4310 : Intertemporal macroeconomics

Espen Henriksen

August 27, 2008

Administrative

(1) Final exam
(2) Week without classes
(3) Evaluation/feedback - class representatives
(ㄱ) Communication
(3) Questions??

Objectives

- How to model uncertainty.
- How to compute the value of being at a given state (uncertainty, but no decisions).

More specifically
(1) Uncertainty and expected utility
(2) Probability theory and Markov processes
(3) Solving a Markov process: Dynamic programming and value iteration

Building the toolbox

A : Solow growth model
B : Value iteration on a Markov process
C: Ramsey growth model
D : Stochastic neoclassical growth model

Expected utility theory

- Standard textbook in microeconomics.
- A sequence of random variables is independent and identically distributed (i.i.d.) if each has the same probability distribution as the others and all are mutually independent.
- Examples All other things being equal, ...
- ... a sequence of outcomes of spins of a roulette wheel is i.i.d.
- ... a sequence of dice rolls is i.i.d.
- ... a sequence of coin flips is i.i.d.

Modelling uncertainty

The two main types of modelling techniques that macroeconomists make use of are：
－Markov chains
－Linear stochastic difference equations，e．g．an $\operatorname{AR}(1)$ process
Markov property
－Markov chains and $\operatorname{AR}(1)$ processes have the Markov property．
－The Markov property means that for a given process， knowledge of the previous states is irrelevant for predicting the probability of subsequent states．
－For example，in the case we would predict a student＇s grades on a sequence of exams in a course．
－Taking the model to the measurements．

Markov chains：Some terminology

－A set of states，$S=\left\{s_{1}, s_{2}, \ldots, s_{r}\right\}$ ．
－The process moves successively from one state to another．
－Each move is called a step．
－If the chain is currently in state s_{i} ，then it moves to state s_{j} at the next step with a probability denoted by $p_{i j}$ ．
－$p_{i j}$ does not depend on any other information than that the chain is currently in state s_{i} ．
－The probabilities $p_{i j}$ are called transition probabilities．
－The process can remain in the state it is in，and this occurs with probability $p_{i i}$ ．

The Markov property

Formally，
$\operatorname{Pr}\left(X_{n+1}=x \mid X_{n}=x_{n}, \ldots, X_{1}=x_{1}\right)=\operatorname{Pr}\left(X_{n+1}=x \mid X_{n}=x_{n}\right)$

Example: Weather transitions

where
R is rain,
O is overcast, and
S is sunshine.

Represented as a transition matrix

		$t+1$		
		R	O	S
	R	0.50	0.25	0.25
t	O	0.25	0.50	0.25
	S	0.50	0.50	0.00

Such a square array is called the matrix of transition probabilities， or the transition matrix．

We denote the probability that，given the chain is in state i today， it will be in state $j n$ days from now $p_{i j}^{(n)}$ ．

What is the probability that it will be overcast in two days if it is overcast today？

Represented as a transition matrix

The weather today is known to be overcast. This can represented by the following vector:

$$
\mathbf{x}^{(0)}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]
$$

The weather tomorrow (one day from now) can be predicted by

$$
\mathbf{x}^{(1)}=\mathbf{x}^{(0)} \Pi=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0.50 & 0.25 & 0.25 \\
0.25 & 0.50 & 0.25 \\
0.50 & 0.50 & 0.00
\end{array}\right]=\left[\begin{array}{lll}
0.25 & 0.50 & 0.25
\end{array}\right]
$$

The weather two days from now can be predicted by

$$
\mathbf{x}^{(2)}=\mathbf{x}^{(1)} \Pi=\left[\begin{array}{lll}
0.25 & 0.50 & 0.25
\end{array}\right]\left[\begin{array}{lll}
0.50 & 0.25 & 0.25 \\
0.25 & 0.50 & 0.25 \\
0.50 & 0.50 & 0.00
\end{array}\right]=\left[\begin{array}{l}
0.3750 \\
0.4375 \\
0.1875
\end{array}\right]^{\prime}
$$

cont'd

The weather n days from now can be predicted by

$$
\mathbf{x}^{(n)}=\mathbf{x}^{(0)} \Pi^{n}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0.50 & 0.25 & 0.25 \\
0.25 & 0.50 & 0.25 \\
0.50 & 0.50 & 0.00
\end{array}\right]^{n}
$$

and in the limit

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbf{x}^{(n)} & =\lim _{n \rightarrow \infty} \mathbf{x}^{(0)} \Pi^{n} \\
& =\lim _{n \rightarrow \infty}\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0.50 & 0.25 & 0.25 \\
0.25 & 0.50 & 0.25 \\
0.50 & 0.50 & 0.00
\end{array}\right]^{n}=\left[\begin{array}{lll}
0.4 & 0.4 & 0.2
\end{array}\right]
\end{aligned}
$$

A glimpse of the Bellman equation

$$
v(s)=\max _{s^{\prime}}\left\{r\left(s, s^{\prime}\right)+\beta \mathrm{E} v\left(s^{\prime}\right)\right\}
$$

Today simpler

$$
v(s)=r(s)+\beta \Pi v\left(s^{\prime}\right)
$$

Next time leading up to

$$
v(k)=\max _{k^{\prime}}\left\{u\left(k, k^{\prime}\right)+\beta v\left(k^{\prime}\right)\right\}
$$

Seminar sessions this week

- Repeat basic structures such as scalars, vectors, matrices and for and while loops
- Implement value function iteration.
- Use the random variable generator to generate random Markov chains.

Employment transitions

Compensation at each realization

Current realization	Ref.	Compensation (x)
Student	s_{1}	NOK 150,000
Entry level position	s_{2}	NOK 300,000
Middle manager	s_{3}	NOK 450,000
Start-up company	s_{4}	NOK 200,000
Unemployed	s_{5}	NOK 150,000
Top-level executive	s_{6}	NOK 800,000
Successful entrepreneur	s_{7}	NOK 3,000,000
Dead	s_{8}	NOK 0

Markov process

We have

- One state variable (S) which can take eight distinct values/realizations, $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}, s_{8}\right\}$.
- A transition probability matrix Π.
- A reward/compensation, x, associated with each realization of the state variable.
- A discount factor β.

Solving the Markov process

$v\left(s_{i}\right)=$ expected discounted sum of future rewards starting in realization s_{i}
$=r\left(x_{i}\right)+\beta \cdot($ expected discounted sum of future rewards starting at next step)
$=r\left(x_{i}\right)+\beta \sum_{j} \pi_{i j} v\left(s_{j}\right)$

Vector notation

$$
v(S)=\left[\begin{array}{c}
v\left(s_{1}\right) \\
v\left(s_{2}\right) \\
v\left(s_{3}\right) \\
v\left(s_{4}\right) \\
v\left(s_{5}\right) \\
v\left(s_{6}\right) \\
v\left(s_{7}\right) \\
v\left(s_{8}\right)
\end{array}\right], \quad X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7} \\
x_{8}
\end{array}\right], \quad \Pi=\left[\begin{array}{ccccc}
\pi_{11} & \pi_{12} & \cdots & \cdots & \pi_{18} \\
\pi_{21} & \ddots & & & \vdots \\
\vdots & & & & \vdots \\
\vdots & & & & \vdots \\
\vdots & & & \ddots & \pi_{78} \\
\pi_{81} & \cdots & \cdots & \pi_{87} & \pi_{88}
\end{array}\right]
$$

The Bellman equation in vector form

$$
v(S)=r(X)+\beta \Pi v\left(S^{\prime}\right)
$$

where ' indicates next period.

Functional equation

Notice that $v(S)$ is a function that takes the realization of the state as argument and gives the value.

The unknown here is the function.

We know $r(X), \beta, \Pi$ and the set S, and we want to find the function $v(\cdot)$ such that

$$
v(S)=r(X)+\beta \Pi v(S)
$$

Solution by value function iteration

Approach：iterate backwards on the value function by proceeding through the following steps：
－Pick an initial value function $v_{0}(S)$ ，e．g．a vector of zeros．
－Iterative scheme，solving backwards

$$
v_{i+1}(S)=r(X)+\beta \Pi v_{i}(S)
$$

－Iterate until convergence，i．e．until

$$
\left\|v_{i+1}(S)-v_{i}(S)\right\|<\varepsilon
$$

where ε is an arbitrarily small number．

