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LITERATURE

There are very many books on the topi
s of the 
ourse. The list below is a

small sele
tion.

Dis
rete martingales are dis
ussed in most advan
ed introdu
tions to

general probability theory. The book by David Williams is parti
ularly 
lose

to our presentation.

For an introdu
tion to sto
hasti
 integration we prefer the book by

Chung and Williams (Ruth Williams this time). It has introdu
tions to

most of the important topi
s and is very well written. The two volumes by

Rogers and Williams (David again) are a 
lassi
, but they are not easy and

perhaps even a bit messy at times. The book by Karatzas and Shreve is

more a

essible. The book by Revuz and Yor I do not know, but it gets good

reviews. Unlike Chung and Williams the latter two books are restri
ted to

martingales with 
ontinuous sample paths, whi
h obs
ures some interesting

aspe
ts, but also makes some things easier.

The theory of sto
hasti
 integration and mu
h of the theory of abstra
t

sto
hasti
 pro
esses was originally developed by the \fren
h s
hool", with

Meyer as the most famous proponent. Few people 
an appre
iate the fairly

abstra
t and detailed original books (Look for Della
herie and Meyer, vol-

umes 1, 2, 3, 4). The book by Elliott is in this tradition, but somewhat more

readable. The �rst 
hapter of Ja
od and Shiryaev is an ex
ellent summary

and referen
e, but is not meant for introdu
tory reading.

The book by �ksendal is a popular introdu
tion. Unfortunately, at

many pla
es it is obs
ure and sometimes wrong, in parti
ular in the later


hapters. Unpleasant notation as well.

The book by Stroo
k and Varadhan is a 
lassi
 on sto
hasti
 di�eren-

tial equations and parti
ularly important as a sour
e on the \martingale

problem".

There are also many books on �nan
ial 
al
ulus. Some of them are

written from the perspe
tive of di�erential equations. Then Brownian mo-

tion is redu
ed to a pro
ess su
h that (dB

t

)

2

= dt. The books mentioned

below are of 
ourse written from a probabilisti
 point of view. Baxter and

Rennie have written their book for a wide audien
e. It is interesting how

they formulate \theorems" very impre
isely, but never wrong. It is good

to read to get a feel for the subje
t. Karatzas and Shreve, and Kopp and

Elliott have written rigorous mathemati
al books that give you less feel,

but more theorems.
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EXAM

The written exam will 
onsist of problems as in these notes, questions to

work out examples as in the notes or variations thereof, and will require

to give pre
ise de�nitions and statements of theorems plus a numbers of

proofs.

The requirements for the oral exam are the same. For a very high mark

it is, of 
ourse, ne
essary to know everything.

Very important is to be able to give a good overview of the main points

of the 
ourse and their 
onne
tions.

Starred se
tions or lemmas in the le
ture notes 
an be skipped 
om-

pletely. Starred exer
ises may be harder than other exer
ises.

Proofs to learn by heart:

2.13, 2.43, 2.44 for p = 2.

4.21, 4.22, 4.26, 4.28.

5.22, 5.25(i)-(iii), 5.43, 5.46 
ase thatM is 
ontinuous, 5.52, 5.57, 5.76,

5.85.

6.1, 6.9(ii),

7.7 
ase that E�

2

<1 and (7.5) holds for every x; y, 7.14.
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Measure Theory

In this 
hapter we review or introdu
e a number of results from measure

theory that are espe
ially important in the following.

1.1 Conditional Expe
tation

Let X be an integrable random variable de�ned on the probability spa
e

(
;F ; P ). In other words X : 
 ! R is a measurable map (relative to F

and the Borel sets on R) with EjX j <1.

1.1 De�nition. Given a sub �-�eld F

0

� F the 
onditional expe
tation

of X relative to F

0

is a F

0

-measurable map X

0

: 
! R su
h that

(1:2): EX1

F

= EX

0

1

F

; for every F 2 F

0

;

The random variable X

0

is denoted by E(X j F

0

).

It is 
lear from this de�nition that any other F

0

-measurable map

X

00

: 
 ! R su
h that X

0

= X

00

almost surely is also a 
onditional expe
-

tation. In the following theorem it is shown that 
onditional expe
tations

exist and are unique, apart from this indetermina
y on null sets.

1.3 Theorem. Let X be a random variable with EjX j < 1 and F

0

� F

a �-�eld. Then there exists an F

0

-measurable map X

0

: 
 ! R su
h that

(1.2) holds. Furthermore, any two su
h maps X

0

agree almost surely.

Proof. If X � 0, then on the �-�eld F

0

we 
an de�ne a measure �(F ) =

R

F

X dP . Clearly this measure is �nite and absolutely 
ontinuous relative

to the restri
tion of P to F

0

. By the Radon-Nikodym theorem there exists
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an F

0

-measurable fun
tion X

0

, unique up to null sets, su
h that �(F ) =

R

F

X

0

dP for every F 2 F

0

. This is the desired map X

0

. For a general X

we apply this argument separately to X

+

and X

�

and take di�eren
es.

Suppose that E(X

0

� X

00

)1

F

= 0 for every F in a �-�eld for whi
h

X

0

� X

00

is measurable. Then we may 
hoose F = fX

0

> Xg to see that

the probability of this set is zero, be
ause the integral of a stri
tly positive

variable over a set of positive measure must be positive. Similarly we see

that the set F = fX

0

< X

00

g must be a null set. Thus X

0

= X

00

almost

surely.

The de�nition of a 
onditional expe
tation is not terribly insightful,

even though the name suggests an easy interpretation as an expe
ted value.

A number of examples will make the de�nition 
learer.

A measurable map Y : 
! (D ;D) generates a �-�eld �(Y ). We use the

notation E(X jY ) as an abbreviation of E(X j�(Y )).

1.4 Example (Ordinary expe
tation). The expe
tation EX of a random

variable X is a number, and as su
h 
an of 
ourse be viewed as a degenerate

random variable. A
tually, it is also the 
onditional expe
tation relative to

the trivial �-�eld F

0

= f;;
g. More generally, we have that E(X j F

0

) = EX

if X and F

0

are independent. In this 
ase F

0

gives \no information" about

X and hen
e the expe
tation given F

0

is the \un
onditional" expe
tation.

To see this note that E(EX)1

F

= EXE1

F

= EX1

F

for every F su
h

that X and F are independent.

1.5 Example. At the other extreme we have that E(X j F

0

) = X if X itself

is F

0

-measurable. This is immediate from the de�nition. \Given F

0

we then

know X exa
tly."

1.6 Example. Let (X;Y ): 
! R � R

k

be measurable and possess a den-

sity f(x; y) relative to a �-�nite produ
t measure � � � on R � R

k

(for

instan
e, the Lebesgue measure on R

k+1

). Then it is 
ustomary to de�ne a


onditional density of X given Y = y by

f(xj y) =

f(x; y)

R

f(x; y) d�(x)

:

This is well-de�ned for every y for whi
h the denominator is positive, i.e.

for all y in a set of measure one under the distribution of Y .

We now have that the 
onditional expe
tion is given by the \usual

formula"

E(X jY ) =

Z

xf(xjY ) d�(x);

where we may de�ne the right hand zero as zero if the expression is not

well-de�ned.
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That this formula is the 
onditional expe
tation a

ording to the ab-

stra
t de�nition follows by a number of appli
ations of Fubini's theorem.

Note that, to begin with, it is a part of the statement of Fubini's theorem

that the fun
tion on the right is a measurable fun
tion of Y .

1.7 Example (Partitioned 
). If F

0

= �(F

1

; : : : ; F

k

) for a partition 
 =

[

k

i=1

F

i

, then

E(X j F

0

) =

k

X

i=1

E(X jF

i

)1

F

i

;

where E(X jF

i

) is de�ned as EX1

F

i

=P (F

i

) if P (F

i

) > 0 and arbitrary

otherwise. Thus the 
onditional expe
tation is 
onstant on every of the

partitioning sets F

i

(as it needs to be to be F

0

-measurable) and the 
onstant

values are equal to the average values of X over these sets.

The validity of (1.2) is easy to verify for F = F

j

and every j. And then

also for every F 2 F

0

by taking sums, sin
e every F 2 F

0

is a union of a

number of F

j

's.

This example extends to �-�elds generated by a 
ountable partition of


. In parti
ular, E(X jY ) is exa
tly what we would think it should be if Y

is a dis
rete random variable.

A di�erent perspe
tive on an expe
tation is to view it as a best predi
-

tion if \best" is de�ned through minimizing a se
ond moment. For instan
e,

the ordinary expe
tation EX minimizes � 7! E(X��)

2

over � 2 R. A 
on-

ditional expe
tation is a best predi
tion by an F

0

-measurable variable.

1.8 Lemma (L

2

-proje
tion). If EX

2

< 1, then E(X j F

0

) minimizes

E(X � Y )

2

over all F

0

-measurable random variables Y .

Proof. We �rst show that X

0

= E(X j F

0

) satis�es EX

0

Z = EXZ for every

F

0

-measurable Z with EZ

2

<1.

By linearity of the 
onditional expe
tation we have that EX

0

Z = EXZ

for every F

0

-simple variable Z. If Z is F

0

-measurable with EZ

2

< 1,

then there exists a sequen
e Z

n

of F

0

-simple variables with E(Z

n

�Z)

2

!

0. Then EX

0

Z

n

! EX

0

Z and similarly with X instead of X

0

and hen
e

EX

0

Z = EXZ.

Now we de
ompose, for arbitrary square-integrable Y ,

E(X � Y )

2

= E(X �X

0

)

2

+ 2E(X �X

0

)(X

0

� Y ) + E(X

0

� Y )

2

:

The middle term vanishes, be
ause Z = X

0

� Y is F

0

-measurable and

square-integrable. The third term on the right is 
learly minimal for X

0

=

Y .



4 1: Measure Theory

1.9 Lemma (Properties).

(i) EE(X j F

0

) = EX .

(ii) If Z is F

0

-measurable, then E(ZX j F

0

) = ZE(X j F

0

) a.s.. (Here require

that X 2 L

p

(
;F ; P ) and Z 2 L

q

(
;F ; P ) for 1 � p � 1 and p

�1

+

q

�1

= 1.)

(iii) (linearity) E(�X + �Y j F

0

) = �E(X j F

0

) + �E(Y j F

0

) a.s..

(iv) (positivity) If X � 0 a.s., then E(X j F

0

) � 0 a.s..

(v) (towering property) If F

0

� F

1

� F , then E

�

E(X j F

1

)j F

0

) = E(X j F

0

)

a.s..

(vi) (Jensen) If �:R ! R is 
onvex, then E(�(X)j F

0

) � �

�

E(X j F

0

)

�

a.s..

(Here require that �(X) is integrable.)

(vii) kE(X j F

0

)k

p

� kXk

p

(p � 1).

* 1.10 Lemma (Convergen
e theorems).

(i) If 0 � X

n

" X a.s., then 0 � E(X

n

j F

0

) " E(X j F

0

) a.s..

(ii) If X

n

� 0 a.s. for every n, then E(lim inf X

n

j F

0

) � lim inf E(X

n

j F

0

)

a.s..

(iii) If jX

n

j � Y for every n and and integrable variable Y , and X

n

as

!

X ,

then E(X

n

j F

0

)

as

!

E(X j F

0

) a.s..

The 
onditional expe
tation E(X jY ) given a random ve
tor Y is by

de�nition a �(Y )-measurable fun
tion. For most Y , this means that it is a

measurable fun
tion g(Y ) of Y . (See the following lemma.) The value g(y)

is often denoted by E(X jY = y).

Warning. Unless P (Y = y) > 0 it is not right to give a meaning to

E(X jY = y) for a �xed, single y, even though the interpretation as an

expe
tation given \that we know that Y = y" often makes this tempting.

We may only think of a 
onditional expe
tation as a fun
tion y 7! E(X jY =

y) and this is only determined up to null sets.

1.11 Lemma. Let fY

�

:� 2 Ag be random variables on 
 and let X be a

�(Y

�

:� 2 A)-measurable random variable.

(i) If A = f1; 2; : : : ; kg, then there exists a measurable map g:R

k

! R

su
h that X = g(Y

1

; : : : ; Y

k

).

(ii) If jAj = 1, then there exists a 
ountable subset f�

n

g

1

n=1

� A and a

measurable map g:R

1

! R su
h that X = g(Y

�

1

; Y

�

2

; : : :).

1.2 Uniform Integrability

In many 
ourses on measure theory the dominated 
onvergen
e theorem

is one of the best results. A
tually, domination is not the right 
on
ept,

uniform integrability is.
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1.12 De�nition. A 
olle
tion fX

�

:� 2 Ag of random variables is uni-

formly integrable if

lim

M!1

sup

�2A

EjX

�

j1

jX

�

j>M

= 0:

1.13 Example. A �nite 
olle
tion of integrable random variables is uni-

formly integrable.

This follows be
ause EjX j1

jXj>M

! 0 as M ! 1 for any integrable

variable X , by the dominated 
onvergen
e theorem.

1.14 Example. A dominated 
olle
tion of random variables is uniformly

integrable: if jX

�

j � Y and EY < 1, then fX

�

:� 2 Ag is uniformly

integrable.

To see this note that jX

�

j1

jX

�

j>M

� Y 1

Y >M

.

1.15 Example. If the 
olle
tion of random variables fX

�

:� 2 Ag is

bounded in L

2

, then it is is uniformly integrable.

This follows from the inequality EjX j1

jXj>M

� M

�1

EX

2

, whi
h is

valid for any random variable X .

Similarly, it suÆ
es for uniform integrability that sup

�

EjX

�

j

p

< 1

for some p > 1.

1.16 EXERCISE. Show that a uniformly integrable 
olle
tion of random

variables is bounded in L

1

(
;F ; P ).

1.17 EXERCISE. Show that any 
onverging sequen
e X

n

in L

1

(
;F ; P )

is uniformly integrable.

1.18 Theorem. Suppose that fX

n

:n 2 Ng � L

1

(
;F ; P ). Then EjX

n

�

X j ! 0 for some X 2 L

1

(
;F ; P ) if and only if X

n

P

!

X and fX

n

:n 2 Ng

is uniformly integrable.

Proof. We only give the proof of \if". (The main part of the proof in the

other dire
tion is the pre
eding exer
ise.)

If X

n

P

!

X , then there is a subsequen
e X

n

j

that 
onverges almost

surely to X . By Fatou's lemma EjX j � lim inf EjX

n

j

j. If X

n

is uniformly

integrable, then the right side is �nite and hen
e X 2 L

1

(
;F ; P ).

For any random variables X and Y and positive numbers M and N ,

(1:19)

EjX j1

jY j>M

� EjX j1

jXj>N

1

jY j>M

+NP

�

jY j > M

�

� EjX j1

jXj>N

+

N

M

EjY j1

jY j>M

:

Applying this with M = N and (X;Y ) equal to the four pairs that 
an be

formed of X

n

and X we �nd, for any M > 0,

EjX

n

�X j(1

jX

n

j>M

+ 1

jXj>M

) � 2EjX

n

j1

jX

n

j>M

+ 2EjX j1

jXj>M

:
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We 
an make this arbitrarily small by making M suÆ
iently large. Next,

for any " > 0,

EjX

n

�X j1

jX

n

j�M;jXj�M

� "+ 2MP

�

jX

n

�X j > "

�

:

As n ! 1 the se
ond term on the right 
onverges to zero for every �xed

" > 0 and M .

1.20 EXERCISE. If fjX

n

j

p

:n 2 Ng is uniformly integrable (p � 1) and

X

n

P

!

X , then EjX

n

�X j

p

! 0. Show this.

1.21 Lemma. If X 2 L

1

(
;F ; P ), then the 
olle
tion of all 
onditional ex-

pe
tations E(X j F

0

) with F

0

ranging over all sub �-�elds of F is uniformly

integrable.

Proof. By Jensen's inequality jE(X j F

0

)j � E(jX j j F

0

) almost surely. It

therefore suÆ
es to show that the 
onditional expe
tations E(jX j j F

0

) are

uniformly integrable. For simpli
ity of notation suppose that X � 0.

With X

0

= E(X j F

0

) and arguing as in (1.19) we see that

EX

0

1

X

0

>M

= EX1

X

0

>M

� EX1

X>N

+

N

M

EX

0

:

We 
an make the right side arbitrarily small by �rst 
hoosing N and next

M suÆ
iently large.

We 
on
lude with a lemma that is sometimes useful.

1.22 Lemma. Suppose that X

n

and X are random variables su
h that

X

n

P

!

X and lim supEjX

n

j

p

� EjX j

p

<1 for some p � 1. Then fX

n

:n 2

Ng is uniformly integrable and EjX

n

�X j

p

! 0.

1.3 Monotone Class Theorem

Many arguments in measure theory are 
arried out �rst for simple types

of fun
tions and then extended to general fun
tions by taking limits. A

monotone 
lass theorem is meant to 
odify this pro
edure. This purpose of

standardizing proofs is only partly su

essful, as there are many monotone


lass theorems in the literature, ea
h tailored to a parti
ular purpose. The

following theorem will be of use to us.

We say that a 
lass H of fun
tions h: 
! R is 
losed under monotone

limits if for ea
h sequen
e fh

n

g � H su
h that 0 � h

n

" h for some

fun
tion h, the limit h is 
ontained in H. We say that it is 
losed under

bounded monotone limits if this is true for every su
h sequen
e h

n

with a

(uniformly) bounded limit. A 
lass of sets is interse
tion-stable if it 
ontains

the interse
tion of every pair of its elements (i.e. is a �-system).
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1.23 Theorem. Let H be a ve
tor spa
e of fun
tions h: 
! R on a mea-

surable spa
e (
;F) that 
ontains the 
onstant fun
tions and the indi
a-

tor of every set in a 
olle
tion F

0

� F , and is 
losed under (bounded)

monotone limits. If F

0

is interse
tion-stable, then H 
ontains all (bounded)

�(F

0

)-measurable fun
tions.

Proof. See e.g. Williams, A3.1 on p205.
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Dis
rete Time Martingales

A sto
hasti
 pro
ess X in dis
rete time is a sequen
e X

0

; X

1

; X

2

; : : : of

random variables de�ned on some 
ommon probability spa
e (
;F ; P ).

The index n of X

n

is referred to as \time" and a map n 7! X

n

(!), for

a �xed ! 2 
, is a sample path. (Later we repla
e n by a 
ontinuous

parameter t 2 [0;1) and use the same terminology.) Usually the dis
rete

time set is Z

+

= N [ f0g. Sometimes we delete 0 or add 1 to get N or

�

Z

+

= N [ f0;1g, and or delete a 
orresponding random variable X

1

or

X

0

to form the sto
hasti
 pro
ess.

2.1 Martingales

A �ltration fF

n

g (in dis
rete time) on a given probability spa
e (
;F ; P )

is a nested sequen
e of �-�elds

F

0

� F

1

� � � � � F :

The �-�eld F

n

is interpreted as the events F of whi
h it is known at \time" n

whether F has o

urred or not. A sto
hasti
 pro
ess X is said to be adapted

if X

n

is F

n

-measurable for every n � 0. The quadruple (
;F ; fF

n

g; P ) is


alled a \�ltered probability spa
e" or \sto
hasti
 basis".

A typi
al example of a �ltration is the natural �ltration generated by

a sto
hasti
 pro
ess X , de�ned as

F

n

= �(X

0

; X

1

; : : : ; X

n

):

Then F 2 F

n

if and only if F = f(X

0

; : : : ; X

n

) 2 Bg for some Borel set B.

On
e X

0

; : : : ; X

n

are realized we know whether F has o

urred or not. The

natural �ltration is the smallest �ltration to whi
h X is adapted.
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2.1 De�nition. An adapted, integrable sto
hasti
 pro
ess X on the �l-

tered spa
e (
;F ; fF

n

g; P ) is a

(i) martingale if E(X

n

j F

m

) = X

m

a.s. for all m � n.

(ii) submartingale if E(X

n

j F

m

) � X

m

a.s. for all m � n.

(ii) supermartingale if E(X

n

j F

m

) � X

m

a.s. for all m � n.

A di�erent way of writing the martingale property is

E(X

n

�X

m

j F

m

) = 0; m � n:

Thus given all information at time m the expe
ted in
rement X

n

�X

m

in

the future time interval (m;n℄ is zero, for every initial time m. This shows

that a martingale X

n


an be interpreted as the total gain up to time n in a

fair game: at every time m we expe
t to make a zero gain in the future (but

may have gained in the past and we expe
t to keep this). In parti
ular, the

expe
tation EX

n

of a martingale is 
onstant in n.

Submartingales and supermartingales 
an be interpreted similarly as

total gains in favourable and unfavourable games. If you are not able to re-

member whi
h inequalities 
orrespond to \sub" and \super", that is prob-

ably normal. It helps a bit to try and remember that a submartingale is

in
reasing in mean: EX

m

� EX

n

if m � n.

2.2 EXERCISE. If E(X

n+1

j F

n

) = X

n

for every n � 0, then automati
ally

E(X

n

j F

m

) = X

m

for every m � n and hen
e X is a martingale. Similarly

for sub/super. Show this.

2.3 Example. Let Y

1

; Y

2

; : : : be a sequen
e of independent random vari-

ables with mean zero. Then the sequen
e of partial sums X

n

= Y

1

+ � � �+Y

n

is a martingale relative to the �ltration F

n

= �(Y

1

; : : : ; Y

n

). Set X

0

= 0.

This follows upon noting that for m � n the in
rement X

n

� X

m

=

P

m<i�n

Y

i

is independent of F

m

and hen
e E(X

n

� X

m

j F

m

) = E(X

n

�

X

m

) = 0.

2.4 EXERCISE. In the pre
eding example show that �(Y

1

; : : : ; Y

n

) =

�(X

1

; : : : ; X

n

).

2.5 EXERCISE. If fN(t): t � 0g is a standard Poisson pro
ess and 0 �

t

0

< t

1

< � � � is a �xed sequen
e of numbers, then X

n

= N(t

n

) � t

n

is a

martingale relative to the �ltration F

n

= �(N(t): t � t

n

). Show this, using

the fa
t that the Poisson pro
ess has independent in
rements.

2.6 Example. Let � be a �xed, integrable random variable and F

n

an

arbitrary �ltration. Then X

n

= E(�j F

n

) is a martingale.

This is an immediate 
onsequen
e of the towering property of 
on-

ditional expe
tations, whi
h gives that E(X

n

j F

m

) = E

�

E(�j F

n

)j F

m

�

=

E(�j F

m

) for every m � n.
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By Theorem 1.18 this martingale X is uniformly integrable. Later we

shall see that any uniformly integrable martingale takes this form. More-

over, we 
an 
hoose � su
h that X

n

as

!

� as n!1.

It is part of the de�nition of a martingale X that every of the random

variables X

n

is integrable. If sup

n

EjX

n

j <1, then we 
all the martingale

L

1

-bounded. If EjX

n

j

p

< 1 for ally n and some p, then we 
all X an

L

p

-martingale and if sup

n

EjX

n

j

p

<1, then we 
all X L

p

-bounded.

Warning. Some authors use the phrase \L

p

-martingale" for a martin-

gale that is bounded in L

p

(
;F ; P ). To avoid this 
onfusion, it is perhaps

better to use the more 
omplete phrases \martingale in L

p

" and \martin-

gale that is bounded in L

p

".

2.7 Lemma. If �:R ! R is 
onvex and X a martingale, then f�(X

n

)g

is a submartingale relative to the same �ltration, provided that �(X

n

) is

integrable for every n.

Proof. Be
ause a 
onvex fun
tion is automati
ally measurable, the variable

�(X

n

) is adapted for every n. By Jensen's inequality E

�

�(X

n

)j F

m

�

�

�

�

E(X

n

j F

m

)

�

almost surely. The right side is �(X

m

) almost surely if m �

n, by the martingale property.

2.8 EXERCISE. If �:R ! R is 
onvex and nonde
reasing and X is a sub-

martingale, then f�(X

n

)g is a submartingale relative to the same �ltration,

provided that �(X

n

) is integrable for every n. Show this.

2.2 Stopped Martingales

If X

n

is interpreted as the total gain at time n, then a natural question is if

we 
an maximize pro�t by quitting the game at a suitable time. If X

n

is a

martingale with EX

0

= 0 and we quit at a �xed time T , then our expe
ted

pro�t is EX

T

= EX

0

= 0 and hen
e quitting the game does not help.

However, this does not ex
lude the possibility that stopping at a random

time might help. This is the gambler's dream.

If we 
ould let our 
hoi
e to stop depend on the future, then it is easy

to win. For instan
e, if we were allowed to stop just before we in
urred a

big loss. This we prohibit by 
onsidering only \stopping times" as in the

following de�nition.

2.9 De�nition. A random variable T : 
 !

�

Z

+

on (
;F ; fF

n

g; P ) is a

stopping time if fT � ng 2 F

n

for every n � 0.

Warning. A stopping time is permitted to take the value 1.
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2.10 EXERCISE. Let X be an adapted sto
hasti
 pro
ess and let B � R

be measurable. Show that T = inffn:X

n

2 Bg de�nes a stopping time.

(Set inf ; =1.)

2.11 EXERCISE. Show that T is a stopping time if and only if fT = ng 2

F

n

for all n 2 N [ f0g.

The restri
tion to stopping times is natural. If we are to stop playing

at time T , then for every time n = 0; 1; 2 : : : we must know if T = n at time

n. If the �ltration is generated by the pro
ess X , then the event fT = ng

must, for every n, depend on the history X

0

; : : : ; X

n

of the pro
ess up to

time n only, if T is a stopping time. So we are allowed to base our de
ision

to stop on the past history of gains or losses, but not on future times.

The question now is if we 
an �nd a stopping time T su
h that EX

T

>

0. We shall see that this is usually not the 
ase. Here the random variable

X

T

is de�ned as

(2:12) (X

T

)(!) = X

T (!)

(!):

If T 
an take the value 1, this requires that X

1

is de�ned.

A �rst step towards answering this question is to note that the stopped

pro
ess X

T

de�ned by

(X

T

)

n

(!) = X

T (!)^n

(!);

is a martingale whenever X is one.

2.13 Theorem. If T is a stopping time and X is a martingale, then X

T

is a martingale.

Proof. We 
an write (with an empty sum denoting zero)

X

T

n

= X

0

+

n

X

i=1

1

i�T

(X

i

�X

i�1

):

Hen
e X

T

n+1

�X

T

n

= 1

n+1�T

(X

n+1

�X

n

). The variable 1

n+1�T

= 1�1

T�n

is F

n

-measurable. Taking the 
onditional expe
tation relative to F

n

we �nd

that

E(X

T

n+1

�X

T

n

j F

n

) = 1

n+1�T

E(X

n+1

�X

n

j F

n

) = 0; a:s:

be
ause X is a martingale. (To be 
omplete, also note that jX

T

n

j �

max

1�i�n

jX

i

j is integrable for every �xed n and verify thatX

T

is a sto
has-

ti
 pro
ess.)
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2.14 EXERCISE. Show that the sub- and supermartingale properties are

also retained under stopping.

If the stopped pro
ess X

T

is a martingale, then EX

T

n

= EX

T^n

is


onstant in n. If T is bounded and EX

0

= 0, we 
an immediately 
on
lude

that EX

T

= 0 and hen
e stopping does not help. For general T we would

like to take the limit as n!1 in the relation EX

T^n

= 0 and obtain the

same 
on
lusion that EX

T

= 0. Here we must be 
areful. If T < 1 we

always have that X

T^n

as

!

X

T

as n ! 1, but we need some integrability

to be able to 
on
lude that the expe
tations 
onverge as well. Domination

of X suÆ
es. Later we shall see that uniform integrability is also suÆ
ient,

and then we 
an also allow the stopping time T to take the value 1 (after

de�ning X

1

appropriately).

2.15 EXERCISE. Suppose that X is a martingale with uniformly bounded

in
rements: jX

n+1

�X

n

j �M for every n and some 
onstantM . Show that

EX

T

= 0 for every stopping time T with ET <1.

2.3 Martingale Transforms

Another way to try and beat the system would be to 
hange stakes. If

X

n

�X

n�1

is the standard pay-o� at time n, we 
ould devise a new game

in whi
h our pay-o� is C

n

(X

n

� X

n�1

) at time n. Then our total 
apital

at time n is

(2:16) (C �X)

n

: =

n

X

i=1

C

i

(X

i

�X

i�1

); Y

0

= 0:

If C

n

were allowed to depend on X

n

�X

n�1

, then it would be easy to make

a pro�t. We ex
lude this by requiring that C

n

may depend on knowledge

of the past only.

2.17 De�nition. A sto
hasti
 pro
ess C on (
;F ; fF

n

g; P ) is predi
table

if C

n

is F

n�1

measurable for every n � 1.

The pro
ess C � X in (2.16) is 
alled a martingale transform of X (if

X is a martingale). It is the dis
rete time version of the sto
hasti
 integral

that we shall be 
on
erned with later. Again we 
annot beat the system:

the martingale transform is a martingale.
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2.18 Theorem. Suppose that C

n

2 L

p

(
;F ; P ) and X

n

2 L

q

(
;F ; P ) for

all n and some p

�1

+ q

�1

= 1.

(i) If C is predi
table and X a martingale, then C �X is a martingale.

(ii) If C is predi
table and nonnegative and X is a supermartingale, then

C �X is a supermartingale.

Proof. If Y = C � X , then Y

n+1

� Y

n

= C

n

(X

n+1

� X

n

). Be
ause C

n

is

F

n

-measurable, E(Y

n+1

� Y

n

j F

n

) = C

n

E(X

n+1

� X

n

j F

n

) almost surely.

Both (i) and (ii) are now immediate.

2.4 Doob's Up
rossing Inequality

Let a < b be given numbers. The number of up
rossings of the interval [a; b℄

by the pro
ess X in the time interval f0; 1; : : : ; ng is de�ned as the largest

integer k for whi
h we 
an �nd

0 � s

1

< t

1

< s

2

< t

2

< � � � < s

k

< t

k

� n;

with

X

s

i

< a; X

t

i

> b; i = 1; 2; : : : ; k:

The number of up
rossings is denoted by U

n

[a; b℄. The de�nition is meant to

be \!"-wise and hen
e U

n

[a; b℄ is a fun
tion on 
. Be
ause the des
ription

involves only �nitely many steps, U

n

[a; b℄ is a random variable.

A high number of up
rossings of [a; b℄ indi
ates that X is \variable"

around the level [a; b℄. The up
rossing numbers U

n

[a; b℄ are therefore an

important tool to study 
onvergen
e properties of pro
esses. For super-

martingales Doob's lemma gives a surprisingly simple bound on the size of

the up
rossings, just in terms of the last variable.

2.19 Lemma. If X is a supermartingale, then

(b� a)EU

n

[a; b℄ � E(X

n

� a)

�

:

Proof. We de�ne a pro
ess C

1

; C

2

; : : : taking values \0" and \1" only as

follows. If X

0

� a, then C

n

= 0 until and in
luding the �rst time n that

X

n

< a, then C

n

= 1 until and in
luding the �rst time that X

n

> b, next

C

n

= 0 until and in
luding the �rst time that X

n

< a, et
etera. If X

0

< a,

then C

n

= 1 until and in
luding the �rst time that X

n

> b, then C

n

= 0

et
etera. Thus the pro
ess is swit
hed \on" and \o�" ea
h time the pro
ess

X 
rosses the levels a or b. It is \on" during ea
h 
rossing of the interval

[a; b℄.
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We 
laim that

(2:20) (b� a)U

n

[a; b℄ � (C �X)

n

+ (X

n

� a)

�

;

where C � X is the martingale transform of the pre
eding se
tion. To see

this note that (C � X)

n

is the sum of all in
rements X

i

� X

i�1

for whi
h

C

i

= 1. A given realization of the pro
ess C is a sequen
e of n zeros and

ones. Every 
onse
utive series of ones (a \run") 
orresponds to a 
rossing

of [a; b℄ by X , ex
ept possibly the �nal run (if this ends at position n). The

�nal run (as every run) starts when X is below a and ends at X

n

, whi
h


ould be anywhere. Thus the �nal run 
ontributes positively to (C �X)

n

if

X

n

> a and 
an 
ontribute negatively only if X

n

< a. In the last 
ase it


an 
ontribute in absolute value never more than jX

n

� aj. Thus if we add

(X

n

� a)

�

to (C �X)

n

, then we obtain at least the sum of the in
rements

over all 
ompleted 
rossings.

It follows from the des
ription, that C

n

depends on C

1

; : : : ; C

n�1

and

X

n�1

only. Hen
e, by indu
tion, the pro
ess C is predi
table. By The-

orem 2.18 the martingale transform C � X is a supermartingale and has

nonin
reasing mean E(C � X)

n

� E(C � X)

0

= 0. Taking means a
ross

(2.20) 
on
ludes the proof.

2.5 Martingale Convergen
e

In this se
tion we give 
onditions under whi
h a (sub/super) martingale


onverges to a limit X

1

, almost surely or in pth mean. Furthermore, we in-

vestigate if we 
an addX

1

to the end of the sequen
eX

0

; X

1

; : : : and obtain

a (sub/super) martingale X

0

; X

1

; : : : ; X

1

(with the de�nition extended to

in
lude the time 1 in the obvious way).

2.21 Theorem. If X

n

is a (sub/super) martingale with sup

n

EjX

n

j <1,

then there exists an integrable random variable X

1

with X

n

! X

1

almost

surely.

Proof. If we 
an show that X

n


onverges almost surely to a limit X

1

in

[�1;1℄, then X

1

is automati
ally integrable, be
ause by Fatou's lemma

EjX

1

j � lim inf EjX

n

j <1.

We 
an assume without loss of generality that X

n

is a supermartingale.

For a �xed pair of numbers a < b, let

F

a;b

=

n

! 2 
: lim inf

n!1

X

n

(!) < a � b < lim sup

n!1

X

n

(!)

o

:

If lim

n!1

X

n

(!) does not exist in [�1;1℄, then we 
an �nd a < b su
h

that ! 2 F

a;b

. Be
ause the rational numbers are dense in R, we 
an even �nd
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su
h a < b among the rational numbers. The theorem is proved if we 
an

show that P (F

a;b

) = 0 for every of the 
ountably many pairs (a; b) 2 Q

2

.

Fix a < b and let U

n

[a; b℄ be the number of up
rossings of [a; b℄ on

f0; : : : ; ng by X . If ! 2 F

a;b

, then U

n

[a; b℄ " 1 as n ! 1 and hen
e by

monotone 
onvergen
e EU

n

[a; b℄ " 1 if P (F

a;b

) > 0. However, by Doob's

up
rossing's inequality

(b� a)EU

n

[a; b℄ � E(X

n

� a)

�

� EjX

n

� aj � sup

n

EjX

n

j+ jaj:

The right side is �nite by assumption and hen
e the left side 
annot in
rease

to 1. We 
on
lude that P (F

a;b

) = 0.

2.22 EXERCISE. Let X

n

be a nonnegative supermartingale. Show that

sup

n

EjX

n

j <1 and hen
e X

n


onverges almost surely to some limit.

If we de�ne X

1

as limX

n

if this limit exists and as 0 otherwise, then,

if X is adapted, X

1

is measurable relative to the �-�eld

F

1

= �(F

1

;F

2

; : : :):

Then the sto
hasti
 pro
ess X

0

; X

1

; : : : ; X

1

is adapted to the �ltration

F

0

;F

1

; : : : ;F

1

. We may ask whether the martingale property E(X

n

j F

m

) =

X

m

(for n � m) extends to the 
ase n =1. The martingale is then 
alled


losed. From Example 2.6 we know that the martingale X

m

= E(X

1

j F

m

)

is uniformly integrable. This 
ondition is also suÆ
ient.

2.23 Theorem. If X is a uniformly integrable (sub/super) martingale,

then there exists a random variable X

1

su
h that X

n

! X

1

almost surely

and in L

1

. Moreoever,

(i) If X is a martingale, then X

n

= E(X

1

j F

n

) almost surely for every

n � 0.

(ii) If X is a submartingale, then X

n

� E(X

1

j F

n

) almost surely for every

n � 0.

Proof. The �rst assertion is a 
orollary of the pre
eding theorem and the

fa
t that a uniformly integrable sequen
e of random variables that 
onverges

almost surely 
onverges in L

1

as well.

Statement (i) follows by taking the L

1

-limit as n!1 in the equality

X

m

= E(X

n

j F

m

), where we use that kE(X

n

j F

m

)�E(X

1

j F

m

)k

1

� kX

n

�

X

1

k

1

! 0, so that the right side 
onverges to E(X

1

j F

m

).

Statement (ii) follows similarly (where we must note that L

1

-


onvergen
e retains ordering almost surely), or by the following argument.

By the submartingale property, for every m � n, EX

m

1

F

� EX

n

1

F

. By

uniformly integrability of the pro
ess X1

F

we 
an take the limit as n!1

in this and obtain that EX

m

1

F

� EE(X

n

j F

m

)1

F

= EX

1

1

F

for every

F 2 F

m

. The right side equals EX

0

m

1

F

for X

0

m

= E(X

1

j F

m

) and hen
e
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E(X

m

� X

0

m

)1

F

� 0 for every F 2 F

m

. This implies that X

m

�X

0

m

� 0

almost surely.

2.24 Corollary. If � is an integrable random variable and X

n

= E(�j F

n

)

for a �ltration fF

n

g, then X

n

! E(�j F

1

) almost surely and in L

1

.

Proof. Be
ause X is a uniformly integrable martingale, the pre
eding

theorem gives that X

n

! X

1

almost surely and in L

1

for some inte-

grable random variable X

1

, and X

n

= E(X

1

j F

n

) for every n. The vari-

able X

1


an be 
hosen F

1

measurable (a matter of null sets). It follows

that E(�j F

n

) = X

n

= E(X

1

j F

n

) almost surely for every n and hen
e

E�1

F

= EX

1

1

F

for every F 2 [

n

F

n

. But the set of F for whi
h this holds

is a �-�eld and hen
e E�1

F

= EX

1

1

F

for every F 2 F

1

. This shows that

X

1

= E(�j F

1

).

The pre
eding theorem applies in parti
ular to L

p

-bounded martin-

gales (for p > 1). But then more is true.

2.25 Theorem. If X is an L

p

-bounded martingale (p > 1), then there

exists a random variable X

1

su
h that X

n

! X

1

almost surely and in L

p

.

Proof. By the pre
eding theorem X

n

! X

1

almost surely and in L

1

and

moreover E(X

1

j F

n

) = X

n

almost surely for every n. By Jensen's inequality

jX

n

j

p

=

�

�

E(X

1

j F

n

)

�

�

p

� E

�

jX

1

j

p

j F

n

�

and hen
e EjX

n

j

p

� EjX

1

j

p

for

every n. The theorem follows from Lemma 1.22.

2.26 EXERCISE. Show that the theorem remains true if X is a nonnega-

tive submartingale.

Warning. A sto
hasti
 pro
ess that is bounded in L

p

and 
onverges

almost surely to a limit does not ne
essarily 
onverge in L

p

. For this jX j

p

must be uniformly integrable. The pre
eding theorem makes essential use

of the martingale property of X . Also see Se
tion 2.9.

2.6 Reverse Martingale Convergen
e

Thus far we have 
onsidered �ltrations that are in
reasing. In this se
tion,

and in this se
tion only, we 
onsider a reverse �ltration

F � F

0

� F

1

� � � � � F

1

= \

n

F

n

:
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2.27 De�nition. An adapted, integrable sto
hasti
 pro
ess X on the re-

verse �ltered spa
e (
;F ; fF

n

g; P ) is a

(i) reverse martingale if E(X

m

j F

n

) = X

n

a.s. for all m � n.

(ii) reverse submartingale if E(X

m

j F

n

) � X

n

a.s. for all m � n.

(ii) reverse supermartingale if E(X

m

j F

n

) � X

n

a.s. for all m � n.

It is more insightful to say that a reverse (sub/super) martingale is

a pro
ess X = (X

0

; X

1

; : : :) su
h that the sequen
e : : : ; X

2

; X

1

; X

0

is a

(sub/super) martingale as de�ned before, relative to the �ltration � � � �

F

2

� F

1

� F

0

. In deviation from the de�nition of (sub/super) martingales,

the time index : : : ; 2; 1; 0 then runs against the natural order and there is

a \�nal time" 0. Thus the (sub/super) martingales obtained by reversing

a reverse (sub/super) martingale are automati
ally 
losed (by the \�nal

element" X

0

).

2.28 Example. If � is an integrable random variable and fF

n

g an arbitrary

reverse �ltration, then X

n

= E(�j F

n

) de�nes a reverse martingale. We 
an

in
lude n =1 in this de�nition.

Be
ause every reverse martingale satis�es X

n

= E(X

0

j F

n

), this is

a
tually the only type of reverse martingale.

2.29 Example. If fN(t): t > 0g is a standard Poisson pro
ess, and t

1

>

t

2

> � � � � 0 a de
reasing sequen
e of numbers, then X

n

= N(t

n

)� t

n

is a

reverse martingale relative to the reverse �ltration F

n

= �(N(t): t � t

n

).

The veri�
ation of this is exa
tly the same as the for the 
orresponding

martingale property of this pro
ess for an in
reasing sequen
e of times.

That a reverse martingale be
omes an ordinary martingale if we turn

it around may be true, but it is not very helpful for the 
onvergen
e results

that we are interested in. The results on (sub/super) martingales do not

imply those for reverse (sub/super) martingales, be
ause the \in�niteness"

is on the other end of the sequen
e. Fortunately, the same te
hniques apply.

2.30 Theorem. If X is a uniformly integrable reverse (sub/super) martin-

gale, then there exists a random variable X

1

su
h that X

n

! X

1

almost

surely and in mean as n!1. Moreover,

(i) If X is a reverse martingale, then E(X

m

j F

1

) = X

1

a.s. for every m.

(ii) If X is a reverse submartingale, then E(X

m

j F

1

) � X

1

a.s. for every

m.

Proof. Doob's up
rossings inequality is appli
able to bound the number of

up
rossings of X

0

; : : : ; X

n

, be
ause X

n

; X

n�1

; : : : ; X

0

is a super martingale

if X is a reverse supermartingale. Thus we 
an mimi
 the proof of Theo-

rem 2.21 to prove the existen
e of an almost sure limit X

1

. By uniform

integrability this is then also a limit in L

1

.



18 2: Dis
rete Time Martingales

The submartingale property implies that EX

m

1

F

� EX

n

1

F

for every

F 2 F

n

and n � m. In parti
ular, this is true for every F 2 F

1

. Upon

taking the limit as n ! 1, we see that EX

m

1

F

� EX

1

1

F

for every

F 2 F

1

. This proves the relationship in (ii). The proof of (i) is easier.

2.31 EXERCISE. Let fF

n

g be a reverse �ltration and � integrable. Show

that E(�j F

n

) ! E(�j F

1

) in L

1

and in mean for F

1

= \

n

F

n

. What if

X

1

; X

2

; : : : are i.i.d.?

* 2.32 Example (Strong law of large numbers). A sto
hasti
 pro
ess

X = (X

1

; X

2

; : : :) is 
alled ex
hangeable if for every n the distribution

of (X

�(1)

; : : : ; X

�(n)

) is the same for every permutation (�(1); : : : ; �(n))

of (1; : : : ; n). If EjX

1

j < 1, then the sequen
e of averages

�

X

n


onverges

almost surely and in mean to a limit (whi
h may be sto
hasti
).

To prove this 
onsider the reverse �ltration F

n

= �(X

n

; X

n+1

; : : :).

The �-�eld F

n

\depends" on X

1

; : : : ; X

n

only through X

1

+ � � �+X

n

and

hen
e by symmetry and ex
hangeability E(X

i

j F

n

) is the same for i =

1; : : : ; n. Then

X

n

= E(X

n

j F

n

) =

1

n

n

X

i=1

E(X

i

j F

n

) = E(X

1

j F

n

); a:s::

The right side 
onverges almost surely and in mean by the pre
eding theo-

rem.

2.33 EXERCISE. Identify the limit in the pre
eding example as E(X

1

j F

1

)

for F

1

= \

n

F

n

.

Be
ause, by de�nition, a reverse martingale satis�esX

n

= E(X

0

j F

n

), a

reverse martingale is automati
ally uniformly integrable. Consequently the

pre
eding theorem applies to any reverse martingale. A reverse (sub/super)

martingale is uniformly integrable as soon as it is bounded in L

1

. In fa
t,

it suÆ
es to verify that EX

n

is bounded below/above.

2.34 Lemma. A reverse supermartingale X is uniformly integrable if and

only if EX

n

is bounded above (in whi
h 
ase it in
reases to a �nite limit as

n!1).

Proof. The expe
tations EX

n

of any uniformly integrable pro
ess X are

bounded. The \if" part is the nontrivial part of the lemma. Suppose that

X is a reverse supermartingale.

The sequen
e of expe
tations EX

n

is nonde
reasing in n by the reverse

supermartingale property. Be
ause it is bounded above it 
onverges to a

�nite limit. Furthermore, X

n

� E(X

0

j F

n

) for every n and hen
e X

�

is

uniformly integrable, sin
e E(X

0

j F

n

) is. It suÆ
es to show that X

+

is
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uniformly integrable, or equivalently that EX

n

1

X

n

>M

! 0 as M ! 1,

uniformly in n.

By the supermartingale property and be
ause fX

n

� Mg 2 F

n

, for

every M;N > 0 and every m � n,

EX

n

1

X

n

>M

= EX

n

� EX

n

1

X

n

�M

� EX

n

� EX

m

1

X

n

�M

= EX

n

� EX

m

+EX

m

1

X

n

>M

� EX

n

� EX

m

+EX

+

m

1

X

m

>N

+

N

M

EX

+

n

:

We 
an make the right side arbitrarily small, uniformly in n � m, by �rst


hoosing m suÆ
iently large (so that EX

n

�EX

m

is small), next 
hoosing

N suÆ
iently large and �nally 
hoosing M large. For the given m we 
an

in
rease M , if ne
essary, to ensure that EX

n

1

X

n

>M

is also small for every

0 � n � m.

* 2.7 Doob De
omposition

If a martingale is a model for a fair game, then non-martingale pro
esses

should 
orrespond to unfair games. This 
an be made pre
ise by the Doob

de
omposition of an adapted pro
ess as a sum of a martingale and a pre-

di
table pro
ess. The Doob de
omposition is the dis
rete time version of

the 
elebrated (and mu
h more 
ompli
ated) Doob-Meyer de
omposition

of a \semi-martingale" in 
ontinuous time. We need it here to extend some

results on martingales to (sub/super) martingales.

2.35 Theorem. For any adapted pro
ess X there exists a martingale M

and a predi
table pro
ess A, unique up to null sets, both 0 at 0, su
h that

X

n

= X

0

+M

n

+A

n

, for every n � 0,

Proof. If we set A

0

= 0 and A

n

�A

n�1

= E(X

n

�X

n�1

j F

n�1

), then A is

predi
table. In order to satisfy the equation, we must set

M

0

= 0; M

n

�M

n�1

= X

n

�X

n�1

� E(X

n

�X

n�1

j F

n�1

):

This 
learly de�nes a martingale M .

Conversely, if the de
omposition holds as stated, then E(X

n

�

X

n�1

j F

n�1

) = E(A

n

�A

n�1

j F

n�1

), be
ause M is a martingale. The right

side is equal to A

n

�A

n�1

be
ause A is predi
table.

If X

n

� X

n�1

= (M

n

�M

n�1

) + (A

n

� A

n�1

) were our gain in the

nth game, then our strategy 
ould be to play if A

n

� A

n�1

> 0 and not
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to play if this is negative. Be
ause A is predi
table, we \know" this before

time n and hen
e this would be a valid strategy. The martingale part M


orresponds to a fair game and would give us expe
ted gain zero. Relative

to the predi
table part we would avoid all losses and make all gains. Thus

our expe
ted pro�t would 
ertainly be positive. We 
on
lude that only

martingales 
orrespond to fair games.

From the fa
t that A

n

� A

n�1

= E(X

n

�X

n�1

j F

n�1

) it is 
lear that

(sub/super) martingales X 
orrespond pre
isely to the 
ases that the sam-

ple paths of A are in
reasing or de
reasing.

2.8 Optional Stopping

Let T be a stopping time relative to the �ltration F

n

. Just as F

n

are the

events \known at time n", we like to introdu
e a �-�eld F

T

of \events

known at time T". This is to be an ordinary �-�eld. Plugging T into F

n

would not do, as this would give something random.

2.36 De�nition. The �-�eld F

T

is de�ned as the 
olle
tion of all F � 


su
h that F \ fT � ng 2 F

n

for all n 2

�

Z

+

. (This in
ludes n = 1, where

F

1

= �(F

0

;F

1

; : : :).)

2.37 EXERCISE. Show that F

T

is indeed a �-�eld.

2.38 EXERCISE. Show that F

T


an be equivalently des
ribed as the 
ol-

le
tion of all F � 
 su
h that F \ fT = ng 2 F

n

for all n 2

�

Z

+

.

2.39 EXERCISE. Show that F

T

= F

n

if T � n.

2.40 EXERCISE. Show that X

T

is F

T

-measurable if fX

n

:n 2

�

Z

+

g is

adapted.

2.41 Lemma. Let S and T be stopping times. Then

(i) if S � T , then F

S

� F

T

.

(ii) F

S

\ F

T

= F

S^T

.

Proof. (i). If S � T , then F \ fT � ng =

�

F \ fS � ng

�

\ fT � ng. If

F 2 F

S

, then F \fS � ng 2 F

n

and hen
e, be
ause always fT � ng 2 F

n

,

the right side is in F

n

. Thus F 2 F

T

.

(ii). By (i) we have F

S^T

� F

S

\F

T

. Conversely, if F 2 F

S

\F

T

, then

F \ fS ^ T � ng = (F \ fS � ng) [ (F \ fT � ng) 2 F

n

for every n and

hen
e F 2 F

S^T

.



2.8: Optional Stopping 21

If the (sub/super) martingale X is uniformly integrable, then there

exists an integrable random variable X

1

su
h that X

n

! X

1

almost

surely and in mean, by Theorem 2.23. Then we 
an de�ne X

T

as in (2.12),

also if T assumes the value1. The optional stopping theorem shows that in

this 
ase we may repla
e the �xed times m � n in the de�ning martingale

relationship E(X

n

j F

m

) = X

m

by stopping times S � T .

2.42 Theorem. If X is a uniformly integrable supermartingale, then X

T

is integrable for any stopping time T . Furthermore,

(i) If T is a stopping time, then E(X

1

j F

T

) � X

T

a.s..

(ii) If S � T are stopping times, then E(X

T

j F

S

) � X

S

a.s..

Proof. First we note that X

T

is F

T

-measurable (see Exer
ise 2.40). For (i)

we wish to prove that EX

1

1

F

� EX

T

1

F

for all F 2 F

T

. Now

EX

1

1

F

= E

1+

X

n=0

X

1

1

F

1

T=n

=

1+

X

n=0

EX

1

1

F

1

T=n

;

by the dominated 
onvergen
e theorem. (The \+" in the upper limit 1+

of the sums indi
ates that the sums also in
lude a term n = 1.) Be
ause

F \ fT = ng 2 F

n

and E(X

1

j F

n

) � X

n

for every n, the supermartingale

property gives that the right side is bounded above by

1+

X

n=0

EX

n

1

F

1

T=n

= EX

T

1

F

;

if X

T

is integrable, by the dominated 
onvergen
e theorem. This gives the

desired inequality and 
on
ludes the proof of (i) for any stopping time T

for whi
h X

T

is integrable.

If T is bounded, then jX

T

j � max

m�n

jX

m

j for n an upper bound on

T and hen
e X

T

is integrable. Thus we 
an apply the pre
eding paragraph

to see that E(X

1

j F

T^n

) � X

T^n

almost surely for every n. If X is a

martingale, then this inequality is valid for both X and �X and hen
e, for

every n,

X

T^n

= E(X

1

j F

T^n

); a:s::

for every n. If n ! 1 the left side 
onverges to X

T

. The right side is a

uniformly integrable martingale that 
onverges to an integrable limit in L

1

by Theorem 2.23. Be
ause the limits must agree, X

T

is integrable.

Combining the pre
eding we see that X

T

= E(X

1

j F

T

) for every

stopping time T if X is a uniformly integrable martingale. Then for stop-

ping times S � T the towering property of 
onditional expe
tations gives

E(X j F

S

) = E

�

E(X

1

j F

T

)j F

S

�

= E(X

1

j F

S

), be
ause F

S

� F

T

. Apply-

ing (i) again we see that the right side is equal to X

S

. This proves (ii) in

the 
ase that X is a martingale.
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To extend the proof to supermartingales X , we employ the Doob

de
omposition X

n

= X

0

+ M

n

� A

n

, where M is a martingale with

M

0

= 0 and A is a nonde
reasing (predi
table) pro
ess with A

0

= 0.

Then EA

n

= EX

0

� EX

n

is bounded if X is uniformly integrable. Hen
e

A

1

= limA

n

is integrable, and A is dominated (by A

1

) and hen
e uni-

formly integrable. Then M must be uniformly integrable as well, when
e,

by the pre
eding, M

T

is integrable and E(M

T

j F

S

) = M

T

. It follows that

X

T

= X

0

+M

T

�A

T

is integrable. Furthermore, by linearity of the 
ondi-

tional expe
tation, for S � T ,

E(X

T

j F

S

) = X

0

+E(M

T

j F

S

)� E(A

T

j F

S

)

� X

0

+M

S

�A

S

= X

S

;

be
ause A

S

� A

T

implies that A

S

� E(A

T

j F

S

) almost surely. This 
on-


ludes the proof of (ii). The statement (i) (with S playing the role of T ) is

the spe
ial 
ase that T =1.

One 
onsequen
e of the pre
eding theorem is that EX

T

= EX

0

, when-

ever T is a stopping time and X a uniformly integrable martingale.

Warning. The 
ondition that X be uniformly integrable 
annot be

omitted.

2.9 Maximal Inequalities

A maximal inequality for a sto
hasti
 pro
ess X is a bound on some as-

pe
t of the distribution of sup

n

X

n

. Suprema over sto
hasti
 pro
esses are

usually hard to 
ontrol, but not so for martingales. Somewhat remarkably,

we 
an bound the norm of sup

n

X

n

by the supremum of the norms, up to

a 
onstant.

We start with a probability inequality.

2.43 Lemma. If X is a submartingale, then for any x � 0 and every

n 2 Z

+

,

xP

�

max

0�i�n

X

i

� x

�

� EX

n

1

max

0�i�n

X

i

�x

� EX

n

:

Proof. We 
an write the event in the left side as the disjoint union [

n

i=0

F

i

of the events

F

0

= fX

0

� xg; F

1

= fX

0

< x;X

1

� xg;

F

2

= fX

0

< x;X

1

< x;X

2

� xg; : : : :

Be
ause F

i

2 F

i

, the submartingale property gives EX

n

1

F

i

� EX

i

1

F

i

�

xP (F

i

), be
ause X

i

� x on F

i

. Summing this over i = 0; 1; : : : ; n yields the

result.
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2.44 Corollary. If X is a nonnegative submartingale, then for any p > 1

and p

�1

+ q

�1

= 1, and every n 2 Z

+

,










max

0�i�n

X

i










p

� qkX

n

k

p

:

If X is bounded in L

p

(
;F ; P ), then X

n

! X

1

in L

p

for some random

variable X

1

and










sup

n

X

n










p

� qkX

1

k

p

= q sup

n

kX

n

k

p

:

Proof. Set Y

n

= max

0�i�n

X

i

. By Fubini's theorem (or partial integra-

tion),

EY

p

n

=

Z

1

0

px

p�1

P (Y

n

� x) dx �

Z

1

0

px

p�2

EX

n

1

Y

n

�x

dx;

by the pre
eding lemma. After 
hanging the order of integration and ex-

pe
tation, we 
an write the right side as

pE

�

X

n

Z

Y

n

0

x

p�2

dx

�

=

p

p� 1

EX

n

Y

p�1

n

:

Here p=(p� 1) = q and EX

n

Y

p�1

n

� kX

n

k

p

kY

p�1

n

k

q

by H�older's inequality.

Thus EY

p

n

� kX

n

k

p

kY

p�1

n

k

q

. If Y

n

2 L

p

(
;F ; P ), then we 
an rearrange

this inequality to obtain the result.

This rearranging is permitted only if EY

p

n

<1. By the submartingale

property 0 � X

i

� E(X

n

j F

i

), when
e EX

p

i

� EX

p

n

, by Jensen's inequality.

Thus EY

p

n

is �nite whenever EX

p

n

is �nite, and this we 
an assume without

loss of generality.

Be
ause X is a nonnegative submartingale, so is X

p

and hen
e the

sequen
e EX

p

n

is nonde
reasing. If X is L

p

-bounded (for p > 1), then it is

uniformly integrable and hen
e X

n

! X

1

almost surely for some random

variable X

1

, by Theorem 2.23. Taking the limit as n ! 1 in the �rst

assertion, we �nd by the monotone 
onvergen
e theorem that

E sup

n

X

p

n

= EY

p

1

= lim

n!1

EY

p

n

� q

p

lim

n!1

EX

p

n

= q

p

sup

n

EX

p

n

:

The supremum on the left does not in
rease if we extend it to n 2

�

Z

+

.

Be
ause jX

n

�X j is dominated by 2Y

1

, we �nd that X

n

! X

1

also in L

p

and hen
e EX

p

1

= lim

n!1

EX

p

n

.

The results of this se
tion apply in parti
ular to the submartingales

formed by applying a 
onvex fun
tion to a martingale. For instan
e, jX j,

X

2

or e

�X

for some � > 0 and some martingale X . This yields a wealth of

useful inequalities. For instan
e, for any martingale X ,










sup

n

jX

n

j










2

� 2 sup

n

kX

n

k

2

:
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2.45 EXERCISE. Let Y

1

; Y

2

; : : : be an i.i.d. sequen
e of random variables

with mean zero. set S

n

=

P

n

i=1

Y

i

. Show that Emax

1�i�n

S

2

i

� 4ES

2

n

.



3

Dis
rete Time

Option Pri
ing

In this 
hapter we dis
uss the binary tree model for the pri
ing of \
on-

tingent 
laims" su
h as options, due to Cox, Ross and Rubinstein. In this

model the pri
e S

n

of a sto
k is evaluated and 
hanges at the dis
rete time

instants n = 0; 1; : : : only and it is assumed that its in
rements S

n

� S

n�1


an assume two values only. (This is essential; the following would not work

if the in
rements 
ould assume e.g. three values.) We assume that S is a

sto
hasti
 pro
ess on a given probability spa
e and let F

n

be its natural

�ltration.

Next to sto
k the model allows for bonds. A bond is a \risk-free invest-

ment", 
omparable to a deposit in a savings a

ount, whose value in
reases

deterministi
ally a

ording to the relation

R

n

= (1 + r

n

)R

n�1

; R

0

= 1;

the 
onstant r

n

> 0 being the \interest rate" in the time interval (n�1; n).

A general name for both sto
k and bond is \asset".

A \portfolio" is a 
ombination of bonds and sto
ks. Its 
ontents may


hange over time. A portfolio 
ontaining A

n

bonds and B

n

sto
ks at time

n possesses the value

(3:1) V

n

= A

n

R

n

+ B

n

S

n

:

A pair of pro
esses (A;B), giving the 
ontents over time, is an \investment

strategy" if the pro
esses are predi
table. We 
all a strategy \self-�nan
ing"

if after investment of an initial 
apital at time 0, we 
an reshu�e the port-

folio a

ording to the strategy without further 
apital import. Te
hni
ally

this requirement means that, for every n � 1,

(3:2) A

n

R

n�1

+B

n

S

n�1

= A

n�1

R

n�1

+B

n�1

S

n�1

:

Thus the 
apital V

n�1

at time n � 1 (on the right side of the equation) is

used in the time interval (n � 1; n) to ex
hange bonds for sto
ks or vi
e
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versa at the 
urrent pri
es R

n�1

and S

n�1

. The left side of the equation

gives the value of the portfolio after the reshu�ing. At time n the value


hanges to V

n

= A

n

S

n

+ B

n

S

n

, due to the 
hanges in the values of the

underlying assets.

A \derivative" is a �nan
ial 
ontra
t that is based on the sto
k. A

popular derivative is the option, of whi
h there are several varieties. A

\European 
all option" is a 
ontra
t giving the owner of the option the

right to buy the sto
k at some �xed time N (the \term" or \expiry time"

of the option) in the future at a �xed pri
e K (the \strike pri
e"). At the

expiry time the sto
k is worth S

N

. If S

N

> K, then the owner of the option

will exer
ise his right and buy the sto
k, making a pro�t of S

N

�K. (He


ould sell o� the sto
k immediately, if he wanted to, making a pro�t of

S

N

�K.) On the other hand, if S

N

< K, then the option is worthless. (It

is said to be \out of the money".) If the owner of the option would want to

buy the sto
k, he would do better to buy it on the regular market, for the

pri
e S

N

, rather than use the option.

What is a good pri
e for an option? Be
ause the option gives a right

and no obligation it must 
ost money to get one. The value of the option

at expiry time is, as seen in the pre
eding dis
ussion, (S

N

�K)

+

. However,

we want to know the pri
e of the option at the beginning of the term. A

reasonable guess would be E(S

N

� K)

+

, where the expe
tation is taken

relative to the \true" law of the sto
k pri
e S

N

. We don't know this law,

but we 
ould presumably estimate it after observing the sto
k market for

a while.

Wrong! E
onomi
 theory says that the a
tual distribution of S

N

has

nothing to do with the value of the option at the beginning of the term.

This e
onomi
 reasoning is based on the following theorem.

Re
all that we assume that possible values of the sto
k pro
ess S form

a binary tree. Given its value S

n�1

at time n�1, there are two possibilities

for the value S

n

. For simpli
ity of notation assume that

S

n

2 fa

n

S

n�1

; b

n

S

n�1

g;

where a

n

and b

n

are known numbers. We assume that given F

n�1

ea
h of

the two possibilities is 
hosen with �xed probabilities 1�p

n

and p

n

. We do

not assume that we know the \true" numbers p

n

, but we do assume that

we know the numbers (a

n

; b

n

). Thus, for n � 1,

(3:3)

P (S

n

= a

n

S

n�1

j F

n�1

) = 1� p

n

;

P (S

n

= b

n

S

n�1

j F

n�1

) = p

n

:

(Pretty unrealisti
, this, but good exer
ise for the 
ontinuous time 
ase.) It

follows that the 
omplete distribution of the pro
ess S, given its value S

0

at time 0, 
an be parametrized by a ve
tor p = (p

1

; : : : ; p

n

) of probabilities.
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3.4 Theorem. Suppose that 0 < a

n

< 1 + r

n

< b

n

for all n and nonzero

numbers a

n

; b

n

. Then there exists a unique self-�nan
ing strategy (A;B)

with value pro
ess V (as in (3.1)) su
h that

(i) V � 0.

(ii) V

N

= (S

N

�K)

+

.

This strategy requires an initial investment of

(iii) V

0

=

~

ER

�1

N

(S

N

�K)

+

;

where

~

E is the expe
tation under the probability measure de�ned by (3.3)

with p = (~p

1

; : : : ; ~p

n

) given by

~p

n

: =

1 + r

n

� a

n

b

n

� a

n

:

The values ~p are the unique values in (0; 1) that ensure that the pro
ess

~

S

de�ned by

~

S

n

= R

�1

n

S

n

is a martingale.

Proof. By assumption, given F

n�1

, the variable S

n

is supported on the

points a

n

S

n�1

and b

n

S

n�1

with probabilities 1� p

n

and p

n

. Then

E(

~

S

n

j F

n�1

) = R

�1

n

�

(1� p

n

)a

n

+ p

n

b

n

�

S

n�1

:

This is equal to

~

S

n�1

= R

�1

n�1

S

n�1

if and only if

(1� p

n

)a

n

+ p

n

b

n

=

R

n

R

n�1

= 1 + r

n

; $ p

n

=

1 + r

n

� a

n

b

n

� a

n

:

By assumption this value of p

n

is 
ontained in (0; 1). Thus there exists a

unique martingale measure, as 
laimed.

The pro
ess

~

V

n

=

~

E

�

R

�1

N

(S

N

� K)

+

j F

n

�

is a ~p-martingale. Given

F

n�1

the variables

~

V

n

�

~

V

n�1

and

~

S

n

�

~

S

n�1

are both fun
tions of S

n

=S

n�1

and hen
e supported on two points (dependent on F

n�1

). (Note that the

possible values of S

n

are S

0

times a produ
t of the numbers a

n

and b

n

and

hen
e are nonzero by assumption.) Be
ause these variables are martingale

di�eren
es, they have 
onditional mean zero under ~p

n

. Together this implies

that there exists a unique F

n�1

-measurable variable B

n

(given F

n�1

this

is a \
onstant") su
h that (for n � 1)

(3:5)

~

V

n

�

~

V

n�1

= B

n

(

~

S

n

�

~

S

n�1

):

Given this pro
ess B, de�ne a pro
ess A to satisfy

(3:6) A

n

R

n�1

+B

n

S

n�1

= R

n�1

~

V

n�1

:

Then both the pro
esses A and B are predi
table and hen
e (A;B) is a

strategy. (The values (A

0

; B

0

) matter little, be
ause we 
hange the portfolio

to (A

1

; B

1

) before anything happens to the sto
k or bond at time 1; we 
an


hoose (A

0

; B

0

) = (A

1

; B

1

).)
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The pre
eding displays imply

A

n

+B

n

~

S

n�1

=

~

V

n�1

;

A

n

+B

n

~

S

n

=

~

V

n�1

+B

n

(

~

S

n

�

~

S

n�1

) =

~

V

n

; by (3.5);

R

n

A

n

+B

n

S

n

= R

n

~

V

n

:

Evaluating the last line with n�1 instead of n and 
omparing the resulting

equation to (3.6), we see that the strategy (A;B) is self-�nan
ing.

By the last line of the pre
eding display the value of the portfolio

(A

n

; B

n

) at time n is

V

n

= R

n

~

V

n

= R

n

~

E

�

R

�1

N

(S

N

�K)

+

j F

n

�

:

At time N this be
omes V

N

= (S

N

� K)

+

. At time 0 the value is V

0

=

R

0

~

ER

�1

N

(S

N

�K)

+

. That V � 0 is 
lear from the fa
t that

~

V � 0, being a


onditional expe
tation of a nonnegative random variable.

This 
on
ludes the proof that a strategy as 
laimed exists. To see tat it

is unique, suppose that (A;B) is an arbitrary self-�nan
ing strategy satis-

fying (i) and (ii). Let V

n

= A

n

R

n

+B

n

S

n

be its value at time n, and de�ne

~

S

n

= R

�1

n

S

n

and

~

V

n

= R

�1

n

V

n

, all as before. By the �rst paragraph of the

proof there is a unique probability measure ~p making

~

S into a martingale.

Multipyling the self-�nan
ing equation (3.2) by R

�1

n�1

, we obtain (for n � 1)

~

V

n�1

= A

n

+B

n

~

S

n�1

= A

n�1

+B

n�1

~

S

n�1

:

Repla
ing n � 1 by n in the se
ond representation of

~

V

n�1

yields

~

V

n

=

A

n

+B

n

~

S

n

. Subtra
ting from this the �rst representation of

~

V

n�1

, we obtain

that

~

V

n

�

~

V

n�1

= B

n

(

~

S

n

�

~

S

n�1

):

Be
ause

~

S is a ~p-martingale and B is predi
table,

~

V is a ~p-martingale as

well. In parti
ular,

~

V

n

=

~

E(

~

V

N

j F

n

) for every n � N . By (ii) this means

that

~

V is exa
tly as in the �rst part of the proof. The rest must also be the

same.

A strategy as in the pre
eding theorem is 
alled a \hedging strategy".

Its spe
ial feature is that given an initial investment of V

0

at time zero

(to buy the portfolio (A

0

; B

0

)) it leads with 
ertainty to a portfolio with

value (S

N

�K)

+

at time N . This is remarkable, be
ause S is a sto
hasti


pro
ess. Even though we have limited its in
rements to two possibilities

at every time, this still allows 2

N

possible sample paths for the pro
ess

S

1

; : : : ; S

N

, and ea
h of these has a probability atta
hed to it in the real

world. The hedging strategy leads to a portfolio with value (S

N

�K)

+

at

time N , no matter whi
h sample path the pro
ess S will follow.

The existen
e of a hedging strategy and the following e
onomi
 rea-

soning shows that the initial value V

0

=

~

ER

�1

N

(S

N

�K)

+

is the only right

pri
e for the option.
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First, if the option were more expensive than V

0

, then nobody would

buy it, be
ause it would 
ost less to buy the portfolio (A

0

; B

0

) and go

through the hedging strategy. This is guaranteed to give the same value

(S

N

�K)

+

at the expiry time, for less money.

On the other hand, if the option 
ould be bought for less money

than V

0

, then selling a portfolio (A

0

; B

0

) and buying an option at time

0 would yield some immediate 
ash. During the term of the option we


ould next implement the inverse hedging strategy: starting with the port-

folio (�A

0

;�B

0

) at time 0, we reshu�e the portfolio 
onse
utively at

times n = 1; 2; : : : ; N to (�A

n

;�B

n

). This 
an be done free of investment

and at expiry time we would possess both the option and the portfolio

(�A

N

;�B

N

), i.e. our 
apital would be �V

N

+ (S

N

�K)

+

, whi
h is zero.

Thus after making an initial gain of V

0

minus the option pri
e, we would

with 
ertainty break even, no matter the sto
k pri
e: we would be able to

make money without risk. E
onomists would say that the market would

allow for \arbitrage". But in real markets nothing 
omes free; real markets

are \arbitrage-free".

Thus the value V

0

=

~

ER

�1

N

(S

N

�K)

+

is the only \reasonable pri
e".

As noted before, this value does not depend on the \true" values of

the probabilities (p

1

; : : : ; p

n

): the expe
tation must be 
omputed under

the \martingale measure" given by (~p

1

; : : : ; ~p

n

). It depends on the steps

(a

1

; b

1

; : : : ; a

n

; b

n

), the interest rates r

n

, the strike pri
e K and the value

S

0

of the sto
k at time 0. The distribution of S

N

under ~p is supported on at

most 2

N

values, the 
orresponding probabilities being (sums of) produ
ts

over the probabilities ~p

i

. We 
an write out the expe
tation as a sum, but

this is not espe
ially insightful. (Below we 
ompute a limiting value, whi
h

is more pleasing.)

The martingale measure given by ~p is the unique measure (within the

model (3.3)) that makes the \dis
ounted sto
k pro
ess" R

�1

n

S

n

into a mar-

tingale. It is sometimes referred to as the \risk-free measure". If the interest

rate were zero and the sto
k pro
ess a martingale under its true law, then

the option pri
e would be exa
tly the expe
ted value

~

E(S

N

�K)

+

of the

option at expiry term. In a \risk-free world we 
an pri
e by expe
tation".

The dis
ounting of values, the premultiplying with R

�1

n

=

Q

n

i=1

(1+r

i

),

expresses the \time value of money". A 
apital v at time 0 
an be in
reased

to a 
apital R

n

v at time n in a risk-free manner, for instan
e by putting

it in a savings a

ount. Then a 
apital v that we shall re
eive at time n

in the future is worth only R

�1

n

v today. For instan
e, an option is worth

(S

N

� K)

+

at expiry time N , but only R

�1

N

(S

N

� K)

+

at time 0. The

right pri
e of the option is the expe
tation of this dis
ounted value \in the

risk-free world given by the martingale measure".

The theorem imposes the 
ondition that a

n

< 1 + r

n

< b

n

for all n.

This 
ondition is reasonable. If we had a sto
k at time n� 1, worth S

n�1

,

and kept on to it until time n, then it would 
hange in value to either

a

n

S

n�1

or b

n

S

n�1

. If we sold the sto
k and invested the money in bonds,
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then this 
apital would 
hange in value to (1 + r

n

)S

n�1

. The inequality

1+ r

n

< a

n

< b

n

would mean that keeping the sto
k would always be more

advantageous; nobody would buy bonds. On the other hand, the inequality

a

n

< b

n

< 1 + r

n

would mean that investing in bonds would always be

more advantageous. In both 
ases, the market would allow for arbitrage:

by ex
hanging bonds for sto
k or vi
e versa, we would have a guaranteed

positive pro�t, no matter the behaviour of the sto
k. Thus the 
ondition is

ne
essary for the market to be \arbitrage-free".

3.7 EXERCISE. Extend the theorem to the 
ases that:

(i) the numbers (a

n

; b

n

) are predi
table pro
esses.

(ii) the interest rates r

n

form a sto
hasti
 pro
ess.

3.8 EXERCISE. Let "

1

; "

2

; : : : be i.i.d. random variables with the uniform

distribution on f�1; 1g and set X

n

=

P

n

i=1

"

i

. Suppose that Y is a martin-

gale relative to F

n

= �(X

1

; : : : ; X

n

). Show that there exists a predi
table

pro
ess C su
h that Y = Y

0

+ C �X .

We might view the binary sto
k pri
e model of this se
tion as arising

as a time dis
retization of a 
ontinuous time model. Then the model should

be
ome more realisti
 by re�ning the dis
retization. Given a �xed time t >

0, we might 
onsider the binary sto
k pri
e model for (S

0

; S

1

; : : : ; S

N

) as a

dis
retization on the grid 0; T=N; 2T=N; : : : ; T . Then it would be reasonable

to s
ale the in
rements (a

n

; b

n

) and the interest rates r

n

, as they will re
e
t


hanges on in�nitesimal intervals as N ! 1. Given T > 0 
onsider the


hoi
es

(3:9)

a

n;N

= e

�T=N��

p

T=N

;

b

n;N

= e

�T=N+�

p

T=N

;

1 + r

n;N

= e

rT=N

:

These 
hoi
es 
an be motivated from the fa
t that the resulting sequen
e

of binary tree models 
onverges to the 
ontinuous time model that we shall

dis
uss later on.

Combining (3.3) and (3.9) we obtain that the sto
k pri
e is given by

S

N

= S

0

exp

�

�T + �

p

T

(2X

N

�N)

p

N

�

;

where X

N

is the number of times the sto
k pri
e goes up in the time span

1; 2; : : : ; N .

It is thought that a realisti
 model for the sto
k market has jumps

up and down with equal probabilities. Then X

N

is binomially (N;

1

2

)-

distributed and the \log returns" satisfy

log

S

N

S

0

= �T + �

p

T

X

N

�N=2

p

N=2

 N(�T; �

2

T );
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by the Central limit theorem. Thus in the limit the log return at time T is

log normally distributed with drift �T and varian
e �

2

T .

As we have seen the true distribution of the sto
k pri
es is irrelevant for

pri
ing the option. Rather we need to repeat the pre
eding 
al
ulation using

the martingale measure ~p. Under this measure X

N

is binomially(N; ~p

N

)

distributed, for

~p

N

=

e

rT=N

� e

�T=N��

p

T=N

e

�T=N+�

p

T=N

� e

�T=N��

p

T=N

=

1

2

�

1

2

r

T

N

�

�+

1

2

�

2

� r

�

�

+O

�

1

N

�

;

by a Taylor expansion. Then ~p

N

(1� ~p

N

)! 1=4 and

log

S

N

S

0

= �T + �

p

T

�

X

N

�N ~p

N

p

N=2

�

p

T

�

�+

1

2

�

2

� r

�

��

+O

�

1

p

N

�

 N

�

(r �

1

2

�

2

)T; �

2

T

�

:

Thus, under the martingale measure, in the limit the sto
k at time T is log

normally distributed with drift (r �

1

2

�

2

)T and varian
e �

2

T .

Evaluating the (limiting) option pri
e is now a matter of straightfor-

ward integration. For an option with expiry time T and strike pri
e K it

is the expe
tation of e

�rT

(S

T

�K)

+

, where log(S

T

=S

0

) possesses the log

normal distribution with parameters (r �

1

2

�

2

)T and varian
e �

2

T . This


an be 
omputed to be

S

0

�

�

log(S

0

=K) + (r +

1

2

�

2

)T

�

p

T

�

�Ke

�rT

�

�

log(S

0

=K) + (r �

1

2

�

2

)T

�

p

T

�

:

This is the formula found by Bla
k and S
holes in 1973 using a 
ontinuous

time model. We shall re
over it later in a 
ontinuous time set-up.



4

Continuous Time Martingales

In this 
hapter we extend the theory for dis
rete time martingales to the


ontinuous time setting. Besides mu
h similarity there is the important

di�eren
e of dealing with un
ountably many random variables, whi
h is

solved by 
onsidering martingales with 
adlag sample paths.

4.1 Sto
hasti
 Pro
esses

A sto
hasti
 pro
ess in 
ontinuous time is a 
olle
tion X = fX

t

: t � 0g

of random variables indexed by the \time" parameter t 2 [0;1) and de-

�ned on a given probability spa
e (
;F ; P ). O

asionally we work with the

extended time set [0;1℄ and have an additional random variable X

1

.

The �nite-dimensional marginals of a pro
essX are the random ve
tors

(X

t

1

; : : : ; X

t

k

), for t

1

; : : : ; t

k

ranging over the time set and k 2 N, and the

marginal distributions of X are the distributions of these ve
tors. The maps

t 7! X

t

(!), for ! 2 
, are 
alled sample paths. Unless stated otherwise the

variables X

t

will be understood to be real-valued, but the de�nitions apply

equally well to ve
tor-valued variables.

Two pro
esses X and Y de�ned on the same probability spa
e are

equivalent or ea
h other's modi�
ation if (X

t

1

; : : : ; X

t

k

) = (Y

t

1

; : : : ; Y

t

k

) al-

most surely. They are indistinguishable if P (X

t

= Y

t

;8t) = 1. Both 
on
epts

express that X and Y are the \same", but indistinguishability is quite a

bit stronger in general, be
ause we are working with an un
ountable set of

random variables. However, if the sample paths of X and Y are determined

by the values on a �xed 
ountable set of time points, then the 
on
epts

agree. This is the 
ase, for instan
e, if the sample paths are 
ontinuous, or

more generally left- or right 
ontinuous. Most of the sto
hasti
 pro
esses

that we shall be 
on
erned with possess this property. In parti
ular, we



4.1: Sto
hasti
 Pro
esses 33

often 
onsider 
adlag pro
esses (from \
ontinu �a droite, limite �a gau
he"):

pro
esses with sample paths that are right-
ontinuous and have limits from

the left at every point t > 0. If X is a left- or right-
ontinuous pro
ess, then

X

t�

= lim

s"t;s<t

X

s

; and X

t+

= lim

s#t;s>t

X

s

de�ne left- and right-
ontinuous pro
esses. These are denoted by X

�

and

X

+

and referred to as the left- or right-
ontinuous version of X . The dif-

feren
e �X : = X

+

�X

�

is the jump pro
ess of X . The variable X

0�


an

only be de�ned by 
onvention; it will usually be taken equal to 0.

A �ltration in 
ontinuous time is a 
olle
tion fF

t

g

t�0

of sub �-�elds of

F su
h that F

s

� F

t

whenever s � t. A typi
al example is the natural �l-

tration F

t

= �(X

s

: s � t) generated by a sto
hasti
 pro
ess X . A sto
hasti


pro
ess X is adapted to a �ltration fF

t

g if X

t

is F

t

-measurable for every t.

The natural �ltration is the smallest �ltration to whi
h X is adapted. We

de�ne F

1

= �(F

t

: t � 0). As in the dis
rete time 
ase, we 
all a probability

spa
e equipped with a �ltration a �ltered probability spa
e or a \sto
hasti


basis". We denote it by (
;F ; fF

t

g; P ), where it should be 
lear from the

notation or the 
ontext that t is a 
ontinuous parameter.

Throughout, without further mention, we assume that the probability

spa
e (
;F ; P ) is 
omplete. This means that every subset of a null set (a

null set being a set F 2 F with P (F ) = 0) is 
ontained in F (and hen
e is

also a null set). This is not a very restri
tive assumption, be
ause we 
an

always extend a given �-�eld and probability measure to make it 
omplete.

(This will make a di�eren
e only if we would want to work with more than

one probability measure at the same time.)

We also always assume that our �ltration satis�es the usual 
onditions:

for all t � 0:

(i) (
ompleteness): F

t


ontains all null sets.

(ii) (right 
ontinuity): F

t

= \

s>t

F

s

.

The �rst 
ondition 
an be ensured by 
ompleting a given �ltration: repla
-

ing a given F

t

by the �-�eld generated by F

t

and all null sets. The se
ond


ondition is more te
hni
al, but turns out to be important for 
ertain argu-

ments. Fortunately, the (
ompletions of the) natural �ltrations of the most

important pro
esses are automati
ally right 
ontinuous. Furthermore, if a

given �ltration is not right 
ontinuous, then we might repla
e it by the the

�ltration \

s>t

F

s

, whi
h 
an be seen to be right-
ontinuous.

Warning. The natural �ltration of a right-
ontinuous pro
ess is not

ne
essarily right 
ontinuous.

Warning. When 
ompleting a �ltration we add all null sets in

(
;F ; P ) to every F

t

. This gives a bigger �ltration than 
ompleting the

spa
e (
;F

t

; P ) for every t � 0 separately.

4.1 EXERCISE (Completion). Given an arbitrary probability spa
e

(
;F ; P ), let

~

F be the 
olle
tion of all sets F [ N for F ranging over F
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and N ranging over all subsets of null sets, and de�ne

~

P (F [N) = P (F ).

Show that (
;

~

F ;

~

P ) is well-de�ned and a probability spa
e.

* 4.2 EXERCISE. Let (
;F ; P ) be a 
omplete probability spa
e and F

0

� F

a sub �-�eld. Show that the �-�eld generated by F

0

and the null sets of

(
;F ; P ) is the 
olle
tion of all F 2 F su
h that there exists F

0

2 F

0

with

P (F 4F

0

) = 0; equivalently, all F 2 F su
h that there exists F

0

2 F

0

and

null sets N;N

0

with F

0

�N � F � F

0

[N

0

.

* 4.3 EXERCISE. Show that the 
ompletion of a right-
ontinuous �ltration

is right 
ontinuous.

* 4.4 EXERCISE. Show that the natural �ltration of the Poisson pro
ess is

right 
ontinuous. (More generally, this is true for any 
ounting pro
ess.)

4.2 Martingales

The de�nition of a martingale in 
ontinuous time is an obvious generaliza-

tion of the dis
rete time 
ase.

4.5 De�nition. An adapted, integrable sto
hasti
 pro
ess X on the �l-

tered spa
e (
;F ; fF

t

g; P ) is a

(i) martingale if E(X

t

j F

s

) = X

s

a.s. for all s � t.

(ii) submartingale if E(X

t

j F

s

) � X

s

a.s. for all s � t.

(ii) supermartingale if E(X

t

j F

s

) � X

s

a.s. for all s � t.

The (sub/super) martingales that we shall be interested in are 
adlag

pro
esses. It is relatively straightforward to extend results for dis
rete time

martingales to these, be
ause given a (sub/super) martingale X :

(i) If 0 � t

1

< t

2

< � � �, then Y

n

= X

t

n

de�nes a (sub/super) martingale

relative to the �ltration G

n

= F

t

n

.

(ii) If t

0

> t

1

> � � � � 0, then Y

n

= X

t

n

de�nes a reverse (sub/super)

martingale relative to the reverse �ltration G

n

= F

t

n

.

Thus we 
an apply results on dis
rete time (sub/super) martingales to the

dis
rete time \skeletons" X

t

n

formed by restri
ting X to 
ountable sets of

times. If X is 
adlag, then this should be enough to study the 
omplete

sample paths of X .

The assumption that X is 
adlag is not overly strong. The follow-

ing theorem shows that under the simple 
ondition that the mean fun
tion

t 7! EX

t

is 
adlag, a 
adlag modi�
ation of a (sub/super) martingale always

exists. Be
ause we assume our �ltrations to be 
omplete, su
h a modi�
a-

tion is automati
ally adapted. Of 
ourse, it also satis�es the (sub/super)
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martingale property and hen
e is a (sub/super) martingale relative to the

original �ltration. Thus rather than with the original (sub/super) martin-

gale we 
an work with the modi�
ation.

We 
an even allow �ltrations that are not ne
essarily right-
ontinuous.

Then we 
an both repla
e X by a modi�
ation and the �ltration by its

\right-
ontinuous version" F

t+

= \

s>t

F

s

and still keep the (sub/super)

martingale property, provided that X is right 
ontinuous in probability.

(This is mu
h weaker than right 
ontinuous.) In part (ii) of the following

theorem, suppose that the �ltration is 
omplete, but not ne
essarily right-


ontinuous.

4.6 Theorem. Let X be a (sub/super) martingale relative to the 
omplete

�ltration fF

t

g.

(i) If the �ltration fF

t

g is right 
ontinuous and the map t 7! EX

t

is right


ontinuous, then there exists a 
adlag modi�
ation of X .

(ii) If X is right 
ontinuous in probability, then there exists a modi�
ation

of X that is a 
adlag (sub/super) martingale relative to the �ltration

fF

t+

g.

Proof. Assume without loss of generality that X is a super martingale.

Then X

s

� E(X

t

j F

s

) almost surely for every s � t, when
e X

�

s

�

E(X

�

t

j F

s

) almost surely and hen
e fX

�

s

: 0 � s � tg is uniformly inte-

grable. Combined with the fa
t that t 7! EX

t

is de
reasing and hen
e

bounded on 
ompa
ts, if follows that EjX

t

j is bounded on 
ompa
ts.

For �xed T and every a < b, de�ne the event

F

a;b

=

n

!: 9t 2 [0; T ): lim inf

s""t;s2Q

X

s

(!) < a < b < lim sup

s""t;s2Q

X

s

(!);

or lim inf

s##t;s2Q

X

s

(!) < a < b < lim sup

s##t;s2Q

X

s

(!)

o

(The symbol s "" t denotes a limit as s " t with s restri
ted to s < t.) Let

Q \ [0; T ) = ft

1

; t

2

; : : :g and let U

n

[a; b℄ be the number of up
rossings of

[a; b℄ by the pro
ess X

t

1

; : : : ; X

t

n

put in its natural time order. If ! 2 F

a;b

,

then U

n

[a; b℄ " 1. However, by Doob's up
rossings lemma EU

n

[a; b℄ <

sup

0�t�T

EjX

t

j + jaj. We 
on
lude that P (F

a;b

) = 0 for every a < b and

hen
e the left and right limits

X

t�

= lim

s""t;s2Q

X

s

; X

t+

= lim

s##t;s2Q

X

s

exist for every t 2 [0; T ), almost surely. If we de�ne these pro
esses to be

zero whenever one of the limits does not exist, then X

t+

is F

t+

-adapted.

Moreover, from the de�nitions X

t+


an be seen to be right-
ontinuous with

left limits equal to X

t�

. By Fatou's lemma X

t+

is integrable.

We 
an repeat this for a sequen
e T

n

" 1 to show that the limits X

t�

and X

t+

exist for every t 2 [0;1), almost surely. Setting X

t+

equal to zero
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on the ex
eptional null set, we obtain a 
adlag pro
ess that is adapted to

F

t+

.

By the super martingale property EX

s

1

F

� EX

t

1

F

for every F 2 F

s

and s � t. Given a sequen
e of rational numbers t

n

## t, the sequen
e

fX

t

n

g is a reverse super martingale. Be
ause EX

t

n

is bounded above, the

sequen
e is uniformly integrable and hen
e X

t

n

! X

t+

both almost surely

(by 
onstru
tion) and in mean. We 
on
lude that EX

s

1

F

� EX

t+

1

F

for

every F 2 F

s

and s � t. Applying this for every s = s

n

and s

n

a sequen
e

of rational numbers de
reasing to some �xed s, we �nd that EX

s+

1

F

�

EX

t+

1

F

for every F 2 F

s+

= \

n

F

s

n

and s < t. Thus fX

t+

: t � 0g is a

supermartingale relative to F

t+

.

Applying the �rst half of the argument of the pre
eding paragraph with

s = t we see that EX

t

1

F

� EX

t+

1

F

for every F 2 F

t

. If F

t+

= F

t

, then

X

t

�X

t+

is F

t

-measurable and we 
on
lude thatX

t

�X

t+

� 0 almost surely.

If, moreover, t 7! EX

t

is right 
ontinuous, then EX

t

= lim

n!1

EX

t

n

=

EX

t+

, be
ause X

t

n

! X

t+

in mean. Combined this shows that X

t

= X

t+

almost surely, so that X

t+

is a modi�
ation of X . This 
on
ludes the proof

of (i).

To prove (ii) we re
all that X

t+

is the limit in mean of a sequen
e

X

t

n

for t

n

## t. If X is right 
ontinuous in probability, then X

t

n

! X

t

in probability. Be
ause the limits in mean and in probability must agree

almost surely, it follows that X

t

= X

t+

almost surely.

In parti
ular, every martingale (relative to a \usual �ltration") pos-

sesses a 
adlag modi�
ation, be
ause the mean fun
tion of a martingale is


onstant and hen
e 
ertainly 
ontinuous.

4.7 Example. If for a given �ltration fF

t

g and integrable random vari-

able � we \de�ne" X

t

= E(�j F

t

), then in fa
t X

t

is only determined up

to a null set, for every t. The union of these null sets may have positive

probability and hen
e we have not de�ned the pro
ess X yet. Any 
hoi
e

of the 
onditional expe
tations X

t

yields a martingale X . By the pre
eding

theorem there is a 
hoi
e su
h that X is 
adlag.

4.8 EXERCISE. Given a standard Poisson pro
ess fN

t

: t � 0g, let F

t

be

the 
ompletion of the natural �ltration �(N

s

: s � t). (This 
an be proved

to be right 
ontinuous.) Show that:

(i) The pro
ess N

t

is a submartingale.

(ii) The pro
ess N

t

� t is a martingale.

(iii) The pro
ess (N

t

� t)

2

� t is a martingale.

4.9 EXERCISE. Show that every 
adlag super martingale is right 
ontin-

uous in mean. (Hint: use reverse super martingale 
onvergen
e, as in the

proof of Theorem 4.6.)
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4.3 Martingale Convergen
e

The martingale 
onvergen
e theorems for dis
rete time martingales extend

without surprises to the 
ontinuous time situation.

4.10 Theorem. If X is a uniformly integrable, 
adlag (sub/super) mar-

tingale, then there exists an integrable random variable X

1

su
h that

X

t

! X

1

almost surely and in L

1

as t!1.

(i) If X is a martingale, then X

t

= E(X

1

j F

t

) a.s. for all t � 0.

(ii) If X is a submartingale, then X

t

� E(X

1

j F

t

) a.s. for t � 0.

Furthermore, if X is L

p

-bounded for some p > 1, then X

t

! X

1

also in

L

p

.

Proof. In view of Theorems 2.23 and 2.25 every sequen
e X

t

n

for t

1

< t

2

<

� � � ! 1 
onverges almost surely, in L

1

or in L

p

to a limit X

1

. Then we

must have that X

t

! X

1

in L

1

or in L

p

as t!1. Assertions (i) and (ii)

follow from Theorem 2.23 as well.

The almost sure 
onvergen
e of X

t

as t ! 1 requires an additional

argument, as the null set on whi
h a sequen
e X

t

n

as in the pre
eding

paragraph may not 
onverge may depend on the sequen
e ft

n

g. In this

part of the proof we use the fa
t that X is 
adlag. As in the proof of

Theorem 2.21 it suÆ
es to show that for every �xed numbers a < b the

event

F

a;b

=

n

!: lim inf

t!1

X

t

(!) < a < b < lim sup

t!1

X

t

(!)

o

is a null set. Assume that X is a supermartingale and for given

t

1

; : : : ; t

n

let U

n

[a; b℄ be the number of up
rossings of [a; b℄ by the pro-


ess X

t

1

; : : : ; X

t

n

put in its natural time order. By Doob's up
rossing's

inequality, Lemma 2.19,

(b� a)EU

n

[a; b℄ � sup

t

EjX

t

j+ jaj:

If we let Q = ft

1

; t

2

; : : :g, then U

n

[a; b℄ " 1 on F

a;b

, in view of the right-


ontinuity of X . We 
on
lude that P (F

a;b

) = 0.

4.4 Stopping

The main aim of this se
tion is to show that a stopped martingale is a

martingale, also in 
ontinuous time, and to extend the optional stopping

theorem to 
ontinuous time.
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4.11 De�nition. A random variable T : 
 ! [0;1℄ is a stopping time if

fT � tg 2 F

t

for every t � 0.

Warning. Some authors use the term optional time instead of stopping

time. Some authors de�ne an optional time by the requirement that fT <

tg 2 F

t

for every t � 0. This 
an make a di�eren
e if the �ltration is not

right-
ontinuous.

4.12 EXERCISE. Show that T : 
 ! [0;1℄ is a stopping time if and only

if fT < tg 2 F

t

for every t � 0. (Assume that the �ltration is right-


ontinuous.)

4.13 De�nition. The �-�eld F

T

is de�ned as the 
olle
tion of all F � 


su
h that F \ fT � tg 2 F

t

for all t 2 [0;1℄. (This in
ludes t =1, where

F

1

= �(F

t

: t � 0).)

The 
olle
tion F

T

is indeed a �-�eld, 
ontained in F

1

� F , and F

T

=

F

t

if T � t. Lemma 2.41 on 
omparing the �-�elds F

S

and F

T

also remains

valid as stated. The proofs are identi
al to the proofs in dis
rete time.

However, in the 
ontinuous time 
ase it would not do to 
onsider events of

the type fT = tg only. We also need to be a little more 
areful with the

de�nition of stopped pro
esses, as the measurability is not automati
. The

stopped pro
ess X

T

and the variable X

T

are de�ned exa
tly as before:

(X

T

)

t

(!) = X

T (!)^t

(!); X

T

(!) = X

T (!)

(!):

In general these maps are not measurable, but if X is 
adlag and adapted,

then they are. More generally, it suÆ
es that X is \progressively measur-

able". To de�ne this 
on
ept think of X as the map X : [0;1) � 
 ! R

given by

(t; !) 7! X

t

(!):

The pro
ess X is measurable if X is measurable relative to the produ
t �-

�eld B

1

�F , i.e. if it is \jointly measurable in (t; !)" relative to the produ
t

�-�eld. The pro
ess X is progressively measurable if, for ea
h t � 0, the

restri
tion X : [0; t℄ � 
 ! R is measurable relative to the produ
t �-�eld

B

t

�F

t

. This is somewhat stronger than being adapted.

4.14 EXERCISE. Show that a progressivelymeasurable pro
ess is adapted.

4.15 Lemma. If the pro
ess X is progressively measurable and T is a

stopping time, then:

(i) X

T

is progressively measurable (and hen
e adapted).

(ii) X

T

is F

T

-measurable (and hen
e a random variable).
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(In (ii) it is assumed that X

1

is de�ned and F

1

-measurable if T assumes

the value 1.)

Proof. For ea
h t the map T ^ t: 
 ! [0;1℄ is F

t

measurable, be
ause

fT ^ t > sg = fT > sg 2 F

s

� F

t

if s < t and fT ^ t > sg is empty if s � t.

Then the map

(s; !) 7! (s; T (!) ^ t; !) 7!

�

s ^ T (!); !

�

;

[0; t℄� 
! [0; t℄� [0; t℄� 
! [0; t℄� 
;

is B

t

�F

t

�B

t

�B

t

�F

t

�B

t

�F

t

-measurable. The stopped pro
ess X

T

as a

map on [0; t℄�
 is obtained by 
omposingX : [0; t℄�
! R to the right side

and hen
e is B

t

� F

t

-measurable, by the 
hain rule. That a progressively

measurable pro
ess is adapted is the pre
eding exer
ise.

For assertion (ii) we must prove that fX

T

2 Bg \ fT � tg 2 F

t

for

every Borel set B and t 2 [0;1℄. The set on the left side 
an be written as

fX

T^t

2 Bg\fT � tg. For t <1 this is 
ontained in F

t

by (i) and be
ause

T is a stopping time. For t = 1 we note that fX

T

2 Bg = [

t

fX

T^t

2

Bg \ fT � tg [ fX

1

2 Bg \ fT =1g and this is 
ontained in F

1

.

4.16 Example (Hitting time). Let X be an adapted, progressively mea-

surable sto
hasti
 pro
ess, B a Borel set, and de�ne

T = infft � 0:X

t

2 Bg:

(The in�mum of the empty set is de�ned to be 1.) Then T is a stopping

time.

Here X = (X

1

; : : : ; X

d

) may be ve
tor-valued, where it is assumed that

all the 
oordinate pro
esses X

i

are adapted and progressively measurable

and B is a Borel set in R

d

.

That T is a stopping time is not easy to prove in general, and does rely

on our assumption that the �ltration satis�es the usual 
onditions. A proof


an be based on the fa
t that the set fT < tg is the proje
tion on 
 of the

set f(s; !): s < t;X

s

(!) 2 Bg. (The proje
tion on 
 of a subset A � T �


of some produ
t spa
e is the set f!: 9t > 0: (t; !) 2g.) By the progressive

measurability of X this set is measurable in the produ
t �-�eld B

t

� F

t

.

By the proje
tion theorem (this is the hard part), the proje
tion of every

produ
t measurable set is measurable in the 
ompletion. See Elliott, p50.

Under spe
ial assumptions on X and B the proof is more elementary.

For instan
e, suppose that X is 
ontinuous and that B is 
losed. Then, for

t > 0,

fT � tg =

\

n

[

s<t;s2Q

fd(X

s

; B) < n

�1

g:

The right side is 
learly 
ontained in F

t

. Furthermore, by the 
ontinuity

of X and the 
losedness of B we have fT = 0g = fX

0

2 Bg and this is


ontained in F

0

.
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To establish the pre
eding display, we note �rst that the event fT = 0g

is 
ontained in both sides of the equation. Furthermore, it is easy to see

the in
lusion of right side in left side; we now prove the in
lusion of left

in right side. By the de�nition of T and 
ontinuity of X , the fun
tion

t 7! d(X

t

; B) must vanish at t = T and be stri
tly positive on [0; T ) if

T > 0. By 
ontinuity this fun
tion assumes every value in the interval

[0; d(X

0

; B)℄ on the interval [0; T ℄. In parti
ular, for every n 2 N there must

be some rational number s 2 (0; T ) su
h that d(X

s

; B) < n

�1

.

4.17 EXERCISE. Give a dire
t proof that T = infft:X

t

2 Bg is a stopping

time if B is open and X is right-
ontinuous. (Hint: 
onsider the sets fT < tg

and use the right-
ontinuity of the �ltration.)

4.18 EXERCISE. Let X be a 
ontinuous sto
hasti
 pro
ess with X

0

= 0

and T = infft � 0: jX

t

j � ag for some a > 0. Show that T is a stopping

time and that jX

T

j � a.

4.19 Lemma. If X is adapted and right 
ontinuous, then X is progres-

sively measurable. The same is true if X is adapted and left 
ontinuous.

Proof. We give the proof for the 
ase that X is right 
ontinuous. For �xed

t � 0, let 0 = t

n

0

< t

n

1

< � � � < t

n

k

n

= t be a sequen
e of partitions of

[0; t℄ with mesh widths tending to zero as n ! 1. De�ne X

n

to be the

dis
retization of X equal to X

t

n

i

on [t

n

i�1

; t

n

i

) and equal to X

t

at ftg. By

right 
ontinuity ofX ,X

n

s

(!)! X

s

(!) as n!1 for every (s; !) 2 [0; t℄�
.

Be
ause a pointwise limit of measurable fun
tions is measurable, it suÆ
es

to show that every of the mapsX

n

: [0; t℄�
! R is B

t

�F

t

-measurable. Now

fX

n

2 Bg 
an be written as the union of the sets [t

n

i�1

; t

n

i

)�f!:X

t

n

i

(!) 2

Bg and the set ftg � f!:X

t

(!) 2 Bg and ea
h of these sets is 
ertainly


ontained in B

t

�F

t

.

Exa
tly as in the dis
rete time situation a stopped (sub/super) mar-

tingale is a (sub/super) martingale, and the (in)equalities de�ning the

(sub/super) martingale property remain valid if the (sub/super) martin-

gale is uniformly integrable and the times are repla
es by stopping times.

At least if we assume that the (sub/super) martingale is 
adlag.

4.20 Theorem. If X is a 
adlag (sub/super) martingale and T is a stop-

ping time, then X

T

is a (sub/super) martingale.

Proof.We 
an assume without loss of generality that X is a submartingale.

For n 2 N de�ne T

n

to be the upward dis
retization of T on the grid

0 < 2

�n

< 22

�n

< � � �; i.e. T

n

= k2

�n

if T 2 [(k� 1)2

�n

; k2

�n

) (for k 2 N)

and T

n

= 1 if T = 1. Then T

n

# T as n ! 1 and by right 
ontinuity

X

T

n

^t

! X

T^t

for all t, pointwise on 
. For �xed t > 0 let k

n;t

2

�n

be the

biggest point k2

�n

on the grid smaller than or equal to t.
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For �xed t the sequen
e

X

0

; X

2

�n
; X

22

�n
; : : : ; X

k

n;t

2

�n
; X

t

is a submartingale relative to the �ltration

F

0

� F

2

�n � F

22

�n � � � � � F

k

n;t

2

�n � F

t

:

Here the indexing by numbers k2

�n

or t di�ers from the standard indexing

by numbers in Z

+

, but the interpretation of \submartingale" should be


lear. Be
ause the submartingale has �nitely many elements, it is uniformly

integrable. (If you wish, you may also think of it as an in�nite sequen
e, by

just repeating X

t

at the end.)

Both T

n

^t and T

n�1

^t 
an be viewed as stopping times relative to this

�ltration. For instan
e, the �rst follows from the fa
t that fT

n

� k2

�n

g =

fT < k2

�n

g 2 F

k2

�n
for every k, and the fa
t that the minimum of two

stopping times is always a stopping time. For T

n�1

we use the same argu-

ment and also note that the grid with mesh width 2

�n+1

is 
ontained in the

grid with mesh width 2

�n

. Be
ause T

n�1

^ t � T

n

^ t, the optional stopping

theorem in dis
rete time, Theorem 2.42, gives E(X

T

n�1

^t

j F

T

n

^t

) � X

T

n

^t

almost surely. Furthermore, E(X

T

n

^t

j F

0

) � X

0

and hen
e EX

T

n

^t

� EX

0

.

This being true for every n it follows that X

T

1

^t

; X

T

2

^t

; : : : is a reverse

submartingale relative to the reverse �ltration F

T

1

^t

� F

T

2

^t

� � � � with

mean bounded below by EX

0

. By Lemma 2.34 fX

T

n

^t

g is uniformly inte-

grable. Combining this with the �rst paragraph we see that X

T

n

^t

! X

T^t

in L

1

, as n!1.

For �xed s < t the sequen
e

X

0

; X

2

�n ; : : : ; X

k

s;n

2

�n ; X

s

; : : : ; X

k

t;n

2

�n ; X

t

is a submartingale relative to the �ltration

F

0

� F

2

�n
� � � � � F

k

s;n

2

�n
� F

s

� � � � � F

k

t;n

2

�n
� F

t

:

The variable T

n

^t is a stopping time relative to this set-up. By the extension

of Theorem 2.13 to submartingales the pre
eding pro
ess stopped at T

n

^ t

is a submartingale relative to the given �ltration. This is the pro
ess

X

0

; X

2

�n

^T

n

; : : : ; X

k

s;n

2

�n

^T

n

; X

s^T

n

; : : : ; X

k

t;n

2

�n

^T

n

; X

t^T

n

:

In parti
ular, this gives that

E(X

T

n

^t

j F

s

) � X

T

n

^s

; a:s::

As n ! 1 the left and right sides of the display 
onverge in L

1

to

E(X

T^t

j F

s

) and X

T^s

. Be
ause L

1

-
onvergen
e implies the existen
e of

an almost surely 
onverging subsequen
e, the inequality is retained in the

limit in an almost sure sense. Hen
e E(X

T^t

j F

s

) � X

T^s

almost surely.

A uniformly integrable, 
adlag (sub/super) martingale X 
onverges in

L

1

to a limit X

1

, by Theorem 4.10. This allows to de�ne X

T

also if T takes

the value 1.
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4.21 Theorem. If X is a uniformly integrable, 
adlag submartingale and

S � T are stopping times, then X

S

andX

T

are integrable and E(X

T

j F

S

) �

X

S

almost surely.

Proof. De�ne S

n

and T

n

to be the dis
retizations of S and T upwards on

the grid 0 < 2

�n

< 22

�n

< � � �, de�ned as in the pre
eding proof. By right


ontinuity X

S

n

! X

S

and X

T

n

! X

T

pointwise on 
. Both S

n

and T

n

are

stopping times relative to the �ltration F

0

� F

2

�n
� � � �, and X

0

; X

2

�n
; : : :

is a uniformly integrable submartingale relative to this �ltration. Be
ause

S

n

� T

n

the optional sampling theorem in dis
rete time, Theorem 2.42,

yields that X

S

n

and X

T

n

are integrable and E(X

T

n

j F

S

n

) � X

S

n

almost

surely. In other words, for every F 2 F

S

n

,

EX

T

n

1

F

� EX

S

n

1

F

:

Be
ause S � S

n

we have F

S

� F

S

n

and hen
e the pre
eding display is true

for every F 2 F

S

. If the sequen
es X

S

n

and X

T

n

are uniformly integrable,

then we 
an take the limit as n ! 1 to �nd that EX

T

1

F

� EX

S

1

F

for

every F 2 F

S

and the proof is 
omplete.

Both T

n�1

and T

n

are stopping times relative to the �ltration F

0

�

F

2

�n
� � � � and T

n

� T

n�1

. By the optional stopping theorem in dis
rete

time E(X

T

n�1

j F

T

n

) � X

T

n

, sin
e X is uniformly integrable. Furthermore,

E(X

T

n

j F

0

) � X

0

and hen
e EX

T

n

� EX

0

. It follows that fX

T

n

g is a reverse

submartingale relative to the reverse �ltration F

T

1

� F

T

2

� � � � with mean

bounded below. Therefore, the sequen
e fX

T

n

g is uniformly integrable by

Lemma 2.34. Of 
ourse, the same proof applies to fX

S

n

g.

If X is a 
adlag, uniformly integrable martingale and S � T are stop-

ping times, then E(X

T

j F

S

) = X

S

, by two appli
ations of the pre
eding

theorem. As a 
onsequen
e the expe
tation EX

T

of the stopped pro
ess at

1 is equal to the expe
tation EX

0

for every stopping time T . This property

a
tually 
hara
terizes uniformly integrable martingales.

4.22 Lemma. Let X = fX

t

: t 2 [0;1℄g be a 
adlag adapted pro
ess su
h

that X

T

is integrable with EX

T

= EX

0

for every stopping time T . Then

X is a uniformly integrable martingale.

Proof. For a given F 2 F

t

de�ne the random variable T to be t on F and

to be 1 otherwise. Then T 
an be seen to be a stopping time, and

EX

T

= EX

t

1

F

+EX

1

1

F




;

EX

0

= EX

1

= EX

1

1

F

+EX

1

1

F




:

We 
on
lude that EX

t

1

F

= EX

1

1

F

for every F 2 F

t

and hen
e X

t

=

E(X

1

j F

t

) almost surely.
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4.23 EXERCISE. Suppose that X is a 
adlag pro
ess su
h that X

t

=

E(�j F

t

) almost surely, for every t. Show that X

T

= E(�j F

T

) almost surely

for every stopping time T .

4.5 Brownian Motion

Brownian motion is a spe
ial sto
hasti
 pro
ess, whi
h was �rst introdu
ed

as a model for the \Brownian motion" of parti
les in a gas or 
uid, but has

a mu
h greater importan
e, both for appli
ations and theory. It 
ould be

thought of as the \standard normal distribution for pro
esses".

4.24 De�nition. A sto
hasti
 pro
ess B is a (standard) Brownian motion

relative to the �ltration fF

t

g if:

(i) B is adapted.

(ii) all sample paths are 
ontinuous.

(iii) B

t

�B

s

is independent of F

s

for all 0 � s � t.

(iv) B

t

�B

s

is N(0; t� s)-distributed.

(v) B

0

= 0.

The model for the traje
tory in R

3

of a parti
le in a gas is a pro
ess

(B

1

t

; B

2

t

; B

3

t

) 
onsisting of three independent Brownian motions de�ned on

the same �ltered probability spa
e. Property (ii) is natural as a parti
le


annot jump through spa
e. Property (iii) says that given the path history

F

s

the displa
ement B

t

�B

s

in the time interval (s; t℄ does not depend on

the past. Property (iv) is the only quantative property. The normality 
an

be motivated by the usual argument that, even in small time intervals, the

displa
ement should be a sum of many in�nitesimal movements, but has

some arbitrariness to it. The zero mean indi
ates that there is no preferred

dire
tion. The varian
e t�s is, up to a 
onstant, a 
onsequen
e of the other

assumptions if we also assume that it may only depend on t� s. Property

(iv) is the main reason for the quali�
ation \standard". If we repla
e 0 by

x, then we obtain a \Brownian motion starting at x".

We automati
ally have the following properties:

(vi) (independent in
rements) B

t

2

� B

t

1

; B

t

3

� B

t

2

; : : : ; B

t

k

� B

t

k�1

are

independent for every 0 � t

1

< t

2

< � � � < t

k

.

(vii) (B

t

1

; : : : ; B

t

k

) is multivariate-normally distributed with mean zero and


ovarian
e matrix 
ov(B

t

i

; B

t

j

) = t

i

^ t

j

.

It is 
ertainly not immediately 
lear that Brownian motion exists, but

it does.

4.25 Theorem. There exists a 
omplete probability spa
e (
;F ; P ) and

measurable mapsB

t

: 
! R su
h that the pro
essB satis�es (i){(v) relative
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to the 
ompletion of the natural �ltration generated by B (whi
h is right-


ontinuous).

There are many di�erent proofs of this theorem, but we omit giving a

proof altogether. It is re
onforting to know that Brownian motion exists,

but, on the other hand, it is perfe
tly possible to work with it without

worrying about its existen
e.

The theorem asserts that a Brownian motion exists relative to its (
om-

pleted) natural �ltration, whereas the de�nition allows a general �ltration.

In fa
t, there exist many Brownian motions. Not only 
an we use di�er-

ent probability spa
es to 
arry them, but, more importantly, we may use

another than the natural �ltration.

Warning. Some authors always use the natural �ltration, or its 
om-

pletion. Property (iii) is stronger if fF

t

g is a bigger �ltration.

Brownian motion is \the" example of a 
ontinuous martingale.

4.26 Theorem. Any Brownian motion is a martingale.

Proof. Be
ause B

t

� B

s

is independent of F

s

, we have E(B

t

� B

s

j F

s

) =

E(B

t

�B

s

) almost surely, and this is 0.

4.27 EXERCISE. Show that the pro
ess fB

2

t

� tg is a martingale.

Brownian motion has been studied extensively and possesses many

remarkable properties. For instan
e:

(i) Almost every sample path is nowhere di�erentiable.

(ii) Almost every sample path has no point of in
rease. (A point of in
rease

of a fun
tion f is a point t that possesses a neighbourhood su
h that

on this neighbourhood f is maximal at t.)

(iii) For almost every sample path the set of points of lo
al maximum is


ountable and dense in [0;1).

(iv) lim sup

t!1

B

t

=

p

2t loglog t = 1 a.s..

These properties are of little 
on
ern in the following. A weaker form of

property (i) follows from the following theorem, whi
h is fundamental for

the theory of sto
hasti
 integration.

4.28 Theorem. If B is a Brownian motion and 0 < t

n

0

< t

n

n

< � � � < t

n

k

n

= t

is a sequen
e of partitions of [0; t℄ with mesh widths tending to zero, then

k

n

X

i=1

(B

t

i

�B

t

i�1

)

2
P

!

t:

Proof.We shall even show 
onvergen
e in quadrati
 mean. Be
ause B

t

�B

s

is N(0; t�s)-distributed, the variable (B

t

�B

s

)

2

has mean t�s and varian
e
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2(t � s)

2

. Therefore, by the independen
e of the in
rements and be
ause

t =

P

i

(t

i

� t

i�1

)

E

h

k

n

X

i=1

(B

t

i

�B

t

i�1

)

2

� t

i

2

=

k

n

X

i=1

var(B

t

i

�B

t

i�1

)

2

= 2

k

n

X

i=1

(t

i

� t

i�1

)

2

:

The right side is bounded by 2Æ

n

P

k

n

i=1

jt

i

� t

i�1

j = 2Æ

n

t for Æ

n

the mesh

width of the partition. Hen
e it 
onverges to zero.

A 
onsequen
e of the pre
eding theorem is that for any sequen
e of

partitions with mesh widths tending to 0

lim sup

n!1

k

n

X

i=1

jB

t

i

�B

t

i�1

j =1; a:s::

Indeed, if the lim sup were �nite on a set of positive probability, then on

this set we would have that

P

k

n

i=1

(B

t

i

�B

t

i�1

)

2

! 0 almost surely, be
ause

max

i

jB

t

i

� B

t

i�1

j ! 0 by the (uniform) 
ontinuity of the sample paths.

This would 
ontradi
t the 
onvergen
e in probability to t.

We 
on
lude that the sample paths of Brownian motion are of un-

bounded variation. In 
omparison if f : [0; t℄ ! R is 
ontinuously di�eren-

tiable, then

lim

n!1

k

n

X

i=1

�

�

f(t

i

)� f(t

i�1

)

�

�

=

Z

t

0

jf

0

(s)j ds:

It is the roughness (or \randomness") of its sample paths that makes Brow-

nian motion interesting and 
ompli
ated at the same time.

Physi
ists may even �nd that Brownian motion is too rough as a model

for \Brownian motion". Sometimes this is alleviated by modelling velo
ity

using a Brownian motion, rather than lo
ation.

4.6 Lo
al Martingales

In the de�nition of a sto
hasti
 integral L

2

-martingales play a spe
ial role.

A Brownian motion is L

2

-bounded if restri
ted to a 
ompa
t time interval,

but not if the time set is [0;1). Other martingales may not even be square-

integrable.

Lo
alization is a method to extend de�nitions or properties from pro-


esses that are well-behaved, often in the sense of integrability properties,

to more general pro
esses. The simplest form is to 
onsider a pro
ess X in

turn on the intervals [0; T

1

℄; [0; T

2

℄; : : : for numbers T

1

� T

2

� � � � in
reasing

to in�nity. Equivalently, we 
onsider the sequen
e of stopped pro
essesX

T

n

.

More 
exible is to use stopping times T

n

for this purpose. The following

de�nition of a \lo
al martingale" is an example.
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4.29 De�nition. An adapted pro
ess X is a lo
al (sub/super) martingale

in L

p

if there exists a sequen
e of stopping times 0 � T

1

� T

2

� � � � with

T

n

" 1 almost surely su
h that X

T

n

is a (sub/super) martingale in L

p

for

every n.

In the 
ase that p = 1 we drop the \in L

1

" and speak simply of

a lo
al (sub/super) martingale. Rather than \martingale in L

p

" we also

speak of \L

p

-martingale". Other properties of pro
esses 
an be lo
alized in

a similar way, yielding for instan
e, \lo
ally bounded pro
esses" or \lo
ally

L

2

-bounded martingales". The appropriate de�nitions will be given when

needed, but should be easy to guess. (Some of these 
lasses a
tually are

identi
al. See the exer
ises at the end of this se
tion.)

The sequen
e of stopping times 0 � T

n

" 1 is 
alled a lo
alizing

sequen
e. Su
h a sequen
e is 
ertainly not unique. For instan
e, we 
an

always 
hoose T

n

� n by trun
ating T

n

at n.

Any martingale is a lo
al martingale, for we 
an simply 
hoose the

lo
alizing sequen
e equal to T

n

�1. Conversely, a \suÆ
iently integrable"

lo
al (sub/super) martingale is a (sub/super) martingale, as we now argue.

If X is a lo
al martingale with lo
alizing sequen
e T

n

, then X

T

n

t

! X

t

almost surely for every t. If this 
onvergen
e also happens in L

1

, then

the martingale properties of X

T

n


arries over onto X and X itself is a

martingale.

4.30 EXERCISE. Show that a dominated lo
al martingale is a martingale.

Warning. A lo
al martingale that is bounded in L

2

need not be a

martingale. A fortiori, a uniformly integrable lo
al martingale need not be

a martingale. See Chung and Williams, pp20{21, for a 
ounterexample.

Warning. Some authors de�ne a lo
al (sub/super) martingale in L

p

by

the requirement that the pro
essX�X

0


an be lo
alized as in the pre
eding

de�nition. If X

0

2 L

p

, this does not make a di�eren
e, but otherwise it may.

Be
ause (X

T

n

)

0

= X

0

our de�nition requires that the initial value X

0

of a

lo
al (sub/super) martingale in L

p

be in L

p

.

We shall mostly en
ounter the lo
alization pro
edure as a means to

redu
e a proof to bounded sto
hasti
 pro
esses. If X is adapted and 
on-

tinuous, then

(4:31) T

n

= infft: jX

t

j � ng

is a stopping time. On the set T

n

> 0 we have jX

T

n

j � n. If X is a lo
al

martingale, then we 
an always use this sequen
e as the lo
alizing sequen
e.

4.32 Lemma. If X is a 
ontinuous, lo
al martingale, then T

n

given by

(4.31) de�nes a lo
alizing sequen
e. Furthermore,X is automati
ally a lo
al

L

p

-martingale for every p � 1 su
h that X

0

2 L

p

.
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Proof. If T

n

= 0, then (X

T

n

)

t

= X

0

for all t � 0. On the other hand, if

T

n

> 0, then jX

t

j < n for t < T

n

and there exists t

m

# T

n

with jX

t

m

j � n.

By 
ontinuity of X it follows that jX

T

n

j = n in this 
ase. Consequently,

jX

T

n

j � jX

0

j _ n and hen
e X

T

n

is even dominated by an element of L

p

if

X

0

2 L

p

. It suÆ
es to prove that T

n

is a lo
alizing sequen
e.

Suppose that S

m

is a sequen
e of stopping times with S

m

! 1 as

m !1 and su
h that X

S

m

is a martingale for every m. Then X

S

m

^T

n

=

(X

S

m

)

T

n

is a martingale for ea
h m and n, by Theorem 4.20. For every

�xed n we have jX

S

m

^T

n

j � jX

0

j _ n for every m, and X

S

m

^T

n

! X

T

n

almost surely as m!1. Be
ause X

0

= (X

S

m

)

0

and X

S

m

is a martingale

by assumption, it follows that X

0

is integrable. Thus X

S

m

^T

n

^t

! X

T

n

^t

in L

1

as m ! 1, for every t � 0. Upon taking limits on both sides of the

martingale equality E(X

S

m

^T

n

^t

j F

s

) = X

S

m

^T

n

^s

of X

S

m

^T

n

we see that

X

T

n

is a martingale for every n.

Be
ause X is 
ontinuous, its sample paths are bounded on 
ompa
ta.

This implies that T

n

!1 as n!1.

4.33 EXERCISE. Show that a lo
al martingale X is a uniformly integrable

martingale if and only if the set fX

T

:T �nite stopping timeg is uniformly

integrable. (A pro
ess with this property is said to be of 
lass D.)

4.34 EXERCISE. Show that a lo
al L

1

-martingale X is also a lo
ally uni-

formly integrable martingale, meaning that there exists a sequen
e of stop-

ping times 0 � T

n

" 1 su
h that X

T

n

is a uniformly integrable martingale.

4.35 EXERCISE. Show that (for p > 1) a lo
al L

p

-martingale X is lo
ally

bounded in L

p

, meaning that there exists a sequen
e of stopping times

0 � T

n

" 1 su
h that X

T

n

is a martingale that is bounded in L

p

, for every

n.

4.7 Maximal Inequalities

The maximal inequalities for dis
rete time (sub/super) martingales 
arry

over to 
ontinuous time 
adlag (sub/super) martingales, without surprises.

The essential observation is that a supremum sup

t

X

t

over t � 0 is equal to

the supremum over a 
ountable dense subset of [0;1) if X is 
adlag. Fur-

thermore, a 
ountable supremum is the (in
reasing) limit of �nite maxima.

4.36 Lemma. If X is a nonnegative, 
adlag submartingale, then for any

x � 0 and every t � 0,

xP

�

sup

0�s�t

X

s

> x

�

� EX

t

1

sup

0�s�t

X

t

�x

� EX

t

:
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4.37 Corollary. If X is a nonnegative, 
adlag submartingale, then for any

p > 1 and p

�1

+ q

�1

= 1, and every t � 0,










sup

0�s�t

X

s










p

� qkX

t

k

p

:

If X is bounded in L

p

(
;F ; P ), then X

t

! X

1

in L

p

for some random

variable X

1

and










sup

t�0

X

t










p

� qkX

1

k

p

= q sup

t�0

kX

t

k

p

:

The pre
eding results apply in parti
ular to the absolute value of a

martingale. For instan
e, for any martingale X ,

(4:38)










sup

t

jX

t

j










2

� 2 sup

t

kX

t

k

2

:
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Sto
hasti
 Integrals

In this 
hapter we de�ne integrals

R

X dM for pairs of a "predi
table"

pro
ess X and a martingale M . The main 
hallenge is that the sample

paths of many martingales of interest are of in�nite variation. We have seen

this for Brownian motion in Se
tion 4.5; this property is in fa
t shared by

all martingales with 
ontinuous sample paths. For this reason the integral

R

X dM 
annot be de�ned using ordinary measure theory. Rather than

de�ning it \pathwise for every !", we de�ne it as a random variable through

an L

2

-isometry.

In general the predi
tability of the integrand (de�ned in Se
tion 5.1)

is important, but in spe
ial 
ases, in
luding the one of Brownian motion,

the de�nition 
an be extended to more general pro
esses.

The de�nition is 
arried out in several steps, ea
h time in
luding more

general pro
esses X or M . After 
ompleting the de�nition we 
lose the


hapter with Itô's formula, whi
h is the sto
hasti
 version of the 
hain rule

from 
al
ulus, and gives a method to manipulate sto
hasti
 integrals.

Throughout the 
hapter (
;F ; fF

t

g; P ) is a given �ltered probability

spa
e.

5.1 Predi
table Sets and Pro
esses

The produ
t spa
e [0;1) � 
 is naturally equipped with the produ
t �-

�eld B

1

� F . Several sub �-�elds play an important role in the de�nition

of sto
hasti
 integrals.

A sto
hasti
 pro
ess X 
an be viewed as the map X : [0;1)� 
 ! R

given by (t; !) 7! X

t

(!). We de�ne �-�elds by requiring that 
ertain types

of pro
esses must be measurable as maps on [0;1)� 
.
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5.1 De�nition. The predi
table �-�eld P is the �-�eld on [0;1)�
 gen-

erated by the left-
ontinuous, adapted pro
esses X : [0;1) � 
 ! R. (It


an be shown that the same �-�eld is generated by all 
ontinuous, adapted

pro
esses X : [0;1)� 
! R.)

5.2 De�nition. The optional �-�eld O is the �-�eld on [0;1)� 
 gener-

ated by the 
adlag, adapted pro
esses X : [0;1)� 
! R.

5.3 De�nition. The progressive �-�eld M is the �-�eld on [0;1) � 


generated by the progressively measurable pro
esses X : [0;1)� 
! R.

We 
all a pro
ess X : [0;1) � 
 ! R predi
table or optional if it is

measurable relative to the predi
table or optional �-�eld.

It 
an be shown that the three �-�elds are nested in the order of the

de�nitions:

P � O �M � B

1

� F :

The predi
table �-�eld is the most important one to us, as it de�nes the

pro
esses X that are permitted as integrands in the sto
hasti
 integrals.

Be
ause, obviously, left-
ontinuous, adapted pro
esses are predi
table, these

are \good" integrands. In parti
ular, 
ontinuous, adapted pro
esses.

Warning. Not every predi
table pro
ess is left-
ontinuous.

The term \predi
table" as applied to left-
ontinuous pro
esses ex-

presses the fa
t that the value of a left-
ontinuous pro
ess at a time t

is (approximately) \known" just before time t. In 
ontrast, a general pro-


ess may jump and hen
e be \unpredi
table" from its values in the past.

However, it is not true that a predi
table pro
ess 
annot have jumps. The

following exer
ise illustrates this.

5.4 EXERCISE. Show that any measurable fun
tion f : [0;1) ! R de-

�nes a predi
table pro
ess (t; !) 7! f(t). \Deterministi
 pro
esses are pre-

di
table".

There are several other ways to des
ribe the various �-�elds. We give

some of these as a series of lemmas. For proofs, see Chung and Williams

p25{30 and p57{63.

5.5 Lemma. The predi
table �-�eld is generated by the 
olle
tion of all

subsets of [0;1)� 
 of the form

f0g � F

0

; F

0

2 F

0

; and (s; t℄� F

s

; F

s

2 F

s

; s < t:

We refer to the sets in Lemma 5.5 as predi
table re
tangles.

Given two fun
tions S; T : 
 ! [0;1℄, the subset of [0;1) � 
 given

by

[S; T ℄ =

�

(t; !) 2 [0;1)� 
:S(!) � t � T (!)
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is a sto
hasti
 interval. In a similar way, we de�ne the sto
hasti
 intervals

(S; T ℄, [S; T ) and (S; T ). The set [T ℄ = [T; T ℄ is the graph of T . By de�nition

these are subsets of [0;1) � 
, even though the right endpoint T may

assume the value 1. If S and/or T is degenerate, then we use the same

notation, yielding, for instan
e, [0; T ℄ or (s; t℄.

Warning. This 
auses some 
onfusion, be
ause notation su
h as (s; t℄

may now denote a subset of [0;1℄ or of [0;1)� 
.

We are espe
ially interested in sto
hasti
 intervals whose boundaries

are stopping times. These intervals may be used to des
ribe the various

�-�elds, where we need to single out a spe
ial type of stopping time.

5.6 De�nition. A stopping time T : 
! [0;1℄ is predi
table if there exists

a sequen
e T

n

of stopping times su
h that 0 � T

n

" T and su
h that T

n

< T

for every n on the set fT > 0g.

A sequen
e of stopping times T

n

as in the de�nition is 
alled an an-

noun
ing sequen
e. It \predi
ts" that we are about to stop. The phrase

\predi
table stopping time" is often abbreviated to \predi
table time".

Warning. A hitting time of a predi
table pro
ess is not ne
essarily a

predi
table time.

5.7 Lemma. Ea
h of the following 
olle
tions of sets generates the pre-

di
table �-�eld.

(i) All sto
hasti
 intervals [T;1), where T is a predi
table stopping time.

(ii) All sto
hasti
 intervals [S; T ), where S is a predi
table stopping time

and T is a stopping time.

(iii) All sets f0g � F

0

, F

0

2 F

0

and all sto
hasti
 intervals (S; T ℄, where S

and T are stopping times.

Furthermore, a stopping time T is predi
table if and only if its graph [T ℄ is

a predi
table set.

5.8 Lemma. Ea
h of the following 
olle
tions of sets generates the optional

�-�eld.

(i) All sto
hasti
 intervals [T;1), where T is a stopping time.

(ii) All sto
hasti
 intervals [S; T ℄, [S; T ), (S; T ℄, (S; T ), where S and T are

stopping times.

5.9 Example. If T is a stopping time and 
 > 0, then T+
 is a predi
table

stopping time. An announ
ing sequen
e is the sequen
e T + 


n

for 


n

< 


numbers with 0 � 


n

" 
. Thus there are many predi
table stopping times.

5.10 Example. Let X be an adapted pro
ess with 
ontinuous sample

paths and B be a 
losed set. Then T = infft � 0:X

t

2 Bg is a pre-

di
table time. An announ
ing sequen
e is T

n

= infft � 0: d(X

t

; B) < n

�1

g.

The proof of this is more or less given already in Example 4.16.
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5.11 Example. It 
an be shown that any stopping time relative to the nat-

ural �ltration of a Brownian motion is predi
table. See Chung andWilliams,

p30{31.

5.12 Example. The left-
ontinuous version of an adapted 
adlag pro
ess

if predi
table, by left 
ontinuity. Then so is the jump pro
ess �X of a

predi
table pro
ess X . It 
an be shown that this jump pro
ess is nonzero

only on the union [

n

[T

n

℄ of the graphs of 
ountably many predi
table times

T

n

. (These predi
table times are said to \exhaust the jumps of X".) Thus

a predi
table pro
ess has \predi
table jumps".

5.13 Example. Every measurable pro
ess that is indistinguishable from

a predi
table pro
ess is predi
table. This means that we do not need to

\worry about null sets" too mu
h.

This is true only if the �ltered probability spa
e satis�es the usual


onditions (as we agreed to assume throughout).

To verify the 
laim it suÆ
es to show that every measurable pro
ess

X that is indistinguishable from the zero pro
ess (an evanes
ent pro
ess)

is predi
table. By the 
ompleteness of the �ltration a pro
ess of the form

1

(u;v℄�N

is left-
ontinuous and adapted for every null set N , and hen
e

predi
table. The produ
t �-�eld B

1

� F is generated by the sets of the

form (u; v℄ � F with F 2 F and hen
e for every �xed null set N its tra
e

on the set [0;1) � N is generated by the 
olle
tion of sets of the form

(u; v℄ � (F \ N). Be
ause the latter sets are predi
table the tra
es of the

produ
t �-�eld and the predi
table �-�eld on the set [0;1)�N are identi
al

for every �xed null set N . We apply this with the null set N of all !

su
h that there exists t � 0 with X

t

(!) 6= 0. For every Borel set B in R

the set f(t; !):X

t

(!) 2 Bg is B

1

� F-measurable by assumption, and is


ontained in [0;1)�N if B does not 
ontain 0. Thus it 
an be written as

A \

�

[0;1) � N

�

for some predi
table set A and hen
e it is predi
table,

be
ause [0;1) � N is predi
table. The set B = f0g 
an be handled by

taking 
ompletements.

5.2 Dol�eans Measure

In this se
tion we prove that for every 
adlag martingale M in L

2

there

exists a �-�nite measure �

M

on the predi
table �-�eld su
h that

(5:14)

�

M

(0� F

0

) = 0; F

0

2 F

0

;

�

M

�

(s; t℄� F

s

�

= E1

F

s

(M

2

t

�M

2

s

); s < t; F

s

2 F

s

:
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The right side of the pre
eding display is nonnegative, be
ause M

2

is a

submartingale. We 
an see this expli
itly by rewriting it as

E1

F

s

(M

t

�M

s

)(M

t

+M

s

) = E1

F

s

(M

t

�M

s

)

2

;

whi
h follows be
ause E1

F

s

(M

t

�M

s

)M

s

= 0 by the martingale property,

so that we 
an 
hange \+" into \�". The measure �

M

is 
alled the Dol�eans

measure of M .

5.15 Example (Brownian motion). If M = B is a Brownian motion,

then by the independen
e of B

t

�B

s

and F

s

,

�

B

�

(s; t℄� F

s

) = E1

F

s

E(B

2

t

�B

2

s

) = P (F

s

)(t� s)

= (�� P )

�

(s; t℄� F

s

):

Thus the Dol�eans measure of Brownian motion is the produ
t measure

�� P . This is not only well-de�ned on the predi
table �-�eld, but also on

the bigger produ
t �-�eld B

1

�F .

5.16 EXERCISE. Find the Dol�eans measure of the Poisson pro
ess.

In order to prove the existen
e of the measure �

M

in general, we follow

the usual steps of measure theory. First we extend �

M

by additivity to

disjoint unions of the form

A = f0g � F

0

[

k

[

i=1

(s

i

; t

i

℄� F

i

; F

0

2 F

0

; F

i

2 F

s

i

;

by setting

�

M

(A) =

k

X

i=1

E1

F

i

(M

2

t

i

�M

2

s

i

):

It must be shown that this is well-de�ned: if A 
an be represented as a

disjoint, �nite union of predi
table re
tangles in two di�erent ways, then

the two numbers �

M

(A) obtained in this way must agree. This 
an be

shown by the usual tri
k of 
onsidering the 
ommon re�nement. Given two

disjoint, �nite unions that are equal,

A = f0g � F

0

[

k

[

i=1

(s

i

; t

i

℄� F

i

= f0g � F

0

[

l

[

j=1

(s

0

j

; t

0

j

℄� F

0

j

;

we 
an write A also as the disjoint union of f0g � F

0

and the sets

�

(s

i

; t

i

℄� F

i

�

\

�

(s

0

j

; t

0

j

℄� F

0

j

�

= (s

00

i;j

; t

00

i;j

℄� F

00

i;j

:

Next we show that the three de�nitions of �

M

(A) all agree. We omit further

details of this veri�
ation. On
e we have veri�ed that the measure �

M

is
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well-de�ned in this way, it is 
lear that it is �nitely additive on the 
olle
tion

of �nite disjoint unions of predi
table re
tangles.

The set of all �nite disjoint unions of predi
table re
tangles is a ring,

and generates the predi
table �-�eld. The �rst 
an be proved in the same

way as it is proved that the 
ells in R

2

form a ring. The se
ond is the 
ontent

of Lemma 5.5. We take both for fa
ts. Next Carath�eodory's theorem implies

that �

M

is extendible to P provided that it is 
ountably additive on the

ring. This remains to proved.

5.17 Theorem. For every 
adlag martingaleM in L

2

there exists a unique

measure �

M

on the predi
table �-�eld su
h that (5.14) holds.

Proof. See Chung and Williams, p50{53.

5.18 EXERCISE. Show that �

M

�

[0; t℄� 


�

<1 for every t � 0 and 
on-


lude that �

M

is �-�nite.

5.3 Square-integrable Martingales

Given a square-integrable martingale M we de�ne an integral

R

X dM for

in
reasingly more general pro
esses X . If X is of the form 1

(s;t℄

Z for some

(time-independent) random variable Z, then we want to de�ne

Z

1

(s;t℄

Z dM = Z(M

t

�M

s

):

Here 1

(s;t℄

Z is short-hand notation for the map (u; !) 7! 1

(s;t℄

(u)Z(!) and

hen
e the integral is like a Riemann-Stieltjes integral for �xed !. The right

side is the random variable ! 7! Z(!)

�

M

t

(!)�M

s

(!)

�

. We also want the

integral to be linear in the integrand, and are lead to de�ne

Z

k

X

i=1

a

i

1

(s

i

;t

i

℄�F

i

dM =

k

X

i=1

a

i

1

F

i

(M

t

i

�M

s

i

):

By 
onvention we 
hoose \to give measure 0 to 0" and set

Z

a

0

1

f0g�F

0

dM = 0:

We 
an only postulate these de�nitions if they are 
onsistent. If X =

P

k

i=1

a

i

1

(s

i

;t

i

℄�F

i

has two representations as a linear 
ombination of pre-

di
table re
tangles, then the right sides of the se
ond last display must

agree. For this it is 
onvenient to restri
t the de�nition initially to linear


ombinations of disjoint predi
table re
tangles. The 
onsisten
y 
an then

be 
he
ked using the joint re�nements of two given representations. We

omit the details.
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5.19 De�nition. If X = a

0

1

f0g�F

0

+

P

k

i=1

a

i

1

(s

i

;t

i

℄�F

i

is a linear 
ombi-

nation of disjoint predi
table re
tangles, then the sto
hasti
 integral of X

relative to M is de�ned as

R

X dM =

P

k

i=1

a

i

1

F

i

(M

t

i

�M

s

i

).

In this de�nition there is no need for the restri
tion to predi
table pro-


esses. However, predi
tability is important for the extension of the integral.

We extend by 
ontinuity, based on the following lemmas.

5.20 Lemma. Every uniformly 
ontinuous map de�ned on a dense subset

of a metri
 spa
e with values in another metri
 spa
e extends in a unique

way to a 
ontinuous map on the whole spa
e. If the map is a linear isometry

between two normed spa
es, then so is the extension.

5.21 Lemma. The 
olle
tion of simple pro
ess X as in De�nition 5.19 is

dense in L

2

�

[0;1)�
;P ; �

M

�

. Every bounded X 2 L

2

�

[0;1)�
;P ; �

M

�

is a limit in this spa
e of a uniformly bounded sequen
e of simple pro
esses.

5.22 Lemma. For every X as in De�nition 5.19 we have

R

X

2

d�

M

=

E(

R

X dM)

2

.

Proofs. The �rst lemma is a standard result from topology.

Be
ause any fun
tion in L

2

�

[0;1)�
;P ; �

M

�

is the limit of a sequen
e

of bounded fun
tions, for Lemma 5.21 it suÆ
es to show that any bounded

element of L

2

�

[0;1)�
;P ; �

M

�


an be obtained as su
h a limit. Be
ause

1

[0;t℄

X ! X in L

2

�

[0;1) � 
;P ; �

M

�

as t ! 1, we 
an further restri
t

ourselves to elements that vanish o� [0; t℄� 
.

Let H be the set of all bounded, predi
table X su
h that X1

[0;t℄

is

a limit in L

2

�

[0;1) � 
;P ; �

M

�

of a sequen
e of linear 
ombinations of

indi
ators of predi
table re
tangles, for every t � 0. ThenH is a ve
tor spa
e

and 
ontains the 
onstants. A \diagonal type" argument shows that it is also


losed under bounded monotone limits. Be
ause H 
ontains the indi
ators

of predi
table re
tangles (the sets in Lemma 5.5) and this 
olle
tion of sets

is interse
tion stable, Lemma 5.21 follows from the monotone 
lass theorem,

Theorem 1.23.

Using the 
ommon re�nement of two �nite disjoint unions of pre-

di
table re
tangels, we 
an see that the minimum of two simple pro
esses is

again a simple pro
ess. This implies the se
ond statement of Lemma 5.21.

Finally 
onsider Lemma 5.22. Given a linear 
ombination X of disjoint

predi
table re
tangles as in De�nition 5.19, its square is given by X

2

=

a

2

0

1

f0g�F

0

+

P

k

i=1

a

2

i

1

(s

i

;t

i

℄�F

i

. Hen
e, by (5.14),

(5:23)

Z

X

2

d�

M

=

k

X

i=1

a

2

i

�

M

�

(s

i

; t

i

℄� F

i

�

=

k

X

i=1

a

2

i

E1

F

i

(M

t

i

�M

s

i

)

2

:
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On the other hand, by De�nition 5.19,

E

�

Z

X dM

�

2

= E

�

k

X

i=1

a

i

1

F

i

(M

t

i

�M

s

i

)

�

2

=

k

X

i=1

k

X

j=1

a

i

a

j

E1

F

i

1

F

j

(M

t

i

�M

s

i

)(M

t

j

�M

s

j

):

Be
ause the re
tangles are disjoint we have for i 6= j that either 1

F

i

1

F

j

= 0

or (s

i

; t

i

℄\(s

j

; t

j

℄ = ;. In the �rst 
ase the 
orresponding term in the double

sum is 
learly zero. In the se
ond 
ase it is zero as well, be
ause, if t

i

�

s

j

, the variable 1

F

i

1

F

j

(M

t

i

�M

s

i

) is F

s

j

-measurable and the martingale

di�eren
e M

t

j

�M

s

j

is orthogonal to F

s

j

. Hen
e the o�-diagonal terms

vanish and the expression is seen to redu
e to the right side of (5.23).

Lemma 5.22 shows that the map

X 7!

Z

X dM;

L

2

�

[0;1)� 
;P ; �

M

�

! L

2

(
;F ; P );

is an isometry if restri
ted to the linear 
ombinations of disjoint indi
ators

of predi
table re
tangles. By Lemma 5.21 this 
lass of fun
tions is dense in

L

2

�

[0;1)�
;P ; �

M

�

. Be
ause an isometry is 
ertainly uniformly 
ontinu-

ous, this map has a unique 
ontinuous extension to L

2

�

[0;1)�
;P ; �

M

�

,

by Lemma 5.20. We de�ne this extension to be the sto
hasti
 integral

R

X dM .

5.24 De�nition. For M a 
adlag martingale in L

2

and X a predi
table

pro
ess in L

2

�

[0;1)�
;P ; �

M

�

, the sto
hasti
 integralX 7!

R

X dM is the

unique 
ontinuous extension to L

2

�

[0;1) � 
;P ; �

M

�

of the map de�ned

in De�nition 5.19 with range inside L

2

(
;F ; P ).

Thus de�ned a sto
hasti
 integral is an element of the Hilbert spa
e

L

2

(
;F ; P ) and therefore an equivalen
e 
lass of fun
tions. We shall also


onsider every representative of the 
lass to be \the" sto
hasti
 integral

R

X dM . In general, there is no preferred way of 
hoosing a representative.

If X is a predi
table pro
ess su
h that 1

[0;t℄

X 2 L

2

�

[0;1)�
;P ; �

M

�

,

then

R

1

[0;t℄

X dM is de�ned through the pre
eding de�nition. A short-hand

notation for this is

R

t

0

X dM . By linearity of the sto
hasti
 integral we then

have

Z

1

(s;t℄

X dM =

Z

t

0

X dM �

Z

s

0

X dM; s < t:

We abbreviate this to

R

t

s

X dM .
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If 1

[0;t℄

X 2 L

2

�

[0;1)� 
;P ; �

M

�

for every t � 0, then we 
an de�ne

a pro
ess X �M satisfying

(X �M)

t

=

Z

t

0

X dM �

Z

1

[0;t℄

X dM:

Be
ause for every t � 0 the sto
hasti
 integral on the right is de�ned only

up to a null set, this display does not 
ompletely de�ne the pro
ess X �M .

However, any spe
i�
ation yields a martingaleX �M and there always exists

a 
adlag version of X �M .

5.25 Theorem. Suppose that M is a 
adlag martingale in L

2

and that X

is a predi
table pro
ess with

R

1

[0;t℄

X

2

d�

M

<1 for every t � 0.

(i) Any version of X �M = f

R

t

0

X dM : t � 0g is a martingale in L

2

.

(ii) There exists a 
adlag version of X �M .

(iii) If M is 
ontinuous, then there exists a 
ontinuous version of X �M .

(iv) The pro
esses �(X �M), where X �M is 
hosen 
adlag, and X�M are

indistinguishable.

Proof. If X is a �nite linear 
ombination of predi
table re
tangles, of the

form as in De�nition 5.19, then so is 1

[0;t℄

X and hen
e

R

1

[0;t℄

X dM is

de�ned as

Z

1

[0;t℄

X dM =

k

X

i=1

a

i

(M

t

i

^t

�M

s

i

^t

):

As a pro
ess in t, this is a martingale in L

2

, be
ause ea
h of the stopped

pro
esses M

t

i

or M

s

i

is a martingale, and a linear 
ombination of martin-

gales is a martingale. The sto
hasti
 integral X �M of a general integrand

X is de�ned as an L

2

-limit of sto
hasti
 integrals of simple predi
table pro-


esses. Be
ause the martingale property is retained under 
onvergen
e in

L

1

, the pro
ess X �M is a martingale.

Statement (ii) is an immediate 
onsequen
e of (i) and Theorem 4.6,

whi
h implies that any martingale possesses a 
adlag version.

To prove statement (iii) it suÆ
es to show that the 
adlag version of

X �M found in (ii) is 
ontinuous if M is 
ontinuous. If X is elementary,

then this is 
lear from the expli
it formula for the sto
hasti
 integral used

in (i). In general, the sto
hasti
 integral (X �M)

t

is de�ned as the L

2

-limit

of a sequen
e of elementary sto
hasti
 integrals (X

n

�M)

t

. Given a �xed

T > 0 we 
an use the same sequen
e of linear 
ombinations of predi
table

re
tangles for every 0 � t � T . Ea
h pro
ess X �M � X

n

�M is a 
adlag

martingale in L

2

and hen
e, by Corollary 4.37, for every T > 0,










sup

0�t�T

�

�

(X �M)

t

� (X

n

�M)

t

�

�










2

� 2







(X �M)

T

� (X

n

�M)

T







2

:

The right side 
onverges to zero as n ! 1 and hen
e the variables in the

left side 
onverge to zero in probability. There must be a subsequen
e fn

i

g
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along whi
h the 
onvergen
e is almost surely, i.e. (X

n

i

�M)

t

! (X �M)

t

uniformly in t 2 [0; T ℄, almost surely. Be
ause 
ontinuity is retained under

uniform limits, the pro
essX �M is 
ontinuous almost surely. This 
on
ludes

the proof of (iii).

LetH be the set of all bounded predi
table pro
essesX for whi
h (iv) is

true. Then H is a ve
tor spa
e that 
ontains the 
onstants, and it is readily

veri�ed that it 
ontains the indi
ators of predi
table re
tangles. If 0 �

X

n

" X for a uniformly bounded X , then 1

[0;t℄

X

n

! 1

[0;t℄

X in L

2

�

[0;1)�


;P ; �

M

�

. As in the pre
eding paragraph we 
an sele
t a subsequen
e su
h

that, for the 
adlag versions, X

n

i

�M ! X �M uniformly on 
ompa
ta,

almost surely. Be
ause j�Y j � 2kY k

1

for any 
adlag pro
ess Y , the latter

implies that �(X

n

i

�M)! �(X �M) uniformly on 
ompa
ta, almost surely.

On the other hand, by pointwise 
onvergen
e of X

n

to X , X

n

i

�M !

X�M pointwise on [0;1) � 
. Thus fX

n

g � H implies that X 2 H.

By the monotone 
lass theorem, Theorem 1.23, H 
ontains all bounded

predi
tableX . A generalX 
an be trun
ated to the interval [�n; n℄, yielding

a sequen
e X

n

with X

n

! X pointwise on [0;1)�
 and 1

[0;t℄

X

n

! 1

[0;t℄

X

in L

2

�

[0;1)� 
;P ; �

M

�

. The latter implies, as before, that there exists a

subsequen
e su
h that, for the 
adlag versions, X

n

i

�M ! X �M uniformly

on 
ompa
ta, almost surely. It is now seen that (iv) extends to X .

The following two lemmas gives further properties of sto
hasti
 inte-

grals. Here we use notation as in the following exer
ise.

5.26 EXERCISE. Let S � T be stopping times and let X be an F

S

-

measurable random variable. Show that the pro
ess 1

(S;T ℄

X de�ned as

(t; !) 7! 1

(S(!);T (!)℄

(t)X(!) is predi
table.

5.27 Lemma. Let M be a 
adlag martingale in L

2

and let S � T be

bounded stopping times.

(i)

R

1

(S;T ℄

X dM = X(M

T

�M

S

) almost surely, for every bounded F

S

-

measurable random variable X .

(ii)

R

1

(S;T ℄

XY dM = X

R

1

(S;T ℄

Y dM almost surely, for every bounded

F

S

-measurable random variable X and bounded predi
table pro
ess

Y .

(iii)

R

1

(S;T ℄

X dM = N

T

�N

S

almost surely, for every bounded predi
table

pro
ess X , and N a 
adlag version of X �M .

(iv)

R

1

f0g�


X dM = 0 almost surely for every predi
table pro
ess X .

Proof. Let S

n

and T

n

be the upward dis
retizations of S and T on the

grid 0 < 2

�n

< 22

�n

< � � � < k

n

2

�n

, as in the proof of Theorem 4.20, for

k

n

suÆ
iently large that k

n

2

�n

> S _ T . Then S

n

# S and T

n

# T , so that

1

(S

n

;T

n

℄

! 1

(S;T ℄

pointwise on 
. Furthermore,

(5:28) 1

(S

n

;T

n

℄

=

k

n

X

k=0

1

(k2

�n

;(k+1)2

�n

℄�fS<k2

�n

�Tg

:
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If we 
an prove the lemma for (S

n

; T

n

℄ taking the pla
e of (S; T ℄ and every

n, then it follows for (S; T ℄ upon taking limits. (Note here that �

M

is a

�nite measure on sets of the form [0;K℄�
 and all (S

n

; T

n

℄ are 
ontained

in a set of this form.)

For the proof of (i) we �rst 
onsider the 
ase that X = 1

F

for some F 2

F

S

. In view of (5.28) and be
ause fS < k2

�n

� Tg \ F = (fS < k2

�n

g \

F )\fk2

�n

� Tg is 
ontained in F

k2

�n
, the pro
ess 1

(S

n

;T

n

℄

X = 1

(S

n

;T

n

℄

1

F

is a linear 
ombination of predi
table re
tangles. Hen
e, by De�nition 5.19,

Z

1

(S

n

;T

n

℄

1

F

dM =

k

n

X

k=0

1

fS<k2

�n

�Tg\F

(M

(k+1)2

�n
�M

k2

�n
)

= 1

F

(M

T

n

�M

S

n

):

This proves (i) in the 
ase that X = 1

F

. By linearity (i) is then also true

for X that are simple over F

S

. A general, bounded F

S

-measurable X 
an

be approximated by a uniformly bounded sequen
e of simple X . Both sides

of the equality in (i) then 
onverge in L

2

and hen
e the equality is valid for

su
h X .

For the proof of (ii) �rst assume that X = 1

F

for some F 2 F

S

and

that Y = 1

(u;v℄�F

u

for some F

u

2 F

u

. In view of (5.28),

1

(S

n

;T

n

℄

1

F

1

(u;v℄�F

u

=

k

n

X

k=0

k2

�n

_u<(k+1)2

�n

^v

1

(k2

�n

_u;(k+1)2

�n

^v℄�fS<k2

�n

�Tg\F\F

u

is a linear 
ombination of predi
table re
tangles, when
e, by De�nition 5.19,

with the summation index k ranging over the same set as in the pre
eding

display,

Z

1

(S

n

;T

n

℄

1

F

1

(u;v℄�F

u

dM

=

X

k

1

fS<k2

�n

�Tg\F\F

u

(M

(k+1)2

�n

^v

�M

k2

�n

_u

)

= 1

F

X

k

1

fS<k2

�n

�Tg\F

u

(M

(k+1)2

�n

^v

�M

k2

�n

_u

)

= 1

F

Z

1

(S

n

;T

n

℄

1

(u;v℄�F

u

dM:

This proves (ii) for X and Y of the given forms. The general 
ase follows

again by linear extension and approximation.

For (iii) it suÆ
es to show that N

T

n

=

R

1

(0;T

n

℄

X dM almost surely.
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Sin
e N

0

= 0,

N

T

n

=

X

k

1

fk2

�n

�Tg

(N

(k+1)2

�n
�N

k2

�n
)

=

X

k

Z

1

fk2

�n

�Tg

1

(k2

�n

;(k+1)2

�n

℄

X dM =

Z

1

(0;T

n

℄

X dM;

where the se
ond equality follows from (ii), and the last equality by (5.28)

after 
hanging the order of summation and integration.

Be
ause �

M

does not 
harge f0g � 
, 1

f0g�


X = 0 in L

2

�

[0;1) �


;P ; �

M

�

for any X and hen
e 0 =

R

1

f0g�


X dM in L

2

, by the isometry.

This proves (iv).

The pre
eding lemma remains valid for unbounded pro
esses X;Y or

unbounded stopping times S; T , provided the pro
esses involved in the

statements are appropriately square-integrable. In ea
h 
ase this is true

under several 
ombinations of 
onditions on X;Y; S; T and M .

5.29 Lemma (Substitution). LetM be a 
adlag martingale in L

2

and let

N = Y �M be a 
adlag version of the sto
hasti
 integral of a predi
table

pro
ess Y with 1

[0;t℄

Y 2 L

2

�

[0;1)� 
;P ; �

M

�

for every t � 0. Then

(i) �

N

is absolutely 
ontinuous relative to �

M

and d�

N

= Y

2

d�

M

.

(ii)

R

X dN =

R

XY dM almost surely for every X 2 L

2

�

[0;1) �


;P ; �

N

�

.

Proof. By Lemma 5.27(ii), for every bounded predi
table pro
ess Y and

every s < t and F

s

2 F

s

,

(5:30) 1

F

s

Z

1

(s;t℄

Y dM =

Z

1

(s;t℄�F

s

Y dM:

This 
an be extended to predi
table Y as in the statement of the lemma by

approximation. Spe
i�
ally, if Y

n

is Y trun
ated to the interval [�n; n℄, then

1

(s;t℄

Y

n

! 1

(s;t℄

Y in L

2

�

[0;1) � 
;P ; �

M

�

and hen
e also 1

F

s

1

(s;t℄

Y

n

!

1

F

s

1

(s;t℄

Y in this spa
e. By the isometry property of the sto
hasti
 integral

it follows that

R

1

(s;t℄

Y

n

dM and

R

1

(s;t℄�F

s

Y

n

dM 
onverge in L

2

to the


orresponding expressions with Y instead of Y

n

, as n ! 1. Therefore, if

(5.30) is valid for Y

n

instead of Y for every n, then it is valid for Y .

We 
an rewrite the left side of (5.30) as 1

F

s

(N

t

�N

s

). Therefore, for

every predi
table re
tangle (s; t℄� F

s

,

�

N

�

(s; t℄� F

s

�

= E1

F

s

(N

t

�N

s

)

2

= E

�

Z

1

(s;t℄�F

s

Y dM

�

2

=

Z

1

(s;t℄�F

s

Y

2

d�

M

;
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by the isometry property of the sto
hasti
 integral. The predi
table re
t-

angles are an interse
tion stable generator of the predi
table �-�eld and

[0;1)�
 is a 
ountable union of predi
table re
tangles of �nite measures

under �

N

and Y

2

� �

M

. Thus these measures must agree on all predi
table

sets, as asserted in (i).

For the proof of (ii) �rst assume that X = 1

(s;t℄�F

s

for F

s

2 F

s

. Then

the equality in (ii) reads

1

F

s

(N

t

�N

s

) =

Z

1

(s;t℄�F

s

Y dM; a:s::

The left side of this display is exa
tly the left side of (5.30) and hen
e (ii)

is 
orre
t for this 
hoi
e of X . By linearity this extends to all X that are

simple over the predi
table re
tangles.

A generalX 2 L

2

�

[0;1)�
;P ; �

N

�


an be approximated in this spa
e

by a sequen
e of simple X

n

. Then by (i)

Z

jX

n

Y �XY j

2

d�

M

=

Z

jX

n

�X j

2

d�

N

! 0:

Thus, by the isometry property of the sto
hasti
 integral, we 
an take limits

as n ! 1 in the identities

R

X

n

Y dM =

R

X

n

dN to obtain the desired

identity for general X and Y .

5.4 Lo
ally Square-integrable Martingales

In this se
tion we extend the sto
hasti
 integral by lo
alization to more

general pro
esses X and M .

Given a 
adlag lo
al L

2

-martingale M we allow integrands X that are

predi
table pro
esses and are su
h that there exists a sequen
e of stopping

times 0 � T

n

" 1 su
h that, for every n,

(i) M

T

n

is a martingale in L

2

,

(ii) 1

[0;t^T

n

℄

X 2 L

2

�

[0;1)� 
;P ; �

M

T

n

�

for every t � 0.

A sequen
e of stopping times T

n

of this type is 
alled a lo
alizing sequen
e

for the pair (X;M). If su
h a sequen
e exists, then

Z

1

[0;t^T

n

℄

X dM

T

n

is a well-de�ned element of L

2

(
;F ; P ), for every n, by De�nition 5.24.

We de�ne

R

t

0

X dM as the almost sure limit as n ! 1 of these random

variables.
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5.31 De�nition. Given a 
adlag lo
al L

2

-martingaleM and a predi
table

pro
ess X for whi
h there exists a lo
alizing sequen
e T

n

for the pair

(X;M), the sto
hasti
 integral

R

t

0

X dM is de�ned as the almost sure limit

of the sequen
e of random variables

R

1

[0;t^T

n

℄

X dM

T

n

, as n ! 1. The

sto
hasti
 pro
ess t 7!

R

t

0

X dM is denoted by X �M .

It is not immediately 
lear that this de�nition is well posed. Not only

do we need to show that the almost sure limit exists, but we must also

show that the limit does not depend on the lo
alizing sequen
e. This issue

requires s
rutiny of the de�nitions, but turns out to be easily resolvable.

An integral of the type

R

1

[0;S℄

X dM

T

ought to depend only on S ^ T and

the values of the pro
esses X and M on the set [0; S ^ T ℄, be
ause the

integrand 1

[0;S℄

X vanishes outside [0; S℄ and the integratorM

T

is 
onstant

outside [0; T ℄. In analogy with the ordinary integral, a nonzero integral

should require both a nonzero integrand and a nonzero measure.

This reasoning suggests that, for every n � m, on the event ft � T

m

g,

where t ^ T

m

= t ^ T

n

, the variable

R

1

[0;t^T

m

℄

X dM

T

m

is the same as the

variable

R

1

[0;t^T

n

℄

X dM

T

n

. Then the limit as n!1 trivially exists on the

event ft � T

m

g. Be
ause [

m

ft � T

m

g = 
 the limit exists everywhere.

The following lemma makes these arguments pre
ise.

5.32 Lemma. LetM be a 
adlag pro
ess and X a predi
table pro
ess, and

let S; T; U; V be stopping times su
h that S and U are bounded, M

T

and

M

V

are martingales in L

2

and su
h that 1

[0;S℄

X and 1

[0;U ℄

X are 
ontained

in L

2

�

[0;1)�
;P ; �

M

T

�

and L

2

�

[0;1)�
;P ; �

M

V

�

, respe
tively. Then

R

1

[0;S℄

X dM

T

=

R

1

[0;U ℄

X dM

V

almost surely on the event fS ^ T = U ^

V g.

Proof. First assume that X is a predi
table re
tangle of the form X =

1

(s;t℄�F

s

. By Lemma 5.27(ii) and next (i),

Z

1

[0;S℄

1

(s;t℄�F

s

dM

T

= 1

F

s

Z

1

[0;S℄

1

(s;t℄

dM

T

= 1

F

s

(M

T

S^t

�M

T

S^s

)

= 1

F

s

(M

S^t^T

�M

S^s^T

):

The right side depends on on (S; T ) only through S ^ T . Clearly the same


al
ulation with the stopping times U and V gives the same result on the

event fS ^ T = U ^ V g.

Next let X be a bounded predi
table pro
ess. Then, for every given

t � 0, the pro
ess 1

[0;t℄

X is automati
ally 
ontained in L

2

�

[0;1) �


;P ; �

M

T +�

M

V

�

and by (a minor extension of) Lemma 5.21 there exists a

bounded sequen
e of simple pro
esses X

n

with X

n

! 1

[0;t℄

X in L

2

�

[0;1)�


;P ; �

M

T + �

M

V

�

. If t � S, then this implies that 1

[0;S℄

X

n

! 1

[0;S℄

X in

L

2

�

[0;1)�
;P ; �

M

T

�

and hen
e

R

1

[0;S℄

X

n

dM

T

!

R

1

[0;S℄

X dM

T

in L

2

,

by the isometry. We 
an argue in the same way with S and T repla
ed by U
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and V . Thus the equality of

R

1

[0;S℄

X

n

dM

T

and

R

1

[0;U ℄

X

n

dM

V

for every

n on the event fS ^ T = U ^ V g 
arries over onto X .

A general X as in the lemma 
an be trun
ated to [�n; n℄ and next we

take limits.

Thus the reasoning given previously is justi�ed and shows that the

almost sure limit of

R

1

[0;t^T

n

℄

X dM

T

n

exists. To see that the limit is also

independent of the lo
alizing sequen
e, suppose that S

n

and T

n

are two lo-


alizing sequen
es for the pair of pro
esses (X;M). Then the lemma implies

that on the event A

n

= ft ^ S

n

= t ^ T

n

g, whi
h 
ontains ft � S

n

^ T

n

g,

Z

1

[0;t^S

n

℄

X dM

S

n

=

Z

1

[0;t^T

n

℄

X dM

T

n

; a:s::

It follows that the almost sure limits of left and right sides of the display,

as n ! 1, are the same almost surely on the event A

n

for every n, and

hen
e on the event [

n

A

n

= 
. Thus the two lo
alizing sequen
es yield the

same de�nition of

R

t

0

X dM .

In a similar way we 
an prove that we get the same sto
hasti
 integral

if we use separate lo
alizing sequen
es for X andM . (See Exer
ise 5.33.) In

parti
ular, if M is a martingale in L

2

, X is a predi
table pro
ess, and 0 �

T

n

" 1 is a sequen
e of stopping times su
h that 1

[0;t^T

n

℄

X 2 L

2

�

[0;1)�


;P ; �

M

�

for every t and every n, then

Z

1

[0;t^T

n

℄

X dM;

whi
h is well-de�ned by De�nition 5.24, 
onverges almost surely to

R

t

0

X dM

as de�ned in De�nition 5.31. So \if it is not ne
essary to lo
alize M , then

not doing so yields the same result".

5.33 EXERCISE. Suppose that M is a lo
al L

2

-martingale with lo
alizing

sequen
e T

n

, X a predi
table pro
ess, and 0 � S

n

" 1 are stopping times

su
h that 1

[0;t^S

n

℄

X 2 L

2

�

[0;1) � 
;P ; �

M

T

n

�

for every t � 0 and n.

Show that lim

n!1

R

1

[0;t^S

n

℄

X dM

T

n

exists almost surely and is equal to

R

t

0

X dM . (Note that S

n

^ T

n

is a lo
alizing sequen
e for the pair (X;M),

so that

R

t

0

X dM is well de�ned in view of Exer
ise 5.34.)

5.34 EXERCISE. Let M be a 
adlag pro
ess and S and T stopping times

su
h that M

S

and M

T

are L

2

-martingales. Show that

(i) �

M

S

�

A \ [0; S ^ T ℄

�

= �

M

T

�

A \ [0; S ^ T ℄

�

for every A 2 P .

(ii) if M is an L

2

-martingale, then �

M

S (A) = �

M

�

A \ [0; S℄

�

for every

A 2 P .

The present extension of the sto
hasti
 integral possesses similar prop-

erties as in the pre
eding se
tion.
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5.35 Theorem. Suppose that M is a 
adlag lo
al L

2

-martingale and X a

predi
table pro
ess for whi
h there exists a lo
alizing sequen
e T

n

for the

pair (X;M).

(i) There exists a 
adlag version of X �M .

(ii) Any 
adlag version of X �M is a lo
al L

2

-martingale relative to the

lo
alizing sequen
e T

n

.

(iii) If M is 
ontinuous, then there exists a 
ontinuous version of X �M .

(iv) The pro
esses �(X �M), where X �M is 
hosen 
adlag, and X�M are

indistinguishable.

Proof. For every n let Y

n

be a 
adlag version of the pro
ess t 7!

R

1

[0;t^T

n

℄

X dM

T

n

. By Theorem 5.25 su
h a version exists; it is an L

2

-

martingale; and we 
an and do 
hoose it 
ontinuous if M is 
ontinuous.

For �xed t � 0 the variable T

m

^ t is a stopping time and hen
e by

Lemma 5.27(iii)

Y

n;T

m

^t

=

Z

1

[0;T

m

^t^T

n

℄

X dM

T

n

; a:s:

By Lemma 5.32 the right side of this display 
hanges at most on a null

set if we repla
e M

T

n

by M

T

m

. For m � n we have T

m

^ T

n

= T

m

and

hen
e the integrand is identi
al to 1

[0;t^T

m

℄

X . If we make both 
hanges,

then the right side be
omes Y

m;t

. We 
on
lude that Y

n;T

m

^t

= Y

m;t

almost

surely, for every �xed t and m � n. This shows that the stopped martingale

Y

T

m

n

is a version of the stopped martingale Y

T

m

m

, for m � n. Be
ause both

martingales possess 
adlag sample paths, the two stopped pro
esses are

indistinguishable. This implies that Y

n

and Y

m

agree on the set [0; T

m

℄

ex
ept possibly for points (t; !) with ! ranging over a null set. The union

of all null sets atta
hed to some pair (m;n) is still a null set. Apart from

points (t; !) with ! 
ontained in this null set, the limit Y as n ! 1 of

Y

n;t

(!) exists and agrees with Y

m;t

(!) on [0; T

m

℄. The latter implies that

it is 
adlag, and Y

T

m

is indistinguishable of Y

m

. Furthermore, the jump

pro
ess of Y is indistinguishable of the jump pro
ess of Y

m

on the set

[0; T

m

℄ and hen
e is equal to 1

[0;T

m

℄

X�M

T

m

= X�M on the set [0; T

m

℄,

by Theorem 5.25(iv).

By de�nition this limit Y is a version of X �M .

The properties as in Lemmas 5.27 and 5.29 also extend to the present

more general integral. For instan
e, in a 
ondensed notation we have, for T

a stopping time and for pro
esses X , Y and M for whi
h the expressions

are de�ned,

(5:36)

(X �M)

T

= X �M

T

= (1

[0;T ℄

X) �M;

X � (Y �M) = (XY ) �M;

�(X �M) = X�M:
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We shall formalize this later, after introdu
ing the �nal extension of the

sto
hasti
 integral.

5.37 Example (Continuous pro
esses). The sto
hasti
 integral X �M

is de�ned for every pair of a 
ontinuous pro
ess X and a 
ontinuous lo
al

martingale M with M

0

= 0.

Su
h a pair 
an be lo
alized by the stopping times

T

n

= infft � 0: jX

t

j � n; jM

t

j � ng:

If 0 < t � T

n

, then jX

t

j � n and jM

t

j � n, by the 
ontinuity of the sample

paths of the pro
esses. It follows that M

T

n

is an L

2

-bounded martingale

and

�

�

1

(0;T

n

℄

X

�

�

� n;

�

M

T

n

(0;1) = E(M

T

n

1

�M

T

n

0

)

2

� n

2

:

Therefore �

M

T

n

is a �nite measure and 1

(0;T

n

℄

X is bounded and hen
e

in L

2

�

[0;1) � 
;P ; �

M

T

n

�

. Trivially 1

f0g

X 2 L

2

�

[0;1) � 
;P ; �

M

T

n

�

,

be
ause �

M

T

n

(f0g�
) = 0, and hen
e 1

[0;T

n

^t℄

X 2 L

2

�

[0;1)�
;P ; �

M

T

n

�

for every t � 0.

5.38 EXERCISE. Extend the pre
eding example to pro
esses that may

have jumps, but of jump sizes that are uniformly bounded.

5.39 Example (Lo
ally bounded integrators). The sto
hasti
 integral

X �M is de�ned for every pair of a lo
al L

2

-martingale M and a lo
ally

bounded predi
table pro
ess X .

Here \lo
ally bounded" means that there exists a sequen
e of stopping

times 0 � T

n

" 1 su
h that X

T

n

is uniformly bounded, for every n. We


an 
hoose this sequen
e of stopping times to be the same as the lo
alizing

sequen
e for M . (Otherwise, we use the minimum of the two lo
alizing

sequen
es.) Then 1

[0;T

n

^t℄

X is uniformly bounded and hen
e is 
ontained

in L

2

�

[0;1)�
;P ; �

M

T

n

�

for every t and n. Thus De�nition 5.24 applies.

5.5 Brownian Motion

The Dol�eans measure of Brownian motion is the produ
t measure � � P

and hen
e exists as a measure on the produ
t �-�eld B

1

� F , whi
h is

bigger than the predi
table �-�eld. This 
an be used to de�ne the sto
hasti


integral

R

X dB relative to a Brownian motion B also for non-predi
table

integrands. The main aim of this se
tion is to de�ne the sto
hasti
 integral
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R

t

0

X dB for all measurable, adapted pro
essesX su
h that

R

t

0

X

2

s

ds is �nite

almost surely.

Going from predi
table to adapted measurable pro
esses may appear

an important extension. However, it turns out that any measurable, adapted

pro
ess X is almost everywhere equal to a predi
table pro
ess

~

X, relative

to ��P . Be
ause we want to keep the isometry relationship of a sto
hasti


integral, then the only possibility is to de�ne

R

t

0

X dM as

R

t

0

~

X dM . From

this perspe
tive we obtain little new.

The key in the 
onstru
tion is the following lemma.

5.40 Lemma. For every measurable, adapted pro
ess X : [0;1)� 
 ! R

there exists a predi
table pro
ess

~

X su
h that X =

~

X almost everywhere

under �� P .

Proof. The proof is based on two fa
ts:

(i) For every bounded, measurable pro
ess X there exists a bounded op-

tional pro
ess

�

X su
h that E(X

t

j F

t

) =

�

X

t

almost surely, for every

t � 0.

(ii) For every bounded, optional pro
ess

�

X there exists a predi
table pro-


ess

~

X su
h that the set f

�

X 6=

~

Xg is 
ontained in the union [

n

[T

n

℄ of

the graphs of 
ountably many stopping times.

If we a

ept (i){(ii), then the lemma 
an be proved as follows. For every

bounded measurable pro
ess X , fa
ts (i) and (ii) yield pro
esses

�

X and

~

X.

If X is adapted, then X

t

= E(X

t

j F

t

) =

�

X

t

almost surely for every t � 0,

by (i). Consequently, by Fubini's theorem

�� P (X 6=

�

X) =

Z

P

�

!:X

t

(!) 6=

�

X

t

(!)

�

d�(t) = 0:

Be
ause the se
tions ft: (!; t) 2 Gg of the set G = [

n

[T

n

℄ 
ontain at most


ountably many points, they have Lebesgue measure zero and hen
e � �

P (

�

X 6=

~

X) = 0, by another appli
ation of Fubini's theorem. Combining

(i) and (ii), we see that � � P (X 6=

~

X) = 0. This proves the lemma for

bounded, measurable, adapted pro
esses X . We 
an treat general pro
esses

X by trun
ating and taking limits. Spe
i�
ally, if X

n

is X trun
ated to

[�n; n℄, then X

n

! X on [0;1) � 
. If

~

X

n

is predi
table with

~

X

n

= X

n

ex
ept on a null set B

n

, then

~

X

n


onverges to a limit at least on the


omplement of [

n

B

n

. We 
an de�ne

~

X to be lim

~

X

n

if this exists and 0

otherwise.

We prove (i) by the monotone 
lass theorem, Theorem 1.23. Let H

be the set of all bounded, measurable pro
esses X for whi
h there exists

an optional pro
ess

�

X as in (i). Then H is a ve
tor spa
e and 
ontains the


onstants. IfX

n

2 H with 0 � X

n

" X for some bounded measurableX and

�

X

n

are the 
orresponding optional pro
esses as in (i), then the pro
ess

�

X

de�ned as lim inf

�

X

n

if this liminf is �nite, and as 0 if not, is optional. By

the monotone 
onvergen
e theorem for 
onditional expe
tations (

�

X

n

)

t

=
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E((X

n

)

t

j F

t

) " E(X

t

j F

t

) almost surely, for every t � 0. Hen
e for ea
h

t � 0, we have that

�

X

t

= E(X

t

j F

t

) almost surely.

In view of Theorem 1.23 it now suÆ
es to show that the indi
ators of

the sets [0; s)� F , for s � 0 and F 2 F , whi
h form an interse
tion stable

generator of B

1

�F , are in H. By Example 2.6 there exists a 
adlag pro
ess

Y su
h that Y

t

= E(1

F

j F

t

) almost surely, for every t � 0. Then

�

X = 1

[0;s)

Y

is right 
ontinuous and hen
e optional. It also satis�es

�

X

t

= E(1

[0;s)�F

j F

t

)

almost surely. The proof of (i) is 
omplete.

To prove (ii) we apply the monotone 
lass theorem another time, this

time with H equal to the set of bounded, optional pro
esses

�

X for whi
h

there exists a predi
table pro
ess

~

X as in (ii). Then H is a ve
tor spa
e

that 
ontains the 
onstants. It is 
losed under taking bounded monotone

limits, be
ause if

�

X

n

=

~

X

n

on G

n

and

�

X

n

!

�

X , then lim

~

X

n

must exist

at least on \

n

G

n

and be equal to

�

X there. We 
an de�ne

~

X to be lim

~

X

n

if this exists and 0 otherwise. Be
ause the sto
hasti
 integral (S; T ℄ for two

given stopping times S; T is predi
table, H 
learly 
ontains all indi
ators

of sto
hasti
 intervals [S; T ), [S; T ℄, (S; T ℄ and (S; T ). These intervals form

an interse
tion stable generator of the optional �-�eld by Lemma 5.8.

Let X be a measurable, adapted pro
ess for whi
h there exists a se-

quen
e of stopping times 0 � T

n

" 1 su
h that, for every t � 0 and n,

(5:41) 1

[0;t^T

n

℄

X 2 L

2

�

[0;1)� 
;B

1

�F ; �� P

�

:

By the pre
eding lemma there exists a predi
table pro
ess

~

X su
h that

X =

~

X almost everywhere under ��P . Relation (5.41) remains valid if we

repla
e X by

~

X . Then we 
an de�ne a sto
hasti
 integral

R

1

[0;t^T

n

℄

~

X dB

as in De�nition 5.24 and the dis
ussion following it. We de�ne

R

t

0

X dB as

the almost sure limit of these variables as n!1.

5.42 De�nition. Given a measurable, adapted pro
ess X for whi
h there

exists a lo
alizing sequen
e T

n

satisfying (5.41) the sto
hasti
 integral

R

t

0

X dB is de�ned as the almost sure limit of the sequen
e of 
adlag pro-


esses t 7!

R

1

[0;t^T

n

℄

~

X dB.

The veri�
ation that this de�nition is well posed is identi
al to the

similar veri�
ation for sto
hasti
 integrals relative to lo
al martingales.

Condition (5.41) is exa
tly what is needed, but it is of interest to have

a more readily veri�able 
ondition for a pro
ess X to be a good integrand.

5.43 Lemma. Let X be a measurable and adapted pro
ess.

(i) If

R

t

0

X

2

s

ds < 1 almost surely for every t � 0, then there exists a

sequen
e of stopping times 0 � T

n

" 1 su
h that (5.41) is satis�ed

and hen
e

R

t

0

X dB 
an be de�ned as a 
ontinuous lo
al martingale.
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(ii) If

R

t

0

EX

2

s

ds < 1, then

R

t

0

X dB 
an be de�ned as a 
ontinuous mar-

tingale in L

2

.

Proof. There exists a predi
table pro
ess

~

X with X =

~

X almost every-

where under � � P . By Fubini's theorem the se
tions ft:X

t

(!) 6=

~

X

t

(!)g

of the set fX 6=

~

Xg are Lebesgue null sets for P -almost every !. Therefore,

the 
onditions (i) or (ii) are also satis�ed with

~

X repla
ing X . Be
ause

~

X is

predi
table, it is progressive. This means that

~

X : [0; t℄�
! R is an B

t

�F

t

-

measurable map and so is

~

X

2

. Consequently, by the measurability part of

Fubini's theorem, the map ! 7! Y

t

(!): =

R

t

0

~

X

2

s

(!) ds is F

t

-measurable for

every t � 0, whi
h means that the pro
ess Y is adapted. The variables

T

n

= infft � 0:Y

t

� ng are stopping times, with 0 � T

n

" 1 on the event

where Y

t

is �nite for every t, by the 
ontinuity of the sample paths of Y .

This is a set of probability one by assumption (i), and hen
e we 
an rede�ne

T

n

su
h that 0 � T

n

" 1 everywhere. Furthermore,

Z

1

[0;t^T

n

℄

~

X

2

d(� � P ) = EY

T

n

^t

� n:

Thus the pro
ess

~

X satis�es (5.41), 
on
luding the proof of (i).

For (ii) it suÆ
es to prove that 1

[0;t℄

X 2 L

2

�

[0;1)�
;B

1

�F ; ��P

�

for every t � 0. Then the same is true for

~

X, and the result follows

from Theorem 5.25(iii). (The lo
alization applied in De�nition 5.42 is

unne
essary in this situation. Equivalently, we 
an put T

n

� 1.) But

R

1

[0;t℄

X

2

d�� P =

R

t

0

EX

2

s

ds, by Fubini's theorem.

5.6 Martingales of Bounded Variation

We re
all that the variation of a 
adlag fun
tion A:R ! R over the interval

(a; b℄ is de�ned as

Z

b

a

jdA

s

j: = sup

a=t

0

<t

1

<���<t

k

=b

k

X

i=1

jA

t

i

�A

t

i�1

j;

where the supremum is taken over all partitions a = t

0

< t

1

< � � � < t

k

= b

of the interval. The fun
tion is 
alled of \lo
ally bounded variation" if its

variation over every 
ompa
t interval is �nite. It 
an be shown that this is

equivalent to the existen
e of two nonde
reasing 
adlag fun
tions A

1

and

A

2

su
h that A = A

1

� A

2

. Thus every fun
tion of lo
ally bounded varia-

tion de�nes a signed measure B 7!

R

B

dA de�ned as the di�eren
e of the

measures de�ned by the fun
tions A

1

and A

2

. It 
an be shown that there is

a unique de
omposition, written as A = A

+

�A

�

, su
h that the measures
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de�ned by A

+

and A

�

are orthogonal. The sum of the 
orresponding mea-

sures is denoted jAj = A

+

+A

�

and is 
alled the total variation of A. It 
an

be shown that

R

(a;b℄

djAj is equal to the variation over (a; b℄ as de�ned in

the pre
eding display. In parti
ular, the expressions

R

b

a

jdA

s

j and

R

(a;b℄

djAj

denote the same.

If the sample paths of the martingaleM are of bounded variation, then

we 
an also de�ne an integral

R

X dM based on the usual Lebesgue-Stieltjes

integral. Spe
i�
ally, if for a given ! 2 
 the variation

R

jdM

t

j(!) of the

fun
tion t 7!M

t

(!) is �nite, then B 7!

R

B

dM

t

(!) de�nes a signed measure

on the Borel sets (a di�eren
e of two ordinary measures) and hen
e we 
an

de�ne an integral

Z

X

t

(!) dM

t

(!)

for every pro
ess X and ! su
h that the fun
tion t 7! X

t

(!) is Borel

measurable and integrable relative to the measure B 7!

R

B

djM

t

j(!). (All

integrals are relative to t, for �xed !.)

If this is true for every !, then we have two 
andidates for the inte-

gral

R

X dM , the \pathwise" Lebesgue-Stieltjes integral and the sto
hasti


integral. These better be the same. They are under some 
onditions. For


larity of the following theorem we denote the two integrals by

R

X

s

dM

s

and

R

X dM .

A pro
ess X is said to be lo
ally bounded if there exists a sequen
e

of stopping times 0 � T

n

" 1 su
h that X

T

n

is uniformly bounded on

[0;1)�
, for every n. A pro
essX is said to be of lo
ally bounded variation

if there exists a sequen
e of stopping times 0 � T

n

" 1 su
h that every of

the sample paths of X

T

n

is of bounded variation on [0;1), for every n. This


an be seen to be identi
al to the variation of every sample path of X on

every 
ompa
t interval [0; t℄ being �nite, whi
h property is well des
ribed

as lo
ally of bounded variation.

Warning. \Lo
ally bounded" is de�ned to mean \lo
ally uniformly

bounded". This appears to be stronger than existen
e of a lo
alizing se-

quen
e su
h that ea
h of the sample paths of every of the stopped pro
esses

is bounded. On the other hand, \lo
ally of bounded variation" is to be un-

derstood in a nonuniform way; it is weaker than existen
e of a sequen
e of

stopping times su
h that all sample paths of X

T

n

are of variation bounded

by a �xed 
onstant, depending only on n.

5.44 Theorem. LetM be a 
adlag lo
al L

2

-martingale of lo
ally bounded

variation, and let X a lo
ally bounded predi
table pro
ess. Then for every

t � 0 the sto
hasti
 integral

R

t

0

X dM and the Lebesgue-Stieltjes integral

R

(0;t℄

X

s

dM

s

are both well-de�ned and agree almost surely.

Proof. If X is a measurable pro
ess, then the Lebesgue-Stieltjes integral

R

X

s

dM

s

is well-de�ned (up to integrability), be
ause the map t 7! X

t

(!)
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is measurable for every !. The integral

R

X

s

dM

s

is then also measurable

as a map on 
. This is 
lear if X is the indi
ator fun
tion of a produ
t set

in [0;1)� 
. Next we 
an see it for a general X by an appli
ation of the

monotone 
lass theorem, Theorem 1.23.

By assumption there exist sequen
es of stopping times 0 � T

n

" 1 su
h

that M

T

n

is an L

2

-martingale and su
h that X

T

n

is uniformly bounded,

for every n. It is not a loss of generality to 
hoose these two sequen
es the

same; otherwise we use the minimum of the two sequen
es. We may also

assume that M

T

n

is L

2

-bounded. If not, then we repla
e T

n

by T

n

^ n; the

martingale M

T

n

^n

is bounded in L

2

, be
ause EM

2

T

n

^t^n

� E(M

T

n

)

2

n

<1

for all t � 0, by the submartingale property of (M

T

n

)

2

.

The pro
ess 1

[0;T

n

℄

X is uniformly bounded and hen
e is 
ontained in

the Hilbert spa
e L

2

�

[0;1)�
;P ; �

M

T

n

�

. Therefore, the sto
hasti
 integral

R

t

0

X dM is well-de�ned a

ording to De�nition 5.24 as the almost sure limit

of the sequen
e

R

1

[0;T

n

^t℄

X dM

T

n

.

Be
ause

R

(0;t℄

jdM

s

j is �nite for every t, and the pro
ess 1

[0;t℄

X is uni-

formly bounded on the event A

n

= ft � T

n

g, the Lebesgue-Stieltjes in-

tegral

R

(0;t℄

jX

s

j jdM

s

j if �nite on this event, and hen
e almost surely on


 = [

n

A

n

, for every given t. We 
on
lude that

R

(0;t℄

X

s

dM

s

is well-de�ned

and �nite, almost surely. By dominated 
onvergen
e it is the limit as n!1

of the sequen
e

R

1

(0;T

n

^t℄

(s)X

s

dM

s

, almost surely.

We 
on
lude that it suÆ
es to show that

R

1

[0;T

n

^t℄

X dM

T

n

and

R

1

(0;T

n

^t℄

(s)X

s

dM

s

agree almost surely, for every n. For simpli
ity of no-

tation, we drop the lo
alization and prove that for any L

2

-bounded martin-

gale M with

R

jdM

s

j < 1 almost surely, and every bounded, predi
table

pro
ess X the sto
hasti
 integral

R

X dM and Lebesgue-Stieltjes integral

R

X

s

dM

s

are the same almost surely, where we interprete the mass that

s 7!M

s

puts at 0 to be zero.

We apply the monotone 
lass theorem, with H the set of all bounded

predi
table X for whi
h the integrals agree almost surely. Then H 
ontains

all indi
ators of predi
table re
tangles, be
ause both integrals agree with

the Riemann-Stieltjes integral for su
h integrands. Be
ause both integrals

are linear, H is a ve
tor spa
e. Be
ause �

M

�

[0;1)�


�

= E(M

1

�M

0

)

2

<

1, the Dol�eans measure of M is �nite, and hen
e the 
onstant fun
tions

are integrable. If 0 � X

n

" X for a bounded X and fX

n

g � H, then X

n

!

X in L

2

�

[0;1) � 
;P ; �

M

�

by the dominated 
onvergen
e theorem, and

hen
e

R

X

n

dM !

R

X dM in L

2

. Furthermore,

R

X

n;s

dM

s

!

R

X

s

dM

s

pointwise on 
, by the dominated 
onvergen
e theorem, be
ause

R

jdM

s

j <

1. Be
ause L

2

-limits and pointwise limits must agree, it follows that the

two integrals agree almost surely. The unit fun
tion is a limit of a sequen
e

of indi
ators of predi
table re
tangles and hen
e we 
an �rst infer that the


onstant fun
tions are in H. Next an appli
ation of Theorem 1.23 shows

that H 
ontains all bounded predi
table pro
esses.
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As a 
orollary of the pre
eding theorem we see that the Lebesgue-

Stieltjes integral of a lo
ally bounded predi
table pro
ess relative to a 
ad-

lag lo
al L

2

-martingale of lo
ally bounded variation is a lo
al martingale.

Indeed, under these 
onditions the two types of integrals 
oin
ide and the

sto
hasti
 integral is a lo
al martingale. In the next se
tion we want to drop

the \L

2

" from the 
onditions and for this reason we now give a dire
t proof

of this martingale property for integrators that are only lo
al martingales.

5.45 Lemma. If M is a 
adlag lo
al martingale of lo
ally bounded vari-

ation and X is a lo
ally bounded predi
table pro
ess, then the Lebesgue-

Stieltjes integrals (X �M)

t

: =

R

(0;t℄

X

s

dM

s

de�ne a 
adlag lo
al martingale

X �M .

Proof. Write

R

t

0

for

R

(0;t℄

. Let 0 � T

n

" 1 be a sequen
e of stopping times

su
h that M

T

n

is a martingale and su
h that X

T

n

is uniformly bounded,

for every n. Be
ause (X �M)

T

n

t

=

R

t

0

X

T

n

s

dM

T

n

s

, the lemma will follow if

t 7!

R

t

0

X

s

dM

s

is a 
adlag martingale for every given pair of a bounded

predi
table pro
ess X and martingale of lo
ally bounded variationM . This

is 
lear if X is the indi
ator of a predi
table re
tangle. In that 
ase the

Lebesgue-Stieltjes integral is a Riemann-Stieltjes integral, and 
oin
ides

with the elementary sto
hasti
 integral, whi
h is a martingale. The set H

of all bounded predi
table X for whi
h X �M is a martingale is a ve
tor

spa
e and 
ontains the 
onstants. If 0 � X

n

" X for a uniformly bounded

pro
ess X , then

R

t

0

X

n;s

dM

s

!

R

t

0

X

s

dM

s

pointwise on 
 and in L

1

, for

every t � 0, by two appli
ations of the dominated 
onvergen
e theorem.

We 
on
lude that the set H is 
losed under bounded monotone limits and

hen
e it 
ontains all bounded predi
table pro
esses, by the monotone 
lass

theorem, Theorem 1.23.

Warning. The predi
tability of the integrand is important. For in-

stan
e, if N is a standard Poisson pro
ess and T is the time of its �rst

jump, then the pro
ess M de�ned by M

t

= N

t

� t and the pro
ess M

T

are

martingales. The Lebesgue-Stieltjes integral

R

t

0

N

s

dM

T

s

= 1

t�T

N

T

= 1

t�T

is 
ertainly not a martingale (as 
an be seen from the fa
t that E1ft �

Tg = 1 � e

�t

is not 
onstant) and hen
e this Lebesgue-Stieltjes integral

la
ks the most striking property of the sto
hasti
 integral. In 
omparison

N

�

is a predi
table pro
ess and

R

t

0

N

s�

dM

T

s

= 0 is 
ertainly a martingale.

The most important example of a 
ontinuous martingale is Brownian

motion and this has sample paths of unbounded variation. The latter prop-

erty is not spe
ial to Brownian motion, but is shared by all 
ontinuous

martingales, or more generally all predi
table lo
al martingales. We 
an

prove this important and interesting result by a 
omparison of sto
hasti


and Lebesgue-Stieltjes integrals.
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5.46 Theorem. LetM be a 
adlag predi
table pro
ess that is both a lo
al

martingale and a pro
ess of lo
ally bounded variation, and 0 at 0. Then

M = 0 up to indistinguishability.

Proof. First assume that M is 
ontinuous. By assumption there exists a

sequen
e 0 � T

n

" 1 of stopping times su
h that M

T

n

is both a martingale

and of bounded variation. If ne
essary we 
an repla
e T

n

by the minimum

of T

n

and infft � 0: jM

t

j � ng to ensure also that M

T

n

is bounded, and

hen
e in L

2

. Be
auseM

T

n

is of bounded variation, the integration by parts

formula for Lebesgue-Stieltjes integrals yields (with

R

t

0

denoting

R

(0;t℄

)

(M

T

n

)

2

t

=

Z

t

0

M

T

n

�

dM

T

n

+

Z

t

0

M

T

n

dM

T

n

:

Under the present assumption thatM is 
ontinuous, the integrands in these

integrals are 
ontinuous and hen
e predi
table. (The two integrals are also

identi
al, but we write them di�erently be
ause the identity is valid even for

dis
ontinuousM , and we need it in the se
ond part of the proof.) Therefore,

the integrals on the right 
an be viewed equivalently as Lebesgue-Stieltjes

or sto
hasti
 integrals, by Theorem 5.44. The interpretation as sto
has-

ti
 integrals shows that the right side is a martingale. This implies that

EM

2

T

n

^t

= 0 and hen
e M

t

= 0 almost surely, for every t.

The proof ifM is not 
ontinuous is similar but requires additional steps,

and should be skipped at �rst reading. A stopped predi
table pro
ess is au-

tomati
ally predi
table. (This is easy to verify for indi
ators of predi
table

re
tangles and next 
an be extended to general predi
table pro
esses by

a monotone 
lass argument.) Therefore, the integrands in the pre
eding

display are predi
table also if M is not 
ontinuous. On the other hand, if

M is not 
ontinuous, then M

T

n

as 
onstru
ted previously is not ne
essarily

bounded and we 
annot apply Theorem 5.44 to 
on
lude that the Lebesgue-

Stieltjes integral

R

t

0

M

T

n

dM

T

n

is a martingale. We 
an solve this by \stop-

ping earlier", if ne
essary. The stopping time S

n

= infft � 0: jM

t

j � ng is

predi
table, as [S

n

℄ = [0; S

n

℄ \M

�1

([�n; n℄




) is predi
table. (See the last

assertion of Lemma 5.7.) Thus S

n

is the monotone limit of a sequen
e of

stopping times fS

m;n

g

1

m=1

stri
tly smaller than S

n

on fS

n

> 0g = 
. Then

R

n

= max

i;j�n

S

i;j

de�nes a sequen
e of stopping times with 0 � R

n

" 1

and jM

R

n

j � n for every n by the de�nition of S

n

and the fa
t that

R

n

< S

n

. Now we may repla
e the original sequen
e of stopping times

T

n

by the minimum of T

n

and R

n

, and 
on
lude the argument as before.
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5.7 Semimartingales

The ultimate generalization of the sto
hasti
 integral uses \semimartin-

gales" as integrators. Be
ause these are de�ned as sums of lo
al martingales

and bounded variation pro
esses, this does not add mu
h to what we have

already in pla
e. However, the 
on
ept of a semimartingale does allow some

uni�
ation, for instan
e in the statement of Itô's formula.

5.47 De�nition. A 
adlag adapted sto
hasti
 pro
ess X is a semimartin-

gale if it has a representation of the form X = X

0

+M+A for a 
adlag lo
al

martingale M and a 
adlag adapted pro
ess of lo
ally bounded variation

A.

The representation X = X

0

+ M + A of a semimartingale is non-

unique. It helps to require that M

0

= A

0

= 0, but this does not resolve the

nonuniqueness. This is be
ause there exist martingales that are lo
ally of

bounded variation. The 
ompensated Poisson pro
ess is a simple example.

We would like to de�ne a sto
hasti
 integral Y � X as Y �M + Y � A,

where the �rst integral Y �M is a sto
hasti
 integral and the se
ond integral

Y � A 
an be interpreted as a Lebesgue-Stieltjes integral. If we restri
t the

integrand Y to lo
ally bounded, predi
table pro
esses, then Y �M is de�ned

as soon as M is a lo
al L

2

-martingale, by De�nition 5.31. In the given de-


omposition X = X

0

+M +A, the martingale is not required to be lo
ally

in L

2

, but one 
an always a
hieve this by proper 
hoi
e ofM and A, in view

of the following lemma. The proof of this lemma is long and diÆ
ult and

should be skipped at �rst reading. It suÆ
es to remember that \lo
al mar-

tingale" in the pre
eding de�nition may be read as \lo
al L

2

-martingale",

without any 
onsequen
e; and that a 
ontinuous semimartingale 
an be

de
omposed into 
ontinuous pro
esses M and A. The latter means that a


ontinuous semimartingale 
an equivalently be de�ned as a pro
ess that is

the sum of a 
ontinuous lo
al martingale and a 
ontinuous adapted pro
ess

of lo
ally bounded variation.

5.48 Lemma. For any 
adlag semimartingale X there exists a de
ompo-

sition X = X

0

+M + A su
h that M is a 
adlag lo
al L

2

-martingale and

A is a 
adlag adapted pro
ess of lo
ally bounded variation. Furthermore, if

X is 
ontinuous, then M and A 
an be 
hosen 
ontinuous.

* Proof. We may without loss of generality assume that X is a lo
al martin-

gale. De�ne a pro
ess Z by Z

t

=

P

s�t

�X

s

1

j�X

s

j>1

. This is well-de�ned,

be
ause a 
adlag fun
tion 
an have at most �nitely many jumps of absolute

size bigger than some �xed 
onstant on any given 
ompa
t interval. We show

below that there exists a 
adlag predi
table pro
ess B of lo
ally bounded

variation su
h that Z�B is a lo
al martingale. Next we set A = Z�B and

M = X �X

0

�A and show that j�M j � 2. Then M is a lo
ally bounded
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martingale and hen
e 
ertainly a lo
al L

2

-martingale, and hen
e the �rst

assertion of the lemma is proved.

In order to show the existen
e of the pro
ess B de�ne a pro
ess Z

u

by

Z

u

t

=

P

s�t

�X

s

1

�X

s

>1

. This is 
learly nonde
reasing. We 
laim that it is

lo
ally in L

1

and hen
e a lo
al submartingale. To see this, let 0 � S

n

" 1

be a sequen
e of stopping times su
h that X

S

n

is a uniformly integrable

martingale, for every n, and de�ne T

n

= infft � 0:Z

u

t

> n; jX

t

j > ng ^ S

n

.

Then Z

u

t

_ jX

T

n

j � n on [0; T

n

) and

0 � Z

u

T

n

^t

� Z

u

T

n

� n+ j�X

T

n

j � 2n+ jX

T

n

j:

The right side is integrable by the optional stopping theorem, be
ause T

n

�

S

n

and X

S

n

is uniformly integrable.

Being a lo
al submartingale, the pro
ess Z

u

possesses a 
ompensator

B

u

by the Doob-Meyer de
omposition, Lemma 5.69. We 
an apply a similar

argument to the pro
ess of 
umulative jumps of X less than �1, and take

di�eren
es to 
onstru
t a pro
ess B with the required properties.

The proof that j�M j � 2 is based on the following fa
ts:

(i) For every 
adlag predi
table pro
ess X there exists a sequen
e of pre-

di
table times T

n

su
h that f(t; !):�X

t

(!) 6= 0g � [

n

[T

n

℄. (The

sequen
e T

n

is said to exhaust the jumps of X . See e.g. Ja
od and

Shiryaev, I2.24.)

(ii) If X is a predi
table pro
ess and T a stopping time, then X

T

is F

T�

-

measurable, where we de�ne X

1

to be 0. (See e.g. Ja
od and Shiryaev,

I2.4; and I1.11 for the de�nition of F

T�

.)

(iii) For any 
adlag martingale X and predi
table stopping time T we have

E(X

T

j F

T�

) = X

T�

almost surely on fT < 1g. (See e.g. Ja
od and

Shiryaev, I2.27.)

(iv) For any 
adlag martingale X and predi
table stopping time T we have

E(�X

T

j F

T�

) = 0 almost surely on the set fT <1g. This follows by

applying (ii) to the predi
table pro
ess X

�

to see that X

T�

is F

T�

-

measurable and 
ombining this with (iii) to 
ompute the 
onditional

expe
tation of �X

T

= X

T

�X

T�

.

The pro
esses X , A = Z�B andM = X�X

0

�A are lo
al martingales. If

we 
an show that j�M

T

n

j � 2 for every T

n

in a lo
alizing sequen
e 0 � T

n

"

1, then it follows that j�M j � 2 and the proof is 
omplete. For simpli
ity of

notation assume that X ,M and A are martingales. The pro
ess Z has been


onstru
ted so that j�(X � Z)j � 1 and hen
e

�

�

E

�

�(X � Z)

T

j F

T�

�

�

�

� 1

almost surely, for every stopping time T . By (iv) E(�M

T

j F

T�

) = 0 almost

surely on fT < 1g, for every predi
table time T . Be
ause �M = �(X �

Z) + �B, it follows that

�

�

E(�B

T

j F

T�

)

�

�

� 1 for every predi
table time

T . Sin
e B and B

�

are predi
table, �B

T

is F

T�

-measurable by (ii) and

hen
e j�B

T

j � 1 almost surely. Consequently j�Bj � 1 by (i), and hen
e

j�M j �

�

�

�(X � Z)

�

�

+ j�Bj � 2.

This 
on
ludes the proof of the �rst assertion of the theorem. Next,
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we prove that a 
ontinuous semimartingale X permits a de
omposition

X = X

0

+M +A su
h that M and A are 
ontinuous.

Suppose that X is 
ontinuous and let X = X

0

+M + A be a given

de
omposition in a lo
al L

2

-martingaleM and a pro
ess of lo
ally bounded

variation A. Let 0 � S

n

" 1 be a sequen
e of stopping times su
h thatM

S

n

is a martingale for every n and de�ne

T

n

= inf

n

t � 0: jM

t

j > n;

Z

t

0

jdA

s

j > n

o

^ n ^ S

n

:

Then the pro
ess M

T

n

is a uniformly integrable martingale, is bounded in

absolute value by n on [0; T

n

), and

Z

T

n

0

jdA

s

j =

Z

[0;T

n

)

jdA

s

j+ j�A

T

n

j � n+ j�X

T

n

j+ j�M

T

n

j � 2n+ jM

T

n

j:

The right side is integrable by the optional stopping theorem, Theorem 4.21,

when
e the pro
ess

�

A is lo
ally integrable. We 
on
lude that the positive

and negative variation pro
esses 
orresponding to A are both lo
ally in-

tegrable. Be
ause they are nonde
reasing, they are submartingales, and

permit Doob-Meyer de
ompositions as in Lemma 5.69. We 
on
lude that

there exists a 
adlag predi
table pro
ess

�

A su
h that A�

�

A is a lo
al mar-

tingale. Now X = X

0

+(M+A�

�

A)+

�

A is a de
omposition of X into a lo
al

martingale

�

M = M + A �

�

A and a predi
table pro
ess of lo
ally bounded

variation

�

A. We shall show that these pro
esses are ne
essarily 
ontinuous.

By predi
tability the variable �

�

A

T

is F

T�

-measurable for every stop-

ping T , by (ii). If M is integrable, then E(�M

T

j F

T�

) = 0 for every pre-

di
table stopping time, by (iv) be
ause M is a martingale. Sin
e �X = 0,

it then follows that �

�

A

T

= E(�

�

A

T

j F

T�

) = 0 for every predi
table time

T , when
e the pro
ess

�

A and hen
e M are 
ontinuous, by (i). If �M

T

is

not integrable, we 
an �rst lo
alize the pro
esses and apply the argument

to stopped pro
esses.

5.49 De�nition. The integral Y �X of a lo
ally bounded, predi
table pro-


ess Y relative to a 
adlag semimartingale X with de
omposition X =

X

0

+M+A as in Lemma 5.48 is de�ned as Y �M+Y �A, where the �rst in-

tegral Y �M is a sto
hasti
 integral de�ned a

ording to De�nition 5.31 and

the se
ond integral is the Lebesgue-Stieltjes integral (Y �A)

t

=

R

(0;t℄

Y

s

dA

s

.

The notations (Y �X)

t

and

R

t

0

Y dX are used inter
hangeably.

Be
ause the de
omposition of Lemma 5.48 is not unique, we must

verify that the pre
eding de�nition is well posed. This follows from the fa
t

that for any other de
omposition X = X

0

+

�

M +

�

A as in Lemma 5.48 the

pro
ess M �

�

M =

�

A � A is a 
adlag lo
al L

2

-martingale that is lo
ally

of bounded variation. Therefore, the Lebesgue-Stieltjes integral and the

sto
hasti
 integral of a lo
ally bounded predi
table pro
ess Y relative to
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this pro
ess 
oin
ide by Theorem 5.44 and hen
e Y �M+Y �A = Y �

�

M+Y �

�

A,

if the integrals Y �M , Y �A, Y �

�

M , and Y �

�

A are interpreted as sto
hasti


or Lebesgue-Stieltjes integrals, as in the de�nition.

5.50 EXERCISE. Suppose that M is a 
adlag lo
al martingale that is lo-


ally of bounded variation, and Y is a lo
ally bounded pro
ess. Show that

the integral Y �M as de�ned by the pre
eding de�nition 
oin
ides with the

Lebesgue-Stieltjes integral

R

t

0

Y

s

dM

s

. (Hint: this is a trivial 
onsequen
e of

the fa
t that the de�nition is well posed. Don't be 
onfused by the fa
t that

M is a martingale.)

5.51 Theorem. If X is a 
adlag semimartingale and Y is a predi
table

lo
ally bounded pro
ess, then:

(i) There exists a 
adlag version of Y �X .

(ii) This version is a semimartingale.

(iii) If X is a lo
al martingale, then this version is a lo
al martingale.

(iv) If X is 
ontinuous, then there exists a 
ontinuous version of Y �X .

(v) The pro
esses �(Y � X), where Y � X is a 
adlag version, and Y�X

are indistinguishable.

Proof. Let X = X

0

+M + A be an arbitrary de
omposition in a 
adlag

lo
al L

2

-martingale M and a 
adlag adapted pro
ess of lo
ally bounded

variation A. By de�nition Y �X = Y �M+Y �A, where the �rst is a sto
hasti


integral and the se
ond a Lebesgue-Stieltjes integral. By Theorem 5.35 the

sto
hasti
 integral Y �M permits a 
adlag version and this is a lo
al L

2

-

martingale; it permits a 
ontinuous version if M is 
ontinuous; and its

jump pro
ess is Y�M . The Lebesgue-Stieltjes integral Y � A is of lo
ally

bounded variation and 
adlag; it is 
ontinuous if A is 
ontinuous; it is a

lo
al martingale if A is a lo
al martingale, by Lemma 5.45; and its jump

pro
ess is Y�A. Finally, if X is 
ontinuous, then the pro
esses M and A


an be 
hosen 
ontinuous.

Now that we have 
ompletely dressed up the de�nition of the sto
hasti


integral, it is useful to summarize some properties.

5.52 Lemma. If X is a semimartingale, and Y

n

is a sequen
e of predi
table

pro
esses su
h that Y

n

! Y pointwise on [0;1) � 
 and jY

n

j � K for a

lo
ally bounded predi
table pro
essK and every n, then the 
adlag versions

of Y

n

�X and Y �X satisfy sup

s�t

�

�

(Y

n

�X)

s

� (Y �X)

s

�

�

P

!

0, for every t � 0.

Proof. We 
an de
ompose X = X

0

+ M + A for a 
adlag lo
al L

2

-

martingale M and a 
adlag pro
ess of lo
ally bounded variation A, 0 at

0. That A is of lo
ally bounded variation implies that

R

t

0

jdA

s

j(!) < 1

and that K is lo
ally bounded implies that sup

s�t

K

s

(!) < 1, both for

every �xed ! and t. It follows that

R

t

0

K

s

(!) jdA

s

j(!) < 1 (the integral
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is relative to s). Be
ause, for �xed !, the map s 7! Y

n;s

(!) is dominated

by the map s 7! K

s

(!), the dominated 
onvergen
e theorem implies that

R

t

0

�

�

Y

n;s

(!)�Y

s

(!)

�

�

jdA

s

j(!)! 0. This being true for every !, we 
on
lude

that sup

s�t

�

�

(Y

n

�A)

s

� (Y �A)

s

�

�


onverges to zero almost surely and hen
e

in probability.

There exists a sequen
e of stopping times 0 � T

m

" 1 su
h that M

T

m

is an L

2

-bounded martingale and K

T

m

is a uniformly bounded pro
ess, for

every m. Then, be
ause 1

[0;T

m

^t℄

Y

n

is bounded by K

T

m

, the dominated


onvergen
e theorem yields

Z

�

1

[0;T

m

^t℄

Y

n

� 1

[0;T

m

^t℄

Y

�

2

d�

M

T

m

! 0:

On the set [0; T

m

℄ the sto
hasti
 integral Y

n

�M 
an be de�ned as s 7!

R

1

[0;T

m

^s℄

Y

n

dM

T

m

, and similarly with Y instead of Y

n

. (See Lemma 5.32

or the proof of Theorem 5.35.) For the 
adlag versions of these pro
esses,

the maximal inequality (4.38) yields, for every �xed m, as n!1,

E sup

s�t

�

�

(Y

n

�M)

s

� (Y �M)

s

�

�

2

1

t�T

m

� E sup

s�t

�

�

�

Z

1

[0;T

m

^s℄

Y

n

dM

T

m

�

Z

1

[0;T

m

^s℄

Y dM

T

m

�

�

�

2

;

� 4E

�

�

�

Z

1

[0;T

m

^t℄

Y

n

dM

T

m

�

Z

1

[0;T

m

^t℄

Y dM

T

m

�

�

�

2

! 0:

This being true for every m implies that sup

s�t

�

�

(Y

n

� M)

s

� (Y � M)

s

�

�


onverges to zero in probability.

5.53 EXERCISE. Show that every left-
ontinuous adapted pro
ess that is

0 at 0 is lo
ally bounded.

5.54 Lemma. For every lo
ally bounded predi
table pro
esses X and Y ,

semimartingale Z and stopping T , up to indistinguishability:

(i) (Y � Z)

T

= Y � Z

T

= (1

[0;T ℄

Y ) � Z.

(ii) X � (Y � Z) = (XY ) � Z.

(iii) �(Y � Z) = Y�Z, if Y � Z is 
hosen 
adlag.

(iv) (V 1

(S;T ℄

) � Z = V 1

(S;T ℄

� Z for every F

S

-measurable random variable

V .

Proof. The statements follow from the similar statements on sto
hasti


integrals, properties of Lebesgue-Stieltjes integrals, and lo
alization argu-

ments. We omit the details.
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5.8 Quadrati
 Variation

To every semimartingale or lo
al L

2

-martingale X 
orrespond pro
esses

[X ℄ and hXi, whi
h play an important role in sto
hasti
 
al
ulus. They

are known as the \quadrati
 variation pro
ess" and \predi
table quadrati


variation pro
ess", and are also referred to as the square bra
ket pro
ess

and the angle bra
ket pro
ess. In this se
tion we dis
uss the �rst of the two.

In the next se
tion we shall see that the two pro
esses are the same for


ontinuous L

2

-lo
al martingales.

5.55 De�nition. The quadrati
 
ovariation of two semimartingales X and

Y is a 
adlag version of the pro
ess

(5:56) [X;Y ℄ = XY �X

0

Y

0

�X

�

� Y � Y

�

�X:

The pro
ess [X;X ℄, abbreviated to [X ℄, is 
alled the quadrati
 variation of

X .

As usual we need to 
he
k that the de�nition is well posed. In this 
ase

this 
on
erns the semimartingale integrals X

�

� Y and Y

�

� X ; these are

well-de�ned by De�nition 5.49, be
ause a left-
ontinuous adapted pro
ess

that is 0 at 0 (su
h as X

�

and Y

�

) is predi
table and lo
ally bounded.

We refer to the formula (5.56) as the integration-by-parts formula.

The ordinary integration-by-parts formula for pro
esses X and Y of lo
ally

bounded variation, from Lebesgue-Stieltjes theory, asserts that

X

t

Y

t

�X

0

Y

0

=

Z

(0;t℄

X

�

dY +

Z

(0;t℄

Y

�

dX +

X

0<s�t

�X

s

�Y

s

:

Comparing this to ((5.56) we see that in this 
ase the quadrati
 variation

[X;Y ℄ is the last term on the right. (Cf. Example 5.65 for more details.)

One way of looking at the quadrati
 variation pro
ess for general semi-

martingales is to view it as the pro
ess that \makes the partial integral

formula true". Many semimartingales are not lo
ally of bounded variation,

and then the quadrati
 
ovariation does not redu
e to a fun
tion of the

jump pro
esses, as in the pre
eding display. In parti
ular, the quadrati



ovariation of a 
ontinuous semimartingales is typi
ally nonzero.

The name \quadrati
 
ovariation" is better explained by the follow-

ing theorem, whi
h may also be viewed as an alternative de�nition of this

pro
ess.

5.57 Theorem. For any pair of 
adlag semimartingales X and Y , any

sequen
e of partitions 0 = t

n

0

< t

n

1

< � � � < t

n

k

n

= t of mesh widths tending

to zero, and any t � 0, as n!1,

(5:58)

k

n

X

i=1

(X

t

n

i

�X

t

n

i�1

)(Y

t

n

i

� Y

t

n

i�1

)

P

!

[X;Y ℄

t

:
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Proof. Be
ause 4xy = (x + y)

2

� (x � y)

2

for any numbers x; y, the 
ase

of two semimartingales X and Y 
an be redu
ed to the 
ase that X = Y .

For simpli
ity of notation we only 
onsider the latter 
ase. By the identity

(x � y)

2

= x

2

� y

2

� 2y(x� y) we 
an write

k

n

X

i=1

(X

t

n

i

�X

t

n

i�1

)

2

=

k

n

X

i=1

(X

2

t

n

i

�X

2

t

n

i�1

)� 2

k

n

X

i=1

X

t

n

i�1

(X

t

n

i

�X

t

n

i�1

)

= X

2

t

�X

2

0

� 2(X

n

�X)

t

;(5:59)

for X

n

the simple predi
table pro
ess de�ned by

X

n

=

k

n

X

i=1

X

t

n

i�1

1

(t

n

i�1

;t

n

i

℄

:

The sequen
e of pro
essesX

n


onverges pointwise on [0; t℄�
 to the pro
ess

X

�

(where X

0�

= 0). The pro
ess K de�ned by K

t

= sup

s�t

X

s�

is

adapted and left 
ontinuous and hen
e predi
table and lo
ally bounded,

and it dominates X

n

. Lemma 5.52 implies that the sequen
e (X

n

� X)

t


onverges in probability to (X

�

�X)

t

.

5.60 Example (Brownian motion). The quadrati
 variation pro
ess of

Brownian motion is 
omputed in Theorem 4.28 and is given by [B℄

t

= t.

This is spe
ial, be
ause it is a deterministi
 pro
ess. We shall see later that

Brownian motion is the only 
ontinuous lo
al martingale with quadrati


variation pro
ess the identity fun
tion.

In view of the representation in (5.56) and the 
ontinuity of Brownian

motion,

B

2

t

= 2

Z

t

0

B dB + t:

Compare this to the formula f

2

(t) = 2

R

t

0

f(s) df(s) (where df(s) = f

0

(s) ds)

for a 
ontinuously di�erentiable fun
tion f , and be at least a little bit

surprised. Itô's formula in Se
tion 5.10 is the generalization of this result

and has a similar \
orre
tion term" relative to ordinary 
al
ulus.

5.61 EXERCISE. Show that the quadrati
 variation pro
ess of both the

Poisson pro
ess N and the 
ompensated Poisson pro
ess fN

t

� t: t � 0g is

N itself. (Hint: subtra
tion of the smooth fun
tion t does not 
hange the

limit of the sum of squares; N is a jump pro
ess of jump sizes 1 = 1

2

.)

5.62 EXERCISE. Show that 4[X;Y ℄ = [X + Y ℄� [X � Y ℄.

5.63 Example (Multivariate Brownian motion). The quadrati
 
o-

variation between the 
oordinates of a multivariate Brownian motion



80 5: Sto
hasti
 Integrals

(B

1

; : : : ; B

d

) is given by [B

i

; B

j

℄

t

= Æ

ij

t, for Æ

ij

= 0 or 1 if i = j or

i 6= j the Krone
ker delta.

This 
an be seen in a variety of ways. For instan
e, the 
ovariation

between two independent martingales is zero in general. A simple proof,

whi
h makes use of the spe
ial properties of Brownian motion, is to note

that (B

i

�B

j

)=

p

2 and (B

i

+B

j

)=

p

2 are both Brownian motions in their

own right and hen
e [B

i

� B

j

℄ = [B

i

+ B

j

℄, when
e [B

i

; B

j

℄ = 0 by Exer-


ise 5.62, for i 6= j.

It is 
lear from the de�ning relation (5.58) that the quadrati
 variation

pro
ess [X ℄ 
an be 
hosen nonde
reasing almost surely. By the \polarization

identity" of Exer
ise 5.62, the quadrati
 
ovariation pro
ess [X;Y ℄ is the

di�eren
e of two nonde
reasing pro
esses and hen
e is of lo
ally bounded

variation. The following lemma lists some further properties.

5.64 Lemma. Let X and Y be 
adlag semimartingales.

(i) [X

T

; Y ℄ = [X;Y ℄

T

= [X

T

; Y

T

℄ for every stopping time T .

(ii) If X and Y are lo
al martingales, then XY � [X;Y ℄ is a lo
al martin-

gale.

(iii) If X and Y are L

2

-martingales, then XY � [X;Y ℄ is a martingale.

(iv) If X and Y are L

2

-bounded martingales, then [X;Y ℄ is L

1

-bounded.

(v) If X and Y are 
ontinuous, then [X;Y ℄ is 
ontinuous.

(vi) The pro
esses �[X;Y ℄ and �X�Y are indistinguishable.

Proof. Assertion (i) 
an be proved using (5.56), or from (5.58) after verify-

ing that this relation remains true for partitions with a random endpoint.

For statements (ii){(vi) it suÆ
es to 
onsider the 
ase that X = Y .

Assertion (ii) is a 
onsequen
e of the representation (5.56) of X

2

� [X ℄

in terms of the sto
hasti
 integral X

�

�X and Theorem 5.51(iii).

If X is a square-integrable martingale, then the term (X

n

�X)

t

in (5.59)

has mean zero by the orthogonality of the martingale in
rement X

t

n

i

�X

t

n

i�1

to F

t

n

i�1

. Then, by Fatou's lemma and (5.59),

E[X ℄

t

� lim inf

n!1

E

k

n

X

i=1

(X

t

n

i

�X

t

n

i�1

)

2

= E(X

2

t

�X

2

0

):

This proves (iv) and also that the pro
ess [X ℄ is in L

1

if X is in L

2

. To

see that in the latter 
ase X

2

� [X ℄ is a martingale, as 
laimed in (iii), it

suÆ
es to show that X

�

�X is a martingale. By (ii) it is a lo
al martingale.

If T

n

is a lo
alizing sequen
e, then, by (5.56) and (i),

2

�

�

�

(X

�

�X)

T

n

t

�

�

�

=

�

�

X

2

T

n

^t

�X

2

0

� [X ℄

T

n

^t

�

�

� X

2

T

n

^t

+X

2

0

+ [X ℄

t

;

be
ause [X ℄ is nonde
reasing. Be
ause X

T

n

^t

= E(X

t

j F

T

n

^t

) by the

optional stopping theorem, Jensen's inequality yields that X

2

T

n

^t

�
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E(X

2

t

j F

T

n

^t

) and hen
e the sequen
e fX

2

T

n

^t

g

1

n=1

is uniformly integrable,

for every �xed t � 0. We 
on
lude that the right side and hen
e the left

side of the pre
eding display is uniformly integrable, and the sequen
e of

pro
esses (X

�

� X)

T

n


onverges in L

1

to the pro
ess X

�

� X , as n ! 1.

Then the martingale property of the pro
esses (X

�

�X)

T

n

) 
arries over onto

the pro
ess X

�

�X . This 
on
ludes the proof of (iii).

Assertion (v) is 
lear from the fa
t that the sto
hasti
 integral X

�

�X

is 
ontinuous if X is 
ontinuous, by Theorem 5.51(iv). For assertion (vi) we

note �rst that X

2

= (X

�

)

2

+ 2X

�

�X + (�X)

2

, so that its jump pro
ess

is given by �(X

2

) = 2X

�

�X + (�X)

2

. Next we use (5.56) to see that

�[X ℄ = �(X

2

)�2�(X

�

�X), and 
on
lude by applying Lemma 5.54(iii).

5.65 Example (Bounded variation pro
esses). The quadrati
 variation

pro
ess of a 
adlag semimartingale X that is lo
ally of bounded variation

is given by [X ℄

t

=

P

0<s�t

(�X

s

)

2

.

This 
an be proved dire
tly from the de�nition of [X ℄ as the sum of

in�nitesimal square in
rements in equation (5.58) of Theorem 5.57, but an

indire
t proof is easier. An intuitive explanation of the result is that for

a pro
ess of lo
ally bounded variation the sums of in�nitesimal absolute

in
rements 
onverges to a �nite limit. Therefore, for a 
ontinuous pro
ess

of lo
ally bounded variation the sums of in�nitesimal square in
rements,

as in (5.58), 
onverges to zero. On the other hand, the squares of the pure

jumps in the dis
rete part of a pro
ess of lo
ally bounded variation remain.

A proof 
an be based on the integration-by-parts formula for 
adlag

fun
tions of bounded variation. This shows that

X

2

t

�X

2

0

= 2

Z

(0;t℄

X

s�

dX

s

+

X

0<s�t

(�X

s

)

2

:

Here the integral on the right is to be understood as a pathwise

Lebesgue-Stieltjes integral, and is equal to the Lebesgue-Stieltjes integral

R

(0;t℄

X

s�

d(X

s

� X

0

). Be
ause the de
omposition X = X

0

+ M + A of

the semimartingale X 
an be 
hosen with M = 0 and A = X � X

0

,

the latter Lebesgue-Stieltjes integral is by de�nition the semimartingale

integral (X

�

� X)

t

, as de�ned in De�nition 5.49. Making this identi�-


ation and 
omparing the pre
eding display to (5.56) we 
on
lude that

[X ℄

t

=

P

0<s�t

(�X

s

)

2

.

5.66 EXERCISE. Let X be a 
ontinuous semimartingale and Y a 
adlag

semimartingale that is lo
ally of bounded variation. Show that [X;Y ℄ = 0.

[Hint: one possibility is to use (5.58).℄
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5.9 Predi
table Quadrati
 Variation

The \angle bra
ket pro
ess" hMi is de�ned for the smaller 
lass of lo
al

L

2

-martingales M , unlike the square bra
ket pro
ess, whi
h is de�ned for

general semimartingales. If M is 
ontinuous, we 
an de�ne hMi simply to

be identi
al to [M ℄. For general lo
al L

2

-martingales, we de�ne the angle

bra
ket pro
ess by referen
e to the Doob-Meyer de
omposition. This de-


omposition, given in Lemma 5.69, implies that for any lo
al L

2

-martingale

M there exists a unique predi
table pro
ess A su
h that M

2

�A is a lo
al

martingale. We de�ne this pro
ess as the predi
table quadrati
 variation of

M .

5.67 De�nition. The predi
table quadrati
 variation of a 
adlag lo
al L

2

-

martingale M is the unique 
adlag nonde
reasing predi
table pro
ess hMi,

0 at 0, su
h that M

2

�hMi is a lo
al martingale. The predi
table quadrati



ovariation of a pair of 
adlag lo
al L

2

-martingalesM and N is the pro
ess

hM;Ni de�ned by 4hM;Ni = hM +Ni � hM �Ni.

5.68 EXERCISE. Show that MN � hM;Ni is a lo
al martingale.

If M is a lo
al martingale, then the pro
ess M

2

� [M ℄ is a lo
al mar-

tingale, by Lemma 5.64(ii). If [M ℄ is predi
table, in parti
ular if M is 
on-

tinuous, then hMi = [M ℄. However, the pro
ess [M ℄ is not ne
essarily pre-

di
table, and hen
e is not ne
essarily equal to the pro
ess hMi.

To see that De�nition 5.67 is well posed, we use the Doob-Meyer de-


omposition. The square of a lo
al martingale is a lo
al submartingale, by

Jensen's inequality, and hen
e existen
e and uniqueness of hMi follows from

(ii) of the following lemma.

A pro
ess Z is said to be of 
lass D, if the 
olle
tion of all random

variable Z

T

with T ranging over all �nite stopping times, is uniformly in-

tegrable.

5.69 Lemma (Doob-Meyer).

(i) Any 
adlag submartingale Z of 
lass D 
an be written uniquely in the

form Z = Z

0

+M + A for a 
adlag uniformly integrable martingale

M and a 
adlag predi
table nonde
reasing pro
ess A with EA

1

<1,

both 0 at 0. The pro
ess A is 
ontinuous if and only if EZ

T�

= EZ

T

for every �nite predi
table time T .

(ii) Any 
adlag lo
al submartingale Z 
an be written uniquely in the form

Z = Z

0

+M + A for a 
adlag lo
al martingale M and a 
adlag pre-

di
table nonde
reasing pro
ess A, both 0 at 0.

Proof. For a proof of (i) see e.g. Rogers and Williams, VI-29.7 and VI-

31.1. The uniqueness of the de
omposition follows also from Theorem 5.46,

be
ause given two de
ompositions Z = Z

0

+M + A = Z

0

+

�

M +

�

A of the
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given form, the pro
ess M �

�

M =

�

A�A is a 
adlag predi
table pro
ess of

bounded variation, 0 at 0, and hen
e is 0.

Given (i) we 
an prove (ii) by lo
alization as follows. Suppose 0 � T

n

"

1 is a sequen
e of stopping times su
h that Z

T

n

is a submartingale of 
lass

D for every n. Then by (i) it 
an be written as Z

T

n

= Z

0

+M

n

+A

n

for a

uniformly integrable martingaleM

n

and a 
adlag, nonde
reasing integrable

predi
table pro
ess A

n

. For m � n we have Z

T

m

= (Z

T

n

)

T

m

= Z

0

+M

T

m

n

+

A

T

m

n

. By uniqueness of the de
omposition it follows that M

T

m

n

= M

m

and

A

T

m

n

= A

m

. This allows us to de�ne pro
esses M and A in a 
onsistent

manner by spe
ifying their values on the set [0; T

m

℄ to be M

m

and A

m

,

for every m. Then M

T

n

= M

n

and hen
e M is a lo
al martingale. Also

Z = Z

0

+M +A on [0; T

m

℄ for every m and hen
e on [0;1)� 
.

We still need to show the existen
e of the stopping times T

n

. By as-

sumption there are stopping times 0 � S

n

" 1 su
h that Z

S

n

is a sub-

martingale. De�ne

T

n

= S

n

^ n ^ infft � 0: jZ

S

n

t

j � ng:

Then jZ

S

n

t

j � jZ

S

n

T

n

j_n for t 2 [0; T

n

℄ and hen
e jZ

T

n

T

j � jZ

S

n

T

n

j_n for every

stopping time T . The right side is integrable be
ause T

n

is bounded and

Z

S

n

is a submartingale (and hen
e is in L

1

) by Theorem 4.20.

The nonde
reasing, predi
table pro
ess A in the Doob-Meyer de
om-

position given by Lemma 5.69(i){(ii) is 
alled the 
ompensator or \dual

predi
table proje
tion" of the submartingale Z.

5.70 Example (Poisson pro
ess). The standard Poisson pro
ess is non-

de
reasing and integrable and hen
e trivially a lo
al submartingale. The

pro
essM de�ned byM

t

= N

t

�t is a martingale, and the identity fun
tion

t 7! t, being a deterministi
 pro
ess, is 
ertainly predi
table. We 
on
lude

that the 
ompensator of N is the identity fun
tion.

The pro
ess t 7! M

2

t

� t is also a martingale. By the same reasoning

we �nd that the predi
table quadrati
 variation of M is given by hMi

t

= t.

In 
ontrast, the quadrati
 variation is [M ℄ = N . (See Exer
ise 5.61.)

5.71 EXERCISE. Show that the 
ompensator of [M ℄ is given by hMi.

5.72 EXERCISE. Show that hM

T

i = hMi

T

for every stopping time T .

(Hint: a stopped predi
table pro
ess is predi
table.)

* 5.73 EXERCISE. Show that M

2

� hMi is a martingale if M is an L

2

-

martingale. (Hint: if M is L

2

-bounded, then M

2

is of 
lass D and we 
an

apply (i) of the Doob-Meyer lemma; a general M 
an be stopped.)

Both quadrati
 variation pro
esses are 
losely related to the Dol�eans

measure. The following lemma shows that the Dol�eans measure 
an be
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disintegrated as,

d�

M

(s; !) = d[M ℄

s

(!) dP (!) = dhMi

s

(!) dP (!):

Here d[M ℄

s

(!) denotes the measure on [0;1) 
orresponding to the non-

de
reasing, 
adlag fun
tion t 7! [M ℄

s

(!), for given !, and similarly for

dhMi

s

(!). The three measures in the display agree on the predi
table �-

�eld, where the Dol�eans measure was �rst de�ned. (See (5.14)). O� the

predi
table �-�eld the two disintegrations o�er possible extensions, whi
h

may be di�erent.

5.74 Lemma. If M is an L

2

-martingale, then, for all A 2 P ,

�

M

(A) =

Z Z

1

0

1

A

(s; !) d[M ℄

s

(!) dP (!) =

Z Z

1

0

1

A

(s; !) dhMi

s

(!) dP (!):

Proof. Be
ause the predi
table re
tangles form an interse
tion stable gen-

erator of the predi
table �-�eld, it suÆ
es to verify the identity for every

set of the form A = (s; t℄� F

s

with F

s

2 F

s

. Now

E

Z

1

0

1

(s;t℄�F

s

(u; !) d[M ℄

u

= E1

F

s

�

[M ℄

t

� [M ℄

s

�

:

Be
ause M

2

� [M ℄ is a martingale, by Lemma 5.64(iii), the variable (M

2

t

�

[M ℄

t

)� (M

2

s

� [M ℄

s

) is orthogonal to F

s

. This implies that we may repla
e

[M ℄

t

� [M ℄

s

in the display byM

2

t

�M

2

s

. The resulting expression is exa
tly

�

M

�

(s; t℄� F

s

�

.

The argument for hMi is identi
al, if we note that M

2

� hMi is a

martingale if M is in L

2

. (Cf. Exer
ise 5.73.)

5.75 Example (Integration with Continuous Integrators). We have

seen in Example 5.37 that a 
ontinuous lo
al martingale M , 0 at 0, is a

lo
al L

2

-martingale, and hen
e 
an a
t as an integrator. It 
an now be seen

that any predi
table pro
ess X with, for every t � 0,

Z

t

0

X

2

s

d[M ℄

s

<1; a:s:

is a good integrand relative to M . This is to say that under this 
ondition

there exists a lo
alizing sequen
e 0 � T

n

" 1 for the pair (X;M) and hen
e

De�nition 5.31 of the sto
hasti
 integral applies. An appropriate lo
alizing

sequen
e is

T

n

= inf

n

t � 0: jM

t

j > n;

Z

t

0

X

2

s

d[M ℄

s

> n

o

:

For this sequen
e we have that M

T

n

is bounded and 1

[0;t^T

n

℄

X is


ontained in L

2

�

[0;1) � 
;P ; �

M

T

n

�

in view of Lemma 5.74, be
ause

R

1

[0;T

n

℄

(s)X

2

s

d[M ℄

s

� n and hen
e has expe
tation

R

X

2

d�

M

T

n

bounded

by n.
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5.76 Lemma. The quadrati
 variation pro
ess of a 
adlag lo
al martingale

is the unique adapted pro
ess A of lo
ally bounded variation, 0 at 0, su
h

that M

2

�A is a lo
al martingale and �A = (�M)

2

.

Proof. The quadrati
 variation pro
ess [M ℄ possesses the listed properties,

by Lemma 5.64(ii) and (vi). Given an other pro
ess A with these properties

the pro
ess [M ℄�A is the di�eren
e of two lo
al martingales and hen
e a

lo
al martingale. It is also of lo
ally bounded variation and 0 at 0. Moreover,

it is 
ontinuous, be
ause �[M ℄ = (�M)

2

= �A. Theorem 5.46 shows that

[M ℄�A = 0.

Be
ause the quadrati
 
ovariation pro
ess [X;Y ℄ is of lo
ally bounded

variation, integrals of the type

R

t

0

Z

s

d[X;Y ℄

s


an be de�ned as Lebesgue-

Stieltjes integrals, for every measurable (integrable) pro
ess Z. (The s in

the notation is to indi
ate that the integral is a Lebesgue-Stieltjes integral

relative to s, for every �xed pair or sample paths of Z and [X;Y ℄.) The

integrals in the following lemmas 
an be understood in this way.

5.77 Lemma. Let M and N be lo
al L

2

-martingales and let X and Y be

lo
ally bounded predi
table pro
esses.

(i) [X �M;Y �N ℄

t

=

R

t

0

X

s

Y

s

d[M;N ℄

s

.

(ii) hX �M;Y �Ni

t

=

R

t

0

X

s

Y

s

dhM;Ni

s

.

Proof. For simpli
ity of notation we give the proof in the 
ase that X = Y

and M = N . Furthermore, we abbreviate the pro
ess t 7!

R

t

0

X

2

s

d[M ℄

s

to

X

2

� [M ℄, and de�ne X

2

� hMi similarly.

Be
ause a 
ompensator of a lo
al submartingale is unique, for (ii) it

suÆ
es to show that the pro
essX

2

�hMi is predi
table and that the pro
ess

(X �M)

2

�X

2

� hMi is a lo
al martingale.

Similarly, for (i) it suÆ
es to show that the pro
ess (X �M)

2

�X

2

� [M ℄

is a lo
al martingale and that �(X

2

� [M ℄) =

�

�(X �M)

�

2

.

Now any integral relative to a predi
table pro
ess of lo
ally bounded

variation is predi
table, as 
an be seen by approximation by integrals of

simple integrands. Furthermore, by properties of the Lebesgue-Stieltjes in-

tegral �(X

2

� [M ℄) = X

2

�[M ℄ = X

2

(�M)

2

, by Lemma 5.64(vi), while

�

�(X �M)

�

2

= (X�M)

2

, by Lemma 5.54. We are left with showing that

the pro
esses (X �M)

2

�X

2

� hMi and (X �M)

2

�X

2

� [M ℄ are lo
al mar-

tingales.

Suppose �rst thatM is L

2

-bounded and that X is a predi
table pro
ess

with

R

X

2

d�

M

< 1. Then X �M is an L

2

-bounded martingale, and for

every stopping time T , by Lemma 5.54(i),

E(X �M)

2

T

= E

�

Z

X1

[0;T ℄

dM

�

2

=

Z

X

2

1

[0;T ℄

d�

M

= E

Z

T

0

X

2

s

d[M ℄

s

= E(X

2

� [M ℄)

T

;



86 5: Sto
hasti
 Integrals

where we use Lemma 5.74 for the �rst equality on the se
ond line of the

display. We 
an 
on
lude that the pro
ess (X �M)

2

�X

2

�[M ℄ is a martingale

by Lemma 4.22.

For a general lo
al L

2

-martingale we 
an �nd a sequen
e of stopping

times 0 � T

n

" 1 su
h that M

T

n

is L

2

-bounded and su
h that 1

[0;T

n

℄

X 2

L

2

�

[0;1)�
;P ; �

M

T

n

�

for every n. By the pre
eding argument the pro
ess

(1

[0;T

n

℄

X �M

T

n

)

2

� 1

[0;T

n

℄

X

2

� [M

T

n

℄ is a martingale for every n. But this

is the pro
ess (X �M)

2

�X

2

� [M ℄ stopped at T

n

and hen
e this pro
ess is

a lo
al martingale.

The proof for the pro
ess (X �M)

2

�X

2

� hMi is similar.

The following lemma is of interest, but will not be used in the remain-

der.

* 5.78 Lemma (Kunita-Watanabe). If M and N are 
adlag lo
al martin-

gales and X and Y are predi
table pro
esses, then

�

Z

t

s

jd[M;N ℄

u

j

�

2

�

Z

t

s

d[M ℄

u

Z

t

s

d[N ℄

u

; a:s:;

�

E

Z

jX

u

Y

u

j jd[M;N ℄j

u

�

2

�

Z

X

2

d�

M

Z

Y

2

d�

N

:

Proof. For s < t abbreviate [M;N ℄

t

� [M;N ℄

s

to [M;N ℄

t

s

. Let s = t

n

0

<

t

n

1

< � � � < t

n

k

n

= t be a sequen
e of partitions of [s; t℄ of mesh widths

tending to zero as n!1. Then, by Theorem 5.57 and the Cau
hy-S
hwarz

inequality,

�

�

[M;N ℄

t

s

�

�

2

= lim

n!1

�

�

�

k

n

X

i=1

(M

t

n

i

�M

t

n

i�1

)(N

t

n

i

�N

t

n

i�1

)

�

�

�

2

� lim

n!1

k

n

X

i=1

(M

t

n

i

�M

t

n

i�1

)

2

k

n

X

i=1

(N

t

n

i

�N

t

n

i�1

)

2

= [M ℄

t

s

[N ℄

t

s

:

Here the limits may be interpreted as limits in probability, or, by 
hoosing

an appropriate subsequen
e of fng, as almost sure limits. By applying this

inequality to every partitioning interval (t

i�1

; t

i

) in a given partition s =

t

0

< t

1

< � � � < t

k

= t of [s; t℄, we obtain

k

X

i=1

�

�

[M;N ℄

t

i

t

i�1

�

�

�

k

X

i=1

q

[M ℄

t

i

t

i�1

[N ℄

t

i

t

i�1

�

v

u

u

t

k

X

i=1

[M ℄

t

i

t

i�1

k

X

i=1

[N ℄

t

i

t

i�1

;

by the Cau
hy-S
hwarz inequality. The right side is exa
tly the square root

of

R

t

s

d[M ℄

u

R

t

s

d[N ℄

u

. The supremum of the left side over all partitions of the

interval [s; t℄ is

R

t

s

jd[M;N ℄

u

j. This 
on
ludes the proof of the �rst inequality

in Lemma 5.78.
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To prove the se
ond assertion we �rst note that by the �rst, for any

measurable pro
esses X and Y ,

�

Z

jX

u

jjY

u

j jd[M;N ℄j

u

�

2

�

Z

jX

u

j

2

d[M ℄

u

Z

jY

u

j

2

d[N ℄

u

; a:s::

Next we take expe
tations, use the Cau
hy-S
hwarz inequality on the right

side, and �nally rewrite the resulting expression in terms of the Dol�eans

measures, as in Lemma 5.74.

5.10 Itô's Formula for Continuous Pro
esses

Itô's formula is the 
ornerstone of sto
hasti
 
al
ulus. In this se
tion we

present it for the 
ase of 
ontinuous pro
esses, whi
h allows some simpli�-


ation. In the �rst statement we also keep the martingale and the bounded

variation pro
ess separated, whi
h helps to understand the essen
e of the

formula. The formulas for general semimartingales are more symmetri
, but

also more 
ompli
ated at �rst.

For a given fun
tion f :R

d

! R write D

i

f for its ith partial derivative

and D

i;j

f for its (i; j)th se
ond degree partial derivative.

5.79 Theorem (Itô's formula). Let M be a 
ontinuous lo
al martingale

and A a 
ontinuous pro
ess that is lo
ally of bounded variation. Then, for

every twi
e 
ontinuously di�erentiable fun
tion f :R

2

! R,

f(M

t

; A

t

)� f(M

0

; A

0

) =

Z

t

0

D

1

f(M;A) dM +

Z

t

0

D

2

f(M

s

; A

s

) dA

s

+

1

2

Z

t

0

D

11

f(M

s

; A

s

) d[M ℄

s

; a:s::

The spe
ial feature of Itô's formula is that the martingaleM gives two


ontributions on the right hand side (the �rst and third terms). These result

from the linear and quadrati
 approximations to the fun
tion on the left.

An informal explanation of the formula is as follows. For a given partition

0 = t

0

< t

1

< � � � < t

k

= t, we 
an write the left side of the theorem as

X

i

�

f(M

t

i+1

; A

t

i+1

)� f(M

t

i+1

; A

t

i

)

�

+

X

i

�

f(M

t

i+1

; A

t

i

)� f(M

t

i

; A

t

i

)

�

�

X

i

D

2

f(M

t

i+1

; A

t

i

)(A

t

i+1

�A

t

i

)(5:80)

+

X

i

D

1

f(M

t

i

; A

t

i

)(M

t

i+1

�M

t

i

) +

1

2

X

i

D

11

f(M

t

i

; A

t

i

)(M

t

i+1

�M

t

i

)

2

:
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We have dropped the quadrati
 approximation involving the terms (A

t

i+1

�

A

t

i

)

2

and all higher order terms, be
ause these should be negligible in the

limit if the mesh width of the partition 
onverges to zero. On the other

hand, the quadrati
 approximation 
oming from the martingale part, the

term on the far right, does give a 
ontribution. This term is of 
omparable

magnitude as the quadrati
 variation pro
ess on the left side of (5.58).

5.81 EXERCISE. Apply Theorem 5.79 to the fun
tion f(m; a) = m

2

. Com-

pare the result to Theorem 5.57.

If we apply Theorem 5.79 with the fun
tion f(m; a) = g(m+ a), then

we �nd the formula

g(M

t

+A

t

)�g(M

0

+A

0

) =

Z

t

0

g

0

(M+A) d(M+A)+

1

2

Z

t

0

g

00

(M

s

+A

s

) d[M ℄

s

:

Here X = M + A is a semimartingale. If we de�ne its quadrati
 variation

[X ℄ as [M ℄, then we 
an also write this as

(5:82) g(X

t

)� g(X

0

) =

Z

t

0

g

0

(X) dX +

1

2

Z

t

0

g

00

(X

s

) d[X ℄

s

:

This pleasantly symmetri
 formula does not permit the study of transfor-

mations of pairs of pro
esses (M;A), but this 
an be remedied by studying

fun
tions g(X

1;t

; : : : ; X

d;t

) of several semimartingales X

i

= fX

i;t

: t � 0g.

In the present se
tion we restri
t ourselves to 
ontinuous semimartingales.

It was shown in Lemma 5.48 that the pro
esses M and A in the de
om-

position X = X

0

+M + A of a 
ontinuous semimartingale 
an always be


hosen 
ontinuous. The following de�nition is therefore 
onsistent with the

earlier de�nition of a semimartingale.

5.83 De�nition. A 
ontinuous semimartingale X is a pro
ess that 
an be

written as the sum X = X

0

+M + A of a 
ontinuous lo
al martingale M

and a 
ontinuous pro
ess A of lo
ally bounded variation, both 0 at 0.

The de
omposition X = X

0

+M+A of a 
ontinuous semimartingale in

its 
ontinuous martingale and bounded variation parts M and A is unique,

be
ause a 
ontinuous lo
al martingale that is of lo
ally bounded variation

is ne
essarily 
onstant, by Theorem 5.46.

It 
an also be proved that for a semimartingale X = M + A with A

a 
ontinuous pro
ess of lo
ally bounded variation, the quadrati
 variation

[X ℄ of X is indeed given by [M ℄. We leave this as an exer
ise.
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5.84 EXERCISE. Show that the quadrati
 variation of a 
ontinuous semi-

martingale X = X

0

+M +A, as de�ned in (5.58), is given by [M ℄, i.e. the


ontributions of the bounded variation part is negligible. Furthermore, show

that [M;A℄ = 0 = [A℄. (Hint: the 
ontinuity of the pro
esses is essential.)

5.85 Theorem (Itô's formula). Let X = (X

1

; : : : ; X

d

) be a ve
tor of 
on-

tinuous semimartingales. Then, for every twi
e 
ontinuously di�erentiable

fun
tion f :R

d

! R,

f(X

t

)� f(X

0

) =

d

X

i=1

Z

t

0

D

i

f(X) dX

i

+

1

2

d

X

i=1

d

X

j=1

Z

t

0

D

ij

f(X) d[X

i

; X

j

℄; a:s::

Proofs. For a proof of Theorem 5.79 based dire
tly on the Taylor approx-

imation (5.80), see Chung and Williams, pp94{97. Here we give a proof of

the more general Theorem 5.85, but following the \
onvention" stated by

Rogers and Williams, p61: \Convention di
tates that Itô's formula should

only be proved for d = 1, the general 
ase being left as an exer
ise, amid

bland assuran
es that only the notation is any more diÆ
ult."

The proof pro
eeds by �rst establishing the formula for all polynomials

f and next generalization to general smooth fun
tions by approximation.

The formula is trivially true for the polynomials f(x) = 1 and f(x) = x.

Next we show that the formula is 
orre
t for the fun
tion fg if it is 
orre
t

for the fun
tions f and g. Be
ause the set of fun
tions for whi
h it is 
orre
t

is also a ve
tor spa
e, we then 
an 
on
lude that the formula is 
orre
t for

all polynomials.

An essential step in this argument is the de�ning equation (5.56) for

the quadrati
 variation pro
ess, whi
h 
an be viewed as the Itô formula for

polynomials of degree 2 and 
an be written in the form

(5:86) X

t

Y

t

�X

0

Y

0

= (X � Y )

t

+ (Y �X)

t

+ [X;Y ℄

t

:

Then suppose that Itô's formula is 
orre
t for the fun
tions f and g. This

means that (5.82) is valid for g (as it stands) and for f in the pla
e of g.

The formula implies that the pro
esses f(X) and g(X) are semimartingales.

For instan
e, if X = X

0

+M +A then the pro
ess g(X) has de
omposition

g(X) = g(X

0

) +

�

M +

�

A given by

�

M

t

=

Z

t

0

g

0

(X) dM;

�

A

t

=

Z

t

0

g

0

(X

s

) dA

s

+

1

2

Z

t

0

g

00

(X

s

) d[X ℄

s

:

In view of Exer
ise 5.84, the quadrati
 
ovariation [f(X); g(X)℄ is the

quadrati
 
ovariation between the martingale parts of f(X) and g(X), and

is equal to f

0

(X)g

0

(X) � [X ℄, by Lemma 5.77. Applying (5.86) with X and
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Y there repla
ed by f(X) and g(X), we �nd

f(X

t

)g(X

t

)� f(X

0

)g(X

0

)

=

�

f(X) � g(X)

�

t

+

�

g(X) � f(X)

�

t

+

�

f(X); g(X)

�

t

=

�

f(X)g

0

(X) �X

�

t

+

1

2

f(X)g

00

(X) � [X ℄

t

+

�

g(X)f

0

(X) �X

�

t

+

1

2

g(X)f

00

(X) � [X ℄

t

+ f

0

(X)g

0

(X) � [X ℄

t

;

where we have used (5.82) for f and g, and the substitution formula of

Lemma 5.54(ii). By regrouping the terms this 
an be seen to be the Itô

formula for the fun
tion fg.

Finally, we extend Itô's formula to general fun
tions f by approxima-

tion. Be
ause f

00

is 
ontinuous, there exists a sequen
e of polynomials f

n

with f

00

n

! f

00

, f

0

n

! f

0

and f

n

! f pointwise on R and uniformly on 
om-

pa
ta, by an extension of the Weierstrass approximation theorem. Then

f

n

(X), f

0

n

(X) and f

00

n

(X) 
onverge pointwise on 
� [0;1) to f(X), f

0

(X)

and f

00

(X). The proof of the theorem is 
omplete, if we 
an show that all

terms of Itô's formula applied with f

n


onverge to the 
orresponding terms

with f instead of f

n

, as n! 1. This 
onvergen
e is 
lear for the left side

of the formula. For the proof of the 
onvergen
e of the integral terms, we


an assume without loss of generality that the pro
ess X in the integrand

satis�es X

0

= 0; otherwise we repla
e the integrand by X1

(0;1)

.

The pro
ess K = sup

n

jf

0

n

(X)j is predi
table and is bounded on sets

where jX j is bounded. If T

m

= infft � 0: jX

t

j > mg, then, as we have as-

sumed that X

0

= 0, jX j � m on the set [0; T

m

℄ and hen
e K

T

m

is bounded.

We 
on
lude that K is lo
ally bounded, and hen
e, by Lemma 5.52,

f

0

n

(X) �X

P

!

f

0

(X) �X , as n!1.

Finally, for a �xed m on the event ft � T

m

g, the pro
esses s 7!

f

00

n

(X) are uniformly bounded on [0; t℄. On this event

R

t

0

f

00

n

(X

s

) [X ℄

s

!

R

t

0

f

00

(X

s

) d[X ℄

s

, as n ! 1, by the dominated 
onvergen
e theorem, for

�xed m. Be
ause the union over m of these events is 
, the se
ond terms

on the right in the Itô formula 
onverge in probability.

Itô's formula is easiest to remember in terms of di�erentials. For in-

stan
e, the one-dimensional formula 
an be written as

df(X

t

) = f

0

(X

t

) dX

t

+

1

2

f

00

(X

t

) d[X ℄

t

:

The de�nition of the quadrati
 variation pro
ess suggests to think of [X ℄

t

as

R

(dX

t

)

2

. For this reason Itô's rule is sometimes informally stated as

df(X

t

) = f

0

(X

t

) dX

t

+

1

2

f

00

(X

t

) (dX

t

)

2

:

Sin
e the quadrati
 variation of a Brownian motion B is given by [B℄

t

= t,

a Brownian motion then satis�es (dB

t

)

2

= dt. A further rule is that

(dB

t

)(dA

t

) = 0 for a pro
ess of bounded variation A, expressing that

[B;A℄

t

= 0. In parti
ular dB

t

dt = 0.
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5.87 Lemma. For every twi
e 
ontinuously di�erentiable fun
tion f :R !

R there exist polynomials p

n

:R ! R su
h that sup

jxj�n

�

�

p

(i)

n

(x)�f

(i)

(x)

�

�

!

0 as n!1, for i = 0; 1; 2.

Proof. For every n 2 N the fun
tion g

n

: [0; 1℄ ! R de�ned by g

n

(x) =

f

00

(x=n) is 
ontinuous and hen
e by Weierstrass' theorem there exists a

polynomial r

n

su
h that the uniform distan
e on [�1; 1℄ between g

n

and

r

n

is smaller than n

�3

. This uniform distan
e is identi
al to the uniform

distan
e on [�n; n℄ between f

00

and the polynomial q

n

de�ned by q

n

(x) =

r

n

(xn). We now de�ne p

n

to be the polynomial with p

n

(0) = f(0), p

0

n

(0) =

f

0

(0) and p

00

n

= q

n

. By integration of f

00

� p

00

n

it follows that the uniform

distan
e between f

0

and p

0

n

on [�n; n℄ is smaller than n

�2

, and by a se
ond

integration it follows that the uniform distan
e between f and p

n

on [�n; n℄

is bounded above by n

�1

.

* 5.11 Spa
e of Square-integrable Martingales

Re
all that we 
all a martingale M square-integrable if EM

2

t

< 1 for ev-

ery t � 0 and L

2

-bounded if sup

t�0

EM

2

t

< 1. We denote the set of all


adlag L

2

-bounded martingales by H

2

, and the subset of all 
ontinuous

L

2

-bounded martingales by H

2




.

By Theorem 4.10 every L

2

-bounded martingale M = fM

t

: t � 0g


onverges almost surely and in L

2

to a \terminal variable" M

1

and

M

t

= E(M

1

j F

t

) almost surely for all t � 0. If we require the martin-

gale to be 
adlag, then it is 
ompletely determined by the terminal variable

(and the �ltration, up to indistinguishability). This permits us to identify

a martingale M with its terminal variable M

1

, and to make H

2

into a

Hilbert spa
e, with inner produ
t and norm

(M;N) = EM

1

N

1

; kMk =

p

EM

2

1

:

The set of 
ontinuous martingales H

2




is 
losed in H

2

relative to this

norm. This follows by the maximal inequality (4.38), whi
h shows that

M

n

1

!M

1

in L

2

implies the 
onvergen
e of sup

t

jM

n

t

�M

t

j in L

2

, so that


ontinuity is retained when taking limits in H

2

. We denote the ortho
om-

plement of H

2




in H

2

by H

2

d

, so that

H

2

= H

2




+H

2

d

; H

2




? H

2

d

:

The elements of H

2

d

are referred to as the purely dis
ontinuous martingales

bounded in L

2

.

Warning. The sample paths of a purely dis
ontinuous martingale are

not \purely dis
ontinuous", as is 
lear from the fa
t that they are 
adlag by
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de�nition. Nor is it true that they 
hange by jumps only. The 
ompensated

Poisson pro
ess (stopped at a �nite time to make it L

2

-bounded) is an

example of a purely dis
ontinuous martingale. (See Example 5.89.)

The quadrati
 
ovariation pro
esses [M;N ℄ and hM;Ni o�er another

method of de�ning two martingales to be \orthogonal": by requiring that

their 
ovariation pro
ess is zero. For the de
omposition of a martingale in

its 
ontinuous and purely dis
ontinuous part this type of orthogonality is

equivalent to orthogonality in the inner produ
t (�; �).

5.88 Lemma. For every M 2 H

2

the following statements are equivalent.

(i) M 2 H

2

d

.

(ii) M

0

= 0 almost surely and MN is a uniformly integrable martingale

for every N 2 H

2




.

(iii) M

0

= 0 almost surely and MN is a lo
al martingale for every 
ontin-

uous lo
al martingale N .

(iv) M

0

= 0 almost surely and [M;N ℄ = 0 for every 
ontinuous lo
al mar-

tingale N .

(v) M

0

= 0 almost surely and hM;Ni = 0 for every N 2 H

2




.

Furthermore, statements (iii) and (iv) are equivalent for every lo
al mar-

tingale M .

Proof. If M and N are both in H

2

, then jM

t

N

t

j � M

2

t

+ N

2

t

�

sup

t

(M

2

t

+ N

2

t

), whi
h is integrable by (4.38). Consequently, the pro
ess

MN is dominated and hen
e uniformly integrable. If it is a lo
al martingale,

then it is automati
ally martingale. Thus (iii) implies (ii). Also, that (ii) is

equivalent to (v) is now immediate from the the de�nition of the predi
table


ovariation. That (iv) implies (v) is a 
onsequen
e of Lemma 5.64(ii) and

the fa
t that the zero pro
ess is predi
table. That (iv) implies (iii) is im-

mediate from Lemma 5.64(ii).

(ii) ) (i). If MN is a uniformly integrable martingale, then (M;N) �

EM

1

N

1

= EM

0

N

0

and this is zero if M

0

= 0.

(i) ) (ii). Fix M 2 H

2

d

, so that EM

1

N

1

= 0 for every N 2 H

2




. The


hoi
e N � 1

F

for a set F 2 F

0

yields, by the martingale property of M

that EM

0

1

F

= EM

1

1

F

= EM

1

N

1

= 0. We 
on
lude that M

0

= 0 almost

surely.

For an arbitrary N 2 H

2




and an arbitrary stopping time T , the

pro
ess N

T

is also 
ontained in H

2




and hen
e, again by the martingale

property of M 
ombined with the optional stopping theorem, EM

T

N

T

=

EM

1

N

T

= EM

1

(N

T

)

1

= 0. Thus MN is a uniformly integrable martin-

gale by Lemma 4.22.

(i)+(ii) ) (iii). A 
ontinuous lo
al martingale N is automati
ally lo-


ally L

2

-bounded and hen
e there exists a sequen
e of stopping times

0 � T

n

" 1 su
h that N

T

n

is an L

2

-bounded 
ontinuous martingale, for

every n. If M is purely dis
ontinuous, then 0 = [N

T

n

;M ℄ = [N

T

n

;M

T

n

℄.

Hen
e (MN)

T

n

= M

T

n

N

T

n

is a martingale by Lemma 5.64(ii), so that
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MN is a lo
al martingale.

(iii) ) (iv) By Lemma 5.64(ii) the pro
ess MN � [M;N ℄ is always a

lo
al martingale. If MN is a lo
al martingale, then [M;N ℄ is also a lo
al

martingale. The pro
ess [M;N ℄ is always lo
ally of bounded variation. If

N is 
ontinuous this pro
ess is also 
ontinuous in view of Lemma 5.64(vi).

Therefore [M;N ℄ = 0 by Theorem 5.46.

The quadrati
 
ovariation pro
ess [M;N ℄ is de�ned for pro
esses that

are not ne
essarily L

2

-bounded, or even square-integrable. It o�ers a way

of extending the de
omposition of a martingale into a 
ontinuous and a

purely dis
ontinuous part to general lo
al martingales. A lo
al martingale

M is said to be purely dis
ontinuous if M

0

= 0 and [M;N ℄ = 0 for every


ontinuous lo
al martingale N . By the pre
eding lemma it is equivalent to

say that M is purely dis
ontinuous if and only if MN is a lo
al martingale

for every 
ontinuous lo
al martingale N , and hen
e the de�nition agrees

with the de�ntion given earlier in the 
ase of L

2

-bounded martingales.

5.89 Example (Bounded variation martingales). Every lo
al martingale

that is of lo
ally bounded variation is purely dis
ontinuous.

To see this, note that if N is a 
ontinuous pro
ess, 0 at 0, then

max

i

jN

t

n

i

� N

t

n

i�1

j ! 0 almost surely, for every sequen
e of partitions as

in Theorem 5.57. If M is a pro
ess whose sample paths are of bounded

variation on 
ompa
ta, it follows that the left side in the de�nition (5.58)

of the quadrati
 
ovariation pro
ess 
onverges to zero, almost surely. Thus

[M;N ℄ = 0 and MN is a lo
al martingale by Lemma 5.64(ii).

The de�nition of H

2

d

as the ortho
omplement of H

2




and the proje
tion

theorem in Hilbert spa
es, shows that any L

2

-bounded martingale M 
an

be written uniquely as M = M




+M

d

for M




2 H

2




and M

d

2 H

2

d

. This

de
omposition 
an be extended to lo
al martingales, using the extended

de�nition of orthogonality.

5.90 Lemma. Any 
adlag lo
al martingale M possesses a unique de
om-

position M =M

0

+M




+M

d

into a 
ontinuous lo
al martingale M




and a

purely dis
ontinuous lo
al martingale M

d

, both 0 at 0. (The uniqueness is

up to indistinguishability.)

Proof. In view of Lemma 5.48 we 
an de
ompose M as M = M

0

+N +

A for a 
adlag lo
al L

2

-martingale N and a 
adlag lo
al martingale A

of lo
ally bounded variation, both 0 at 0. By Example 5.89 A is purely

dis
ontinuous. Thus to prove existen
e of the de
omposition it suÆ
es to

de
ompose N . If 0 � T

n

" 1 is a sequen
e of stopping times su
h that N

T

n

is an L

2

-martingale for every n, then we 
an de
ompose N

T

n

= N




n

+N

d

n

in H

2

for every n. Be
ause this de
omposition is unique and both H

2




and

H

2

d

are 
losed under stopping (be
ause [M

T

; N ℄ = [M;N ℄

T

), and N

T

m

=
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(N

T

n

)

T

m

= (N




n

)

T

m

+(N

d

n

)

T

m

for m � n, it follows that (N




n

)

T

m

= N




m

and

(N

d

n

)

T

m

= N

d

m

. This implies that we 
an de�ne N




and N

d


onsistently as

N




m

and N

d

m

on [0; T

m

℄. The resulting pro
esses satisfy (N




)

T

m

= N




m

and

(N

d

)

T

m

= N

d

m

. The �rst relation shows immediately that N




is 
ontinuous,

while the se
ond shows that N

d

is purely dis
ontinuous, in view of the fa
t

[N

d

;K℄

T

m

= [(N

d

)

T

m

;K℄ = 0 for every 
ontinuous K 2 H

2

.

Given two de
ompositions M =M

0

+M




+M

d

=M

0

+N




+N

d

, the

pro
ess X =M




�N




= N

d

�M

d

is a 
ontinuous lo
al martingale that is

purely dis
ontinuous, 0 at 0. By the de�nition of \purely dis
ontinuous" it

follows that X

2

is a lo
al martingale as well. Therefore there exist sequen
es

of stopping times 0 � T

n

" 1 su
h that Y = X

T

n

and Y

2

= (X

2

)

T

n

are

uniformly integrable martingales, for every n. It follows that t 7! EY

2

t

is


onstant on [0;1℄ and at the same time Y

t

= E(Y

1

j F

t

) almost surely,

for every t. Be
ause a proje
tion de
reases norm, this is possible only if

Y

t

= Y

1

almost surely for every t. Thus X is 
onstant.

The de
omposition of a lo
al martingale in its 
ontinuous and purely

dis
ontinuous parts makes it possible to des
ribe the relationship between

the two quadrati
 variation pro
esses.

5.91 Lemma. If M and N are lo
al L

2

-martingales with de
ompositions

M =M

0

+M




+M

d

and N = N

0

+N




+N

d

as in Lemma 5.90, then

[M;N ℄

t

= hM




; N




i

t

+

X

s�t

�M

s

�N

s

:

Proof. For simpli
ity we give the proof in the 
ase that M = N . Be
ause

the pro
ess hM




i is 
ontinuous, by Lemma 5.69, the pro
ess [M ℄ as in the

lemma satis�es �[M ℄ = (�M)

2

. As in the proof of Lemma 5.77 it suÆ
es

to prove thatM

2

� [M ℄ is a lo
al martingale. AssumeM

0

= 0 for simpli
ity.

The de
omposition implies that M

2

t

= (M




)

2

+2M




M

d

+(M

d

)

2

. The mid-

dle term 2M




M

d

is a lo
al martingale, be
ause M

d

is purely dis
ontinuous

and M




is 
ontinuous. The �rst term on the right has 
ompensator hM




i.

Therefore, it suÆ
es to show that the purely dis
ontinuous submartingale

M

d

has quadrati
 variation [M

d

℄

t

=

P

s�t

(�M

s

)

2

. For this see Rogers and

Williams, pp384{385, in parti
ular the proof of Theorem 36.5.

Warning. For a martingaleM of lo
ally bounded variation the de
om-

position M = M

0

+M




+M

d

is not the same as the de
omposition of M

in its 
ontinuous and jump parts. For instan
e, the 
ompensated Poisson

pro
ess is purely dis
ontinuous and hen
e has 
ontinuous part zero.

The lo
al martingale M in the de
omposition X = X

0

+M + A of

a semimartingale 
an be split in its 
ontinuous and purely dis
ontinuous

parts M




and M

d

. Even though the de
omposition of X is not unique, the


ontinuous martingale part M




is the same for every de
omposition. This
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is true be
ause M �

�

M =

�

A�A implies that the lo
al martingale M �

�

M

is of lo
ally bounded variation, when
e it is purely dis
ontinuous by Exam-

ple 5.89. It is 
alled the 
ontinuous martingale part of the semimartingale

X , and denoted by X




.

* 5.12 Itô's Formula

5.92 Theorem (Itô's formula). Let X = (X

1

; : : : ; X

d

) be a ve
tor of


adlag semimartingales. Then, for every twi
e 
ontinuously di�erentiable

fun
tion f :R

d

! R,

f(X

t

)� f(X

0

) =

d

X

i=1

Z

t

0

D

i

f(X

�

) dX

i

+

1

2

d

X

i=1

d

X

j=1

Z

t

0

D

ij

f(X

s�

) d[X




i

; X




j

℄

s

+

X

s�t

h

f(X

s

)� f(X

s�

)�

d

X

i=1

D

i

f(X

s�

)�X

i;s

i

; a:s::



6

Sto
hasti
 Cal
ulus

In this 
hapter we dis
uss some examples of \sto
hasti
 
al
ulus", the ma-

nipulation of sto
hasti
 integrals, mainly by the use of the Itô formula. The

more substantial appli
ation to sto
hasti
 di�erential equations is dis
ussed

in Chapter 7.

We re
all the di�erential notation for sto
hasti
 integrals. For pro
esses

X;Y; Z we write

dX = Y dZ; i� X = X

0

+ Y � Z:

In parti
ular d(Y �Z) = Y dZ. By the substitution rule, Lemma 5.54(ii), it

follows that dZ = Y

�1

dX if dX = Y dZ for a stri
tly positive pro
ess Y ,

provided the sto
hasti
 integrals are well-de�ned.

For notational 
onvenien
e we use 
omplex-valued pro
esses in some

of the proofs. A 
omplex-valued random variable Z on a probability spa
e

(
;F ; P ) is a fun
tion Z: 
 ! C of the form Z = U + iV for ordi-

nary, real-valued random variables U and V . Its expe
tation is de�ned

as EZ = EU + iEV , if U and V are integrable. Conditional expe
tations

E(Zj F

0

) are de�ned similarly from the 
onditional expe
tations of the real

and imaginary parts of Z. A 
omplex-valued sto
hasti
 pro
ess is a 
olle
-

tion Z = fZ

t

: t � 0g of 
omplex-valued random variables. A 
omplex-valued

martingale Z is a 
omplex-valued pro
ess whose real and imaginary parts

are martingales. Given the pre
eding de�nitions of (
onditional) expe
ta-

tions, this is equivalent to the pro
ess satisfying the martingale property

E(Z

t

j F

s

) = Z

s

for s � t.

With these de�nitions it 
an be veri�ed that Itô's formula extends to

twi
e 
ontinuously di�erentiable 
omplex-valued fun
tions f :R

d

! C . We

simply apply the formula to the real and imaginary parts of f and next


ombine.
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6.1 L�evy's Theorem

The quadrati
 variation pro
ess of a Brownian motion is the identity fun
-

tion. L�evy's theorem asserts that Brownian motion is the only 
ontinuous

lo
al martingale with this quadrati
 variation pro
ess. It is a useful tool

to show that a given pro
ess is a Brownian motion. The 
ontinuity is es-

sential, be
ause the 
ompensated Poisson pro
ess is another example of a

martingale with quadrati
 variation pro
ess equal to the identity.

6.1 Theorem (L�evy). LetM be a 
ontinuous lo
al martingale, 0 at 0, su
h

that [M ℄ is the identity fun
tion. Then M is a Brownian motion pro
ess.

Proof. For a �xed real number � 
onsider the 
omplex-valued sto
hasti


pro
ess

X

t

= e

i�M

t

+

1

2

�

2

t

:

By appli
ation of Itô's formula to X

t

= f(M

t

; t) with the 
omplex-valued

fun
tion f(m; t) = exp(i�m+

1

2

�

2

t), we �nd

dX

t

= X

t

i� dM

t

+

1

2

X

t

(i�)

2

d[M ℄

t

+X

t

1

2

�

2

dt = X

t

i� dM

t

;

sin
e [M ℄

t

= t by assumption. It follows that X = X

0

+ i�X �M and hen
e

X is a (
omplex-valued) lo
al martingale. Be
ause jX

t

j is a
tually bounded

for every �xed t, X is a martingale. The martingale relation E(X

t

j F

s

) = X

s


an be rewritten in the form

E

�

e

i�(M

t

�M

s

)

j F

s

�

= e

�

1

2

�

2

(t�s)

; a:s:; s < t:

This implies that M

t

�M

s

is independent of F

s

and possesses the normal

distribution with mean zero and varian
e t� s. (Cf. Exer
ise 6.2.)

6.2 EXERCISE. Let X be a random variable on the probability spa
e

(
;F ; P ) and F

0

� F a sub �-�eld su
h that E(e

i�X

j F

0

) is equal to a


onstant 
(�) for every � 2 R. Show that X is independent of F

0

.

L�evy's theorem may be interpreted in the sense that among the 
ontin-

uous lo
al martingales Brownian motion is determined by its quadrati
 vari-

ation pro
ess. A
tually, every 
ontinuous lo
al martingale is \determined"

by its quadrati
 variation pro
ess, in a 
ertain sense. The following theorem

shows that we 
an generate an arbitrary 
ontinuous lo
al martingale from a

Brownian motion by transforming the time s
ale using the inverse pro
ess

of the quadrati
 variation. In the words of Rogers and Williams, p64, any

su
h 
ontinuous lo
al martingale \has delusions of grandeur: it thinks it is

a Brownian motion" running on a di�erent 
lo
k.
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6.3 Theorem. Let M be a 
ontinuous lo
al martingale relative to a �ltra-

tion fF

t

g su
h that [M ℄

t

" 1 almost surely, as t " 1. Let T

t

= inffs �

0: [M ℄

s

> tg. Then the pro
ess B

t

=M

T

t

is a Brownian motion relative to

the �ltration fF

T

t

g and M

t

= B

[M ℄

t

.

Proof. For every �xed t the variable T

t

is a stopping time relative to the

�ltration fF

t

g, and the maps t 7! T

t

are right 
ontinuous. It follows from

this that fF

T

t

g is a right 
ontinuous �ltration. Indeed, if A 2 F

T

q

for every

rational number q > t, then A \ fT

q

< ug 2 F

u

for every u � 0, by the

de�nition of F

T

q

. Hen
e A \ fT

t

< ug = [

q>t

A \ fT

q

< ug 2 F

u

for every

u � 0, when
e A 2 F

T

t

. The �ltration fF

T

t

g is 
omplete, be
ause F

T

t

� F

0

for every t.

For simpli
ity assume �rst that the sample paths s 7! [M ℄

s

of [M ℄ are

stri
tly in
reasing. Then the maps t 7! T

t

are their true inverses and, for

every s; t � 0,

(6:4) T

t^[M ℄

s

= T

t

^ s:

In the 
ase that t < [M ℄

s

, whi
h is equivalent to T

t

< s, this is true be
ause

both sides redu
e to T

t

. In the other 
ase, that t � [M ℄

s

, the identity redu
es

to T

[M ℄

s

= s, whi
h is 
orre
t be
ause T is the inverse of [M ℄.

The 
ontinuous lo
al martingale M 
an be lo
alized by the stopping

times S

n

= inffs � 0: jM

s

j � ng. The stopped pro
ess M

S

n

is a bounded

martingale, for every n. By the de�nition B

t

=M

T

t

and (6.4),

B

t^[M ℄

S

n

=M

T

t

^S

n

;

B

2

t^[M ℄

S

n

� t ^ [M ℄

S

n

=M

2

T

t

^S

n

� [M ℄

T

t

^S

n

;

where we also use the identity t = [M ℄

T

t

. The variable R

n

= [M ℄

S

n

is an

F

T

t

-stopping time, be
ause, for every t � 0,

f[M ℄

S

n

> tg = fS

n

> T

t

g 2 F

T

t

:

The last in
lusion follows from the fa
t that for any pair of stopping times

S; T the event fT < Sg is 
ontained in F

T

, be
ause its interse
tion with

fT < tg 
an be written in the form [

q<t

fT < q � t < Sg 2 F

t

, where the

union is restri
ted to rational numbers q � 0.

By the optional stopping theorem the pro
esses t 7! M

T

t

^S

n

and t 7!

M

2

T

t

^S

n

� [M ℄

T

t

^S

n

are martingales relative to the �ltration fF

T

t

g. Be
ause

they are identi
al to the pro
esses t 7! B

t

and t 7! B

2

t

� t stopped at R

n

,

we 
on
lude that the latter two pro
esses are lo
al martingales. From the

lo
al martingale property of the pro
ess t 7! B

2

t

� t it follows that hBi is

the identity pro
ess. Be
ause M and T are 
ontinuous, so is B. By L�evy's

theorem, Theorem 6.1, we 
on
lude that B is a Brownian motion. This


on
ludes the proof if [M ℄ is stri
tly in
reasing.

For the proof in the general 
ase we may still assume that the sample

paths of [M ℄ are 
ontinuous and nonde
reasing, but we must allow them to
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possess intervals of 
onstant value, whi
h we shall refer to as \
ats". The

maps t 7! T

t

are \generalized inverses" of the maps s 7! [M ℄

s

and map a

value t to the largest time s with [M ℄

s

= t, i.e. the right end point of the


at at height t. The fun
tion s 7! [M ℄

s

is 
onstant on ea
h interval of the

form [s; T

[M ℄

s

℄, the time T

[M ℄

s

being the right end point of the 
at at height

[M ℄

s

. The inverse maps t 7! T

t

are 
adlag with jumps at the values t that

are heights of 
ats of nonzero length. For every s; t � 0,

T

t

< s i� t < [M ℄

s

;

[M ℄

T

t

= t;

T

[M ℄

s

� s;

with, in the last line, equality unless s is in the interior or on the left side

of a 
at of nonzero length.

These fa
ts show that (6.4) is still valid for every s that is not in the

interior or on the left side of a 
at. Then the proof 
an be 
ompleted as

before provided that the stopping time S

n

is never in the interior or on the

left of a 
at and the sample paths of B are 
ontinuous.

Both properties follow if M is 
onstant on every 
at. (Then S

n


annot

be in the interior or on the left of a 
at, be
ause by its de�nitionM in
reases

immediately after S

n

.) It is suÆ
ient to show that the stopped pro
essM

S

n

has this property, for every n. By the martingale relation, for every stopping

time T � s,

E

�

(M

S

n

T

�M

S

n

s

)

2

j F

s

�

= E

�

M

2

S

n

^T

�M

2

S

n

^s

j F

s

�

= E

�

[M ℄

S

n

^T

� [M ℄

S

n

^s

j F

s

�

:

For T equal to the stopping time infft � s: [M ℄

S

n

^t

> [M ℄

S

n

^s

g, the right

side vanishes. We 
on
lude that for every s � 0, the pro
ess M takes the

same value at s as at the right end point of the 
at 
ontaining s, almost

surely. For ! not 
ontained in the union of the null sets atta
hed to some

rational s, the 
orresponding sample path of M is 
onstant on the 
ats of

[M ℄.

The �ltration fF

T

t

g may be bigger than the 
ompleted natural �ltra-

tion generated by B and the variables [M ℄

t

may not be stopping times

for the �ltration generated by B. This hampers the interpretation of M as

a time-
hanged Brownian motion, and the Brownian motion may need to

have spe
ial properties. The theorem is still a wonderful tool to derive prop-

erties of general 
ontinuous lo
al martingales from properties of Brownian

motion.

The 
ondition that [M ℄

t

" 1 
annot be dispensed of in the pre
eding

theorem, be
ause if [M ℄

t

remains bounded, then the pro
essB is not de�ned

on the full time s
ale [0;1). However, the theorem may be adapted to 
over

more general lo
al martingales, by pie
ing B as de�ned together with an
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additional independent Brownian motion that starts at time [M ℄

1

. For

this, see Chung and Williams, p??, or Rogers and Williams, p64-67.

Both theorems allow extension to multidimensional pro
esses. The

multivariate version of L�evy's theorem 
an be proved in exa
tly the same

way. We leave this as an exer
ise. Extension of the time-
hange theorem is

harder.

6.5 EXERCISE. For i = 1; : : : ; d let M

i

be a 
ontinuous lo
al martingale,

0 at 0, su
h that [M

i

;M

j

℄

t

= Æ

ij

t almost surely for every t � 0. Show that

M = (M

1

; : : : ;M

d

) is a ve
tor-valued Brownian motion, i.e. for every s < t

the random ve
tor M

t

�M

s

is independent of F

s

and normally distributed

with mean zero and 
ovarian
e matrix (t� s) times the identity matrix.

6.2 Brownian Martingales

Let B be a Brownian motion on a given probability spa
e (
;F ; P ), and

denote the 
ompletion of the natural �ltration generated by B by fF

t

g.

Sto
hasti
 pro
esses on the �ltered spa
e (
;F ; fF

t

g; P ) that are martin-

gales are referred to as Brownian martingales. Brownian motion itself is

an example, and so are all sto
hasti
 integrals X � B for predi
table pro-


esses X that are appropriately integrable to make the sto
hasti
 integral

well-de�ned.

The following theorem shows that these are the only Brownian mar-

tingales.

One interesting 
orollary is that every Brownian martingale 
an be


hosen 
ontinuous, be
ause all sto
hasti
 integrals relative to Brownian

motion have a 
ontinuous version.

6.6 Theorem. Let fF

t

g be the 
ompletion of the natural �ltration of a

Brownian motion pro
ess B. If M is a 
adlag lo
al martingale relative to

fF

t

g, then there exists a predi
table pro
ess X with

R

t

0

X

2

s

ds <1 almost

surely for every t � 0 su
h that M =M

0

+X �B, up to indistinguishability.

Proof. We 
an assume without loss of generality that M

0

= 0.

First suppose that M is an L

2

-bounded martingale, so that M

t

=

E(M

1

j F

t

) almost surely, for every t � 0, for some square-integrable vari-

able M

1

. For a given pro
ess X 2 L

2

�

[0;1)�
;P ; �

M

�

the sto
hasti
 in-

tegral X �B is an L

2

-bounded martingale with L

2

-limit (X �B)

1

=

R

X dB,

be
ause

R

(X1

[0;t℄

�X)

2

d�

M

! 0 as t!1. The map I :X ! (X �B)

1

is an

isometry from L

2

�

[0;1)�
;P ; �

M

�

into L

2

(
;F ; P ). IfM

1

is 
ontained in

the range range(I) of this map, thenM

t

= E(M

1

j F

t

) = E

�

(X �B)

1

j F

t

) =
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(X �B)

t

, almost surely, be
auseX �B is a martingale. Therefore, it suÆ
es to

show that range(I) 
ontains all square-integrable variables M

1

with mean

zero.

Be
ause the map I is an isometry on a Hilbert spa
e, its range is a


losed linear subspa
e of L

2

(
;F ; P ). It suÆ
es to show that 0 is the only

element of mean zero that is orthogonal to range(I).

Given some pro
ess X 2 L

2

�

[0;1) � 
;P ; �

M

�

and a stopping time

T , the pro
ess X1

[0;T ℄

is also an element of L

2

�

[0;1) � 
;P ; �

M

�

and

(X1

[0;T ℄

� B)

1

= (X � B)

T

, by Lemma 5.27(iii). If M

1

? range(I), then it

is orthogonal to (X1

[0;T ℄

�B)

1

and hen
e 0 = EM

1

(X �B)

T

= EM

T

(X �B)

T

,

be
ause M is a martingale and (X �B)

T

is F

T

-measurable. By Lemma 4.22

we 
on
lude that the pro
essM(X �B) is a uniformly integrable martingale.

The pro
ess X

t

= exp(i�B

t

+

1

2

�

2

t) satis�es dX

t

= i�X

t

dB

t

, by Itô's

formula (
f. the proof of Theorem 6.1), and hen
e X = 1 + i�X � B. The

pro
essX is not uniformly bounded and hen
e is not an eligible 
hoi
e in the

pre
eding paragraph. However, the pro
essX1

[0;T ℄

is uniformly bounded for

every �xed 
onstant T � 0 and hen
e the pre
eding shows that the pro
ess

MX

T

= M + i�M(X1

[0;T ℄

� B) is a uniformly integrable martingale. This

being true for every T � 0 implies thatMX is a martingale. The martingale

relation for the pro
ess MX 
an be written in the form

E

�

M

t

e

i�(B

t

�B

s

)

j F

s

�

=M

s

e

�

1

2

�

2

(t�s)

; a:s:; s � t:

Multiplying this equation by exp(i�

0

(B

s

� B

u

)) for u � s and taking 
on-

ditional expe
tation relative to F

u

, we �nd, for u � s � t,

E

�

M

t

e

i�(B

t

�B

s

)+i�

0

(B

s

�B

u

)

j F

u

�

=M

u

e

�

1

2

�

2

(t�s)�

1

2

�

02

(u�s)

; a:s::

Repeating this operation �nitely many times, we �nd that for an arbitrary

partition 0 = t

0

� t

1

� � � � � t

k

= t and arbitrary numbers �

1

; : : : ; �

k

,

EE

�

M

t

e

i

P

j

�

j

(B

t

j

�B

t

j�1

)

j F

0

�

= EM

0

e

�

1

2

P

j

�

2

j

(t

j

�t

j�1

)

= 0:

We 
laim that this shows thatM = 0, 
on
luding the proof in the 
ase that

M is L

2

-bounded.

The 
laim follows essentially by the uniqueness theorem for 
hara
ter-

isti
 fun
tions. In view of the pre
eding display the measures �

+

t

1

;:::;t

k

and

�

�

t

1

;:::;t

k

on R

k

de�ned by

�

�

t

1

;:::;t

k

(A) = EM

�

t

1

A

(B

t

1

�t

0

; : : : ; B

t

k

�t

k�1

);

possess identi
al 
hara
teristi
 fun
tions and hen
e are identi
al. This shows

that the measures �

+

and �

�

on (
;F) de�ned by �

�

(F ) = EM

�

t

1

F

agree

on the �-�eld generated by B

t

1

�t

0

; : : : ; B

t

k

�t

k�1

. This being true for every

partition of [0; t℄ shows that �

+

and �

�

also agree on the algebra generated
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by fB

s

: 0 � s � tg and hen
e, by Carath�eodory's theorem, also on the

�-�eld generated by these variables. Thus EM

t

1

F

= 0 for every F in this

�-�eld, when
e M

t

= 0 almost surely, be
ause M

t

is measurable in this

�-�eld.

Next we show that any lo
al martingale M as in the statement of

the theorem possesses a 
ontinuous version. Be
ause we 
an lo
alize M , it

suÆ
es to prove this in the 
ase thatM is a uniformly integrable martingale.

Then M

t

= E(M

1

j F

t

) for an integrable variable M

1

. If we let M

n

1

be

M

1

trun
ated to the interval [�n; n℄, then M

n

t

: = E(M

n

1

j F

t

) de�nes a

bounded and hen
e L

2

-bounded martingale, for every n. By the pre
eding

paragraph this 
an be represented as a sto
hasti
 integral with respe
t to

Brownian motion and hen
e it possesses a 
ontinuous version. The pro
ess

jM

n

�M j is a 
adlag submartingale, when
e by the maximal inequality

given by Lemma 4.36,

P

�

sup

t

jM

n

t

�M

t

j � "

�

�

1

"

EjM

n

1

�M

1

j:

The right side 
onverges to zero as n ! 1, by 
onstru
tion, when
e the

sequen
e of suprema in the left side 
onverges to zero in probability. There

exists a subsequen
e whi
h 
onverges to zero almost surely, and hen
e the


ontinuity of the pro
esses M

n


arries over onto the 
ontinuity of M .

Every 
ontinuous lo
al martingale M is lo
ally L

2

-bounded. Let 0 �

T

n

" 1 be a sequen
e of stopping times su
h that M

T

n

is an L

2

-bounded

martingale, for every n. By the pre
eding we 
an represent M

T

n

as M

T

n

=

X

n

� B for a predi
table pro
ess X

n

2 L

2

�

[0;1)� 
;P ; �

M

�

, for every n.

For m � n,

X

m

� B =M

T

m

= (M

T

n

)

T

m

= (X

n

� B)

T

m

= X

n

1

[0;T

m

℄

� B;

by Lemma 5.27(iii) or Lemma 5.54. By the isometry this implies that, for

every t � 0,

0 = E

�

X

m

�B �X

n

1

[0;T

m

℄

�B)

2

t

= E

Z

t

0

(X

m

�X

n

1

[0;T

m

℄

)

2

d�:

We 
on
lude that X

m

= X

n

on the set [0; T

m

℄ almost everywhere under

� � P . This enables to de�ne a pro
ess X on [0;1) � 
 in a 
onsistent

way, up to a � � P -null set, by setting X = X

m

on the set [0; T

m

℄. Then

(X �B)

T

m

= X1

[0;T

m

℄

�B = X

m

�B =M

T

m

for everym and hen
eM = X �B.

The �niteness of E

R

X

2

m

d� for every m implies that

R

t

0

X

2

d� <1 almost

surely, for every t � 0.

The pre
eding theorem 
on
erns pro
esses that are lo
al martingales

relative to a �ltration generated by a Brownian motion. This is restri
tive

in terms of the lo
al martingales it 
an be applied to, but at the same time
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determines the strength of the theorem, whi
h gives a representation as a

sto
hasti
 integral relative to the given Brownian motion.

If we are just interested in representing a lo
al martingale as a sto
has-

ti
 integral relative to some Brownian motion, then we need not restri
t the

�ltration to a spe
ial form. Then we 
an de�ne a Brownian motion in terms

of the martingale, and a
tually the proof of the representation 
an be mu
h

simpler. We leave one result of this type as an exer
ise. See e.g. Karatzas

and Shreve, p170{173 for slightly more general results.

6.7 EXERCISE. Let M be a 
ontinuous lo
al martingale with quadrati


variation pro
ess [M ℄ of the form [M ℄

t

=

R

t

0

�

s

ds for a 
ontinuous, stri
tly

positive sto
hasti
 pro
ess �. Show that B = �

�1=2

� M is a Brownian

motion, and M =

p

� �B. [Hint: don't use the pre
eding theorem!℄

6.3 Exponential Pro
esses

The exponential pro
ess 
orresponding to a 
ontinuous semimartingale X

is the pro
ess E(X) de�ned by

E(X)

t

= e

X

t

�

1

2

[X℄

t

:

The name \exponential pro
ess" would perhaps suggest the pro
ess e

X

rather than the pro
ess E(X) as de�ned here. The additional term

1

2

[X ℄ in

the exponent of E(X) is motivated by the extra term in the Itô formula. An

appli
ation of this formula to the right side of the pre
eding display yields

(6:8) dE(X)

t

= E(X)

t

dX

t

:

(Cf. the proof of the following theorem.) If we 
onsider the di�erential

equation df(x) = f(x) dx as the true de�nition of the exponential fun
tion

f(x) = e

x

, then E(X) is the \true" exponential pro
ess of X , not e

X

.

Besides that, the exponentiation as de�ned here has the ni
e property

of turning lo
al martingales into lo
al martingales.

6.9 Theorem. The exponential pro
ess E(X) of a 
ontinuous lo
al mar-

tingale X with X

0

= 0 is a lo
al martingale. Furthermore,

(i) If Ee

1

2

[M ℄

t

<1 for every t � 0, then E(X) is a martingale.

(ii) If X is an L

2

-martingale and E

R

t

0

E(X)

2

s

d[X ℄

s

< 1 for every t � 0,

then E(X) is an L

2

-martingale.

Proof. By Itô's formula applied to the fun
tion f(X

t

; [X ℄

t

) = E(X)

t

, we

�nd that

dE(X)

t

= E(X)

t

dX

t

+

1

2

E(X)

t

d[X ℄

t

+ E(X)

t

(�

1

2

) d[X ℄

t

:
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This simpli�es to (6.8) and hen
e E(X) = 1+E(X)�X is a sto
hasti
 integral

relative to X . If X is a lo
al martingale, then so is E(X). Furthermore, if

X is an L

2

-martingale and

R

1

[0;t℄

E(X)

2

d�

X

< 1 for every t � 0, then

E(X) is an L

2

-martingale, by Theorem 5.25. This 
ondition redu
es to the


ondition in (ii), in view of Lemma 5.74.

The proof of (i) should be skipped at �rst reading. If 0 � T

n

" 1 is a

lo
alizing sequen
e for E(X), then Fatou's lemma gives

E

�

E(X)

t

j F

s

�

� lim inf

n!1

E(E(X)

t^T

n

j F

s

�

= lim inf

n!1

E(X)

s^T

n

= E(X)

s

:

Therefore, the pro
ess E(X) is a supermartingale. It is a martingale if and

only if its mean is 
onstant, where the 
onstant must be EE(X)

0

= 1.

In view of Theorem 6.3 we may assume that the lo
al martingale X

takes the form X

t

= B

[X℄

t

for a pro
ess B that is a Brownian motion

relative to a 
ertain �ltration. For every �xed t the random variable [X ℄

t

is a

stopping time relative to this �ltration. We 
on
lude that it suÆ
es to prove:

if B is a Brownian motion and T a stopping time with E exp(

1

2

T ) < 1,

then E exp(B

T

�

1

2

T ) = 1.

Be
ause 2B

s

is normally distributed with mean zero and varian
e 4s,

E

Z

t

0

E(B)

2

s

ds =

Z

t

0

Ee

2B

s

e

�s

ds =

Z

t

0

e

s

ds <1

By (ii) it follows that E(B) is an L

2

-martingale. For given a < 0 de�ne

S

a

= infft � 0:B

t

� t = ag. Then S

a

is a stopping time, so that E(B)

S

a

is

a martingale, when
e EE(B)

S

a

^t

= 1 for every t. It 
an be shown that S

a

is �nite almost surely and

EE(B)

S

a

= Ee

B

S

a

�

1

2

S

a

= 1:

(The distribution of S

a

is known in 
losed form. See e.g. Rogers and

Williams I.9, p18-19; be
ause B

S

a

= S

a

+ a, the right side is the expe
-

tation of exp(a +

1

2

S

a

).) With the help of Lemma 1.22 we 
on
lude that

E(B)

S

a

^t

! E(B)

S

a

in L

1

as t ! 1, and hen
e E(B)

S

a

is uniformly inte-

grable. By the optional stopping theorem, for any stopping time T ,

1 = EE(B)

S

a

T

= E1

T<S

a

e

B

T

�

1

2

T

+E1

T�S

a

e

B

S

a

�

1

2

S

a

:

Be
ause the sample paths of the pro
ess t! B

t

�t are bounded on 
ompa
t

time intervals, S

a

" 1 if a # �1. Therefore, the �rst term on the right


onverges to E exp(B

T

�

1

2

T ), by the monotone 
onvergen
e theorem. The

se
ond term is equal to

E1

T�S

a

e

S

a

+a�

1

2

S

a

� e

a

Ee

1

2

T

:

If E exp(

1

2

T ) <1, then this 
onverges to zero as a! �1.
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In appli
ations it is important to determine whether the pro
ess E(X)

is a martingale, rather than just a lo
al martingale. No simple ne
essary

and suÆ
ient 
ondition appears to be known, although the 
ondition in

(i), whi
h is known as Novikov's 
ondition, is optimal in the sense that

the fa
tor

1

2

in the exponent 
annot be repla
ed by a smaller 
onstant, in

general.

6.10 EXERCISE. Let X be a 
ontinuous semimartingale with X

0

= 0.

Show that Y = E(X) is the unique solution to the pair of equations dY =

Y dX and Y

0

= 1. (Hint: using Itô's formula show that d

�

Y E(X)

�1

�

= 0

for every solution Y , so that Y E(X)

�1

� Y

0

E(X)

�1

0

= 1.)

6.11 EXERCISE. Show that E(X)

T

= E(X

T

) for every stopping time T .

6.4 Cameron-Martin-Girsanov Theorem

Let X be a 
ontinuous lo
al martingale on the �ltered probability spa
e

(
;F ; fF

t

g; P ), 0 at 0. If the exponential pro
ess E(X) 
orresponding to

X is a uniformly integrable martingale, then we 
an de�ne a probability

measure

~

P on F by

~

P (F ) =

Z

F

E(X)

1

dP:

Thus

~

P possesses Radon-Nikodym derivative E(X)

1

relative to P . Be-


ause

~

P (F ) = E1

F

E(X)

1

= E1

F

E(X)

t

for every F 2 F

t

and E(X)

t

is

F

t

-measurable, the restri
tion

~

P

t

of

~

P to F

t

possesses a Radon-Nikodym

density E(X)

t

relative to the restri
tion P

t

of P to F

t

, i.e.

d

~

P

t

dP

t

= E(X)

t

:

The 
ondition that E(X) be a uniformly integrable martingale is some-

what restri
tive. It is satis�ed, for instan
e, if X is a pro
ess that satis�es

Novikov's 
ondition (as in Theorem 6.9(i)) stopped at a �nite time. We

illustrate this situation in Example 6.18.

If M is a lo
al martingale relative to P , then it typi
ally looses the

lo
al martingale property if we use the measure

~

P instead. The Cameron-

Martin-Girsanov theorem shows that M is still a semimartingale if we use

~

P , and gives an expli
it de
omposition of M in its martingale and bounded

variation parts.

We start with a general lemma on the martingale property under a

\
hange of measure". We refer to a pro
ess that is a lo
al martingale under

P as a P -lo
al martingale.
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6.12 Lemma. Let

~

P and P be equivalent probability measures on (
;F)

and let L

t

= d

~

P

t

=dP

t

be a Radon-Nikodym density of the restri
tions of

~

P

and P to F

t

. Then a sto
hasti
 pro
ess M is a

~

P -lo
al martingale if and

only if the pro
ess LM is a P -lo
al martingale.

Proof. We �rst prove the theorem without \lo
al". If M is an adapted

~

P -integrable pro
ess, then, for every s < t and F 2 F

s

,

~

EM

t

1

F

= EL

t

M

t

1

F

;

~

EM

s

1

F

= EL

s

M

s

1

F

;

The two left sides are identi
al for every F 2 F

s

and s < t if and only if M

is a

~

P -martingale. Similarly, the two right sides are identi
al if and only if

LM is a P -martingale. We 
on
lude that M is a

~

P -martingale if and only

if LM is a P -martingale.

If M is a

~

P -lo
al martingale and 0 � T

n

" 1 is a lo
alizing sequen
e,

then the pre
eding shows that the pro
ess LM

T

n

is a P -martingale, for

every n. Then so is (LM

T

n

)

T

n

= (LM)

T

n

, and we 
an 
on
lude that LM

is a P -lo
al martingale.

Be
ause

~

P and P are equivalent, we 
an sele
t a version of L that is

stri
tly positive. Then dP

t

=d

~

P

t

= L

�1

t

and we 
an use the argument of the

pre
eding paragraph in the other dire
tion to see that M = L

�1

(LM) is a

~

P -lo
al martingale if LM is a P -lo
al martingale.

6.13 EXERCISE. In the situation of the pre
eding lemma, show that L

t

=

E(d

~

P=dP j F

t

) almost surely and 
on
lude that there exists a 
adlag version

of L.

If M itself is a P -lo
al martingale, then generally the pro
ess LM will

not be a P -lo
al martingale, and hen
e the pro
essM will not be a

~

P -lo
al

martingale. We 
an 
orre
t for this by subtra
ting an appropriate pro
ess.

We assume that the likelihood ratio pro
ess L is 
ontinuous. The pro
esses

LM � [L;M ℄

L(L

�1

� [L;M ℄)� [L;M ℄

are both P -lo
al martingales. For the �rst this is an immediate 
onsequen
e

of Lemma 5.64(ii). For the se
ond it follows from the integration-by-parts

or Itô's formula. (See the proof of the following theorem.) It follows that

the di�eren
e of the two pro
esses is also a P -lo
al martingale and hen
e

the pro
ess

(6:14) M � L

�1

� [L;M ℄:

is a

~

P -lo
al martingale. In the 
ase that L = E(X) this takes the ni
e form

given in the following theorem.
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6.15 Theorem. Let X be a 
ontinuous lo
al martingale, 0 at 0, su
h that

E(X) is a uniformly integrable martingale, and let d

~

P = E(X)

1

dP . IfM is

a 
ontinuous P -lo
al martingale, then M � [X;M ℄ is a

~

P -lo
al martingale.

Proof. The exponential pro
ess L = E(X) satis�es dL = LdX , or equiv-

alently, L = 1 + L � X . Hen
e L

�1

� [L;M ℄ = L

�1

[L � X;M ℄ = [X;M ℄, by

Lemma 5.77(i). The theorem follows if we 
an show that the pro
ess in

(6.14) is a

~

P -lo
al martingale. By Lemma 6.12 it suÆ
es to show that L

times the pro
ess is a P -lo
al martingale.

By the integration-by-parts (or Itô's) formula it follows that

d

�

L(L

�1

� [L;M ℄)

�

= (L

�1

� [L;M ℄) dL+ Ld(L

�1

� [L;M ℄):

No \
orre
tion term" appears at the end of the display, be
ause the

quadrati
 
ovariation between the 
ontinuous pro
ess L and the pro
ess

of lo
ally bounded variation L

�1

� [L;M ℄ is zero. The integral of the �rst

term on the right is a sto
hasti
 integral (of L

�1

� [L;M ℄) relative to

the P -martingale L and hen
e is a P -lo
al martingale. The integral of

the se
ond term is [L;M ℄, by Lemma 5.77(i). It follows that the pro
ess

(L(L

�1

� [L;M ℄)� [L;M ℄ is a lo
al martingale. The di�eren
e of this with

the lo
al martingale LM � [L;M ℄ is L times the pro
ess in (6.14).

The quadrati
 
ovariation pro
ess [X;M ℄ in the pre
eding theorem was

meant to be the quadrati
 
ovariation pro
ess under the orginal measure

P . Be
ause

~

P and P are equivalent and a quadrati
 
ovariation pro
ess


an be de�ned as a limit of inner produ
ts of in
rements, as in (5.58), it is

a
tually also the quadrati
 variation under

~

P .

Under the 
ontinuity assumptions onM andX , the pro
essM�[X;M ℄

possesses the same quadrati
 variation pro
ess [M ℄ as M , where again it

does not matter if we use P or

~

P as the referen
e measure.

The latter remark is parti
ularly interesting if M is a P -Brownian

motion pro
ess. Then both M and M � [X;M ℄ possess quadrati
 variation

pro
ess the identity. Be
ause M � [X;M ℄ is a 
ontinuous lo
al martingale

under

~

P , it is a Brownian motion under

~

P by L�evy's theorem. This proves

the following 
orollary.

6.16 Corollary. Let X be a 
ontinuous lo
al martingale, 0 at 0, su
h that

E(X) is a uniformly integrable martingale, and let d

~

P = E(X)

1

dP . If B

is a P -Brownian motion, then B � [X;B℄ is a

~

P -Brownian motion.

A further spe
ialization is to 
hoose X equal to a sto
hasti
 integral

X = Y �B of a pro
ess Y relative to Brownian motion. Then

(6:17)

d

~

P

t

dP

t

= e

R

t

0

Y

s

dB

s

�

1

2

R

t

0

Y

2

s

ds

a:s:;
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and, by the pre
eding theorem, the pro
ess

t 7! B

t

�

Z

t

0

Y

s

ds

is a Brownian motion under

~

P . Here the pro
ess Y must be 
hosen su
h

that the sto
hasti
 integral Y �B is well-de�ned and E(Y �B) is a uniformly

integrable martingale. For the �rst it suÆ
es that Y is adapted and mea-

surable with

R

t

0

Y

2

s

ds �nite almost surely. The se
ond 
ondition is more

restri
tive.

6.18 Example. For a given measurable, adapted pro
ess Y and 
onstant

T > 0 assume that

Ee

1

2

R

T

0

Y

2

s

ds

<1:

Then the pro
ess Y 1

[0;T ℄

�B = (Y �B)

T

satis�es Novikov's 
ondition, as its

quadrati
 variation is given by

[Y 1

[0;T ℄

�B℄

t

=

Z

T^t

0

Y

2

s

ds:

By Theorem 6.9 the pro
ess E((Y � B)

T

) is a martingale. Be
ause it is


onstant on [T;1), it is uniformly integrable. We 
on
lude that the pro
ess

fB

t

�

R

T^t

0

Y

s

ds: t � 0g is a Brownian motion under the measure

~

P given

by d

~

P = E((Y � B)

T

)

1

dP .

It is a fair question why we would be interested in \
hanges of measure"

of the form (6.17). We shall see some reasons when dis
ussing sto
hasti


di�erential equations or option pri
ing in later 
hapters. For now we 
an

note that in the situation that the �ltration is the 
ompletion of the �ltra-

tion generated by a Brownian motion any 
hange to an equivalent measure

is of the form (6.17).

6.19 Lemma. Let fF

t

g be the 
ompletion of the natural �ltration of a

Brownian motion pro
ess B de�ned on (
;F ; P ). If

~

P is a probability

measure on (
;F) that is equivalent to P , then there exists a predi
table

pro
ess Y with

R

t

0

Y

2

s

ds < 1 almost surely for every t � 0 su
h that the

restri
tions

~

P

t

and P

t

of

~

P and P to F

t

satisfy (6.17).

Proof. Let L

t

= d

~

P

t

=dP

t

be a version of the density of

~

P

t

relative to P

t

.

Then for every F 2 F

t

,

E

d

~

P

dP

1

F

=

~

P (F ) =

~

P

t

(F ) =

Z

F

d

~

P

t

dP

t

dP

t

= EL

t

1

F

:

This shows that L

t

= E(d

~

P=dP j F

t

) almost surely, and hen
e L is a mar-

tingale relative to the �ltration fF

t

g. Be
ause this is a Brownian �ltration,
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Theorem 6.6 implies that L permits a 
ontinuous version. By the equiva-

len
e of

~

P and P the variable L

t

is stri
tly positive almost surely, for every

t � 0, and hen
e we 
an 
hoose the pro
ess L stri
tly positive without loss

of generality. Then L

�1

is a well-de�ned 
ontinuous pro
ess and hen
e is

lo
ally bounded. The sto
hasti
 integral Z = L

�1

� L is well-de�ned and a

lo
al martingale, relative to the Brownian �ltration fF

t

g. By Theorem 6.6

it 
an be represented as Z = Y � B for a predi
table pro
ess Y as in the

statement of the lemma. The de�nition Z = L

�1

� L implies dL = LdZ.

This is solved uniquely by L = E(Z). (Cf. Exer
ise 6.10.)

It 
ould be of interest to drop the 
ondition that E(X) is uniformly

integrable, whi
h we have made throughout this se
tion. As long as E(X)

is a martingale, then we 
an de�ne probability measures

~

P

t

on F

t

by

~

P

t

(F ) = E1

F

E(X)

t

:

By the martingale property this 
olle
tion of measures will be 
onsistent in

the sense that

~

P

s

is the restri
tion of

~

P

t

of F

s

, for s < t. If we 
ould �nd

a measure

~

P on F

1

with restri
tion

~

P

t

to F

t

, mu
h of the pre
eding goes

through.

Su
h a measure

~

P does not ne
essarily exist under just the 
ondition

that E(X) is a martingale. A suÆ
ient 
ondition is that the �ltration be

generated by an appropriate pro
ess Z. If F

t

= �(Z

s

: s � t) for every t,

then we 
an invoke the Kolmogorov extension theorem to see the existen
e

of a measure

~

P on F

1

. It should be noted that this 
ondition does not

permit that we 
omplete the �ltration. In fa
t, 
ompletion (under P ) may


ause problems, be
ause, in general, the measure

~

P will not be absolutely


ontinuous relative to P . See Chung and Williams, p?? for further dis
us-

sion.
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Sto
hasti


Di�erential Equations

In this 
hapter we 
onsider sto
hasti
 di�erential equations of the form

dX

t

= �(t;X

t

) dt+ �(t;X

t

) dB

t

:

Here � and � are given fun
tions and B is a Brownian motion pro
ess.

The equation may be thought of as a randomly perturbed version of the

�rst order di�erential equation dX

t

= �(t;X

t

) dt. Brownian motion is often

viewed as an appropriate \driving for
e" for su
h a noisy perturbation.

The sto
hasti
 di�erential equation is to be understood in the sense

that we look for a 
ontinuous sto
hasti
 pro
ess X su
h that, for every

t � 0,

(7:1) X

t

= X

0

+

Z

t

0

�(s;X

s

) ds+

Z

t

0

�(s;X

s

) dB

s

; a:s::

Usually, we add an initial 
ondition X

0

= �, for a given random variable �,

or require that X

0

possesses a given law.

It is useful to dis
ern two ways of posing the problem, the strong and

the weak one, di�ering mostly in the spe
i�
ation of what is being given

a-priori and of whi
h further properties the solution X must satisfy. The

fun
tions � and � are �xed throughout, and are referred to as the \drift"

and \di�usion 
oeÆ
ients" of the equation.

In the \strong setting" we are given a parti
ular �ltered probability

spa
e (
;F ; fF

t

g; P ), a Brownian motion B and an initial random variable

�, both de�ned on the given �ltered spa
e, and we sear
h for a 
ontinuous

adapted pro
ess X , also de�ned on the given �ltered spa
e, whi
h satis�es

the sto
hasti
 di�erential equation with X

0

= �. It is usually assumed here

that the �ltration fF

t

g is the smallest one to whi
h B is adapted and for

whi
h � is F

0

-measurable, and whi
h satis�es the usual 
onditions. The

requirement that the solution X be adapted then implies that it 
an be

expressed as X = F (�; B) for a suitably measurable map F , and the pre
ise
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de�nition of a strong solution 
ould in
lude 
ertain properties of F , su
h as

appropriate measurability, or the requirement that F (x;B

0

) is a solution of

the sto
hasti
 di�erential equation with initial variable x 2 R, for every x

and every Brownian motion B

0

de�ned on some �ltered probability spa
e.

Di�erent authors make this pre
ise in di�erent ways; we shall not add to

this 
onfusion here.

For a weak solution of the sto
hasti
 di�erential equation we sear
h

for a �ltered probability spa
e, as well as a Brownian motion and an ini-

tial random variable �, and a 
ontinuous adapted pro
ess X satisfying the

sto
hasti
 di�erential equation, all de�ned on the given �ltered spa
e. The

initial variable X

0

is usually required to possess a given law. The �ltration

is required to satisfy the usual 
onditions only, so that a weak solution X

is not ne
essarily a fun
tion of the pair (�; B).

Clearly a strong solution in a given setting provides a weak solution,

but the 
onverse is false. The existen
e of a weak solution does not even

imply the existen
e of a strong solution (depending on the measurability

assumptions we impose). In parti
ular, there exist examples of weak so-

lutions, for whi
h it 
an be shown that the �ltration must ne
essarily be

bigger than the �ltration generated by the driving Brownian motion, so

that the solution X 
annot be a fun
tion of (�; B) alone. (For instan
e,

Tanaka's example, see Chung and Williams, pages 248{250.)

For X to solve the sto
hasti
 di�erential equation, the integrals in (7.1)

must be well de�ned. This is 
ertainly the 
ase if � and � are measurable

fun
tions and, for every t � 0,

Z

t

0

j�(s;X

s

)j ds <1; a:s:;

Z

t

0

j�

2

(s;X

s

)j ds <1; a:s::

Throughout we shall silently understand that it is in
luded in the require-

ments for \X to solve the sto
hasti
 di�erential equation" that these 
on-

ditions are satis�ed.

7.2 EXERCISE. Show that t 7! �(t;X

t

) is a predi
table pro
ess if �:R

2

!

R is measurable and X is predi
table. (Hint: 
onsider the map (t; !) 7!

�

t;X

t

(!)

�

on [0;1)� 
 equipped with the predi
table �-�eld.)

The 
ase that � and � depend on X only is of spe
ial interest. The

sto
hasti
 di�erential equation

(7:3) dX

t

= �(X

t

) dt+ �(X

t

) dB

t

is known as a di�usion equation. Under some 
onditions the solution X of

a di�usion equation is a time-homogeneous Markov pro
ess. Some authors

use the term di�usion pro
ess to denote any time-homogeneous (strong)



112 7: Sto
hasti
 Di�erential Equations

Markov pro
ess, while other authors reserve the term for solutions of di�u-

sion equations only, sometimes imposing additional 
onditions of a some-

what te
hni
al nature, or relaxing the di�erential equation to a statement


on
erning �rst and se
ond in�nitesimal moments of the type

E(X

t+h

�X

t

j F

t

) = �(X

t

)h+ o(h); a:s:

var(X

t+h

�X

t

j F

t

) = �

2

(X

t

)h+ o(h); a:s:; h # 0; :

These in�nitesimal 
onditions give an important interpretation to the fun
-

tions � and �, and 
an be extended to the more general equation (7.1).

Apparently, sto
hasti
 di�erential equations were invented, by Itô in the

1940s, to 
onstru
t pro
esses that are \di�usions" in this vaguer sense.

Rather than simplifying the sto
hasti
 di�erential equation, we 
an

also make it more general, by allowing the fun
tions � and � to depend not

only on (t;X

t

), but on t and the sample path of X until t. The resulting

sto
hasti
 di�erential equations 
an be treated by similar methods. (See

e.g. pages 122{124 of Rogers and Williams.)

Another generalization is to multi-dimensional equations, driven by a

multivariate Brownian motion B = (B

1

; : : : ; B

l

) and involving a ve
tor-

valued fun
tion �: [0;1) � R

k

! R

k

and a fun
tion �: [0;1) � R

k

! R

kl

with values in the k � l-matri
es. Then we sear
h for a 
ontinuous ve
tor-

valued pro
ess X = (X

1

; : : : ; X

k

) satisfying, for i = 1; : : : ; k,

X

t;i

= X

0;i

+

Z

t

0

�

i

(s;X

s

) ds+

l

X

j=1

Z

t

0

�

i;j

(s;X

s

) dB

j;s

:

Multivariate sto
hasti
 di�erential equations of this type are not essentially

more diÆ
ult to handle than the one-dimensional equation (7.1). For sim-

pli
ity we 
onsider the one-dimensional equation (7.1), or at least shall view

the equation (7.1) as an abbreviation for the multivariate equation in the

pre
eding display.

We 
lose this se
tion by showing that Girsanov's theorem may be used

to 
onstru
t a weak solution of a spe
ial type of sto
hasti
 di�erential equa-

tion, under a mild 
ondition. This illustrates that spe
ial approa
hes to

spe
ial equations 
an be more powerful than the general results obtained

in this 
hapter.

7.4 Example. Let � be an F

0

-measurable random variable and let X � �

be a Brownian motion on a �ltered probability spa
e (
;F ; fF

t

g; P ). For a

given measurable fun
tion � de�ne a pro
ess Y by Y

t

= �(t;X

t

), and assume

that the exponential pro
ess E(Y �X) is a uniformly integrable martingale.

Then d

~

P = E(Y �X)

1

de�nes a probability measure and, by Corollary 6.16

the pro
ess B de�ned by B

t

= X

t

� � �

R

t

0

Y

s

ds is a

~

P -Brownian motion

pro
ess. (Note that Y �X = Y � (X � �).) It follows that X together with
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the �ltered probability spa
e (
;F ; fF

t

g;

~

P ) provides a weak solution of

the sto
hasti
 di�erential equation X

t

= � +

R

t

0

�(s;X

s

) ds+B

t

.

The main 
ondition to make this work is that the exponential pro
ess

of Y � X is a uniformly integrable martingale. This is easy to a
hieve on


ompa
t time intervals by Novikov's 
ondition.

7.1 Strong Solutions

Following Itô's original approa
h we 
onstru
t in this se
tion strong solu-

tions under Lips
hitz and growth 
onditions on the fun
tions � and �. We

assume that for every t � 0 there exists a 
onstant C

t

su
h that, for all

s 2 [0; t℄ and for all x; y 2 [�t; t℄,

(7:5)

�

�

�(s; x)� �(s; y)

�

�

� C

t

jx� yj;

�

�

�(s; x) � �(s; y)

�

�

� C

t

jx� yj:

Furthermore, we assume that for every t � 0 there exists a 
onstant C

t

su
h that, for all s 2 [0; t℄ and x 2 R,

(7:6)

�

�

�(s; x)

�

�

� C

t

(1 + jxj);

�

�

�(s; x)

�

�

� C

t

(1 + jxj):

Then the sto
hasti
 di�erential equation (7.1) possesses a strong solution in

every possible setting. The proof of this is based on an iterative 
onstru
tion

of pro
esses that 
onverge to a solution, mu
h like the Pi
ard iteration

s
heme for solving a deterministi
 di�erential equation.

Let (
;F ; fF

t

g; P ) be an arbitrary �ltered probability spa
e, and let

B be a Brownian motion and an F

0

-measurable random variable � de�ned

on it.

7.7 Theorem. Let � and � be measurable fun
tions that satisfy (7.5){

(7.6). Then there exists a 
ontinuous, adapted pro
ess X on (
;F ; fF

t

g; P )

with X

0

= � that satis�es (7.1). This pro
ess is unique up to indistinguisha-

bility, and its distribution is uniquely determined by the distribution of �.

Proof. For a given pro
ess X let LX denote the pro
ess on the right of

(7.1), i.e.

(LX)

t

= � +

Z

t

0

�(s;X

s

) ds+

Z

t

0

�(s;X

s

) dB

s

:

We wish to prove that the equation LX = X possesses a unique 
ontinuous

adapted solution X . By assumption (7.6) the absolute values of the inte-

grands are bounded above by C

t

�

1 + jX

s

j) and hen
e the integrals in the

de�nition of LX are well-de�ned for every 
ontinuous adapted pro
ess X .
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First assume that � is square-integrable and the Lips
hitz 
ondition

(7.5) is valid for every x; y 2 R (and not just for x; y 2 [�t; t℄). We may

assume without of loss of generality that the 
onstants C

t

are nonde
reasing

in t.

By the triangle inequality, the maximal inequality (4.38), the Cau
hy-

S
hwarz inequality, and the de�ning isometry of sto
hasti
 integrals,

E sup

s�t

�

�

(LX)

s

� (LY )

s

�

�

2

. E

�

�

�

Z

t

0

�

�

�(s;X

s

)� �(s; Y

s

)

�

�

ds

�

�

�

2

+E

�

�

�

Z

t

0

�

�(s;X

s

)� �(s; Y

s

)

�

dB

s

�

�

�

2

. tE

Z

t

0

�

�

�(s;X

s

)� �(s; Y

s

)

�

�

2

ds+E

Z

t

0

�

�(s;X

s

)� �(s; Y

s

)

�

2

ds

. (t+ 1)C

2

t

E

Z

t

0

jX

s

� Y

s

j

2

ds:

The use of the maximal inequality (in the �rst .) is justi�ed as soon as

the pro
ess t 7!

R

t

0

�

�(s;X

s

) � �(s; Y

s

)

�

dB

s

is an L

2

-martingale, whi
h is


ertainly the 
ase if the �nal upper bound is �nite.

De�ne pro
esses X

(n)

by X

(0)

= � and, re
ursively, X

(n)

= LX

(n�1)

,

for n � 1. In parti
ular,

X

(1)

t

= � +

Z

t

0

�(s; �) ds+

Z

t

0

�(s; �) dB

s

:

By similar arguments as previously,

E sup

s�t

jX

(1)

s

�X

(0)

s

j

2

. tE

Z

t

0

�

2

(s; �) ds+E

Z

t

0

�

2

(s; �) ds

. (t+ 1)

2

C

2

t

E(1 + �

2

):

Furthermore, for n � 1, sin
e X

(n+1)

�X

(n)

= LX

(n)

� LX

(n�1)

,

E sup

s�t

jX

(n+1)

s

�X

(n)

s

j

2

. (t+ 1)C

2

t

E

Z

t

0

jX

(n)

s

�X

(n�1)

s

j

2

ds:

Iterating this last inequality and using the initial bound for n = 0 of the

pre
eding display, we �nd that, with M = E(1 + �

2

),

E sup

s�t

jX

(n)

s

�X

(n�1)

s

j

2

.

(t+ 1)

2n

C

2n

t

M

n!

:

We 
on
lude that, for m � n, by the triangle inequality,

"

m;n

: =










sup

s�t

jX

(n)

s

�X

(m)

s

j










2

.

n

X

i=m+1

(t+ 1)

i

p

i!

C

i

t

p

M:
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For �xed t, we have that "

m;n

! 0 as m;n ! 1. We 
on
lude that the

variables in the left side of the last display 
onverge to zero in quadrati


mean and hen
e in probability asm;n!1. In other words, the sequen
e of

pro
esses X

(n)

forms a Cau
hy sequen
e in probability in the spa
e C[0; t℄

of 
ontinuous fun
tions, equipped with the uniform norm. Sin
e this spa
e

is 
omplete there exists a pro
ess X su
h that, as n!1,

sup

s�t

jX

(n)

s

�X

s

j

P

!

0:

Being a uniform limit of 
ontinuous pro
esses, the pro
ess X must be 
on-

tinuous. By Fatou's lemma

"

m

: =










sup

s�t

jX

s

�X

(m)

s

j










2

� lim

n!1

"

m;n

:

Be
ause LX

(n)

= X

(n+1)

, the triangle inequality gives that










sup

s�t

j(LX)

s

�X

s

j










2

.










sup

s�t

j(LX)

s

� (LX

(n)

)

s

j










2

+










sup

s�t

jX

(n+1)

s

�X

s

j










2

.

p

t+ 1C

t

s

E

Z

t

0

jX

s

�X

(n)

s

j

2

ds+ "

n+1

.

p

t+ 1

p

t C

t

"

n

+ "

n+1

:

The right side 
onverges to zero as n ! 1, for �xed t, and hen
e the left

side must be identi
ally zero. This shows that LX = X , so that X solves

the sto
hasti
 di�erential equation, at least on the interval [0; t℄.

If Y is another solution, then, sin
e in that 
ase X � Y = LX � LY ,

E sup

s�t

jX

s

� Y

s

j

2

. (t+ 1)C

2

t

Z

t

0

E sup

u�s

jX

u

� Y

u

j

2

ds:

By Gronwall's lemma, Lemma 7.10, applied to the fun
tion on the left side

and with A = 0, it follows that the left side must vanish and hen
e X = Y .

By going through the pre
eding for every t 2 N we 
an 
onsistently


onstru
t a solution on [0;1), and 
on
lude that this is unique.

By the measurability of � and � the pro
esses t 7! �(t;X

t

) and

t 7! �(t;X

t

) are predi
table, and hen
e progressively measurable, for ev-

ery predi
table pro
ess X . (Cf. Exer
ise 7.2.) By Fubini's theorem the

pro
ess t 7!

R

t

0

�(s;X

s

) ds is adapted, while the sto
hasti
 integral t 7!

R

t

0

�(s;X

s

) dB

s

is a lo
al martingale and hen
e 
ertainly adapted. Be
ause

the pro
esses are also 
ontinuous, they are predi
table. The pro
ess X

(0)

is


ertainly predi
table and hen
e by indu
tion the pro
essX

(n)

is predi
table
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for every n. The solution to the sto
hasti
 di�erential equation is indistin-

guishable from lim inf

n!1

X

(n)

and hen
e is predi
table and adapted.

The remainder of the proof should be skipped at �rst reading. It 
on-

sists of proving the theorem without the additional 
onditions on the fun
-

tions � and � and the variable �, and is based on the identi�
ation lemma

given as Lemma 7.11 below. First assume that � and � only satisfy (7.5)

and (7.6), but � is still square-integrable.

For n 2 N let �

n

:R ! R be 
ontinuously di�erentiable with 
ompa
t

support and be equal to the unit fun
tion on [�n; n℄. Then the fun
tions

�

n

and �

n

de�ned by �

n

(t; x) = �(t; x)�

n

(x) and �

n

(t; x) = �(t; x)�

n

(x)

satisfy the 
onditions of the �rst part of the proof. Hen
e there exists, for

every n, a 
ontinuous adapted pro
ess X

n

su
h that

(7:8) X

n;t

= � +

Z

t

0

�

n

(s;X

n;s

) ds+

Z

t

0

�

n

(s;X

n;s

) dB

s

:

For �xed m � n the fun
tions �

m

and �

n

, and �

m

and �

n

agree on the in-

terval [�m;m℄, when
e by Lemma 7.11 the pro
essX

m

andX

n

are indistin-

guishable on the set [0; T

m

℄ for T

m

= infft � 0: jX

m;t

j � m or jX

n;t

j � mg.

In parti
ular, the �rst times that X

m

or X

n

leave the interval [�m;m℄

are identi
al and hen
e the possibility \jX

n;t

j > m" in the de�nition of T

m

is super
uous. If 0 � T

n

" 1, then we 
an 
onsistently de�ne a pro
ess X

by setting it equal to X

n

on [0; T

n

℄, for every n. Then X

T

n

= X

T

n

n

and, by

the pre
eding display and Lemma 5.54(i),

(7:9) X

T

n

t

= �+

Z

t

0

1

(0;T

n

℄

(s)�

n

(s;X

n;s

) ds+

Z

t

0

1

(0;T

n

℄

(s)�

n

(s;X

n;s

) dB

s

:

By the de�nitions of T

n

, �

n

, �

n

and X the integrands do not 
hange if we

delete the subs
ript n from �

n

, �

n

and X

n

. We 
on
lude that

X

T

n

t

= � +

Z

T

n

^t

0

�(s;X

s

) ds+

Z

T

n

^t

0

�(s;X

s

) dB

s

:

This being true for every n implies that X is a solution of the sto
hasti


di�erential equation (7.1).

We must still show that 0 � T

n

" 1. By the integration-by-parts

formula and (7.8)

X

2

n;t

�X

2

n;0

= 2

Z

t

0

X

n;s

�

n

(s;X

n;s

) ds+ 2

Z

t

0

X

n;s

�

n

(s;X

n;s

) dB

s

+

Z

t

0

�

2

n

(s;X

n;s

) ds:

The pro
ess 1

(0;T

n

℄

X

n;s

�

n

(s;X

n;s

) is bounded on [0; t℄ and hen
e the pro
ess

t 7!

R

T

n

^t

0

X

n;s

�

n

(s;X

n;s

) dB

s

is a martingale. Repla
ing t by T

n

^ t in the
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pre
eding display and next taking expe
tations we obtain

1 + EX

2

n;T

n

^t

= 1 + E�

2

+ 2E

Z

T

n

^t

0

X

n;s

�

n

(s;X

n;s

) ds

+E

Z

T

n

^t

0

�

2

n

(s;X

n;s

) ds

. 1 + E�

2

+ (C

t

+ C

2

t

) E

Z

T

n

^t

0

(1 +X

2

n;s

) ds

. 1 + E�

2

+ (C

t

+ C

2

t

)

Z

t

0

(1 + EX

2

n;T

n

^s

) ds:

We 
an apply Gronwall's lemma, Lemma 7.10, to the fun
tion on the far

left of the display to 
on
lude that this is bounded on [0; t℄, uniformly in n,

for every �xed t. By the de�nition of T

n

P (0 < T

n

� t)n

2

� EX

2

n;T

n

^t

:

Hen
e P (0 < T

n

� t) = O(n

�2

)! 0 as n!1, for every �xed t. Combined

with the fa
t that P (T

n

= 0) = P

�

j�j > n

�

! 0, this proves that 0 � T

n

"

1.

Finally, we drop the 
ondition that � is square-integrable. By the pre-


eding there exists, for every n 2 N, a solutionX

n

to the sto
hasti
 di�eren-

tial equation (7.1) with initial value �1

j�j�n

. By Lemma 7.11 the pro
esses

X

m

and X

n

are indistibguishable on the event fj�j � mg for every n � m.

Thus lim

n!1

X

n

exists almost surely and solves the sto
hasti
 di�erential

equation with initial value �.

The last assertion of the theorem is a 
onsequen
e of Lemma 7.12

below, or 
an be argued along the following lines. The distribution of the

triple (�; B;X

(n)

) on R�C [0;1)�C[0;1) is determined by the distribution

of (�; B;X

(n�1)

) and hen
e ultimately by the distribution of (�; B;X

(0)

),

whi
h is determined by the distribution of �, the distribution of B being

�xed as that of a Brownian motion. Therefore the distribution of X is

determined by the distribution of � as well. (Even though believable this

argument needs to be given in more detail to be really 
onvin
ing.)

7.10 Lemma (Gronwall). Let f : [0; T ℄ ! R be a measurable fun
tion

su
h that f(t) � A +B

R

t

0

f(s) ds for every t 2 [0; T ℄ and 
onstants A and

B > 0. Then f(t) � Ae

Bt

on [0; T ℄.

Proof. We 
an write the inequality in the form F

0

(t) �BF (t) � A, for F

the primitive fun
tion of f with F (0) = 0. This implies that

�

F (t)e

�Bt

�

0

�

Ae

�Bt

. By integrating and rearranging we �nd that F (t) � (A=B)(e

Bt

�1).

The lemma follows upon reinserting this in the given inequality.
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* 7.1.1 Auxiliary Results

The remainder of this se
tion should be skipped at �rst reading.

The following lemma is used in the proof of Theorem 7.7, but is also

of independent interest. It shows that given two pairs of fun
tions (�

i

; �

i

)

that agree on [0;1)�[�n; n℄, the solutionsX

i

of the 
orresponding sto
has-

ti
 di�erential equations (of the type (7.1)) agree as long as they remain

within [�n; n℄. Furthermore, given two initial variables �

i

the 
orresponding

solutions X

i

are indistinguishable on the event f�

1

= �

2

g.

7.11 Lemma. For i = 1; 2 let �

i

; �

i

: [0;1) � R ! R be measurable

fun
tions that satisfy (7.5){(7.6), let �

i

be F

0

-measurable random vari-

ables, and let X

i

be 
ontinuous, adapted pro
esses that satisfy (7.1) with

(�

i

; �

i

; �

i

) repla
ing (�; �; �). If �

1

= �

2

and �

1

= �

2

on [0;1) � [�n; n℄

and T = infft � 0: jX

1;t

j > n; or jX

2;t

j > ng, then X

T

1

= X

T

2

on the event

f�

1

= �

2

g.

Proof. By subtra
ting the sto
hasti
 di�erential equations (7.1) with

(�

i

; �

i

; �

i

; X

i

) repla
ing (�; �; �;X), and evaluating at T ^ t instead of t,

we obtain

X

T

1;t

�X

T

2;t

= �

1

� �

2

+

Z

T^t

0

�

�

1

(s;X

1;s

)� �

2

(s;X

2;s

)

�

ds

+

Z

T^t

0

�

�

1

(s;X

1;s

)� �

2

(s;X

2;s

)

�

dB

s

:

On the event F = f�

1

= �

2

g 2 F

0

the �rst term on the right vanishes.

On the set (0; T ℄ the pro
esses X

1

and X

2

are bounded in absolute value

by n. Hen
e the fun
tions �

1

and �

2

, and �

1

and �

2

, agree on the domain

involved in the integrands and hen
e 
an be repla
ed by their 
ommon

values �

1

= �

2

and �

1

= �

2

. Then we 
an use the Lips
hitz properties of

�

1

and �

1

, and obtain, by similar arguments as in the proof of Theorem 7.7,

that

E sup

s�t

jX

T

1;s

�X

T

2;s

j

2

1

F

. (t+ 1)C

2

t

E

Z

T^t

0

jX

1;s

�X

2;s

j

2

ds1

F

:

(Note that given an event F 2 F

0

the pro
ess Y 1

F

is a martingale whenever

the pro
ess Y is a martingale.) By Gronwall's lemma the left side of the

last display must vanish and hen
e X

T

1

= X

T

2

on F .

The next lemma gives a strengthening of the last assertion of The-

orem 7.7. The lemma shows that, under the 
onditions of the theorem,

solutions to the sto
hasti
 di�erential equation (7.1) 
an be 
onstru
ted in

a 
anoni
al way as X = F (�; B) for a �xed map F in any strong setting


onsisting of an initial variable � and a Brownian motion B de�ned on some
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�ltered probability spa
e. Be
ause the map F is measurable, it follows in

parti
ular that the law of X is uniquely determined by the law of �.

The sense of the measurability of F is slightly involved. The map F is

de�ned as a map F :R�C[0;1) ! C[0;1). Here C[0;1) is the 
olle
tion of

all 
ontinuous fun
tions x: [0;1) ! R. The proje
tion �-�eld �

1

on this

spa
e is the smallest �-�eld making all evaluation maps (\proje
tions")

�

t

:x 7! x(t) measurable. The proje
tion �ltration f�

t

g is de�ned by �

t

=

�(�

s

: s � t). (The proje
tion �-�eld 
an be shown to be the Borel �-�eld

for the topology of uniform 
onvergen
e on 
ompa
ta.) A Brownian motion

pro
ess indu
es a law on the measurable spa
e

�

C[0;1);�

1

�

. This is 
alled

the Wiener measure. We denote the 
ompletion of the proje
tion �ltration

under the Wiener measure by f

�

�

t

g.

For a proof of the following lemma, see e.g. Rogers and Williams, pages

125{127 and 136{138.

7.12 Lemma. Under the 
onditions of Theorem 7.7 there exists a map

F :R � C[0;1) ! C[0;1) su
h that, given any �ltered probability spa
e

(
;F ; fF

t

g; P ) with a Brownian motion B and an F

0

-measurable random

variable � de�ned on it X = F (�; B) is a solution to the sto
hasti
 di�eren-

tial equation (7.1). This map 
an be 
hosen su
h that the map � 7! F (�; x)

is 
ontinuous for every x 2 C[0;1) and su
h that the map x 7! F (�; x) is

�

�

t

� �

t

-measurable for every t � 0 and every � 2 R. In parti
ular, it 
an

be 
hosen B �

�

�

1

��

1

-measurable.

7.2 Martingale Problem and Weak Solutions

If X is a 
ontinuous solution to the di�usion equation (7.3), de�ned on

some �ltered probability spa
e, and f :R 7! R is a twi
e 
ontinuously dif-

ferentiable fun
tion, then Itô's formula yields that

df(X

t

) = f

0

(X

t

)�(X

t

) dB

t

+ f

0

(X

t

)�(X

t

) dt+

1

2

f

00

(X

t

)�

2

(X

t

) dt:

De�ning the di�erentiable operator A by

Af = �f

0

+

1

2

�

2

f

00

;

we 
on
lude that the pro
ess

(7:13) t 7! f(X

t

)� f(X

0

)�

Z

t

0

Af(X

s

) ds

is identi
al to the sto
hasti
 integral (f

0

�)(X) � B, and hen
e is a lo
al

martingale. If f has 
ompa
t support, in addition to being twi
e 
ontinu-

ously di�erentiable, and � is bounded on 
ompa
ta, then the fun
tion f

0

�
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is bounded and the pro
ess in (7.13) is also a martingale. It is said that

X is a solution to the (lo
al) martingale problem. This martingale problem


an be used to 
hara
terize, study and 
onstru
t solutions of the di�usion

equation: instead of 
onstru
ting a solution dire
tly, we sear
h for a solution

to the martingale problem. The following theorem shows the feasibility of

this approa
h.

7.14 Theorem. Let X be a 
ontinuous adapted pro
ess on a given �ltered

spa
e su
h that the pro
ess in (7.13) is a lo
al martingale for every twi
e


ontinuously di�erentiable fun
tion with 
ompa
t support. Then there ex-

ists a weak solution to the di�usion equation (7.3) with the law of X

0

as

the initial law.

Proof. For given n 2 N let T

n

= infft � 0: jX

t

j � ng, so that jX

T

n

j � n

on (0; T

n

℄. Furthermore, let f and g be twi
e 
ontinuously di�erentiable

fun
tions with 
ompa
t supports that 
oin
ide with the fun
tions x 7! x

and x 7! x

2

on the set [�n; n℄. By assumption the pro
esses (7.13) obtained

by setting the fun
tion f in this equation equal to the present f and to g

are lo
al martingales. On the set (0; T

n

℄ they 
oin
ide with the pro
esses

M and N de�ned by

M

t

= X

t

�X

0

�

Z

t

0

�(X

s

) ds

N

t

= X

2

t

�X

2

0

�

Z

t

0

�

2X

s

�(X

s

) + �

2

(X

s

)

�

ds:

At time 0 the pro
esses M and N vanish and so do the pro
esses of the

type (7.13). We 
on
lude that the 
orresponden
e extends to [0; T

n

℄ and

hen
e the pro
esses M and N are lo
al martingales. By simple algebra

M

2

t

= X

2

t

� 2X

t

X

0

+X

2

0

� 2(X

t

�X

0

)

Z

t

0

�(X

s

) ds+

�

Z

t

0

�(X

s

) ds

�

2

= N

t

+ A

t

+

Z

t

0

�

2

(X

s

) ds;

for the pro
ess A de�ned by

A

t

= �2(X

t

�X

0

)

�

X

0

+

Z

t

0

�(X

s

) ds

�

+

�

Z

t

0

�(X

s

) ds

�

2

+

Z

t

0

2X

s

�(X

s

) ds:

By Itô's formula

dA

t

= �2(X

t

�X

0

)�(X

t

) dt� 2dX

t

�

X

0

+

Z

t

0

�(X

s

) ds

�

+ 2

Z

t

0

�(X

s

) ds �(X

t

) dt+ 2�(X

t

)X

t

dt

= �2

�

X

0

+

Z

t

0

�(X

s

) ds

�

dM

t

:
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We 
on
lude that the pro
ess A is a lo
al martingale and hen
e so is the

pro
ess t 7!M

2

t

�

R

t

0

�

2

(X

s

) ds. This implies that [M ℄

t

=

R

t

0

�

2

(X

s

) ds.

De�ne a fun
tion ~�:R ! R by setting ~� equal to 1=� if � 6= 0 and

equal to 0 otherwise, so that ~�� = 1

� 6=0

. Furthermore, given a Brownian

motion pro
ess

~

B de�ne

B = ~�(X) �M + 1

�(X)=0

�

~

B:

Being the sum of two sto
hasti
 integrals relative to 
ontinuous martingales,

the pro
ess B possesses a 
ontinuous version that is a lo
al martingale. Its

quadrati
 variation pro
ess is given by

[B℄

t

= ~�

2

(X) � [M ℄

t

+ 2(~�(X)1

�(X)=0

) � [M;

~

B℄

t

+ 1

�(X)=0

� [

~

B℄

t

:

Here we have linearly expanded [B℄ = [B;B℄ and used Lemma 5.77. The

middle term vanishes by the de�nition of ~�, while the sum of the �rst and

third terms on the right is equal to

R

t

0

(~�

2

�

2

(X

s

) + 1

�(X

s

)=0

) ds = t. By

L�evy's theorem, Theorem 6.1, the pro
ess B is a Brownian motion pro
ess.

By our de�nitions �(X) �B = 1

�(X)6=0

�M =M , be
ause [1

�(X)=0

�M ℄ = 0

when
e 1

�(X)=0

�M = 0. We 
on
lude that

X

t

= X

0

+M

t

+

Z

t

0

�(X

s

) ds = X

0

+

Z

t

0

�(X

s

) dB

s

+

Z

t

0

�(X

s

) ds:

Thus we have found a solution to the di�usion equation (7.3).

In the pre
eding we have impli
itly assumed that the pro
ess X and

the Brownian motion

~

B are de�ned on the same �ltered probability spa
e,

but this may not be possible on the �ltered spa
e (
;F ; fF

t

g; P ) on whi
h

X is given originally. However, we 
an always 
onstru
t a Brownian motion

~

B on some �ltered spa
e (

~


;

~

F ; f

~

F

t

g;

~

P ) and next 
onsider the produ
t

spa
e

(
�

~


;F �

~

F ; fF

t

�

~

F

t

g; P �

~

P );

with the maps

(!; ~!) 7! X(!);

(!; ~!) 7!

~

B(~!):

The latter pro
esses are exa
tly as the original pro
esses X and

~

B and

hen
e the �rst pro
ess solves the martingale problem and the se
ond is

a Brownian motion. The enlarged �ltered probability spa
e may not be


omplete and satisfy the usual 
onditions, but this may be remedied by


ompletion and repla
ing the produ
t �ltration F

t

�

~

F

t

by its 
ompleted

right-
ontinuous version.

It follows from the proof of the pre
eding theorem, that a solution

X of the martingale problem together with the �ltered probability spa
e

on whi
h it is de�ned yields a weak solution of the di�usion equation if
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� is never zero. If � 
an assume the value zero, then the proof pro
eeds

by extending the given probability spa
e, and X , suitably de�ned on the

extension, again yields a weak solution. The extension may be ne
essary,

be
ause the given �ltered probability spa
e may not be ri
h enough to 
arry

a suitable Brownian motion pro
ess.

It is interesting that the proof of Theorem 7.14 pro
eeds in the opposite

dire
tion of the proof of Theorem 7.7. In the latter theorem the solution X

is 
onstru
ted from the given Brownian motion, whereas in Theorem 7.14

the Brownian motion is 
onstru
ted out of the given X .

Now that it is established that solving the martingale problem and

solving the sto
hasti
 di�erential equation in the weak sense are equivalent,

we 
an prove existen
e of weak solutions for the di�usion equation from


onsideration of the martingale problem. The advantage of this approa
h

is the availability of additional te
hni
al tools to handle martingales.

7.15 Theorem. If �; �:R ! R are bounded and 
ontinuous and � is a

probability measure on R, then there exists a �ltered probability spa
e

(
;F ; fF

t

g; P ) with a Brownian motion and a 
ontinuous adapted pro
ess

X satisfying the di�usion equation (7.3) and su
h that X

0

has law �.

Proof. Let (B; �) be a pair of a Brownian motion and an F

0

-measurable

random variable with law �, de�ned on some �ltered probability spa
e. For

every n 2 N de�ne a pro
ess X

(n)

by

X

(n)

0

= �;

X

(n)

t

= X

(n)

k2

�n

+ �(X

(n)

k2

�n

)(t� k2

�n

) + �(X

(n)

k2

�n

)(B

t

�B

k2

�n
);

k2

�n

< t � (k + 1)2

�n

; k = 0; 1; 2; : : : :

Then, for every n, the pro
essX

(n)

is a 
ontinuous solution of the sto
hasti


di�erential equation

(7:16) X

(n)

t

= � +

Z

t

0

�

n

(s) ds+

Z

t

0

�

n

(s) dB

s

;

for the pro
esses �

n

and �

n

de�ned by

�

n

(t) = �(X

(n)

k2

�n

); �

n

(t) = �(X

(n)

k2

�n

); k2

�n

< t � (k + 1)2

�n

:

By Lemma 5.77 the quadrati
 variation of the pro
ess M de�ned by

M

t

= �

n

� B

s+t

� �

n

� B

s

is given by [M ℄

t

=

R

s+t

0

�

2

n

(u) du. For s � t

we obtain, by the triangle inequality and the Burkholder-Davis-Gundy in-

equality, Lemma 7.18,

EjX

(n)

s

�X

(n)

t

j

4

. E

�

�

�

Z

t

s

�

n

(u) du

�

�

�

4

+E

�

�

�

Z

t

s

�

2

n

(u) dB

u

�

�

�

2

. k�k

4

1

js� tj

4

+ k�k

4

1

js� tj

2

:
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By Kolmogorov's 
riterion (e.g. Van der Vaart and Wellner, page 104) it

follows that the sequen
e of pro
esses X

(n)

is uniformly tight in the met-

ri
 spa
e C[0;1), equipped with the topology of uniform 
onvergen
e on


ompa
ta. By Prohorov's theorem it 
ontains a weakly 
onverging subse-

quen
e. For simpli
ity of notation we assume that the whole sequen
e X

(n)


onverges in distribution in C[0;1) to a pro
ess X . We shall show that X

solves the martingale problem, and then 
an 
omplete the proof by applying

Theorem 7.14.

The variable X

0

is the limit in law of the sequen
e X

(n)

0

and hen
e is

equal in law to �.

For a twi
e 
ontinuously di�erentiable fun
tion f :R ! R with 
ompa
t

support, an appli
ation of Itô's formula and (7.16) shows that the pro
ess

(7:17) f(X

(n)

t

)� f(X

(n)

0

)�

Z

t

0

�

�

n

(s)f

0

(X

(n)

s

) +

1

2

�

2

n

(s)f

00

(X

(n)

s

)

�

ds

is a martingale. (Cf. the dis
ussion before the statement of Theorem 7.14.)

By assumption the fun
tions � and � are uniformly 
ontinuous on 
om-

pa
ta. Hen
e for every �xed M the moduli of 
ontinuity

m(Æ) = sup

jx�yj�Æ

jxj_jyj�M

�

�

�(x) � �(y)

�

�

; s(Æ) = sup

jx�yj�Æ

jxj_jyj�M

�

�

�(x) � �(y)

�

�


onverge to zero as Æ # 0. The weak 
onvergen
e of the sequen
e X

(n)

implies the weak 
onvergen
e of the sequen
e sup

s�t

jX

(n)

s

j, for every

�xed t � 0. Therefore, we 
an 
hoose M su
h that the events F

n

=

fsup

s�t

jX

(n)

s

j �Mg possess probability arbitrarily 
lose to one, uniformly

in n. The weak 
onvergen
e also implies that, for every �xed t � 0,

�

n

: = sup

ju�vj<2

�n

;u�v�t

jX

(n)

u

�X

(n)

v

j

P

!

0:

On the event F

n

�

�

�

Z

t

0

�

�

n

(s)� �(X

(n)

s

)

�

f

0

(X

(n)

s

) ds

�

�

�

� tm(�

n

)kf

0

k

1

P

!

0:

Combining this with a similar argument for �

2

n

we 
on
lude that the se-

quen
e of pro
esses in (7.17) is asymptoti
ally equivalent to the sequen
e

of pro
esses

M

n

t

: = f(X

(n)

t

)� f(X

(n)

0

)�

Z

t

0

Af(X

(n)

s

) ds:

These pro
esses are also uniformly bounded on 
ompa
ta. The martingale

property of the pro
esses in (7.17) now yields that EM

n

t

g(X

(n)

u

:u � s)! 0

for every bounded, 
ontinuous fun
tion g:C[0; s℄ ! R. Be
ause the map



124 7: Sto
hasti
 Di�erential Equations

x 7! f(x

t

)� f(x

0

)�

R

t

0

Af(x

s

) ds is also 
ontinuous and bounded as a map

from C[0;1) to R, this implies that

E

�

f(X

t

)� f(X

s

)�

Z

t

s

Af(X

u

) du

�

g(X

u

:u � s) = 0:

We 
on
lude that X is a martingale relative to its natural �ltration. It is

automati
ally also a martingale relative to the 
ompletion of its natural

�ltration. Be
ause X is right 
ontinuous, it is again a martingale relative

to the right-
ontinuous version of its 
ompleted natural �ltration, by The-

orem 4.6.

ThusX solves the martingale problem, and there exists a weak solution

to the di�usion equation with initial law the law of X

0

, by Theorem 7.14.

7.18 Lemma (Burkholder-Davis-Gundy). For every p � 2 there exists a


onstant C

p

su
h that EjM

t

j

p

� C

p

E[M ℄

p=2

t

for every 
ontinuous martingale

M , 0 at 0, and every t � 0.

Proof. De�ne m = p=2 and Y

t

= 
M

2

t

+ [M ℄

t

for a 
onstant 
 > 0 to be

determined later. By Itô's formula applied with the fun
tions x 7! x

2m

and

(x; y)! (
x

2

+ y)

m

we have that

dM

2m

t

= 2mM

2m�1

t

dM

t

+

1

2

2m(2m� 1)M

2m�2

t

d[M ℄

t

;

dY

m

t

= mY

m�1

t

2
M

t

dM

t

+mY

m�1

t

d[M ℄

t

+

1

2

�

m(m� 1)Y

m�2

t

4


2

M

2

t

+mY

m�1

t

2


�

d[M ℄

t

:

Assume �rst that the pro
ess Y is bounded. Then the integrals of the

two �rst terms on the right are martingales. Taking the integrals and next

expe
tations we 
on
lude that

EM

2m

t

= E

Z

t

0

1

2

2m(2m� 1)M

2m�2

s

d[M ℄

s

;

EY

m

t

= E

Z

t

0

mY

m�1

s

d[M ℄

s

+E

Z

t

0

1

2

m(m� 1)Y

m�2

s

+ 4


2

M

2

s

d[M ℄

s

+E

Z

t

0

1

2

mY

m�1

s

2
 d[M ℄

s

:

The middle term in the se
ond equation is nonnegative, so that the sum of

the �rst and third terms is bounded above by EY

m

t

. Be
ause M

2

t

� Y

t

=
,

we 
an bound the right side of the �rst equation by a multiple of this sum.

Thus we 
an bound the left side EM

2m

t

of the �rst equation by a multiple

of the left side EY

m

t

of the se
ond equation. Using the inequality jx+yj

m

�

2

m�1

(x

m

+ y

m

) we 
an bound EY

m

t

by a multipe of 


m

EM

2m

t

+ E[M ℄

m

t

.

Putting this together, we obtain the desired inequality after rearranging

and 
hoosing 
 > 0 suÆ
iently 
lose to 0.



7.2: Martingale Problem and Weak Solutions 125

If Y is not uniformly bounded, then we stop M at the time T

n

=

infft � 0: jY

t

j > ng. Then Y

T

n

relates to M

T

n

in the same way as Y to

M and is uniformly bounded. We 
an apply the pre
eding to �nd that the

desired inequality is valid for the stopped pro
ess M . Next we let n ! 1

and use Fatou's lemma on the left side and the monotone 
onvergen
e

theorem on the right side of the inequality to see that it is valid for M as

well.

Within the 
ontext of weak solutions to sto
hasti
 di�erential equa-

tions \uniqueness" of a solution should not refer to the underlying �ltered

probability spa
e, but it does make sense to speak of \uniqueness in law".

Any solution X in a given setting indu
es a probability distribution on

the metri
 spa
e C[0;1). A solution X is 
alled unique-in-law if any other

solution

~

X, possibly de�ned in a di�erent setting, indu
es the same dis-

tribution on C[0;1). Here X and

~

X possess the same distribution if the

ve
tors (X

t

1

; : : : ; X

t

k

) and (

~

X

t

1

; : : : ;

~

X

t

k

) are equal in distribution for every

0 � t

1

� � � � � t

k

. (This 
orresponds to using on C[0;1) the �-�eld of all

Borel sets of the topology of uniform 
onvergen
e on 
ompa
ta.)

The last assertion of Theorem 7.7 is exa
tly that, under the 
onditions

imposed there, that the solution of the sto
hasti
 di�erential equation is

unique-in-law. Alternatively, t here is an interesting suÆ
ient 
ondition

for uniqueness in law in terms of the Cau
hy problem a

ompanying the

di�erential operator A. The Cau
hy problem is to �nd, for a given initial

fun
tion f , a solution u: [0;1)�R ! R to the partial di�erential equation

�u

�t

= Au; u(0; �) = f:

Here �u=�t is the partial derivative relative to the �rst argument of u,

whereas the operator A on the right works on the fun
tion x 7! u(t; x) for

�xed t. We make it part of the requirements for solving the Cau
hy problem

that the partial derivatives �u=�t and �

2

u=�x

2

exist on (0;1) � R and

possess 
ontinuous extensions to [0;1)� R.

A suÆ
ient 
ondition for solvability of the Cau
hy problem, where the

solution also satis�es the 
ondition in the next theorem, is that the fun
tions

� and �

2

are H�older 
ontinuous and that �

2

is bounded away from zero.

See Stroo
k and Varadhan, Theorem 3.2.1.

For a proof of the following theorem, see Karatzas and Shreve, pages

325{427 or Stroo
k and Varadhan.

7.19 Theorem. Suppose that the a

ompanying Cau
hy problem admits

for every twi
e 
ontinuous di�erentiable fun
tion f with 
ompa
t support

a solution u whi
h is bounded and 
ontinuous on the strips [0; t℄ � R, for

every t � 0. Then for any x 2 R the solution X to the di�usion equation

with initial law X

0

= x is unique.
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7.3 Markov Property

In this se
tion we 
onsider the di�usion equation

X

t

= X

0

+

Z

t

0

�(X

u

) du+

Z

t

0

�(X

u

) dB

u

:

Evaluating this equation at the time points t+s and s, taking the di�eren
e,

and making the 
hange of variables u = v + s in the integrals, we obtain

X

s+t

= X

s

+

Z

t

0

�(X

s+v

) dv +

Z

t

0

�(X

s+v

) dB

s+v

:

Be
ause the sto
hasti
 integral depends only on the in
rements of the inte-

grator, the pro
ess B

s+v


an be repla
ed by the pro
ess

~

B

v

= B

s+v

� B

s

,

whi
h is a Brownian motion itself and is independent of F

s

. The resulting

equation suggests that 
onditionally on F

s

(and hen
e given X

s

) the pro-


ess fX

s+t

: t � 0g relates to the initial value X

s

and the Brownian motion

~

B in the same way as the pro
ess X relates to the pair (X

s

; B) (with X

s

�xed). In parti
ular, the 
onditional law of the pro
ess fX

s+t

: t � 0g given

F

s

should be the same as the law of X given the initial value X

s

(
onsidered

�xed).

This expresses that a solution of the di�usion equation is a time-

homogeneous Markov pro
ess: at any time the pro
ess will given its past

evolve from its present a

ording to the same probability law that deter-

mines its evolvement from time zero. This is indeed true, even though a

proper mathemati
al formulation is slightly involved.

A Markov kernel from R into R is a map (x;B) 7! Q(x;B) su
h that

(i) the map x 7! Q(x;B) is measurable, for every Borel set B;

(ii) the map B 7! Q(x;B) is a Borel measure, for every x 2 R.

A general pro
ess X is 
alled a time-homogeneous Markov pro
ess if for

every t � 0 there exists a Markov kernel Q

t

su
h that, for every Borel set

B and every s � 0,

P (X

s+t

2 BjX

u

:u � s) = Q

t

(X

s

; B); a:s::

By the towering property of a 
onditional expe
tation the 
ommon value

in the display is then automati
ally also a version of P (X

s+t

2 BjX

s

). The

property expresses that the distribution of X at the future time s+ t given

the \past" up till time s is dependent on its value at the \present" time s

only. The Markov kernels Q

t

are 
alled the transition kernels of the pro
ess.

Suppose that the fun
tions � and � satisfy the 
onditions of Theo-

rem 7.7. In the present situation these 
an be simpli�ed to the existen
e,

for every t � 0 of a 
onstant C

t

su
h that, for all x; y 2 [�t; t℄,

(7:20)

�

�

�(x) � �(y)

�

�

� C

t

jx� yj;

�

�

�(x) � �(y)

�

�

� C

t

jx� yj;
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and the existen
e of a 
onstant C su
h that, for all x 2 R,

(7:21)

�

�

�(x)

�

�

� C(1 + jxj);

�

�

�(x)

�

�

� C(1 + jxj):

Under these 
onditions Theorem 7.7 guarantees the existen
e of a solution

X

x

to the di�usion equation with initial value X

x

0

= x, for every x 2 R,

and this solution is unique in law. The following theorem asserts that the

distribution Q

t

(x; �) of X

x

t

de�nes a Markov kernel, and any solution to the

di�usion equation is a Markov pro
ess with Q

t

as its transition kernels.

Informally, given F

s

and X

s

= x the distribution of X

s+t

is the same

as the distribution of X

x

t

.

7.22 Theorem. Assume that the fun
tions �; �:R ! R satisfy (7.20){

(7.21). Then any solution X to the di�usion equation (7.3) is a Markov

pro
ess with transition kernels Q

t

de�ned by Q

t

(x;B) = P (X

x

t

2 B).

Proof. See Chung and Williams, pages 235{243. These authors (and most

authors) work within the 
anoni
al set-up where the pro
ess is (re)de�ned

as the identity map on the spa
e C[0;1) equipped with the distribution in-

du
ed by X

x

. This is immaterial, as the Markov property is a distributional

property; it 
an be written as

E1

X

s+t

2B

g(X

u

:u � s) = EQ

t

(X

s

; B)g(X

u

:X

u

:u � s);

for every measurable set B and bounded measurable fun
tion g:C[0; s℄ !

R. This identity depends on the law of X only, as does the de�nition of Q

t

.

The map x 7!

R

f(y)Q

t

(x; dy) is shown to be 
ontinuous for every

bounded 
ontinuous fun
tion f :R ! R in Lemma 10.9 of Chung and

Williams. In parti
ular, it is measurable. By a monotone 
lass argument

this 
an be seen to imply that the map x 7! Q

t

(x;B) is measurable for

every Borel set B.



8

Option Pri
ing

in Continuous Time

In this 
hapter we dis
uss the Bla
k-S
holes model for the pri
ing of deriva-

tives. Given the tools developed in the pre
eding 
hapters it is relatively

straightforward to obtain analogues in 
ontinuous time of the dis
rete time

results for the Cox-Ross-Rubinstein model of Chapter 3. The model 
an be

set up for portfolios 
onsisting of several risky assets, but for simpli
ity we

restri
t to one su
h asset.

We suppose that the pri
e S

t

of a sto
k at time t � 0 satis�es a

sto
hasti
 di�erential equation of the form

(8:1) dS

t

= �

t

S

t

dt+ �

t

S

t

dW

t

:

Here W is a Brownian motion pro
ess on a given �ltered probability spa
e

(
;F ; fF

t

g; P ), and f�

t

: t � 0g and f�

t

: t � 0g are predi
table pro
esses.

The �ltration fF

t

g is the 
ompleted natural �ltration generated by W ,

and it is assumed that S is 
ontinuous and adapted to this �ltration. The


hoi
es �

t

= � and �

t

= �, for 
onstants � and �, give the original Bla
k-

S
holes model. These 
hoi
es yield a sto
hasti
 di�erential equation of the

type 
onsidered in Chapter 7, and Theorem 7.7 guarantees the existen
e of

a solution S in this 
ase. For many other 
hoi
es the existen
e of a solution

is guaranteed as well. For our present purpose it is enough to assume that

there exist a 
ontinuous adapted solution S.

The pro
ess � is 
alled the volatility of the sto
k. It determines how

variable or \volatile" the movements of the sto
k are. We assume that

this pro
ess is never zero. The pro
ess � gives the drift of the sto
k. It is

responsible for the exponential growth of a typi
al sto
k pri
e.

Next to sto
ks our model allows for bonds, whi
h in the simplest 
ase

are riskless assets with a predetermined yield, mu
h as money in a savings

a

ount. More generally, we assume that the pri
e R

t

of a bond at time t

satis�es the di�erential equation

dR

t

= r

t

R

t

dt; R

0

= 1:
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Here r

t

is some 
ontinuous adapted pro
ess 
alled the interest rate pro-


ess. (Warning: r is not the derivative of R, as might be suggested by the

notation.) The di�erential equation 
an be solved to give

R

t

= e

R

t

0

r

s

ds

:

This is the \
ontinuously 
ompounded interest" over the interval [0; t℄. In

the spe
ial 
ase of a 
onstant interest rate r

t

= r this redu
es to R

t

= e

rt

.

A portfolio (A;B) is de�ned to be a pair of predi
table pro
esses A

and B. The pair (A

t

; B

t

) gives the numbers of bonds and sto
ks owned at

time t, giving the portfolio value

(8:2) V

t

= A

t

R

t

+B

t

S

t

:

The predi
table pro
esses A and B 
an depend on the past until \just

before t" and we may think of 
hanges in the 
ontent of the portfolio as

a reallo
ation of bonds and sto
k that takes pla
e just before time t. A

portfolio is \self-�nan
ing" if su
h reshu�ing 
an be 
arried out without

import or export of money, when
e 
hanges in the value of the portfolio are

due only to 
hanges in the values of the underlying assets. More pre
isely,

we 
all the portfolio (A;B) self-�nan
ing if

(8:3): dV

t

= A

t

dR

t

+B

t

dS

t

:

This is to be interpreted in the sense that V must be a semimartingale

satisfying V = V

0

+A �R+B �S. It is impli
itly required that A and B are

suitable integrands relative to R and S.

A 
ontingent 
laim with expiry time T > 0 is de�ned to be an F

T

-

measurable random variable. It is interpreted as the value at the expiry

time of a \derivative", a 
ontra
t based on the sto
k. The European 
all

option, 
onsidered in Chapter 3, is an important example, but there are

many other 
ontra
ts. Some examples of 
ontingent 
laims are:

(i) European 
all option: (S

T

�K)

+

.

(ii) European put option: (K � S

T

)

+

.

(iii) Asian 
all option:

�R

T

0

S

t

dt�K

�

+

.

(iv) lookba
k 
all option: S

T

�min

0�t�T

S

t

,

(v) down and out barrier option: (S

T

�K)

+

1fmin

0�t�T

S

t

� Hg.

The 
onstants K and H and the expiry time T are �xed in the 
ontra
t.

There are many more possibilities; the more 
ompli
ated 
ontra
ts are re-

ferred to as exoti
 options. Note that in (iii){(v) the 
laim depends on the

history of the sto
k pri
e throughout the period [0; T ℄. All 
ontingent 
laims


an be pri
ed following the same no-arbitrage approa
h that we outline be-

low.

A popular option that is not 
overed in the following is the Ameri
an

put option. This is a 
ontra
t giving the right to sell a sto
k at any time in

[0; T ℄ for a �xed pri
eK. The value of this 
ontra
t 
annot be expressed in a
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ontingent 
laim, be
ause its value depends on an optimization of the time

to exer
ise the 
ontra
t (i.e. sell the sto
k). Pri
ing an Ameri
an put option

involves optimal stopping theory, in addition to the risk-neutral pri
ing we

dis
uss below. A bit surprising is that a similar 
ompli
ation does not arise

with the Ameri
an 
all option, whi
h gives the right to buy a sto
k at any

time until expiry time. It 
an be shown that it is never advantageous to

exer
ise a 
all option before the expiry time and hen
e the Ameri
an 
all

option is equivalent to the European 
all option.

Be
ause the 
laims we wish to evaluate always have a �nite term T ,

all the pro
esses in our model matter only on the interval [0; T ℄. We may

or must understand the assumptions and assertions a

ordingly.

In the dis
rete time setting of Chapter 3 
laims are pri
ed by referen
e

to a \martingale measure", de�ned as the unique measure that turns the

\dis
ounted sto
k pro
ess" into a martingale. In the present setting the

dis
ounted sto
k pri
e is the pro
ess

~

S de�ned by

~

S

t

= R

�1

t

S

t

. By Itô's

formula and (8.1),

(8:4)

d

~

S

t

= �

S

t

R

2

t

dR

t

+

1

R

t

dS

t

=

�

t

� r

t

�

t

�

t

R

t

S

t

dt+

�

t

R

t

S

t

dW

t

:

Here and in the following we apply Itô's formula with the fun
tion r 7!

1=r, whi
h does not satisfy the 
onditions of Itô's theorem as we stated

it. However, the derivations are 
orre
t, as 
an be seen by substituting the

expli
it form for R

t

as an exponential and next applying Itô's formula.

Under the true measure P governing the Bla
k-S
holes sto
hasti
 dif-

ferential equation (8.1) the pro
ess W is a Brownian motion and hen
e

~

S

is a lo
al martingale if its drift 
omponent vanishes, i.e. if �

t

� r

t

. This

will rarely be the 
ase in the real world. Girsanov's theorem allows us to

eliminate the drift part by a 
hange of measure and hen
e provides the

martingale measure that we are looking for. The pro
ess

�

t

=

�

t

� r

t

�

t

is 
alled the market pri
e of risk. If it is zero, then the real world is already

\risk-neutral"; if not, then the pro
ess � measures the deviation from a

risk-neutral market relative to the volatility pro
ess.

Let Z = E(�� �W ) be the exponential pro
ess of �� � Z, i.e.

Z

t

= e

�

R

t

0

�

s

dW

s

�

1

2

R

t

0

�

2

s

ds

:

We assume that the pro
ess � is su
h that the pro
ess Z is a martingale (on

[0; T ℄). For instan
e, this is true under Novikov's 
ondition. We 
an next

de�ne a measure

~

P on (
;F ; P ) by its density d

~

P = Z

T

dP relative to P .

Then the pro
ess

~

W de�ned by

~

W

t

=W

t

+

Z

t

0

�

s

ds
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is a Brownian motion under

~

P , by Corollary 6.16, and, by the pre
eding


al
ulations,

(8:5) d

~

S

t

=

�

t

R

t

S

t

d

~

W

t

:

It follows that

~

S is a

~

P -lo
al martingale. As in the dis
rete time setting the

\reasonable pri
e" at time 0 for a 
ontingent 
laim with pay-o� X is the

expe
tation under the martingale measure of the dis
ounted value of the


laim at time T , i.e.

V

0

=

~

ER

�1

T

X;

where

~

E denotes the expe
tation under

~

P . This is a 
onsequen
e of e
o-

nomi
, no-arbitrage reasoning, as in Chapter 3, and the following theorem.

8.6 Theorem. Let X be a nonnegative 
ontingent 
laim with

~

ER

�1

T

jX j <

1. Then there exists a self-�nan
ing strategy with value pro
ess V su
h

that

(i) V � 0 up to indistiguishability.

(ii) V

T

= X almost surely.

(iii) V

0

=

~

ER

�1

T

X .

Proof. The pro
ess

~

S = R

�1

S is a 
ontinuous semimartingale under P

and a 
ontinuous lo
al martingale under

~

P , in view of (8.5). Let

~

V be a


adlag version of the martingale

~

V

t

=

~

E

�

R

�1

T

X j F

t

�

:

Suppose that there exists a predi
table pro
ess B su
h that

d

~

V

t

= B

t

d

~

S

t

:

Then

~

V is 
ontinuous, be
ause

~

S is 
ontinuous, and hen
e predi
table.

De�ne

A =

~

V �B

~

S:

Then A is predi
table, be
ause

~

V , B and

~

S are predi
table. The value of

the portfolio (A;B) is given by V = AR +BS = (

~

V � B

~

S)R + BS = R

~

V

and hen
e, by Itô's formula and (8.4),

dV

t

=

~

V

t

dR

t

+R

t

d

~

V

t

= (A

t

+B

t

~

S

t

) dR

t

+R

t

B

t

d

~

S

t

= (A

t

+B

t

R

�1

t

S

t

) dR

t

+R

t

B

t

�

�S

t

R

�2

t

dR

t

+R

�1

t

dS

t

�

= A

t

dR

t

+B

t

dS

t

:

Thus the portfolio (A;B) is self-�nan
ing. Statements (i){(iii) of the theo-

rem are 
lear from the de�nition of

~

V and the relation V = R

~

V .
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We must still prove the existen
e of the pro
ess B. In view of (8.5) we

need to determine this pro
ess B su
h that

d

~

V

t

= B

t

�

t

S

t

R

t

d

~

W

t

:

The pro
ess

~

W is a

~

P -Brownian motion and

~

V is a

~

P -martingale. If the

underlying �ltration would be the 
ompletion of the natural �ltration gener-

ated by

~

W , then the representation theorem for Brownian lo
al martingales,

Theorem 6.6, and the fa
t that �

t

S

t

is stri
tly positive would immediate

imply the result. By assumption the underlying �ltration is the 
ompletion

of the natural �ltration generated by W . Be
ause W and

~

W di�er by the

pro
ess

R

t

0

�

s

ds, it appears that the two �ltrations are not identi
al and

hen
e this argument fails in general. (In the spe
ial 
ase in whi
h �

t

, � and

r

t

and hen
e �

t

are deterministi
 fun
tions the two �ltration are 
learly the

same and hen
e the proof is 
omplete at this point.) We 
an still prove the

desired representation by a detour. We �rst write the

~

P -lo
al martingale

~

V

in terms of P -lo
al martingales through

~

V

t

=

E(R

�1

T

XZ

T

j F

t

)

E(Z

T

j F

t

)

=

U

t

Z

t

; a:s::

Here U , de�ned as the numerator in the pre
eding display, is a P -martingale

relative to fF

t

g. By the representation theorem for Brownian martingales

the pro
ess U possesses a 
ontinuous version and there exists a predi
table

pro
ess C su
h that U = U

0

+C �W . The exponential pro
ess Z = E(�� �W )

satis�es dZ = Z d(�� � Z) = �Z� dW and hen
e d[Z℄

t

= Z

2

t

�

2

t

dt. Careful

appli
ation of Itô's formula gives that

d

~

V

t

= �

U

t

Z

2

t

dZ

t

+

dU

t

Z

t

+

1

2

2U

t

Z

3

t

d[Z℄

t

�

1

Z

2

t

d[U;Z℄

t

= �

U

t

Z

2

t

(�Z

t

�

t

) dW

t

+

C

t

dW

t

Z

t

+

U

t

Z

3

t

Z

2

t

�

2

t

dt+

1

Z

2

t

C

t

Z

t

�

t

dt

=

U

t

�

t

+ C

t

Z

t

d

~

W

t

:

This gives the desired representation of

~

V in terms of

~

W .

We interpret the pre
eding theorem e
onomi
ally as saying that V

0

=

~

ER

�1

T

X is the just pri
e for the 
ontingent 
laim X . In general it is not

easy to evaluate this expli
itly, but for Bla
k-S
holes option pri
ing it is.

First the sto
k pri
e 
an be solved expli
itly from (8.1) to give

S

t

= S

0

e

R

t

0

(�

s

�

1

2

�

2

s

) ds+

R

t

0

�

s

dW

s

:
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Be
ause we are interested in this pro
ess under the martingale measure

~

P ,

it is useful to write it in terms of

~

W as

S

t

= S

0

e

R

t

0

(r

s

�

1

2

�

2

s

) ds+

R

t

0

�

s

d

~

W

s

:

Note that the drift pro
ess � does not make part of this equation: it plays

no role in the pri
ing formula. Apparently the systemati
 part of the sto
k

pri
e di�usion 
an be 
ompletely hedged away. If the volatility � and the

interest rate r are 
onstant in time, then this 
an be further evaluated, and

we �nd that, under

~

P ,

log

S

t

S

0

� N

�

(r �

1

2

�

2

)t; �

2

t

�

:

This is exa
tly as in the limiting 
ase for the dis
rete time situation in

Chapter 3. The pri
e of a European 
all option 
an be written as, with Z

a standard normal variable,

E

�

S

0

e

(r�

1

2

�

2

)T+�

p

TZ

�K

�

+

:

It is straightforward 
al
ulus to evaluate this expli
itly, and the result is

given already in Chapter 3.

The exa
t values of most of the other option 
ontra
ts mentioned pre-

viously 
an also be evaluated expli
itly in the Bla
k-S
holes model. This

is more diÆ
ult, be
ause the 
orresponding 
ontingent 
laims involve the

full history of the pro
ess S, not just the martingale distribution at some

�xed time point. However, if the pro
esses � and r are not 
onstant, then

the expli
it evaluation may be impossible. In some 
ases the problem 
an

be redu
ed to a partial di�erential equation, whi
h 
an next be solved nu-

meri
ally.

Assume that the value pro
ess V of the repli
ating portfolio as in

Theorem 8.6 
an be written as V

t

= f(t; S

t

) for some twi
e di�erentiable

fun
tion f .

y

Then, by Itô's formula and (8.1),

dV

t

= D

1

f(t; S

t

) dt+D

2

f(t; S

t

) dS

t

+

1

2

D

22

f(t; S

t

)�

2

t

S

2

t

dt:

By the self-�nan
ing equation and the de�nition of V = AR+BS, we have

that

dV

t

= A

t

dR

t

+B

t

dS

t

= (V

t

�B

t

S

t

)r

t

dt+B

t

dS

t

:

The right sides of these two equations are identi
al if

D

1

f(t; S

t

) +

1

2

D

22

f(t; S

t

)�

2

t

S

2

t

=

�

V

t

�B

t

S

t

�

r

t

;

D

2

f(t; S

t

) = B

t

:

y

I do not know in what situations this is a reasonable assumption.
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We 
an substitute V

t

= f(t; S

t

) in the right side of the �rst equation,

and repla
e B

t

by the expression given in the se
ond. If we assume that

�

t

= �(t; S

t

) and r

t

= r(t; S

t

), then the resulting equation 
an be written

in the form

f

t

+

1

2

f

ss

�

2

s

2

= fr � f

s

sr;

where we have omitted the arguments (t; s) from the fun
tions f

t

, f

ss

, �,

f , f

s

and r, and the indi
es t and s denote partial derivatives relative

to t or s of the fun
tion (t; s) 7! f(t; s). We 
an now try and solve this

partial di�erential equation, under a boundary 
ondition that results from

the pay-o� equation. For instan
e, for a European 
all option the equation

f(T; S

T

) = V

T

= (S

T

�K)

+

yields the boundary 
ondition

f(T; s) = (s�K)

+

:

8.7 EXERCISE. Show that the value of a 
all option at time t is always at

least (S

t

� e

�r(T�t)

K)

+

, where r is the (�xed) interest rate. (Hint: if not,

show that any owner of a sto
k would gain riskless pro�t by: selling the

sto
k, buying the option and putting e

�rt

K in a savings a

ount, sit still

until expiry and hen
e owning on option and money K at time T , whi
h is

worth at least S

T

.)

8.8 EXERCISE. Show, by an e
onomi
 argument, that the early exer
ise

of an Ameri
an 
all option never pays. (Hint: if exer
ised at time t, then

the value at time t is (S

t

�K)

+

. This is less than (S

t

� e

�r(T�t)

K)

+

.)

8.9 EXERCISE. The put-
all parity for European options asserts that the

values P

t

of a put and C

t

of a 
all option at t with strike pri
e K and expiry

time T based on the sto
k S are related as S

t

+ P

t

= C

t

+ Ke

�r(T�t)

,

where r is the (�xed) interest rate. Derive this by an e
onomi
 argument,

e.g. 
omparing portfolios 
onsisting of one sto
k and one put option, or one


all option and an amount Ke

�rT

in a savings a

ount. Whi
h one of the

two portfolios would you prefer?


