Topological vector spaces

A vector space X is called a topological vector space if it is endowed with a
topology which is such that every point of X is a closed set and the addition
and scalar multiplication operations are continuous.

It is easy to see that translation by a fixed vector and multiplication by a
nonzero scalar are homeomorphisms of a topological vector space. This implies
in particular that the topology is translation-invariant, meaning that a set E ⊆
X is open if and only if each of its translates x+ E is open.

Topological vector spaces have nice separation properties. Combined with
the fact that points are closed sets, the next theorem implies for instance that
they are always Hausdorff.

Theorem A.2.1. Suppose that K and C are disjoint subsets of a topological
vector space X, K compact and C closed. Then there exits a neighborhood V
of 0 such that K + V and C + V are disjoint.

Proof. The continuity of addition implies that for every neighborhood W of 0
there exist neighborhoods V1 and V2 of 0 such that V1 + V2 ⊆W (check). Now
put U = V1 ∩ V2 ∩ (−V1) ∩ (−V2). Then U is symmetric (i.e. U = −U) and
U + U ⊆ W . Applying the same procedure to the neighborhood U we see that
for every neighborhood W of 0 there exists a symmetric neighborhood U such
that U + U + U ⊆W (etc.).

Pick an x ∈ K. Then X\C is an open neighborhood of x. By translation
invariance and the preceding paragraph there exists a symmetric neighborhood
Vx of 0 such that x + Vx + Vx + Vx does not intersect C. By the symmetry
of Vx this implies that x + Vx + Vx and C + Vx are disjoint (check). Since
K is compact, it is covered by finitely many sets x1 + Vx1 , . . . , xn + Vxn

. Put
V = Vx1 ∩ · · · ∩ Vxn

. Then

K + V ⊆
⋃

(xi + Vxi
+ V ) ⊆

⋃
(xi + Vxi

+ Vxi
)

and none of the terms in the last union intersects C + V .

The following lemma implies that if V is a neighborhood of 0 in a topo-
logical vector space X, then for every x ∈ X it holds that x ∈ rV if r is large
enough. A set V with this property is called absorbing.

Lemma A.2.2. Suppose V is a neighborhood of 0 in a topological vector space
X and rn is a sequence of positive numbers tending to infinity. Then⋃

rnV = X.

Proof. Fix x ∈ X. Then since V is open in X and λ 7→ λx from R to X is
continuous, {λ : λx ∈ V } is open in R. The set contains 0, and hence it contains
1/rn for n large enough. This completes the proof.
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For an arbitrary absorbing subset A (for instance a neighborhood of 0) of a
topological vector space X we define the Minkowsky functional µA : X → [0,∞)
by

µA(x) = inf{t > 0 : x/t ∈ A}.

Note that µA is indeed finite-valued, since A is absorbing. The following lemma
collects properties that we need later.

Lemma A.2.3. Let A be a convex, absorbing subset of a topological vector
space X and let µA be its Minkowsky functional.

(i) µA(x+ y) ≤ µA(x) + µA(y) for all x, y ∈ X.

(ii) µA(tx) = tµA(x) for all x ∈ X and t ≥ 0.

Proof. For x, y ∈ X and ε > 0, consider t = µA(x) + ε, s = µA(y) + ε. Then
by definition of µA, x/t ∈ A and y/s ∈ A. Hence, the convex combination

x+ y

s+ t
=

t

s+ t

x

t
+

s

s+ t

y

s

belongs to A as well. This proves (i). The proof of (ii) is easy.

For the proof of the following characterization of continuous linear func-
tionals we need the notion of a balanced neighborhood. A set B ⊆ X is said to
be balanced if αB ⊆ B for every scalar α ∈ R with |α| ≤ 1.

Lemma A.2.4. Every neighborhood of 0 contains a balanced neighborhood of
0.

Proof. Let U be a neighborhood of 0. Since scalar multiplication is continuous,
there exists a δ > 0 and a neighborhood V of 0 in X such that αV ⊆ U whenever
|α| < δ. Then W = ∪|α|<δ αV is a balanced neighborhood of 0.

A linear map Λ : X → R is called a linear functional on the space X. A
linear functional on X is called bounded on a subset A ⊆ X if there exists a
number K > 0 such that |Λx| ≤ K for all x ∈ A.

Theorem A.2.5. Let Λ be a nontrivial linear functional on a topological vector
space X. Then Λ is continuous if and only if Λ is bounded on a neighborhood
of 0.

Proof. Suppose Λ is continuous. Then the null space N = {x ∈ X : Λx = 0}
is closed. Since Λ is nontrivial, there exists x ∈ X\N . By Theorem A.2.1 there
exists a balanced neighborhood V of 0 such that x+V and N are disjoint. Then
Λ(V ) is a balanced subset of R. Suppose it is not bounded. Then since it is
balanced, it most be all of R. In particular, there then exists a y ∈ V such that
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Λy = −Λx. But then x+ y ∈ N , a contradiction. Hence, Λ(V ) is bounded, i.e.
Λ is bounded on V .

Conversely, suppose that |Λx| ≤ M for all x ∈ V . For r > 0, put W =
(r/M)V . Then for x ∈ W , say x = (r/M)y for y ∈ V , we have |Λx| =
(r/M)|Λy| ≤ r. Hence, Λ is continuous at 0. By translation invariance, it is
continuous everywhere.

A.3 Hahn-Banach theorem

The proof of the following version of the Hahn-Banach theorem relies on the
axiom of choice, in the form of the Hausdorff maximality theorem:

Every nonempty partially ordered set P contains a totally ordered subset Q
which is maximal with respect to the property of being totally ordered.

A proof of this fact can for instance be found in Rudin (1987), pp. 395–396.

Theorem A.3.1 (Hahn-Banach theorem). Suppose X is a (real) vector
space and p : X → R satisfies p(x + y) ≤ p(x) + p(y) and p(tx) = tp(x) for
x, y ∈ X and t ≥ 0. Then if f is a linear functional on a subspace M of X such
that f(x) ≤ p(x) for all x ∈M , f extends to a linear functional Λ on the whole
space X such that

−p(−x) ≤ Λx ≤ p(x)

for all x ∈ X.

Proof. SupposeM is a proper subspace ofX and pick x1 ∈ X\M . For x, y ∈M
we have

f(x) + f(y) = f(x+ y) ≤ p(x+ y) ≤ p(x− x1) + p(y + x1),

hence f(x)− p(x− x1) ≤ p(y + x1)− f(y). So there exists an α such that

f(x)− α ≤ p(x− x1), f(y) + α ≤ p(y + x1) (A.1)

for all x, y ∈ M . Now let M1 be the vector space spanned by M and x1. An
element of M1 is of the form x+λx1 for some λ ∈ R. So we can extend f to M1

by setting f1(x+ λx1) = f(x) + λα. Then f1 is a well-defined linear functional
on M1 and the inequalities in (A.1) imply that f1(x) ≤ p(x) for all x ∈ M1

(check).
Let C be the collection of pairs (M ′, f ′), where M ′ is a subspace of X

containing M and f ′ is a linear extension of f to M ′ such that f ≤ p on
M ′. Put an ordering on C by saying that (M ′, f ′) ≤ (M ′′, f ′′) if M ′ ⊆ M ′′

and f ′′|M ′ = f ′. This is a partial ordering and C is not empty. Hence, by
the Hausdorff maximality theorem, we can extract a maximal totally ordered
subcollection C′. Let M̃ be the union of all M ′ for which (M ′, f ′) ∈ C′. Then
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M̃ is a subspace of X (check). If x ∈ M̃ then x ∈ M ′ for some M ′ such that
(M ′, f ′) ∈ C′. We then put Λx = f ′(x). This defines a linear function Λ on
M̃ and we have that Λ ≤ p on M̃ (check). If M̃ were a proper subspace of X
the construction of the preceding paragraph would give us a further extension
of Λ, contradicting the maximality of C′. Hence, M̃ = X. This completes the
proof, upon noting that Λ ≤ p implies that −p(−x) ≤ −Λ(−x) = Λx for all
x ∈ X.

Before we use the Hahn-Banach theorem to prove the infinite-dimensional
version of the separating hyperplane theorem we introduce some more concepts
and notation.

A topological vector space X is called locally convex if for every neighbor-
hood V of 0 there exists a convex neighborhood U of 0 such that U ⊆ V . The
space of continuous linear maps from X to R is denoted by X∗. It is called the
dual of X, and is treated in more detail in the next section.

Theorem A.3.2 (Separation theorem). Let A and B be disjoint, nonempty,
convex subsets of a topological vector space X.

(i) If A is open there exist Λ ∈ X∗ and γ ∈ R such that

Λx < γ ≤ Λy

for every x ∈ A and y ∈ B.

(ii) If X is locally convex, A is compact and B is closed, there exist Λ ∈ X∗

and γ1, γ2 ∈ R such that

Λx < γ1 < γ2 < Λy

for every x ∈ A and y ∈ B.

Proof. (i). Pick a0 ∈ A and b0 ∈ B and put x0 = b0−a0. Define C = A−B+x0

and note that C is a convex, open neighborhood of 0. Let µC be the Minkowsky
functional of C.

Let M be the linear subspace generated by x0 and define a linear functional
f on M by putting f(λx0) = λ. Since A and B are disjoint, x0 6∈ C so we have
µC(x0) ≥ 1 and hence, for λ ≥ 0, f(λx0) = λ ≤ λµC(x0) = µC(λx0). For
λ < 0 we have f(λx0) < 0 ≤ µC(λx0). By Lemma A.2.3 and the Hahn-Banach
theorem, Theorem A.3.1, the functional f extends to a linear functional Λ on
X, and the extension satisfies Λx ≤ µC(x) for all x ∈ X. In particular Λ ≤ 1
on C, so that |Λ| ≤ 1 on the neighborhood C ∩−C of 0. By Theorem A.2.5 this
implies that Λ is continuous, i.e. Λ ∈ X∗.

Now for a ∈ A and b ∈ B we have that

Λa− Λb+ 1 = Λ(a− b+ x0) ≤ µC(a− b+ x0) < 1,

since a − b + x0 ∈ C and C is open (Exercise 2), so Λa < Λb. It follows that
Λ(A) and Λ(B) are disjoint, convex subsets of R, the first one lying on the left
of the second one. Since A is open and Λ is nonconstant, Λ(A) is open as well
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(Exercise 3). Letting γ be the right end point of Λ(A) completes the proof of
(i).

(ii). By Theorem A.2.1 and the local convexity of X there exists a convex
neighborhood V of 0 such that (A+ V )∩B = ∅. By the proof of part (i) there
exists Λ ∈ X∗ such that Λ(A+V ) and Λ(B) are disjoint, convex subsets of R, the
first one lying on the left of the second one, the first one being open. Moreover,
Λ(A) is a compact subset of Λ(A+ V ). The proof is now easily completed.

Corollary A.3.3. If X is a locally convex topological vector space, X∗ sepa-
rates the points of X.

Proof. given distinct points x, y ∈ X, apply the separation theorem with A =
{x} and B = {y}.

For x ∈ X and Λ ∈ X∗ we define, in analogy with the finite-dimensional
situation, 〈x,Λ〉 = Λx. The polar C0 of a set C ⊆ X is defined as

C0 = {Λ ∈ X∗ : 〈x,Λ〉 ≤ 1 for all x ∈ C}.

Similarly, the bipolar is defined as

C00 = (C0)0 = {x ∈ X : 〈x,Λ〉 ≤ 1 for all Λ ∈ C0}.

Theorem A.3.4 (Bipolar theorem). The bipolar C00 of a subset C of a
locally convex topological vector space X equals the closed convex hull of C.

Proof. It is clear that C00 is a convex set containing C, so the closed convex
hull A of C is a subset of C00. Suppose that the reverse inclusion does not
hold. Then there exists a point x0 ∈ C00 that is not in A. By the separation
theorem there then exists a functional Λ ∈ X∗ such that Λx0 > 1 > Λy for all
y ∈ A (check). The second inequality implies that Λ ∈ C0, and then the first
one implies that x0 6∈ C00, which is a contradiction.

A.4 Dual space

The dual of a topological vector space X is the space X∗ of continuous linear
functionals on X. By Theorem A.2.5 this is the same as the space of linear
functionals that are bounded on a neighborhood of 0.

It is easy to see that if the topology on X is induced by a norm ‖ · ‖, a
linear functional Λ belongs to X∗ if and only if the unit ball in X is mapped
into a bounded subset of R. In that case we define the norm of Λ by

‖Λ‖ = sup
‖x‖≤1

|Λ(x)|
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and we have the relation |Λ(x)| ≤ ‖Λ‖ ‖x‖ for every x ∈ X.

Example A.4.1. Let (E, E , µ) be a measure space with µ a finite measure,
p ∈ [1,∞) and X = Lp(E, E , µ). Consider a continuous linear functional Λ on
X. Then the map ν : E → R defined by ν(B) = Λ(1B) is a signed measure (note
that the finiteness of µ implies that ν is well-defined). Indeed, if Bn are disjoint
elements of E and B = ∪Bn, then 1∪k≤nBk

→ 1B in Lp. Since Λ is continuous,
this implies that ν is countably additive. If µ(B) = 0 then 1B vanishes in Lp

and hence ν(B) = 0, so ν � µ. Hence, by the Radon-Nikodym theorem, there
exists a g ∈ L1 such that

Λ(1B) = ν(B) =
∫

B

g dµ

for all B ∈ E . By linearity we then have

Λ(f) =
∫
fg dµ (A.2)

for all simple functions f . Every bounded measurable function f is the uni-
form limit of simple functions and since µ is finite, uniform convergence implies
convergence in Lp. It follows that (A.2) holds for all f ∈ L∞.

Suppose that p > 1 and let q be the conjugate exponent. For En = {x :
|g(x)| ≤ n} we have, since g is bounded on En and Λ is continuous and hence
bounded,∫

En

|g|q dµ =
∫

En

|g|q−1sign(g)g dµ = Λ(1En |g|q−1sign(g)) ≤ ‖Λ‖
( ∫

En

|g|q dµ
)1/p

.

It follows that ( ∫
En

|g|q dµ
)1/q

≤ ‖Λ‖ (A.3)

and letting n→∞ shows that g ∈ Lq. If p = 1 then for every B ∈ E we have∣∣∣ ∫
B

g dµ
∣∣∣ = |Λ(1B)| ≤ ‖Λ‖µ(B).

But this implies that |g| ≤ ‖Λ‖ a.e. (indeed: if not there would exist an ε > 0
such that the set B = {x : |g(x)| > ‖Λ‖+ ε} has positive µ-measure, leading to
a contradiction), hence g ∈ L∞.

So in all cases the function g in (A.2) belongs to Lq. We proved already
that (A.2) holds for all bounded functions f . Now Λ is continuous on Lp by
assumption and Hölders inequality implies that the right-hand side is continuous
for f ∈ Lp as well. This shows that the relation holds in fact for all f ∈ Lp.
Uniqueness of g is easy to prove. We conclude that we may identify the dual of
Lp with Lq. Moreover, using (A.3) it is easy to see that for Λ ∈ (Lp)∗ given by
(A.2), we have ‖Λ‖ = ‖g‖Lq (Exercise 4). �

Let X be a topological vector space with dual X∗. Every point x ∈ X
induces a linear functional on X∗, defined by Λ 7→ Λx. The weak∗-topology of
X∗ is the weakest (i.e. smallest) topology making all these maps continuous.
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The following theorem states that X∗ with the weak∗-topology is a locally
convex topological vector space. This implies for instance that we can apply the
separation theorem to it. In general, the space X∗ endowed with the weak∗-
topology is not a Banach space. (In fact, it is not even metrizable if X is an
infinite-dimensional Banach space.)

Theorem A.4.2. The dual X∗ of a topological vector space X, endowed with
the weak∗-topology, is a locally convex topological vector space. Its dual is given
by {Λ 7→ Λx : x ∈ X}.

Proof. Denote by fx be the linear functional Λ 7→ Λx. If Λ 6= Λ′ in X∗, there
exists an x ∈ X such that fxΛ 6= fxΛ′. Hence, in R there exist disjoint neigh-
borhoods U of fxΛ and U ′ of fxΛ′. Since fx is continuous, f−1

x (U) and f−1
x (U ′)

are disjoint neighborhoods of Λ and Λ′. This shows that X∗ is Hausdorff, and
in particular that points are closed.

To show that the weak∗-topology is translation invariant, consider an open
base set

U = {Λ : Λx1 ∈ B1, . . . ,Λxn ∈ Bn}

and Λ′ ∈ X∗. Then Λ′ + U = {Λ : Λx1 ∈ B1 + Λ′x1 . . . ,Λxn ∈ Bn + Λ′xn} is
an open base set as well. It follows that the topology is translation invariant.
Note that the open sets V of the form

V = {Λ : |Λx1| < r1, . . . , |Λxn| < rn} (A.4)

for x1, . . . , xn ∈ X and r1, . . . , rn > 0 form a local base at 0. Every such set V
is convex, balanced and absorbing (check). In particular, X∗ is a locally convex
space.

For the set V in the preceding display we have V/2 + V/2 = V and hence
addition is continuous at (0, 0). As for scalar multiplication, suppose that αΛ ∈
V for some scalar α ∈ R and Λ ∈ X∗. By Exercise 2, there exists t > 0 such that
t < 1/|α| and Λ ∈ tV . For ε > 0 and Λ′ ∈ tV we have that (α+ε)Λ′ ∈ (α+ε)tV .
Hence, since V is balanced, (α+ε)Λ′ ∈ V for all ε such that |α|t+|ε|t ≤ 1. Since
|α|t < 1 there is a nonempty interval around 0 of ε satisfying this condition.
Hence, scalar multiplication is continuous.

It remains to identify the dual ofX∗ (endowed with the weak∗-topology). If
x ∈ X, the linear map Λ 7→ Λ(x) is weak∗-continuous by definition of the weak∗-
topology. Conversely, let f : X∗ → R be weak∗-continuous. By Theorem A.2.5,
f is bounded on a neighborhood of 0, and hence also on a base set V of the form
(A.4). This implies that f vanishes on the set N = {Λ : Λx1 = · · · = Λxn = 0}
(Exercise 5). Now N is the kernel of the linear map π : X∗ → Rn defined by
π(Λ) = (Λx1, . . . ,Λxn). It follows that the linear map F : π(X∗) → R given by
F (π(Λ)) = f(Λ) is well defined (check). We can extend F to a linear functional
on Rn. It is then necessarily of the form F (z1, . . . , zn) =

∑
αizi for certain real

numbers αi. In particular,

f(Λ) = F (Λx1, . . . ,Λxn) =
∑

αiΛxi.

So indeed, f(Λ) = Λx, with x =
∑
αixi.
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If X is a Banach space its dual X∗ is endowed with a norm, and the unit
ball in X∗ is the set {Λ ∈ X∗ : |Λx| ≤ ‖x‖ for all x ∈ X}. In the norm-
topology this set is not compact in general (think of an infinite-dimensional
Hilbert space). In the weak∗-topology however, it is always compact.

Theorem A.4.3 (Banach-Alaoglu). The unit ball of the dual of a Banach
space is weak∗-compact.

Proof. Denote the Banach space byX and letB∗ be the unit ball in its dual. By
Tychonov’s theorem, P = Πx∈X [−‖x‖, ‖x‖] is compact (relative to the product
topology). We can view P as a collection of functions on X, with f ∈ P if and
only if |f(x)| ≤ ‖x‖ for all x ∈ X. As such, we have B∗ ⊆ X∗ ∩ P . Hence, B∗

inherits two topologies: the weak∗-topology from X∗ and the product topology
from P . These two topologies on B∗ coincide. To see this, take Λ0 ∈ B∗. The
sets of the form

V1 = {Λ ∈ X∗ : |Λx1 − Λ0x1| < r1, . . . , |Λxn − Λ0x1| < rn}

and
V2 = {f ∈ P : |f(x1)− Λ0x1| < r1, . . . , |f(xn)− Λ0x1| < rn}

form a local base for the weak∗-topology and, respectively, the product topology
at Λ0. Since B∗ ⊆ X∗∩P we have V1∩B∗ = V2∩B∗ and hence the two relative
topologies coincide.

Next we show that B∗ is closed in P . Take f0 in the closure of B∗ (with
respect to the product topology). For x, y ∈ X, α, β ∈ R and ε > 0 we have
that the set

U = {f ∈ P : |f(x)−f0(x)| < ε, |f(y)−f0(y)| < ε, |f(αx+βy)−f0(αx+βy)| < ε}

is an open neighborhood of f0. Hence, there exist an f ∈ U ∩ B∗. Since f is
linear we have

f0(αx+ βy)− αf0(x)− βf0(y)
= (f0 − f)(αx+ βy)− α(f0 − f)(x)− β(f0 − f)(y)

and hence

|f0(αx+ βy)− αf0(x)− βf0(y)| ≤ (1 + |α|+ |β|)ε.

Since ε was arbitrary, it follows that f0 is linear. By definition of P we have
that |f0(x)| ≤ ‖x‖ for every x ∈ X, so indeed f0 ∈ B∗.

The proof is now completed upon noting that by the preceding paragraph,
B∗ is compact with respect to the product topology. But by the first part of
the proof, the latter topology coincides on B∗ with the weak∗-topology.
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Example A.4.4. Although the weak∗-topology has some nice properties ac-
cording to Theorem A.4.2, it is good to note that it is typically “strange”.
Consider for instance a finite measure µ on the line and view L∞(µ) as the dual
of L1(µ). Then from the form of the local base at 0 given in the proof of the
theorem one sees that a sequence fn in L∞ converges in the weak∗-topology to
0 if

∫
fng dµ → 0 for every g ∈ L1. By dominated convergence, this holds for

instance for fn = 1(−n,n)c . This sequence does however not converge to 0 in
the ordinary, uniform topology on L∞. More generally, to say that a function
f ∈ L∞ belongs to the weak∗-closure of a set C ⊆ L∞ does not necessarily
mean that f is well-approximated by elements of C in a uniform or any other
intuitively reasonable way. �



44 Elements of functional analysis

A.5 Exercises

1. Give an example which shows that the separation theorem does not hold
in general if the assumption of compactness of one of the sets in dropped.

2. Suppose that C is an open neighborhood of 0 in a topological vector space
and let µC be its Minkowsky functional. Show that for all x ∈ C it holds
that µC(x) < 1.

3. Show that a non-constant linear functional on a topological vector space
maps open sets to open sets.

4. In Example A.4.1, show that for the functional Λ on Lp defined by (A.2)
we have ‖Λ‖ = ‖g‖Lq .

5. In the last part of the proof of Theorem A.4.2, show that the functional
f vanishes on the set N .



B

Elements of martingale
theory

B.1 Basic definitions

Let (Ω,F ,P) be a probability space. A collection of Rd-valued random variables
X = (Xt)t∈T indexed by a set T ⊆ R is called a (d-dimensional) stochastic
process. We call the process continuous (or cadlag), it its trajectories t 7→ Xt(ω)
are continuous (or cadlag). The process is called bounded if there exists a finite
number K such that a.s. ‖Xt‖ ≤ K for all t.

A filtration is a collection (Ft)t∈T of sub-σ-fields of F such that Fs ⊆ Ft

for all s ≤ t. It is said to satisfy the usual conditions if it is right-continuous,
i.e. ∩s>tFs = Ft for all t and F0 contains all the P-null sets in F . A process X
is called adapted to (Ft) is for every t, Xt is Ft-measurable. For a process X
and t ∈ T we define FX

t to be the σ-field generated by the collection of random
variables {Xs : s ≤ t}. The filtration (FX

t ) is called the natural filtration of the
process X. It is the smallest filtration to which it is adapted. A process X =
(Xt)t∈[0,T ] is called progressively measurable relative to the filtration (Ft)t∈[0,T ]

if for all t, the map (ω, s) 7→ Xs(ω) on Ω× [0, t] is Ft ⊗ B([0, t])-measurable.
A [0,∞]-valued random variable τ is called a stopping time relative to the

filtration (Ft) if {τ ≤ t} ∈ Ft for every t. If τ is a stopping time and X a
process, the stopped process Xτ is defined by Xτ

t = Xτ∧t. A localizing sequence
is a sequence of stopping times τn increasing a.s. to infinity. A process X is said
to have a property P locally if there exists a localizing sequence τn such that for
every n, the stopped process Xτn has the property P.

A process M is called a martingale relative to the filtration (Ft) if every
Mt is integrable and for all s ≤ t it holds that E(Mt | Fs) = Ms a.s.. In
accordance with the previously introduced notation the process M is called a
local martingale if there exists a localizing sequence τn such that for every n, the
stopped process Mτn is a martingale. Every martingale is a local martingale,
but not vice versa..
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B.2 Theorems

For a filtration (Ft) and a stopping time τ we define

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t}.

The set Fτ is always a σ-field and should be thought of as the collection of
events describing the history before time τ .

Theorem B.2.1 (Optional stopping theorem). Let M be a cadlag, uni-
formly integrable martingale. Then for all stopping times σ ≤ τ ,

E(Mτ | Fσ) = Mσ.

Theorem B.2.2 (Kakutani’s theorem). LetX1, X2, . . . be independent non-
negative random variables with mean 1. Define M0 = 1 and Mn = X1X2 · · ·Xn.
It holds that M is uniformly integrable if and only if

∑
(1−E

√
Xn) <∞. If M

is not uniformly integrable, then Mn → 0 a.s..

Corollary B.2.3. Let X = (X1, X2, . . .) and Y = (Y1, Y2, . . .) be two sequences
of independent random variables. Assume Xi has a positive density fi with
respect to a dominating measure µ, and Yi has a positive density gi with respect
to µ. Then the laws of the sequences X and Y are equivalent probability
measures on (R∞,B(R∞)) if and only if

n∑
i=1

∫
(
√
fi −

√
gi)2 dµ <∞.

If the laws are not equivalent, they are mutually singular.

Proof. Let (Ω,F) = (R∞,B(R∞)) and Z = (Z1, Z2, . . .) the coordinate process
on (Ω,F), so Zi(ω) = ωi. Let Fn ⊆ F be the σ-field generated by Z1, . . . , Zn.
Since the densities fi and gi are all positive, the distributions PX and PY of the
sequences X and Y are equivalent on Fn. For A ∈ Fn we have

PX(A) =
∫

A

Mn dPY ,

where the Radon Nikodym derivative is defined by Mn =
∏n

i=1 fi(Zi)/gi(Zi).
Observe that under PY , the process M is a martingale to which the preced-
ing theorem applies. It is readily verified that the measures PX and PY are
equivalent on the whole σ-field F if and only if M is uniformly integrable with
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respect to PY (Exercise 1). Hence, by the preceding theorem, the measures are
equivalent if and only if

n∑
i=1

(
1−

∫ √
figi dµ

)
<∞.

The proof of the first part is completed by noting that
∫

(
√
fi −

√
gi)2 dµ =

2− 2
∫ √

figi dµ.
We noted that if PX and PY are not equivalent, then M is not uniformly

integrable relative to PY . Hence, by the preceding theorem, Mn → 0, PY -
a.s.. We can reverse the roles of X and Y , which amounts to replacing M by
1/M . Then we find that if PX and PY are not equivalent, 1/Mn → 0, PX -
a.s.. It follows that for the event A = {Mn → 0} we have PY (A) = 1 and
PX(A) = 0.

Example B.2.4. Let X = (X1, X2, . . .) and Y = (Y1, Y2, . . .) be two sequences
of independent random variables. Suppose that P(Xi = 1) = P(Xi = −1) = 1/2
and P(Yi = 1) = 1 − P(Yi) = −1 = 1/2 + εi for some εi ∈ (−1/2, 1/2). By
the corollary, applied with µ the counting measure, fi(1) = fi(−1) = 1/2,
gi(1) = 1−gi(−1) = 1/2+ εi, the laws of the sequences X and Y are equivalent
if and only if∑ (

(
√

1/2−
√

1/2 + εi)2 + (
√

1/2−
√

1/2− εi)2
)
<∞.

By Taylor’s formula the function h(x) = (
√

1/2 −
√

1/2 + x)2 + (
√

1/2 −√
1/2− x)2 behaves like a multiple of x2 near x = 0 (check!). It follows that

the sequences are equivalent if and only if
∑
ε2i <∞.
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B.3 Exercises

1. In the proof of Corollary B.2.3, show that the measures PX and PY are
equivalent on the whole σ-field F if and only if M is uniformly integrable.
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