Business Management in the Czech Republic

Multistage decision-making

Ing. Lenka Jaterková

Structure of this lecture

- Basic introduction to decision making
- Multi-stage decision making, decision trees
- Expected value
- Dependent Uncertainties
- Utility functions
- Expected utility
- Certainty equivalent
- Value of perfect information
- Value of imperfect information

What is decision making?

the cognitive process leading to the selection of a course of action among variations can be an action or an opinion

Why we need decision analysis?

the probability of a right decision in a managerial environment, which is full of uncertainty, where all element that influence the result are given only as numbers of probability or are not given at all.

Decision making in business and management

- SWOT Analysis
- Buyer decision processes
- Corporate finance:
- The investment decision
- The financing decision
- Cost-benefit analysis

- Decision trees

- Linear programming
- Min-max criterion
- Model (economics)
- Monte Carlo method
- Strategic planning process

Multistage decision-making

- Has more than one stage - consequential decisions
- Occurs usually in the environment of uncertainty or risk
- Has to follow the objectives of decision-maker
- Can be illustrated by a decision tree

Xanadu Traders, part 1

Xanadu Traders -
a privately held U.S. metals broker

George Xanadu owner of Xanadu Traders

Molyzirconium ore

Zeldavia

Decision problem

Opportunity: purchase of 1 million kg of molyzirconium

Purchase: $\$ 5$ per kg
Sale: $\quad \$ 8$ per kg

Costs: $\$ 5000000$
Earnings: \$8000 000
Profit: $\$ 3000000$
government may ban import of molyzirconium from Zeldavia
Xanadu Traders will need import license
there is 50% chance to obtain import license from government

Cancellation Fee: $\$ 1000000$

Buy or not to buy molyzirconium from Zeldavia?

Decision tree n. 1

- decision tree
- root mode
- decision node
- decision alternatives
- chance nodes
- probability
- end point

Theory intermission $n .1$ Expected value (EV)

Bayes rule:

$$
\bar{C}_{i}=\sum_{j=1}^{n} C_{i j} \cdot S_{j}
$$

- Cij ...Possible outcome
- Sj ... Probability
- Ci ... Expected value
- Situations involving profits (,,more is better") - highest expected value is the best
- Situations involving costs („less is better") - lowest expected value is the best

Decision tree n. 2 Expected value

$$
E V=0,5 \times \$ 3+0,5 \times(-\$ 1)=\$ 1 \text { milion }
$$

Expected value is higher for „purchase" alternative.
Xanadu Traders will buy molyzirconium ore.

Xanadu Traders, part 2

- Zeldavia has offered molyzirconium ore also to other companies
- Price of import licence $\$ 0$
- According to George Xanadu, there is 70% probability that somebody else will take Zeldavia‘s offer
- Question: Is it worth to wait for import licence or not?

Decision tree n. 3 Dependent Uncertainties

- EV for ,,Still available": EV = 0,3x $\$ 3+0,7 \times \$ 0=\$ 0,9$
- EV for ,,Wait": $E V=0,5 x \$ 0,9+0,5 x \$ 0=\$ 0,45$

Theory intermission n. 2 Utility functions

- Risk attitude
- risk averse
- risk seeking
- risk neutral
- Certainty equivalent (CE)
- counts with the risk involved in decision making
- may be different than Expected Value (EV)
- If:
- $\mathrm{CE}>\mathrm{EV}$ - risk seeking
- $\mathrm{EV}>\mathrm{CE}-$ risk averse
- $\mathrm{EV}=\mathrm{CE}-$ risk neutral

Theory intermission n. 2 Utility functions

Exponential utility function

- $u(x)=1-e^{-x / R}, \mathrm{R}>0$, in decisions involving profits
- $u(x)=1-e^{x / R}, \mathrm{R}>0$, in decision involving costs
- $\mathrm{u}(\mathrm{x})$ utility function,
- x is evaluation measure
- R is risk tolerance

Xanadu Traders, part 3

- G. Xanadu: I would be just willing to accept a deal with a fifty-fifty chance of making $\$ 2,000,000$ or losing $\$ 1,000,000$. However, if the upside were $\$ 2,100,000$ and the downside were $\$ 1,050,000$, I would not take the deal.

$$
\text { - } \quad \mathrm{r}_{0}=\$ 2,000,000
$$

- Rule: If the profit alternative r_{0} comes up with the same probability as the lose alternative $\mathrm{r}_{0} / 2$, then $\mathrm{CE}=0$ and R is approximately equal to r_{0}.
- Utility function of Mr. Xanadu is $u(x)=1-e^{-x / 2}$

Decision tree n. 4 Expected utility

- $u(3)=1-e^{-3 / 2}=0,777$
- Expected utility: $\mathrm{EU}=0,5 \mathrm{x}(0,777)+0,5 \mathrm{x}(-0,649)=0,064$

Theory intermission n. 3 Certainty equivalent for an Exponential Utility Function

- $\mathrm{CE}=-\mathrm{R} x \ln (1-\mathrm{EU})$, in decisions involving profits
- $\mathrm{CE}=\mathrm{R} x \ln (1-\mathrm{EU})$, in decisions involving costs
- CE - certainty equivalent
- EU - expected utility
- R - risk tolerance
- \ln-natural logarithm

Certainty equivalent for ,Purchase" alternative:

- $\mathrm{CE}=-2 \times \ln (1-0,064)=\$ 0,132$ millions
- the alternative with the greatest certainty equivalent is most preferred for situations where more of an evaluation measure is preferred to less

The "wait" alternative is now most preferred

Alternative	EV	CE	Diference
Purchase	$\mathbf{1 , 0 0 0}$	$\mathbf{0 , 1 3 2}$	$\mathbf{0 , 8 6 8}$
Don't purchase	$\mathbf{0 , 0 0 0}$	$\mathbf{0 , 0 0 0}$	$\mathbf{0 , 0 0 0}$
Wait	$\mathbf{0 , 4 5 0}$	$\mathbf{0 , 2 4 9}$	$\mathbf{0 , 2 0 1}$

Theory intermission n. 4 The value of information

- Perfect information removes all uncertainty about the outcomes for the decision alternatives.
- No source of information (imperfect information) can be worth more than the value of perfect information.

Xanadu Traders, part 4

Question: How much money would it be worth to obtain perfect information about issuance of the import license?

- There exists a source of perfect information in the government that would let George Xanadu know if the import license would be issued.
- probability of receiving the licence is still 0,5
- perfect information alternative has an expected value: $\mathrm{EV}=\$ 1.5$ million
- the value of perfect information is $\$ 1.5-\$ 1.0=\$ 0.5$ million
- since $\$ 0.5$ million is the value of perfect information, this places an upper limit on how much it is worth paying for any information about whether the license will be issued.

Decision tree n. 5
 Value of perfect information

Xanadu Traders, part 5

The value of imperfect information

- Consultant John Lofton
- often makes mistakes

- In cases, where the license was issued, he had truth in 90% of time
- In cases, where the license wasn't issued, he had truth 60% of time
- Loftons fee: $\$ 10000$

Should Xanadu hire Lofton, and if so, what is the maximum amount that he should pay Lofton for his services?

Decision tree n. 6 Value of imperfect information

- Unfortunately, as often happens in real problems, the information presented about Lofton's accuracy in his predictions is not in a form that directly provides the required probabilities

- A path probability is the probability of a particular sequence of branches from the root node to a specified endpoint in a probability tree

Decision tree n. 7
 Value of imperfect information

- Tree flipping is the process of calculating the probabilities for a probability tree with the order of the chance nodes reversed.

Condition: the paths from the root node to the endpoints have to be the same in the Figure 6 and Figure 7 trees - they are arranged in a different order - „backwards".

Decision tree n. 8 Value of imperfect information

" Probability A is the probability of a „yes" prediction regarding license approval

- $\mathrm{A}=0,45+0,20=0,65$
$\mathrm{B}=0,30+0,05=0,35$
- $\mathrm{C}=0,45 / \mathrm{A}=0,69$
$\mathrm{D}=0,2 / \mathrm{A}=0,31$
$\mathrm{E}=0,05 / \mathrm{B}=0,14$
$\mathrm{F}=0,30 / \mathrm{B}=0,86$

Predict	Import License
Issued?	Path
Probability	
Issued?	

Decision tree n. 8 Value of imperfect information

Conclusion

- Advantage of using decision trees:
- Clarity
- Possibility of showing the whole process with all incoming factors
- Disadvantage of using decision trees:
- Unable to show more complex or complicated decisions

