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There are very many books on the topis of the ourse. The list below is a

small seletion.

Disrete martingales are disussed in most advaned introdutions to

general probability theory. The book by David Williams is partiularly lose

to our presentation.

For an introdution to stohasti integration we prefer the book by

Chung and Williams (Ruth Williams this time). It has introdutions to

most of the important topis and is very well written. The two volumes by

Rogers and Williams (David again) are a lassi, but they are not easy and

perhaps even a bit messy at times. The book by Karatzas and Shreve is

more aessible. The book by Revuz and Yor I do not know, but it gets good

reviews. Unlike Chung and Williams the latter two books are restrited to

martingales with ontinuous sample paths, whih obsures some interesting

aspets, but also makes some things easier.

The theory of stohasti integration and muh of the theory of abstrat

stohasti proesses was originally developed by the \frenh shool", with

Meyer as the most famous proponent. Few people an appreiate the fairly

abstrat and detailed original books (Look for Dellaherie and Meyer, vol-

umes 1, 2, 3, 4). The book by Elliott is in this tradition, but somewhat more

readable. The �rst hapter of Jaod and Shiryaev is an exellent summary

and referene, but is not meant for introdutory reading.

The book by �ksendal is a popular introdution. Unfortunately, at

many plaes it is obsure and sometimes wrong, in partiular in the later

hapters. Unpleasant notation as well.

The book by Strook and Varadhan is a lassi on stohasti di�eren-

tial equations and partiularly important as a soure on the \martingale

problem".

There are also many books on �nanial alulus. Some of them are

written from the perspetive of di�erential equations. Then Brownian mo-

tion is redued to a proess suh that (dB

t

)

2

= dt. The books mentioned

below are of ourse written from a probabilisti point of view. Baxter and

Rennie have written their book for a wide audiene. It is interesting how

they formulate \theorems" very impreisely, but never wrong. It is good

to read to get a feel for the subjet. Karatzas and Shreve, and Kopp and

Elliott have written rigorous mathematial books that give you less feel,

but more theorems.
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EXAM

The written exam will onsist of problems as in these notes, questions to

work out examples as in the notes or variations thereof, and will require

to give preise de�nitions and statements of theorems plus a numbers of

proofs.

The requirements for the oral exam are the same. For a very high mark

it is, of ourse, neessary to know everything.

Very important is to be able to give a good overview of the main points

of the ourse and their onnetions.

Starred setions or lemmas in the leture notes an be skipped om-

pletely. Starred exerises may be harder than other exerises.

Proofs to learn by heart:

2.13, 2.43, 2.44 for p = 2.

4.21, 4.22, 4.26, 4.28.

5.22, 5.25(i)-(iii), 5.43, 5.46 ase thatM is ontinuous, 5.52, 5.57, 5.76,

5.85.

6.1, 6.9(ii),

7.7 ase that E�

2

<1 and (7.5) holds for every x; y, 7.14.
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Measure Theory

In this hapter we review or introdue a number of results from measure

theory that are espeially important in the following.

1.1 Conditional Expetation

Let X be an integrable random variable de�ned on the probability spae

(
;F ; P ). In other words X : 
 ! R is a measurable map (relative to F

and the Borel sets on R) with EjX j <1.

1.1 De�nition. Given a sub �-�eld F

0

� F the onditional expetation

of X relative to F

0

is a F

0

-measurable map X

0

: 
! R suh that

(1:2): EX1

F

= EX

0

1

F

; for every F 2 F

0

;

The random variable X

0

is denoted by E(X j F

0

).

It is lear from this de�nition that any other F

0

-measurable map

X

00

: 
 ! R suh that X

0

= X

00

almost surely is also a onditional expe-

tation. In the following theorem it is shown that onditional expetations

exist and are unique, apart from this indeterminay on null sets.

1.3 Theorem. Let X be a random variable with EjX j < 1 and F

0

� F

a �-�eld. Then there exists an F

0

-measurable map X

0

: 
 ! R suh that

(1.2) holds. Furthermore, any two suh maps X

0

agree almost surely.

Proof. If X � 0, then on the �-�eld F

0

we an de�ne a measure �(F ) =

R

F

X dP . Clearly this measure is �nite and absolutely ontinuous relative

to the restrition of P to F

0

. By the Radon-Nikodym theorem there exists



2 1: Measure Theory

an F

0

-measurable funtion X

0

, unique up to null sets, suh that �(F ) =

R

F

X

0

dP for every F 2 F

0

. This is the desired map X

0

. For a general X

we apply this argument separately to X

+

and X

�

and take di�erenes.

Suppose that E(X

0

� X

00

)1

F

= 0 for every F in a �-�eld for whih

X

0

� X

00

is measurable. Then we may hoose F = fX

0

> Xg to see that

the probability of this set is zero, beause the integral of a stritly positive

variable over a set of positive measure must be positive. Similarly we see

that the set F = fX

0

< X

00

g must be a null set. Thus X

0

= X

00

almost

surely.

The de�nition of a onditional expetation is not terribly insightful,

even though the name suggests an easy interpretation as an expeted value.

A number of examples will make the de�nition learer.

A measurable map Y : 
! (D ;D) generates a �-�eld �(Y ). We use the

notation E(X jY ) as an abbreviation of E(X j�(Y )).

1.4 Example (Ordinary expetation). The expetation EX of a random

variable X is a number, and as suh an of ourse be viewed as a degenerate

random variable. Atually, it is also the onditional expetation relative to

the trivial �-�eld F

0

= f;;
g. More generally, we have that E(X j F

0

) = EX

if X and F

0

are independent. In this ase F

0

gives \no information" about

X and hene the expetation given F

0

is the \unonditional" expetation.

To see this note that E(EX)1

F

= EXE1

F

= EX1

F

for every F suh

that X and F are independent.

1.5 Example. At the other extreme we have that E(X j F

0

) = X if X itself

is F

0

-measurable. This is immediate from the de�nition. \Given F

0

we then

know X exatly."

1.6 Example. Let (X;Y ): 
! R � R

k

be measurable and possess a den-

sity f(x; y) relative to a �-�nite produt measure � � � on R � R

k

(for

instane, the Lebesgue measure on R

k+1

). Then it is ustomary to de�ne a

onditional density of X given Y = y by

f(xj y) =

f(x; y)

R

f(x; y) d�(x)

:

This is well-de�ned for every y for whih the denominator is positive, i.e.

for all y in a set of measure one under the distribution of Y .

We now have that the onditional expetion is given by the \usual

formula"

E(X jY ) =

Z

xf(xjY ) d�(x);

where we may de�ne the right hand zero as zero if the expression is not

well-de�ned.
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That this formula is the onditional expetation aording to the ab-

strat de�nition follows by a number of appliations of Fubini's theorem.

Note that, to begin with, it is a part of the statement of Fubini's theorem

that the funtion on the right is a measurable funtion of Y .

1.7 Example (Partitioned 
). If F

0

= �(F

1

; : : : ; F

k

) for a partition 
 =

[

k

i=1

F

i

, then

E(X j F

0

) =

k

X

i=1

E(X jF

i

)1

F

i

;

where E(X jF

i

) is de�ned as EX1

F

i

=P (F

i

) if P (F

i

) > 0 and arbitrary

otherwise. Thus the onditional expetation is onstant on every of the

partitioning sets F

i

(as it needs to be to be F

0

-measurable) and the onstant

values are equal to the average values of X over these sets.

The validity of (1.2) is easy to verify for F = F

j

and every j. And then

also for every F 2 F

0

by taking sums, sine every F 2 F

0

is a union of a

number of F

j

's.

This example extends to �-�elds generated by a ountable partition of


. In partiular, E(X jY ) is exatly what we would think it should be if Y

is a disrete random variable.

A di�erent perspetive on an expetation is to view it as a best predi-

tion if \best" is de�ned through minimizing a seond moment. For instane,

the ordinary expetation EX minimizes � 7! E(X��)

2

over � 2 R. A on-

ditional expetation is a best predition by an F

0

-measurable variable.

1.8 Lemma (L

2

-projetion). If EX

2

< 1, then E(X j F

0

) minimizes

E(X � Y )

2

over all F

0

-measurable random variables Y .

Proof. We �rst show that X

0

= E(X j F

0

) satis�es EX

0

Z = EXZ for every

F

0

-measurable Z with EZ

2

<1.

By linearity of the onditional expetation we have that EX

0

Z = EXZ

for every F

0

-simple variable Z. If Z is F

0

-measurable with EZ

2

< 1,

then there exists a sequene Z

n

of F

0

-simple variables with E(Z

n

�Z)

2

!

0. Then EX

0

Z

n

! EX

0

Z and similarly with X instead of X

0

and hene

EX

0

Z = EXZ.

Now we deompose, for arbitrary square-integrable Y ,

E(X � Y )

2

= E(X �X

0

)

2

+ 2E(X �X

0

)(X

0

� Y ) + E(X

0

� Y )

2

:

The middle term vanishes, beause Z = X

0

� Y is F

0

-measurable and

square-integrable. The third term on the right is learly minimal for X

0

=

Y .
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1.9 Lemma (Properties).

(i) EE(X j F

0

) = EX .

(ii) If Z is F

0

-measurable, then E(ZX j F

0

) = ZE(X j F

0

) a.s.. (Here require

that X 2 L

p

(
;F ; P ) and Z 2 L

q

(
;F ; P ) for 1 � p � 1 and p

�1

+

q

�1

= 1.)

(iii) (linearity) E(�X + �Y j F

0

) = �E(X j F

0

) + �E(Y j F

0

) a.s..

(iv) (positivity) If X � 0 a.s., then E(X j F

0

) � 0 a.s..

(v) (towering property) If F

0

� F

1

� F , then E

�

E(X j F

1

)j F

0

) = E(X j F

0

)

a.s..

(vi) (Jensen) If �:R ! R is onvex, then E(�(X)j F

0

) � �

�

E(X j F

0

)

�

a.s..

(Here require that �(X) is integrable.)

(vii) kE(X j F

0

)k

p

� kXk

p

(p � 1).

* 1.10 Lemma (Convergene theorems).

(i) If 0 � X

n

" X a.s., then 0 � E(X

n

j F

0

) " E(X j F

0

) a.s..

(ii) If X

n

� 0 a.s. for every n, then E(lim inf X

n

j F

0

) � lim inf E(X

n

j F

0

)

a.s..

(iii) If jX

n

j � Y for every n and and integrable variable Y , and X

n

as

!

X ,

then E(X

n

j F

0

)

as

!

E(X j F

0

) a.s..

The onditional expetation E(X jY ) given a random vetor Y is by

de�nition a �(Y )-measurable funtion. For most Y , this means that it is a

measurable funtion g(Y ) of Y . (See the following lemma.) The value g(y)

is often denoted by E(X jY = y).

Warning. Unless P (Y = y) > 0 it is not right to give a meaning to

E(X jY = y) for a �xed, single y, even though the interpretation as an

expetation given \that we know that Y = y" often makes this tempting.

We may only think of a onditional expetation as a funtion y 7! E(X jY =

y) and this is only determined up to null sets.

1.11 Lemma. Let fY

�

:� 2 Ag be random variables on 
 and let X be a

�(Y

�

:� 2 A)-measurable random variable.

(i) If A = f1; 2; : : : ; kg, then there exists a measurable map g:R

k

! R

suh that X = g(Y

1

; : : : ; Y

k

).

(ii) If jAj = 1, then there exists a ountable subset f�

n

g

1

n=1

� A and a

measurable map g:R

1

! R suh that X = g(Y

�

1

; Y

�

2

; : : :).

1.2 Uniform Integrability

In many ourses on measure theory the dominated onvergene theorem

is one of the best results. Atually, domination is not the right onept,

uniform integrability is.



1.2: Uniform Integrability 5

1.12 De�nition. A olletion fX

�

:� 2 Ag of random variables is uni-

formly integrable if

lim

M!1

sup

�2A

EjX

�

j1

jX

�

j>M

= 0:

1.13 Example. A �nite olletion of integrable random variables is uni-

formly integrable.

This follows beause EjX j1

jXj>M

! 0 as M ! 1 for any integrable

variable X , by the dominated onvergene theorem.

1.14 Example. A dominated olletion of random variables is uniformly

integrable: if jX

�

j � Y and EY < 1, then fX

�

:� 2 Ag is uniformly

integrable.

To see this note that jX

�

j1

jX

�

j>M

� Y 1

Y >M

.

1.15 Example. If the olletion of random variables fX

�

:� 2 Ag is

bounded in L

2

, then it is is uniformly integrable.

This follows from the inequality EjX j1

jXj>M

� M

�1

EX

2

, whih is

valid for any random variable X .

Similarly, it suÆes for uniform integrability that sup

�

EjX

�

j

p

< 1

for some p > 1.

1.16 EXERCISE. Show that a uniformly integrable olletion of random

variables is bounded in L

1

(
;F ; P ).

1.17 EXERCISE. Show that any onverging sequene X

n

in L

1

(
;F ; P )

is uniformly integrable.

1.18 Theorem. Suppose that fX

n

:n 2 Ng � L

1

(
;F ; P ). Then EjX

n

�

X j ! 0 for some X 2 L

1

(
;F ; P ) if and only if X

n

P

!

X and fX

n

:n 2 Ng

is uniformly integrable.

Proof. We only give the proof of \if". (The main part of the proof in the

other diretion is the preeding exerise.)

If X

n

P

!

X , then there is a subsequene X

n

j

that onverges almost

surely to X . By Fatou's lemma EjX j � lim inf EjX

n

j

j. If X

n

is uniformly

integrable, then the right side is �nite and hene X 2 L

1

(
;F ; P ).

For any random variables X and Y and positive numbers M and N ,

(1:19)

EjX j1

jY j>M

� EjX j1

jXj>N

1

jY j>M

+NP

�

jY j > M

�

� EjX j1

jXj>N

+

N

M

EjY j1

jY j>M

:

Applying this with M = N and (X;Y ) equal to the four pairs that an be

formed of X

n

and X we �nd, for any M > 0,

EjX

n

�X j(1

jX

n

j>M

+ 1

jXj>M

) � 2EjX

n

j1

jX

n

j>M

+ 2EjX j1

jXj>M

:
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We an make this arbitrarily small by making M suÆiently large. Next,

for any " > 0,

EjX

n

�X j1

jX

n

j�M;jXj�M

� "+ 2MP

�

jX

n

�X j > "

�

:

As n ! 1 the seond term on the right onverges to zero for every �xed

" > 0 and M .

1.20 EXERCISE. If fjX

n

j

p

:n 2 Ng is uniformly integrable (p � 1) and

X

n

P

!

X , then EjX

n

�X j

p

! 0. Show this.

1.21 Lemma. If X 2 L

1

(
;F ; P ), then the olletion of all onditional ex-

petations E(X j F

0

) with F

0

ranging over all sub �-�elds of F is uniformly

integrable.

Proof. By Jensen's inequality jE(X j F

0

)j � E(jX j j F

0

) almost surely. It

therefore suÆes to show that the onditional expetations E(jX j j F

0

) are

uniformly integrable. For simpliity of notation suppose that X � 0.

With X

0

= E(X j F

0

) and arguing as in (1.19) we see that

EX

0

1

X

0

>M

= EX1

X

0

>M

� EX1

X>N

+

N

M

EX

0

:

We an make the right side arbitrarily small by �rst hoosing N and next

M suÆiently large.

We onlude with a lemma that is sometimes useful.

1.22 Lemma. Suppose that X

n

and X are random variables suh that

X

n

P

!

X and lim supEjX

n

j

p

� EjX j

p

<1 for some p � 1. Then fX

n

:n 2

Ng is uniformly integrable and EjX

n

�X j

p

! 0.

1.3 Monotone Class Theorem

Many arguments in measure theory are arried out �rst for simple types

of funtions and then extended to general funtions by taking limits. A

monotone lass theorem is meant to odify this proedure. This purpose of

standardizing proofs is only partly suessful, as there are many monotone

lass theorems in the literature, eah tailored to a partiular purpose. The

following theorem will be of use to us.

We say that a lass H of funtions h: 
! R is losed under monotone

limits if for eah sequene fh

n

g � H suh that 0 � h

n

" h for some

funtion h, the limit h is ontained in H. We say that it is losed under

bounded monotone limits if this is true for every suh sequene h

n

with a

(uniformly) bounded limit. A lass of sets is intersetion-stable if it ontains

the intersetion of every pair of its elements (i.e. is a �-system).
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1.23 Theorem. Let H be a vetor spae of funtions h: 
! R on a mea-

surable spae (
;F) that ontains the onstant funtions and the india-

tor of every set in a olletion F

0

� F , and is losed under (bounded)

monotone limits. If F

0

is intersetion-stable, then H ontains all (bounded)

�(F

0

)-measurable funtions.

Proof. See e.g. Williams, A3.1 on p205.
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Disrete Time Martingales

A stohasti proess X in disrete time is a sequene X

0

; X

1

; X

2

; : : : of

random variables de�ned on some ommon probability spae (
;F ; P ).

The index n of X

n

is referred to as \time" and a map n 7! X

n

(!), for

a �xed ! 2 
, is a sample path. (Later we replae n by a ontinuous

parameter t 2 [0;1) and use the same terminology.) Usually the disrete

time set is Z

+

= N [ f0g. Sometimes we delete 0 or add 1 to get N or

�

Z

+

= N [ f0;1g, and or delete a orresponding random variable X

1

or

X

0

to form the stohasti proess.

2.1 Martingales

A �ltration fF

n

g (in disrete time) on a given probability spae (
;F ; P )

is a nested sequene of �-�elds

F

0

� F

1

� � � � � F :

The �-�eld F

n

is interpreted as the events F of whih it is known at \time" n

whether F has ourred or not. A stohasti proess X is said to be adapted

if X

n

is F

n

-measurable for every n � 0. The quadruple (
;F ; fF

n

g; P ) is

alled a \�ltered probability spae" or \stohasti basis".

A typial example of a �ltration is the natural �ltration generated by

a stohasti proess X , de�ned as

F

n

= �(X

0

; X

1

; : : : ; X

n

):

Then F 2 F

n

if and only if F = f(X

0

; : : : ; X

n

) 2 Bg for some Borel set B.

One X

0

; : : : ; X

n

are realized we know whether F has ourred or not. The

natural �ltration is the smallest �ltration to whih X is adapted.
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2.1 De�nition. An adapted, integrable stohasti proess X on the �l-

tered spae (
;F ; fF

n

g; P ) is a

(i) martingale if E(X

n

j F

m

) = X

m

a.s. for all m � n.

(ii) submartingale if E(X

n

j F

m

) � X

m

a.s. for all m � n.

(ii) supermartingale if E(X

n

j F

m

) � X

m

a.s. for all m � n.

A di�erent way of writing the martingale property is

E(X

n

�X

m

j F

m

) = 0; m � n:

Thus given all information at time m the expeted inrement X

n

�X

m

in

the future time interval (m;n℄ is zero, for every initial time m. This shows

that a martingale X

n

an be interpreted as the total gain up to time n in a

fair game: at every time m we expet to make a zero gain in the future (but

may have gained in the past and we expet to keep this). In partiular, the

expetation EX

n

of a martingale is onstant in n.

Submartingales and supermartingales an be interpreted similarly as

total gains in favourable and unfavourable games. If you are not able to re-

member whih inequalities orrespond to \sub" and \super", that is prob-

ably normal. It helps a bit to try and remember that a submartingale is

inreasing in mean: EX

m

� EX

n

if m � n.

2.2 EXERCISE. If E(X

n+1

j F

n

) = X

n

for every n � 0, then automatially

E(X

n

j F

m

) = X

m

for every m � n and hene X is a martingale. Similarly

for sub/super. Show this.

2.3 Example. Let Y

1

; Y

2

; : : : be a sequene of independent random vari-

ables with mean zero. Then the sequene of partial sums X

n

= Y

1

+ � � �+Y

n

is a martingale relative to the �ltration F

n

= �(Y

1

; : : : ; Y

n

). Set X

0

= 0.

This follows upon noting that for m � n the inrement X

n

� X

m

=

P

m<i�n

Y

i

is independent of F

m

and hene E(X

n

� X

m

j F

m

) = E(X

n

�

X

m

) = 0.

2.4 EXERCISE. In the preeding example show that �(Y

1

; : : : ; Y

n

) =

�(X

1

; : : : ; X

n

).

2.5 EXERCISE. If fN(t): t � 0g is a standard Poisson proess and 0 �

t

0

< t

1

< � � � is a �xed sequene of numbers, then X

n

= N(t

n

) � t

n

is a

martingale relative to the �ltration F

n

= �(N(t): t � t

n

). Show this, using

the fat that the Poisson proess has independent inrements.

2.6 Example. Let � be a �xed, integrable random variable and F

n

an

arbitrary �ltration. Then X

n

= E(�j F

n

) is a martingale.

This is an immediate onsequene of the towering property of on-

ditional expetations, whih gives that E(X

n

j F

m

) = E

�

E(�j F

n

)j F

m

�

=

E(�j F

m

) for every m � n.
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By Theorem 1.18 this martingale X is uniformly integrable. Later we

shall see that any uniformly integrable martingale takes this form. More-

over, we an hoose � suh that X

n

as

!

� as n!1.

It is part of the de�nition of a martingale X that every of the random

variables X

n

is integrable. If sup

n

EjX

n

j <1, then we all the martingale

L

1

-bounded. If EjX

n

j

p

< 1 for ally n and some p, then we all X an

L

p

-martingale and if sup

n

EjX

n

j

p

<1, then we all X L

p

-bounded.

Warning. Some authors use the phrase \L

p

-martingale" for a martin-

gale that is bounded in L

p

(
;F ; P ). To avoid this onfusion, it is perhaps

better to use the more omplete phrases \martingale in L

p

" and \martin-

gale that is bounded in L

p

".

2.7 Lemma. If �:R ! R is onvex and X a martingale, then f�(X

n

)g

is a submartingale relative to the same �ltration, provided that �(X

n

) is

integrable for every n.

Proof. Beause a onvex funtion is automatially measurable, the variable

�(X

n

) is adapted for every n. By Jensen's inequality E

�

�(X

n

)j F

m

�

�

�

�

E(X

n

j F

m

)

�

almost surely. The right side is �(X

m

) almost surely if m �

n, by the martingale property.

2.8 EXERCISE. If �:R ! R is onvex and nondereasing and X is a sub-

martingale, then f�(X

n

)g is a submartingale relative to the same �ltration,

provided that �(X

n

) is integrable for every n. Show this.

2.2 Stopped Martingales

If X

n

is interpreted as the total gain at time n, then a natural question is if

we an maximize pro�t by quitting the game at a suitable time. If X

n

is a

martingale with EX

0

= 0 and we quit at a �xed time T , then our expeted

pro�t is EX

T

= EX

0

= 0 and hene quitting the game does not help.

However, this does not exlude the possibility that stopping at a random

time might help. This is the gambler's dream.

If we ould let our hoie to stop depend on the future, then it is easy

to win. For instane, if we were allowed to stop just before we inurred a

big loss. This we prohibit by onsidering only \stopping times" as in the

following de�nition.

2.9 De�nition. A random variable T : 
 !

�

Z

+

on (
;F ; fF

n

g; P ) is a

stopping time if fT � ng 2 F

n

for every n � 0.

Warning. A stopping time is permitted to take the value 1.
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2.10 EXERCISE. Let X be an adapted stohasti proess and let B � R

be measurable. Show that T = inffn:X

n

2 Bg de�nes a stopping time.

(Set inf ; =1.)

2.11 EXERCISE. Show that T is a stopping time if and only if fT = ng 2

F

n

for all n 2 N [ f0g.

The restrition to stopping times is natural. If we are to stop playing

at time T , then for every time n = 0; 1; 2 : : : we must know if T = n at time

n. If the �ltration is generated by the proess X , then the event fT = ng

must, for every n, depend on the history X

0

; : : : ; X

n

of the proess up to

time n only, if T is a stopping time. So we are allowed to base our deision

to stop on the past history of gains or losses, but not on future times.

The question now is if we an �nd a stopping time T suh that EX

T

>

0. We shall see that this is usually not the ase. Here the random variable

X

T

is de�ned as

(2:12) (X

T

)(!) = X

T (!)

(!):

If T an take the value 1, this requires that X

1

is de�ned.

A �rst step towards answering this question is to note that the stopped

proess X

T

de�ned by

(X

T

)

n

(!) = X

T (!)^n

(!);

is a martingale whenever X is one.

2.13 Theorem. If T is a stopping time and X is a martingale, then X

T

is a martingale.

Proof. We an write (with an empty sum denoting zero)

X

T

n

= X

0

+

n

X

i=1

1

i�T

(X

i

�X

i�1

):

Hene X

T

n+1

�X

T

n

= 1

n+1�T

(X

n+1

�X

n

). The variable 1

n+1�T

= 1�1

T�n

is F

n

-measurable. Taking the onditional expetation relative to F

n

we �nd

that

E(X

T

n+1

�X

T

n

j F

n

) = 1

n+1�T

E(X

n+1

�X

n

j F

n

) = 0; a:s:

beause X is a martingale. (To be omplete, also note that jX

T

n

j �

max

1�i�n

jX

i

j is integrable for every �xed n and verify thatX

T

is a stohas-

ti proess.)
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2.14 EXERCISE. Show that the sub- and supermartingale properties are

also retained under stopping.

If the stopped proess X

T

is a martingale, then EX

T

n

= EX

T^n

is

onstant in n. If T is bounded and EX

0

= 0, we an immediately onlude

that EX

T

= 0 and hene stopping does not help. For general T we would

like to take the limit as n!1 in the relation EX

T^n

= 0 and obtain the

same onlusion that EX

T

= 0. Here we must be areful. If T < 1 we

always have that X

T^n

as

!

X

T

as n ! 1, but we need some integrability

to be able to onlude that the expetations onverge as well. Domination

of X suÆes. Later we shall see that uniform integrability is also suÆient,

and then we an also allow the stopping time T to take the value 1 (after

de�ning X

1

appropriately).

2.15 EXERCISE. Suppose that X is a martingale with uniformly bounded

inrements: jX

n+1

�X

n

j �M for every n and some onstantM . Show that

EX

T

= 0 for every stopping time T with ET <1.

2.3 Martingale Transforms

Another way to try and beat the system would be to hange stakes. If

X

n

�X

n�1

is the standard pay-o� at time n, we ould devise a new game

in whih our pay-o� is C

n

(X

n

� X

n�1

) at time n. Then our total apital

at time n is

(2:16) (C �X)

n

: =

n

X

i=1

C

i

(X

i

�X

i�1

); Y

0

= 0:

If C

n

were allowed to depend on X

n

�X

n�1

, then it would be easy to make

a pro�t. We exlude this by requiring that C

n

may depend on knowledge

of the past only.

2.17 De�nition. A stohasti proess C on (
;F ; fF

n

g; P ) is preditable

if C

n

is F

n�1

measurable for every n � 1.

The proess C � X in (2.16) is alled a martingale transform of X (if

X is a martingale). It is the disrete time version of the stohasti integral

that we shall be onerned with later. Again we annot beat the system:

the martingale transform is a martingale.
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2.18 Theorem. Suppose that C

n

2 L

p

(
;F ; P ) and X

n

2 L

q

(
;F ; P ) for

all n and some p

�1

+ q

�1

= 1.

(i) If C is preditable and X a martingale, then C �X is a martingale.

(ii) If C is preditable and nonnegative and X is a supermartingale, then

C �X is a supermartingale.

Proof. If Y = C � X , then Y

n+1

� Y

n

= C

n

(X

n+1

� X

n

). Beause C

n

is

F

n

-measurable, E(Y

n+1

� Y

n

j F

n

) = C

n

E(X

n+1

� X

n

j F

n

) almost surely.

Both (i) and (ii) are now immediate.

2.4 Doob's Uprossing Inequality

Let a < b be given numbers. The number of uprossings of the interval [a; b℄

by the proess X in the time interval f0; 1; : : : ; ng is de�ned as the largest

integer k for whih we an �nd

0 � s

1

< t

1

< s

2

< t

2

< � � � < s

k

< t

k

� n;

with

X

s

i

< a; X

t

i

> b; i = 1; 2; : : : ; k:

The number of uprossings is denoted by U

n

[a; b℄. The de�nition is meant to

be \!"-wise and hene U

n

[a; b℄ is a funtion on 
. Beause the desription

involves only �nitely many steps, U

n

[a; b℄ is a random variable.

A high number of uprossings of [a; b℄ indiates that X is \variable"

around the level [a; b℄. The uprossing numbers U

n

[a; b℄ are therefore an

important tool to study onvergene properties of proesses. For super-

martingales Doob's lemma gives a surprisingly simple bound on the size of

the uprossings, just in terms of the last variable.

2.19 Lemma. If X is a supermartingale, then

(b� a)EU

n

[a; b℄ � E(X

n

� a)

�

:

Proof. We de�ne a proess C

1

; C

2

; : : : taking values \0" and \1" only as

follows. If X

0

� a, then C

n

= 0 until and inluding the �rst time n that

X

n

< a, then C

n

= 1 until and inluding the �rst time that X

n

> b, next

C

n

= 0 until and inluding the �rst time that X

n

< a, etetera. If X

0

< a,

then C

n

= 1 until and inluding the �rst time that X

n

> b, then C

n

= 0

etetera. Thus the proess is swithed \on" and \o�" eah time the proess

X rosses the levels a or b. It is \on" during eah rossing of the interval

[a; b℄.
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We laim that

(2:20) (b� a)U

n

[a; b℄ � (C �X)

n

+ (X

n

� a)

�

;

where C � X is the martingale transform of the preeding setion. To see

this note that (C � X)

n

is the sum of all inrements X

i

� X

i�1

for whih

C

i

= 1. A given realization of the proess C is a sequene of n zeros and

ones. Every onseutive series of ones (a \run") orresponds to a rossing

of [a; b℄ by X , exept possibly the �nal run (if this ends at position n). The

�nal run (as every run) starts when X is below a and ends at X

n

, whih

ould be anywhere. Thus the �nal run ontributes positively to (C �X)

n

if

X

n

> a and an ontribute negatively only if X

n

< a. In the last ase it

an ontribute in absolute value never more than jX

n

� aj. Thus if we add

(X

n

� a)

�

to (C �X)

n

, then we obtain at least the sum of the inrements

over all ompleted rossings.

It follows from the desription, that C

n

depends on C

1

; : : : ; C

n�1

and

X

n�1

only. Hene, by indution, the proess C is preditable. By The-

orem 2.18 the martingale transform C � X is a supermartingale and has

noninreasing mean E(C � X)

n

� E(C � X)

0

= 0. Taking means aross

(2.20) onludes the proof.

2.5 Martingale Convergene

In this setion we give onditions under whih a (sub/super) martingale

onverges to a limit X

1

, almost surely or in pth mean. Furthermore, we in-

vestigate if we an addX

1

to the end of the sequeneX

0

; X

1

; : : : and obtain

a (sub/super) martingale X

0

; X

1

; : : : ; X

1

(with the de�nition extended to

inlude the time 1 in the obvious way).

2.21 Theorem. If X

n

is a (sub/super) martingale with sup

n

EjX

n

j <1,

then there exists an integrable random variable X

1

with X

n

! X

1

almost

surely.

Proof. If we an show that X

n

onverges almost surely to a limit X

1

in

[�1;1℄, then X

1

is automatially integrable, beause by Fatou's lemma

EjX

1

j � lim inf EjX

n

j <1.

We an assume without loss of generality that X

n

is a supermartingale.

For a �xed pair of numbers a < b, let

F

a;b

=

n

! 2 
: lim inf

n!1

X

n

(!) < a � b < lim sup

n!1

X

n

(!)

o

:

If lim

n!1

X

n

(!) does not exist in [�1;1℄, then we an �nd a < b suh

that ! 2 F

a;b

. Beause the rational numbers are dense in R, we an even �nd
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suh a < b among the rational numbers. The theorem is proved if we an

show that P (F

a;b

) = 0 for every of the ountably many pairs (a; b) 2 Q

2

.

Fix a < b and let U

n

[a; b℄ be the number of uprossings of [a; b℄ on

f0; : : : ; ng by X . If ! 2 F

a;b

, then U

n

[a; b℄ " 1 as n ! 1 and hene by

monotone onvergene EU

n

[a; b℄ " 1 if P (F

a;b

) > 0. However, by Doob's

uprossing's inequality

(b� a)EU

n

[a; b℄ � E(X

n

� a)

�

� EjX

n

� aj � sup

n

EjX

n

j+ jaj:

The right side is �nite by assumption and hene the left side annot inrease

to 1. We onlude that P (F

a;b

) = 0.

2.22 EXERCISE. Let X

n

be a nonnegative supermartingale. Show that

sup

n

EjX

n

j <1 and hene X

n

onverges almost surely to some limit.

If we de�ne X

1

as limX

n

if this limit exists and as 0 otherwise, then,

if X is adapted, X

1

is measurable relative to the �-�eld

F

1

= �(F

1

;F

2

; : : :):

Then the stohasti proess X

0

; X

1

; : : : ; X

1

is adapted to the �ltration

F

0

;F

1

; : : : ;F

1

. We may ask whether the martingale property E(X

n

j F

m

) =

X

m

(for n � m) extends to the ase n =1. The martingale is then alled

losed. From Example 2.6 we know that the martingale X

m

= E(X

1

j F

m

)

is uniformly integrable. This ondition is also suÆient.

2.23 Theorem. If X is a uniformly integrable (sub/super) martingale,

then there exists a random variable X

1

suh that X

n

! X

1

almost surely

and in L

1

. Moreoever,

(i) If X is a martingale, then X

n

= E(X

1

j F

n

) almost surely for every

n � 0.

(ii) If X is a submartingale, then X

n

� E(X

1

j F

n

) almost surely for every

n � 0.

Proof. The �rst assertion is a orollary of the preeding theorem and the

fat that a uniformly integrable sequene of random variables that onverges

almost surely onverges in L

1

as well.

Statement (i) follows by taking the L

1

-limit as n!1 in the equality

X

m

= E(X

n

j F

m

), where we use that kE(X

n

j F

m

)�E(X

1

j F

m

)k

1

� kX

n

�

X

1

k

1

! 0, so that the right side onverges to E(X

1

j F

m

).

Statement (ii) follows similarly (where we must note that L

1

-

onvergene retains ordering almost surely), or by the following argument.

By the submartingale property, for every m � n, EX

m

1

F

� EX

n

1

F

. By

uniformly integrability of the proess X1

F

we an take the limit as n!1

in this and obtain that EX

m

1

F

� EE(X

n

j F

m

)1

F

= EX

1

1

F

for every

F 2 F

m

. The right side equals EX

0

m

1

F

for X

0

m

= E(X

1

j F

m

) and hene
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E(X

m

� X

0

m

)1

F

� 0 for every F 2 F

m

. This implies that X

m

�X

0

m

� 0

almost surely.

2.24 Corollary. If � is an integrable random variable and X

n

= E(�j F

n

)

for a �ltration fF

n

g, then X

n

! E(�j F

1

) almost surely and in L

1

.

Proof. Beause X is a uniformly integrable martingale, the preeding

theorem gives that X

n

! X

1

almost surely and in L

1

for some inte-

grable random variable X

1

, and X

n

= E(X

1

j F

n

) for every n. The vari-

able X

1

an be hosen F

1

measurable (a matter of null sets). It follows

that E(�j F

n

) = X

n

= E(X

1

j F

n

) almost surely for every n and hene

E�1

F

= EX

1

1

F

for every F 2 [

n

F

n

. But the set of F for whih this holds

is a �-�eld and hene E�1

F

= EX

1

1

F

for every F 2 F

1

. This shows that

X

1

= E(�j F

1

).

The preeding theorem applies in partiular to L

p

-bounded martin-

gales (for p > 1). But then more is true.

2.25 Theorem. If X is an L

p

-bounded martingale (p > 1), then there

exists a random variable X

1

suh that X

n

! X

1

almost surely and in L

p

.

Proof. By the preeding theorem X

n

! X

1

almost surely and in L

1

and

moreover E(X

1

j F

n

) = X

n

almost surely for every n. By Jensen's inequality

jX

n

j

p

=

�

�

E(X

1

j F

n

)

�

�

p

� E

�

jX

1

j

p

j F

n

�

and hene EjX

n

j

p

� EjX

1

j

p

for

every n. The theorem follows from Lemma 1.22.

2.26 EXERCISE. Show that the theorem remains true if X is a nonnega-

tive submartingale.

Warning. A stohasti proess that is bounded in L

p

and onverges

almost surely to a limit does not neessarily onverge in L

p

. For this jX j

p

must be uniformly integrable. The preeding theorem makes essential use

of the martingale property of X . Also see Setion 2.9.

2.6 Reverse Martingale Convergene

Thus far we have onsidered �ltrations that are inreasing. In this setion,

and in this setion only, we onsider a reverse �ltration

F � F

0

� F

1

� � � � � F

1

= \

n

F

n

:
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2.27 De�nition. An adapted, integrable stohasti proess X on the re-

verse �ltered spae (
;F ; fF

n

g; P ) is a

(i) reverse martingale if E(X

m

j F

n

) = X

n

a.s. for all m � n.

(ii) reverse submartingale if E(X

m

j F

n

) � X

n

a.s. for all m � n.

(ii) reverse supermartingale if E(X

m

j F

n

) � X

n

a.s. for all m � n.

It is more insightful to say that a reverse (sub/super) martingale is

a proess X = (X

0

; X

1

; : : :) suh that the sequene : : : ; X

2

; X

1

; X

0

is a

(sub/super) martingale as de�ned before, relative to the �ltration � � � �

F

2

� F

1

� F

0

. In deviation from the de�nition of (sub/super) martingales,

the time index : : : ; 2; 1; 0 then runs against the natural order and there is

a \�nal time" 0. Thus the (sub/super) martingales obtained by reversing

a reverse (sub/super) martingale are automatially losed (by the \�nal

element" X

0

).

2.28 Example. If � is an integrable random variable and fF

n

g an arbitrary

reverse �ltration, then X

n

= E(�j F

n

) de�nes a reverse martingale. We an

inlude n =1 in this de�nition.

Beause every reverse martingale satis�es X

n

= E(X

0

j F

n

), this is

atually the only type of reverse martingale.

2.29 Example. If fN(t): t > 0g is a standard Poisson proess, and t

1

>

t

2

> � � � � 0 a dereasing sequene of numbers, then X

n

= N(t

n

)� t

n

is a

reverse martingale relative to the reverse �ltration F

n

= �(N(t): t � t

n

).

The veri�ation of this is exatly the same as the for the orresponding

martingale property of this proess for an inreasing sequene of times.

That a reverse martingale beomes an ordinary martingale if we turn

it around may be true, but it is not very helpful for the onvergene results

that we are interested in. The results on (sub/super) martingales do not

imply those for reverse (sub/super) martingales, beause the \in�niteness"

is on the other end of the sequene. Fortunately, the same tehniques apply.

2.30 Theorem. If X is a uniformly integrable reverse (sub/super) martin-

gale, then there exists a random variable X

1

suh that X

n

! X

1

almost

surely and in mean as n!1. Moreover,

(i) If X is a reverse martingale, then E(X

m

j F

1

) = X

1

a.s. for every m.

(ii) If X is a reverse submartingale, then E(X

m

j F

1

) � X

1

a.s. for every

m.

Proof. Doob's uprossings inequality is appliable to bound the number of

uprossings of X

0

; : : : ; X

n

, beause X

n

; X

n�1

; : : : ; X

0

is a super martingale

if X is a reverse supermartingale. Thus we an mimi the proof of Theo-

rem 2.21 to prove the existene of an almost sure limit X

1

. By uniform

integrability this is then also a limit in L

1

.
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The submartingale property implies that EX

m

1

F

� EX

n

1

F

for every

F 2 F

n

and n � m. In partiular, this is true for every F 2 F

1

. Upon

taking the limit as n ! 1, we see that EX

m

1

F

� EX

1

1

F

for every

F 2 F

1

. This proves the relationship in (ii). The proof of (i) is easier.

2.31 EXERCISE. Let fF

n

g be a reverse �ltration and � integrable. Show

that E(�j F

n

) ! E(�j F

1

) in L

1

and in mean for F

1

= \

n

F

n

. What if

X

1

; X

2

; : : : are i.i.d.?

* 2.32 Example (Strong law of large numbers). A stohasti proess

X = (X

1

; X

2

; : : :) is alled exhangeable if for every n the distribution

of (X

�(1)

; : : : ; X

�(n)

) is the same for every permutation (�(1); : : : ; �(n))

of (1; : : : ; n). If EjX

1

j < 1, then the sequene of averages

�

X

n

onverges

almost surely and in mean to a limit (whih may be stohasti).

To prove this onsider the reverse �ltration F

n

= �(X

n

; X

n+1

; : : :).

The �-�eld F

n

\depends" on X

1

; : : : ; X

n

only through X

1

+ � � �+X

n

and

hene by symmetry and exhangeability E(X

i

j F

n

) is the same for i =

1; : : : ; n. Then

X

n

= E(X

n

j F

n

) =

1

n

n

X

i=1

E(X

i

j F

n

) = E(X

1

j F

n

); a:s::

The right side onverges almost surely and in mean by the preeding theo-

rem.

2.33 EXERCISE. Identify the limit in the preeding example as E(X

1

j F

1

)

for F

1

= \

n

F

n

.

Beause, by de�nition, a reverse martingale satis�esX

n

= E(X

0

j F

n

), a

reverse martingale is automatially uniformly integrable. Consequently the

preeding theorem applies to any reverse martingale. A reverse (sub/super)

martingale is uniformly integrable as soon as it is bounded in L

1

. In fat,

it suÆes to verify that EX

n

is bounded below/above.

2.34 Lemma. A reverse supermartingale X is uniformly integrable if and

only if EX

n

is bounded above (in whih ase it inreases to a �nite limit as

n!1).

Proof. The expetations EX

n

of any uniformly integrable proess X are

bounded. The \if" part is the nontrivial part of the lemma. Suppose that

X is a reverse supermartingale.

The sequene of expetations EX

n

is nondereasing in n by the reverse

supermartingale property. Beause it is bounded above it onverges to a

�nite limit. Furthermore, X

n

� E(X

0

j F

n

) for every n and hene X

�

is

uniformly integrable, sine E(X

0

j F

n

) is. It suÆes to show that X

+

is
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uniformly integrable, or equivalently that EX

n

1

X

n

>M

! 0 as M ! 1,

uniformly in n.

By the supermartingale property and beause fX

n

� Mg 2 F

n

, for

every M;N > 0 and every m � n,

EX

n

1

X

n

>M

= EX

n

� EX

n

1

X

n

�M

� EX

n

� EX

m

1

X

n

�M

= EX

n

� EX

m

+EX

m

1

X

n

>M

� EX

n

� EX

m

+EX

+

m

1

X

m

>N

+

N

M

EX

+

n

:

We an make the right side arbitrarily small, uniformly in n � m, by �rst

hoosing m suÆiently large (so that EX

n

�EX

m

is small), next hoosing

N suÆiently large and �nally hoosing M large. For the given m we an

inrease M , if neessary, to ensure that EX

n

1

X

n

>M

is also small for every

0 � n � m.

* 2.7 Doob Deomposition

If a martingale is a model for a fair game, then non-martingale proesses

should orrespond to unfair games. This an be made preise by the Doob

deomposition of an adapted proess as a sum of a martingale and a pre-

ditable proess. The Doob deomposition is the disrete time version of

the elebrated (and muh more ompliated) Doob-Meyer deomposition

of a \semi-martingale" in ontinuous time. We need it here to extend some

results on martingales to (sub/super) martingales.

2.35 Theorem. For any adapted proess X there exists a martingale M

and a preditable proess A, unique up to null sets, both 0 at 0, suh that

X

n

= X

0

+M

n

+A

n

, for every n � 0,

Proof. If we set A

0

= 0 and A

n

�A

n�1

= E(X

n

�X

n�1

j F

n�1

), then A is

preditable. In order to satisfy the equation, we must set

M

0

= 0; M

n

�M

n�1

= X

n

�X

n�1

� E(X

n

�X

n�1

j F

n�1

):

This learly de�nes a martingale M .

Conversely, if the deomposition holds as stated, then E(X

n

�

X

n�1

j F

n�1

) = E(A

n

�A

n�1

j F

n�1

), beause M is a martingale. The right

side is equal to A

n

�A

n�1

beause A is preditable.

If X

n

� X

n�1

= (M

n

�M

n�1

) + (A

n

� A

n�1

) were our gain in the

nth game, then our strategy ould be to play if A

n

� A

n�1

> 0 and not
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to play if this is negative. Beause A is preditable, we \know" this before

time n and hene this would be a valid strategy. The martingale part M

orresponds to a fair game and would give us expeted gain zero. Relative

to the preditable part we would avoid all losses and make all gains. Thus

our expeted pro�t would ertainly be positive. We onlude that only

martingales orrespond to fair games.

From the fat that A

n

� A

n�1

= E(X

n

�X

n�1

j F

n�1

) it is lear that

(sub/super) martingales X orrespond preisely to the ases that the sam-

ple paths of A are inreasing or dereasing.

2.8 Optional Stopping

Let T be a stopping time relative to the �ltration F

n

. Just as F

n

are the

events \known at time n", we like to introdue a �-�eld F

T

of \events

known at time T". This is to be an ordinary �-�eld. Plugging T into F

n

would not do, as this would give something random.

2.36 De�nition. The �-�eld F

T

is de�ned as the olletion of all F � 


suh that F \ fT � ng 2 F

n

for all n 2

�

Z

+

. (This inludes n = 1, where

F

1

= �(F

0

;F

1

; : : :).)

2.37 EXERCISE. Show that F

T

is indeed a �-�eld.

2.38 EXERCISE. Show that F

T

an be equivalently desribed as the ol-

letion of all F � 
 suh that F \ fT = ng 2 F

n

for all n 2

�

Z

+

.

2.39 EXERCISE. Show that F

T

= F

n

if T � n.

2.40 EXERCISE. Show that X

T

is F

T

-measurable if fX

n

:n 2

�

Z

+

g is

adapted.

2.41 Lemma. Let S and T be stopping times. Then

(i) if S � T , then F

S

� F

T

.

(ii) F

S

\ F

T

= F

S^T

.

Proof. (i). If S � T , then F \ fT � ng =

�

F \ fS � ng

�

\ fT � ng. If

F 2 F

S

, then F \fS � ng 2 F

n

and hene, beause always fT � ng 2 F

n

,

the right side is in F

n

. Thus F 2 F

T

.

(ii). By (i) we have F

S^T

� F

S

\F

T

. Conversely, if F 2 F

S

\F

T

, then

F \ fS ^ T � ng = (F \ fS � ng) [ (F \ fT � ng) 2 F

n

for every n and

hene F 2 F

S^T

.
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If the (sub/super) martingale X is uniformly integrable, then there

exists an integrable random variable X

1

suh that X

n

! X

1

almost

surely and in mean, by Theorem 2.23. Then we an de�ne X

T

as in (2.12),

also if T assumes the value1. The optional stopping theorem shows that in

this ase we may replae the �xed times m � n in the de�ning martingale

relationship E(X

n

j F

m

) = X

m

by stopping times S � T .

2.42 Theorem. If X is a uniformly integrable supermartingale, then X

T

is integrable for any stopping time T . Furthermore,

(i) If T is a stopping time, then E(X

1

j F

T

) � X

T

a.s..

(ii) If S � T are stopping times, then E(X

T

j F

S

) � X

S

a.s..

Proof. First we note that X

T

is F

T

-measurable (see Exerise 2.40). For (i)

we wish to prove that EX

1

1

F

� EX

T

1

F

for all F 2 F

T

. Now

EX

1

1

F

= E

1+

X

n=0

X

1

1

F

1

T=n

=

1+

X

n=0

EX

1

1

F

1

T=n

;

by the dominated onvergene theorem. (The \+" in the upper limit 1+

of the sums indiates that the sums also inlude a term n = 1.) Beause

F \ fT = ng 2 F

n

and E(X

1

j F

n

) � X

n

for every n, the supermartingale

property gives that the right side is bounded above by

1+

X

n=0

EX

n

1

F

1

T=n

= EX

T

1

F

;

if X

T

is integrable, by the dominated onvergene theorem. This gives the

desired inequality and onludes the proof of (i) for any stopping time T

for whih X

T

is integrable.

If T is bounded, then jX

T

j � max

m�n

jX

m

j for n an upper bound on

T and hene X

T

is integrable. Thus we an apply the preeding paragraph

to see that E(X

1

j F

T^n

) � X

T^n

almost surely for every n. If X is a

martingale, then this inequality is valid for both X and �X and hene, for

every n,

X

T^n

= E(X

1

j F

T^n

); a:s::

for every n. If n ! 1 the left side onverges to X

T

. The right side is a

uniformly integrable martingale that onverges to an integrable limit in L

1

by Theorem 2.23. Beause the limits must agree, X

T

is integrable.

Combining the preeding we see that X

T

= E(X

1

j F

T

) for every

stopping time T if X is a uniformly integrable martingale. Then for stop-

ping times S � T the towering property of onditional expetations gives

E(X j F

S

) = E

�

E(X

1

j F

T

)j F

S

�

= E(X

1

j F

S

), beause F

S

� F

T

. Apply-

ing (i) again we see that the right side is equal to X

S

. This proves (ii) in

the ase that X is a martingale.
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To extend the proof to supermartingales X , we employ the Doob

deomposition X

n

= X

0

+ M

n

� A

n

, where M is a martingale with

M

0

= 0 and A is a nondereasing (preditable) proess with A

0

= 0.

Then EA

n

= EX

0

� EX

n

is bounded if X is uniformly integrable. Hene

A

1

= limA

n

is integrable, and A is dominated (by A

1

) and hene uni-

formly integrable. Then M must be uniformly integrable as well, whene,

by the preeding, M

T

is integrable and E(M

T

j F

S

) = M

T

. It follows that

X

T

= X

0

+M

T

�A

T

is integrable. Furthermore, by linearity of the ondi-

tional expetation, for S � T ,

E(X

T

j F

S

) = X

0

+E(M

T

j F

S

)� E(A

T

j F

S

)

� X

0

+M

S

�A

S

= X

S

;

beause A

S

� A

T

implies that A

S

� E(A

T

j F

S

) almost surely. This on-

ludes the proof of (ii). The statement (i) (with S playing the role of T ) is

the speial ase that T =1.

One onsequene of the preeding theorem is that EX

T

= EX

0

, when-

ever T is a stopping time and X a uniformly integrable martingale.

Warning. The ondition that X be uniformly integrable annot be

omitted.

2.9 Maximal Inequalities

A maximal inequality for a stohasti proess X is a bound on some as-

pet of the distribution of sup

n

X

n

. Suprema over stohasti proesses are

usually hard to ontrol, but not so for martingales. Somewhat remarkably,

we an bound the norm of sup

n

X

n

by the supremum of the norms, up to

a onstant.

We start with a probability inequality.

2.43 Lemma. If X is a submartingale, then for any x � 0 and every

n 2 Z

+

,

xP

�

max

0�i�n

X

i

� x

�

� EX

n

1

max

0�i�n

X

i

�x

� EX

n

:

Proof. We an write the event in the left side as the disjoint union [

n

i=0

F

i

of the events

F

0

= fX

0

� xg; F

1

= fX

0

< x;X

1

� xg;

F

2

= fX

0

< x;X

1

< x;X

2

� xg; : : : :

Beause F

i

2 F

i

, the submartingale property gives EX

n

1

F

i

� EX

i

1

F

i

�

xP (F

i

), beause X

i

� x on F

i

. Summing this over i = 0; 1; : : : ; n yields the

result.
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2.44 Corollary. If X is a nonnegative submartingale, then for any p > 1

and p

�1

+ q

�1

= 1, and every n 2 Z

+

,







max

0�i�n

X

i







p

� qkX

n

k

p

:

If X is bounded in L

p

(
;F ; P ), then X

n

! X

1

in L

p

for some random

variable X

1

and







sup

n

X

n







p

� qkX

1

k

p

= q sup

n

kX

n

k

p

:

Proof. Set Y

n

= max

0�i�n

X

i

. By Fubini's theorem (or partial integra-

tion),

EY

p

n

=

Z

1

0

px

p�1

P (Y

n

� x) dx �

Z

1

0

px

p�2

EX

n

1

Y

n

�x

dx;

by the preeding lemma. After hanging the order of integration and ex-

petation, we an write the right side as

pE

�

X

n

Z

Y

n

0

x

p�2

dx

�

=

p

p� 1

EX

n

Y

p�1

n

:

Here p=(p� 1) = q and EX

n

Y

p�1

n

� kX

n

k

p

kY

p�1

n

k

q

by H�older's inequality.

Thus EY

p

n

� kX

n

k

p

kY

p�1

n

k

q

. If Y

n

2 L

p

(
;F ; P ), then we an rearrange

this inequality to obtain the result.

This rearranging is permitted only if EY

p

n

<1. By the submartingale

property 0 � X

i

� E(X

n

j F

i

), whene EX

p

i

� EX

p

n

, by Jensen's inequality.

Thus EY

p

n

is �nite whenever EX

p

n

is �nite, and this we an assume without

loss of generality.

Beause X is a nonnegative submartingale, so is X

p

and hene the

sequene EX

p

n

is nondereasing. If X is L

p

-bounded (for p > 1), then it is

uniformly integrable and hene X

n

! X

1

almost surely for some random

variable X

1

, by Theorem 2.23. Taking the limit as n ! 1 in the �rst

assertion, we �nd by the monotone onvergene theorem that

E sup

n

X

p

n

= EY

p

1

= lim

n!1

EY

p

n

� q

p

lim

n!1

EX

p

n

= q

p

sup

n

EX

p

n

:

The supremum on the left does not inrease if we extend it to n 2

�

Z

+

.

Beause jX

n

�X j is dominated by 2Y

1

, we �nd that X

n

! X

1

also in L

p

and hene EX

p

1

= lim

n!1

EX

p

n

.

The results of this setion apply in partiular to the submartingales

formed by applying a onvex funtion to a martingale. For instane, jX j,

X

2

or e

�X

for some � > 0 and some martingale X . This yields a wealth of

useful inequalities. For instane, for any martingale X ,







sup

n

jX

n

j







2

� 2 sup

n

kX

n

k

2

:
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2.45 EXERCISE. Let Y

1

; Y

2

; : : : be an i.i.d. sequene of random variables

with mean zero. set S

n

=

P

n

i=1

Y

i

. Show that Emax

1�i�n

S

2

i

� 4ES

2

n

.



3

Disrete Time

Option Priing

In this hapter we disuss the binary tree model for the priing of \on-

tingent laims" suh as options, due to Cox, Ross and Rubinstein. In this

model the prie S

n

of a stok is evaluated and hanges at the disrete time

instants n = 0; 1; : : : only and it is assumed that its inrements S

n

� S

n�1

an assume two values only. (This is essential; the following would not work

if the inrements ould assume e.g. three values.) We assume that S is a

stohasti proess on a given probability spae and let F

n

be its natural

�ltration.

Next to stok the model allows for bonds. A bond is a \risk-free invest-

ment", omparable to a deposit in a savings aount, whose value inreases

deterministially aording to the relation

R

n

= (1 + r

n

)R

n�1

; R

0

= 1;

the onstant r

n

> 0 being the \interest rate" in the time interval (n�1; n).

A general name for both stok and bond is \asset".

A \portfolio" is a ombination of bonds and stoks. Its ontents may

hange over time. A portfolio ontaining A

n

bonds and B

n

stoks at time

n possesses the value

(3:1) V

n

= A

n

R

n

+ B

n

S

n

:

A pair of proesses (A;B), giving the ontents over time, is an \investment

strategy" if the proesses are preditable. We all a strategy \self-�naning"

if after investment of an initial apital at time 0, we an reshu�e the port-

folio aording to the strategy without further apital import. Tehnially

this requirement means that, for every n � 1,

(3:2) A

n

R

n�1

+B

n

S

n�1

= A

n�1

R

n�1

+B

n�1

S

n�1

:

Thus the apital V

n�1

at time n � 1 (on the right side of the equation) is

used in the time interval (n � 1; n) to exhange bonds for stoks or vie
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versa at the urrent pries R

n�1

and S

n�1

. The left side of the equation

gives the value of the portfolio after the reshu�ing. At time n the value

hanges to V

n

= A

n

S

n

+ B

n

S

n

, due to the hanges in the values of the

underlying assets.

A \derivative" is a �nanial ontrat that is based on the stok. A

popular derivative is the option, of whih there are several varieties. A

\European all option" is a ontrat giving the owner of the option the

right to buy the stok at some �xed time N (the \term" or \expiry time"

of the option) in the future at a �xed prie K (the \strike prie"). At the

expiry time the stok is worth S

N

. If S

N

> K, then the owner of the option

will exerise his right and buy the stok, making a pro�t of S

N

�K. (He

ould sell o� the stok immediately, if he wanted to, making a pro�t of

S

N

�K.) On the other hand, if S

N

< K, then the option is worthless. (It

is said to be \out of the money".) If the owner of the option would want to

buy the stok, he would do better to buy it on the regular market, for the

prie S

N

, rather than use the option.

What is a good prie for an option? Beause the option gives a right

and no obligation it must ost money to get one. The value of the option

at expiry time is, as seen in the preeding disussion, (S

N

�K)

+

. However,

we want to know the prie of the option at the beginning of the term. A

reasonable guess would be E(S

N

� K)

+

, where the expetation is taken

relative to the \true" law of the stok prie S

N

. We don't know this law,

but we ould presumably estimate it after observing the stok market for

a while.

Wrong! Eonomi theory says that the atual distribution of S

N

has

nothing to do with the value of the option at the beginning of the term.

This eonomi reasoning is based on the following theorem.

Reall that we assume that possible values of the stok proess S form

a binary tree. Given its value S

n�1

at time n�1, there are two possibilities

for the value S

n

. For simpliity of notation assume that

S

n

2 fa

n

S

n�1

; b

n

S

n�1

g;

where a

n

and b

n

are known numbers. We assume that given F

n�1

eah of

the two possibilities is hosen with �xed probabilities 1�p

n

and p

n

. We do

not assume that we know the \true" numbers p

n

, but we do assume that

we know the numbers (a

n

; b

n

). Thus, for n � 1,

(3:3)

P (S

n

= a

n

S

n�1

j F

n�1

) = 1� p

n

;

P (S

n

= b

n

S

n�1

j F

n�1

) = p

n

:

(Pretty unrealisti, this, but good exerise for the ontinuous time ase.) It

follows that the omplete distribution of the proess S, given its value S

0

at time 0, an be parametrized by a vetor p = (p

1

; : : : ; p

n

) of probabilities.



3: Disrete Time Option Priing 27

3.4 Theorem. Suppose that 0 < a

n

< 1 + r

n

< b

n

for all n and nonzero

numbers a

n

; b

n

. Then there exists a unique self-�naning strategy (A;B)

with value proess V (as in (3.1)) suh that

(i) V � 0.

(ii) V

N

= (S

N

�K)

+

.

This strategy requires an initial investment of

(iii) V

0

=

~

ER

�1

N

(S

N

�K)

+

;

where

~

E is the expetation under the probability measure de�ned by (3.3)

with p = (~p

1

; : : : ; ~p

n

) given by

~p

n

: =

1 + r

n

� a

n

b

n

� a

n

:

The values ~p are the unique values in (0; 1) that ensure that the proess

~

S

de�ned by

~

S

n

= R

�1

n

S

n

is a martingale.

Proof. By assumption, given F

n�1

, the variable S

n

is supported on the

points a

n

S

n�1

and b

n

S

n�1

with probabilities 1� p

n

and p

n

. Then

E(

~

S

n

j F

n�1

) = R

�1

n

�

(1� p

n

)a

n

+ p

n

b

n

�

S

n�1

:

This is equal to

~

S

n�1

= R

�1

n�1

S

n�1

if and only if

(1� p

n

)a

n

+ p

n

b

n

=

R

n

R

n�1

= 1 + r

n

; $ p

n

=

1 + r

n

� a

n

b

n

� a

n

:

By assumption this value of p

n

is ontained in (0; 1). Thus there exists a

unique martingale measure, as laimed.

The proess

~

V

n

=

~

E

�

R

�1

N

(S

N

� K)

+

j F

n

�

is a ~p-martingale. Given

F

n�1

the variables

~

V

n

�

~

V

n�1

and

~

S

n

�

~

S

n�1

are both funtions of S

n

=S

n�1

and hene supported on two points (dependent on F

n�1

). (Note that the

possible values of S

n

are S

0

times a produt of the numbers a

n

and b

n

and

hene are nonzero by assumption.) Beause these variables are martingale

di�erenes, they have onditional mean zero under ~p

n

. Together this implies

that there exists a unique F

n�1

-measurable variable B

n

(given F

n�1

this

is a \onstant") suh that (for n � 1)

(3:5)

~

V

n

�

~

V

n�1

= B

n

(

~

S

n

�

~

S

n�1

):

Given this proess B, de�ne a proess A to satisfy

(3:6) A

n

R

n�1

+B

n

S

n�1

= R

n�1

~

V

n�1

:

Then both the proesses A and B are preditable and hene (A;B) is a

strategy. (The values (A

0

; B

0

) matter little, beause we hange the portfolio

to (A

1

; B

1

) before anything happens to the stok or bond at time 1; we an

hoose (A

0

; B

0

) = (A

1

; B

1

).)
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The preeding displays imply

A

n

+B

n

~

S

n�1

=

~

V

n�1

;

A

n

+B

n

~

S

n

=

~

V

n�1

+B

n

(

~

S

n

�

~

S

n�1

) =

~

V

n

; by (3.5);

R

n

A

n

+B

n

S

n

= R

n

~

V

n

:

Evaluating the last line with n�1 instead of n and omparing the resulting

equation to (3.6), we see that the strategy (A;B) is self-�naning.

By the last line of the preeding display the value of the portfolio

(A

n

; B

n

) at time n is

V

n

= R

n

~

V

n

= R

n

~

E

�

R

�1

N

(S

N

�K)

+

j F

n

�

:

At time N this beomes V

N

= (S

N

� K)

+

. At time 0 the value is V

0

=

R

0

~

ER

�1

N

(S

N

�K)

+

. That V � 0 is lear from the fat that

~

V � 0, being a

onditional expetation of a nonnegative random variable.

This onludes the proof that a strategy as laimed exists. To see tat it

is unique, suppose that (A;B) is an arbitrary self-�naning strategy satis-

fying (i) and (ii). Let V

n

= A

n

R

n

+B

n

S

n

be its value at time n, and de�ne

~

S

n

= R

�1

n

S

n

and

~

V

n

= R

�1

n

V

n

, all as before. By the �rst paragraph of the

proof there is a unique probability measure ~p making

~

S into a martingale.

Multipyling the self-�naning equation (3.2) by R

�1

n�1

, we obtain (for n � 1)

~

V

n�1

= A

n

+B

n

~

S

n�1

= A

n�1

+B

n�1

~

S

n�1

:

Replaing n � 1 by n in the seond representation of

~

V

n�1

yields

~

V

n

=

A

n

+B

n

~

S

n

. Subtrating from this the �rst representation of

~

V

n�1

, we obtain

that

~

V

n

�

~

V

n�1

= B

n

(

~

S

n

�

~

S

n�1

):

Beause

~

S is a ~p-martingale and B is preditable,

~

V is a ~p-martingale as

well. In partiular,

~

V

n

=

~

E(

~

V

N

j F

n

) for every n � N . By (ii) this means

that

~

V is exatly as in the �rst part of the proof. The rest must also be the

same.

A strategy as in the preeding theorem is alled a \hedging strategy".

Its speial feature is that given an initial investment of V

0

at time zero

(to buy the portfolio (A

0

; B

0

)) it leads with ertainty to a portfolio with

value (S

N

�K)

+

at time N . This is remarkable, beause S is a stohasti

proess. Even though we have limited its inrements to two possibilities

at every time, this still allows 2

N

possible sample paths for the proess

S

1

; : : : ; S

N

, and eah of these has a probability attahed to it in the real

world. The hedging strategy leads to a portfolio with value (S

N

�K)

+

at

time N , no matter whih sample path the proess S will follow.

The existene of a hedging strategy and the following eonomi rea-

soning shows that the initial value V

0

=

~

ER

�1

N

(S

N

�K)

+

is the only right

prie for the option.
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First, if the option were more expensive than V

0

, then nobody would

buy it, beause it would ost less to buy the portfolio (A

0

; B

0

) and go

through the hedging strategy. This is guaranteed to give the same value

(S

N

�K)

+

at the expiry time, for less money.

On the other hand, if the option ould be bought for less money

than V

0

, then selling a portfolio (A

0

; B

0

) and buying an option at time

0 would yield some immediate ash. During the term of the option we

ould next implement the inverse hedging strategy: starting with the port-

folio (�A

0

;�B

0

) at time 0, we reshu�e the portfolio onseutively at

times n = 1; 2; : : : ; N to (�A

n

;�B

n

). This an be done free of investment

and at expiry time we would possess both the option and the portfolio

(�A

N

;�B

N

), i.e. our apital would be �V

N

+ (S

N

�K)

+

, whih is zero.

Thus after making an initial gain of V

0

minus the option prie, we would

with ertainty break even, no matter the stok prie: we would be able to

make money without risk. Eonomists would say that the market would

allow for \arbitrage". But in real markets nothing omes free; real markets

are \arbitrage-free".

Thus the value V

0

=

~

ER

�1

N

(S

N

�K)

+

is the only \reasonable prie".

As noted before, this value does not depend on the \true" values of

the probabilities (p

1

; : : : ; p

n

): the expetation must be omputed under

the \martingale measure" given by (~p

1

; : : : ; ~p

n

). It depends on the steps

(a

1

; b

1

; : : : ; a

n

; b

n

), the interest rates r

n

, the strike prie K and the value

S

0

of the stok at time 0. The distribution of S

N

under ~p is supported on at

most 2

N

values, the orresponding probabilities being (sums of) produts

over the probabilities ~p

i

. We an write out the expetation as a sum, but

this is not espeially insightful. (Below we ompute a limiting value, whih

is more pleasing.)

The martingale measure given by ~p is the unique measure (within the

model (3.3)) that makes the \disounted stok proess" R

�1

n

S

n

into a mar-

tingale. It is sometimes referred to as the \risk-free measure". If the interest

rate were zero and the stok proess a martingale under its true law, then

the option prie would be exatly the expeted value

~

E(S

N

�K)

+

of the

option at expiry term. In a \risk-free world we an prie by expetation".

The disounting of values, the premultiplying with R

�1

n

=

Q

n

i=1

(1+r

i

),

expresses the \time value of money". A apital v at time 0 an be inreased

to a apital R

n

v at time n in a risk-free manner, for instane by putting

it in a savings aount. Then a apital v that we shall reeive at time n

in the future is worth only R

�1

n

v today. For instane, an option is worth

(S

N

� K)

+

at expiry time N , but only R

�1

N

(S

N

� K)

+

at time 0. The

right prie of the option is the expetation of this disounted value \in the

risk-free world given by the martingale measure".

The theorem imposes the ondition that a

n

< 1 + r

n

< b

n

for all n.

This ondition is reasonable. If we had a stok at time n� 1, worth S

n�1

,

and kept on to it until time n, then it would hange in value to either

a

n

S

n�1

or b

n

S

n�1

. If we sold the stok and invested the money in bonds,
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then this apital would hange in value to (1 + r

n

)S

n�1

. The inequality

1+ r

n

< a

n

< b

n

would mean that keeping the stok would always be more

advantageous; nobody would buy bonds. On the other hand, the inequality

a

n

< b

n

< 1 + r

n

would mean that investing in bonds would always be

more advantageous. In both ases, the market would allow for arbitrage:

by exhanging bonds for stok or vie versa, we would have a guaranteed

positive pro�t, no matter the behaviour of the stok. Thus the ondition is

neessary for the market to be \arbitrage-free".

3.7 EXERCISE. Extend the theorem to the ases that:

(i) the numbers (a

n

; b

n

) are preditable proesses.

(ii) the interest rates r

n

form a stohasti proess.

3.8 EXERCISE. Let "

1

; "

2

; : : : be i.i.d. random variables with the uniform

distribution on f�1; 1g and set X

n

=

P

n

i=1

"

i

. Suppose that Y is a martin-

gale relative to F

n

= �(X

1

; : : : ; X

n

). Show that there exists a preditable

proess C suh that Y = Y

0

+ C �X .

We might view the binary stok prie model of this setion as arising

as a time disretization of a ontinuous time model. Then the model should

beome more realisti by re�ning the disretization. Given a �xed time t >

0, we might onsider the binary stok prie model for (S

0

; S

1

; : : : ; S

N

) as a

disretization on the grid 0; T=N; 2T=N; : : : ; T . Then it would be reasonable

to sale the inrements (a

n

; b

n

) and the interest rates r

n

, as they will reet

hanges on in�nitesimal intervals as N ! 1. Given T > 0 onsider the

hoies

(3:9)

a

n;N

= e

�T=N��

p

T=N

;

b

n;N

= e

�T=N+�

p

T=N

;

1 + r

n;N

= e

rT=N

:

These hoies an be motivated from the fat that the resulting sequene

of binary tree models onverges to the ontinuous time model that we shall

disuss later on.

Combining (3.3) and (3.9) we obtain that the stok prie is given by

S

N

= S

0

exp

�

�T + �

p

T

(2X

N

�N)

p

N

�

;

where X

N

is the number of times the stok prie goes up in the time span

1; 2; : : : ; N .

It is thought that a realisti model for the stok market has jumps

up and down with equal probabilities. Then X

N

is binomially (N;

1

2

)-

distributed and the \log returns" satisfy

log

S

N

S

0

= �T + �

p

T

X

N

�N=2

p

N=2

 N(�T; �

2

T );
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by the Central limit theorem. Thus in the limit the log return at time T is

log normally distributed with drift �T and variane �

2

T .

As we have seen the true distribution of the stok pries is irrelevant for

priing the option. Rather we need to repeat the preeding alulation using

the martingale measure ~p. Under this measure X

N

is binomially(N; ~p

N

)

distributed, for

~p

N

=

e

rT=N

� e

�T=N��

p

T=N

e

�T=N+�

p

T=N

� e

�T=N��

p

T=N

=

1

2

�

1

2

r

T

N

�

�+

1

2

�

2

� r

�

�

+O

�

1

N

�

;

by a Taylor expansion. Then ~p

N

(1� ~p

N

)! 1=4 and

log

S

N

S

0

= �T + �

p

T

�

X

N

�N ~p

N

p

N=2

�

p

T

�

�+

1

2

�

2

� r

�

��

+O

�

1

p

N

�

 N

�

(r �

1

2

�

2

)T; �

2

T

�

:

Thus, under the martingale measure, in the limit the stok at time T is log

normally distributed with drift (r �

1

2

�

2

)T and variane �

2

T .

Evaluating the (limiting) option prie is now a matter of straightfor-

ward integration. For an option with expiry time T and strike prie K it

is the expetation of e

�rT

(S

T

�K)

+

, where log(S

T

=S

0

) possesses the log

normal distribution with parameters (r �

1

2

�

2

)T and variane �

2

T . This

an be omputed to be

S

0

�

�

log(S

0

=K) + (r +

1

2

�

2

)T

�

p

T

�

�Ke

�rT

�

�

log(S

0

=K) + (r �

1

2

�

2

)T

�

p

T

�

:

This is the formula found by Blak and Sholes in 1973 using a ontinuous

time model. We shall reover it later in a ontinuous time set-up.
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Continuous Time Martingales

In this hapter we extend the theory for disrete time martingales to the

ontinuous time setting. Besides muh similarity there is the important

di�erene of dealing with unountably many random variables, whih is

solved by onsidering martingales with adlag sample paths.

4.1 Stohasti Proesses

A stohasti proess in ontinuous time is a olletion X = fX

t

: t � 0g

of random variables indexed by the \time" parameter t 2 [0;1) and de-

�ned on a given probability spae (
;F ; P ). Oasionally we work with the

extended time set [0;1℄ and have an additional random variable X

1

.

The �nite-dimensional marginals of a proessX are the random vetors

(X

t

1

; : : : ; X

t

k

), for t

1

; : : : ; t

k

ranging over the time set and k 2 N, and the

marginal distributions of X are the distributions of these vetors. The maps

t 7! X

t

(!), for ! 2 
, are alled sample paths. Unless stated otherwise the

variables X

t

will be understood to be real-valued, but the de�nitions apply

equally well to vetor-valued variables.

Two proesses X and Y de�ned on the same probability spae are

equivalent or eah other's modi�ation if (X

t

1

; : : : ; X

t

k

) = (Y

t

1

; : : : ; Y

t

k

) al-

most surely. They are indistinguishable if P (X

t

= Y

t

;8t) = 1. Both onepts

express that X and Y are the \same", but indistinguishability is quite a

bit stronger in general, beause we are working with an unountable set of

random variables. However, if the sample paths of X and Y are determined

by the values on a �xed ountable set of time points, then the onepts

agree. This is the ase, for instane, if the sample paths are ontinuous, or

more generally left- or right ontinuous. Most of the stohasti proesses

that we shall be onerned with possess this property. In partiular, we
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often onsider adlag proesses (from \ontinu �a droite, limite �a gauhe"):

proesses with sample paths that are right-ontinuous and have limits from

the left at every point t > 0. If X is a left- or right-ontinuous proess, then

X

t�

= lim

s"t;s<t

X

s

; and X

t+

= lim

s#t;s>t

X

s

de�ne left- and right-ontinuous proesses. These are denoted by X

�

and

X

+

and referred to as the left- or right-ontinuous version of X . The dif-

ferene �X : = X

+

�X

�

is the jump proess of X . The variable X

0�

an

only be de�ned by onvention; it will usually be taken equal to 0.

A �ltration in ontinuous time is a olletion fF

t

g

t�0

of sub �-�elds of

F suh that F

s

� F

t

whenever s � t. A typial example is the natural �l-

tration F

t

= �(X

s

: s � t) generated by a stohasti proess X . A stohasti

proess X is adapted to a �ltration fF

t

g if X

t

is F

t

-measurable for every t.

The natural �ltration is the smallest �ltration to whih X is adapted. We

de�ne F

1

= �(F

t

: t � 0). As in the disrete time ase, we all a probability

spae equipped with a �ltration a �ltered probability spae or a \stohasti

basis". We denote it by (
;F ; fF

t

g; P ), where it should be lear from the

notation or the ontext that t is a ontinuous parameter.

Throughout, without further mention, we assume that the probability

spae (
;F ; P ) is omplete. This means that every subset of a null set (a

null set being a set F 2 F with P (F ) = 0) is ontained in F (and hene is

also a null set). This is not a very restritive assumption, beause we an

always extend a given �-�eld and probability measure to make it omplete.

(This will make a di�erene only if we would want to work with more than

one probability measure at the same time.)

We also always assume that our �ltration satis�es the usual onditions:

for all t � 0:

(i) (ompleteness): F

t

ontains all null sets.

(ii) (right ontinuity): F

t

= \

s>t

F

s

.

The �rst ondition an be ensured by ompleting a given �ltration: repla-

ing a given F

t

by the �-�eld generated by F

t

and all null sets. The seond

ondition is more tehnial, but turns out to be important for ertain argu-

ments. Fortunately, the (ompletions of the) natural �ltrations of the most

important proesses are automatially right ontinuous. Furthermore, if a

given �ltration is not right ontinuous, then we might replae it by the the

�ltration \

s>t

F

s

, whih an be seen to be right-ontinuous.

Warning. The natural �ltration of a right-ontinuous proess is not

neessarily right ontinuous.

Warning. When ompleting a �ltration we add all null sets in

(
;F ; P ) to every F

t

. This gives a bigger �ltration than ompleting the

spae (
;F

t

; P ) for every t � 0 separately.

4.1 EXERCISE (Completion). Given an arbitrary probability spae

(
;F ; P ), let

~

F be the olletion of all sets F [ N for F ranging over F
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and N ranging over all subsets of null sets, and de�ne

~

P (F [N) = P (F ).

Show that (
;

~

F ;

~

P ) is well-de�ned and a probability spae.

* 4.2 EXERCISE. Let (
;F ; P ) be a omplete probability spae and F

0

� F

a sub �-�eld. Show that the �-�eld generated by F

0

and the null sets of

(
;F ; P ) is the olletion of all F 2 F suh that there exists F

0

2 F

0

with

P (F 4F

0

) = 0; equivalently, all F 2 F suh that there exists F

0

2 F

0

and

null sets N;N

0

with F

0

�N � F � F

0

[N

0

.

* 4.3 EXERCISE. Show that the ompletion of a right-ontinuous �ltration

is right ontinuous.

* 4.4 EXERCISE. Show that the natural �ltration of the Poisson proess is

right ontinuous. (More generally, this is true for any ounting proess.)

4.2 Martingales

The de�nition of a martingale in ontinuous time is an obvious generaliza-

tion of the disrete time ase.

4.5 De�nition. An adapted, integrable stohasti proess X on the �l-

tered spae (
;F ; fF

t

g; P ) is a

(i) martingale if E(X

t

j F

s

) = X

s

a.s. for all s � t.

(ii) submartingale if E(X

t

j F

s

) � X

s

a.s. for all s � t.

(ii) supermartingale if E(X

t

j F

s

) � X

s

a.s. for all s � t.

The (sub/super) martingales that we shall be interested in are adlag

proesses. It is relatively straightforward to extend results for disrete time

martingales to these, beause given a (sub/super) martingale X :

(i) If 0 � t

1

< t

2

< � � �, then Y

n

= X

t

n

de�nes a (sub/super) martingale

relative to the �ltration G

n

= F

t

n

.

(ii) If t

0

> t

1

> � � � � 0, then Y

n

= X

t

n

de�nes a reverse (sub/super)

martingale relative to the reverse �ltration G

n

= F

t

n

.

Thus we an apply results on disrete time (sub/super) martingales to the

disrete time \skeletons" X

t

n

formed by restriting X to ountable sets of

times. If X is adlag, then this should be enough to study the omplete

sample paths of X .

The assumption that X is adlag is not overly strong. The follow-

ing theorem shows that under the simple ondition that the mean funtion

t 7! EX

t

is adlag, a adlag modi�ation of a (sub/super) martingale always

exists. Beause we assume our �ltrations to be omplete, suh a modi�a-

tion is automatially adapted. Of ourse, it also satis�es the (sub/super)
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martingale property and hene is a (sub/super) martingale relative to the

original �ltration. Thus rather than with the original (sub/super) martin-

gale we an work with the modi�ation.

We an even allow �ltrations that are not neessarily right-ontinuous.

Then we an both replae X by a modi�ation and the �ltration by its

\right-ontinuous version" F

t+

= \

s>t

F

s

and still keep the (sub/super)

martingale property, provided that X is right ontinuous in probability.

(This is muh weaker than right ontinuous.) In part (ii) of the following

theorem, suppose that the �ltration is omplete, but not neessarily right-

ontinuous.

4.6 Theorem. Let X be a (sub/super) martingale relative to the omplete

�ltration fF

t

g.

(i) If the �ltration fF

t

g is right ontinuous and the map t 7! EX

t

is right

ontinuous, then there exists a adlag modi�ation of X .

(ii) If X is right ontinuous in probability, then there exists a modi�ation

of X that is a adlag (sub/super) martingale relative to the �ltration

fF

t+

g.

Proof. Assume without loss of generality that X is a super martingale.

Then X

s

� E(X

t

j F

s

) almost surely for every s � t, whene X

�

s

�

E(X

�

t

j F

s

) almost surely and hene fX

�

s

: 0 � s � tg is uniformly inte-

grable. Combined with the fat that t 7! EX

t

is dereasing and hene

bounded on ompats, if follows that EjX

t

j is bounded on ompats.

For �xed T and every a < b, de�ne the event

F

a;b

=

n

!: 9t 2 [0; T ): lim inf

s""t;s2Q

X

s

(!) < a < b < lim sup

s""t;s2Q

X

s

(!);

or lim inf

s##t;s2Q

X

s

(!) < a < b < lim sup

s##t;s2Q

X

s

(!)

o

(The symbol s "" t denotes a limit as s " t with s restrited to s < t.) Let

Q \ [0; T ) = ft

1

; t

2

; : : :g and let U

n

[a; b℄ be the number of uprossings of

[a; b℄ by the proess X

t

1

; : : : ; X

t

n

put in its natural time order. If ! 2 F

a;b

,

then U

n

[a; b℄ " 1. However, by Doob's uprossings lemma EU

n

[a; b℄ <

sup

0�t�T

EjX

t

j + jaj. We onlude that P (F

a;b

) = 0 for every a < b and

hene the left and right limits

X

t�

= lim

s""t;s2Q

X

s

; X

t+

= lim

s##t;s2Q

X

s

exist for every t 2 [0; T ), almost surely. If we de�ne these proesses to be

zero whenever one of the limits does not exist, then X

t+

is F

t+

-adapted.

Moreover, from the de�nitions X

t+

an be seen to be right-ontinuous with

left limits equal to X

t�

. By Fatou's lemma X

t+

is integrable.

We an repeat this for a sequene T

n

" 1 to show that the limits X

t�

and X

t+

exist for every t 2 [0;1), almost surely. Setting X

t+

equal to zero
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on the exeptional null set, we obtain a adlag proess that is adapted to

F

t+

.

By the super martingale property EX

s

1

F

� EX

t

1

F

for every F 2 F

s

and s � t. Given a sequene of rational numbers t

n

## t, the sequene

fX

t

n

g is a reverse super martingale. Beause EX

t

n

is bounded above, the

sequene is uniformly integrable and hene X

t

n

! X

t+

both almost surely

(by onstrution) and in mean. We onlude that EX

s

1

F

� EX

t+

1

F

for

every F 2 F

s

and s � t. Applying this for every s = s

n

and s

n

a sequene

of rational numbers dereasing to some �xed s, we �nd that EX

s+

1

F

�

EX

t+

1

F

for every F 2 F

s+

= \

n

F

s

n

and s < t. Thus fX

t+

: t � 0g is a

supermartingale relative to F

t+

.

Applying the �rst half of the argument of the preeding paragraph with

s = t we see that EX

t

1

F

� EX

t+

1

F

for every F 2 F

t

. If F

t+

= F

t

, then

X

t

�X

t+

is F

t

-measurable and we onlude thatX

t

�X

t+

� 0 almost surely.

If, moreover, t 7! EX

t

is right ontinuous, then EX

t

= lim

n!1

EX

t

n

=

EX

t+

, beause X

t

n

! X

t+

in mean. Combined this shows that X

t

= X

t+

almost surely, so that X

t+

is a modi�ation of X . This onludes the proof

of (i).

To prove (ii) we reall that X

t+

is the limit in mean of a sequene

X

t

n

for t

n

## t. If X is right ontinuous in probability, then X

t

n

! X

t

in probability. Beause the limits in mean and in probability must agree

almost surely, it follows that X

t

= X

t+

almost surely.

In partiular, every martingale (relative to a \usual �ltration") pos-

sesses a adlag modi�ation, beause the mean funtion of a martingale is

onstant and hene ertainly ontinuous.

4.7 Example. If for a given �ltration fF

t

g and integrable random vari-

able � we \de�ne" X

t

= E(�j F

t

), then in fat X

t

is only determined up

to a null set, for every t. The union of these null sets may have positive

probability and hene we have not de�ned the proess X yet. Any hoie

of the onditional expetations X

t

yields a martingale X . By the preeding

theorem there is a hoie suh that X is adlag.

4.8 EXERCISE. Given a standard Poisson proess fN

t

: t � 0g, let F

t

be

the ompletion of the natural �ltration �(N

s

: s � t). (This an be proved

to be right ontinuous.) Show that:

(i) The proess N

t

is a submartingale.

(ii) The proess N

t

� t is a martingale.

(iii) The proess (N

t

� t)

2

� t is a martingale.

4.9 EXERCISE. Show that every adlag super martingale is right ontin-

uous in mean. (Hint: use reverse super martingale onvergene, as in the

proof of Theorem 4.6.)
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4.3 Martingale Convergene

The martingale onvergene theorems for disrete time martingales extend

without surprises to the ontinuous time situation.

4.10 Theorem. If X is a uniformly integrable, adlag (sub/super) mar-

tingale, then there exists an integrable random variable X

1

suh that

X

t

! X

1

almost surely and in L

1

as t!1.

(i) If X is a martingale, then X

t

= E(X

1

j F

t

) a.s. for all t � 0.

(ii) If X is a submartingale, then X

t

� E(X

1

j F

t

) a.s. for t � 0.

Furthermore, if X is L

p

-bounded for some p > 1, then X

t

! X

1

also in

L

p

.

Proof. In view of Theorems 2.23 and 2.25 every sequene X

t

n

for t

1

< t

2

<

� � � ! 1 onverges almost surely, in L

1

or in L

p

to a limit X

1

. Then we

must have that X

t

! X

1

in L

1

or in L

p

as t!1. Assertions (i) and (ii)

follow from Theorem 2.23 as well.

The almost sure onvergene of X

t

as t ! 1 requires an additional

argument, as the null set on whih a sequene X

t

n

as in the preeding

paragraph may not onverge may depend on the sequene ft

n

g. In this

part of the proof we use the fat that X is adlag. As in the proof of

Theorem 2.21 it suÆes to show that for every �xed numbers a < b the

event

F

a;b

=

n

!: lim inf

t!1

X

t

(!) < a < b < lim sup

t!1

X

t

(!)

o

is a null set. Assume that X is a supermartingale and for given

t

1

; : : : ; t

n

let U

n

[a; b℄ be the number of uprossings of [a; b℄ by the pro-

ess X

t

1

; : : : ; X

t

n

put in its natural time order. By Doob's uprossing's

inequality, Lemma 2.19,

(b� a)EU

n

[a; b℄ � sup

t

EjX

t

j+ jaj:

If we let Q = ft

1

; t

2

; : : :g, then U

n

[a; b℄ " 1 on F

a;b

, in view of the right-

ontinuity of X . We onlude that P (F

a;b

) = 0.

4.4 Stopping

The main aim of this setion is to show that a stopped martingale is a

martingale, also in ontinuous time, and to extend the optional stopping

theorem to ontinuous time.
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4.11 De�nition. A random variable T : 
 ! [0;1℄ is a stopping time if

fT � tg 2 F

t

for every t � 0.

Warning. Some authors use the term optional time instead of stopping

time. Some authors de�ne an optional time by the requirement that fT <

tg 2 F

t

for every t � 0. This an make a di�erene if the �ltration is not

right-ontinuous.

4.12 EXERCISE. Show that T : 
 ! [0;1℄ is a stopping time if and only

if fT < tg 2 F

t

for every t � 0. (Assume that the �ltration is right-

ontinuous.)

4.13 De�nition. The �-�eld F

T

is de�ned as the olletion of all F � 


suh that F \ fT � tg 2 F

t

for all t 2 [0;1℄. (This inludes t =1, where

F

1

= �(F

t

: t � 0).)

The olletion F

T

is indeed a �-�eld, ontained in F

1

� F , and F

T

=

F

t

if T � t. Lemma 2.41 on omparing the �-�elds F

S

and F

T

also remains

valid as stated. The proofs are idential to the proofs in disrete time.

However, in the ontinuous time ase it would not do to onsider events of

the type fT = tg only. We also need to be a little more areful with the

de�nition of stopped proesses, as the measurability is not automati. The

stopped proess X

T

and the variable X

T

are de�ned exatly as before:

(X

T

)

t

(!) = X

T (!)^t

(!); X

T

(!) = X

T (!)

(!):

In general these maps are not measurable, but if X is adlag and adapted,

then they are. More generally, it suÆes that X is \progressively measur-

able". To de�ne this onept think of X as the map X : [0;1) � 
 ! R

given by

(t; !) 7! X

t

(!):

The proess X is measurable if X is measurable relative to the produt �-

�eld B

1

�F , i.e. if it is \jointly measurable in (t; !)" relative to the produt

�-�eld. The proess X is progressively measurable if, for eah t � 0, the

restrition X : [0; t℄ � 
 ! R is measurable relative to the produt �-�eld

B

t

�F

t

. This is somewhat stronger than being adapted.

4.14 EXERCISE. Show that a progressivelymeasurable proess is adapted.

4.15 Lemma. If the proess X is progressively measurable and T is a

stopping time, then:

(i) X

T

is progressively measurable (and hene adapted).

(ii) X

T

is F

T

-measurable (and hene a random variable).
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(In (ii) it is assumed that X

1

is de�ned and F

1

-measurable if T assumes

the value 1.)

Proof. For eah t the map T ^ t: 
 ! [0;1℄ is F

t

measurable, beause

fT ^ t > sg = fT > sg 2 F

s

� F

t

if s < t and fT ^ t > sg is empty if s � t.

Then the map

(s; !) 7! (s; T (!) ^ t; !) 7!

�

s ^ T (!); !

�

;

[0; t℄� 
! [0; t℄� [0; t℄� 
! [0; t℄� 
;

is B

t

�F

t

�B

t

�B

t

�F

t

�B

t

�F

t

-measurable. The stopped proess X

T

as a

map on [0; t℄�
 is obtained by omposingX : [0; t℄�
! R to the right side

and hene is B

t

� F

t

-measurable, by the hain rule. That a progressively

measurable proess is adapted is the preeding exerise.

For assertion (ii) we must prove that fX

T

2 Bg \ fT � tg 2 F

t

for

every Borel set B and t 2 [0;1℄. The set on the left side an be written as

fX

T^t

2 Bg\fT � tg. For t <1 this is ontained in F

t

by (i) and beause

T is a stopping time. For t = 1 we note that fX

T

2 Bg = [

t

fX

T^t

2

Bg \ fT � tg [ fX

1

2 Bg \ fT =1g and this is ontained in F

1

.

4.16 Example (Hitting time). Let X be an adapted, progressively mea-

surable stohasti proess, B a Borel set, and de�ne

T = infft � 0:X

t

2 Bg:

(The in�mum of the empty set is de�ned to be 1.) Then T is a stopping

time.

Here X = (X

1

; : : : ; X

d

) may be vetor-valued, where it is assumed that

all the oordinate proesses X

i

are adapted and progressively measurable

and B is a Borel set in R

d

.

That T is a stopping time is not easy to prove in general, and does rely

on our assumption that the �ltration satis�es the usual onditions. A proof

an be based on the fat that the set fT < tg is the projetion on 
 of the

set f(s; !): s < t;X

s

(!) 2 Bg. (The projetion on 
 of a subset A � T �


of some produt spae is the set f!: 9t > 0: (t; !) 2g.) By the progressive

measurability of X this set is measurable in the produt �-�eld B

t

� F

t

.

By the projetion theorem (this is the hard part), the projetion of every

produt measurable set is measurable in the ompletion. See Elliott, p50.

Under speial assumptions on X and B the proof is more elementary.

For instane, suppose that X is ontinuous and that B is losed. Then, for

t > 0,

fT � tg =

\

n

[

s<t;s2Q

fd(X

s

; B) < n

�1

g:

The right side is learly ontained in F

t

. Furthermore, by the ontinuity

of X and the losedness of B we have fT = 0g = fX

0

2 Bg and this is

ontained in F

0

.
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To establish the preeding display, we note �rst that the event fT = 0g

is ontained in both sides of the equation. Furthermore, it is easy to see

the inlusion of right side in left side; we now prove the inlusion of left

in right side. By the de�nition of T and ontinuity of X , the funtion

t 7! d(X

t

; B) must vanish at t = T and be stritly positive on [0; T ) if

T > 0. By ontinuity this funtion assumes every value in the interval

[0; d(X

0

; B)℄ on the interval [0; T ℄. In partiular, for every n 2 N there must

be some rational number s 2 (0; T ) suh that d(X

s

; B) < n

�1

.

4.17 EXERCISE. Give a diret proof that T = infft:X

t

2 Bg is a stopping

time if B is open and X is right-ontinuous. (Hint: onsider the sets fT < tg

and use the right-ontinuity of the �ltration.)

4.18 EXERCISE. Let X be a ontinuous stohasti proess with X

0

= 0

and T = infft � 0: jX

t

j � ag for some a > 0. Show that T is a stopping

time and that jX

T

j � a.

4.19 Lemma. If X is adapted and right ontinuous, then X is progres-

sively measurable. The same is true if X is adapted and left ontinuous.

Proof. We give the proof for the ase that X is right ontinuous. For �xed

t � 0, let 0 = t

n

0

< t

n

1

< � � � < t

n

k

n

= t be a sequene of partitions of

[0; t℄ with mesh widths tending to zero as n ! 1. De�ne X

n

to be the

disretization of X equal to X

t

n

i

on [t

n

i�1

; t

n

i

) and equal to X

t

at ftg. By

right ontinuity ofX ,X

n

s

(!)! X

s

(!) as n!1 for every (s; !) 2 [0; t℄�
.

Beause a pointwise limit of measurable funtions is measurable, it suÆes

to show that every of the mapsX

n

: [0; t℄�
! R is B

t

�F

t

-measurable. Now

fX

n

2 Bg an be written as the union of the sets [t

n

i�1

; t

n

i

)�f!:X

t

n

i

(!) 2

Bg and the set ftg � f!:X

t

(!) 2 Bg and eah of these sets is ertainly

ontained in B

t

�F

t

.

Exatly as in the disrete time situation a stopped (sub/super) mar-

tingale is a (sub/super) martingale, and the (in)equalities de�ning the

(sub/super) martingale property remain valid if the (sub/super) martin-

gale is uniformly integrable and the times are replaes by stopping times.

At least if we assume that the (sub/super) martingale is adlag.

4.20 Theorem. If X is a adlag (sub/super) martingale and T is a stop-

ping time, then X

T

is a (sub/super) martingale.

Proof.We an assume without loss of generality that X is a submartingale.

For n 2 N de�ne T

n

to be the upward disretization of T on the grid

0 < 2

�n

< 22

�n

< � � �; i.e. T

n

= k2

�n

if T 2 [(k� 1)2

�n

; k2

�n

) (for k 2 N)

and T

n

= 1 if T = 1. Then T

n

# T as n ! 1 and by right ontinuity

X

T

n

^t

! X

T^t

for all t, pointwise on 
. For �xed t > 0 let k

n;t

2

�n

be the

biggest point k2

�n

on the grid smaller than or equal to t.
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For �xed t the sequene

X

0

; X

2

�n
; X

22

�n
; : : : ; X

k

n;t

2

�n
; X

t

is a submartingale relative to the �ltration

F

0

� F

2

�n � F

22

�n � � � � � F

k

n;t

2

�n � F

t

:

Here the indexing by numbers k2

�n

or t di�ers from the standard indexing

by numbers in Z

+

, but the interpretation of \submartingale" should be

lear. Beause the submartingale has �nitely many elements, it is uniformly

integrable. (If you wish, you may also think of it as an in�nite sequene, by

just repeating X

t

at the end.)

Both T

n

^t and T

n�1

^t an be viewed as stopping times relative to this

�ltration. For instane, the �rst follows from the fat that fT

n

� k2

�n

g =

fT < k2

�n

g 2 F

k2

�n
for every k, and the fat that the minimum of two

stopping times is always a stopping time. For T

n�1

we use the same argu-

ment and also note that the grid with mesh width 2

�n+1

is ontained in the

grid with mesh width 2

�n

. Beause T

n�1

^ t � T

n

^ t, the optional stopping

theorem in disrete time, Theorem 2.42, gives E(X

T

n�1

^t

j F

T

n

^t

) � X

T

n

^t

almost surely. Furthermore, E(X

T

n

^t

j F

0

) � X

0

and hene EX

T

n

^t

� EX

0

.

This being true for every n it follows that X

T

1

^t

; X

T

2

^t

; : : : is a reverse

submartingale relative to the reverse �ltration F

T

1

^t

� F

T

2

^t

� � � � with

mean bounded below by EX

0

. By Lemma 2.34 fX

T

n

^t

g is uniformly inte-

grable. Combining this with the �rst paragraph we see that X

T

n

^t

! X

T^t

in L

1

, as n!1.

For �xed s < t the sequene

X

0

; X

2

�n ; : : : ; X

k

s;n

2

�n ; X

s

; : : : ; X

k

t;n

2

�n ; X

t

is a submartingale relative to the �ltration

F

0

� F

2

�n
� � � � � F

k

s;n

2

�n
� F

s

� � � � � F

k

t;n

2

�n
� F

t

:

The variable T

n

^t is a stopping time relative to this set-up. By the extension

of Theorem 2.13 to submartingales the preeding proess stopped at T

n

^ t

is a submartingale relative to the given �ltration. This is the proess

X

0

; X

2

�n

^T

n

; : : : ; X

k

s;n

2

�n

^T

n

; X

s^T

n

; : : : ; X

k

t;n

2

�n

^T

n

; X

t^T

n

:

In partiular, this gives that

E(X

T

n

^t

j F

s

) � X

T

n

^s

; a:s::

As n ! 1 the left and right sides of the display onverge in L

1

to

E(X

T^t

j F

s

) and X

T^s

. Beause L

1

-onvergene implies the existene of

an almost surely onverging subsequene, the inequality is retained in the

limit in an almost sure sense. Hene E(X

T^t

j F

s

) � X

T^s

almost surely.

A uniformly integrable, adlag (sub/super) martingale X onverges in

L

1

to a limit X

1

, by Theorem 4.10. This allows to de�ne X

T

also if T takes

the value 1.
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4.21 Theorem. If X is a uniformly integrable, adlag submartingale and

S � T are stopping times, then X

S

andX

T

are integrable and E(X

T

j F

S

) �

X

S

almost surely.

Proof. De�ne S

n

and T

n

to be the disretizations of S and T upwards on

the grid 0 < 2

�n

< 22

�n

< � � �, de�ned as in the preeding proof. By right

ontinuity X

S

n

! X

S

and X

T

n

! X

T

pointwise on 
. Both S

n

and T

n

are

stopping times relative to the �ltration F

0

� F

2

�n
� � � �, and X

0

; X

2

�n
; : : :

is a uniformly integrable submartingale relative to this �ltration. Beause

S

n

� T

n

the optional sampling theorem in disrete time, Theorem 2.42,

yields that X

S

n

and X

T

n

are integrable and E(X

T

n

j F

S

n

) � X

S

n

almost

surely. In other words, for every F 2 F

S

n

,

EX

T

n

1

F

� EX

S

n

1

F

:

Beause S � S

n

we have F

S

� F

S

n

and hene the preeding display is true

for every F 2 F

S

. If the sequenes X

S

n

and X

T

n

are uniformly integrable,

then we an take the limit as n ! 1 to �nd that EX

T

1

F

� EX

S

1

F

for

every F 2 F

S

and the proof is omplete.

Both T

n�1

and T

n

are stopping times relative to the �ltration F

0

�

F

2

�n
� � � � and T

n

� T

n�1

. By the optional stopping theorem in disrete

time E(X

T

n�1

j F

T

n

) � X

T

n

, sine X is uniformly integrable. Furthermore,

E(X

T

n

j F

0

) � X

0

and hene EX

T

n

� EX

0

. It follows that fX

T

n

g is a reverse

submartingale relative to the reverse �ltration F

T

1

� F

T

2

� � � � with mean

bounded below. Therefore, the sequene fX

T

n

g is uniformly integrable by

Lemma 2.34. Of ourse, the same proof applies to fX

S

n

g.

If X is a adlag, uniformly integrable martingale and S � T are stop-

ping times, then E(X

T

j F

S

) = X

S

, by two appliations of the preeding

theorem. As a onsequene the expetation EX

T

of the stopped proess at

1 is equal to the expetation EX

0

for every stopping time T . This property

atually haraterizes uniformly integrable martingales.

4.22 Lemma. Let X = fX

t

: t 2 [0;1℄g be a adlag adapted proess suh

that X

T

is integrable with EX

T

= EX

0

for every stopping time T . Then

X is a uniformly integrable martingale.

Proof. For a given F 2 F

t

de�ne the random variable T to be t on F and

to be 1 otherwise. Then T an be seen to be a stopping time, and

EX

T

= EX

t

1

F

+EX

1

1

F



;

EX

0

= EX

1

= EX

1

1

F

+EX

1

1

F



:

We onlude that EX

t

1

F

= EX

1

1

F

for every F 2 F

t

and hene X

t

=

E(X

1

j F

t

) almost surely.
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4.23 EXERCISE. Suppose that X is a adlag proess suh that X

t

=

E(�j F

t

) almost surely, for every t. Show that X

T

= E(�j F

T

) almost surely

for every stopping time T .

4.5 Brownian Motion

Brownian motion is a speial stohasti proess, whih was �rst introdued

as a model for the \Brownian motion" of partiles in a gas or uid, but has

a muh greater importane, both for appliations and theory. It ould be

thought of as the \standard normal distribution for proesses".

4.24 De�nition. A stohasti proess B is a (standard) Brownian motion

relative to the �ltration fF

t

g if:

(i) B is adapted.

(ii) all sample paths are ontinuous.

(iii) B

t

�B

s

is independent of F

s

for all 0 � s � t.

(iv) B

t

�B

s

is N(0; t� s)-distributed.

(v) B

0

= 0.

The model for the trajetory in R

3

of a partile in a gas is a proess

(B

1

t

; B

2

t

; B

3

t

) onsisting of three independent Brownian motions de�ned on

the same �ltered probability spae. Property (ii) is natural as a partile

annot jump through spae. Property (iii) says that given the path history

F

s

the displaement B

t

�B

s

in the time interval (s; t℄ does not depend on

the past. Property (iv) is the only quantative property. The normality an

be motivated by the usual argument that, even in small time intervals, the

displaement should be a sum of many in�nitesimal movements, but has

some arbitrariness to it. The zero mean indiates that there is no preferred

diretion. The variane t�s is, up to a onstant, a onsequene of the other

assumptions if we also assume that it may only depend on t� s. Property

(iv) is the main reason for the quali�ation \standard". If we replae 0 by

x, then we obtain a \Brownian motion starting at x".

We automatially have the following properties:

(vi) (independent inrements) B

t

2

� B

t

1

; B

t

3

� B

t

2

; : : : ; B

t

k

� B

t

k�1

are

independent for every 0 � t

1

< t

2

< � � � < t

k

.

(vii) (B

t

1

; : : : ; B

t

k

) is multivariate-normally distributed with mean zero and

ovariane matrix ov(B

t

i

; B

t

j

) = t

i

^ t

j

.

It is ertainly not immediately lear that Brownian motion exists, but

it does.

4.25 Theorem. There exists a omplete probability spae (
;F ; P ) and

measurable mapsB

t

: 
! R suh that the proessB satis�es (i){(v) relative
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to the ompletion of the natural �ltration generated by B (whih is right-

ontinuous).

There are many di�erent proofs of this theorem, but we omit giving a

proof altogether. It is reonforting to know that Brownian motion exists,

but, on the other hand, it is perfetly possible to work with it without

worrying about its existene.

The theorem asserts that a Brownian motion exists relative to its (om-

pleted) natural �ltration, whereas the de�nition allows a general �ltration.

In fat, there exist many Brownian motions. Not only an we use di�er-

ent probability spaes to arry them, but, more importantly, we may use

another than the natural �ltration.

Warning. Some authors always use the natural �ltration, or its om-

pletion. Property (iii) is stronger if fF

t

g is a bigger �ltration.

Brownian motion is \the" example of a ontinuous martingale.

4.26 Theorem. Any Brownian motion is a martingale.

Proof. Beause B

t

� B

s

is independent of F

s

, we have E(B

t

� B

s

j F

s

) =

E(B

t

�B

s

) almost surely, and this is 0.

4.27 EXERCISE. Show that the proess fB

2

t

� tg is a martingale.

Brownian motion has been studied extensively and possesses many

remarkable properties. For instane:

(i) Almost every sample path is nowhere di�erentiable.

(ii) Almost every sample path has no point of inrease. (A point of inrease

of a funtion f is a point t that possesses a neighbourhood suh that

on this neighbourhood f is maximal at t.)

(iii) For almost every sample path the set of points of loal maximum is

ountable and dense in [0;1).

(iv) lim sup

t!1

B

t

=

p

2t loglog t = 1 a.s..

These properties are of little onern in the following. A weaker form of

property (i) follows from the following theorem, whih is fundamental for

the theory of stohasti integration.

4.28 Theorem. If B is a Brownian motion and 0 < t

n

0

< t

n

n

< � � � < t

n

k

n

= t

is a sequene of partitions of [0; t℄ with mesh widths tending to zero, then

k

n

X

i=1

(B

t

i

�B

t

i�1

)

2
P

!

t:

Proof.We shall even show onvergene in quadrati mean. Beause B

t

�B

s

is N(0; t�s)-distributed, the variable (B

t

�B

s

)

2

has mean t�s and variane
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2(t � s)

2

. Therefore, by the independene of the inrements and beause

t =

P

i

(t

i

� t

i�1

)

E

h

k

n

X

i=1

(B

t

i

�B

t

i�1

)

2

� t

i

2

=

k

n

X

i=1

var(B

t

i

�B

t

i�1

)

2

= 2

k

n

X

i=1

(t

i

� t

i�1

)

2

:

The right side is bounded by 2Æ

n

P

k

n

i=1

jt

i

� t

i�1

j = 2Æ

n

t for Æ

n

the mesh

width of the partition. Hene it onverges to zero.

A onsequene of the preeding theorem is that for any sequene of

partitions with mesh widths tending to 0

lim sup

n!1

k

n

X

i=1

jB

t

i

�B

t

i�1

j =1; a:s::

Indeed, if the lim sup were �nite on a set of positive probability, then on

this set we would have that

P

k

n

i=1

(B

t

i

�B

t

i�1

)

2

! 0 almost surely, beause

max

i

jB

t

i

� B

t

i�1

j ! 0 by the (uniform) ontinuity of the sample paths.

This would ontradit the onvergene in probability to t.

We onlude that the sample paths of Brownian motion are of un-

bounded variation. In omparison if f : [0; t℄ ! R is ontinuously di�eren-

tiable, then

lim

n!1

k

n

X

i=1

�

�

f(t

i

)� f(t

i�1

)

�

�

=

Z

t

0

jf

0

(s)j ds:

It is the roughness (or \randomness") of its sample paths that makes Brow-

nian motion interesting and ompliated at the same time.

Physiists may even �nd that Brownian motion is too rough as a model

for \Brownian motion". Sometimes this is alleviated by modelling veloity

using a Brownian motion, rather than loation.

4.6 Loal Martingales

In the de�nition of a stohasti integral L

2

-martingales play a speial role.

A Brownian motion is L

2

-bounded if restrited to a ompat time interval,

but not if the time set is [0;1). Other martingales may not even be square-

integrable.

Loalization is a method to extend de�nitions or properties from pro-

esses that are well-behaved, often in the sense of integrability properties,

to more general proesses. The simplest form is to onsider a proess X in

turn on the intervals [0; T

1

℄; [0; T

2

℄; : : : for numbers T

1

� T

2

� � � � inreasing

to in�nity. Equivalently, we onsider the sequene of stopped proessesX

T

n

.

More exible is to use stopping times T

n

for this purpose. The following

de�nition of a \loal martingale" is an example.
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4.29 De�nition. An adapted proess X is a loal (sub/super) martingale

in L

p

if there exists a sequene of stopping times 0 � T

1

� T

2

� � � � with

T

n

" 1 almost surely suh that X

T

n

is a (sub/super) martingale in L

p

for

every n.

In the ase that p = 1 we drop the \in L

1

" and speak simply of

a loal (sub/super) martingale. Rather than \martingale in L

p

" we also

speak of \L

p

-martingale". Other properties of proesses an be loalized in

a similar way, yielding for instane, \loally bounded proesses" or \loally

L

2

-bounded martingales". The appropriate de�nitions will be given when

needed, but should be easy to guess. (Some of these lasses atually are

idential. See the exerises at the end of this setion.)

The sequene of stopping times 0 � T

n

" 1 is alled a loalizing

sequene. Suh a sequene is ertainly not unique. For instane, we an

always hoose T

n

� n by trunating T

n

at n.

Any martingale is a loal martingale, for we an simply hoose the

loalizing sequene equal to T

n

�1. Conversely, a \suÆiently integrable"

loal (sub/super) martingale is a (sub/super) martingale, as we now argue.

If X is a loal martingale with loalizing sequene T

n

, then X

T

n

t

! X

t

almost surely for every t. If this onvergene also happens in L

1

, then

the martingale properties of X

T

n

arries over onto X and X itself is a

martingale.

4.30 EXERCISE. Show that a dominated loal martingale is a martingale.

Warning. A loal martingale that is bounded in L

2

need not be a

martingale. A fortiori, a uniformly integrable loal martingale need not be

a martingale. See Chung and Williams, pp20{21, for a ounterexample.

Warning. Some authors de�ne a loal (sub/super) martingale in L

p

by

the requirement that the proessX�X

0

an be loalized as in the preeding

de�nition. If X

0

2 L

p

, this does not make a di�erene, but otherwise it may.

Beause (X

T

n

)

0

= X

0

our de�nition requires that the initial value X

0

of a

loal (sub/super) martingale in L

p

be in L

p

.

We shall mostly enounter the loalization proedure as a means to

redue a proof to bounded stohasti proesses. If X is adapted and on-

tinuous, then

(4:31) T

n

= infft: jX

t

j � ng

is a stopping time. On the set T

n

> 0 we have jX

T

n

j � n. If X is a loal

martingale, then we an always use this sequene as the loalizing sequene.

4.32 Lemma. If X is a ontinuous, loal martingale, then T

n

given by

(4.31) de�nes a loalizing sequene. Furthermore,X is automatially a loal

L

p

-martingale for every p � 1 suh that X

0

2 L

p

.
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Proof. If T

n

= 0, then (X

T

n

)

t

= X

0

for all t � 0. On the other hand, if

T

n

> 0, then jX

t

j < n for t < T

n

and there exists t

m

# T

n

with jX

t

m

j � n.

By ontinuity of X it follows that jX

T

n

j = n in this ase. Consequently,

jX

T

n

j � jX

0

j _ n and hene X

T

n

is even dominated by an element of L

p

if

X

0

2 L

p

. It suÆes to prove that T

n

is a loalizing sequene.

Suppose that S

m

is a sequene of stopping times with S

m

! 1 as

m !1 and suh that X

S

m

is a martingale for every m. Then X

S

m

^T

n

=

(X

S

m

)

T

n

is a martingale for eah m and n, by Theorem 4.20. For every

�xed n we have jX

S

m

^T

n

j � jX

0

j _ n for every m, and X

S

m

^T

n

! X

T

n

almost surely as m!1. Beause X

0

= (X

S

m

)

0

and X

S

m

is a martingale

by assumption, it follows that X

0

is integrable. Thus X

S

m

^T

n

^t

! X

T

n

^t

in L

1

as m ! 1, for every t � 0. Upon taking limits on both sides of the

martingale equality E(X

S

m

^T

n

^t

j F

s

) = X

S

m

^T

n

^s

of X

S

m

^T

n

we see that

X

T

n

is a martingale for every n.

Beause X is ontinuous, its sample paths are bounded on ompata.

This implies that T

n

!1 as n!1.

4.33 EXERCISE. Show that a loal martingale X is a uniformly integrable

martingale if and only if the set fX

T

:T �nite stopping timeg is uniformly

integrable. (A proess with this property is said to be of lass D.)

4.34 EXERCISE. Show that a loal L

1

-martingale X is also a loally uni-

formly integrable martingale, meaning that there exists a sequene of stop-

ping times 0 � T

n

" 1 suh that X

T

n

is a uniformly integrable martingale.

4.35 EXERCISE. Show that (for p > 1) a loal L

p

-martingale X is loally

bounded in L

p

, meaning that there exists a sequene of stopping times

0 � T

n

" 1 suh that X

T

n

is a martingale that is bounded in L

p

, for every

n.

4.7 Maximal Inequalities

The maximal inequalities for disrete time (sub/super) martingales arry

over to ontinuous time adlag (sub/super) martingales, without surprises.

The essential observation is that a supremum sup

t

X

t

over t � 0 is equal to

the supremum over a ountable dense subset of [0;1) if X is adlag. Fur-

thermore, a ountable supremum is the (inreasing) limit of �nite maxima.

4.36 Lemma. If X is a nonnegative, adlag submartingale, then for any

x � 0 and every t � 0,

xP

�

sup

0�s�t

X

s

> x

�

� EX

t

1

sup

0�s�t

X

t

�x

� EX

t

:
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4.37 Corollary. If X is a nonnegative, adlag submartingale, then for any

p > 1 and p

�1

+ q

�1

= 1, and every t � 0,







sup

0�s�t

X

s







p

� qkX

t

k

p

:

If X is bounded in L

p

(
;F ; P ), then X

t

! X

1

in L

p

for some random

variable X

1

and







sup

t�0

X

t







p

� qkX

1

k

p

= q sup

t�0

kX

t

k

p

:

The preeding results apply in partiular to the absolute value of a

martingale. For instane, for any martingale X ,

(4:38)







sup

t

jX

t

j







2

� 2 sup

t

kX

t

k

2

:
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Stohasti Integrals

In this hapter we de�ne integrals

R

X dM for pairs of a "preditable"

proess X and a martingale M . The main hallenge is that the sample

paths of many martingales of interest are of in�nite variation. We have seen

this for Brownian motion in Setion 4.5; this property is in fat shared by

all martingales with ontinuous sample paths. For this reason the integral

R

X dM annot be de�ned using ordinary measure theory. Rather than

de�ning it \pathwise for every !", we de�ne it as a random variable through

an L

2

-isometry.

In general the preditability of the integrand (de�ned in Setion 5.1)

is important, but in speial ases, inluding the one of Brownian motion,

the de�nition an be extended to more general proesses.

The de�nition is arried out in several steps, eah time inluding more

general proesses X or M . After ompleting the de�nition we lose the

hapter with Itô's formula, whih is the stohasti version of the hain rule

from alulus, and gives a method to manipulate stohasti integrals.

Throughout the hapter (
;F ; fF

t

g; P ) is a given �ltered probability

spae.

5.1 Preditable Sets and Proesses

The produt spae [0;1) � 
 is naturally equipped with the produt �-

�eld B

1

� F . Several sub �-�elds play an important role in the de�nition

of stohasti integrals.

A stohasti proess X an be viewed as the map X : [0;1)� 
 ! R

given by (t; !) 7! X

t

(!). We de�ne �-�elds by requiring that ertain types

of proesses must be measurable as maps on [0;1)� 
.
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5.1 De�nition. The preditable �-�eld P is the �-�eld on [0;1)�
 gen-

erated by the left-ontinuous, adapted proesses X : [0;1) � 
 ! R. (It

an be shown that the same �-�eld is generated by all ontinuous, adapted

proesses X : [0;1)� 
! R.)

5.2 De�nition. The optional �-�eld O is the �-�eld on [0;1)� 
 gener-

ated by the adlag, adapted proesses X : [0;1)� 
! R.

5.3 De�nition. The progressive �-�eld M is the �-�eld on [0;1) � 


generated by the progressively measurable proesses X : [0;1)� 
! R.

We all a proess X : [0;1) � 
 ! R preditable or optional if it is

measurable relative to the preditable or optional �-�eld.

It an be shown that the three �-�elds are nested in the order of the

de�nitions:

P � O �M � B

1

� F :

The preditable �-�eld is the most important one to us, as it de�nes the

proesses X that are permitted as integrands in the stohasti integrals.

Beause, obviously, left-ontinuous, adapted proesses are preditable, these

are \good" integrands. In partiular, ontinuous, adapted proesses.

Warning. Not every preditable proess is left-ontinuous.

The term \preditable" as applied to left-ontinuous proesses ex-

presses the fat that the value of a left-ontinuous proess at a time t

is (approximately) \known" just before time t. In ontrast, a general pro-

ess may jump and hene be \unpreditable" from its values in the past.

However, it is not true that a preditable proess annot have jumps. The

following exerise illustrates this.

5.4 EXERCISE. Show that any measurable funtion f : [0;1) ! R de-

�nes a preditable proess (t; !) 7! f(t). \Deterministi proesses are pre-

ditable".

There are several other ways to desribe the various �-�elds. We give

some of these as a series of lemmas. For proofs, see Chung and Williams

p25{30 and p57{63.

5.5 Lemma. The preditable �-�eld is generated by the olletion of all

subsets of [0;1)� 
 of the form

f0g � F

0

; F

0

2 F

0

; and (s; t℄� F

s

; F

s

2 F

s

; s < t:

We refer to the sets in Lemma 5.5 as preditable retangles.

Given two funtions S; T : 
 ! [0;1℄, the subset of [0;1) � 
 given

by

[S; T ℄ =

�

(t; !) 2 [0;1)� 
:S(!) � t � T (!)
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is a stohasti interval. In a similar way, we de�ne the stohasti intervals

(S; T ℄, [S; T ) and (S; T ). The set [T ℄ = [T; T ℄ is the graph of T . By de�nition

these are subsets of [0;1) � 
, even though the right endpoint T may

assume the value 1. If S and/or T is degenerate, then we use the same

notation, yielding, for instane, [0; T ℄ or (s; t℄.

Warning. This auses some onfusion, beause notation suh as (s; t℄

may now denote a subset of [0;1℄ or of [0;1)� 
.

We are espeially interested in stohasti intervals whose boundaries

are stopping times. These intervals may be used to desribe the various

�-�elds, where we need to single out a speial type of stopping time.

5.6 De�nition. A stopping time T : 
! [0;1℄ is preditable if there exists

a sequene T

n

of stopping times suh that 0 � T

n

" T and suh that T

n

< T

for every n on the set fT > 0g.

A sequene of stopping times T

n

as in the de�nition is alled an an-

nouning sequene. It \predits" that we are about to stop. The phrase

\preditable stopping time" is often abbreviated to \preditable time".

Warning. A hitting time of a preditable proess is not neessarily a

preditable time.

5.7 Lemma. Eah of the following olletions of sets generates the pre-

ditable �-�eld.

(i) All stohasti intervals [T;1), where T is a preditable stopping time.

(ii) All stohasti intervals [S; T ), where S is a preditable stopping time

and T is a stopping time.

(iii) All sets f0g � F

0

, F

0

2 F

0

and all stohasti intervals (S; T ℄, where S

and T are stopping times.

Furthermore, a stopping time T is preditable if and only if its graph [T ℄ is

a preditable set.

5.8 Lemma. Eah of the following olletions of sets generates the optional

�-�eld.

(i) All stohasti intervals [T;1), where T is a stopping time.

(ii) All stohasti intervals [S; T ℄, [S; T ), (S; T ℄, (S; T ), where S and T are

stopping times.

5.9 Example. If T is a stopping time and  > 0, then T+ is a preditable

stopping time. An announing sequene is the sequene T + 

n

for 

n

< 

numbers with 0 � 

n

" . Thus there are many preditable stopping times.

5.10 Example. Let X be an adapted proess with ontinuous sample

paths and B be a losed set. Then T = infft � 0:X

t

2 Bg is a pre-

ditable time. An announing sequene is T

n

= infft � 0: d(X

t

; B) < n

�1

g.

The proof of this is more or less given already in Example 4.16.
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5.11 Example. It an be shown that any stopping time relative to the nat-

ural �ltration of a Brownian motion is preditable. See Chung andWilliams,

p30{31.

5.12 Example. The left-ontinuous version of an adapted adlag proess

if preditable, by left ontinuity. Then so is the jump proess �X of a

preditable proess X . It an be shown that this jump proess is nonzero

only on the union [

n

[T

n

℄ of the graphs of ountably many preditable times

T

n

. (These preditable times are said to \exhaust the jumps of X".) Thus

a preditable proess has \preditable jumps".

5.13 Example. Every measurable proess that is indistinguishable from

a preditable proess is preditable. This means that we do not need to

\worry about null sets" too muh.

This is true only if the �ltered probability spae satis�es the usual

onditions (as we agreed to assume throughout).

To verify the laim it suÆes to show that every measurable proess

X that is indistinguishable from the zero proess (an evanesent proess)

is preditable. By the ompleteness of the �ltration a proess of the form

1

(u;v℄�N

is left-ontinuous and adapted for every null set N , and hene

preditable. The produt �-�eld B

1

� F is generated by the sets of the

form (u; v℄ � F with F 2 F and hene for every �xed null set N its trae

on the set [0;1) � N is generated by the olletion of sets of the form

(u; v℄ � (F \ N). Beause the latter sets are preditable the traes of the

produt �-�eld and the preditable �-�eld on the set [0;1)�N are idential

for every �xed null set N . We apply this with the null set N of all !

suh that there exists t � 0 with X

t

(!) 6= 0. For every Borel set B in R

the set f(t; !):X

t

(!) 2 Bg is B

1

� F-measurable by assumption, and is

ontained in [0;1)�N if B does not ontain 0. Thus it an be written as

A \

�

[0;1) � N

�

for some preditable set A and hene it is preditable,

beause [0;1) � N is preditable. The set B = f0g an be handled by

taking ompletements.

5.2 Dol�eans Measure

In this setion we prove that for every adlag martingale M in L

2

there

exists a �-�nite measure �

M

on the preditable �-�eld suh that

(5:14)

�

M

(0� F

0

) = 0; F

0

2 F

0

;

�

M

�

(s; t℄� F

s

�

= E1

F

s

(M

2

t

�M

2

s

); s < t; F

s

2 F

s

:
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The right side of the preeding display is nonnegative, beause M

2

is a

submartingale. We an see this expliitly by rewriting it as

E1

F

s

(M

t

�M

s

)(M

t

+M

s

) = E1

F

s

(M

t

�M

s

)

2

;

whih follows beause E1

F

s

(M

t

�M

s

)M

s

= 0 by the martingale property,

so that we an hange \+" into \�". The measure �

M

is alled the Dol�eans

measure of M .

5.15 Example (Brownian motion). If M = B is a Brownian motion,

then by the independene of B

t

�B

s

and F

s

,

�

B

�

(s; t℄� F

s

) = E1

F

s

E(B

2

t

�B

2

s

) = P (F

s

)(t� s)

= (�� P )

�

(s; t℄� F

s

):

Thus the Dol�eans measure of Brownian motion is the produt measure

�� P . This is not only well-de�ned on the preditable �-�eld, but also on

the bigger produt �-�eld B

1

�F .

5.16 EXERCISE. Find the Dol�eans measure of the Poisson proess.

In order to prove the existene of the measure �

M

in general, we follow

the usual steps of measure theory. First we extend �

M

by additivity to

disjoint unions of the form

A = f0g � F

0

[

k

[

i=1

(s

i

; t

i

℄� F

i

; F

0

2 F

0

; F

i

2 F

s

i

;

by setting

�

M

(A) =

k

X

i=1

E1

F

i

(M

2

t

i

�M

2

s

i

):

It must be shown that this is well-de�ned: if A an be represented as a

disjoint, �nite union of preditable retangles in two di�erent ways, then

the two numbers �

M

(A) obtained in this way must agree. This an be

shown by the usual trik of onsidering the ommon re�nement. Given two

disjoint, �nite unions that are equal,

A = f0g � F

0

[

k

[

i=1

(s

i

; t

i

℄� F

i

= f0g � F

0

[

l

[

j=1

(s

0

j

; t

0

j

℄� F

0

j

;

we an write A also as the disjoint union of f0g � F

0

and the sets

�

(s

i

; t

i

℄� F

i

�

\

�

(s

0

j

; t

0

j

℄� F

0

j

�

= (s

00

i;j

; t

00

i;j

℄� F

00

i;j

:

Next we show that the three de�nitions of �

M

(A) all agree. We omit further

details of this veri�ation. One we have veri�ed that the measure �

M

is
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well-de�ned in this way, it is lear that it is �nitely additive on the olletion

of �nite disjoint unions of preditable retangles.

The set of all �nite disjoint unions of preditable retangles is a ring,

and generates the preditable �-�eld. The �rst an be proved in the same

way as it is proved that the ells in R

2

form a ring. The seond is the ontent

of Lemma 5.5. We take both for fats. Next Carath�eodory's theorem implies

that �

M

is extendible to P provided that it is ountably additive on the

ring. This remains to proved.

5.17 Theorem. For every adlag martingaleM in L

2

there exists a unique

measure �

M

on the preditable �-�eld suh that (5.14) holds.

Proof. See Chung and Williams, p50{53.

5.18 EXERCISE. Show that �

M

�

[0; t℄� 


�

<1 for every t � 0 and on-

lude that �

M

is �-�nite.

5.3 Square-integrable Martingales

Given a square-integrable martingale M we de�ne an integral

R

X dM for

inreasingly more general proesses X . If X is of the form 1

(s;t℄

Z for some

(time-independent) random variable Z, then we want to de�ne

Z

1

(s;t℄

Z dM = Z(M

t

�M

s

):

Here 1

(s;t℄

Z is short-hand notation for the map (u; !) 7! 1

(s;t℄

(u)Z(!) and

hene the integral is like a Riemann-Stieltjes integral for �xed !. The right

side is the random variable ! 7! Z(!)

�

M

t

(!)�M

s

(!)

�

. We also want the

integral to be linear in the integrand, and are lead to de�ne

Z

k

X

i=1

a

i

1

(s

i

;t

i

℄�F

i

dM =

k

X

i=1

a

i

1

F

i

(M

t

i

�M

s

i

):

By onvention we hoose \to give measure 0 to 0" and set

Z

a

0

1

f0g�F

0

dM = 0:

We an only postulate these de�nitions if they are onsistent. If X =

P

k

i=1

a

i

1

(s

i

;t

i

℄�F

i

has two representations as a linear ombination of pre-

ditable retangles, then the right sides of the seond last display must

agree. For this it is onvenient to restrit the de�nition initially to linear

ombinations of disjoint preditable retangles. The onsisteny an then

be heked using the joint re�nements of two given representations. We

omit the details.
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5.19 De�nition. If X = a

0

1

f0g�F

0

+

P

k

i=1

a

i

1

(s

i

;t

i

℄�F

i

is a linear ombi-

nation of disjoint preditable retangles, then the stohasti integral of X

relative to M is de�ned as

R

X dM =

P

k

i=1

a

i

1

F

i

(M

t

i

�M

s

i

).

In this de�nition there is no need for the restrition to preditable pro-

esses. However, preditability is important for the extension of the integral.

We extend by ontinuity, based on the following lemmas.

5.20 Lemma. Every uniformly ontinuous map de�ned on a dense subset

of a metri spae with values in another metri spae extends in a unique

way to a ontinuous map on the whole spae. If the map is a linear isometry

between two normed spaes, then so is the extension.

5.21 Lemma. The olletion of simple proess X as in De�nition 5.19 is

dense in L

2

�

[0;1)�
;P ; �

M

�

. Every bounded X 2 L

2

�

[0;1)�
;P ; �

M

�

is a limit in this spae of a uniformly bounded sequene of simple proesses.

5.22 Lemma. For every X as in De�nition 5.19 we have

R

X

2

d�

M

=

E(

R

X dM)

2

.

Proofs. The �rst lemma is a standard result from topology.

Beause any funtion in L

2

�

[0;1)�
;P ; �

M

�

is the limit of a sequene

of bounded funtions, for Lemma 5.21 it suÆes to show that any bounded

element of L

2

�

[0;1)�
;P ; �

M

�

an be obtained as suh a limit. Beause

1

[0;t℄

X ! X in L

2

�

[0;1) � 
;P ; �

M

�

as t ! 1, we an further restrit

ourselves to elements that vanish o� [0; t℄� 
.

Let H be the set of all bounded, preditable X suh that X1

[0;t℄

is

a limit in L

2

�

[0;1) � 
;P ; �

M

�

of a sequene of linear ombinations of

indiators of preditable retangles, for every t � 0. ThenH is a vetor spae

and ontains the onstants. A \diagonal type" argument shows that it is also

losed under bounded monotone limits. Beause H ontains the indiators

of preditable retangles (the sets in Lemma 5.5) and this olletion of sets

is intersetion stable, Lemma 5.21 follows from the monotone lass theorem,

Theorem 1.23.

Using the ommon re�nement of two �nite disjoint unions of pre-

ditable retangels, we an see that the minimum of two simple proesses is

again a simple proess. This implies the seond statement of Lemma 5.21.

Finally onsider Lemma 5.22. Given a linear ombination X of disjoint

preditable retangles as in De�nition 5.19, its square is given by X

2

=

a

2

0

1

f0g�F

0

+

P

k

i=1

a

2

i

1

(s

i

;t

i

℄�F

i

. Hene, by (5.14),

(5:23)

Z

X

2

d�

M

=

k

X

i=1

a

2

i

�

M

�

(s

i

; t

i

℄� F

i

�

=

k

X

i=1

a

2

i

E1

F

i

(M

t

i

�M

s

i

)

2

:
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On the other hand, by De�nition 5.19,

E

�

Z

X dM

�

2

= E

�

k

X

i=1

a

i

1

F

i

(M

t

i

�M

s

i

)

�

2

=

k

X

i=1

k

X

j=1

a

i

a

j

E1

F

i

1

F

j

(M

t

i

�M

s

i

)(M

t

j

�M

s

j

):

Beause the retangles are disjoint we have for i 6= j that either 1

F

i

1

F

j

= 0

or (s

i

; t

i

℄\(s

j

; t

j

℄ = ;. In the �rst ase the orresponding term in the double

sum is learly zero. In the seond ase it is zero as well, beause, if t

i

�

s

j

, the variable 1

F

i

1

F

j

(M

t

i

�M

s

i

) is F

s

j

-measurable and the martingale

di�erene M

t

j

�M

s

j

is orthogonal to F

s

j

. Hene the o�-diagonal terms

vanish and the expression is seen to redue to the right side of (5.23).

Lemma 5.22 shows that the map

X 7!

Z

X dM;

L

2

�

[0;1)� 
;P ; �

M

�

! L

2

(
;F ; P );

is an isometry if restrited to the linear ombinations of disjoint indiators

of preditable retangles. By Lemma 5.21 this lass of funtions is dense in

L

2

�

[0;1)�
;P ; �

M

�

. Beause an isometry is ertainly uniformly ontinu-

ous, this map has a unique ontinuous extension to L

2

�

[0;1)�
;P ; �

M

�

,

by Lemma 5.20. We de�ne this extension to be the stohasti integral

R

X dM .

5.24 De�nition. For M a adlag martingale in L

2

and X a preditable

proess in L

2

�

[0;1)�
;P ; �

M

�

, the stohasti integralX 7!

R

X dM is the

unique ontinuous extension to L

2

�

[0;1) � 
;P ; �

M

�

of the map de�ned

in De�nition 5.19 with range inside L

2

(
;F ; P ).

Thus de�ned a stohasti integral is an element of the Hilbert spae

L

2

(
;F ; P ) and therefore an equivalene lass of funtions. We shall also

onsider every representative of the lass to be \the" stohasti integral

R

X dM . In general, there is no preferred way of hoosing a representative.

If X is a preditable proess suh that 1

[0;t℄

X 2 L

2

�

[0;1)�
;P ; �

M

�

,

then

R

1

[0;t℄

X dM is de�ned through the preeding de�nition. A short-hand

notation for this is

R

t

0

X dM . By linearity of the stohasti integral we then

have

Z

1

(s;t℄

X dM =

Z

t

0

X dM �

Z

s

0

X dM; s < t:

We abbreviate this to

R

t

s

X dM .
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If 1

[0;t℄

X 2 L

2

�

[0;1)� 
;P ; �

M

�

for every t � 0, then we an de�ne

a proess X �M satisfying

(X �M)

t

=

Z

t

0

X dM �

Z

1

[0;t℄

X dM:

Beause for every t � 0 the stohasti integral on the right is de�ned only

up to a null set, this display does not ompletely de�ne the proess X �M .

However, any spei�ation yields a martingaleX �M and there always exists

a adlag version of X �M .

5.25 Theorem. Suppose that M is a adlag martingale in L

2

and that X

is a preditable proess with

R

1

[0;t℄

X

2

d�

M

<1 for every t � 0.

(i) Any version of X �M = f

R

t

0

X dM : t � 0g is a martingale in L

2

.

(ii) There exists a adlag version of X �M .

(iii) If M is ontinuous, then there exists a ontinuous version of X �M .

(iv) The proesses �(X �M), where X �M is hosen adlag, and X�M are

indistinguishable.

Proof. If X is a �nite linear ombination of preditable retangles, of the

form as in De�nition 5.19, then so is 1

[0;t℄

X and hene

R

1

[0;t℄

X dM is

de�ned as

Z

1

[0;t℄

X dM =

k

X

i=1

a

i

(M

t

i

^t

�M

s

i

^t

):

As a proess in t, this is a martingale in L

2

, beause eah of the stopped

proesses M

t

i

or M

s

i

is a martingale, and a linear ombination of martin-

gales is a martingale. The stohasti integral X �M of a general integrand

X is de�ned as an L

2

-limit of stohasti integrals of simple preditable pro-

esses. Beause the martingale property is retained under onvergene in

L

1

, the proess X �M is a martingale.

Statement (ii) is an immediate onsequene of (i) and Theorem 4.6,

whih implies that any martingale possesses a adlag version.

To prove statement (iii) it suÆes to show that the adlag version of

X �M found in (ii) is ontinuous if M is ontinuous. If X is elementary,

then this is lear from the expliit formula for the stohasti integral used

in (i). In general, the stohasti integral (X �M)

t

is de�ned as the L

2

-limit

of a sequene of elementary stohasti integrals (X

n

�M)

t

. Given a �xed

T > 0 we an use the same sequene of linear ombinations of preditable

retangles for every 0 � t � T . Eah proess X �M � X

n

�M is a adlag

martingale in L

2

and hene, by Corollary 4.37, for every T > 0,







sup

0�t�T

�

�

(X �M)

t

� (X

n

�M)

t

�

�







2

� 2





(X �M)

T

� (X

n

�M)

T





2

:

The right side onverges to zero as n ! 1 and hene the variables in the

left side onverge to zero in probability. There must be a subsequene fn

i

g
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along whih the onvergene is almost surely, i.e. (X

n

i

�M)

t

! (X �M)

t

uniformly in t 2 [0; T ℄, almost surely. Beause ontinuity is retained under

uniform limits, the proessX �M is ontinuous almost surely. This onludes

the proof of (iii).

LetH be the set of all bounded preditable proessesX for whih (iv) is

true. Then H is a vetor spae that ontains the onstants, and it is readily

veri�ed that it ontains the indiators of preditable retangles. If 0 �

X

n

" X for a uniformly bounded X , then 1

[0;t℄

X

n

! 1

[0;t℄

X in L

2

�

[0;1)�


;P ; �

M

�

. As in the preeding paragraph we an selet a subsequene suh

that, for the adlag versions, X

n

i

�M ! X �M uniformly on ompata,

almost surely. Beause j�Y j � 2kY k

1

for any adlag proess Y , the latter

implies that �(X

n

i

�M)! �(X �M) uniformly on ompata, almost surely.

On the other hand, by pointwise onvergene of X

n

to X , X

n

i

�M !

X�M pointwise on [0;1) � 
. Thus fX

n

g � H implies that X 2 H.

By the monotone lass theorem, Theorem 1.23, H ontains all bounded

preditableX . A generalX an be trunated to the interval [�n; n℄, yielding

a sequene X

n

with X

n

! X pointwise on [0;1)�
 and 1

[0;t℄

X

n

! 1

[0;t℄

X

in L

2

�

[0;1)� 
;P ; �

M

�

. The latter implies, as before, that there exists a

subsequene suh that, for the adlag versions, X

n

i

�M ! X �M uniformly

on ompata, almost surely. It is now seen that (iv) extends to X .

The following two lemmas gives further properties of stohasti inte-

grals. Here we use notation as in the following exerise.

5.26 EXERCISE. Let S � T be stopping times and let X be an F

S

-

measurable random variable. Show that the proess 1

(S;T ℄

X de�ned as

(t; !) 7! 1

(S(!);T (!)℄

(t)X(!) is preditable.

5.27 Lemma. Let M be a adlag martingale in L

2

and let S � T be

bounded stopping times.

(i)

R

1

(S;T ℄

X dM = X(M

T

�M

S

) almost surely, for every bounded F

S

-

measurable random variable X .

(ii)

R

1

(S;T ℄

XY dM = X

R

1

(S;T ℄

Y dM almost surely, for every bounded

F

S

-measurable random variable X and bounded preditable proess

Y .

(iii)

R

1

(S;T ℄

X dM = N

T

�N

S

almost surely, for every bounded preditable

proess X , and N a adlag version of X �M .

(iv)

R

1

f0g�


X dM = 0 almost surely for every preditable proess X .

Proof. Let S

n

and T

n

be the upward disretizations of S and T on the

grid 0 < 2

�n

< 22

�n

< � � � < k

n

2

�n

, as in the proof of Theorem 4.20, for

k

n

suÆiently large that k

n

2

�n

> S _ T . Then S

n

# S and T

n

# T , so that

1

(S

n

;T

n

℄

! 1

(S;T ℄

pointwise on 
. Furthermore,

(5:28) 1

(S

n

;T

n

℄

=

k

n

X

k=0

1

(k2

�n

;(k+1)2

�n

℄�fS<k2

�n

�Tg

:
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If we an prove the lemma for (S

n

; T

n

℄ taking the plae of (S; T ℄ and every

n, then it follows for (S; T ℄ upon taking limits. (Note here that �

M

is a

�nite measure on sets of the form [0;K℄�
 and all (S

n

; T

n

℄ are ontained

in a set of this form.)

For the proof of (i) we �rst onsider the ase that X = 1

F

for some F 2

F

S

. In view of (5.28) and beause fS < k2

�n

� Tg \ F = (fS < k2

�n

g \

F )\fk2

�n

� Tg is ontained in F

k2

�n
, the proess 1

(S

n

;T

n

℄

X = 1

(S

n

;T

n

℄

1

F

is a linear ombination of preditable retangles. Hene, by De�nition 5.19,

Z

1

(S

n

;T

n

℄

1

F

dM =

k

n

X

k=0

1

fS<k2

�n

�Tg\F

(M

(k+1)2

�n
�M

k2

�n
)

= 1

F

(M

T

n

�M

S

n

):

This proves (i) in the ase that X = 1

F

. By linearity (i) is then also true

for X that are simple over F

S

. A general, bounded F

S

-measurable X an

be approximated by a uniformly bounded sequene of simple X . Both sides

of the equality in (i) then onverge in L

2

and hene the equality is valid for

suh X .

For the proof of (ii) �rst assume that X = 1

F

for some F 2 F

S

and

that Y = 1

(u;v℄�F

u

for some F

u

2 F

u

. In view of (5.28),

1

(S

n

;T

n

℄

1

F

1

(u;v℄�F

u

=

k

n

X

k=0

k2

�n

_u<(k+1)2

�n

^v

1

(k2

�n

_u;(k+1)2

�n

^v℄�fS<k2

�n

�Tg\F\F

u

is a linear ombination of preditable retangles, whene, by De�nition 5.19,

with the summation index k ranging over the same set as in the preeding

display,

Z

1

(S

n

;T

n

℄

1

F

1

(u;v℄�F

u

dM

=

X

k

1

fS<k2

�n

�Tg\F\F

u

(M

(k+1)2

�n

^v

�M

k2

�n

_u

)

= 1

F

X

k

1

fS<k2

�n

�Tg\F

u

(M

(k+1)2

�n

^v

�M

k2

�n

_u

)

= 1

F

Z

1

(S

n

;T

n

℄

1

(u;v℄�F

u

dM:

This proves (ii) for X and Y of the given forms. The general ase follows

again by linear extension and approximation.

For (iii) it suÆes to show that N

T

n

=

R

1

(0;T

n

℄

X dM almost surely.
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Sine N

0

= 0,

N

T

n

=

X

k

1

fk2

�n

�Tg

(N

(k+1)2

�n
�N

k2

�n
)

=

X

k

Z

1

fk2

�n

�Tg

1

(k2

�n

;(k+1)2

�n

℄

X dM =

Z

1

(0;T

n

℄

X dM;

where the seond equality follows from (ii), and the last equality by (5.28)

after hanging the order of summation and integration.

Beause �

M

does not harge f0g � 
, 1

f0g�


X = 0 in L

2

�

[0;1) �


;P ; �

M

�

for any X and hene 0 =

R

1

f0g�


X dM in L

2

, by the isometry.

This proves (iv).

The preeding lemma remains valid for unbounded proesses X;Y or

unbounded stopping times S; T , provided the proesses involved in the

statements are appropriately square-integrable. In eah ase this is true

under several ombinations of onditions on X;Y; S; T and M .

5.29 Lemma (Substitution). LetM be a adlag martingale in L

2

and let

N = Y �M be a adlag version of the stohasti integral of a preditable

proess Y with 1

[0;t℄

Y 2 L

2

�

[0;1)� 
;P ; �

M

�

for every t � 0. Then

(i) �

N

is absolutely ontinuous relative to �

M

and d�

N

= Y

2

d�

M

.

(ii)

R

X dN =

R

XY dM almost surely for every X 2 L

2

�

[0;1) �


;P ; �

N

�

.

Proof. By Lemma 5.27(ii), for every bounded preditable proess Y and

every s < t and F

s

2 F

s

,

(5:30) 1

F

s

Z

1

(s;t℄

Y dM =

Z

1

(s;t℄�F

s

Y dM:

This an be extended to preditable Y as in the statement of the lemma by

approximation. Spei�ally, if Y

n

is Y trunated to the interval [�n; n℄, then

1

(s;t℄

Y

n

! 1

(s;t℄

Y in L

2

�

[0;1) � 
;P ; �

M

�

and hene also 1

F

s

1

(s;t℄

Y

n

!

1

F

s

1

(s;t℄

Y in this spae. By the isometry property of the stohasti integral

it follows that

R

1

(s;t℄

Y

n

dM and

R

1

(s;t℄�F

s

Y

n

dM onverge in L

2

to the

orresponding expressions with Y instead of Y

n

, as n ! 1. Therefore, if

(5.30) is valid for Y

n

instead of Y for every n, then it is valid for Y .

We an rewrite the left side of (5.30) as 1

F

s

(N

t

�N

s

). Therefore, for

every preditable retangle (s; t℄� F

s

,

�

N

�

(s; t℄� F

s

�

= E1

F

s

(N

t

�N

s

)

2

= E

�

Z

1

(s;t℄�F

s

Y dM

�

2

=

Z

1

(s;t℄�F

s

Y

2

d�

M

;
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by the isometry property of the stohasti integral. The preditable ret-

angles are an intersetion stable generator of the preditable �-�eld and

[0;1)�
 is a ountable union of preditable retangles of �nite measures

under �

N

and Y

2

� �

M

. Thus these measures must agree on all preditable

sets, as asserted in (i).

For the proof of (ii) �rst assume that X = 1

(s;t℄�F

s

for F

s

2 F

s

. Then

the equality in (ii) reads

1

F

s

(N

t

�N

s

) =

Z

1

(s;t℄�F

s

Y dM; a:s::

The left side of this display is exatly the left side of (5.30) and hene (ii)

is orret for this hoie of X . By linearity this extends to all X that are

simple over the preditable retangles.

A generalX 2 L

2

�

[0;1)�
;P ; �

N

�

an be approximated in this spae

by a sequene of simple X

n

. Then by (i)

Z

jX

n

Y �XY j

2

d�

M

=

Z

jX

n

�X j

2

d�

N

! 0:

Thus, by the isometry property of the stohasti integral, we an take limits

as n ! 1 in the identities

R

X

n

Y dM =

R

X

n

dN to obtain the desired

identity for general X and Y .

5.4 Loally Square-integrable Martingales

In this setion we extend the stohasti integral by loalization to more

general proesses X and M .

Given a adlag loal L

2

-martingale M we allow integrands X that are

preditable proesses and are suh that there exists a sequene of stopping

times 0 � T

n

" 1 suh that, for every n,

(i) M

T

n

is a martingale in L

2

,

(ii) 1

[0;t^T

n

℄

X 2 L

2

�

[0;1)� 
;P ; �

M

T

n

�

for every t � 0.

A sequene of stopping times T

n

of this type is alled a loalizing sequene

for the pair (X;M). If suh a sequene exists, then

Z

1

[0;t^T

n

℄

X dM

T

n

is a well-de�ned element of L

2

(
;F ; P ), for every n, by De�nition 5.24.

We de�ne

R

t

0

X dM as the almost sure limit as n ! 1 of these random

variables.
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5.31 De�nition. Given a adlag loal L

2

-martingaleM and a preditable

proess X for whih there exists a loalizing sequene T

n

for the pair

(X;M), the stohasti integral

R

t

0

X dM is de�ned as the almost sure limit

of the sequene of random variables

R

1

[0;t^T

n

℄

X dM

T

n

, as n ! 1. The

stohasti proess t 7!

R

t

0

X dM is denoted by X �M .

It is not immediately lear that this de�nition is well posed. Not only

do we need to show that the almost sure limit exists, but we must also

show that the limit does not depend on the loalizing sequene. This issue

requires srutiny of the de�nitions, but turns out to be easily resolvable.

An integral of the type

R

1

[0;S℄

X dM

T

ought to depend only on S ^ T and

the values of the proesses X and M on the set [0; S ^ T ℄, beause the

integrand 1

[0;S℄

X vanishes outside [0; S℄ and the integratorM

T

is onstant

outside [0; T ℄. In analogy with the ordinary integral, a nonzero integral

should require both a nonzero integrand and a nonzero measure.

This reasoning suggests that, for every n � m, on the event ft � T

m

g,

where t ^ T

m

= t ^ T

n

, the variable

R

1

[0;t^T

m

℄

X dM

T

m

is the same as the

variable

R

1

[0;t^T

n

℄

X dM

T

n

. Then the limit as n!1 trivially exists on the

event ft � T

m

g. Beause [

m

ft � T

m

g = 
 the limit exists everywhere.

The following lemma makes these arguments preise.

5.32 Lemma. LetM be a adlag proess and X a preditable proess, and

let S; T; U; V be stopping times suh that S and U are bounded, M

T

and

M

V

are martingales in L

2

and suh that 1

[0;S℄

X and 1

[0;U ℄

X are ontained

in L

2

�

[0;1)�
;P ; �

M

T

�

and L

2

�

[0;1)�
;P ; �

M

V

�

, respetively. Then

R

1

[0;S℄

X dM

T

=

R

1

[0;U ℄

X dM

V

almost surely on the event fS ^ T = U ^

V g.

Proof. First assume that X is a preditable retangle of the form X =

1

(s;t℄�F

s

. By Lemma 5.27(ii) and next (i),

Z

1

[0;S℄

1

(s;t℄�F

s

dM

T

= 1

F

s

Z

1

[0;S℄

1

(s;t℄

dM

T

= 1

F

s

(M

T

S^t

�M

T

S^s

)

= 1

F

s

(M

S^t^T

�M

S^s^T

):

The right side depends on on (S; T ) only through S ^ T . Clearly the same

alulation with the stopping times U and V gives the same result on the

event fS ^ T = U ^ V g.

Next let X be a bounded preditable proess. Then, for every given

t � 0, the proess 1

[0;t℄

X is automatially ontained in L

2

�

[0;1) �


;P ; �

M

T +�

M

V

�

and by (a minor extension of) Lemma 5.21 there exists a

bounded sequene of simple proesses X

n

with X

n

! 1

[0;t℄

X in L

2

�

[0;1)�


;P ; �

M

T + �

M

V

�

. If t � S, then this implies that 1

[0;S℄

X

n

! 1

[0;S℄

X in

L

2

�

[0;1)�
;P ; �

M

T

�

and hene

R

1

[0;S℄

X

n

dM

T

!

R

1

[0;S℄

X dM

T

in L

2

,

by the isometry. We an argue in the same way with S and T replaed by U
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and V . Thus the equality of

R

1

[0;S℄

X

n

dM

T

and

R

1

[0;U ℄

X

n

dM

V

for every

n on the event fS ^ T = U ^ V g arries over onto X .

A general X as in the lemma an be trunated to [�n; n℄ and next we

take limits.

Thus the reasoning given previously is justi�ed and shows that the

almost sure limit of

R

1

[0;t^T

n

℄

X dM

T

n

exists. To see that the limit is also

independent of the loalizing sequene, suppose that S

n

and T

n

are two lo-

alizing sequenes for the pair of proesses (X;M). Then the lemma implies

that on the event A

n

= ft ^ S

n

= t ^ T

n

g, whih ontains ft � S

n

^ T

n

g,

Z

1

[0;t^S

n

℄

X dM

S

n

=

Z

1

[0;t^T

n

℄

X dM

T

n

; a:s::

It follows that the almost sure limits of left and right sides of the display,

as n ! 1, are the same almost surely on the event A

n

for every n, and

hene on the event [

n

A

n

= 
. Thus the two loalizing sequenes yield the

same de�nition of

R

t

0

X dM .

In a similar way we an prove that we get the same stohasti integral

if we use separate loalizing sequenes for X andM . (See Exerise 5.33.) In

partiular, if M is a martingale in L

2

, X is a preditable proess, and 0 �

T

n

" 1 is a sequene of stopping times suh that 1

[0;t^T

n

℄

X 2 L

2

�

[0;1)�


;P ; �

M

�

for every t and every n, then

Z

1

[0;t^T

n

℄

X dM;

whih is well-de�ned by De�nition 5.24, onverges almost surely to

R

t

0

X dM

as de�ned in De�nition 5.31. So \if it is not neessary to loalize M , then

not doing so yields the same result".

5.33 EXERCISE. Suppose that M is a loal L

2

-martingale with loalizing

sequene T

n

, X a preditable proess, and 0 � S

n

" 1 are stopping times

suh that 1

[0;t^S

n

℄

X 2 L

2

�

[0;1) � 
;P ; �

M

T

n

�

for every t � 0 and n.

Show that lim

n!1

R

1

[0;t^S

n

℄

X dM

T

n

exists almost surely and is equal to

R

t

0

X dM . (Note that S

n

^ T

n

is a loalizing sequene for the pair (X;M),

so that

R

t

0

X dM is well de�ned in view of Exerise 5.34.)

5.34 EXERCISE. Let M be a adlag proess and S and T stopping times

suh that M

S

and M

T

are L

2

-martingales. Show that

(i) �

M

S

�

A \ [0; S ^ T ℄

�

= �

M

T

�

A \ [0; S ^ T ℄

�

for every A 2 P .

(ii) if M is an L

2

-martingale, then �

M

S (A) = �

M

�

A \ [0; S℄

�

for every

A 2 P .

The present extension of the stohasti integral possesses similar prop-

erties as in the preeding setion.
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5.35 Theorem. Suppose that M is a adlag loal L

2

-martingale and X a

preditable proess for whih there exists a loalizing sequene T

n

for the

pair (X;M).

(i) There exists a adlag version of X �M .

(ii) Any adlag version of X �M is a loal L

2

-martingale relative to the

loalizing sequene T

n

.

(iii) If M is ontinuous, then there exists a ontinuous version of X �M .

(iv) The proesses �(X �M), where X �M is hosen adlag, and X�M are

indistinguishable.

Proof. For every n let Y

n

be a adlag version of the proess t 7!

R

1

[0;t^T

n

℄

X dM

T

n

. By Theorem 5.25 suh a version exists; it is an L

2

-

martingale; and we an and do hoose it ontinuous if M is ontinuous.

For �xed t � 0 the variable T

m

^ t is a stopping time and hene by

Lemma 5.27(iii)

Y

n;T

m

^t

=

Z

1

[0;T

m

^t^T

n

℄

X dM

T

n

; a:s:

By Lemma 5.32 the right side of this display hanges at most on a null

set if we replae M

T

n

by M

T

m

. For m � n we have T

m

^ T

n

= T

m

and

hene the integrand is idential to 1

[0;t^T

m

℄

X . If we make both hanges,

then the right side beomes Y

m;t

. We onlude that Y

n;T

m

^t

= Y

m;t

almost

surely, for every �xed t and m � n. This shows that the stopped martingale

Y

T

m

n

is a version of the stopped martingale Y

T

m

m

, for m � n. Beause both

martingales possess adlag sample paths, the two stopped proesses are

indistinguishable. This implies that Y

n

and Y

m

agree on the set [0; T

m

℄

exept possibly for points (t; !) with ! ranging over a null set. The union

of all null sets attahed to some pair (m;n) is still a null set. Apart from

points (t; !) with ! ontained in this null set, the limit Y as n ! 1 of

Y

n;t

(!) exists and agrees with Y

m;t

(!) on [0; T

m

℄. The latter implies that

it is adlag, and Y

T

m

is indistinguishable of Y

m

. Furthermore, the jump

proess of Y is indistinguishable of the jump proess of Y

m

on the set

[0; T

m

℄ and hene is equal to 1

[0;T

m

℄

X�M

T

m

= X�M on the set [0; T

m

℄,

by Theorem 5.25(iv).

By de�nition this limit Y is a version of X �M .

The properties as in Lemmas 5.27 and 5.29 also extend to the present

more general integral. For instane, in a ondensed notation we have, for T

a stopping time and for proesses X , Y and M for whih the expressions

are de�ned,

(5:36)

(X �M)

T

= X �M

T

= (1

[0;T ℄

X) �M;

X � (Y �M) = (XY ) �M;

�(X �M) = X�M:
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We shall formalize this later, after introduing the �nal extension of the

stohasti integral.

5.37 Example (Continuous proesses). The stohasti integral X �M

is de�ned for every pair of a ontinuous proess X and a ontinuous loal

martingale M with M

0

= 0.

Suh a pair an be loalized by the stopping times

T

n

= infft � 0: jX

t

j � n; jM

t

j � ng:

If 0 < t � T

n

, then jX

t

j � n and jM

t

j � n, by the ontinuity of the sample

paths of the proesses. It follows that M

T

n

is an L

2

-bounded martingale

and

�

�

1

(0;T

n

℄

X

�

�

� n;

�

M

T

n

(0;1) = E(M

T

n

1

�M

T

n

0

)

2

� n

2

:

Therefore �

M

T

n

is a �nite measure and 1

(0;T

n

℄

X is bounded and hene

in L

2

�

[0;1) � 
;P ; �

M

T

n

�

. Trivially 1

f0g

X 2 L

2

�

[0;1) � 
;P ; �

M

T

n

�

,

beause �

M

T

n

(f0g�
) = 0, and hene 1

[0;T

n

^t℄

X 2 L

2

�

[0;1)�
;P ; �

M

T

n

�

for every t � 0.

5.38 EXERCISE. Extend the preeding example to proesses that may

have jumps, but of jump sizes that are uniformly bounded.

5.39 Example (Loally bounded integrators). The stohasti integral

X �M is de�ned for every pair of a loal L

2

-martingale M and a loally

bounded preditable proess X .

Here \loally bounded" means that there exists a sequene of stopping

times 0 � T

n

" 1 suh that X

T

n

is uniformly bounded, for every n. We

an hoose this sequene of stopping times to be the same as the loalizing

sequene for M . (Otherwise, we use the minimum of the two loalizing

sequenes.) Then 1

[0;T

n

^t℄

X is uniformly bounded and hene is ontained

in L

2

�

[0;1)�
;P ; �

M

T

n

�

for every t and n. Thus De�nition 5.24 applies.

5.5 Brownian Motion

The Dol�eans measure of Brownian motion is the produt measure � � P

and hene exists as a measure on the produt �-�eld B

1

� F , whih is

bigger than the preditable �-�eld. This an be used to de�ne the stohasti

integral

R

X dB relative to a Brownian motion B also for non-preditable

integrands. The main aim of this setion is to de�ne the stohasti integral
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R

t

0

X dB for all measurable, adapted proessesX suh that

R

t

0

X

2

s

ds is �nite

almost surely.

Going from preditable to adapted measurable proesses may appear

an important extension. However, it turns out that any measurable, adapted

proess X is almost everywhere equal to a preditable proess

~

X, relative

to ��P . Beause we want to keep the isometry relationship of a stohasti

integral, then the only possibility is to de�ne

R

t

0

X dM as

R

t

0

~

X dM . From

this perspetive we obtain little new.

The key in the onstrution is the following lemma.

5.40 Lemma. For every measurable, adapted proess X : [0;1)� 
 ! R

there exists a preditable proess

~

X suh that X =

~

X almost everywhere

under �� P .

Proof. The proof is based on two fats:

(i) For every bounded, measurable proess X there exists a bounded op-

tional proess

�

X suh that E(X

t

j F

t

) =

�

X

t

almost surely, for every

t � 0.

(ii) For every bounded, optional proess

�

X there exists a preditable pro-

ess

~

X suh that the set f

�

X 6=

~

Xg is ontained in the union [

n

[T

n

℄ of

the graphs of ountably many stopping times.

If we aept (i){(ii), then the lemma an be proved as follows. For every

bounded measurable proess X , fats (i) and (ii) yield proesses

�

X and

~

X.

If X is adapted, then X

t

= E(X

t

j F

t

) =

�

X

t

almost surely for every t � 0,

by (i). Consequently, by Fubini's theorem

�� P (X 6=

�

X) =

Z

P

�

!:X

t

(!) 6=

�

X

t

(!)

�

d�(t) = 0:

Beause the setions ft: (!; t) 2 Gg of the set G = [

n

[T

n

℄ ontain at most

ountably many points, they have Lebesgue measure zero and hene � �

P (

�

X 6=

~

X) = 0, by another appliation of Fubini's theorem. Combining

(i) and (ii), we see that � � P (X 6=

~

X) = 0. This proves the lemma for

bounded, measurable, adapted proesses X . We an treat general proesses

X by trunating and taking limits. Spei�ally, if X

n

is X trunated to

[�n; n℄, then X

n

! X on [0;1) � 
. If

~

X

n

is preditable with

~

X

n

= X

n

exept on a null set B

n

, then

~

X

n

onverges to a limit at least on the

omplement of [

n

B

n

. We an de�ne

~

X to be lim

~

X

n

if this exists and 0

otherwise.

We prove (i) by the monotone lass theorem, Theorem 1.23. Let H

be the set of all bounded, measurable proesses X for whih there exists

an optional proess

�

X as in (i). Then H is a vetor spae and ontains the

onstants. IfX

n

2 H with 0 � X

n

" X for some bounded measurableX and

�

X

n

are the orresponding optional proesses as in (i), then the proess

�

X

de�ned as lim inf

�

X

n

if this liminf is �nite, and as 0 if not, is optional. By

the monotone onvergene theorem for onditional expetations (

�

X

n

)

t

=
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E((X

n

)

t

j F

t

) " E(X

t

j F

t

) almost surely, for every t � 0. Hene for eah

t � 0, we have that

�

X

t

= E(X

t

j F

t

) almost surely.

In view of Theorem 1.23 it now suÆes to show that the indiators of

the sets [0; s)� F , for s � 0 and F 2 F , whih form an intersetion stable

generator of B

1

�F , are in H. By Example 2.6 there exists a adlag proess

Y suh that Y

t

= E(1

F

j F

t

) almost surely, for every t � 0. Then

�

X = 1

[0;s)

Y

is right ontinuous and hene optional. It also satis�es

�

X

t

= E(1

[0;s)�F

j F

t

)

almost surely. The proof of (i) is omplete.

To prove (ii) we apply the monotone lass theorem another time, this

time with H equal to the set of bounded, optional proesses

�

X for whih

there exists a preditable proess

~

X as in (ii). Then H is a vetor spae

that ontains the onstants. It is losed under taking bounded monotone

limits, beause if

�

X

n

=

~

X

n

on G

n

and

�

X

n

!

�

X , then lim

~

X

n

must exist

at least on \

n

G

n

and be equal to

�

X there. We an de�ne

~

X to be lim

~

X

n

if this exists and 0 otherwise. Beause the stohasti integral (S; T ℄ for two

given stopping times S; T is preditable, H learly ontains all indiators

of stohasti intervals [S; T ), [S; T ℄, (S; T ℄ and (S; T ). These intervals form

an intersetion stable generator of the optional �-�eld by Lemma 5.8.

Let X be a measurable, adapted proess for whih there exists a se-

quene of stopping times 0 � T

n

" 1 suh that, for every t � 0 and n,

(5:41) 1

[0;t^T

n

℄

X 2 L

2

�

[0;1)� 
;B

1

�F ; �� P

�

:

By the preeding lemma there exists a preditable proess

~

X suh that

X =

~

X almost everywhere under ��P . Relation (5.41) remains valid if we

replae X by

~

X . Then we an de�ne a stohasti integral

R

1

[0;t^T

n

℄

~

X dB

as in De�nition 5.24 and the disussion following it. We de�ne

R

t

0

X dB as

the almost sure limit of these variables as n!1.

5.42 De�nition. Given a measurable, adapted proess X for whih there

exists a loalizing sequene T

n

satisfying (5.41) the stohasti integral

R

t

0

X dB is de�ned as the almost sure limit of the sequene of adlag pro-

esses t 7!

R

1

[0;t^T

n

℄

~

X dB.

The veri�ation that this de�nition is well posed is idential to the

similar veri�ation for stohasti integrals relative to loal martingales.

Condition (5.41) is exatly what is needed, but it is of interest to have

a more readily veri�able ondition for a proess X to be a good integrand.

5.43 Lemma. Let X be a measurable and adapted proess.

(i) If

R

t

0

X

2

s

ds < 1 almost surely for every t � 0, then there exists a

sequene of stopping times 0 � T

n

" 1 suh that (5.41) is satis�ed

and hene

R

t

0

X dB an be de�ned as a ontinuous loal martingale.
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(ii) If

R

t

0

EX

2

s

ds < 1, then

R

t

0

X dB an be de�ned as a ontinuous mar-

tingale in L

2

.

Proof. There exists a preditable proess

~

X with X =

~

X almost every-

where under � � P . By Fubini's theorem the setions ft:X

t

(!) 6=

~

X

t

(!)g

of the set fX 6=

~

Xg are Lebesgue null sets for P -almost every !. Therefore,

the onditions (i) or (ii) are also satis�ed with

~

X replaing X . Beause

~

X is

preditable, it is progressive. This means that

~

X : [0; t℄�
! R is an B

t

�F

t

-

measurable map and so is

~

X

2

. Consequently, by the measurability part of

Fubini's theorem, the map ! 7! Y

t

(!): =

R

t

0

~

X

2

s

(!) ds is F

t

-measurable for

every t � 0, whih means that the proess Y is adapted. The variables

T

n

= infft � 0:Y

t

� ng are stopping times, with 0 � T

n

" 1 on the event

where Y

t

is �nite for every t, by the ontinuity of the sample paths of Y .

This is a set of probability one by assumption (i), and hene we an rede�ne

T

n

suh that 0 � T

n

" 1 everywhere. Furthermore,

Z

1

[0;t^T

n

℄

~

X

2

d(� � P ) = EY

T

n

^t

� n:

Thus the proess

~

X satis�es (5.41), onluding the proof of (i).

For (ii) it suÆes to prove that 1

[0;t℄

X 2 L

2

�

[0;1)�
;B

1

�F ; ��P

�

for every t � 0. Then the same is true for

~

X, and the result follows

from Theorem 5.25(iii). (The loalization applied in De�nition 5.42 is

unneessary in this situation. Equivalently, we an put T

n

� 1.) But

R

1

[0;t℄

X

2

d�� P =

R

t

0

EX

2

s

ds, by Fubini's theorem.

5.6 Martingales of Bounded Variation

We reall that the variation of a adlag funtion A:R ! R over the interval

(a; b℄ is de�ned as

Z

b

a

jdA

s

j: = sup

a=t

0

<t

1

<���<t

k

=b

k

X

i=1

jA

t

i

�A

t

i�1

j;

where the supremum is taken over all partitions a = t

0

< t

1

< � � � < t

k

= b

of the interval. The funtion is alled of \loally bounded variation" if its

variation over every ompat interval is �nite. It an be shown that this is

equivalent to the existene of two nondereasing adlag funtions A

1

and

A

2

suh that A = A

1

� A

2

. Thus every funtion of loally bounded varia-

tion de�nes a signed measure B 7!

R

B

dA de�ned as the di�erene of the

measures de�ned by the funtions A

1

and A

2

. It an be shown that there is

a unique deomposition, written as A = A

+

�A

�

, suh that the measures
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de�ned by A

+

and A

�

are orthogonal. The sum of the orresponding mea-

sures is denoted jAj = A

+

+A

�

and is alled the total variation of A. It an

be shown that

R

(a;b℄

djAj is equal to the variation over (a; b℄ as de�ned in

the preeding display. In partiular, the expressions

R

b

a

jdA

s

j and

R

(a;b℄

djAj

denote the same.

If the sample paths of the martingaleM are of bounded variation, then

we an also de�ne an integral

R

X dM based on the usual Lebesgue-Stieltjes

integral. Spei�ally, if for a given ! 2 
 the variation

R

jdM

t

j(!) of the

funtion t 7!M

t

(!) is �nite, then B 7!

R

B

dM

t

(!) de�nes a signed measure

on the Borel sets (a di�erene of two ordinary measures) and hene we an

de�ne an integral

Z

X

t

(!) dM

t

(!)

for every proess X and ! suh that the funtion t 7! X

t

(!) is Borel

measurable and integrable relative to the measure B 7!

R

B

djM

t

j(!). (All

integrals are relative to t, for �xed !.)

If this is true for every !, then we have two andidates for the inte-

gral

R

X dM , the \pathwise" Lebesgue-Stieltjes integral and the stohasti

integral. These better be the same. They are under some onditions. For

larity of the following theorem we denote the two integrals by

R

X

s

dM

s

and

R

X dM .

A proess X is said to be loally bounded if there exists a sequene

of stopping times 0 � T

n

" 1 suh that X

T

n

is uniformly bounded on

[0;1)�
, for every n. A proessX is said to be of loally bounded variation

if there exists a sequene of stopping times 0 � T

n

" 1 suh that every of

the sample paths of X

T

n

is of bounded variation on [0;1), for every n. This

an be seen to be idential to the variation of every sample path of X on

every ompat interval [0; t℄ being �nite, whih property is well desribed

as loally of bounded variation.

Warning. \Loally bounded" is de�ned to mean \loally uniformly

bounded". This appears to be stronger than existene of a loalizing se-

quene suh that eah of the sample paths of every of the stopped proesses

is bounded. On the other hand, \loally of bounded variation" is to be un-

derstood in a nonuniform way; it is weaker than existene of a sequene of

stopping times suh that all sample paths of X

T

n

are of variation bounded

by a �xed onstant, depending only on n.

5.44 Theorem. LetM be a adlag loal L

2

-martingale of loally bounded

variation, and let X a loally bounded preditable proess. Then for every

t � 0 the stohasti integral

R

t

0

X dM and the Lebesgue-Stieltjes integral

R

(0;t℄

X

s

dM

s

are both well-de�ned and agree almost surely.

Proof. If X is a measurable proess, then the Lebesgue-Stieltjes integral

R

X

s

dM

s

is well-de�ned (up to integrability), beause the map t 7! X

t

(!)
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is measurable for every !. The integral

R

X

s

dM

s

is then also measurable

as a map on 
. This is lear if X is the indiator funtion of a produt set

in [0;1)� 
. Next we an see it for a general X by an appliation of the

monotone lass theorem, Theorem 1.23.

By assumption there exist sequenes of stopping times 0 � T

n

" 1 suh

that M

T

n

is an L

2

-martingale and suh that X

T

n

is uniformly bounded,

for every n. It is not a loss of generality to hoose these two sequenes the

same; otherwise we use the minimum of the two sequenes. We may also

assume that M

T

n

is L

2

-bounded. If not, then we replae T

n

by T

n

^ n; the

martingale M

T

n

^n

is bounded in L

2

, beause EM

2

T

n

^t^n

� E(M

T

n

)

2

n

<1

for all t � 0, by the submartingale property of (M

T

n

)

2

.

The proess 1

[0;T

n

℄

X is uniformly bounded and hene is ontained in

the Hilbert spae L

2

�

[0;1)�
;P ; �

M

T

n

�

. Therefore, the stohasti integral

R

t

0

X dM is well-de�ned aording to De�nition 5.24 as the almost sure limit

of the sequene

R

1

[0;T

n

^t℄

X dM

T

n

.

Beause

R

(0;t℄

jdM

s

j is �nite for every t, and the proess 1

[0;t℄

X is uni-

formly bounded on the event A

n

= ft � T

n

g, the Lebesgue-Stieltjes in-

tegral

R

(0;t℄

jX

s

j jdM

s

j if �nite on this event, and hene almost surely on


 = [

n

A

n

, for every given t. We onlude that

R

(0;t℄

X

s

dM

s

is well-de�ned

and �nite, almost surely. By dominated onvergene it is the limit as n!1

of the sequene

R

1

(0;T

n

^t℄

(s)X

s

dM

s

, almost surely.

We onlude that it suÆes to show that

R

1

[0;T

n

^t℄

X dM

T

n

and

R

1

(0;T

n

^t℄

(s)X

s

dM

s

agree almost surely, for every n. For simpliity of no-

tation, we drop the loalization and prove that for any L

2

-bounded martin-

gale M with

R

jdM

s

j < 1 almost surely, and every bounded, preditable

proess X the stohasti integral

R

X dM and Lebesgue-Stieltjes integral

R

X

s

dM

s

are the same almost surely, where we interprete the mass that

s 7!M

s

puts at 0 to be zero.

We apply the monotone lass theorem, with H the set of all bounded

preditable X for whih the integrals agree almost surely. Then H ontains

all indiators of preditable retangles, beause both integrals agree with

the Riemann-Stieltjes integral for suh integrands. Beause both integrals

are linear, H is a vetor spae. Beause �

M

�

[0;1)�


�

= E(M

1

�M

0

)

2

<

1, the Dol�eans measure of M is �nite, and hene the onstant funtions

are integrable. If 0 � X

n

" X for a bounded X and fX

n

g � H, then X

n

!

X in L

2

�

[0;1) � 
;P ; �

M

�

by the dominated onvergene theorem, and

hene

R

X

n

dM !

R

X dM in L

2

. Furthermore,

R

X

n;s

dM

s

!

R

X

s

dM

s

pointwise on 
, by the dominated onvergene theorem, beause

R

jdM

s

j <

1. Beause L

2

-limits and pointwise limits must agree, it follows that the

two integrals agree almost surely. The unit funtion is a limit of a sequene

of indiators of preditable retangles and hene we an �rst infer that the

onstant funtions are in H. Next an appliation of Theorem 1.23 shows

that H ontains all bounded preditable proesses.
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As a orollary of the preeding theorem we see that the Lebesgue-

Stieltjes integral of a loally bounded preditable proess relative to a ad-

lag loal L

2

-martingale of loally bounded variation is a loal martingale.

Indeed, under these onditions the two types of integrals oinide and the

stohasti integral is a loal martingale. In the next setion we want to drop

the \L

2

" from the onditions and for this reason we now give a diret proof

of this martingale property for integrators that are only loal martingales.

5.45 Lemma. If M is a adlag loal martingale of loally bounded vari-

ation and X is a loally bounded preditable proess, then the Lebesgue-

Stieltjes integrals (X �M)

t

: =

R

(0;t℄

X

s

dM

s

de�ne a adlag loal martingale

X �M .

Proof. Write

R

t

0

for

R

(0;t℄

. Let 0 � T

n

" 1 be a sequene of stopping times

suh that M

T

n

is a martingale and suh that X

T

n

is uniformly bounded,

for every n. Beause (X �M)

T

n

t

=

R

t

0

X

T

n

s

dM

T

n

s

, the lemma will follow if

t 7!

R

t

0

X

s

dM

s

is a adlag martingale for every given pair of a bounded

preditable proess X and martingale of loally bounded variationM . This

is lear if X is the indiator of a preditable retangle. In that ase the

Lebesgue-Stieltjes integral is a Riemann-Stieltjes integral, and oinides

with the elementary stohasti integral, whih is a martingale. The set H

of all bounded preditable X for whih X �M is a martingale is a vetor

spae and ontains the onstants. If 0 � X

n

" X for a uniformly bounded

proess X , then

R

t

0

X

n;s

dM

s

!

R

t

0

X

s

dM

s

pointwise on 
 and in L

1

, for

every t � 0, by two appliations of the dominated onvergene theorem.

We onlude that the set H is losed under bounded monotone limits and

hene it ontains all bounded preditable proesses, by the monotone lass

theorem, Theorem 1.23.

Warning. The preditability of the integrand is important. For in-

stane, if N is a standard Poisson proess and T is the time of its �rst

jump, then the proess M de�ned by M

t

= N

t

� t and the proess M

T

are

martingales. The Lebesgue-Stieltjes integral

R

t

0

N

s

dM

T

s

= 1

t�T

N

T

= 1

t�T

is ertainly not a martingale (as an be seen from the fat that E1ft �

Tg = 1 � e

�t

is not onstant) and hene this Lebesgue-Stieltjes integral

laks the most striking property of the stohasti integral. In omparison

N

�

is a preditable proess and

R

t

0

N

s�

dM

T

s

= 0 is ertainly a martingale.

The most important example of a ontinuous martingale is Brownian

motion and this has sample paths of unbounded variation. The latter prop-

erty is not speial to Brownian motion, but is shared by all ontinuous

martingales, or more generally all preditable loal martingales. We an

prove this important and interesting result by a omparison of stohasti

and Lebesgue-Stieltjes integrals.
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5.46 Theorem. LetM be a adlag preditable proess that is both a loal

martingale and a proess of loally bounded variation, and 0 at 0. Then

M = 0 up to indistinguishability.

Proof. First assume that M is ontinuous. By assumption there exists a

sequene 0 � T

n

" 1 of stopping times suh that M

T

n

is both a martingale

and of bounded variation. If neessary we an replae T

n

by the minimum

of T

n

and infft � 0: jM

t

j � ng to ensure also that M

T

n

is bounded, and

hene in L

2

. BeauseM

T

n

is of bounded variation, the integration by parts

formula for Lebesgue-Stieltjes integrals yields (with

R

t

0

denoting

R

(0;t℄

)

(M

T

n

)

2

t

=

Z

t

0

M

T

n

�

dM

T

n

+

Z

t

0

M

T

n

dM

T

n

:

Under the present assumption thatM is ontinuous, the integrands in these

integrals are ontinuous and hene preditable. (The two integrals are also

idential, but we write them di�erently beause the identity is valid even for

disontinuousM , and we need it in the seond part of the proof.) Therefore,

the integrals on the right an be viewed equivalently as Lebesgue-Stieltjes

or stohasti integrals, by Theorem 5.44. The interpretation as stohas-

ti integrals shows that the right side is a martingale. This implies that

EM

2

T

n

^t

= 0 and hene M

t

= 0 almost surely, for every t.

The proof ifM is not ontinuous is similar but requires additional steps,

and should be skipped at �rst reading. A stopped preditable proess is au-

tomatially preditable. (This is easy to verify for indiators of preditable

retangles and next an be extended to general preditable proesses by

a monotone lass argument.) Therefore, the integrands in the preeding

display are preditable also if M is not ontinuous. On the other hand, if

M is not ontinuous, then M

T

n

as onstruted previously is not neessarily

bounded and we annot apply Theorem 5.44 to onlude that the Lebesgue-

Stieltjes integral

R

t

0

M

T

n

dM

T

n

is a martingale. We an solve this by \stop-

ping earlier", if neessary. The stopping time S

n

= infft � 0: jM

t

j � ng is

preditable, as [S

n

℄ = [0; S

n

℄ \M

�1

([�n; n℄



) is preditable. (See the last

assertion of Lemma 5.7.) Thus S

n

is the monotone limit of a sequene of

stopping times fS

m;n

g

1

m=1

stritly smaller than S

n

on fS

n

> 0g = 
. Then

R

n

= max

i;j�n

S

i;j

de�nes a sequene of stopping times with 0 � R

n

" 1

and jM

R

n

j � n for every n by the de�nition of S

n

and the fat that

R

n

< S

n

. Now we may replae the original sequene of stopping times

T

n

by the minimum of T

n

and R

n

, and onlude the argument as before.
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5.7 Semimartingales

The ultimate generalization of the stohasti integral uses \semimartin-

gales" as integrators. Beause these are de�ned as sums of loal martingales

and bounded variation proesses, this does not add muh to what we have

already in plae. However, the onept of a semimartingale does allow some

uni�ation, for instane in the statement of Itô's formula.

5.47 De�nition. A adlag adapted stohasti proess X is a semimartin-

gale if it has a representation of the form X = X

0

+M+A for a adlag loal

martingale M and a adlag adapted proess of loally bounded variation

A.

The representation X = X

0

+ M + A of a semimartingale is non-

unique. It helps to require that M

0

= A

0

= 0, but this does not resolve the

nonuniqueness. This is beause there exist martingales that are loally of

bounded variation. The ompensated Poisson proess is a simple example.

We would like to de�ne a stohasti integral Y � X as Y �M + Y � A,

where the �rst integral Y �M is a stohasti integral and the seond integral

Y � A an be interpreted as a Lebesgue-Stieltjes integral. If we restrit the

integrand Y to loally bounded, preditable proesses, then Y �M is de�ned

as soon as M is a loal L

2

-martingale, by De�nition 5.31. In the given de-

omposition X = X

0

+M +A, the martingale is not required to be loally

in L

2

, but one an always ahieve this by proper hoie ofM and A, in view

of the following lemma. The proof of this lemma is long and diÆult and

should be skipped at �rst reading. It suÆes to remember that \loal mar-

tingale" in the preeding de�nition may be read as \loal L

2

-martingale",

without any onsequene; and that a ontinuous semimartingale an be

deomposed into ontinuous proesses M and A. The latter means that a

ontinuous semimartingale an equivalently be de�ned as a proess that is

the sum of a ontinuous loal martingale and a ontinuous adapted proess

of loally bounded variation.

5.48 Lemma. For any adlag semimartingale X there exists a deompo-

sition X = X

0

+M + A suh that M is a adlag loal L

2

-martingale and

A is a adlag adapted proess of loally bounded variation. Furthermore, if

X is ontinuous, then M and A an be hosen ontinuous.

* Proof. We may without loss of generality assume that X is a loal martin-

gale. De�ne a proess Z by Z

t

=

P

s�t

�X

s

1

j�X

s

j>1

. This is well-de�ned,

beause a adlag funtion an have at most �nitely many jumps of absolute

size bigger than some �xed onstant on any given ompat interval. We show

below that there exists a adlag preditable proess B of loally bounded

variation suh that Z�B is a loal martingale. Next we set A = Z�B and

M = X �X

0

�A and show that j�M j � 2. Then M is a loally bounded
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martingale and hene ertainly a loal L

2

-martingale, and hene the �rst

assertion of the lemma is proved.

In order to show the existene of the proess B de�ne a proess Z

u

by

Z

u

t

=

P

s�t

�X

s

1

�X

s

>1

. This is learly nondereasing. We laim that it is

loally in L

1

and hene a loal submartingale. To see this, let 0 � S

n

" 1

be a sequene of stopping times suh that X

S

n

is a uniformly integrable

martingale, for every n, and de�ne T

n

= infft � 0:Z

u

t

> n; jX

t

j > ng ^ S

n

.

Then Z

u

t

_ jX

T

n

j � n on [0; T

n

) and

0 � Z

u

T

n

^t

� Z

u

T

n

� n+ j�X

T

n

j � 2n+ jX

T

n

j:

The right side is integrable by the optional stopping theorem, beause T

n

�

S

n

and X

S

n

is uniformly integrable.

Being a loal submartingale, the proess Z

u

possesses a ompensator

B

u

by the Doob-Meyer deomposition, Lemma 5.69. We an apply a similar

argument to the proess of umulative jumps of X less than �1, and take

di�erenes to onstrut a proess B with the required properties.

The proof that j�M j � 2 is based on the following fats:

(i) For every adlag preditable proess X there exists a sequene of pre-

ditable times T

n

suh that f(t; !):�X

t

(!) 6= 0g � [

n

[T

n

℄. (The

sequene T

n

is said to exhaust the jumps of X . See e.g. Jaod and

Shiryaev, I2.24.)

(ii) If X is a preditable proess and T a stopping time, then X

T

is F

T�

-

measurable, where we de�ne X

1

to be 0. (See e.g. Jaod and Shiryaev,

I2.4; and I1.11 for the de�nition of F

T�

.)

(iii) For any adlag martingale X and preditable stopping time T we have

E(X

T

j F

T�

) = X

T�

almost surely on fT < 1g. (See e.g. Jaod and

Shiryaev, I2.27.)

(iv) For any adlag martingale X and preditable stopping time T we have

E(�X

T

j F

T�

) = 0 almost surely on the set fT <1g. This follows by

applying (ii) to the preditable proess X

�

to see that X

T�

is F

T�

-

measurable and ombining this with (iii) to ompute the onditional

expetation of �X

T

= X

T

�X

T�

.

The proesses X , A = Z�B andM = X�X

0

�A are loal martingales. If

we an show that j�M

T

n

j � 2 for every T

n

in a loalizing sequene 0 � T

n

"

1, then it follows that j�M j � 2 and the proof is omplete. For simpliity of

notation assume that X ,M and A are martingales. The proess Z has been

onstruted so that j�(X � Z)j � 1 and hene

�

�

E

�

�(X � Z)

T

j F

T�

�

�

�

� 1

almost surely, for every stopping time T . By (iv) E(�M

T

j F

T�

) = 0 almost

surely on fT < 1g, for every preditable time T . Beause �M = �(X �

Z) + �B, it follows that

�

�

E(�B

T

j F

T�

)

�

�

� 1 for every preditable time

T . Sine B and B

�

are preditable, �B

T

is F

T�

-measurable by (ii) and

hene j�B

T

j � 1 almost surely. Consequently j�Bj � 1 by (i), and hene

j�M j �

�

�

�(X � Z)

�

�

+ j�Bj � 2.

This onludes the proof of the �rst assertion of the theorem. Next,
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we prove that a ontinuous semimartingale X permits a deomposition

X = X

0

+M +A suh that M and A are ontinuous.

Suppose that X is ontinuous and let X = X

0

+M + A be a given

deomposition in a loal L

2

-martingaleM and a proess of loally bounded

variation A. Let 0 � S

n

" 1 be a sequene of stopping times suh thatM

S

n

is a martingale for every n and de�ne

T

n

= inf

n

t � 0: jM

t

j > n;

Z

t

0

jdA

s

j > n

o

^ n ^ S

n

:

Then the proess M

T

n

is a uniformly integrable martingale, is bounded in

absolute value by n on [0; T

n

), and

Z

T

n

0

jdA

s

j =

Z

[0;T

n

)

jdA

s

j+ j�A

T

n

j � n+ j�X

T

n

j+ j�M

T

n

j � 2n+ jM

T

n

j:

The right side is integrable by the optional stopping theorem, Theorem 4.21,

whene the proess

�

A is loally integrable. We onlude that the positive

and negative variation proesses orresponding to A are both loally in-

tegrable. Beause they are nondereasing, they are submartingales, and

permit Doob-Meyer deompositions as in Lemma 5.69. We onlude that

there exists a adlag preditable proess

�

A suh that A�

�

A is a loal mar-

tingale. Now X = X

0

+(M+A�

�

A)+

�

A is a deomposition of X into a loal

martingale

�

M = M + A �

�

A and a preditable proess of loally bounded

variation

�

A. We shall show that these proesses are neessarily ontinuous.

By preditability the variable �

�

A

T

is F

T�

-measurable for every stop-

ping T , by (ii). If M is integrable, then E(�M

T

j F

T�

) = 0 for every pre-

ditable stopping time, by (iv) beause M is a martingale. Sine �X = 0,

it then follows that �

�

A

T

= E(�

�

A

T

j F

T�

) = 0 for every preditable time

T , whene the proess

�

A and hene M are ontinuous, by (i). If �M

T

is

not integrable, we an �rst loalize the proesses and apply the argument

to stopped proesses.

5.49 De�nition. The integral Y �X of a loally bounded, preditable pro-

ess Y relative to a adlag semimartingale X with deomposition X =

X

0

+M+A as in Lemma 5.48 is de�ned as Y �M+Y �A, where the �rst in-

tegral Y �M is a stohasti integral de�ned aording to De�nition 5.31 and

the seond integral is the Lebesgue-Stieltjes integral (Y �A)

t

=

R

(0;t℄

Y

s

dA

s

.

The notations (Y �X)

t

and

R

t

0

Y dX are used interhangeably.

Beause the deomposition of Lemma 5.48 is not unique, we must

verify that the preeding de�nition is well posed. This follows from the fat

that for any other deomposition X = X

0

+

�

M +

�

A as in Lemma 5.48 the

proess M �

�

M =

�

A � A is a adlag loal L

2

-martingale that is loally

of bounded variation. Therefore, the Lebesgue-Stieltjes integral and the

stohasti integral of a loally bounded preditable proess Y relative to
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this proess oinide by Theorem 5.44 and hene Y �M+Y �A = Y �

�

M+Y �

�

A,

if the integrals Y �M , Y �A, Y �

�

M , and Y �

�

A are interpreted as stohasti

or Lebesgue-Stieltjes integrals, as in the de�nition.

5.50 EXERCISE. Suppose that M is a adlag loal martingale that is lo-

ally of bounded variation, and Y is a loally bounded proess. Show that

the integral Y �M as de�ned by the preeding de�nition oinides with the

Lebesgue-Stieltjes integral

R

t

0

Y

s

dM

s

. (Hint: this is a trivial onsequene of

the fat that the de�nition is well posed. Don't be onfused by the fat that

M is a martingale.)

5.51 Theorem. If X is a adlag semimartingale and Y is a preditable

loally bounded proess, then:

(i) There exists a adlag version of Y �X .

(ii) This version is a semimartingale.

(iii) If X is a loal martingale, then this version is a loal martingale.

(iv) If X is ontinuous, then there exists a ontinuous version of Y �X .

(v) The proesses �(Y � X), where Y � X is a adlag version, and Y�X

are indistinguishable.

Proof. Let X = X

0

+M + A be an arbitrary deomposition in a adlag

loal L

2

-martingale M and a adlag adapted proess of loally bounded

variation A. By de�nition Y �X = Y �M+Y �A, where the �rst is a stohasti

integral and the seond a Lebesgue-Stieltjes integral. By Theorem 5.35 the

stohasti integral Y �M permits a adlag version and this is a loal L

2

-

martingale; it permits a ontinuous version if M is ontinuous; and its

jump proess is Y�M . The Lebesgue-Stieltjes integral Y � A is of loally

bounded variation and adlag; it is ontinuous if A is ontinuous; it is a

loal martingale if A is a loal martingale, by Lemma 5.45; and its jump

proess is Y�A. Finally, if X is ontinuous, then the proesses M and A

an be hosen ontinuous.

Now that we have ompletely dressed up the de�nition of the stohasti

integral, it is useful to summarize some properties.

5.52 Lemma. If X is a semimartingale, and Y

n

is a sequene of preditable

proesses suh that Y

n

! Y pointwise on [0;1) � 
 and jY

n

j � K for a

loally bounded preditable proessK and every n, then the adlag versions

of Y

n

�X and Y �X satisfy sup

s�t

�

�

(Y

n

�X)

s

� (Y �X)

s

�

�

P

!

0, for every t � 0.

Proof. We an deompose X = X

0

+ M + A for a adlag loal L

2

-

martingale M and a adlag proess of loally bounded variation A, 0 at

0. That A is of loally bounded variation implies that

R

t

0

jdA

s

j(!) < 1

and that K is loally bounded implies that sup

s�t

K

s

(!) < 1, both for

every �xed ! and t. It follows that

R

t

0

K

s

(!) jdA

s

j(!) < 1 (the integral
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is relative to s). Beause, for �xed !, the map s 7! Y

n;s

(!) is dominated

by the map s 7! K

s

(!), the dominated onvergene theorem implies that

R

t

0

�

�

Y

n;s

(!)�Y

s

(!)

�

�

jdA

s

j(!)! 0. This being true for every !, we onlude

that sup

s�t

�

�

(Y

n

�A)

s

� (Y �A)

s

�

�

onverges to zero almost surely and hene

in probability.

There exists a sequene of stopping times 0 � T

m

" 1 suh that M

T

m

is an L

2

-bounded martingale and K

T

m

is a uniformly bounded proess, for

every m. Then, beause 1

[0;T

m

^t℄

Y

n

is bounded by K

T

m

, the dominated

onvergene theorem yields

Z

�

1

[0;T

m

^t℄

Y

n

� 1

[0;T

m

^t℄

Y

�

2

d�

M

T

m

! 0:

On the set [0; T

m

℄ the stohasti integral Y

n

�M an be de�ned as s 7!

R

1

[0;T

m

^s℄

Y

n

dM

T

m

, and similarly with Y instead of Y

n

. (See Lemma 5.32

or the proof of Theorem 5.35.) For the adlag versions of these proesses,

the maximal inequality (4.38) yields, for every �xed m, as n!1,

E sup

s�t

�

�

(Y

n

�M)

s

� (Y �M)

s

�

�

2

1

t�T

m

� E sup

s�t

�

�

�

Z

1

[0;T

m

^s℄

Y

n

dM

T

m

�

Z

1

[0;T

m

^s℄

Y dM

T

m

�

�

�

2

;

� 4E

�

�

�

Z

1

[0;T

m

^t℄

Y

n

dM

T

m

�

Z

1

[0;T

m

^t℄

Y dM

T

m

�

�

�

2

! 0:

This being true for every m implies that sup

s�t

�

�

(Y

n

� M)

s

� (Y � M)

s

�

�

onverges to zero in probability.

5.53 EXERCISE. Show that every left-ontinuous adapted proess that is

0 at 0 is loally bounded.

5.54 Lemma. For every loally bounded preditable proesses X and Y ,

semimartingale Z and stopping T , up to indistinguishability:

(i) (Y � Z)

T

= Y � Z

T

= (1

[0;T ℄

Y ) � Z.

(ii) X � (Y � Z) = (XY ) � Z.

(iii) �(Y � Z) = Y�Z, if Y � Z is hosen adlag.

(iv) (V 1

(S;T ℄

) � Z = V 1

(S;T ℄

� Z for every F

S

-measurable random variable

V .

Proof. The statements follow from the similar statements on stohasti

integrals, properties of Lebesgue-Stieltjes integrals, and loalization argu-

ments. We omit the details.
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5.8 Quadrati Variation

To every semimartingale or loal L

2

-martingale X orrespond proesses

[X ℄ and hXi, whih play an important role in stohasti alulus. They

are known as the \quadrati variation proess" and \preditable quadrati

variation proess", and are also referred to as the square braket proess

and the angle braket proess. In this setion we disuss the �rst of the two.

In the next setion we shall see that the two proesses are the same for

ontinuous L

2

-loal martingales.

5.55 De�nition. The quadrati ovariation of two semimartingales X and

Y is a adlag version of the proess

(5:56) [X;Y ℄ = XY �X

0

Y

0

�X

�

� Y � Y

�

�X:

The proess [X;X ℄, abbreviated to [X ℄, is alled the quadrati variation of

X .

As usual we need to hek that the de�nition is well posed. In this ase

this onerns the semimartingale integrals X

�

� Y and Y

�

� X ; these are

well-de�ned by De�nition 5.49, beause a left-ontinuous adapted proess

that is 0 at 0 (suh as X

�

and Y

�

) is preditable and loally bounded.

We refer to the formula (5.56) as the integration-by-parts formula.

The ordinary integration-by-parts formula for proesses X and Y of loally

bounded variation, from Lebesgue-Stieltjes theory, asserts that

X

t

Y

t

�X

0

Y

0

=

Z

(0;t℄

X

�

dY +

Z

(0;t℄

Y

�

dX +

X

0<s�t

�X

s

�Y

s

:

Comparing this to ((5.56) we see that in this ase the quadrati variation

[X;Y ℄ is the last term on the right. (Cf. Example 5.65 for more details.)

One way of looking at the quadrati variation proess for general semi-

martingales is to view it as the proess that \makes the partial integral

formula true". Many semimartingales are not loally of bounded variation,

and then the quadrati ovariation does not redue to a funtion of the

jump proesses, as in the preeding display. In partiular, the quadrati

ovariation of a ontinuous semimartingales is typially nonzero.

The name \quadrati ovariation" is better explained by the follow-

ing theorem, whih may also be viewed as an alternative de�nition of this

proess.

5.57 Theorem. For any pair of adlag semimartingales X and Y , any

sequene of partitions 0 = t

n

0

< t

n

1

< � � � < t

n

k

n

= t of mesh widths tending

to zero, and any t � 0, as n!1,

(5:58)

k

n

X

i=1

(X

t

n

i

�X

t

n

i�1

)(Y

t

n

i

� Y

t

n

i�1

)

P

!

[X;Y ℄

t

:
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Proof. Beause 4xy = (x + y)

2

� (x � y)

2

for any numbers x; y, the ase

of two semimartingales X and Y an be redued to the ase that X = Y .

For simpliity of notation we only onsider the latter ase. By the identity

(x � y)

2

= x

2

� y

2

� 2y(x� y) we an write

k

n

X

i=1

(X

t

n

i

�X

t

n

i�1

)

2

=

k

n

X

i=1

(X

2

t

n

i

�X

2

t

n

i�1

)� 2

k

n

X

i=1

X

t

n

i�1

(X

t

n

i

�X

t

n

i�1

)

= X

2

t

�X

2

0

� 2(X

n

�X)

t

;(5:59)

for X

n

the simple preditable proess de�ned by

X

n

=

k

n

X

i=1

X

t

n

i�1

1

(t

n

i�1

;t

n

i

℄

:

The sequene of proessesX

n

onverges pointwise on [0; t℄�
 to the proess

X

�

(where X

0�

= 0). The proess K de�ned by K

t

= sup

s�t

X

s�

is

adapted and left ontinuous and hene preditable and loally bounded,

and it dominates X

n

. Lemma 5.52 implies that the sequene (X

n

� X)

t

onverges in probability to (X

�

�X)

t

.

5.60 Example (Brownian motion). The quadrati variation proess of

Brownian motion is omputed in Theorem 4.28 and is given by [B℄

t

= t.

This is speial, beause it is a deterministi proess. We shall see later that

Brownian motion is the only ontinuous loal martingale with quadrati

variation proess the identity funtion.

In view of the representation in (5.56) and the ontinuity of Brownian

motion,

B

2

t

= 2

Z

t

0

B dB + t:

Compare this to the formula f

2

(t) = 2

R

t

0

f(s) df(s) (where df(s) = f

0

(s) ds)

for a ontinuously di�erentiable funtion f , and be at least a little bit

surprised. Itô's formula in Setion 5.10 is the generalization of this result

and has a similar \orretion term" relative to ordinary alulus.

5.61 EXERCISE. Show that the quadrati variation proess of both the

Poisson proess N and the ompensated Poisson proess fN

t

� t: t � 0g is

N itself. (Hint: subtration of the smooth funtion t does not hange the

limit of the sum of squares; N is a jump proess of jump sizes 1 = 1

2

.)

5.62 EXERCISE. Show that 4[X;Y ℄ = [X + Y ℄� [X � Y ℄.

5.63 Example (Multivariate Brownian motion). The quadrati o-

variation between the oordinates of a multivariate Brownian motion
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(B

1

; : : : ; B

d

) is given by [B

i

; B

j

℄

t

= Æ

ij

t, for Æ

ij

= 0 or 1 if i = j or

i 6= j the Kroneker delta.

This an be seen in a variety of ways. For instane, the ovariation

between two independent martingales is zero in general. A simple proof,

whih makes use of the speial properties of Brownian motion, is to note

that (B

i

�B

j

)=

p

2 and (B

i

+B

j

)=

p

2 are both Brownian motions in their

own right and hene [B

i

� B

j

℄ = [B

i

+ B

j

℄, whene [B

i

; B

j

℄ = 0 by Exer-

ise 5.62, for i 6= j.

It is lear from the de�ning relation (5.58) that the quadrati variation

proess [X ℄ an be hosen nondereasing almost surely. By the \polarization

identity" of Exerise 5.62, the quadrati ovariation proess [X;Y ℄ is the

di�erene of two nondereasing proesses and hene is of loally bounded

variation. The following lemma lists some further properties.

5.64 Lemma. Let X and Y be adlag semimartingales.

(i) [X

T

; Y ℄ = [X;Y ℄

T

= [X

T

; Y

T

℄ for every stopping time T .

(ii) If X and Y are loal martingales, then XY � [X;Y ℄ is a loal martin-

gale.

(iii) If X and Y are L

2

-martingales, then XY � [X;Y ℄ is a martingale.

(iv) If X and Y are L

2

-bounded martingales, then [X;Y ℄ is L

1

-bounded.

(v) If X and Y are ontinuous, then [X;Y ℄ is ontinuous.

(vi) The proesses �[X;Y ℄ and �X�Y are indistinguishable.

Proof. Assertion (i) an be proved using (5.56), or from (5.58) after verify-

ing that this relation remains true for partitions with a random endpoint.

For statements (ii){(vi) it suÆes to onsider the ase that X = Y .

Assertion (ii) is a onsequene of the representation (5.56) of X

2

� [X ℄

in terms of the stohasti integral X

�

�X and Theorem 5.51(iii).

If X is a square-integrable martingale, then the term (X

n

�X)

t

in (5.59)

has mean zero by the orthogonality of the martingale inrement X

t

n

i

�X

t

n

i�1

to F

t

n

i�1

. Then, by Fatou's lemma and (5.59),

E[X ℄

t

� lim inf

n!1

E

k

n

X

i=1

(X

t

n

i

�X

t

n

i�1

)

2

= E(X

2

t

�X

2

0

):

This proves (iv) and also that the proess [X ℄ is in L

1

if X is in L

2

. To

see that in the latter ase X

2

� [X ℄ is a martingale, as laimed in (iii), it

suÆes to show that X

�

�X is a martingale. By (ii) it is a loal martingale.

If T

n

is a loalizing sequene, then, by (5.56) and (i),

2

�

�

�

(X

�

�X)

T

n

t

�

�

�

=

�

�

X

2

T

n

^t

�X

2

0

� [X ℄

T

n

^t

�

�

� X

2

T

n

^t

+X

2

0

+ [X ℄

t

;

beause [X ℄ is nondereasing. Beause X

T

n

^t

= E(X

t

j F

T

n

^t

) by the

optional stopping theorem, Jensen's inequality yields that X

2

T

n

^t

�
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E(X

2

t

j F

T

n

^t

) and hene the sequene fX

2

T

n

^t

g

1

n=1

is uniformly integrable,

for every �xed t � 0. We onlude that the right side and hene the left

side of the preeding display is uniformly integrable, and the sequene of

proesses (X

�

� X)

T

n

onverges in L

1

to the proess X

�

� X , as n ! 1.

Then the martingale property of the proesses (X

�

�X)

T

n

) arries over onto

the proess X

�

�X . This onludes the proof of (iii).

Assertion (v) is lear from the fat that the stohasti integral X

�

�X

is ontinuous if X is ontinuous, by Theorem 5.51(iv). For assertion (vi) we

note �rst that X

2

= (X

�

)

2

+ 2X

�

�X + (�X)

2

, so that its jump proess

is given by �(X

2

) = 2X

�

�X + (�X)

2

. Next we use (5.56) to see that

�[X ℄ = �(X

2

)�2�(X

�

�X), and onlude by applying Lemma 5.54(iii).

5.65 Example (Bounded variation proesses). The quadrati variation

proess of a adlag semimartingale X that is loally of bounded variation

is given by [X ℄

t

=

P

0<s�t

(�X

s

)

2

.

This an be proved diretly from the de�nition of [X ℄ as the sum of

in�nitesimal square inrements in equation (5.58) of Theorem 5.57, but an

indiret proof is easier. An intuitive explanation of the result is that for

a proess of loally bounded variation the sums of in�nitesimal absolute

inrements onverges to a �nite limit. Therefore, for a ontinuous proess

of loally bounded variation the sums of in�nitesimal square inrements,

as in (5.58), onverges to zero. On the other hand, the squares of the pure

jumps in the disrete part of a proess of loally bounded variation remain.

A proof an be based on the integration-by-parts formula for adlag

funtions of bounded variation. This shows that

X

2

t

�X

2

0

= 2

Z

(0;t℄

X

s�

dX

s

+

X

0<s�t

(�X

s

)

2

:

Here the integral on the right is to be understood as a pathwise

Lebesgue-Stieltjes integral, and is equal to the Lebesgue-Stieltjes integral

R

(0;t℄

X

s�

d(X

s

� X

0

). Beause the deomposition X = X

0

+ M + A of

the semimartingale X an be hosen with M = 0 and A = X � X

0

,

the latter Lebesgue-Stieltjes integral is by de�nition the semimartingale

integral (X

�

� X)

t

, as de�ned in De�nition 5.49. Making this identi�-

ation and omparing the preeding display to (5.56) we onlude that

[X ℄

t

=

P

0<s�t

(�X

s

)

2

.

5.66 EXERCISE. Let X be a ontinuous semimartingale and Y a adlag

semimartingale that is loally of bounded variation. Show that [X;Y ℄ = 0.

[Hint: one possibility is to use (5.58).℄
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5.9 Preditable Quadrati Variation

The \angle braket proess" hMi is de�ned for the smaller lass of loal

L

2

-martingales M , unlike the square braket proess, whih is de�ned for

general semimartingales. If M is ontinuous, we an de�ne hMi simply to

be idential to [M ℄. For general loal L

2

-martingales, we de�ne the angle

braket proess by referene to the Doob-Meyer deomposition. This de-

omposition, given in Lemma 5.69, implies that for any loal L

2

-martingale

M there exists a unique preditable proess A suh that M

2

�A is a loal

martingale. We de�ne this proess as the preditable quadrati variation of

M .

5.67 De�nition. The preditable quadrati variation of a adlag loal L

2

-

martingale M is the unique adlag nondereasing preditable proess hMi,

0 at 0, suh that M

2

�hMi is a loal martingale. The preditable quadrati

ovariation of a pair of adlag loal L

2

-martingalesM and N is the proess

hM;Ni de�ned by 4hM;Ni = hM +Ni � hM �Ni.

5.68 EXERCISE. Show that MN � hM;Ni is a loal martingale.

If M is a loal martingale, then the proess M

2

� [M ℄ is a loal mar-

tingale, by Lemma 5.64(ii). If [M ℄ is preditable, in partiular if M is on-

tinuous, then hMi = [M ℄. However, the proess [M ℄ is not neessarily pre-

ditable, and hene is not neessarily equal to the proess hMi.

To see that De�nition 5.67 is well posed, we use the Doob-Meyer de-

omposition. The square of a loal martingale is a loal submartingale, by

Jensen's inequality, and hene existene and uniqueness of hMi follows from

(ii) of the following lemma.

A proess Z is said to be of lass D, if the olletion of all random

variable Z

T

with T ranging over all �nite stopping times, is uniformly in-

tegrable.

5.69 Lemma (Doob-Meyer).

(i) Any adlag submartingale Z of lass D an be written uniquely in the

form Z = Z

0

+M + A for a adlag uniformly integrable martingale

M and a adlag preditable nondereasing proess A with EA

1

<1,

both 0 at 0. The proess A is ontinuous if and only if EZ

T�

= EZ

T

for every �nite preditable time T .

(ii) Any adlag loal submartingale Z an be written uniquely in the form

Z = Z

0

+M + A for a adlag loal martingale M and a adlag pre-

ditable nondereasing proess A, both 0 at 0.

Proof. For a proof of (i) see e.g. Rogers and Williams, VI-29.7 and VI-

31.1. The uniqueness of the deomposition follows also from Theorem 5.46,

beause given two deompositions Z = Z

0

+M + A = Z

0

+

�

M +

�

A of the
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given form, the proess M �

�

M =

�

A�A is a adlag preditable proess of

bounded variation, 0 at 0, and hene is 0.

Given (i) we an prove (ii) by loalization as follows. Suppose 0 � T

n

"

1 is a sequene of stopping times suh that Z

T

n

is a submartingale of lass

D for every n. Then by (i) it an be written as Z

T

n

= Z

0

+M

n

+A

n

for a

uniformly integrable martingaleM

n

and a adlag, nondereasing integrable

preditable proess A

n

. For m � n we have Z

T

m

= (Z

T

n

)

T

m

= Z

0

+M

T

m

n

+

A

T

m

n

. By uniqueness of the deomposition it follows that M

T

m

n

= M

m

and

A

T

m

n

= A

m

. This allows us to de�ne proesses M and A in a onsistent

manner by speifying their values on the set [0; T

m

℄ to be M

m

and A

m

,

for every m. Then M

T

n

= M

n

and hene M is a loal martingale. Also

Z = Z

0

+M +A on [0; T

m

℄ for every m and hene on [0;1)� 
.

We still need to show the existene of the stopping times T

n

. By as-

sumption there are stopping times 0 � S

n

" 1 suh that Z

S

n

is a sub-

martingale. De�ne

T

n

= S

n

^ n ^ infft � 0: jZ

S

n

t

j � ng:

Then jZ

S

n

t

j � jZ

S

n

T

n

j_n for t 2 [0; T

n

℄ and hene jZ

T

n

T

j � jZ

S

n

T

n

j_n for every

stopping time T . The right side is integrable beause T

n

is bounded and

Z

S

n

is a submartingale (and hene is in L

1

) by Theorem 4.20.

The nondereasing, preditable proess A in the Doob-Meyer deom-

position given by Lemma 5.69(i){(ii) is alled the ompensator or \dual

preditable projetion" of the submartingale Z.

5.70 Example (Poisson proess). The standard Poisson proess is non-

dereasing and integrable and hene trivially a loal submartingale. The

proessM de�ned byM

t

= N

t

�t is a martingale, and the identity funtion

t 7! t, being a deterministi proess, is ertainly preditable. We onlude

that the ompensator of N is the identity funtion.

The proess t 7! M

2

t

� t is also a martingale. By the same reasoning

we �nd that the preditable quadrati variation of M is given by hMi

t

= t.

In ontrast, the quadrati variation is [M ℄ = N . (See Exerise 5.61.)

5.71 EXERCISE. Show that the ompensator of [M ℄ is given by hMi.

5.72 EXERCISE. Show that hM

T

i = hMi

T

for every stopping time T .

(Hint: a stopped preditable proess is preditable.)

* 5.73 EXERCISE. Show that M

2

� hMi is a martingale if M is an L

2

-

martingale. (Hint: if M is L

2

-bounded, then M

2

is of lass D and we an

apply (i) of the Doob-Meyer lemma; a general M an be stopped.)

Both quadrati variation proesses are losely related to the Dol�eans

measure. The following lemma shows that the Dol�eans measure an be
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disintegrated as,

d�

M

(s; !) = d[M ℄

s

(!) dP (!) = dhMi

s

(!) dP (!):

Here d[M ℄

s

(!) denotes the measure on [0;1) orresponding to the non-

dereasing, adlag funtion t 7! [M ℄

s

(!), for given !, and similarly for

dhMi

s

(!). The three measures in the display agree on the preditable �-

�eld, where the Dol�eans measure was �rst de�ned. (See (5.14)). O� the

preditable �-�eld the two disintegrations o�er possible extensions, whih

may be di�erent.

5.74 Lemma. If M is an L

2

-martingale, then, for all A 2 P ,

�

M

(A) =

Z Z

1

0

1

A

(s; !) d[M ℄

s

(!) dP (!) =

Z Z

1

0

1

A

(s; !) dhMi

s

(!) dP (!):

Proof. Beause the preditable retangles form an intersetion stable gen-

erator of the preditable �-�eld, it suÆes to verify the identity for every

set of the form A = (s; t℄� F

s

with F

s

2 F

s

. Now

E

Z

1

0

1

(s;t℄�F

s

(u; !) d[M ℄

u

= E1

F

s

�

[M ℄

t

� [M ℄

s

�

:

Beause M

2

� [M ℄ is a martingale, by Lemma 5.64(iii), the variable (M

2

t

�

[M ℄

t

)� (M

2

s

� [M ℄

s

) is orthogonal to F

s

. This implies that we may replae

[M ℄

t

� [M ℄

s

in the display byM

2

t

�M

2

s

. The resulting expression is exatly

�

M

�

(s; t℄� F

s

�

.

The argument for hMi is idential, if we note that M

2

� hMi is a

martingale if M is in L

2

. (Cf. Exerise 5.73.)

5.75 Example (Integration with Continuous Integrators). We have

seen in Example 5.37 that a ontinuous loal martingale M , 0 at 0, is a

loal L

2

-martingale, and hene an at as an integrator. It an now be seen

that any preditable proess X with, for every t � 0,

Z

t

0

X

2

s

d[M ℄

s

<1; a:s:

is a good integrand relative to M . This is to say that under this ondition

there exists a loalizing sequene 0 � T

n

" 1 for the pair (X;M) and hene

De�nition 5.31 of the stohasti integral applies. An appropriate loalizing

sequene is

T

n

= inf

n

t � 0: jM

t

j > n;

Z

t

0

X

2

s

d[M ℄

s

> n

o

:

For this sequene we have that M

T

n

is bounded and 1

[0;t^T

n

℄

X is

ontained in L

2

�

[0;1) � 
;P ; �

M

T

n

�

in view of Lemma 5.74, beause

R

1

[0;T

n

℄

(s)X

2

s

d[M ℄

s

� n and hene has expetation

R

X

2

d�

M

T

n

bounded

by n.
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5.76 Lemma. The quadrati variation proess of a adlag loal martingale

is the unique adapted proess A of loally bounded variation, 0 at 0, suh

that M

2

�A is a loal martingale and �A = (�M)

2

.

Proof. The quadrati variation proess [M ℄ possesses the listed properties,

by Lemma 5.64(ii) and (vi). Given an other proess A with these properties

the proess [M ℄�A is the di�erene of two loal martingales and hene a

loal martingale. It is also of loally bounded variation and 0 at 0. Moreover,

it is ontinuous, beause �[M ℄ = (�M)

2

= �A. Theorem 5.46 shows that

[M ℄�A = 0.

Beause the quadrati ovariation proess [X;Y ℄ is of loally bounded

variation, integrals of the type

R

t

0

Z

s

d[X;Y ℄

s

an be de�ned as Lebesgue-

Stieltjes integrals, for every measurable (integrable) proess Z. (The s in

the notation is to indiate that the integral is a Lebesgue-Stieltjes integral

relative to s, for every �xed pair or sample paths of Z and [X;Y ℄.) The

integrals in the following lemmas an be understood in this way.

5.77 Lemma. Let M and N be loal L

2

-martingales and let X and Y be

loally bounded preditable proesses.

(i) [X �M;Y �N ℄

t

=

R

t

0

X

s

Y

s

d[M;N ℄

s

.

(ii) hX �M;Y �Ni

t

=

R

t

0

X

s

Y

s

dhM;Ni

s

.

Proof. For simpliity of notation we give the proof in the ase that X = Y

and M = N . Furthermore, we abbreviate the proess t 7!

R

t

0

X

2

s

d[M ℄

s

to

X

2

� [M ℄, and de�ne X

2

� hMi similarly.

Beause a ompensator of a loal submartingale is unique, for (ii) it

suÆes to show that the proessX

2

�hMi is preditable and that the proess

(X �M)

2

�X

2

� hMi is a loal martingale.

Similarly, for (i) it suÆes to show that the proess (X �M)

2

�X

2

� [M ℄

is a loal martingale and that �(X

2

� [M ℄) =

�

�(X �M)

�

2

.

Now any integral relative to a preditable proess of loally bounded

variation is preditable, as an be seen by approximation by integrals of

simple integrands. Furthermore, by properties of the Lebesgue-Stieltjes in-

tegral �(X

2

� [M ℄) = X

2

�[M ℄ = X

2

(�M)

2

, by Lemma 5.64(vi), while

�

�(X �M)

�

2

= (X�M)

2

, by Lemma 5.54. We are left with showing that

the proesses (X �M)

2

�X

2

� hMi and (X �M)

2

�X

2

� [M ℄ are loal mar-

tingales.

Suppose �rst thatM is L

2

-bounded and that X is a preditable proess

with

R

X

2

d�

M

< 1. Then X �M is an L

2

-bounded martingale, and for

every stopping time T , by Lemma 5.54(i),

E(X �M)

2

T

= E

�

Z

X1

[0;T ℄

dM

�

2

=

Z

X

2

1

[0;T ℄

d�

M

= E

Z

T

0

X

2

s

d[M ℄

s

= E(X

2

� [M ℄)

T

;
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where we use Lemma 5.74 for the �rst equality on the seond line of the

display. We an onlude that the proess (X �M)

2

�X

2

�[M ℄ is a martingale

by Lemma 4.22.

For a general loal L

2

-martingale we an �nd a sequene of stopping

times 0 � T

n

" 1 suh that M

T

n

is L

2

-bounded and suh that 1

[0;T

n

℄

X 2

L

2

�

[0;1)�
;P ; �

M

T

n

�

for every n. By the preeding argument the proess

(1

[0;T

n

℄

X �M

T

n

)

2

� 1

[0;T

n

℄

X

2

� [M

T

n

℄ is a martingale for every n. But this

is the proess (X �M)

2

�X

2

� [M ℄ stopped at T

n

and hene this proess is

a loal martingale.

The proof for the proess (X �M)

2

�X

2

� hMi is similar.

The following lemma is of interest, but will not be used in the remain-

der.

* 5.78 Lemma (Kunita-Watanabe). If M and N are adlag loal martin-

gales and X and Y are preditable proesses, then

�

Z

t

s

jd[M;N ℄

u

j

�

2

�

Z

t

s

d[M ℄

u

Z

t

s

d[N ℄

u

; a:s:;

�

E

Z

jX

u

Y

u

j jd[M;N ℄j

u

�

2

�

Z

X

2

d�

M

Z

Y

2

d�

N

:

Proof. For s < t abbreviate [M;N ℄

t

� [M;N ℄

s

to [M;N ℄

t

s

. Let s = t

n

0

<

t

n

1

< � � � < t

n

k

n

= t be a sequene of partitions of [s; t℄ of mesh widths

tending to zero as n!1. Then, by Theorem 5.57 and the Cauhy-Shwarz

inequality,

�

�

[M;N ℄

t

s

�

�

2

= lim

n!1

�

�

�

k

n

X

i=1

(M

t

n

i

�M

t

n

i�1

)(N

t

n

i

�N

t

n

i�1

)

�

�

�

2

� lim

n!1

k

n

X

i=1

(M

t

n

i

�M

t

n

i�1

)

2

k

n

X

i=1

(N

t

n

i

�N

t

n

i�1

)

2

= [M ℄

t

s

[N ℄

t

s

:

Here the limits may be interpreted as limits in probability, or, by hoosing

an appropriate subsequene of fng, as almost sure limits. By applying this

inequality to every partitioning interval (t

i�1

; t

i

) in a given partition s =

t

0

< t

1

< � � � < t

k

= t of [s; t℄, we obtain

k

X

i=1

�

�

[M;N ℄

t

i

t

i�1

�

�

�

k

X

i=1

q

[M ℄

t

i

t

i�1

[N ℄

t

i

t

i�1

�

v

u

u

t

k

X

i=1

[M ℄

t

i

t

i�1

k

X

i=1

[N ℄

t

i

t

i�1

;

by the Cauhy-Shwarz inequality. The right side is exatly the square root

of

R

t

s

d[M ℄

u

R

t

s

d[N ℄

u

. The supremum of the left side over all partitions of the

interval [s; t℄ is

R

t

s

jd[M;N ℄

u

j. This onludes the proof of the �rst inequality

in Lemma 5.78.
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To prove the seond assertion we �rst note that by the �rst, for any

measurable proesses X and Y ,

�

Z

jX

u

jjY

u

j jd[M;N ℄j

u

�

2

�

Z

jX

u

j

2

d[M ℄

u

Z

jY

u

j

2

d[N ℄

u

; a:s::

Next we take expetations, use the Cauhy-Shwarz inequality on the right

side, and �nally rewrite the resulting expression in terms of the Dol�eans

measures, as in Lemma 5.74.

5.10 Itô's Formula for Continuous Proesses

Itô's formula is the ornerstone of stohasti alulus. In this setion we

present it for the ase of ontinuous proesses, whih allows some simpli�-

ation. In the �rst statement we also keep the martingale and the bounded

variation proess separated, whih helps to understand the essene of the

formula. The formulas for general semimartingales are more symmetri, but

also more ompliated at �rst.

For a given funtion f :R

d

! R write D

i

f for its ith partial derivative

and D

i;j

f for its (i; j)th seond degree partial derivative.

5.79 Theorem (Itô's formula). Let M be a ontinuous loal martingale

and A a ontinuous proess that is loally of bounded variation. Then, for

every twie ontinuously di�erentiable funtion f :R

2

! R,

f(M

t

; A

t

)� f(M

0

; A

0

) =

Z

t

0

D

1

f(M;A) dM +

Z

t

0

D

2

f(M

s

; A

s

) dA

s

+

1

2

Z

t

0

D

11

f(M

s

; A

s

) d[M ℄

s

; a:s::

The speial feature of Itô's formula is that the martingaleM gives two

ontributions on the right hand side (the �rst and third terms). These result

from the linear and quadrati approximations to the funtion on the left.

An informal explanation of the formula is as follows. For a given partition

0 = t

0

< t

1

< � � � < t

k

= t, we an write the left side of the theorem as

X

i

�

f(M

t

i+1

; A

t

i+1

)� f(M

t

i+1

; A

t

i

)

�

+

X

i

�

f(M

t

i+1

; A

t

i

)� f(M

t

i

; A

t

i

)

�

�

X

i

D

2

f(M

t

i+1

; A

t

i

)(A

t

i+1

�A

t

i

)(5:80)

+

X

i

D

1

f(M

t

i

; A

t

i

)(M

t

i+1

�M

t

i

) +

1

2

X

i

D

11

f(M

t

i

; A

t

i

)(M

t

i+1

�M

t

i

)

2

:
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We have dropped the quadrati approximation involving the terms (A

t

i+1

�

A

t

i

)

2

and all higher order terms, beause these should be negligible in the

limit if the mesh width of the partition onverges to zero. On the other

hand, the quadrati approximation oming from the martingale part, the

term on the far right, does give a ontribution. This term is of omparable

magnitude as the quadrati variation proess on the left side of (5.58).

5.81 EXERCISE. Apply Theorem 5.79 to the funtion f(m; a) = m

2

. Com-

pare the result to Theorem 5.57.

If we apply Theorem 5.79 with the funtion f(m; a) = g(m+ a), then

we �nd the formula

g(M

t

+A

t

)�g(M

0

+A

0

) =

Z

t

0

g

0

(M+A) d(M+A)+

1

2

Z

t

0

g

00

(M

s

+A

s

) d[M ℄

s

:

Here X = M + A is a semimartingale. If we de�ne its quadrati variation

[X ℄ as [M ℄, then we an also write this as

(5:82) g(X

t

)� g(X

0

) =

Z

t

0

g

0

(X) dX +

1

2

Z

t

0

g

00

(X

s

) d[X ℄

s

:

This pleasantly symmetri formula does not permit the study of transfor-

mations of pairs of proesses (M;A), but this an be remedied by studying

funtions g(X

1;t

; : : : ; X

d;t

) of several semimartingales X

i

= fX

i;t

: t � 0g.

In the present setion we restrit ourselves to ontinuous semimartingales.

It was shown in Lemma 5.48 that the proesses M and A in the deom-

position X = X

0

+M + A of a ontinuous semimartingale an always be

hosen ontinuous. The following de�nition is therefore onsistent with the

earlier de�nition of a semimartingale.

5.83 De�nition. A ontinuous semimartingale X is a proess that an be

written as the sum X = X

0

+M + A of a ontinuous loal martingale M

and a ontinuous proess A of loally bounded variation, both 0 at 0.

The deomposition X = X

0

+M+A of a ontinuous semimartingale in

its ontinuous martingale and bounded variation parts M and A is unique,

beause a ontinuous loal martingale that is of loally bounded variation

is neessarily onstant, by Theorem 5.46.

It an also be proved that for a semimartingale X = M + A with A

a ontinuous proess of loally bounded variation, the quadrati variation

[X ℄ of X is indeed given by [M ℄. We leave this as an exerise.
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5.84 EXERCISE. Show that the quadrati variation of a ontinuous semi-

martingale X = X

0

+M +A, as de�ned in (5.58), is given by [M ℄, i.e. the

ontributions of the bounded variation part is negligible. Furthermore, show

that [M;A℄ = 0 = [A℄. (Hint: the ontinuity of the proesses is essential.)

5.85 Theorem (Itô's formula). Let X = (X

1

; : : : ; X

d

) be a vetor of on-

tinuous semimartingales. Then, for every twie ontinuously di�erentiable

funtion f :R

d

! R,

f(X

t

)� f(X

0

) =

d

X

i=1

Z

t

0

D

i

f(X) dX

i

+

1

2

d

X

i=1

d

X

j=1

Z

t

0

D

ij

f(X) d[X

i

; X

j

℄; a:s::

Proofs. For a proof of Theorem 5.79 based diretly on the Taylor approx-

imation (5.80), see Chung and Williams, pp94{97. Here we give a proof of

the more general Theorem 5.85, but following the \onvention" stated by

Rogers and Williams, p61: \Convention ditates that Itô's formula should

only be proved for d = 1, the general ase being left as an exerise, amid

bland assuranes that only the notation is any more diÆult."

The proof proeeds by �rst establishing the formula for all polynomials

f and next generalization to general smooth funtions by approximation.

The formula is trivially true for the polynomials f(x) = 1 and f(x) = x.

Next we show that the formula is orret for the funtion fg if it is orret

for the funtions f and g. Beause the set of funtions for whih it is orret

is also a vetor spae, we then an onlude that the formula is orret for

all polynomials.

An essential step in this argument is the de�ning equation (5.56) for

the quadrati variation proess, whih an be viewed as the Itô formula for

polynomials of degree 2 and an be written in the form

(5:86) X

t

Y

t

�X

0

Y

0

= (X � Y )

t

+ (Y �X)

t

+ [X;Y ℄

t

:

Then suppose that Itô's formula is orret for the funtions f and g. This

means that (5.82) is valid for g (as it stands) and for f in the plae of g.

The formula implies that the proesses f(X) and g(X) are semimartingales.

For instane, if X = X

0

+M +A then the proess g(X) has deomposition

g(X) = g(X

0

) +

�

M +

�

A given by

�

M

t

=

Z

t

0

g

0

(X) dM;

�

A

t

=

Z

t

0

g

0

(X

s

) dA

s

+

1

2

Z

t

0

g

00

(X

s

) d[X ℄

s

:

In view of Exerise 5.84, the quadrati ovariation [f(X); g(X)℄ is the

quadrati ovariation between the martingale parts of f(X) and g(X), and

is equal to f

0

(X)g

0

(X) � [X ℄, by Lemma 5.77. Applying (5.86) with X and
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Y there replaed by f(X) and g(X), we �nd

f(X

t

)g(X

t

)� f(X

0

)g(X

0

)

=

�

f(X) � g(X)

�

t

+

�

g(X) � f(X)

�

t

+

�

f(X); g(X)

�

t

=

�

f(X)g

0

(X) �X

�

t

+

1

2

f(X)g

00

(X) � [X ℄

t

+

�

g(X)f

0

(X) �X

�

t

+

1

2

g(X)f

00

(X) � [X ℄

t

+ f

0

(X)g

0

(X) � [X ℄

t

;

where we have used (5.82) for f and g, and the substitution formula of

Lemma 5.54(ii). By regrouping the terms this an be seen to be the Itô

formula for the funtion fg.

Finally, we extend Itô's formula to general funtions f by approxima-

tion. Beause f

00

is ontinuous, there exists a sequene of polynomials f

n

with f

00

n

! f

00

, f

0

n

! f

0

and f

n

! f pointwise on R and uniformly on om-

pata, by an extension of the Weierstrass approximation theorem. Then

f

n

(X), f

0

n

(X) and f

00

n

(X) onverge pointwise on 
� [0;1) to f(X), f

0

(X)

and f

00

(X). The proof of the theorem is omplete, if we an show that all

terms of Itô's formula applied with f

n

onverge to the orresponding terms

with f instead of f

n

, as n! 1. This onvergene is lear for the left side

of the formula. For the proof of the onvergene of the integral terms, we

an assume without loss of generality that the proess X in the integrand

satis�es X

0

= 0; otherwise we replae the integrand by X1

(0;1)

.

The proess K = sup

n

jf

0

n

(X)j is preditable and is bounded on sets

where jX j is bounded. If T

m

= infft � 0: jX

t

j > mg, then, as we have as-

sumed that X

0

= 0, jX j � m on the set [0; T

m

℄ and hene K

T

m

is bounded.

We onlude that K is loally bounded, and hene, by Lemma 5.52,

f

0

n

(X) �X

P

!

f

0

(X) �X , as n!1.

Finally, for a �xed m on the event ft � T

m

g, the proesses s 7!

f

00

n

(X) are uniformly bounded on [0; t℄. On this event

R

t

0

f

00

n

(X

s

) [X ℄

s

!

R

t

0

f

00

(X

s

) d[X ℄

s

, as n ! 1, by the dominated onvergene theorem, for

�xed m. Beause the union over m of these events is 
, the seond terms

on the right in the Itô formula onverge in probability.

Itô's formula is easiest to remember in terms of di�erentials. For in-

stane, the one-dimensional formula an be written as

df(X

t

) = f

0

(X

t

) dX

t

+

1

2

f

00

(X

t

) d[X ℄

t

:

The de�nition of the quadrati variation proess suggests to think of [X ℄

t

as

R

(dX

t

)

2

. For this reason Itô's rule is sometimes informally stated as

df(X

t

) = f

0

(X

t

) dX

t

+

1

2

f

00

(X

t

) (dX

t

)

2

:

Sine the quadrati variation of a Brownian motion B is given by [B℄

t

= t,

a Brownian motion then satis�es (dB

t

)

2

= dt. A further rule is that

(dB

t

)(dA

t

) = 0 for a proess of bounded variation A, expressing that

[B;A℄

t

= 0. In partiular dB

t

dt = 0.
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5.87 Lemma. For every twie ontinuously di�erentiable funtion f :R !

R there exist polynomials p

n

:R ! R suh that sup

jxj�n

�

�

p

(i)

n

(x)�f

(i)

(x)

�

�

!

0 as n!1, for i = 0; 1; 2.

Proof. For every n 2 N the funtion g

n

: [0; 1℄ ! R de�ned by g

n

(x) =

f

00

(x=n) is ontinuous and hene by Weierstrass' theorem there exists a

polynomial r

n

suh that the uniform distane on [�1; 1℄ between g

n

and

r

n

is smaller than n

�3

. This uniform distane is idential to the uniform

distane on [�n; n℄ between f

00

and the polynomial q

n

de�ned by q

n

(x) =

r

n

(xn). We now de�ne p

n

to be the polynomial with p

n

(0) = f(0), p

0

n

(0) =

f

0

(0) and p

00

n

= q

n

. By integration of f

00

� p

00

n

it follows that the uniform

distane between f

0

and p

0

n

on [�n; n℄ is smaller than n

�2

, and by a seond

integration it follows that the uniform distane between f and p

n

on [�n; n℄

is bounded above by n

�1

.

* 5.11 Spae of Square-integrable Martingales

Reall that we all a martingale M square-integrable if EM

2

t

< 1 for ev-

ery t � 0 and L

2

-bounded if sup

t�0

EM

2

t

< 1. We denote the set of all

adlag L

2

-bounded martingales by H

2

, and the subset of all ontinuous

L

2

-bounded martingales by H

2



.

By Theorem 4.10 every L

2

-bounded martingale M = fM

t

: t � 0g

onverges almost surely and in L

2

to a \terminal variable" M

1

and

M

t

= E(M

1

j F

t

) almost surely for all t � 0. If we require the martin-

gale to be adlag, then it is ompletely determined by the terminal variable

(and the �ltration, up to indistinguishability). This permits us to identify

a martingale M with its terminal variable M

1

, and to make H

2

into a

Hilbert spae, with inner produt and norm

(M;N) = EM

1

N

1

; kMk =

p

EM

2

1

:

The set of ontinuous martingales H

2



is losed in H

2

relative to this

norm. This follows by the maximal inequality (4.38), whih shows that

M

n

1

!M

1

in L

2

implies the onvergene of sup

t

jM

n

t

�M

t

j in L

2

, so that

ontinuity is retained when taking limits in H

2

. We denote the orthoom-

plement of H

2



in H

2

by H

2

d

, so that

H

2

= H

2



+H

2

d

; H

2



? H

2

d

:

The elements of H

2

d

are referred to as the purely disontinuous martingales

bounded in L

2

.

Warning. The sample paths of a purely disontinuous martingale are

not \purely disontinuous", as is lear from the fat that they are adlag by
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de�nition. Nor is it true that they hange by jumps only. The ompensated

Poisson proess (stopped at a �nite time to make it L

2

-bounded) is an

example of a purely disontinuous martingale. (See Example 5.89.)

The quadrati ovariation proesses [M;N ℄ and hM;Ni o�er another

method of de�ning two martingales to be \orthogonal": by requiring that

their ovariation proess is zero. For the deomposition of a martingale in

its ontinuous and purely disontinuous part this type of orthogonality is

equivalent to orthogonality in the inner produt (�; �).

5.88 Lemma. For every M 2 H

2

the following statements are equivalent.

(i) M 2 H

2

d

.

(ii) M

0

= 0 almost surely and MN is a uniformly integrable martingale

for every N 2 H

2



.

(iii) M

0

= 0 almost surely and MN is a loal martingale for every ontin-

uous loal martingale N .

(iv) M

0

= 0 almost surely and [M;N ℄ = 0 for every ontinuous loal mar-

tingale N .

(v) M

0

= 0 almost surely and hM;Ni = 0 for every N 2 H

2



.

Furthermore, statements (iii) and (iv) are equivalent for every loal mar-

tingale M .

Proof. If M and N are both in H

2

, then jM

t

N

t

j � M

2

t

+ N

2

t

�

sup

t

(M

2

t

+ N

2

t

), whih is integrable by (4.38). Consequently, the proess

MN is dominated and hene uniformly integrable. If it is a loal martingale,

then it is automatially martingale. Thus (iii) implies (ii). Also, that (ii) is

equivalent to (v) is now immediate from the the de�nition of the preditable

ovariation. That (iv) implies (v) is a onsequene of Lemma 5.64(ii) and

the fat that the zero proess is preditable. That (iv) implies (iii) is im-

mediate from Lemma 5.64(ii).

(ii) ) (i). If MN is a uniformly integrable martingale, then (M;N) �

EM

1

N

1

= EM

0

N

0

and this is zero if M

0

= 0.

(i) ) (ii). Fix M 2 H

2

d

, so that EM

1

N

1

= 0 for every N 2 H

2



. The

hoie N � 1

F

for a set F 2 F

0

yields, by the martingale property of M

that EM

0

1

F

= EM

1

1

F

= EM

1

N

1

= 0. We onlude that M

0

= 0 almost

surely.

For an arbitrary N 2 H

2



and an arbitrary stopping time T , the

proess N

T

is also ontained in H

2



and hene, again by the martingale

property of M ombined with the optional stopping theorem, EM

T

N

T

=

EM

1

N

T

= EM

1

(N

T

)

1

= 0. Thus MN is a uniformly integrable martin-

gale by Lemma 4.22.

(i)+(ii) ) (iii). A ontinuous loal martingale N is automatially lo-

ally L

2

-bounded and hene there exists a sequene of stopping times

0 � T

n

" 1 suh that N

T

n

is an L

2

-bounded ontinuous martingale, for

every n. If M is purely disontinuous, then 0 = [N

T

n

;M ℄ = [N

T

n

;M

T

n

℄.

Hene (MN)

T

n

= M

T

n

N

T

n

is a martingale by Lemma 5.64(ii), so that
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MN is a loal martingale.

(iii) ) (iv) By Lemma 5.64(ii) the proess MN � [M;N ℄ is always a

loal martingale. If MN is a loal martingale, then [M;N ℄ is also a loal

martingale. The proess [M;N ℄ is always loally of bounded variation. If

N is ontinuous this proess is also ontinuous in view of Lemma 5.64(vi).

Therefore [M;N ℄ = 0 by Theorem 5.46.

The quadrati ovariation proess [M;N ℄ is de�ned for proesses that

are not neessarily L

2

-bounded, or even square-integrable. It o�ers a way

of extending the deomposition of a martingale into a ontinuous and a

purely disontinuous part to general loal martingales. A loal martingale

M is said to be purely disontinuous if M

0

= 0 and [M;N ℄ = 0 for every

ontinuous loal martingale N . By the preeding lemma it is equivalent to

say that M is purely disontinuous if and only if MN is a loal martingale

for every ontinuous loal martingale N , and hene the de�nition agrees

with the de�ntion given earlier in the ase of L

2

-bounded martingales.

5.89 Example (Bounded variation martingales). Every loal martingale

that is of loally bounded variation is purely disontinuous.

To see this, note that if N is a ontinuous proess, 0 at 0, then

max

i

jN

t

n

i

� N

t

n

i�1

j ! 0 almost surely, for every sequene of partitions as

in Theorem 5.57. If M is a proess whose sample paths are of bounded

variation on ompata, it follows that the left side in the de�nition (5.58)

of the quadrati ovariation proess onverges to zero, almost surely. Thus

[M;N ℄ = 0 and MN is a loal martingale by Lemma 5.64(ii).

The de�nition of H

2

d

as the orthoomplement of H

2



and the projetion

theorem in Hilbert spaes, shows that any L

2

-bounded martingale M an

be written uniquely as M = M



+M

d

for M



2 H

2



and M

d

2 H

2

d

. This

deomposition an be extended to loal martingales, using the extended

de�nition of orthogonality.

5.90 Lemma. Any adlag loal martingale M possesses a unique deom-

position M =M

0

+M



+M

d

into a ontinuous loal martingale M



and a

purely disontinuous loal martingale M

d

, both 0 at 0. (The uniqueness is

up to indistinguishability.)

Proof. In view of Lemma 5.48 we an deompose M as M = M

0

+N +

A for a adlag loal L

2

-martingale N and a adlag loal martingale A

of loally bounded variation, both 0 at 0. By Example 5.89 A is purely

disontinuous. Thus to prove existene of the deomposition it suÆes to

deompose N . If 0 � T

n

" 1 is a sequene of stopping times suh that N

T

n

is an L

2

-martingale for every n, then we an deompose N

T

n

= N



n

+N

d

n

in H

2

for every n. Beause this deomposition is unique and both H

2



and

H

2

d

are losed under stopping (beause [M

T

; N ℄ = [M;N ℄

T

), and N

T

m

=
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(N

T

n

)

T

m

= (N



n

)

T

m

+(N

d

n

)

T

m

for m � n, it follows that (N



n

)

T

m

= N



m

and

(N

d

n

)

T

m

= N

d

m

. This implies that we an de�ne N



and N

d

onsistently as

N



m

and N

d

m

on [0; T

m

℄. The resulting proesses satisfy (N



)

T

m

= N



m

and

(N

d

)

T

m

= N

d

m

. The �rst relation shows immediately that N



is ontinuous,

while the seond shows that N

d

is purely disontinuous, in view of the fat

[N

d

;K℄

T

m

= [(N

d

)

T

m

;K℄ = 0 for every ontinuous K 2 H

2

.

Given two deompositions M =M

0

+M



+M

d

=M

0

+N



+N

d

, the

proess X =M



�N



= N

d

�M

d

is a ontinuous loal martingale that is

purely disontinuous, 0 at 0. By the de�nition of \purely disontinuous" it

follows that X

2

is a loal martingale as well. Therefore there exist sequenes

of stopping times 0 � T

n

" 1 suh that Y = X

T

n

and Y

2

= (X

2

)

T

n

are

uniformly integrable martingales, for every n. It follows that t 7! EY

2

t

is

onstant on [0;1℄ and at the same time Y

t

= E(Y

1

j F

t

) almost surely,

for every t. Beause a projetion dereases norm, this is possible only if

Y

t

= Y

1

almost surely for every t. Thus X is onstant.

The deomposition of a loal martingale in its ontinuous and purely

disontinuous parts makes it possible to desribe the relationship between

the two quadrati variation proesses.

5.91 Lemma. If M and N are loal L

2

-martingales with deompositions

M =M

0

+M



+M

d

and N = N

0

+N



+N

d

as in Lemma 5.90, then

[M;N ℄

t

= hM



; N



i

t

+

X

s�t

�M

s

�N

s

:

Proof. For simpliity we give the proof in the ase that M = N . Beause

the proess hM



i is ontinuous, by Lemma 5.69, the proess [M ℄ as in the

lemma satis�es �[M ℄ = (�M)

2

. As in the proof of Lemma 5.77 it suÆes

to prove thatM

2

� [M ℄ is a loal martingale. AssumeM

0

= 0 for simpliity.

The deomposition implies that M

2

t

= (M



)

2

+2M



M

d

+(M

d

)

2

. The mid-

dle term 2M



M

d

is a loal martingale, beause M

d

is purely disontinuous

and M



is ontinuous. The �rst term on the right has ompensator hM



i.

Therefore, it suÆes to show that the purely disontinuous submartingale

M

d

has quadrati variation [M

d

℄

t

=

P

s�t

(�M

s

)

2

. For this see Rogers and

Williams, pp384{385, in partiular the proof of Theorem 36.5.

Warning. For a martingaleM of loally bounded variation the deom-

position M = M

0

+M



+M

d

is not the same as the deomposition of M

in its ontinuous and jump parts. For instane, the ompensated Poisson

proess is purely disontinuous and hene has ontinuous part zero.

The loal martingale M in the deomposition X = X

0

+M + A of

a semimartingale an be split in its ontinuous and purely disontinuous

parts M



and M

d

. Even though the deomposition of X is not unique, the

ontinuous martingale part M



is the same for every deomposition. This
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is true beause M �

�

M =

�

A�A implies that the loal martingale M �

�

M

is of loally bounded variation, whene it is purely disontinuous by Exam-

ple 5.89. It is alled the ontinuous martingale part of the semimartingale

X , and denoted by X



.

* 5.12 Itô's Formula

5.92 Theorem (Itô's formula). Let X = (X

1

; : : : ; X

d

) be a vetor of

adlag semimartingales. Then, for every twie ontinuously di�erentiable

funtion f :R

d

! R,

f(X

t

)� f(X

0

) =

d

X

i=1

Z

t

0

D

i

f(X

�

) dX

i

+

1

2

d

X

i=1

d

X

j=1

Z

t

0

D

ij

f(X

s�

) d[X



i

; X



j

℄

s

+

X

s�t

h

f(X

s

)� f(X

s�

)�

d

X

i=1

D

i

f(X

s�

)�X

i;s

i

; a:s::



6

Stohasti Calulus

In this hapter we disuss some examples of \stohasti alulus", the ma-

nipulation of stohasti integrals, mainly by the use of the Itô formula. The

more substantial appliation to stohasti di�erential equations is disussed

in Chapter 7.

We reall the di�erential notation for stohasti integrals. For proesses

X;Y; Z we write

dX = Y dZ; i� X = X

0

+ Y � Z:

In partiular d(Y �Z) = Y dZ. By the substitution rule, Lemma 5.54(ii), it

follows that dZ = Y

�1

dX if dX = Y dZ for a stritly positive proess Y ,

provided the stohasti integrals are well-de�ned.

For notational onveniene we use omplex-valued proesses in some

of the proofs. A omplex-valued random variable Z on a probability spae

(
;F ; P ) is a funtion Z: 
 ! C of the form Z = U + iV for ordi-

nary, real-valued random variables U and V . Its expetation is de�ned

as EZ = EU + iEV , if U and V are integrable. Conditional expetations

E(Zj F

0

) are de�ned similarly from the onditional expetations of the real

and imaginary parts of Z. A omplex-valued stohasti proess is a olle-

tion Z = fZ

t

: t � 0g of omplex-valued random variables. A omplex-valued

martingale Z is a omplex-valued proess whose real and imaginary parts

are martingales. Given the preeding de�nitions of (onditional) expeta-

tions, this is equivalent to the proess satisfying the martingale property

E(Z

t

j F

s

) = Z

s

for s � t.

With these de�nitions it an be veri�ed that Itô's formula extends to

twie ontinuously di�erentiable omplex-valued funtions f :R

d

! C . We

simply apply the formula to the real and imaginary parts of f and next

ombine.
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6.1 L�evy's Theorem

The quadrati variation proess of a Brownian motion is the identity fun-

tion. L�evy's theorem asserts that Brownian motion is the only ontinuous

loal martingale with this quadrati variation proess. It is a useful tool

to show that a given proess is a Brownian motion. The ontinuity is es-

sential, beause the ompensated Poisson proess is another example of a

martingale with quadrati variation proess equal to the identity.

6.1 Theorem (L�evy). LetM be a ontinuous loal martingale, 0 at 0, suh

that [M ℄ is the identity funtion. Then M is a Brownian motion proess.

Proof. For a �xed real number � onsider the omplex-valued stohasti

proess

X

t

= e

i�M

t

+

1

2

�

2

t

:

By appliation of Itô's formula to X

t

= f(M

t

; t) with the omplex-valued

funtion f(m; t) = exp(i�m+

1

2

�

2

t), we �nd

dX

t

= X

t

i� dM

t

+

1

2

X

t

(i�)

2

d[M ℄

t

+X

t

1

2

�

2

dt = X

t

i� dM

t

;

sine [M ℄

t

= t by assumption. It follows that X = X

0

+ i�X �M and hene

X is a (omplex-valued) loal martingale. Beause jX

t

j is atually bounded

for every �xed t, X is a martingale. The martingale relation E(X

t

j F

s

) = X

s

an be rewritten in the form

E

�

e

i�(M

t

�M

s

)

j F

s

�

= e

�

1

2

�

2

(t�s)

; a:s:; s < t:

This implies that M

t

�M

s

is independent of F

s

and possesses the normal

distribution with mean zero and variane t� s. (Cf. Exerise 6.2.)

6.2 EXERCISE. Let X be a random variable on the probability spae

(
;F ; P ) and F

0

� F a sub �-�eld suh that E(e

i�X

j F

0

) is equal to a

onstant (�) for every � 2 R. Show that X is independent of F

0

.

L�evy's theorem may be interpreted in the sense that among the ontin-

uous loal martingales Brownian motion is determined by its quadrati vari-

ation proess. Atually, every ontinuous loal martingale is \determined"

by its quadrati variation proess, in a ertain sense. The following theorem

shows that we an generate an arbitrary ontinuous loal martingale from a

Brownian motion by transforming the time sale using the inverse proess

of the quadrati variation. In the words of Rogers and Williams, p64, any

suh ontinuous loal martingale \has delusions of grandeur: it thinks it is

a Brownian motion" running on a di�erent lok.
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6.3 Theorem. Let M be a ontinuous loal martingale relative to a �ltra-

tion fF

t

g suh that [M ℄

t

" 1 almost surely, as t " 1. Let T

t

= inffs �

0: [M ℄

s

> tg. Then the proess B

t

=M

T

t

is a Brownian motion relative to

the �ltration fF

T

t

g and M

t

= B

[M ℄

t

.

Proof. For every �xed t the variable T

t

is a stopping time relative to the

�ltration fF

t

g, and the maps t 7! T

t

are right ontinuous. It follows from

this that fF

T

t

g is a right ontinuous �ltration. Indeed, if A 2 F

T

q

for every

rational number q > t, then A \ fT

q

< ug 2 F

u

for every u � 0, by the

de�nition of F

T

q

. Hene A \ fT

t

< ug = [

q>t

A \ fT

q

< ug 2 F

u

for every

u � 0, whene A 2 F

T

t

. The �ltration fF

T

t

g is omplete, beause F

T

t

� F

0

for every t.

For simpliity assume �rst that the sample paths s 7! [M ℄

s

of [M ℄ are

stritly inreasing. Then the maps t 7! T

t

are their true inverses and, for

every s; t � 0,

(6:4) T

t^[M ℄

s

= T

t

^ s:

In the ase that t < [M ℄

s

, whih is equivalent to T

t

< s, this is true beause

both sides redue to T

t

. In the other ase, that t � [M ℄

s

, the identity redues

to T

[M ℄

s

= s, whih is orret beause T is the inverse of [M ℄.

The ontinuous loal martingale M an be loalized by the stopping

times S

n

= inffs � 0: jM

s

j � ng. The stopped proess M

S

n

is a bounded

martingale, for every n. By the de�nition B

t

=M

T

t

and (6.4),

B

t^[M ℄

S

n

=M

T

t

^S

n

;

B

2

t^[M ℄

S

n

� t ^ [M ℄

S

n

=M

2

T

t

^S

n

� [M ℄

T

t

^S

n

;

where we also use the identity t = [M ℄

T

t

. The variable R

n

= [M ℄

S

n

is an

F

T

t

-stopping time, beause, for every t � 0,

f[M ℄

S

n

> tg = fS

n

> T

t

g 2 F

T

t

:

The last inlusion follows from the fat that for any pair of stopping times

S; T the event fT < Sg is ontained in F

T

, beause its intersetion with

fT < tg an be written in the form [

q<t

fT < q � t < Sg 2 F

t

, where the

union is restrited to rational numbers q � 0.

By the optional stopping theorem the proesses t 7! M

T

t

^S

n

and t 7!

M

2

T

t

^S

n

� [M ℄

T

t

^S

n

are martingales relative to the �ltration fF

T

t

g. Beause

they are idential to the proesses t 7! B

t

and t 7! B

2

t

� t stopped at R

n

,

we onlude that the latter two proesses are loal martingales. From the

loal martingale property of the proess t 7! B

2

t

� t it follows that hBi is

the identity proess. Beause M and T are ontinuous, so is B. By L�evy's

theorem, Theorem 6.1, we onlude that B is a Brownian motion. This

onludes the proof if [M ℄ is stritly inreasing.

For the proof in the general ase we may still assume that the sample

paths of [M ℄ are ontinuous and nondereasing, but we must allow them to
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possess intervals of onstant value, whih we shall refer to as \ats". The

maps t 7! T

t

are \generalized inverses" of the maps s 7! [M ℄

s

and map a

value t to the largest time s with [M ℄

s

= t, i.e. the right end point of the

at at height t. The funtion s 7! [M ℄

s

is onstant on eah interval of the

form [s; T

[M ℄

s

℄, the time T

[M ℄

s

being the right end point of the at at height

[M ℄

s

. The inverse maps t 7! T

t

are adlag with jumps at the values t that

are heights of ats of nonzero length. For every s; t � 0,

T

t

< s i� t < [M ℄

s

;

[M ℄

T

t

= t;

T

[M ℄

s

� s;

with, in the last line, equality unless s is in the interior or on the left side

of a at of nonzero length.

These fats show that (6.4) is still valid for every s that is not in the

interior or on the left side of a at. Then the proof an be ompleted as

before provided that the stopping time S

n

is never in the interior or on the

left of a at and the sample paths of B are ontinuous.

Both properties follow if M is onstant on every at. (Then S

n

annot

be in the interior or on the left of a at, beause by its de�nitionM inreases

immediately after S

n

.) It is suÆient to show that the stopped proessM

S

n

has this property, for every n. By the martingale relation, for every stopping

time T � s,

E

�

(M

S

n

T

�M

S

n

s

)

2

j F

s

�

= E

�

M

2

S

n

^T

�M

2

S

n

^s

j F

s

�

= E

�

[M ℄

S

n

^T

� [M ℄

S

n

^s

j F

s

�

:

For T equal to the stopping time infft � s: [M ℄

S

n

^t

> [M ℄

S

n

^s

g, the right

side vanishes. We onlude that for every s � 0, the proess M takes the

same value at s as at the right end point of the at ontaining s, almost

surely. For ! not ontained in the union of the null sets attahed to some

rational s, the orresponding sample path of M is onstant on the ats of

[M ℄.

The �ltration fF

T

t

g may be bigger than the ompleted natural �ltra-

tion generated by B and the variables [M ℄

t

may not be stopping times

for the �ltration generated by B. This hampers the interpretation of M as

a time-hanged Brownian motion, and the Brownian motion may need to

have speial properties. The theorem is still a wonderful tool to derive prop-

erties of general ontinuous loal martingales from properties of Brownian

motion.

The ondition that [M ℄

t

" 1 annot be dispensed of in the preeding

theorem, beause if [M ℄

t

remains bounded, then the proessB is not de�ned

on the full time sale [0;1). However, the theorem may be adapted to over

more general loal martingales, by pieing B as de�ned together with an
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additional independent Brownian motion that starts at time [M ℄

1

. For

this, see Chung and Williams, p??, or Rogers and Williams, p64-67.

Both theorems allow extension to multidimensional proesses. The

multivariate version of L�evy's theorem an be proved in exatly the same

way. We leave this as an exerise. Extension of the time-hange theorem is

harder.

6.5 EXERCISE. For i = 1; : : : ; d let M

i

be a ontinuous loal martingale,

0 at 0, suh that [M

i

;M

j

℄

t

= Æ

ij

t almost surely for every t � 0. Show that

M = (M

1

; : : : ;M

d

) is a vetor-valued Brownian motion, i.e. for every s < t

the random vetor M

t

�M

s

is independent of F

s

and normally distributed

with mean zero and ovariane matrix (t� s) times the identity matrix.

6.2 Brownian Martingales

Let B be a Brownian motion on a given probability spae (
;F ; P ), and

denote the ompletion of the natural �ltration generated by B by fF

t

g.

Stohasti proesses on the �ltered spae (
;F ; fF

t

g; P ) that are martin-

gales are referred to as Brownian martingales. Brownian motion itself is

an example, and so are all stohasti integrals X � B for preditable pro-

esses X that are appropriately integrable to make the stohasti integral

well-de�ned.

The following theorem shows that these are the only Brownian mar-

tingales.

One interesting orollary is that every Brownian martingale an be

hosen ontinuous, beause all stohasti integrals relative to Brownian

motion have a ontinuous version.

6.6 Theorem. Let fF

t

g be the ompletion of the natural �ltration of a

Brownian motion proess B. If M is a adlag loal martingale relative to

fF

t

g, then there exists a preditable proess X with

R

t

0

X

2

s

ds <1 almost

surely for every t � 0 suh that M =M

0

+X �B, up to indistinguishability.

Proof. We an assume without loss of generality that M

0

= 0.

First suppose that M is an L

2

-bounded martingale, so that M

t

=

E(M

1

j F

t

) almost surely, for every t � 0, for some square-integrable vari-

able M

1

. For a given proess X 2 L

2

�

[0;1)�
;P ; �

M

�

the stohasti in-

tegral X �B is an L

2

-bounded martingale with L

2

-limit (X �B)

1

=

R

X dB,

beause

R

(X1

[0;t℄

�X)

2

d�

M

! 0 as t!1. The map I :X ! (X �B)

1

is an

isometry from L

2

�

[0;1)�
;P ; �

M

�

into L

2

(
;F ; P ). IfM

1

is ontained in

the range range(I) of this map, thenM

t

= E(M

1

j F

t

) = E

�

(X �B)

1

j F

t

) =
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(X �B)

t

, almost surely, beauseX �B is a martingale. Therefore, it suÆes to

show that range(I) ontains all square-integrable variables M

1

with mean

zero.

Beause the map I is an isometry on a Hilbert spae, its range is a

losed linear subspae of L

2

(
;F ; P ). It suÆes to show that 0 is the only

element of mean zero that is orthogonal to range(I).

Given some proess X 2 L

2

�

[0;1) � 
;P ; �

M

�

and a stopping time

T , the proess X1

[0;T ℄

is also an element of L

2

�

[0;1) � 
;P ; �

M

�

and

(X1

[0;T ℄

� B)

1

= (X � B)

T

, by Lemma 5.27(iii). If M

1

? range(I), then it

is orthogonal to (X1

[0;T ℄

�B)

1

and hene 0 = EM

1

(X �B)

T

= EM

T

(X �B)

T

,

beause M is a martingale and (X �B)

T

is F

T

-measurable. By Lemma 4.22

we onlude that the proessM(X �B) is a uniformly integrable martingale.

The proess X

t

= exp(i�B

t

+

1

2

�

2

t) satis�es dX

t

= i�X

t

dB

t

, by Itô's

formula (f. the proof of Theorem 6.1), and hene X = 1 + i�X � B. The

proessX is not uniformly bounded and hene is not an eligible hoie in the

preeding paragraph. However, the proessX1

[0;T ℄

is uniformly bounded for

every �xed onstant T � 0 and hene the preeding shows that the proess

MX

T

= M + i�M(X1

[0;T ℄

� B) is a uniformly integrable martingale. This

being true for every T � 0 implies thatMX is a martingale. The martingale

relation for the proess MX an be written in the form

E

�

M

t

e

i�(B

t

�B

s

)

j F

s

�

=M

s

e

�

1

2

�

2

(t�s)

; a:s:; s � t:

Multiplying this equation by exp(i�

0

(B

s

� B

u

)) for u � s and taking on-

ditional expetation relative to F

u

, we �nd, for u � s � t,

E

�

M

t

e

i�(B

t

�B

s

)+i�

0

(B

s

�B

u

)

j F

u

�

=M

u

e

�

1

2

�

2

(t�s)�

1

2

�

02

(u�s)

; a:s::

Repeating this operation �nitely many times, we �nd that for an arbitrary

partition 0 = t

0

� t

1

� � � � � t

k

= t and arbitrary numbers �

1

; : : : ; �

k

,

EE

�

M

t

e

i

P

j

�

j

(B

t

j

�B

t

j�1

)

j F

0

�

= EM

0

e

�

1

2

P

j

�

2

j

(t

j

�t

j�1

)

= 0:

We laim that this shows thatM = 0, onluding the proof in the ase that

M is L

2

-bounded.

The laim follows essentially by the uniqueness theorem for harater-

isti funtions. In view of the preeding display the measures �

+

t

1

;:::;t

k

and

�

�

t

1

;:::;t

k

on R

k

de�ned by

�

�

t

1

;:::;t

k

(A) = EM

�

t

1

A

(B

t

1

�t

0

; : : : ; B

t

k

�t

k�1

);

possess idential harateristi funtions and hene are idential. This shows

that the measures �

+

and �

�

on (
;F) de�ned by �

�

(F ) = EM

�

t

1

F

agree

on the �-�eld generated by B

t

1

�t

0

; : : : ; B

t

k

�t

k�1

. This being true for every

partition of [0; t℄ shows that �

+

and �

�

also agree on the algebra generated
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by fB

s

: 0 � s � tg and hene, by Carath�eodory's theorem, also on the

�-�eld generated by these variables. Thus EM

t

1

F

= 0 for every F in this

�-�eld, whene M

t

= 0 almost surely, beause M

t

is measurable in this

�-�eld.

Next we show that any loal martingale M as in the statement of

the theorem possesses a ontinuous version. Beause we an loalize M , it

suÆes to prove this in the ase thatM is a uniformly integrable martingale.

Then M

t

= E(M

1

j F

t

) for an integrable variable M

1

. If we let M

n

1

be

M

1

trunated to the interval [�n; n℄, then M

n

t

: = E(M

n

1

j F

t

) de�nes a

bounded and hene L

2

-bounded martingale, for every n. By the preeding

paragraph this an be represented as a stohasti integral with respet to

Brownian motion and hene it possesses a ontinuous version. The proess

jM

n

�M j is a adlag submartingale, whene by the maximal inequality

given by Lemma 4.36,

P

�

sup

t

jM

n

t

�M

t

j � "

�

�

1

"

EjM

n

1

�M

1

j:

The right side onverges to zero as n ! 1, by onstrution, whene the

sequene of suprema in the left side onverges to zero in probability. There

exists a subsequene whih onverges to zero almost surely, and hene the

ontinuity of the proesses M

n

arries over onto the ontinuity of M .

Every ontinuous loal martingale M is loally L

2

-bounded. Let 0 �

T

n

" 1 be a sequene of stopping times suh that M

T

n

is an L

2

-bounded

martingale, for every n. By the preeding we an represent M

T

n

as M

T

n

=

X

n

� B for a preditable proess X

n

2 L

2

�

[0;1)� 
;P ; �

M

�

, for every n.

For m � n,

X

m

� B =M

T

m

= (M

T

n

)

T

m

= (X

n

� B)

T

m

= X

n

1

[0;T

m

℄

� B;

by Lemma 5.27(iii) or Lemma 5.54. By the isometry this implies that, for

every t � 0,

0 = E

�

X

m

�B �X

n

1

[0;T

m

℄

�B)

2

t

= E

Z

t

0

(X

m

�X

n

1

[0;T

m

℄

)

2

d�:

We onlude that X

m

= X

n

on the set [0; T

m

℄ almost everywhere under

� � P . This enables to de�ne a proess X on [0;1) � 
 in a onsistent

way, up to a � � P -null set, by setting X = X

m

on the set [0; T

m

℄. Then

(X �B)

T

m

= X1

[0;T

m

℄

�B = X

m

�B =M

T

m

for everym and heneM = X �B.

The �niteness of E

R

X

2

m

d� for every m implies that

R

t

0

X

2

d� <1 almost

surely, for every t � 0.

The preeding theorem onerns proesses that are loal martingales

relative to a �ltration generated by a Brownian motion. This is restritive

in terms of the loal martingales it an be applied to, but at the same time
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determines the strength of the theorem, whih gives a representation as a

stohasti integral relative to the given Brownian motion.

If we are just interested in representing a loal martingale as a stohas-

ti integral relative to some Brownian motion, then we need not restrit the

�ltration to a speial form. Then we an de�ne a Brownian motion in terms

of the martingale, and atually the proof of the representation an be muh

simpler. We leave one result of this type as an exerise. See e.g. Karatzas

and Shreve, p170{173 for slightly more general results.

6.7 EXERCISE. Let M be a ontinuous loal martingale with quadrati

variation proess [M ℄ of the form [M ℄

t

=

R

t

0

�

s

ds for a ontinuous, stritly

positive stohasti proess �. Show that B = �

�1=2

� M is a Brownian

motion, and M =

p

� �B. [Hint: don't use the preeding theorem!℄

6.3 Exponential Proesses

The exponential proess orresponding to a ontinuous semimartingale X

is the proess E(X) de�ned by

E(X)

t

= e

X

t

�

1

2

[X℄

t

:

The name \exponential proess" would perhaps suggest the proess e

X

rather than the proess E(X) as de�ned here. The additional term

1

2

[X ℄ in

the exponent of E(X) is motivated by the extra term in the Itô formula. An

appliation of this formula to the right side of the preeding display yields

(6:8) dE(X)

t

= E(X)

t

dX

t

:

(Cf. the proof of the following theorem.) If we onsider the di�erential

equation df(x) = f(x) dx as the true de�nition of the exponential funtion

f(x) = e

x

, then E(X) is the \true" exponential proess of X , not e

X

.

Besides that, the exponentiation as de�ned here has the nie property

of turning loal martingales into loal martingales.

6.9 Theorem. The exponential proess E(X) of a ontinuous loal mar-

tingale X with X

0

= 0 is a loal martingale. Furthermore,

(i) If Ee

1

2

[M ℄

t

<1 for every t � 0, then E(X) is a martingale.

(ii) If X is an L

2

-martingale and E

R

t

0

E(X)

2

s

d[X ℄

s

< 1 for every t � 0,

then E(X) is an L

2

-martingale.

Proof. By Itô's formula applied to the funtion f(X

t

; [X ℄

t

) = E(X)

t

, we

�nd that

dE(X)

t

= E(X)

t

dX

t

+

1

2

E(X)

t

d[X ℄

t

+ E(X)

t

(�

1

2

) d[X ℄

t

:
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This simpli�es to (6.8) and hene E(X) = 1+E(X)�X is a stohasti integral

relative to X . If X is a loal martingale, then so is E(X). Furthermore, if

X is an L

2

-martingale and

R

1

[0;t℄

E(X)

2

d�

X

< 1 for every t � 0, then

E(X) is an L

2

-martingale, by Theorem 5.25. This ondition redues to the

ondition in (ii), in view of Lemma 5.74.

The proof of (i) should be skipped at �rst reading. If 0 � T

n

" 1 is a

loalizing sequene for E(X), then Fatou's lemma gives

E

�

E(X)

t

j F

s

�

� lim inf

n!1

E(E(X)

t^T

n

j F

s

�

= lim inf

n!1

E(X)

s^T

n

= E(X)

s

:

Therefore, the proess E(X) is a supermartingale. It is a martingale if and

only if its mean is onstant, where the onstant must be EE(X)

0

= 1.

In view of Theorem 6.3 we may assume that the loal martingale X

takes the form X

t

= B

[X℄

t

for a proess B that is a Brownian motion

relative to a ertain �ltration. For every �xed t the random variable [X ℄

t

is a

stopping time relative to this �ltration. We onlude that it suÆes to prove:

if B is a Brownian motion and T a stopping time with E exp(

1

2

T ) < 1,

then E exp(B

T

�

1

2

T ) = 1.

Beause 2B

s

is normally distributed with mean zero and variane 4s,

E

Z

t

0

E(B)

2

s

ds =

Z

t

0

Ee

2B

s

e

�s

ds =

Z

t

0

e

s

ds <1

By (ii) it follows that E(B) is an L

2

-martingale. For given a < 0 de�ne

S

a

= infft � 0:B

t

� t = ag. Then S

a

is a stopping time, so that E(B)

S

a

is

a martingale, whene EE(B)

S

a

^t

= 1 for every t. It an be shown that S

a

is �nite almost surely and

EE(B)

S

a

= Ee

B

S

a

�

1

2

S

a

= 1:

(The distribution of S

a

is known in losed form. See e.g. Rogers and

Williams I.9, p18-19; beause B

S

a

= S

a

+ a, the right side is the expe-

tation of exp(a +

1

2

S

a

).) With the help of Lemma 1.22 we onlude that

E(B)

S

a

^t

! E(B)

S

a

in L

1

as t ! 1, and hene E(B)

S

a

is uniformly inte-

grable. By the optional stopping theorem, for any stopping time T ,

1 = EE(B)

S

a

T

= E1

T<S

a

e

B

T

�

1

2

T

+E1

T�S

a

e

B

S

a

�

1

2

S

a

:

Beause the sample paths of the proess t! B

t

�t are bounded on ompat

time intervals, S

a

" 1 if a # �1. Therefore, the �rst term on the right

onverges to E exp(B

T

�

1

2

T ), by the monotone onvergene theorem. The

seond term is equal to

E1

T�S

a

e

S

a

+a�

1

2

S

a

� e

a

Ee

1

2

T

:

If E exp(

1

2

T ) <1, then this onverges to zero as a! �1.
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In appliations it is important to determine whether the proess E(X)

is a martingale, rather than just a loal martingale. No simple neessary

and suÆient ondition appears to be known, although the ondition in

(i), whih is known as Novikov's ondition, is optimal in the sense that

the fator

1

2

in the exponent annot be replaed by a smaller onstant, in

general.

6.10 EXERCISE. Let X be a ontinuous semimartingale with X

0

= 0.

Show that Y = E(X) is the unique solution to the pair of equations dY =

Y dX and Y

0

= 1. (Hint: using Itô's formula show that d

�

Y E(X)

�1

�

= 0

for every solution Y , so that Y E(X)

�1

� Y

0

E(X)

�1

0

= 1.)

6.11 EXERCISE. Show that E(X)

T

= E(X

T

) for every stopping time T .

6.4 Cameron-Martin-Girsanov Theorem

Let X be a ontinuous loal martingale on the �ltered probability spae

(
;F ; fF

t

g; P ), 0 at 0. If the exponential proess E(X) orresponding to

X is a uniformly integrable martingale, then we an de�ne a probability

measure

~

P on F by

~

P (F ) =

Z

F

E(X)

1

dP:

Thus

~

P possesses Radon-Nikodym derivative E(X)

1

relative to P . Be-

ause

~

P (F ) = E1

F

E(X)

1

= E1

F

E(X)

t

for every F 2 F

t

and E(X)

t

is

F

t

-measurable, the restrition

~

P

t

of

~

P to F

t

possesses a Radon-Nikodym

density E(X)

t

relative to the restrition P

t

of P to F

t

, i.e.

d

~

P

t

dP

t

= E(X)

t

:

The ondition that E(X) be a uniformly integrable martingale is some-

what restritive. It is satis�ed, for instane, if X is a proess that satis�es

Novikov's ondition (as in Theorem 6.9(i)) stopped at a �nite time. We

illustrate this situation in Example 6.18.

If M is a loal martingale relative to P , then it typially looses the

loal martingale property if we use the measure

~

P instead. The Cameron-

Martin-Girsanov theorem shows that M is still a semimartingale if we use

~

P , and gives an expliit deomposition of M in its martingale and bounded

variation parts.

We start with a general lemma on the martingale property under a

\hange of measure". We refer to a proess that is a loal martingale under

P as a P -loal martingale.
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6.12 Lemma. Let

~

P and P be equivalent probability measures on (
;F)

and let L

t

= d

~

P

t

=dP

t

be a Radon-Nikodym density of the restritions of

~

P

and P to F

t

. Then a stohasti proess M is a

~

P -loal martingale if and

only if the proess LM is a P -loal martingale.

Proof. We �rst prove the theorem without \loal". If M is an adapted

~

P -integrable proess, then, for every s < t and F 2 F

s

,

~

EM

t

1

F

= EL

t

M

t

1

F

;

~

EM

s

1

F

= EL

s

M

s

1

F

;

The two left sides are idential for every F 2 F

s

and s < t if and only if M

is a

~

P -martingale. Similarly, the two right sides are idential if and only if

LM is a P -martingale. We onlude that M is a

~

P -martingale if and only

if LM is a P -martingale.

If M is a

~

P -loal martingale and 0 � T

n

" 1 is a loalizing sequene,

then the preeding shows that the proess LM

T

n

is a P -martingale, for

every n. Then so is (LM

T

n

)

T

n

= (LM)

T

n

, and we an onlude that LM

is a P -loal martingale.

Beause

~

P and P are equivalent, we an selet a version of L that is

stritly positive. Then dP

t

=d

~

P

t

= L

�1

t

and we an use the argument of the

preeding paragraph in the other diretion to see that M = L

�1

(LM) is a

~

P -loal martingale if LM is a P -loal martingale.

6.13 EXERCISE. In the situation of the preeding lemma, show that L

t

=

E(d

~

P=dP j F

t

) almost surely and onlude that there exists a adlag version

of L.

If M itself is a P -loal martingale, then generally the proess LM will

not be a P -loal martingale, and hene the proessM will not be a

~

P -loal

martingale. We an orret for this by subtrating an appropriate proess.

We assume that the likelihood ratio proess L is ontinuous. The proesses

LM � [L;M ℄

L(L

�1

� [L;M ℄)� [L;M ℄

are both P -loal martingales. For the �rst this is an immediate onsequene

of Lemma 5.64(ii). For the seond it follows from the integration-by-parts

or Itô's formula. (See the proof of the following theorem.) It follows that

the di�erene of the two proesses is also a P -loal martingale and hene

the proess

(6:14) M � L

�1

� [L;M ℄:

is a

~

P -loal martingale. In the ase that L = E(X) this takes the nie form

given in the following theorem.
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6.15 Theorem. Let X be a ontinuous loal martingale, 0 at 0, suh that

E(X) is a uniformly integrable martingale, and let d

~

P = E(X)

1

dP . IfM is

a ontinuous P -loal martingale, then M � [X;M ℄ is a

~

P -loal martingale.

Proof. The exponential proess L = E(X) satis�es dL = LdX , or equiv-

alently, L = 1 + L � X . Hene L

�1

� [L;M ℄ = L

�1

[L � X;M ℄ = [X;M ℄, by

Lemma 5.77(i). The theorem follows if we an show that the proess in

(6.14) is a

~

P -loal martingale. By Lemma 6.12 it suÆes to show that L

times the proess is a P -loal martingale.

By the integration-by-parts (or Itô's) formula it follows that

d

�

L(L

�1

� [L;M ℄)

�

= (L

�1

� [L;M ℄) dL+ Ld(L

�1

� [L;M ℄):

No \orretion term" appears at the end of the display, beause the

quadrati ovariation between the ontinuous proess L and the proess

of loally bounded variation L

�1

� [L;M ℄ is zero. The integral of the �rst

term on the right is a stohasti integral (of L

�1

� [L;M ℄) relative to

the P -martingale L and hene is a P -loal martingale. The integral of

the seond term is [L;M ℄, by Lemma 5.77(i). It follows that the proess

(L(L

�1

� [L;M ℄)� [L;M ℄ is a loal martingale. The di�erene of this with

the loal martingale LM � [L;M ℄ is L times the proess in (6.14).

The quadrati ovariation proess [X;M ℄ in the preeding theorem was

meant to be the quadrati ovariation proess under the orginal measure

P . Beause

~

P and P are equivalent and a quadrati ovariation proess

an be de�ned as a limit of inner produts of inrements, as in (5.58), it is

atually also the quadrati variation under

~

P .

Under the ontinuity assumptions onM andX , the proessM�[X;M ℄

possesses the same quadrati variation proess [M ℄ as M , where again it

does not matter if we use P or

~

P as the referene measure.

The latter remark is partiularly interesting if M is a P -Brownian

motion proess. Then both M and M � [X;M ℄ possess quadrati variation

proess the identity. Beause M � [X;M ℄ is a ontinuous loal martingale

under

~

P , it is a Brownian motion under

~

P by L�evy's theorem. This proves

the following orollary.

6.16 Corollary. Let X be a ontinuous loal martingale, 0 at 0, suh that

E(X) is a uniformly integrable martingale, and let d

~

P = E(X)

1

dP . If B

is a P -Brownian motion, then B � [X;B℄ is a

~

P -Brownian motion.

A further speialization is to hoose X equal to a stohasti integral

X = Y �B of a proess Y relative to Brownian motion. Then

(6:17)

d

~

P

t

dP

t

= e

R

t

0

Y

s

dB

s

�

1

2

R

t

0

Y

2

s

ds

a:s:;
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and, by the preeding theorem, the proess

t 7! B

t

�

Z

t

0

Y

s

ds

is a Brownian motion under

~

P . Here the proess Y must be hosen suh

that the stohasti integral Y �B is well-de�ned and E(Y �B) is a uniformly

integrable martingale. For the �rst it suÆes that Y is adapted and mea-

surable with

R

t

0

Y

2

s

ds �nite almost surely. The seond ondition is more

restritive.

6.18 Example. For a given measurable, adapted proess Y and onstant

T > 0 assume that

Ee

1

2

R

T

0

Y

2

s

ds

<1:

Then the proess Y 1

[0;T ℄

�B = (Y �B)

T

satis�es Novikov's ondition, as its

quadrati variation is given by

[Y 1

[0;T ℄

�B℄

t

=

Z

T^t

0

Y

2

s

ds:

By Theorem 6.9 the proess E((Y � B)

T

) is a martingale. Beause it is

onstant on [T;1), it is uniformly integrable. We onlude that the proess

fB

t

�

R

T^t

0

Y

s

ds: t � 0g is a Brownian motion under the measure

~

P given

by d

~

P = E((Y � B)

T

)

1

dP .

It is a fair question why we would be interested in \hanges of measure"

of the form (6.17). We shall see some reasons when disussing stohasti

di�erential equations or option priing in later hapters. For now we an

note that in the situation that the �ltration is the ompletion of the �ltra-

tion generated by a Brownian motion any hange to an equivalent measure

is of the form (6.17).

6.19 Lemma. Let fF

t

g be the ompletion of the natural �ltration of a

Brownian motion proess B de�ned on (
;F ; P ). If

~

P is a probability

measure on (
;F) that is equivalent to P , then there exists a preditable

proess Y with

R

t

0

Y

2

s

ds < 1 almost surely for every t � 0 suh that the

restritions

~

P

t

and P

t

of

~

P and P to F

t

satisfy (6.17).

Proof. Let L

t

= d

~

P

t

=dP

t

be a version of the density of

~

P

t

relative to P

t

.

Then for every F 2 F

t

,

E

d

~

P

dP

1

F

=

~

P (F ) =

~

P

t

(F ) =

Z

F

d

~

P

t

dP

t

dP

t

= EL

t

1

F

:

This shows that L

t

= E(d

~

P=dP j F

t

) almost surely, and hene L is a mar-

tingale relative to the �ltration fF

t

g. Beause this is a Brownian �ltration,
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Theorem 6.6 implies that L permits a ontinuous version. By the equiva-

lene of

~

P and P the variable L

t

is stritly positive almost surely, for every

t � 0, and hene we an hoose the proess L stritly positive without loss

of generality. Then L

�1

is a well-de�ned ontinuous proess and hene is

loally bounded. The stohasti integral Z = L

�1

� L is well-de�ned and a

loal martingale, relative to the Brownian �ltration fF

t

g. By Theorem 6.6

it an be represented as Z = Y � B for a preditable proess Y as in the

statement of the lemma. The de�nition Z = L

�1

� L implies dL = LdZ.

This is solved uniquely by L = E(Z). (Cf. Exerise 6.10.)

It ould be of interest to drop the ondition that E(X) is uniformly

integrable, whih we have made throughout this setion. As long as E(X)

is a martingale, then we an de�ne probability measures

~

P

t

on F

t

by

~

P

t

(F ) = E1

F

E(X)

t

:

By the martingale property this olletion of measures will be onsistent in

the sense that

~

P

s

is the restrition of

~

P

t

of F

s

, for s < t. If we ould �nd

a measure

~

P on F

1

with restrition

~

P

t

to F

t

, muh of the preeding goes

through.

Suh a measure

~

P does not neessarily exist under just the ondition

that E(X) is a martingale. A suÆient ondition is that the �ltration be

generated by an appropriate proess Z. If F

t

= �(Z

s

: s � t) for every t,

then we an invoke the Kolmogorov extension theorem to see the existene

of a measure

~

P on F

1

. It should be noted that this ondition does not

permit that we omplete the �ltration. In fat, ompletion (under P ) may

ause problems, beause, in general, the measure

~

P will not be absolutely

ontinuous relative to P . See Chung and Williams, p?? for further disus-

sion.



7

Stohasti

Di�erential Equations

In this hapter we onsider stohasti di�erential equations of the form

dX

t

= �(t;X

t

) dt+ �(t;X

t

) dB

t

:

Here � and � are given funtions and B is a Brownian motion proess.

The equation may be thought of as a randomly perturbed version of the

�rst order di�erential equation dX

t

= �(t;X

t

) dt. Brownian motion is often

viewed as an appropriate \driving fore" for suh a noisy perturbation.

The stohasti di�erential equation is to be understood in the sense

that we look for a ontinuous stohasti proess X suh that, for every

t � 0,

(7:1) X

t

= X

0

+

Z

t

0

�(s;X

s

) ds+

Z

t

0

�(s;X

s

) dB

s

; a:s::

Usually, we add an initial ondition X

0

= �, for a given random variable �,

or require that X

0

possesses a given law.

It is useful to disern two ways of posing the problem, the strong and

the weak one, di�ering mostly in the spei�ation of what is being given

a-priori and of whih further properties the solution X must satisfy. The

funtions � and � are �xed throughout, and are referred to as the \drift"

and \di�usion oeÆients" of the equation.

In the \strong setting" we are given a partiular �ltered probability

spae (
;F ; fF

t

g; P ), a Brownian motion B and an initial random variable

�, both de�ned on the given �ltered spae, and we searh for a ontinuous

adapted proess X , also de�ned on the given �ltered spae, whih satis�es

the stohasti di�erential equation with X

0

= �. It is usually assumed here

that the �ltration fF

t

g is the smallest one to whih B is adapted and for

whih � is F

0

-measurable, and whih satis�es the usual onditions. The

requirement that the solution X be adapted then implies that it an be

expressed as X = F (�; B) for a suitably measurable map F , and the preise
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de�nition of a strong solution ould inlude ertain properties of F , suh as

appropriate measurability, or the requirement that F (x;B

0

) is a solution of

the stohasti di�erential equation with initial variable x 2 R, for every x

and every Brownian motion B

0

de�ned on some �ltered probability spae.

Di�erent authors make this preise in di�erent ways; we shall not add to

this onfusion here.

For a weak solution of the stohasti di�erential equation we searh

for a �ltered probability spae, as well as a Brownian motion and an ini-

tial random variable �, and a ontinuous adapted proess X satisfying the

stohasti di�erential equation, all de�ned on the given �ltered spae. The

initial variable X

0

is usually required to possess a given law. The �ltration

is required to satisfy the usual onditions only, so that a weak solution X

is not neessarily a funtion of the pair (�; B).

Clearly a strong solution in a given setting provides a weak solution,

but the onverse is false. The existene of a weak solution does not even

imply the existene of a strong solution (depending on the measurability

assumptions we impose). In partiular, there exist examples of weak so-

lutions, for whih it an be shown that the �ltration must neessarily be

bigger than the �ltration generated by the driving Brownian motion, so

that the solution X annot be a funtion of (�; B) alone. (For instane,

Tanaka's example, see Chung and Williams, pages 248{250.)

For X to solve the stohasti di�erential equation, the integrals in (7.1)

must be well de�ned. This is ertainly the ase if � and � are measurable

funtions and, for every t � 0,

Z

t

0

j�(s;X

s

)j ds <1; a:s:;

Z

t

0

j�

2

(s;X

s

)j ds <1; a:s::

Throughout we shall silently understand that it is inluded in the require-

ments for \X to solve the stohasti di�erential equation" that these on-

ditions are satis�ed.

7.2 EXERCISE. Show that t 7! �(t;X

t

) is a preditable proess if �:R

2

!

R is measurable and X is preditable. (Hint: onsider the map (t; !) 7!

�

t;X

t

(!)

�

on [0;1)� 
 equipped with the preditable �-�eld.)

The ase that � and � depend on X only is of speial interest. The

stohasti di�erential equation

(7:3) dX

t

= �(X

t

) dt+ �(X

t

) dB

t

is known as a di�usion equation. Under some onditions the solution X of

a di�usion equation is a time-homogeneous Markov proess. Some authors

use the term di�usion proess to denote any time-homogeneous (strong)



112 7: Stohasti Di�erential Equations

Markov proess, while other authors reserve the term for solutions of di�u-

sion equations only, sometimes imposing additional onditions of a some-

what tehnial nature, or relaxing the di�erential equation to a statement

onerning �rst and seond in�nitesimal moments of the type

E(X

t+h

�X

t

j F

t

) = �(X

t

)h+ o(h); a:s:

var(X

t+h

�X

t

j F

t

) = �

2

(X

t

)h+ o(h); a:s:; h # 0; :

These in�nitesimal onditions give an important interpretation to the fun-

tions � and �, and an be extended to the more general equation (7.1).

Apparently, stohasti di�erential equations were invented, by Itô in the

1940s, to onstrut proesses that are \di�usions" in this vaguer sense.

Rather than simplifying the stohasti di�erential equation, we an

also make it more general, by allowing the funtions � and � to depend not

only on (t;X

t

), but on t and the sample path of X until t. The resulting

stohasti di�erential equations an be treated by similar methods. (See

e.g. pages 122{124 of Rogers and Williams.)

Another generalization is to multi-dimensional equations, driven by a

multivariate Brownian motion B = (B

1

; : : : ; B

l

) and involving a vetor-

valued funtion �: [0;1) � R

k

! R

k

and a funtion �: [0;1) � R

k

! R

kl

with values in the k � l-matries. Then we searh for a ontinuous vetor-

valued proess X = (X

1

; : : : ; X

k

) satisfying, for i = 1; : : : ; k,

X

t;i

= X

0;i

+

Z

t

0

�

i

(s;X

s

) ds+

l

X

j=1

Z

t

0

�

i;j

(s;X

s

) dB

j;s

:

Multivariate stohasti di�erential equations of this type are not essentially

more diÆult to handle than the one-dimensional equation (7.1). For sim-

pliity we onsider the one-dimensional equation (7.1), or at least shall view

the equation (7.1) as an abbreviation for the multivariate equation in the

preeding display.

We lose this setion by showing that Girsanov's theorem may be used

to onstrut a weak solution of a speial type of stohasti di�erential equa-

tion, under a mild ondition. This illustrates that speial approahes to

speial equations an be more powerful than the general results obtained

in this hapter.

7.4 Example. Let � be an F

0

-measurable random variable and let X � �

be a Brownian motion on a �ltered probability spae (
;F ; fF

t

g; P ). For a

given measurable funtion � de�ne a proess Y by Y

t

= �(t;X

t

), and assume

that the exponential proess E(Y �X) is a uniformly integrable martingale.

Then d

~

P = E(Y �X)

1

de�nes a probability measure and, by Corollary 6.16

the proess B de�ned by B

t

= X

t

� � �

R

t

0

Y

s

ds is a

~

P -Brownian motion

proess. (Note that Y �X = Y � (X � �).) It follows that X together with
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the �ltered probability spae (
;F ; fF

t

g;

~

P ) provides a weak solution of

the stohasti di�erential equation X

t

= � +

R

t

0

�(s;X

s

) ds+B

t

.

The main ondition to make this work is that the exponential proess

of Y � X is a uniformly integrable martingale. This is easy to ahieve on

ompat time intervals by Novikov's ondition.

7.1 Strong Solutions

Following Itô's original approah we onstrut in this setion strong solu-

tions under Lipshitz and growth onditions on the funtions � and �. We

assume that for every t � 0 there exists a onstant C

t

suh that, for all

s 2 [0; t℄ and for all x; y 2 [�t; t℄,

(7:5)

�

�

�(s; x)� �(s; y)

�

�

� C

t

jx� yj;

�

�

�(s; x) � �(s; y)

�

�

� C

t

jx� yj:

Furthermore, we assume that for every t � 0 there exists a onstant C

t

suh that, for all s 2 [0; t℄ and x 2 R,

(7:6)

�

�

�(s; x)

�

�

� C

t

(1 + jxj);

�

�

�(s; x)

�

�

� C

t

(1 + jxj):

Then the stohasti di�erential equation (7.1) possesses a strong solution in

every possible setting. The proof of this is based on an iterative onstrution

of proesses that onverge to a solution, muh like the Piard iteration

sheme for solving a deterministi di�erential equation.

Let (
;F ; fF

t

g; P ) be an arbitrary �ltered probability spae, and let

B be a Brownian motion and an F

0

-measurable random variable � de�ned

on it.

7.7 Theorem. Let � and � be measurable funtions that satisfy (7.5){

(7.6). Then there exists a ontinuous, adapted proess X on (
;F ; fF

t

g; P )

with X

0

= � that satis�es (7.1). This proess is unique up to indistinguisha-

bility, and its distribution is uniquely determined by the distribution of �.

Proof. For a given proess X let LX denote the proess on the right of

(7.1), i.e.

(LX)

t

= � +

Z

t

0

�(s;X

s

) ds+

Z

t

0

�(s;X

s

) dB

s

:

We wish to prove that the equation LX = X possesses a unique ontinuous

adapted solution X . By assumption (7.6) the absolute values of the inte-

grands are bounded above by C

t

�

1 + jX

s

j) and hene the integrals in the

de�nition of LX are well-de�ned for every ontinuous adapted proess X .
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First assume that � is square-integrable and the Lipshitz ondition

(7.5) is valid for every x; y 2 R (and not just for x; y 2 [�t; t℄). We may

assume without of loss of generality that the onstants C

t

are nondereasing

in t.

By the triangle inequality, the maximal inequality (4.38), the Cauhy-

Shwarz inequality, and the de�ning isometry of stohasti integrals,

E sup

s�t

�

�

(LX)

s

� (LY )

s

�

�

2

. E

�

�

�

Z

t

0

�

�

�(s;X

s

)� �(s; Y

s

)

�

�

ds

�

�

�

2

+E

�

�

�

Z

t

0

�

�(s;X

s

)� �(s; Y

s

)

�

dB

s

�

�

�

2

. tE

Z

t

0

�

�

�(s;X

s

)� �(s; Y

s

)

�

�

2

ds+E

Z

t

0

�

�(s;X

s

)� �(s; Y

s

)

�

2

ds

. (t+ 1)C

2

t

E

Z

t

0

jX

s

� Y

s

j

2

ds:

The use of the maximal inequality (in the �rst .) is justi�ed as soon as

the proess t 7!

R

t

0

�

�(s;X

s

) � �(s; Y

s

)

�

dB

s

is an L

2

-martingale, whih is

ertainly the ase if the �nal upper bound is �nite.

De�ne proesses X

(n)

by X

(0)

= � and, reursively, X

(n)

= LX

(n�1)

,

for n � 1. In partiular,

X

(1)

t

= � +

Z

t

0

�(s; �) ds+

Z

t

0

�(s; �) dB

s

:

By similar arguments as previously,

E sup

s�t

jX

(1)

s

�X

(0)

s

j

2

. tE

Z

t

0

�

2

(s; �) ds+E

Z

t

0

�

2

(s; �) ds

. (t+ 1)

2

C

2

t

E(1 + �

2

):

Furthermore, for n � 1, sine X

(n+1)

�X

(n)

= LX

(n)

� LX

(n�1)

,

E sup

s�t

jX

(n+1)

s

�X

(n)

s

j

2

. (t+ 1)C

2

t

E

Z

t

0

jX

(n)

s

�X

(n�1)

s

j

2

ds:

Iterating this last inequality and using the initial bound for n = 0 of the

preeding display, we �nd that, with M = E(1 + �

2

),

E sup

s�t

jX

(n)

s

�X

(n�1)

s

j

2

.

(t+ 1)

2n

C

2n

t

M

n!

:

We onlude that, for m � n, by the triangle inequality,

"

m;n

: =







sup

s�t

jX

(n)

s

�X

(m)

s

j







2

.

n

X

i=m+1

(t+ 1)

i

p

i!

C

i

t

p

M:
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For �xed t, we have that "

m;n

! 0 as m;n ! 1. We onlude that the

variables in the left side of the last display onverge to zero in quadrati

mean and hene in probability asm;n!1. In other words, the sequene of

proesses X

(n)

forms a Cauhy sequene in probability in the spae C[0; t℄

of ontinuous funtions, equipped with the uniform norm. Sine this spae

is omplete there exists a proess X suh that, as n!1,

sup

s�t

jX

(n)

s

�X

s

j

P

!

0:

Being a uniform limit of ontinuous proesses, the proess X must be on-

tinuous. By Fatou's lemma

"

m

: =







sup

s�t

jX

s

�X

(m)

s

j







2

� lim

n!1

"

m;n

:

Beause LX

(n)

= X

(n+1)

, the triangle inequality gives that







sup

s�t

j(LX)

s

�X

s

j







2

.







sup

s�t

j(LX)

s

� (LX

(n)

)

s

j







2

+







sup

s�t

jX

(n+1)

s

�X

s

j







2

.

p

t+ 1C

t

s

E

Z

t

0

jX

s

�X

(n)

s

j

2

ds+ "

n+1

.

p

t+ 1

p

t C

t

"

n

+ "

n+1

:

The right side onverges to zero as n ! 1, for �xed t, and hene the left

side must be identially zero. This shows that LX = X , so that X solves

the stohasti di�erential equation, at least on the interval [0; t℄.

If Y is another solution, then, sine in that ase X � Y = LX � LY ,

E sup

s�t

jX

s

� Y

s

j

2

. (t+ 1)C

2

t

Z

t

0

E sup

u�s

jX

u

� Y

u

j

2

ds:

By Gronwall's lemma, Lemma 7.10, applied to the funtion on the left side

and with A = 0, it follows that the left side must vanish and hene X = Y .

By going through the preeding for every t 2 N we an onsistently

onstrut a solution on [0;1), and onlude that this is unique.

By the measurability of � and � the proesses t 7! �(t;X

t

) and

t 7! �(t;X

t

) are preditable, and hene progressively measurable, for ev-

ery preditable proess X . (Cf. Exerise 7.2.) By Fubini's theorem the

proess t 7!

R

t

0

�(s;X

s

) ds is adapted, while the stohasti integral t 7!

R

t

0

�(s;X

s

) dB

s

is a loal martingale and hene ertainly adapted. Beause

the proesses are also ontinuous, they are preditable. The proess X

(0)

is

ertainly preditable and hene by indution the proessX

(n)

is preditable
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for every n. The solution to the stohasti di�erential equation is indistin-

guishable from lim inf

n!1

X

(n)

and hene is preditable and adapted.

The remainder of the proof should be skipped at �rst reading. It on-

sists of proving the theorem without the additional onditions on the fun-

tions � and � and the variable �, and is based on the identi�ation lemma

given as Lemma 7.11 below. First assume that � and � only satisfy (7.5)

and (7.6), but � is still square-integrable.

For n 2 N let �

n

:R ! R be ontinuously di�erentiable with ompat

support and be equal to the unit funtion on [�n; n℄. Then the funtions

�

n

and �

n

de�ned by �

n

(t; x) = �(t; x)�

n

(x) and �

n

(t; x) = �(t; x)�

n

(x)

satisfy the onditions of the �rst part of the proof. Hene there exists, for

every n, a ontinuous adapted proess X

n

suh that

(7:8) X

n;t

= � +

Z

t

0

�

n

(s;X

n;s

) ds+

Z

t

0

�

n

(s;X

n;s

) dB

s

:

For �xed m � n the funtions �

m

and �

n

, and �

m

and �

n

agree on the in-

terval [�m;m℄, whene by Lemma 7.11 the proessX

m

andX

n

are indistin-

guishable on the set [0; T

m

℄ for T

m

= infft � 0: jX

m;t

j � m or jX

n;t

j � mg.

In partiular, the �rst times that X

m

or X

n

leave the interval [�m;m℄

are idential and hene the possibility \jX

n;t

j > m" in the de�nition of T

m

is superuous. If 0 � T

n

" 1, then we an onsistently de�ne a proess X

by setting it equal to X

n

on [0; T

n

℄, for every n. Then X

T

n

= X

T

n

n

and, by

the preeding display and Lemma 5.54(i),

(7:9) X

T

n

t

= �+

Z

t

0

1

(0;T

n

℄

(s)�

n

(s;X

n;s

) ds+

Z

t

0

1

(0;T

n

℄

(s)�

n

(s;X

n;s

) dB

s

:

By the de�nitions of T

n

, �

n

, �

n

and X the integrands do not hange if we

delete the subsript n from �

n

, �

n

and X

n

. We onlude that

X

T

n

t

= � +

Z

T

n

^t

0

�(s;X

s

) ds+

Z

T

n

^t

0

�(s;X

s

) dB

s

:

This being true for every n implies that X is a solution of the stohasti

di�erential equation (7.1).

We must still show that 0 � T

n

" 1. By the integration-by-parts

formula and (7.8)

X

2

n;t

�X

2

n;0

= 2

Z

t

0

X

n;s

�

n

(s;X

n;s

) ds+ 2

Z

t

0

X

n;s

�

n

(s;X

n;s

) dB

s

+

Z

t

0

�

2

n

(s;X

n;s

) ds:

The proess 1

(0;T

n

℄

X

n;s

�

n

(s;X

n;s

) is bounded on [0; t℄ and hene the proess

t 7!

R

T

n

^t

0

X

n;s

�

n

(s;X

n;s

) dB

s

is a martingale. Replaing t by T

n

^ t in the



7.1: Strong Solutions 117

preeding display and next taking expetations we obtain

1 + EX

2

n;T

n

^t

= 1 + E�

2

+ 2E

Z

T

n

^t

0

X

n;s

�

n

(s;X

n;s

) ds

+E

Z

T

n

^t

0

�

2

n

(s;X

n;s

) ds

. 1 + E�

2

+ (C

t

+ C

2

t

) E

Z

T

n

^t

0

(1 +X

2

n;s

) ds

. 1 + E�

2

+ (C

t

+ C

2

t

)

Z

t

0

(1 + EX

2

n;T

n

^s

) ds:

We an apply Gronwall's lemma, Lemma 7.10, to the funtion on the far

left of the display to onlude that this is bounded on [0; t℄, uniformly in n,

for every �xed t. By the de�nition of T

n

P (0 < T

n

� t)n

2

� EX

2

n;T

n

^t

:

Hene P (0 < T

n

� t) = O(n

�2

)! 0 as n!1, for every �xed t. Combined

with the fat that P (T

n

= 0) = P

�

j�j > n

�

! 0, this proves that 0 � T

n

"

1.

Finally, we drop the ondition that � is square-integrable. By the pre-

eding there exists, for every n 2 N, a solutionX

n

to the stohasti di�eren-

tial equation (7.1) with initial value �1

j�j�n

. By Lemma 7.11 the proesses

X

m

and X

n

are indistibguishable on the event fj�j � mg for every n � m.

Thus lim

n!1

X

n

exists almost surely and solves the stohasti di�erential

equation with initial value �.

The last assertion of the theorem is a onsequene of Lemma 7.12

below, or an be argued along the following lines. The distribution of the

triple (�; B;X

(n)

) on R�C [0;1)�C[0;1) is determined by the distribution

of (�; B;X

(n�1)

) and hene ultimately by the distribution of (�; B;X

(0)

),

whih is determined by the distribution of �, the distribution of B being

�xed as that of a Brownian motion. Therefore the distribution of X is

determined by the distribution of � as well. (Even though believable this

argument needs to be given in more detail to be really onvining.)

7.10 Lemma (Gronwall). Let f : [0; T ℄ ! R be a measurable funtion

suh that f(t) � A +B

R

t

0

f(s) ds for every t 2 [0; T ℄ and onstants A and

B > 0. Then f(t) � Ae

Bt

on [0; T ℄.

Proof. We an write the inequality in the form F

0

(t) �BF (t) � A, for F

the primitive funtion of f with F (0) = 0. This implies that

�

F (t)e

�Bt

�

0

�

Ae

�Bt

. By integrating and rearranging we �nd that F (t) � (A=B)(e

Bt

�1).

The lemma follows upon reinserting this in the given inequality.
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* 7.1.1 Auxiliary Results

The remainder of this setion should be skipped at �rst reading.

The following lemma is used in the proof of Theorem 7.7, but is also

of independent interest. It shows that given two pairs of funtions (�

i

; �

i

)

that agree on [0;1)�[�n; n℄, the solutionsX

i

of the orresponding stohas-

ti di�erential equations (of the type (7.1)) agree as long as they remain

within [�n; n℄. Furthermore, given two initial variables �

i

the orresponding

solutions X

i

are indistinguishable on the event f�

1

= �

2

g.

7.11 Lemma. For i = 1; 2 let �

i

; �

i

: [0;1) � R ! R be measurable

funtions that satisfy (7.5){(7.6), let �

i

be F

0

-measurable random vari-

ables, and let X

i

be ontinuous, adapted proesses that satisfy (7.1) with

(�

i

; �

i

; �

i

) replaing (�; �; �). If �

1

= �

2

and �

1

= �

2

on [0;1) � [�n; n℄

and T = infft � 0: jX

1;t

j > n; or jX

2;t

j > ng, then X

T

1

= X

T

2

on the event

f�

1

= �

2

g.

Proof. By subtrating the stohasti di�erential equations (7.1) with

(�

i

; �

i

; �

i

; X

i

) replaing (�; �; �;X), and evaluating at T ^ t instead of t,

we obtain

X

T

1;t

�X

T

2;t

= �

1

� �

2

+

Z

T^t

0

�

�

1

(s;X

1;s

)� �

2

(s;X

2;s

)

�

ds

+

Z

T^t

0

�

�

1

(s;X

1;s

)� �

2

(s;X

2;s

)

�

dB

s

:

On the event F = f�

1

= �

2

g 2 F

0

the �rst term on the right vanishes.

On the set (0; T ℄ the proesses X

1

and X

2

are bounded in absolute value

by n. Hene the funtions �

1

and �

2

, and �

1

and �

2

, agree on the domain

involved in the integrands and hene an be replaed by their ommon

values �

1

= �

2

and �

1

= �

2

. Then we an use the Lipshitz properties of

�

1

and �

1

, and obtain, by similar arguments as in the proof of Theorem 7.7,

that

E sup

s�t

jX

T

1;s

�X

T

2;s

j

2

1

F

. (t+ 1)C

2

t

E

Z

T^t

0

jX

1;s

�X

2;s

j

2

ds1

F

:

(Note that given an event F 2 F

0

the proess Y 1

F

is a martingale whenever

the proess Y is a martingale.) By Gronwall's lemma the left side of the

last display must vanish and hene X

T

1

= X

T

2

on F .

The next lemma gives a strengthening of the last assertion of The-

orem 7.7. The lemma shows that, under the onditions of the theorem,

solutions to the stohasti di�erential equation (7.1) an be onstruted in

a anonial way as X = F (�; B) for a �xed map F in any strong setting

onsisting of an initial variable � and a Brownian motion B de�ned on some
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�ltered probability spae. Beause the map F is measurable, it follows in

partiular that the law of X is uniquely determined by the law of �.

The sense of the measurability of F is slightly involved. The map F is

de�ned as a map F :R�C[0;1) ! C[0;1). Here C[0;1) is the olletion of

all ontinuous funtions x: [0;1) ! R. The projetion �-�eld �

1

on this

spae is the smallest �-�eld making all evaluation maps (\projetions")

�

t

:x 7! x(t) measurable. The projetion �ltration f�

t

g is de�ned by �

t

=

�(�

s

: s � t). (The projetion �-�eld an be shown to be the Borel �-�eld

for the topology of uniform onvergene on ompata.) A Brownian motion

proess indues a law on the measurable spae

�

C[0;1);�

1

�

. This is alled

the Wiener measure. We denote the ompletion of the projetion �ltration

under the Wiener measure by f

�

�

t

g.

For a proof of the following lemma, see e.g. Rogers and Williams, pages

125{127 and 136{138.

7.12 Lemma. Under the onditions of Theorem 7.7 there exists a map

F :R � C[0;1) ! C[0;1) suh that, given any �ltered probability spae

(
;F ; fF

t

g; P ) with a Brownian motion B and an F

0

-measurable random

variable � de�ned on it X = F (�; B) is a solution to the stohasti di�eren-

tial equation (7.1). This map an be hosen suh that the map � 7! F (�; x)

is ontinuous for every x 2 C[0;1) and suh that the map x 7! F (�; x) is

�

�

t

� �

t

-measurable for every t � 0 and every � 2 R. In partiular, it an

be hosen B �

�

�

1

��

1

-measurable.

7.2 Martingale Problem and Weak Solutions

If X is a ontinuous solution to the di�usion equation (7.3), de�ned on

some �ltered probability spae, and f :R 7! R is a twie ontinuously dif-

ferentiable funtion, then Itô's formula yields that

df(X

t

) = f

0

(X

t

)�(X

t

) dB

t

+ f

0

(X

t

)�(X

t

) dt+

1

2

f

00

(X

t

)�

2

(X

t

) dt:

De�ning the di�erentiable operator A by

Af = �f

0

+

1

2

�

2

f

00

;

we onlude that the proess

(7:13) t 7! f(X

t

)� f(X

0

)�

Z

t

0

Af(X

s

) ds

is idential to the stohasti integral (f

0

�)(X) � B, and hene is a loal

martingale. If f has ompat support, in addition to being twie ontinu-

ously di�erentiable, and � is bounded on ompata, then the funtion f

0

�
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is bounded and the proess in (7.13) is also a martingale. It is said that

X is a solution to the (loal) martingale problem. This martingale problem

an be used to haraterize, study and onstrut solutions of the di�usion

equation: instead of onstruting a solution diretly, we searh for a solution

to the martingale problem. The following theorem shows the feasibility of

this approah.

7.14 Theorem. Let X be a ontinuous adapted proess on a given �ltered

spae suh that the proess in (7.13) is a loal martingale for every twie

ontinuously di�erentiable funtion with ompat support. Then there ex-

ists a weak solution to the di�usion equation (7.3) with the law of X

0

as

the initial law.

Proof. For given n 2 N let T

n

= infft � 0: jX

t

j � ng, so that jX

T

n

j � n

on (0; T

n

℄. Furthermore, let f and g be twie ontinuously di�erentiable

funtions with ompat supports that oinide with the funtions x 7! x

and x 7! x

2

on the set [�n; n℄. By assumption the proesses (7.13) obtained

by setting the funtion f in this equation equal to the present f and to g

are loal martingales. On the set (0; T

n

℄ they oinide with the proesses

M and N de�ned by

M

t

= X

t

�X

0

�

Z

t

0

�(X

s

) ds

N

t

= X

2

t

�X

2

0

�

Z

t

0

�

2X

s

�(X

s

) + �

2

(X

s

)

�

ds:

At time 0 the proesses M and N vanish and so do the proesses of the

type (7.13). We onlude that the orrespondene extends to [0; T

n

℄ and

hene the proesses M and N are loal martingales. By simple algebra

M

2

t

= X

2

t

� 2X

t

X

0

+X

2

0

� 2(X

t

�X

0

)

Z

t

0

�(X

s

) ds+

�

Z

t

0

�(X

s

) ds

�

2

= N

t

+ A

t

+

Z

t

0

�

2

(X

s

) ds;

for the proess A de�ned by

A

t

= �2(X

t

�X

0

)

�

X

0

+

Z

t

0

�(X

s

) ds

�

+

�

Z

t

0

�(X

s

) ds

�

2

+

Z

t

0

2X

s

�(X

s

) ds:

By Itô's formula

dA

t

= �2(X

t

�X

0

)�(X

t

) dt� 2dX

t

�

X

0

+

Z

t

0

�(X

s

) ds

�

+ 2

Z

t

0

�(X

s

) ds �(X

t

) dt+ 2�(X

t

)X

t

dt

= �2

�

X

0

+

Z

t

0

�(X

s

) ds

�

dM

t

:
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We onlude that the proess A is a loal martingale and hene so is the

proess t 7!M

2

t

�

R

t

0

�

2

(X

s

) ds. This implies that [M ℄

t

=

R

t

0

�

2

(X

s

) ds.

De�ne a funtion ~�:R ! R by setting ~� equal to 1=� if � 6= 0 and

equal to 0 otherwise, so that ~�� = 1

� 6=0

. Furthermore, given a Brownian

motion proess

~

B de�ne

B = ~�(X) �M + 1

�(X)=0

�

~

B:

Being the sum of two stohasti integrals relative to ontinuous martingales,

the proess B possesses a ontinuous version that is a loal martingale. Its

quadrati variation proess is given by

[B℄

t

= ~�

2

(X) � [M ℄

t

+ 2(~�(X)1

�(X)=0

) � [M;

~

B℄

t

+ 1

�(X)=0

� [

~

B℄

t

:

Here we have linearly expanded [B℄ = [B;B℄ and used Lemma 5.77. The

middle term vanishes by the de�nition of ~�, while the sum of the �rst and

third terms on the right is equal to

R

t

0

(~�

2

�

2

(X

s

) + 1

�(X

s

)=0

) ds = t. By

L�evy's theorem, Theorem 6.1, the proess B is a Brownian motion proess.

By our de�nitions �(X) �B = 1

�(X)6=0

�M =M , beause [1

�(X)=0

�M ℄ = 0

whene 1

�(X)=0

�M = 0. We onlude that

X

t

= X

0

+M

t

+

Z

t

0

�(X

s

) ds = X

0

+

Z

t

0

�(X

s

) dB

s

+

Z

t

0

�(X

s

) ds:

Thus we have found a solution to the di�usion equation (7.3).

In the preeding we have impliitly assumed that the proess X and

the Brownian motion

~

B are de�ned on the same �ltered probability spae,

but this may not be possible on the �ltered spae (
;F ; fF

t

g; P ) on whih

X is given originally. However, we an always onstrut a Brownian motion

~

B on some �ltered spae (

~


;

~

F ; f

~

F

t

g;

~

P ) and next onsider the produt

spae

(
�

~


;F �

~

F ; fF

t

�

~

F

t

g; P �

~

P );

with the maps

(!; ~!) 7! X(!);

(!; ~!) 7!

~

B(~!):

The latter proesses are exatly as the original proesses X and

~

B and

hene the �rst proess solves the martingale problem and the seond is

a Brownian motion. The enlarged �ltered probability spae may not be

omplete and satisfy the usual onditions, but this may be remedied by

ompletion and replaing the produt �ltration F

t

�

~

F

t

by its ompleted

right-ontinuous version.

It follows from the proof of the preeding theorem, that a solution

X of the martingale problem together with the �ltered probability spae

on whih it is de�ned yields a weak solution of the di�usion equation if



122 7: Stohasti Di�erential Equations

� is never zero. If � an assume the value zero, then the proof proeeds

by extending the given probability spae, and X , suitably de�ned on the

extension, again yields a weak solution. The extension may be neessary,

beause the given �ltered probability spae may not be rih enough to arry

a suitable Brownian motion proess.

It is interesting that the proof of Theorem 7.14 proeeds in the opposite

diretion of the proof of Theorem 7.7. In the latter theorem the solution X

is onstruted from the given Brownian motion, whereas in Theorem 7.14

the Brownian motion is onstruted out of the given X .

Now that it is established that solving the martingale problem and

solving the stohasti di�erential equation in the weak sense are equivalent,

we an prove existene of weak solutions for the di�usion equation from

onsideration of the martingale problem. The advantage of this approah

is the availability of additional tehnial tools to handle martingales.

7.15 Theorem. If �; �:R ! R are bounded and ontinuous and � is a

probability measure on R, then there exists a �ltered probability spae

(
;F ; fF

t

g; P ) with a Brownian motion and a ontinuous adapted proess

X satisfying the di�usion equation (7.3) and suh that X

0

has law �.

Proof. Let (B; �) be a pair of a Brownian motion and an F

0

-measurable

random variable with law �, de�ned on some �ltered probability spae. For

every n 2 N de�ne a proess X

(n)

by

X

(n)

0

= �;

X

(n)

t

= X

(n)

k2

�n

+ �(X

(n)

k2

�n

)(t� k2

�n

) + �(X

(n)

k2

�n

)(B

t

�B

k2

�n
);

k2

�n

< t � (k + 1)2

�n

; k = 0; 1; 2; : : : :

Then, for every n, the proessX

(n)

is a ontinuous solution of the stohasti

di�erential equation

(7:16) X

(n)

t

= � +

Z

t

0

�

n

(s) ds+

Z

t

0

�

n

(s) dB

s

;

for the proesses �

n

and �

n

de�ned by

�

n

(t) = �(X

(n)

k2

�n

); �

n

(t) = �(X

(n)

k2

�n

); k2

�n

< t � (k + 1)2

�n

:

By Lemma 5.77 the quadrati variation of the proess M de�ned by

M

t

= �

n

� B

s+t

� �

n

� B

s

is given by [M ℄

t

=

R

s+t

0

�

2

n

(u) du. For s � t

we obtain, by the triangle inequality and the Burkholder-Davis-Gundy in-

equality, Lemma 7.18,

EjX

(n)

s

�X

(n)

t

j

4

. E

�

�

�

Z

t

s

�

n

(u) du

�

�

�

4

+E

�

�

�

Z

t

s

�

2

n

(u) dB

u

�

�

�

2

. k�k

4

1

js� tj

4

+ k�k

4

1

js� tj

2

:
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By Kolmogorov's riterion (e.g. Van der Vaart and Wellner, page 104) it

follows that the sequene of proesses X

(n)

is uniformly tight in the met-

ri spae C[0;1), equipped with the topology of uniform onvergene on

ompata. By Prohorov's theorem it ontains a weakly onverging subse-

quene. For simpliity of notation we assume that the whole sequene X

(n)

onverges in distribution in C[0;1) to a proess X . We shall show that X

solves the martingale problem, and then an omplete the proof by applying

Theorem 7.14.

The variable X

0

is the limit in law of the sequene X

(n)

0

and hene is

equal in law to �.

For a twie ontinuously di�erentiable funtion f :R ! R with ompat

support, an appliation of Itô's formula and (7.16) shows that the proess

(7:17) f(X

(n)

t

)� f(X

(n)

0

)�

Z

t

0

�

�

n

(s)f

0

(X

(n)

s

) +

1

2

�

2

n

(s)f

00

(X

(n)

s

)

�

ds

is a martingale. (Cf. the disussion before the statement of Theorem 7.14.)

By assumption the funtions � and � are uniformly ontinuous on om-

pata. Hene for every �xed M the moduli of ontinuity

m(Æ) = sup

jx�yj�Æ

jxj_jyj�M

�

�

�(x) � �(y)

�

�

; s(Æ) = sup

jx�yj�Æ

jxj_jyj�M

�

�

�(x) � �(y)

�

�

onverge to zero as Æ # 0. The weak onvergene of the sequene X

(n)

implies the weak onvergene of the sequene sup

s�t

jX

(n)

s

j, for every

�xed t � 0. Therefore, we an hoose M suh that the events F

n

=

fsup

s�t

jX

(n)

s

j �Mg possess probability arbitrarily lose to one, uniformly

in n. The weak onvergene also implies that, for every �xed t � 0,

�

n

: = sup

ju�vj<2

�n

;u�v�t

jX

(n)

u

�X

(n)

v

j

P

!

0:

On the event F

n

�

�

�

Z

t

0

�

�

n

(s)� �(X

(n)

s

)

�

f

0

(X

(n)

s

) ds

�

�

�

� tm(�

n

)kf

0

k

1

P

!

0:

Combining this with a similar argument for �

2

n

we onlude that the se-

quene of proesses in (7.17) is asymptotially equivalent to the sequene

of proesses

M

n

t

: = f(X

(n)

t

)� f(X

(n)

0

)�

Z

t

0

Af(X

(n)

s

) ds:

These proesses are also uniformly bounded on ompata. The martingale

property of the proesses in (7.17) now yields that EM

n

t

g(X

(n)

u

:u � s)! 0

for every bounded, ontinuous funtion g:C[0; s℄ ! R. Beause the map
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x 7! f(x

t

)� f(x

0

)�

R

t

0

Af(x

s

) ds is also ontinuous and bounded as a map

from C[0;1) to R, this implies that

E

�

f(X

t

)� f(X

s

)�

Z

t

s

Af(X

u

) du

�

g(X

u

:u � s) = 0:

We onlude that X is a martingale relative to its natural �ltration. It is

automatially also a martingale relative to the ompletion of its natural

�ltration. Beause X is right ontinuous, it is again a martingale relative

to the right-ontinuous version of its ompleted natural �ltration, by The-

orem 4.6.

ThusX solves the martingale problem, and there exists a weak solution

to the di�usion equation with initial law the law of X

0

, by Theorem 7.14.

7.18 Lemma (Burkholder-Davis-Gundy). For every p � 2 there exists a

onstant C

p

suh that EjM

t

j

p

� C

p

E[M ℄

p=2

t

for every ontinuous martingale

M , 0 at 0, and every t � 0.

Proof. De�ne m = p=2 and Y

t

= M

2

t

+ [M ℄

t

for a onstant  > 0 to be

determined later. By Itô's formula applied with the funtions x 7! x

2m

and

(x; y)! (x

2

+ y)

m

we have that

dM

2m

t

= 2mM

2m�1

t

dM

t

+

1

2

2m(2m� 1)M

2m�2

t

d[M ℄

t

;

dY

m

t

= mY

m�1

t

2M

t

dM

t

+mY

m�1

t

d[M ℄

t

+

1

2

�

m(m� 1)Y

m�2

t

4

2

M

2

t

+mY

m�1

t

2

�

d[M ℄

t

:

Assume �rst that the proess Y is bounded. Then the integrals of the

two �rst terms on the right are martingales. Taking the integrals and next

expetations we onlude that

EM

2m

t

= E

Z

t

0

1

2

2m(2m� 1)M

2m�2

s

d[M ℄

s

;

EY

m

t

= E

Z

t

0

mY

m�1

s

d[M ℄

s

+E

Z

t

0

1

2

m(m� 1)Y

m�2

s

+ 4

2

M

2

s

d[M ℄

s

+E

Z

t

0

1

2

mY

m�1

s

2 d[M ℄

s

:

The middle term in the seond equation is nonnegative, so that the sum of

the �rst and third terms is bounded above by EY

m

t

. Beause M

2

t

� Y

t

=,

we an bound the right side of the �rst equation by a multiple of this sum.

Thus we an bound the left side EM

2m

t

of the �rst equation by a multiple

of the left side EY

m

t

of the seond equation. Using the inequality jx+yj

m

�

2

m�1

(x

m

+ y

m

) we an bound EY

m

t

by a multipe of 

m

EM

2m

t

+ E[M ℄

m

t

.

Putting this together, we obtain the desired inequality after rearranging

and hoosing  > 0 suÆiently lose to 0.
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If Y is not uniformly bounded, then we stop M at the time T

n

=

infft � 0: jY

t

j > ng. Then Y

T

n

relates to M

T

n

in the same way as Y to

M and is uniformly bounded. We an apply the preeding to �nd that the

desired inequality is valid for the stopped proess M . Next we let n ! 1

and use Fatou's lemma on the left side and the monotone onvergene

theorem on the right side of the inequality to see that it is valid for M as

well.

Within the ontext of weak solutions to stohasti di�erential equa-

tions \uniqueness" of a solution should not refer to the underlying �ltered

probability spae, but it does make sense to speak of \uniqueness in law".

Any solution X in a given setting indues a probability distribution on

the metri spae C[0;1). A solution X is alled unique-in-law if any other

solution

~

X, possibly de�ned in a di�erent setting, indues the same dis-

tribution on C[0;1). Here X and

~

X possess the same distribution if the

vetors (X

t

1

; : : : ; X

t

k

) and (

~

X

t

1

; : : : ;

~

X

t

k

) are equal in distribution for every

0 � t

1

� � � � � t

k

. (This orresponds to using on C[0;1) the �-�eld of all

Borel sets of the topology of uniform onvergene on ompata.)

The last assertion of Theorem 7.7 is exatly that, under the onditions

imposed there, that the solution of the stohasti di�erential equation is

unique-in-law. Alternatively, t here is an interesting suÆient ondition

for uniqueness in law in terms of the Cauhy problem aompanying the

di�erential operator A. The Cauhy problem is to �nd, for a given initial

funtion f , a solution u: [0;1)�R ! R to the partial di�erential equation

�u

�t

= Au; u(0; �) = f:

Here �u=�t is the partial derivative relative to the �rst argument of u,

whereas the operator A on the right works on the funtion x 7! u(t; x) for

�xed t. We make it part of the requirements for solving the Cauhy problem

that the partial derivatives �u=�t and �

2

u=�x

2

exist on (0;1) � R and

possess ontinuous extensions to [0;1)� R.

A suÆient ondition for solvability of the Cauhy problem, where the

solution also satis�es the ondition in the next theorem, is that the funtions

� and �

2

are H�older ontinuous and that �

2

is bounded away from zero.

See Strook and Varadhan, Theorem 3.2.1.

For a proof of the following theorem, see Karatzas and Shreve, pages

325{427 or Strook and Varadhan.

7.19 Theorem. Suppose that the aompanying Cauhy problem admits

for every twie ontinuous di�erentiable funtion f with ompat support

a solution u whih is bounded and ontinuous on the strips [0; t℄ � R, for

every t � 0. Then for any x 2 R the solution X to the di�usion equation

with initial law X

0

= x is unique.
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7.3 Markov Property

In this setion we onsider the di�usion equation

X

t

= X

0

+

Z

t

0

�(X

u

) du+

Z

t

0

�(X

u

) dB

u

:

Evaluating this equation at the time points t+s and s, taking the di�erene,

and making the hange of variables u = v + s in the integrals, we obtain

X

s+t

= X

s

+

Z

t

0

�(X

s+v

) dv +

Z

t

0

�(X

s+v

) dB

s+v

:

Beause the stohasti integral depends only on the inrements of the inte-

grator, the proess B

s+v

an be replaed by the proess

~

B

v

= B

s+v

� B

s

,

whih is a Brownian motion itself and is independent of F

s

. The resulting

equation suggests that onditionally on F

s

(and hene given X

s

) the pro-

ess fX

s+t

: t � 0g relates to the initial value X

s

and the Brownian motion

~

B in the same way as the proess X relates to the pair (X

s

; B) (with X

s

�xed). In partiular, the onditional law of the proess fX

s+t

: t � 0g given

F

s

should be the same as the law of X given the initial value X

s

(onsidered

�xed).

This expresses that a solution of the di�usion equation is a time-

homogeneous Markov proess: at any time the proess will given its past

evolve from its present aording to the same probability law that deter-

mines its evolvement from time zero. This is indeed true, even though a

proper mathematial formulation is slightly involved.

A Markov kernel from R into R is a map (x;B) 7! Q(x;B) suh that

(i) the map x 7! Q(x;B) is measurable, for every Borel set B;

(ii) the map B 7! Q(x;B) is a Borel measure, for every x 2 R.

A general proess X is alled a time-homogeneous Markov proess if for

every t � 0 there exists a Markov kernel Q

t

suh that, for every Borel set

B and every s � 0,

P (X

s+t

2 BjX

u

:u � s) = Q

t

(X

s

; B); a:s::

By the towering property of a onditional expetation the ommon value

in the display is then automatially also a version of P (X

s+t

2 BjX

s

). The

property expresses that the distribution of X at the future time s+ t given

the \past" up till time s is dependent on its value at the \present" time s

only. The Markov kernels Q

t

are alled the transition kernels of the proess.

Suppose that the funtions � and � satisfy the onditions of Theo-

rem 7.7. In the present situation these an be simpli�ed to the existene,

for every t � 0 of a onstant C

t

suh that, for all x; y 2 [�t; t℄,

(7:20)

�

�

�(x) � �(y)

�

�

� C

t

jx� yj;

�

�

�(x) � �(y)

�

�

� C

t

jx� yj;



7.3: Markov Property 127

and the existene of a onstant C suh that, for all x 2 R,

(7:21)

�

�

�(x)

�

�

� C(1 + jxj);

�

�

�(x)

�

�

� C(1 + jxj):

Under these onditions Theorem 7.7 guarantees the existene of a solution

X

x

to the di�usion equation with initial value X

x

0

= x, for every x 2 R,

and this solution is unique in law. The following theorem asserts that the

distribution Q

t

(x; �) of X

x

t

de�nes a Markov kernel, and any solution to the

di�usion equation is a Markov proess with Q

t

as its transition kernels.

Informally, given F

s

and X

s

= x the distribution of X

s+t

is the same

as the distribution of X

x

t

.

7.22 Theorem. Assume that the funtions �; �:R ! R satisfy (7.20){

(7.21). Then any solution X to the di�usion equation (7.3) is a Markov

proess with transition kernels Q

t

de�ned by Q

t

(x;B) = P (X

x

t

2 B).

Proof. See Chung and Williams, pages 235{243. These authors (and most

authors) work within the anonial set-up where the proess is (re)de�ned

as the identity map on the spae C[0;1) equipped with the distribution in-

dued by X

x

. This is immaterial, as the Markov property is a distributional

property; it an be written as

E1

X

s+t

2B

g(X

u

:u � s) = EQ

t

(X

s

; B)g(X

u

:X

u

:u � s);

for every measurable set B and bounded measurable funtion g:C[0; s℄ !

R. This identity depends on the law of X only, as does the de�nition of Q

t

.

The map x 7!

R

f(y)Q

t

(x; dy) is shown to be ontinuous for every

bounded ontinuous funtion f :R ! R in Lemma 10.9 of Chung and

Williams. In partiular, it is measurable. By a monotone lass argument

this an be seen to imply that the map x 7! Q

t

(x;B) is measurable for

every Borel set B.
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Option Priing

in Continuous Time

In this hapter we disuss the Blak-Sholes model for the priing of deriva-

tives. Given the tools developed in the preeding hapters it is relatively

straightforward to obtain analogues in ontinuous time of the disrete time

results for the Cox-Ross-Rubinstein model of Chapter 3. The model an be

set up for portfolios onsisting of several risky assets, but for simpliity we

restrit to one suh asset.

We suppose that the prie S

t

of a stok at time t � 0 satis�es a

stohasti di�erential equation of the form

(8:1) dS

t

= �

t

S

t

dt+ �

t

S

t

dW

t

:

Here W is a Brownian motion proess on a given �ltered probability spae

(
;F ; fF

t

g; P ), and f�

t

: t � 0g and f�

t

: t � 0g are preditable proesses.

The �ltration fF

t

g is the ompleted natural �ltration generated by W ,

and it is assumed that S is ontinuous and adapted to this �ltration. The

hoies �

t

= � and �

t

= �, for onstants � and �, give the original Blak-

Sholes model. These hoies yield a stohasti di�erential equation of the

type onsidered in Chapter 7, and Theorem 7.7 guarantees the existene of

a solution S in this ase. For many other hoies the existene of a solution

is guaranteed as well. For our present purpose it is enough to assume that

there exist a ontinuous adapted solution S.

The proess � is alled the volatility of the stok. It determines how

variable or \volatile" the movements of the stok are. We assume that

this proess is never zero. The proess � gives the drift of the stok. It is

responsible for the exponential growth of a typial stok prie.

Next to stoks our model allows for bonds, whih in the simplest ase

are riskless assets with a predetermined yield, muh as money in a savings

aount. More generally, we assume that the prie R

t

of a bond at time t

satis�es the di�erential equation

dR

t

= r

t

R

t

dt; R

0

= 1:
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Here r

t

is some ontinuous adapted proess alled the interest rate pro-

ess. (Warning: r is not the derivative of R, as might be suggested by the

notation.) The di�erential equation an be solved to give

R

t

= e

R

t

0

r

s

ds

:

This is the \ontinuously ompounded interest" over the interval [0; t℄. In

the speial ase of a onstant interest rate r

t

= r this redues to R

t

= e

rt

.

A portfolio (A;B) is de�ned to be a pair of preditable proesses A

and B. The pair (A

t

; B

t

) gives the numbers of bonds and stoks owned at

time t, giving the portfolio value

(8:2) V

t

= A

t

R

t

+B

t

S

t

:

The preditable proesses A and B an depend on the past until \just

before t" and we may think of hanges in the ontent of the portfolio as

a realloation of bonds and stok that takes plae just before time t. A

portfolio is \self-�naning" if suh reshu�ing an be arried out without

import or export of money, whene hanges in the value of the portfolio are

due only to hanges in the values of the underlying assets. More preisely,

we all the portfolio (A;B) self-�naning if

(8:3): dV

t

= A

t

dR

t

+B

t

dS

t

:

This is to be interpreted in the sense that V must be a semimartingale

satisfying V = V

0

+A �R+B �S. It is impliitly required that A and B are

suitable integrands relative to R and S.

A ontingent laim with expiry time T > 0 is de�ned to be an F

T

-

measurable random variable. It is interpreted as the value at the expiry

time of a \derivative", a ontrat based on the stok. The European all

option, onsidered in Chapter 3, is an important example, but there are

many other ontrats. Some examples of ontingent laims are:

(i) European all option: (S

T

�K)

+

.

(ii) European put option: (K � S

T

)

+

.

(iii) Asian all option:

�R

T

0

S

t

dt�K

�

+

.

(iv) lookbak all option: S

T

�min

0�t�T

S

t

,

(v) down and out barrier option: (S

T

�K)

+

1fmin

0�t�T

S

t

� Hg.

The onstants K and H and the expiry time T are �xed in the ontrat.

There are many more possibilities; the more ompliated ontrats are re-

ferred to as exoti options. Note that in (iii){(v) the laim depends on the

history of the stok prie throughout the period [0; T ℄. All ontingent laims

an be pried following the same no-arbitrage approah that we outline be-

low.

A popular option that is not overed in the following is the Amerian

put option. This is a ontrat giving the right to sell a stok at any time in

[0; T ℄ for a �xed prieK. The value of this ontrat annot be expressed in a
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ontingent laim, beause its value depends on an optimization of the time

to exerise the ontrat (i.e. sell the stok). Priing an Amerian put option

involves optimal stopping theory, in addition to the risk-neutral priing we

disuss below. A bit surprising is that a similar ompliation does not arise

with the Amerian all option, whih gives the right to buy a stok at any

time until expiry time. It an be shown that it is never advantageous to

exerise a all option before the expiry time and hene the Amerian all

option is equivalent to the European all option.

Beause the laims we wish to evaluate always have a �nite term T ,

all the proesses in our model matter only on the interval [0; T ℄. We may

or must understand the assumptions and assertions aordingly.

In the disrete time setting of Chapter 3 laims are pried by referene

to a \martingale measure", de�ned as the unique measure that turns the

\disounted stok proess" into a martingale. In the present setting the

disounted stok prie is the proess

~

S de�ned by

~

S

t

= R

�1

t

S

t

. By Itô's

formula and (8.1),

(8:4)

d

~

S

t

= �

S

t

R

2

t

dR

t

+

1

R

t

dS

t

=

�

t

� r

t

�

t

�

t

R

t

S

t

dt+

�

t

R

t

S

t

dW

t

:

Here and in the following we apply Itô's formula with the funtion r 7!

1=r, whih does not satisfy the onditions of Itô's theorem as we stated

it. However, the derivations are orret, as an be seen by substituting the

expliit form for R

t

as an exponential and next applying Itô's formula.

Under the true measure P governing the Blak-Sholes stohasti dif-

ferential equation (8.1) the proess W is a Brownian motion and hene

~

S

is a loal martingale if its drift omponent vanishes, i.e. if �

t

� r

t

. This

will rarely be the ase in the real world. Girsanov's theorem allows us to

eliminate the drift part by a hange of measure and hene provides the

martingale measure that we are looking for. The proess

�

t

=

�

t

� r

t

�

t

is alled the market prie of risk. If it is zero, then the real world is already

\risk-neutral"; if not, then the proess � measures the deviation from a

risk-neutral market relative to the volatility proess.

Let Z = E(�� �W ) be the exponential proess of �� � Z, i.e.

Z

t

= e

�

R

t

0

�

s

dW

s

�

1

2

R

t

0

�

2

s

ds

:

We assume that the proess � is suh that the proess Z is a martingale (on

[0; T ℄). For instane, this is true under Novikov's ondition. We an next

de�ne a measure

~

P on (
;F ; P ) by its density d

~

P = Z

T

dP relative to P .

Then the proess

~

W de�ned by

~

W

t

=W

t

+

Z

t

0

�

s

ds
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is a Brownian motion under

~

P , by Corollary 6.16, and, by the preeding

alulations,

(8:5) d

~

S

t

=

�

t

R

t

S

t

d

~

W

t

:

It follows that

~

S is a

~

P -loal martingale. As in the disrete time setting the

\reasonable prie" at time 0 for a ontingent laim with pay-o� X is the

expetation under the martingale measure of the disounted value of the

laim at time T , i.e.

V

0

=

~

ER

�1

T

X;

where

~

E denotes the expetation under

~

P . This is a onsequene of eo-

nomi, no-arbitrage reasoning, as in Chapter 3, and the following theorem.

8.6 Theorem. Let X be a nonnegative ontingent laim with

~

ER

�1

T

jX j <

1. Then there exists a self-�naning strategy with value proess V suh

that

(i) V � 0 up to indistiguishability.

(ii) V

T

= X almost surely.

(iii) V

0

=

~

ER

�1

T

X .

Proof. The proess

~

S = R

�1

S is a ontinuous semimartingale under P

and a ontinuous loal martingale under

~

P , in view of (8.5). Let

~

V be a

adlag version of the martingale

~

V

t

=

~

E

�

R

�1

T

X j F

t

�

:

Suppose that there exists a preditable proess B suh that

d

~

V

t

= B

t

d

~

S

t

:

Then

~

V is ontinuous, beause

~

S is ontinuous, and hene preditable.

De�ne

A =

~

V �B

~

S:

Then A is preditable, beause

~

V , B and

~

S are preditable. The value of

the portfolio (A;B) is given by V = AR +BS = (

~

V � B

~

S)R + BS = R

~

V

and hene, by Itô's formula and (8.4),

dV

t

=

~

V

t

dR

t

+R

t

d

~

V

t

= (A

t

+B

t

~

S

t

) dR

t

+R

t

B

t

d

~

S

t

= (A

t

+B

t

R

�1

t

S

t

) dR

t

+R

t

B

t

�

�S

t

R

�2

t

dR

t

+R

�1

t

dS

t

�

= A

t

dR

t

+B

t

dS

t

:

Thus the portfolio (A;B) is self-�naning. Statements (i){(iii) of the theo-

rem are lear from the de�nition of

~

V and the relation V = R

~

V .



132 8: Option Priing in Continuous Time

We must still prove the existene of the proess B. In view of (8.5) we

need to determine this proess B suh that

d

~

V

t

= B

t

�

t

S

t

R

t

d

~

W

t

:

The proess

~

W is a

~

P -Brownian motion and

~

V is a

~

P -martingale. If the

underlying �ltration would be the ompletion of the natural �ltration gener-

ated by

~

W , then the representation theorem for Brownian loal martingales,

Theorem 6.6, and the fat that �

t

S

t

is stritly positive would immediate

imply the result. By assumption the underlying �ltration is the ompletion

of the natural �ltration generated by W . Beause W and

~

W di�er by the

proess

R

t

0

�

s

ds, it appears that the two �ltrations are not idential and

hene this argument fails in general. (In the speial ase in whih �

t

, � and

r

t

and hene �

t

are deterministi funtions the two �ltration are learly the

same and hene the proof is omplete at this point.) We an still prove the

desired representation by a detour. We �rst write the

~

P -loal martingale

~

V

in terms of P -loal martingales through

~

V

t

=

E(R

�1

T

XZ

T

j F

t

)

E(Z

T

j F

t

)

=

U

t

Z

t

; a:s::

Here U , de�ned as the numerator in the preeding display, is a P -martingale

relative to fF

t

g. By the representation theorem for Brownian martingales

the proess U possesses a ontinuous version and there exists a preditable

proess C suh that U = U

0

+C �W . The exponential proess Z = E(�� �W )

satis�es dZ = Z d(�� � Z) = �Z� dW and hene d[Z℄

t

= Z

2

t

�

2

t

dt. Careful

appliation of Itô's formula gives that

d

~

V

t

= �

U

t

Z

2

t

dZ

t

+

dU

t

Z

t

+

1

2

2U

t

Z

3

t

d[Z℄

t

�

1

Z

2

t

d[U;Z℄

t

= �

U

t

Z

2

t

(�Z

t

�

t

) dW

t

+

C

t

dW

t

Z

t

+

U

t

Z

3

t

Z

2

t

�

2

t

dt+

1

Z

2

t

C

t

Z

t

�

t

dt

=

U

t

�

t

+ C

t

Z

t

d

~

W

t

:

This gives the desired representation of

~

V in terms of

~

W .

We interpret the preeding theorem eonomially as saying that V

0

=

~

ER

�1

T

X is the just prie for the ontingent laim X . In general it is not

easy to evaluate this expliitly, but for Blak-Sholes option priing it is.

First the stok prie an be solved expliitly from (8.1) to give

S

t

= S

0

e

R

t

0

(�

s

�

1

2

�

2

s

) ds+

R

t

0

�

s

dW

s

:
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Beause we are interested in this proess under the martingale measure

~

P ,

it is useful to write it in terms of

~

W as

S

t

= S

0

e

R

t

0

(r

s

�

1

2

�

2

s

) ds+

R

t

0

�

s

d

~

W

s

:

Note that the drift proess � does not make part of this equation: it plays

no role in the priing formula. Apparently the systemati part of the stok

prie di�usion an be ompletely hedged away. If the volatility � and the

interest rate r are onstant in time, then this an be further evaluated, and

we �nd that, under

~

P ,

log

S

t

S

0

� N

�

(r �

1

2

�

2

)t; �

2

t

�

:

This is exatly as in the limiting ase for the disrete time situation in

Chapter 3. The prie of a European all option an be written as, with Z

a standard normal variable,

E

�

S

0

e

(r�

1

2

�

2

)T+�

p

TZ

�K

�

+

:

It is straightforward alulus to evaluate this expliitly, and the result is

given already in Chapter 3.

The exat values of most of the other option ontrats mentioned pre-

viously an also be evaluated expliitly in the Blak-Sholes model. This

is more diÆult, beause the orresponding ontingent laims involve the

full history of the proess S, not just the martingale distribution at some

�xed time point. However, if the proesses � and r are not onstant, then

the expliit evaluation may be impossible. In some ases the problem an

be redued to a partial di�erential equation, whih an next be solved nu-

merially.

Assume that the value proess V of the repliating portfolio as in

Theorem 8.6 an be written as V

t

= f(t; S

t

) for some twie di�erentiable

funtion f .

y

Then, by Itô's formula and (8.1),

dV

t

= D

1

f(t; S

t

) dt+D

2

f(t; S

t

) dS

t

+

1

2

D

22

f(t; S

t

)�

2

t

S

2

t

dt:

By the self-�naning equation and the de�nition of V = AR+BS, we have

that

dV

t

= A

t

dR

t

+B

t

dS

t

= (V

t

�B

t

S

t

)r

t

dt+B

t

dS

t

:

The right sides of these two equations are idential if

D

1

f(t; S

t

) +

1

2

D

22

f(t; S

t

)�

2

t

S

2

t

=

�

V

t

�B

t

S

t

�

r

t

;

D

2

f(t; S

t

) = B

t

:

y

I do not know in what situations this is a reasonable assumption.
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We an substitute V

t

= f(t; S

t

) in the right side of the �rst equation,

and replae B

t

by the expression given in the seond. If we assume that

�

t

= �(t; S

t

) and r

t

= r(t; S

t

), then the resulting equation an be written

in the form

f

t

+

1

2

f

ss

�

2

s

2

= fr � f

s

sr;

where we have omitted the arguments (t; s) from the funtions f

t

, f

ss

, �,

f , f

s

and r, and the indies t and s denote partial derivatives relative

to t or s of the funtion (t; s) 7! f(t; s). We an now try and solve this

partial di�erential equation, under a boundary ondition that results from

the pay-o� equation. For instane, for a European all option the equation

f(T; S

T

) = V

T

= (S

T

�K)

+

yields the boundary ondition

f(T; s) = (s�K)

+

:

8.7 EXERCISE. Show that the value of a all option at time t is always at

least (S

t

� e

�r(T�t)

K)

+

, where r is the (�xed) interest rate. (Hint: if not,

show that any owner of a stok would gain riskless pro�t by: selling the

stok, buying the option and putting e

�rt

K in a savings aount, sit still

until expiry and hene owning on option and money K at time T , whih is

worth at least S

T

.)

8.8 EXERCISE. Show, by an eonomi argument, that the early exerise

of an Amerian all option never pays. (Hint: if exerised at time t, then

the value at time t is (S

t

�K)

+

. This is less than (S

t

� e

�r(T�t)

K)

+

.)

8.9 EXERCISE. The put-all parity for European options asserts that the

values P

t

of a put and C

t

of a all option at t with strike prie K and expiry

time T based on the stok S are related as S

t

+ P

t

= C

t

+ Ke

�r(T�t)

,

where r is the (�xed) interest rate. Derive this by an eonomi argument,

e.g. omparing portfolios onsisting of one stok and one put option, or one

all option and an amount Ke

�rT

in a savings aount. Whih one of the

two portfolios would you prefer?


