Jitka Dupacova, Jan Hurt and
Josef Stépan

STOCHASTIC
MODELING IN
ECONOMICS AND
FINANCE

Kluwer Academic Publishers




Stochastic Modeling in Economics and Finance



Applied Optimization

Volume 75

Series Editors:

Panos M. Pardalos
University of Florida, U.S.A.

Donald Hearn
University of Florida, U.S.A.



Stochastic Modeling in
Economics and Finance

by
Jitka DupacCova
Jan Hurt

and

Josef St&pan

Department of Probability and Mathematical Statistics,
Faculty of Mathematics and Physics,
Charles University, Prague

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW



eBook ISBN: 0-306-48167-7
Print ISBN: 1-4020-0840-6

©2003 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2002 Kluwer Academic Publishers
Dordrecht

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com



To my husband Vidclav

Jitka Dupafovs

To Jarmila, Eva, and in memory of my parents

Jan Hurt

To my wife Iva

Josef Stépan



CONTENTS

Preface
Acknowledgments

Part I Fundamentals

I.1 Money, Capital, and Securities
1.1 Money and Capital
1.2 Investment
1.3 Interest
14 Cash Flows
1.5 Financial and Real Investment
1.6 Securities
1.7 Financial Market
1.8 Financial Institutions
1.9 Financial System
1.2 Interest Rate
2.1 Simple and Compound Interest
2.2 Calendar Conventions
2.3 Determinants of the Interest Rate
2.4 Decomposition of the Interest Rate
2.5 Term Structure of Interest Rates
2.6 Continuous Compounding
1.3 Measures of Cash Flows
3.1 Present Value
3.2 Annuities
3.3 Future Value
3.4 Internal Rate of Return
3.5 Duration
3.6 Convexity
3.7 Comparison of Investment Projects
3.8 Yield Curves
L4 Return, Expected Return, and Risk
4.1 Return
4.2 Risk Measurement
1.5 Valuation of Securities
5.1 Coupon Bonds
5.2 Options
5.3 Forwards and Futures
1.6 Matching of Assets and Liabilities
6.1 Matching and Immunization
6.2 Dedicated Bond Portfolio
6.3 A Stochastic Model of Matching
1.7 Index Numbers and Inflation
7.1 Construction of Index Numbers
7.2 Stock Exchange Indicators
7.3 Inflation

vii

xi
xiii



1.8 Basics of Utility Theory

8.1 The Concept of Utility

8.2 Utility Function

8.3 Characteristics of Utility Functions
8.4 Some Particular Utility Functions
8.5 Risk Considerations

8.6 Certainty Equivalent

1.9 Markowitz Mean-Variance Portfolio

110

L11

9.1 Portfolio

9.2 Construction of Optimal Portfolios and Separation Theorems
Capital Asset Pricing Model

10.1 Sharpe-Lintner Model

10.2 Security Market Line

10.3 Capital Market Line

Arbitrage Pricing Theory

11.1 Regression Model

11.2 Factor Model

L.12 Bibliographical Notes

Part II Discrete Time Stochastic Decision Models

IL.1

1.2

Introduction and Preliminaries

1.1 Problem of a Private Investor

1.2 Stochastic Dedicated Bond Portfolio

1.3 Mathematical Programs

Multistage Stochastic Programs

2.1 Basic Formulations

2.2 Scenario-Based Stochastic Linear Programs

2.3 Horizon and Stages

2.4 The Flower-Girl Problem

2.5 Comparison with Stochastic Dynamic Programming

I1.3 Multiple Criteria

3.1 Theory
3.2 Selected Applications to Portfolio Optimization
3.3 Multi-Objective Optimization and Stochastic Programming Models

I1.4 Selected Applications in Finance and Economics

4.1 Portfolio Revision

4.2 The BONDS Model

4.3 Bank Asset and Liability Management — Model ALM

4.4 General Features of Multiperiod Stochastic Programs in Finance
4.5 Production Planning

4.6 Capacity Expansion of Electric Power Generation Systems — CEP
4.7 Unit Commitment and Economic Power Dispatch Problem

4.8 Melt Control: Charge Optimization

IL.5 Approximation Via Scenarios

5.1 Introduction
5.2 Scenarios and their Generation
5.3 How to Draw Inference about the True Problem

viii

73
73
73
74
75
76
77
79
80
81
92
92
93
95
96
96
97
101

103
104
105
106
108
108
112
115
117
119
123
123
127
131
137
137
139
141
144
148
150
153
154
158
158
159
164



5.4 Scenario Trees for Multistage Stochastic Programs
I1.6 Case Study: Bond Portfolio Management Problem
6.1 The Problem and the Input Data
6.2 The Model and the Structure of the Program
6.3 Generation of Scenarios
6.4 Selected Numerical Results
6.5 “What if” Analysis
6.6 Discussion
I1.7 Incomplete Input Information
7.1 Sensitivity for the Black-Scholes Formula
7.2 Markowitz Mean-Variance Model
7.3 Incomplete Information about Liabilities
II.8 Numerical Techniques and Available Software (by Pavel Popela)
8.1 Motivation
8.2 Common Optimization Techniques
8.3 Solution Techniques for Two-Stage Stochastic Programs
8.4 Solution Techniques for Multistage Stochastic Programs
8.5 Approximation Techniques
8.6 Model Management
I1.9 Bibliographical Notes

Part III Stochastic Analysis and Diffusion Finance

II1.1 Martingales
1.1 Stochastic Processes
1.2 Brownian Motion and Martingales
1.3 Markov Times and Stopping Theorem
14 Local Martingales and Complete Filtrations
1.5 Lo-Martingales and Density Theorem
1.6 Doob-Meyer Decomposition
1.7 Quadratic Variation of Local Martingales
1.8 Helps to Some Exercises

III.2 Stochastic Integration
2.1 Stochastic Integral
2.2 Stochastic Per Partes and Itd Formula
2.3 Exponential Martingales and Lévy Theorem
2.4 Girsanov Theorem
2.5 Integral and Brownian Representations
2.6 Helps to Some Exercises

II1.3 Diffusion Financial Mathematics
3.1 Black-Scholes Calculus
3.2 Girsanov Calculus
3.3 Market Regulations and Option Pricing
3.4 Helps to Some Exercises

III. 4 Bibliographical Notes

References

Index

X

169
180
180
182
187
190
192
197
199
199
200
204
206
206
208
214
218
224
226
228

231
231
238
244
252
257
263
269
275
277
277
286
295
300
308
316
319
319
333
350
363
366

369
377



PREFACE

The three authors of this book are my colleagues (moreover, one of them is
my wife). I followed their work on the book from initial discussions about its con-
cept, through disputes over notation, terminology and technicalities, till bringing
the manuscript to its present form. I am honored by having been asked to write the
preface.

The book consists of three Parts. Though they may seem disparate at first
glance, they are purposively tied together. Many topics are discussed in all three
Parts, always from a different point of view or on a different level.

Part I presents basics of financial mathematics including some supporting topics,
such as utility or index numbers. It is very concise, covering a surprisingly broad
range of concepts and statements about them on not more than 100 pages. The
mathematics of this Part is undemanding but precise within the limits of the chosen
level. Being primarily an introductory text for a beginner, Part I will be useful to
the enlightened reader as well, as a manual of notions and formulas used later on.

The more extensive Part II deals with stochastic decision models. Multistage
stochastic programming is the main methodology here. The scenario-based approach
is adopted with special attention to scenarios generation and via scenarios appro-
ximation. The output analysis is discussed, i.e. the question how to draw inference
about the true problem from the approximating one. Numerous applications of the
presented theory vary from portfolio optimal control to planning electric power ge-
neration systems or to managing technological processes. A case study on a bond
investment problem is reported in detail. A survey of numerical techniques and
available software is added. Mathematics of Part II is still of standard level but the
application of the presented methods may be laborious.

The final Part III requires from the reader higher mathematical education inclu-
ding measure-theoretical probability theory. In fact, Part III is a brief textbook on
stochastic analysis oriented to what is called diffusion financial mathematics. The
apparatus built up in chapters on martingales and on stochastic integration leads to
a precise formulation and to rigorous proving of many results talked about already
in Part I. The author calls his proofs honest; indeed, he does not facilitate his task
by unnecessarily simplifying assumptions or by skipping laborious algebra.

The audience of the book may be diverse. Students in mathematics interested
in applications to economics and finance may read with benefit all Parts I,ILIII and
then study deeper those topics they find most attractive. Students and researchers
in economics and finance may learn from the book of using stochastic methods in
their fields. Specialists in optimization methods or in numerical mathematics will get
acquainted with important optimization problems in finance and economics and with
their numerical solution, mainly through Part II of the book. The probabilistic Part
III can be appreciated especially by professional mathematicians; otherwise, this
Part will be a challenge to the reader to raise his/her mathematical culture. After
all, a challenge is present in all three Parts of the book through numerous unsolved
exercises and through suggestions for further reading given in bibliographical notes.

I wish the book many readers with deep interest.

V. Dupac

Xi
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Part I

FUNDAMENTALS

I.1 MONEY, CAPITAL, AND SECURITIES

money, capital, investment, interest, cash flows, financing business, securities, fi-
nancial market, financial institutions, financial system

1.1 Money and Capital

Money is the means which facilitates the exchange of goods and services. Com-
monly, money appears in forms like banknotes, coins, and bank deposits. There are
three functions ascribed to money: (i) a medium of exchange, (ii) a unit of value,
expressing the value of goods and services in terms of a single unit of measure
(Czech Krones, e.g.), (iii) a store of wealth. Money is, no doubts, better means for
trade than barter (direct exchange of goods or services without monetary consid-
eration), but still insufficient for more complicated and/or sophisticated financial
operations like investment.

Capital is wealth (usually unspent money) or better to say accumulated money
which is used to produce or generate more wealth via an economic activity.

1.2 Investment

Individuals or companies face the problem how to handle their income. They can
either spend it immediately, or save it, or partly spend and partly save. In either
of the mentioned possibilities, they must decide how to spend and how to save. In
the latter case (saving), they postpone their immediate consumption in favour of
investment. In that case, they become investors and investment may therefore be
defined as postponed consumption. Usually, the consumption—investment decision
is made so as to maximize the expected utility (level of satisfaction) of the investor.
While the immediate consumption is sure (up to certain limits), the result of an
investment is almost always uncertain. Investments (or assets) can be classified
into two classes; real and financial. A real asset is a physical commodity like land,
a building, a car. A (financial) security or a financial asset represents a claim
(expressed in money terms) on some other economic unit. (see [143], e.g.).

1.3 Interest

The reward for both postponed consumption and the uncertainty of investment is
usually paid in the form of interest. Interest is a time dependent quantity depending
on, roughly speaking, time to the postponed consumption. Inferest in wider sense
is either a charge for borrowed money that is generally a percentage of the amount
borrowed or the return received by capital on its investment. Simply, interest is

Typeset by ApS-TEX



2 STOCHASTIC MODELING IN ECONOMICS AND FINANCE

the price of deferred consumption paid to ultimate savers. Note that the actual
allocation of savings in a reasonably functioning economy is accomplished through
interest rates, see next Section. In other words, capital in a free economy is allocated
through a certain price system and the interest rate expresses the cost of money.

1.4 Cash Flows

A cash flow is a stream of payments at some time instances generated by the
investment or business involved. The inflows to the investor have plus sign while
the outflows have minus sign. In accounts, the inflows are called black figures while
outflows are called red or bracket figures since they appear either in red color or in
brackets. As arule, net cash flows are considered; it means that at any time instant
all inflows and outflows are summed up and only the resulting sum is displayed.
See 1.3 for a more detailed analysis of cash flows.

1.4.1 Cash Flows Example. An investor buys an equipment for USD 90000
today. After one year he or she still is not in black figures and the loss is USD
15200. In the successive years 2, 3, 4, 5, 6 the profits (in USD) are 45000, 60000,
25000, 22000, 12000, respectively. At the end of the sixth year the investor sells the
equipment for the salvage value USD 15000. The net cash flow for years O,...,6
is (-90000, -15200, 45000, 60000, 25000, 22000, 27000=12000+15000). Graphical
illustration is given in Figure 1.

60000
45000

| J T T

Figure 1: A cash flow
1.5 Financial and Real Estate Investment

Since handling money and capital itself is a rather complicated task, there are
financial intermediaries and other financial institutions which should, in principle,
handle money and capital efficiently. Financial institutions are business firms with
assets in the form of either financial assets or claims like stocks, bonds, and loans.
Financial institutions make loans and offer a variety of financial services (invest-
ment, life and general insurance, savings, pensions, credits, mortgages, leasing, real
estates, etc.).

1.5.1 Financing the Business — Description

Almost every economic activity (of an individual, firm, bank, city, government)
must be financed. In principle, there are two possibilities how to realize it; either
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from own funds or from outside sources (creditors, debt financing). Own funds of
a company may be increased by issuing stocks resulting in the increase of equity
while the debt financing usually takes form of either bank credit or issuing the debt
instruments like corporate bonds. The better the expected performance of the firm
is, the cheaper funds (money) are available. The financial public look on the perfor-
mance of a firm through the ratings and the prices of financial instruments already
issued by the firm on the market (mainly Stock Exchange). The most important
corporations providing rating are Moody’s Investor Service (shortly Moody’s) and
Standard & Poor’s Corporation (shortly Standard & Poor’s). Both the rating and
price are important signals to the investors.

1.5.2 Financing the Business — Summary

We have seen that there are three main possible ways of financing; by equity
(issuing stocks), and two ways of debt financing, i.e., by issuing the debt instruments
like corporate bonds or just by acquiring a bank credit. A modern firm uses all
the above possibilities and it is the task of financial managers to balance them. It
is not so surprising that some very prospective American companies have debt to
equity ratio about 70 per cent. The idea is simple; if you borrow at some 7 per cent
and gain 11 per cent from the business, you are better off.

The fully self-financed company seems to be rather old-fashioned now. The tra-
dition of the European family business may serve as an example. There are rare
exceptions still surviving in these days, even among big firms in Europe. Neverthe-
less, the prosperous debt financed firm makes usually more profit than a comparable
self-financed company.

1.6 Securities

Security (in what follows here we mean a financial security) is a medium of
investment in the money market or capital market like shares (English) or stocks
(American), bonds, options, mortgages, etc. Security is a kind of financial asset
(everything which has a value or earning power). Speaking in accounting terms,
the holder (purchaser) of it has an asset while the issuer or borrower (seller) has a
liability. Security usually takes the form of an agreement (contract) between the
seller and the purchaser providing an evidence of debt or of property. The holder
of a security is called to be in a long position while the issuer is in a short position.
Security usually gives the holder some of the following rights:

(1) returning back money or property

(2) warranted reward

(3) share on the profit generated by money provided

(4) share on the property

(5) right on decision making concerning the use of money provided.

But a security may also be an agreement between two parties (often called Party
and Counterparty) on a financial or real transaction between the two. This is the
case of swaps, partly the case of forwards and futures. It is difficult to say who is
the issuer and who is the holder, in this case.

The basic types of securities and their forms are listed below. See [143], [138],
[105], [172] for more details.
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1.6.1 Fixed-Income Securities

Fixed-income securities are debt instruments characterized by a specified ma-
turity date (the date of payoff the debt) and a known schedule of repaying the
principal and interest.

1.6.1.2 Demand Deposits

Commercial banks and saving societies offer to their clients checking accounts or
demand deposits which are interest bearing but the interest is usually very small.
A better situation is with savings accounts, a type of time deposit. Here money is
saved for a prescribed period of time and any early withdrawal is subject to penalty
which usually does not exceed the interest for the period involved. The interest is
higher than that of applied to demand deposits and sometimes may vary.

1.6.1.3 Certificates of Deposit

Very popular, particularly for the institutional investors, are the Certificates of
Deposit, shortly CD’s, mainly issued by commercial banks in large denominations.
They also take the form of time deposits with fixed interest but the early withdrawal
is severely penalized. CD’s are usually issued on the discounted base, at a discount
from their face value. Roughly spoken, if you want to buy a CD of the face CZK
1000000, say, payable after one year, you buy it for some CZK 920000. Remember
that the return in this case is not 8 per cent.

1.6.1.4 Treasury Bills

A typical money market securities issued by the central bank are Treasury bills,
T-bills. Their main purpose is to finance the government or their fiancées. They
have maturities typically varying from weeks to one year and are also issued on the
discount base.

There is one interesting point in issuing securities of the above type. A careful
government (even the Czech one, now) issues T-bills through the auction. Prior
to each auction, the central bank (representing the government, in many countries
behaving independently of the government) announces the par (face) value of the
security and the upper limit of the bid expressed in terms of the interest rate. Also
the intended volume (total face value) is announced.

For example, the issuer (the bank in this case), announces that the accepted
offers are up to 8 per cent p.a. It means that the issuer will only accept the offers
below this rate. The submitted bids are collected and ranked according to the
offers with respect to the volume and interest rate. Since the offer of the issuer is
competitive, the investors who wish to catch the offer must carefully choose both
the offered interest and the volume. The strategy of the issuer is the question of
allocation, the problem which will be discussed later.

Note that similar policy or technique (auction) is also often used by commercial
banks as well as by highly rated firms (rated as blue chips, AAA, in Standard &
Poor’s rating scale).

For a detailed analysis including a discussion of auctions see [143].
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1.6.1.5 Coupon Bonds

A coupon bond is the long-term (usually from 5 to 30 years) financial instrument
issued by either central or local governments (municipals), banks, and corporations.
It is a debt security in which the issuer promises the holder to repay the principal,
par value, face value, redemption value, or nominal value F at the maturity date
and to pay (periodically, at equally spaced dates up to and including the maturity
date) a fixed amount of interest C called coupon for historical reasons. The ratio
¢ = C/F is called coupon rate, sometimes simply interest. A typical period for the
coupon payment is semiannual, rarely annual, but both the coupon and coupon
rate are expressed on the annual base. The number of periods in a year is called
frequency. In case of semiannually paid coupon, the frequency is 2. The bond is
usually valued at a time instant between the issuing date and the maturity date.
So that more important for the valuation purposes is the length of time to the
maturity date called maturity of the bond. Maturity differs from the whole life of
the bond in that only remaining payments of coupons and principal are considered.
A cash flow coming from a coupon bond is illustrated in Figure 2.

C+F

Figure 2: Cash flow of a bond

1.6.1.6 Callable Bonds

The simple coupon bond described above has an obvious disadvantage for the
issuer; if the interest rates fall during the bond life, it is often possible for the issuer
to get cheaper funds, for instance by issuing bonds with lower coupon. The security
which partly gets rid of this feature is callable bond. The situation is the same as
with the usual coupon bonds but in this case, the issuer has the right to buy some
or all issued bonds prior to the original maturity date or fo call them, in other
words. Since the earlier repayment of the face value may cause an inconvenience
to the bondholder (particularly with the reinvestment at lower interest than the
coupon), the issuer should pay a reward to the bondholder in the form of call
premium. The call dates and call premiums are stated in the offering statement.
For example, if the bond is called one year before the maturity date, the payment is
101 per cent of the par value, if two years before, the payment is 102 per cent, etc.
The call premium generally decreases with the date of call closer to the maturity
date. Strictly speaking, the callable bond is not a fixed-income security since the
payments coming from it are uncertain and depend both on the issuer policy and
market interest rates.
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1.6.1.7 Zero Coupon Bonds

A zero coupon bond, shortly zero, or discount bond pays only the face value at
maturity. It is issued at discount to par value (like CD) and it pays par value at
maturity. One reason for issuing such a type of bonds is that in some countries (like
USA) the issuer may deduct the yearly accrued interest from taxes even though the
payment is not made in cash. The bondholder (purchaser) must calculate interest
income in the same way as the issuer calculates the tax deduction and should pay
either corporate or personal tax even though no cash has been received. However,
if the purchaser is a tax-exempt entity, like a pension fund or an individual who
buys the bond for its individual retirement account, it pays no tax from the accrued
interest. See [25] p. 578 for more details.

A coupon bond may be considered as a series of zero coupon bonds, all but last
with face value equal to the coupon payment, and the last with the face value equal
to the coupon payment plus the face value of the underlying coupon bond. This is
not only a theoretical construction; the coupon components and face value of US
Treasury bonds may be traded separately and such securities are called STRIPS —
Separate Trading of Registered Interest and Principal of Securities. There are also
derivative zero coupon bonds; a brokerage house buys usual coupon bonds, strips
the coupons, and resells the stripped securities as zero coupon bonds.

1.6.1.8 Mortgage-Backed Securities

A lending institution that loans money for mortgages combines a large group of
mortgages and thus creates a pool. The mortgage-backed (pass-through) security
is then a long term (15 to 30 years) instrument that is collateralized by the pool
of mortgages. As the homeowners make their (usually monthly) payments of the
principal and interest to the lending institution, these payments are then “passed
through” to the security holders in the form of coupon payments and the principal.
The coupon is naturally less than the interest paid by homeowners, but the level
of default is low. First, there is a warranty in real estate, second, there is a large
pool of loans which diversifies the default risk.

See [143] for more details.

1.6.2 Floating-Rate Securities

Floating-rate securities’ payments are not fixed in advance and rather depend
on some underlying asset. The reason for issuing such securities is to reduce the
interest rate risk for both the seller and the buyer. Typical examples are floating-
rate bonds and notes with a coupon or interest periodically adjusted according on
the underlying instrument (base rate) like LIBOR, PRIBOR, discount rate of the
central bank etc. or they are simply tied to some interest rate like prime rate of a
commercial bank (the interest rate for highly rated clients of the bank).

Note that LIBOR (London InterBank Offered Rate) is the daily published in-
terest rate for leading currencies (GBP, EUR, USD, JPY, ... ) with a variety of
maturities (one day or overnight, 7 days, 14 days, 1 month, 3 months, 6 months, 1
year). LIBOR is calculated as the trimmed average (two smallest and two largest
values are not considered) of the interest rates on large deposits among 8 leading
banks in Great Britain. Similarly PRIBOR is an abbreviation for Prague Interbank
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Offered Rate and is calculated in a similar way like LIBOR. Usually the calendar
Actual/360 applies to all transactions.

Typically, the actual coupon rate is the interest rate of the underlying asset plus
margin (spread). If the underlying instrument is LIBOR, e.g., the actual coupon
rate may be actual LIBOR plus 100 basis points or actual LIBOR plus 3 per cent.
The floating rates may be reset more than once a year leading to short-term floating
rates while in the opposite case we speak of long-term floating rates. We also speak
about adjustable-rate securities or variable-rate securities, see [60], [61].

1.6.2.1 Example (I bonds). [ bonds are U.S. Treasury inflation-indexed saving
bonds introduced in September 1998 with maturity on September 2028 in denom-
inations varying from USD 50 to USD 10000. The rate — currently 6.49% p.a.
— consists of two components; a fixed rate 3.6% which applies for the life of the
bond, and inflation rate measured by the Consumer Price Index which can change
every six months. I bonds earnings are added every month (coupon is added to the
principal) and the interest is compounded semiannually. Only Federal income tax
applies to the earnings. Investors cashing before 5 years are subject to a 3-month
earnings penalty.

1.6.3 Corporate Stocks

Issuing stocks is a very popular method of financing business and further devel-
opment of a company (corporation, firm). The most important types of stocks are
common and preferred stocks. A common stock (US), ordinary share (UK) is the
security that represents an ownership in a company. The equity of a company is the
property of the common stock holders, hence these stocks are often called equities.
For the investors, the stock is a piece of paper or a record in the computer giving
him or her the right to engage in the decision processes concerning the company
policy according to the share on common stock (voting right). Also it entitles the
owner to dividends which consist of the amount of company’s profit distributed
to stockholders. This amount equals earnings less retained earnings (the part of
earnings intended for reserves and reinvestment).

A preferred stock gives the holder priority over common stockholders. Preferred
stockholders receive their dividend prior to common stockholders. Usually the
dividend does not depend on the company’s earnings and often is constant, thus
resembling a coupon bond. In case of bankruptcy, the preferred stockholders have
higher chance to see their claims to be satisfied. On the other hand, often they do
not have voting right.

Stocks have another feature which is called limited liability that means that their
value cannot be negative in any case.

1.6.4 Financial Derivatives

Financial derivative securities or contingent claims are the instruments where
the payment of either party depends on the value of an underlying asset or assets.
The underlying assets in question may be of a rather general form, e.g. stocks,
bonds, commodities, currencies, stock exchange indexes, interbank offer rates, and
even derivatives themselves. The underlying assets thus fall into two main groups;
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commodity assets and financial assets. The derivatives are now traded in enormous
volumes all over the world. Estimated figure for options only at 1996 was about $35
trillion. The most common derivatives are forwards, futures, options, and swaps.

1.6.4.1 Forwards and Futures

A forward contract is an agreement between two parties, a buyer and a seller,
such that the seller undertakes to provide the buyer with a fixed amount of the
currency or commodity at a fixed future date called delivery date for a fixed price
called delivery price agreed today, at the beginning of the contract. For both parties
this agreement is an obligation. By fixing the price today the buyer is protected
against price increase while the seller is protected against price decrease. Forward
is typically a privately negotiable agreement and it is not traded on exchanges.
The forward contract is a risky investment from two reasons, at least. First reason
is obvious; since the spot price of the underlying asset generally differs from the
delivery price, the loss of one party equals the profit of the counterparty and vice
versa. The second reason is the default risk in which case the seller is not willing
to provide the buyer with delivery. There are also nonnegligible costs in finding a
partner for this contract and fair delivery price. Therefore, the forward contracts
are usually realized between reliable, highly rated parties. No money changes hands
prior to delivery.

A simple example is a forward contract between a miller and a farmer producing
corn. Today, April 11, 2001, they agree that the farmer will deliver 1000 bushels of
corn for the delivery price USD 2.5 per bushel on September 30, 2001, the delivery
date. Both parties consider these conditions of the contract as good. Assume that
the spot price of corn on the delivery date would increase to USD 3 per bushel.
Without the forward contract, the miller would have to buy for this price which
might cause problems to him. On the other hand, with the spot price decrease to
USD 2 per bushel on delivery date, the farmer who would have to sell for this price
might have to go to the bankruptcy.

A futures contract shortly futures, is of a similar form as the forward but it has
additional features. The futures is standardized (specified quality and quantity,
prescribed delivery dates dependent on the type of the underlying asset). The
futures are traded (they are marketable instruments) on exchanges. One of the
most popular is Chicago Board of Trade (CBT). To reduce the default risk to
minimum, both parties in a futures must pay so called margins. These margins
serve as reserves and the account of any party in the contract is daily recalculated
according to the actual price of the futures, the futures price. Such a procedure
is called marking to market. The initial margin must be paid by both parties at
the initiation of the contract and usually takes values between 5 to 10 per cent
of the contract volume. The maintenance margin is a prescribed amount below
the initial margin. If the account falls below this margin, it must be recovered
to the initial margin by an additional payment called a variation margin. The
contractors’ accounts bring interest. The futures exchange also imposes a daily
price limit which restricts price movements within one business day, +10 per cent,
say. The responsibility for default is transferred to a clearing house that is also
responsible for the clients’ accounts, see [25] and [143].
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The reports on futures prices in financial press provide the daily opening, highest,
lowest, and closing price, the percentage change, the highest and lowest price during
the lifetime of the contract, and the total number of currently outstanding contracts
called open interest.

1.6.4.2 Options

An option is a contract giving its owner (holder, buyer) the right to buy or sell a
specified underlying asset at a price fixed at the beginning of the contract (today)
at any time before or just on a fixed date. The seller of an option is also called
writer. It must be emphasized that an option contract gives the holder a right
and not an obligation as it was the case of futures. For the writer, the contract
has a potential obligation. He must sell or buy the underlying asset accordingly
to the holder’s decision. We distinguish between a call option (CALL) which is the
right to buy and a put option (PUT) which is the right to sell. The fixed date of a
possible delivery is called expiry or maturity date. The price fixed in the contract
is called exercise or strike price. If the right is imposed we say that the option is
exercised. If the option may be exercised at any time up to expiry date, we speak
of an American option and if the option may be exercised only on expiry date, we
speak of a European option. These are the simplest forms of options contracts and
in literature such options are called vanilla options.

The right to buy/sell has a value called an option premium or option price which
must be paid to the seller of the contract. It must be stressed that the option price
is different from the exercise price!

Like futures, options are mostly standardized contracts and are traded on ex-
changes since 1973. The first such exchange was the Chicago Board Options Ex-
change (CBOE). Most common underlying assets are common stocks, stock market
indexes, fixed-income securities, and foreign currencies. Options are usually short-
term securities with typical maturities 3, 6, and 9 months. At any time there are
options with different maturities and different strike prices available on the mar-
ket. An example (taken from [143]) shows how the long term options are quoted in
financial press on January 15, 1992, is in the following table:

Option Expiry  Strike Last
ATT  Jan93 25 16
ATT  Jan93 35 7%
ATT  Jan93 35p 1%
ATT  Jan93 40 41
ATT  Jan93 40p 2%
ATT  Jan93 50 1%

This is an example of American options with different strike prices with the under-
lying asset AT & T common stock and with the same expiry date, the third Friday
January 1993. "p” standing at strike price means a PUT option, the others are
CALLs. “Last” means the closing price.

Another type of options are exotic or path-dependent options. These options
(if exercised) pay the holder the amount dependent on the history of the under-
lying asset. Despite their “exotic” features, they are successfully used for hedging
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purposes. Since the creativity and fantasy of the developers of such products is
practically unbounded, we only give some examples. Note that most of the men-
tioned options may be either of European or American type. For more details see
[172] and [105], e.g.

A binary or digital option pays the holder a fixed amount of money if the value
of the underlying asset rises above or falls below the exercise price. The payoff is
independent of how far from the exercise price the asset value was at the exercise
time.

A barrier option is a usual vanilla option but it may only be exercised if either
the asset value does not cross a certain value — an out-barrier, or if the asset price
crosses a certain value — an in-barrier during the life of the option contract. There
are four possible cases:

(1) up-and-in; the option pays only if the barrier is reached from below,

(2) down-and-in; the option pays only if the barrier is reached from above,
(3) up-and-out; the option pays only if the barrier is not reached from below,
(4) down-and-out; the option pays only if the barrier is not reached from above.

A compound option is simply an option where the underlying asset is another
option. If we consider only plain vanilla options, we have four possibilities again.
For brevity, we describe the mechanism of a call-on-a-call European type compound
option. Such an option gives the holder the right to buy a call option for the price
K, at the expiry T1. The second call option is on an underlying asset with the
exercise Ko and the expiry T2 > 1.

A chooser option or as-you-like-it option is an option which gives the holder the
right to buy or sell either a call or a put option. We give an example of a call-on-
a-call-or-put. Such a chooser option gives the holder the right to purchase for the
exercise price K; at expiry time T either a call or a put with exercise price K at
time T%.

An Asian option is a path-dependent option with payoffs dependent on the aver-
age price of the underlying asset during the life time of the option. Such an average
plays the role of the exercise price. Thus, the average strike call pays the holder
the difference between the asset price at expiry and the average of the asset prices
over some period of time, if positive, and zero otherwise. The problems arise from
the proper definition of the average involved, continuous or discrete sampling, if
discrete, then from prices sampled hourly or from closing prices, etc.

A lookback option has a payoff which also depends on maximum or minimum
reached by the underlying asset over some period prior to expiry. Such a maximum
or minimum plays the role of the exercise price.

1.6.4.3 Swaps

Swaps, like forwards, are mostly individual contracts between two highly rated,
reliable parties which well fit the needs of both. Although the swaps are individual
contracts, in practise they often follow the recommendations of the International
Swaps and Derivatives Association (ISDA). A swap may be briefly characterized as
an agreement on exchange of cash flows in future times with a prescribed schedule.
There are two main categories of swaps; interest rate swaps and currency swaps.
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In practise, the two are often combined. Swaps are used to manage interest rate
exposure or uncertainty concerning the future exchange rates.

An interest rate swap is a contract between two parties to exchange interest
streams with different characteristics based on a principal, notional amount, some-
times called the volume of a swap. The interest rates may be either fixed or floating
in the same or different currencies.

A pure currency swap is a forward contract on the exchange of different currencies
on some future date (maturity) in amounts fixed today. Another type of a currency
swap is a cross-currency swap that consists of the initial exchange of fixed amounts
of currencies and reverse final exchange of the same amounts at maturity. One or
both parties may pay interest during the lifetime of the swap.

1.6.4.4 Example (Combined swap). Notional amount: CZK 34,500,000

Fixed amounts:

Initial exchange: Party A pays EUR 1,000,000 to party B, party B pays CZK
34,500,000 to party A. Maturity 10 years.

Final exchange (after 10 years): Party B pays EUR 1,000,000 to party A, party
A pays CZK 34,500,000 to party B.

Floating amounts:

Party A pays to party B semiannually E6M - 3.5 per cent (spread or margin)
from notional amount based on the floating rate day count fraction Actual/360,
i.e., CZK ((E6M-3.5)/100) - (182/360) - 34,500,000. Here E6M stands for LIBOR
interest rate on EUR with maturity 6 months.

1.6.5 Miscellaneous Securities

Here we briefly mention a sample of other types of derivatives met in financial
practise.

A warrant is a derivative security which gives the holder the right to buy a
specified number of common stocks for a fixed price called exercise price at any
time during the lifetime of the warrant. Such a security resembles a CALL option
but there are two differences. First, warrant is a long-term security, 10 years say,
while options have maturities up to two years. Second, perhaps a more important
feature of the warrant is, that it is issued by the same company which issues the
underlying stock while options are traded among investors.

Another type of security with an option is a convertible bond. Such a bond gives
the bondholder the right to exchange the bond for another security, typically the
common stock issued by the same company or just to sell back the bond to the
issuing company. This is an example of a convertible bond with put option. Firms
usually add the conversion option to lower the coupon rate. On the other hand, the
issuer may reserve the right to call back the bonds and upon call, the bondholder
either converts the bond into stocks or redeems it at the call price (convertible bond
with call option). In this case, the coupon rate must be higher than that of usual
coupon bond. In both cases we speak of conversion premiums.

Let us turn to floating-rate bonds (see 1.6.2). Most issuers cap their obligations
to ensure that the floating coupon rate does not rise above a prespecified rate
called cap. Thus if the face value of a bond is F, the floating rate r (say LIBOR
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on EUR with maturity 6 month + 3 percent) and the cap r., then the payment is
F -min(r,7;). On the other hand, some issuers offer buyers an interest rate below
which the coupon rate will not decline; such a rate is called floor. If the flooris rg,
then the payment is

F - max(min(r,r;),rs) = F - min(max(r,rs),7c)-

Usually caps and floors take the form of consequent payments called caplets and
floorlets, respectively.

1.7 Financial Market

Financial market consists of money market and capital market. Money market is
a market with short-term assets or funds, up to one year say, like bills of exchange,
Treasury bills (T-bills), and Certificates of Deposit (CD’s). Capital market is a
market which deals with longer-term loanable funds mainly used by industry and
commerce for investment and acquisition. Usually capital markets handle securities
which are related to the time horizon longer than one year.

1.8 Financial Institutions

The role of financial institutions is simple. Financial intermediaries (commercial
banks, insurance companies, pension funds, e.g.) acquire debts issued by borrowers
(IOU - the abbreviation for ”I Owe You”) and at the same time sell their own
I0Us to savers. Every bank (with rare exceptions in the Czech Republic) is happy
to accept your savings and handle them. It is a debt which is used by the bank
in the form of loans and investments. Examples of other financial institutions are
security brokers (bringing buyers and sellers of securities together), dealers, who —
like brokers — intermediate but moreover purchase securities for their own accounts.
There are investment bankers, mortgage bankers, and other miscellaneous financial
institutions in this category, as well.

1.9 Financial System

In a civilized country, all the activities mentioned above go through the financial
system which can be simply illustrated by the following scheme:

Ultimate borrowers, savings-deficit units +—
+— Financial Intermediaries <—
+— Ultimate savers, savings-surplus units.

The needs or wishes of borrowers and savers are different, of course. The borrow-
ers need long-term loans, acceptance of significant risk by the lenders, and larger
amounts of credit. Perhaps the highest priority of the lenders is liquidity, which
means the availability of the funds (money) at the moment when these are re-
quested. The natural needs of the savers are safety of funds and, particularly for
small investors, accessibility of the securities in small denominations.
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I.2 INTEREST RATE

interest rate, compounding, present value, future value, calendar convention, de-
terminants of the interest rate, term structure, continuous compounding

2.1 Simple and Compound Interest

Interest rate (also rate of interest) is a quantitative measure of interest expressed
as a proportion of a sum of money in question that is paid over a specified time
period. So if the initial amount of money is PV (also called principal or present
value) and the interest rate is ¢ for the given time period, then the interest paid at
the end of the period is PV -4 and the accumulated amount of money at the end
of the period (called future value or terminal value) is

(1) FV = PV(1L +1).

Alternatively, the interest rate is quoted per cent. It will be clear from the context
where ¢ = 0.13 means ¢ = 13% and vice versa. Note that r is another frequently
used symbol for the rate of interest, particularly if speaking of the rate of return.
Let us consider more than one time period, say 7 periods, with 7 not necessarily
integer, and the same interest rate ¢ for one period. There are two approaches how
to handle interests after each period. Under simple interest model, only interest
from principal is received at any period. Thus the future value after T periods is

(2) FVr = PV (1 +1T).

Under compound interest model, the interest after each period is added to the pre-
vious principal and the interest for the next period is calculated from this increased
value of the principal. The corresponding future value is

(3) Fvp =PV +4d)T.

In the context of the compound interest model, the process of going from present
values to future values is called compounding.

2.1.1 Remark (Mixed Simple and Compound Interest)

Some banks or saving companies use a combination of simple and compound
interest if 7' is not an integer. Let T = |T| + {T'} where |] denotes the entire
part and {} denotes the fractional part of the argument. Then the future value is
calculated as

(4) FVr = PV(1+)TH1 +4{T}).
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2.1.2 Exercise. Decide what is better for the saver: future value of the savings
calculated from (3) or (4).

Speaking of interest rates, it is important to state clearly the corresponding unit
of time. In most cases, the interest rate is given as the annual interest rate, often
stressed by the abbreviation p.a. (per annum). The usual notation is ¢ = 0.13 p.a.
or equivalently ¢ = 13% p.a. Rarely, interest rates are given semiannually (p.s., per
semestre), quarterly (p.q., per quartale), monthly (p.m., per mensem), daily (p.d.,
per diem). The period of compounding is similarly one year, six months, three
months, one month, or one day. If the unit of time for the given interest rate differs
from the period of compounding (which is often the case), it is very important to
emphasize that we consider ¢% p.a. interest rate compounded semiannually, say. In
this case it means that the interest rate ¢ is so called nominal interest rate, and for
every six month’s period the actual interest rate is i/2. Generally, let :(™ be the
nominal rate of interest per unit time compounded mtimes within the unit time so
that there are m periods, each of length 1/m, and the interest rate is i(m /m per
period. We also say that the nominal interest rate i™ is payable mthly. Thus the
future value of PV after T periods is

() T
(5) FVp =PV (1 + %) .

Of course, the actual interest rate per unit time es, called effective rate of interest
is not equal to the nominal rate of interest. Obviously,

.(m) m
(6) 1+ie5=(1+l—) .
m

2.1.3 Exercise. Compare the effective rates of interests if i(™ = 0.13 p.a. for
m =1,2,12,365 and comment the result.

2.2 Calendar Conventions

Assume the unit time is one year. If the number of periods n is not an integer,
there are different methods to count the difference between two dates. Consider
two dates, DATE;, DATE,, say, expressed in the form DATE;= YYYY,MM;DD;,
J =1,2. January 13, 2013, is therefore expressed as 20130113. The most frequent
conventions:

Calendar 30/360 or Euro-30/360. Under this convention all months have 30
days and every year has 360 days. The number of periods T is calculated as

1

=380

(360(YYYY, — YYYY,) + 30(MMs ~ MM,)+
min(D D3, 30) — min(DD,, 30)).
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Calendar US-30/360. In this case, all dates ending on the 31st are changed to
the 30th with the following exception: if DD; < 30 and DDy = 31 then DATE,
is changed to the first of the next month.

Calendar Actual/Actual. This convention assumes the actual number of days
between two dates with the actual number of days in the year.

Calendar Actual/360. The actual number of days in each month but 360 days
in the year are considered. As a result, the number of periods within one year can
exceed one.

Calendar Actual/365. The actual number of days in each month and 365 days
in each year are considered. The leap year assumes 365 days.

Most computer systems are equipped with calendar functions, particularly with
the function which returns the number of days between two dates. For exam-
ple, Mathematica offers the function DaysBetween [date2, datel] which returns the
actual number of days between two dates. The arguments date takes the form
{year,month, day} so that March 14, 2001 is {2001, 3, 14 }in this notation. In
financial packages, the same Mathematica function has option DayCountBasis ei-
ther "Actual/Actual"or "30/360"

2.2.1 Exercise. Analyze the effect of the calendar conventions on savings from
the point of view of a saver or a borrower.

2.3 Determinants of the Interest Rate

In a free economy, interest rates, as a price of money, are mainly determined by
market supply and demand, and partly mastered by the government or central bank
via money supply policy. Interest rates vary with economic environment, market
position, used financial instrument, and time. The economic units which are willing
to pay higher interest rates for the funds (=borrowed money in this case) expect
higher returns on their investments. The returns are usually measured by the rate
of returndefined by:

Ending price + Cash income — Beginning price
Beginning price

Rate of return = )

sometimes quoted in per cent.

Every investment should be valued from the point of view of return, risk, infla-
tion, and liquidity. The firm with higher return will pay higher interest for funds
(money). With the rate of return 25 per cent the firm pays 20 per cent interest
with pleasure. Another firm, with the rate of return 20 per cent, would not pay
20 per cent interest since then it would not have reason to develop any activity.
More risky investment should be more expensive than an investment with (almost)
certain return, in terms of interest rates. Inflation also makes funds more expen-
sive. If the inflation is high, the funds may be not accessible. Short term funds
(money borrowed for short time) are usually cheaper than long term funds (money
borrowed for long time). Short term interest rates more or less reflect the actual
state of the economy while long term interest rates reflect expectations, rational
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or less rational. Situation is more complicated, however, see the concept of yield
curves next in this part. Denote r the rate of interest comprising all the factors
mentioned above. In this context, r is also called cost of capital.

2.3.1 Remark (Taxation)

Almost all incomes coming from investment are subject to taxes. The few exemp-
tions are returns on some government or municipal bonds, e.g. Thus the taxation
reduces the returns. Moreover, the taxes are often different for various types of
investment and sometimes are progressive, i.e., the higher the return, the higher
the taxes. Thus any investment should be carefully valued with respect to tax
consideration.

2.4 Decomposition of the Interest Rate

Taking into account all the factors which affect the so called quoted or nominal
interest rate r, we can write

(7) L+7=(1+70)(1+rina) (1 + rgefaure) (1 + Tiiquid) (1 + Tmat)

where rq denotes the risk free interest rate if we do not consider inflation, g
(inflation premium) is the expected rate of inflation, rqefauis (default risk premium)
is the premium charged for the default risk, that is the risk that the debtor will
not pay either principal or interest or both. Sometimes it is called credit risk. The
term riiquid (liquidity premium) stands for the risk that an asset in question is
not readily convertible into cash without considerable cost. Finally, rmat (maturity
risk premium) is the premium for the risk produced by possible changes of interest
rates during the life of an asset. There are two types of the maturity risk. Consider
bonds, e.g. For long-term bonds, it is the interest rate risk; if the market interest
rate rises, the prices of bonds go down. This kind of premium rises when the interest
rates are more volatile. For short-term bonds, it is the reinvestment rate risk; if
these bills become due and the actual interest rates are low, the reinvestment will
result in interest income loss.
Sometimes the decomposition is given in additive form (see [25], e.g.)

(8) T = 79 + Tinfl + Tdefauls + Tliquid + Tmat

which is a good approximation of (7) if the components of r are sufficiently small
since the cross-factors of type roring are small of twice higher order than the original
components.

In real world, there is practically no riskless investment. For simplicity, however,
the government bonds are usually considered riskless. In this case, the offered
return also includes the expected rate of inflation, so that the risk free rate with a
premium for expected inflation is

(9) (1 +7ro)(1 + rina) — 1.

In what follows, without further notice we will consider the riskless rate with the
inflation premium.
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It is also necessary to note that the above decomposition depends on the time
period involved. So if we consider the one-year quoted interest rate, the corre-
sponding expected inflation is a one-year inflation, and the risk free-rate is derived
from one-year T-bills rates and the maturity risk premium has a negligible influ-
ence on the nominal rate in a stable economy. For a ten-years’ quoted interest
rate we should take ten-years yields of the government bonds for the riskless rate
and carefully consider the other factors affecting the nominal interest rate; default,
liquidity, and maturity premium in this case.

2.4.1 Remark (Rating)

Useful guides to credit risk evaluation for corporate bonds are conducted by
recognized agencies like Standard and Poor’s and Moody’s. Based on an analysis of
the firms they provide a classification into rating categories. According to Standard
and Poor’s, AAA is the highest rating reflecting extremely strong capacity to pay
interest and to repay principal, AA means very strong capacity, A may be effected
by economic conditions, etc. Further categories are BBB, BB, B, CCC, CC, C,
D. Categories below BBB are sometimes considered as speculative or junk bonds.
Refinement may be made by adding + or — signs. Similar categories provided by
Moody’s are Aaa, Aa, A, Baa, Ba, B, Caa, Ca, C, D.

2.4.2 Example. In January 1991 the quoted interest rates for U.S. T-bonds,
AAA, AA, and A were 8.0, 8.9, 9.1, and 94 per cent, respectively. See [25], p.
109. All these bonds had similar maturity, liquidity, and other features. So the
only difference is in the default risk premium. Using formula 7gefauls = ﬁ% -1
for the default premium risk we get rdefauis(AA4A) = 0.83, Tdetau1t (4A) = 1.02, and

Tdefault (4) = 1.30, respectively.

2.4.3 Real Return

If r is the nominal rate of interest on deposits and ring is the rate of inflation,
then the real return on deposits is sometimes expressed in terms of the real rate of
interest rres1 Which can be calculated from the obvious relation

14r= (1 + ’r"mﬂ)(l + "'real)

or

T — Tinfl

1 = .
( 0) Treal 1+ riog

For small values of the components appearing in the last formula, we can use the
approximation Trea = r — Tin. Moreover, let ry,, be the tax rate imposed on the
earned interest from deposits. Then we get

(11) 1+ 7'(1 - Ttax) = (]- + "'inﬂ)(l + rreal)

for the real return.
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2.4.4 Example. In the Czech Republic, year 1997, the inflation rate was 0.10
(official source), r could have been taken as (.11 (an over-optimistic value at some
banks), and tax on the return on deposits was 0.15 (by law). Then we obtain the
negative real return —0.6 per cent. In April 2001, the yearly inflation has been
estimated as 4.1 per cent and one year term deposits net yield was about 3 per
cent. So again we get the negative real return at about —1.1 per cent.

2.4.5 Exercise. Derive the corresponding relation for the real percentage increase
in purchasing power if the percentage increase in salaries is r, the inflation rate is
Tinfl, and Tyax 1S the tax rate.

2.4.6 Example. Let us consider two investments, A and B, say, with gross re-
turns r4 and rg, subject to taxes ¢4 and ¢pg, respectively. The two investments
provide the same net yield if

ra(l—i4) =rp(l—ip)
holds.
2.5 Term Structure of Interest Rates

All the interest rates in this Section relate to the equal time periods. Suppose
¢ Ry, is the actual rate of interest at time ¢ on an n-period investment called spot

interest rate and i1.171¢, t+271t, -+ - » t+n—171¢ are the one-period interest rates on
an investment beginning at times ¢+ 1, ¢t + 2, ..., t +n — 1, respectively, called
forward rates for one period implied in the term structure at time t. At time t we
know spot rates ;Ri, ¢Ra, ..., :+Rn. Obviously, we can put ¢r1: = ;K. We have
k-1
(12) 1 +:Re)f = Q+.R) [[A+e4me),  k=1,...,n
Jj=1

From this formula we can simply obtain the forward rates

(L +¢Rjqa)7*
(1 +:R;)7

The one-period forward rates may simply span any desired length of time. Thus,

j-period forward rate beginning at time t + k implied in the term structure at time
tis

(13) 1+ ggjris = ji=1,...,n.

i\ /3
_ 1+ tRk_H')k'H !
(14) kT = ( (1 + tRk)k =

Due to the liquidity premium the relations between spot and forward rates are rarely
fulfilled exactly in practise. Instead of ¢4r1: We should consider ¢xr1: + t+rxL1t
where the L’s are the liquidity premiums embodied in the forward rates. Usually
the liquidity premiums are increasing:

0<ir1lis <o <iyn-1l1e.
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2.6 Continuous Compounding

In theory, continuous compounding plays a crucial role. The idea of continuous
compounding comes from the usual concept of compounding for the number of
compounding periods approaching to infinity. In this case, we consider the nominal
interest rate 4(°®) =: § (4 called the force of interest or often interest rate in the
continuous financial mathematics) per unit time so that the future value FV of the
initial investment PV (at time ¢ = 0) after time T becomes

:(c0) Tm
(15) FVr =PV lim (1 + %) = PVe'T,

m-—>00

In other words, the future value grows exponentially with time according to

1 9FVy OWmFVp _

(16) PV oT - oT

d.

This formula is often presented in the form

dFVr

(17) e

= 4dT.

If the investment is taken at time t instead of ¢t = 0 (usually ¢ < T), and is
represented by the present value PV; then

(18) FVp = PV, 5T,

So far, we have considered the force of interest to be a constant. But, the above
formulation allows us to simply extend it to the case of variable force of interest
d¢ depending on time t. The accumulation factor then becomes ftT d5ds instead of
§(T —t) and the future value at time T of the unit investment at time ¢ therefore
is

(19) FVp = PV, el 8ds,

Analogously, the expression of the present value in terms of the future value and
the time dependent force of interest reads:

(20) PV, = FVpe~ Ji' 8:ds,
The function
(21) o(t,T) = e~ Ji O+

is called discount function and for ¢t = 0 it is abbreviated to v(T") so that v(T) =
v(0,T).
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2.6.1 Example (Stoodley’s Formula). A flexible model has been suggested
by Stoodley. In spite of the fact that this model is mainly of theoretical interest,
it is useful for giving a sight of a possible behavior of the time development of the
interest rate. The Stoodley’s formula says that

22 = —_—
(22) 8 p+1+rse“

where p, 7, and s are properly chosen or estimated parameters.

2.6.2 Exercise. Study the behavior of the force of interest following the Stood-
ley’s formula dependent on the parameters appearing in the formula.

2.6.3 Example (Discount Function of the Stoodley’s Force of Inter-
est) . The calculation needs some algebra. Write ¢ instead of 7 in the formula for
v(T). Then

@ w=en{- [ (bt 1) ) =
ol [ o)

exp{—(p+ s)t +In(1 +re®?)|i} =

t
l+re® 1 et ¢ T o—pt
147 1+7r 1+7r

exp{—(p + s)t}

If we put vy := e~ (P+9) 4y 1= 7P, we get

L

(24) v(t) = 155

t L.
v] + 3.
Vo142

From this formula it follows that the discount function can be expressed as the
weighted average of the present values with constant interest rates.
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1.3 MEASURES OF CASH FLOWS

present value, future value, annuities, equation of value, internal rate of return,
duration, convexity, investment projects, payback method, yield curves

Consider first the sums (payments) CFy,...,CFr related to the equally spaced
time instants 0,..., T. The interest rate for one period ¢ will alternatively mean
the cost of capital, the opportunity cost rate, i.e., the rate of return that can be
earned on an alternative investment. Sometimes it is called valuation interest rate.
The formulas below are formally valid for ¢ > —1 but the case ¢ > 0 is the only
realistic one. The vector CF = (CFy,...,CFr)' represents a cash flow. Values
CF; > 0 are inflows (amounts received) and CF; < 0 are outflows (amounts paid,
deposits, costs, etc.) Define the discount factor v corresponding to the interest rate
iby v := 1/(1 + %), the discount by d = 1 — v, and the force of interest & by the
relation € = 1 +i ord = In(1 +4). Beware of the fact that here symbol d is
different from the same symbol d used from notational reasons in Part III where d
will mean the discount function, or more generally the discount process. Summary
of the notation:

=145 d=In(l+1)

3.1 Present Value

One of the most important characteristics of a cash flow CF is its present value,
PV, also called net present value, NPV. “Net” means that inflows and outflows at
the same time ¢ are added together and thus represented by a single number CF;.
If needed, the dependence of PV on CF and either %, v, or § will be stressed:

T
(1) PV(CF,i):= PV(CF,v) := PV(CF,8) =Y (10+F2)
| t=0
T
ZCFt'ut = ZCFte—'St.
=0 t=0

Note that the present value is expressed in currency units like USD or CZK.

Let LT*! be the linear vector space of cash flows, i.e., the space of finite sequences
of maximum length T" + 1. If the actual length of a cash flow is less than T + 1,
we complete it by zeros. The present value is a linear function on LT+ in the
following sense: if a, B € R, CF4, CFp € LT*+! then

(2) PV(aCFy4 + BCFg,i) = aPV(CF4,i) + BPV(CFg,i).

Let us consider the payments CFp,...,CFr at equally spaced time instants
0,..., 7, again, but with different interest rates in the compounding periods
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i := (i1,...,97) where 4; is the interest rate applied in the period (¢t — 1,t),
t=1,...,T. Then the present value of the given cash flow is
CF CFr L CF,
3) PV(CF,i)=CFy+ —— +-- : = t
@) PYER) =Chot+ T+ 4 oy v & [T 1 6)

where H?=1 := 1, by definition.
Finally, let us assume that the payments CF,,...,CF;, take place in some

general time instants 0 < ¢; < -+ < ¢t and the corresponding discount factor is v.
Then

4) PV(CF,v) = CF,v" +...CF;v'T.
T

This formula may be generalized to the case of an arbitrary starting (or valuating)
date tp. The present value related to this date is then

(5) PV(CF,v) = CF,,v*% 4 ... CF,,v'm "

One must be careful with proper interpretation of time in this case, however.

3.1.1 Example. Consider the calendar convention Actual/360 and a cash flow
CF,,...,CF;,. where the ¢;’s now represent dates, the compounding is annual with
the discount factor v = 1/(1 + 1) and the starting date is 9. Let d(t;,tx) denote
the number of days between the dates ¢;, ¢x. Then

(6) PV(CF,v) = CF‘tlvd(t"t°)/36° e CFtTvd(tT’t°)/360.

With daily compounding with the interest rate i(3%®) =4 p.a., the formula for the
present value reads

CF, CF,,

;(360)y
(7) PV(CF’Z ) - 1+ 4(360) 360 d(t1,to) + + 1+ i(360) 360 d(te,te) "
( /360) ( /360)

A cash flow often represents an investment opportunity. The dependence of the
net present value of such a cash flow is of vital importance for investment decision
making. For the first insight, the graphical representation of the dependence of the
present value on the cost of capital (valuation interest rate) is of interest.

3.1.2 Example. Let us consider the cash flow from 1.4.1

(90000, -15200, 45000, 60000, 25000, 22000, 270000)
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at times t =0, ... ,6(= T). The PV of this cash flow in dependence on the interest
rate ¢ is plotted in Figure 3. Such a type of graph is called the present value profile.

60000
40000
20000

0.05 0.1 0.15 ﬁ\e“£-ﬁf;?5
-20000

Figure 3: Present value of cash flow

3.1.3 Continuous Case

Speaking of interest rates, we were speaking of present values and future values
with constant present values (investments) and a continuously varying force of
interest. Here we deal with the case when even the respective cash flow changes
continuously. For the sake of simplicity let us suppose that the starting point of
time is set to 0 and the time at which the cash flow comes (received or paid, inflows
oroutflows) is t. Let us denote the cash flow coming for the period (0,%) as CF(%).
It means that the net income for the corresponding period will be CF'(¢), either with
plus or minus sign. So the total payment made between (¢1,t3) is CF(t3) — CF(t1).
Suppose that CF is differentiable so that the derivative cf(t) = CF'(t) exists.
Then the increment in income may be expressed as

to

(®) CF(ts) — CF(ty) = / cf (s)ds.

t1

Now we have to consider the time value of money. Between the time instants t, t+dz,
dt being small enough, the total income is approximately cf(t) - dt. Therefore, the
present value of money received during the time interval ¢,¢ + dt is v(¢t)ef (¢)dt. So
the present value of the cash flow over the whole period (¢1,%2) is

©) PV(CE,t1,ty) = / * w)ef ().

i1

3.2 Annuities

Consider a series of 7 payments, each of amount 1 at times 1,...,7. Such a
stream of payments is called annuity immediate (with payments at the end of the
period). The present value of this cash flow for ¢ > 0 is

1-07 1-(@+49)77T
1 - ceeg T = =
(10) api=v+-- v : ;
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and often it is also called the Present Value Interest Factor of an Annuity abbre-
viated as PVIFA;r. For i = 0 we have a7 = T. Sometimes the interest rate is
attached to symbol a: az; or azi%-

Consider again a series of T payments, each of amount 1 but now at times
0,...,T —1. Such a stream of payments is called annuity due (with payments at
the beginning of the period). The present value of this cash flow for ¢ > 0 is

T W1 — N
(11) .C'I.T‘[=1+'U+"'+UT—1:1 Y =(1+z)( _(I_H) ).
1—v i
Clearly, 7 = T for ¢ = 0. Further,
(12) d = (1 + i)ag, = 1+ arq for T > 2.

For an infinite stream of constant payments of amount 1, the annuity is called
perpetuity and if it is immediate or due, its present value is

1 .. 144
(13) O = 7 or Oz = ——>
respectively.
3.3 Future Value
Let us consider the valuation date 7, a cash flow CFy,...,CFr, and the above

interest rate characteristics %, v, §. Then the future value is

(14) FV(CF,i) :=CFr +CFr_1(1+4) + CFr_s(1+4)? +--- + CR,(1+ )T =

T
> CR@1+i)T,

t=0
alternatively

T T
(15) FV(CF,v) =Y CFu""T, FV(CF,0)=) CF "™,
t=0

=0
Obviously, FV(CF,i) = (1 + )T PV(CF,) in this case.
In the case of varying interest rates we have
FV(CF,i)=CFr+CFr_1(1+ir) + CFr_2(1 +ir)(1 +ir—1) + -+
CFR(1+ir)(1+ip-1)-...-(1+141)

or
T T

(16) FV(CF,i)=Y CF, J] (1 +ij)
t=0 j=t+1

with [Ty, = 1.

In case of general time instants (see (4)) and a constant interest rate i we imme-
diately get the obvious relationship

(17) FV(CF,i) = (1+1)'" PV(CF,i).
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3.3.1 Exercise. Modify the last result to the case of the calendar convention
Actual/365.

Let us turn to the annuity immediate of an amount 1 and ¢ > 0. The future
value of this annuity is

(18) sm=1+00+d)+ - +{1+)T =

1+9)7T -1
Li%———=u+nﬂm.

Analogously, for an annuity due, the future value is

_ (49T -1

y = (1+i)Tap.

(19) 87

Both s7 and &7 are equal to 7 for 7 = 0.

3.3.2 Exercise. Verify the following relations:

(20) 6?] = (1 + i)Sﬂ ST = 1+ 877
3.3.3 Remark

Other useful and frequently used relations:

(21) |l=dap+vT l=dim+v? Q+)T =isp+1 Q+)T =dim+1

3.3.4 Exercise. Verify and give the interpretation of the preceeding formulas.
(Hint: the first formula may be explained as the present value of a loan of amount
1 over the period 0,1,..., 7).

3.3.5 Remark

If the regular payments are all equal to PMT (abbreviation for PayMenT), then
the corresponding present and future values are simply multiples by PMT of the
corresponding a’s and s’s.

3.3.6 Remark (Equation of Value)

Due to technical and accounting reasons, the strict convention on the signs (in-
flows plus, outflows minus) leads to the following relations between the five variables
involved, i.e., the present value PV, the future value FV, the interest rate ¢, the
annuity PMT, and the number of periods T

Annuity of amount PMT immediate.

FVv

22 p PMT -— =
(22) V+ aﬂ+(1+i)T
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Annuity of amount PMT due.

%
2 V+PMTa R S—
(23) P + aTl+(1+i)T 0
In the introductory courses, such a type of formulas is known as the equation of
value. This approach is often used on financial calculators or in spread sheets. The
user should carefully input the data with proper plus or minus signs for inflows and

outflows, respectively.

3.3.7 Example (Installment Savings). Consider the investment of CZK 5000
in installment savings for 3 years at 3.6 per cent p.a., compounded monthly, so that
(12} = 0.036. What will be the total of principal and interest at the end? Reason-
ably, installment savings represent an annuity due (payments at the beginning of
the period) so that the equation of value (23) applies with PV = 0, PMT = —5000,
i = i(12)/12 = 0.003, T' = 36. We have 35 = 38.069 so that FV = 190349. Com-
pare this result with the case of 3 installment savings CZK 60000 at the beginning
of every year with yearly compounding at the interest rate ¢ = 3.6 per cent p.a.
This results in the total savings F'V = 193273. Give an explanation as an exercise.

3.3.8 Example and Exercise (Loans). Suppose you are able to repay CZK
5000 monthly for a 3 years’ loan at §(!2) = 7.2 per cent p.a., compounded monthly.
The question is, how much you can borrow under these conditions. Reasonably, the
payments represent an annuity immediate (payments at the end of period) so that
(22) applies to loan borrowing power PV =?, PMT = —5000, i = i(!?) /12 = 0.006,
FV =0, T = 36. Since azg = 32.29, you can borrow PV = 161454. In case you are
able to pay CZK 60000 at the end of each year at the same interest but compounded
yearly, you will obtain from (22) with PMT = —-60000, ¢ = 0.072, T = 3 that your
loan borrowing power will decrease to PV = 156885. As an exercise, calculate
PV under the same conditions if your balance (= remaining debt) is compounded
monthly.

3.4 Internal Rate of Return (IRR)

In a simple Example 3.1.2 we have seen that depending on the interest rate
the present value of a cash flow takes either positive or negative values. So the
critical point is the value of the interest rate that equates the present value to zero.
Consequently, we are motivated to define an internal rate of return (shortly IRR)
as a solution to the equation

(24) PV(CF,IRR) = Z‘(H TREY = 0.

In other words, IRR is defined as the interest rate (or the cost of capital) which
equates the present value of inflows (incomes) to the present value of outflows
(costs):

CF,
(25) 2 (1+IRR)‘ P> (1+Ilt2R)t'

t:CF>0 t:CF; <0
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The equivalent problem is to find a discount factor v such that

T
(26) PV(CF,v) =Y CFrv' =0.

t=0

If CFr # 0 then the last equation is an algebraic equation of degree 7" and hence it
has T roots. Therefore, by the above definition, we have T internal rates of return.
All the solutions can be easily obtained by standard numerical methods. Only real
roots greater than —1 may have an economic meaning, however. Some authors
define IRR as a positive solution to (24). But it can be simply demonstrated that
some (rather strange) cash flows possess only positive /RR’s with difficult economic
interpretation. The cash flow (—1000, 3600, 4310, 1716) has IRR’s 0.1, 0.2, 0.3, e.g.
Nevertheless for ”well-behaved” cash flows we have the following theorem:

3.4.1 Theorem. Let A;j=Y3_ CF,j=0,1...,T, Ay #0, Ar # 0. Suppose
that in the sequence Ag, ..., Ar with zeros excluded the sign changes just once.
Then there is exactly one positive IRR.

Proof. We have the equation

T
E CFe % =0

t=0
with €4 = 14+ 4. Since CF; = A; — A;_y, (A_; := 0), the equation reads
T
(27) Ag+ Y (Ar— A1) =0.
t=1

Further,

T T T
Z(At - At_l)e_at = ZA,:G—M - ZAt_le—ét =
t=1 t=1 t=1

T T-1 T T-1
ZAte-Jt _ Z Ate—é(t+1) — ZAte—dt _ 6—6 Z Ate—ét -
t=1 t=0 t=1 t=0

T-1
(1-e%) Z Ase % 4+ Are™®T — 7% 4.
t=1
Thus (27) may be written as
T—-1
(28) (1-e)> Ae™ + Are™®T =0.

t=0
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Without loss of generality suppose that A > 0. Then there exists an index & such
that A; >0,t=1,...,k—=1, A, >0,4, <0,t=k+1,...T — 1, Ar < 0. Hence
(28) becomes

k T-1
(1-e%) [Z A = |At|e—“] —Arle%T =0
t=0

t=k+1

and after multiplication by e®* we get

k T-1
(1-e7%) [Z Age™00-R) _ 3" |At|e“5(t“’°)] ~ |Aple~* @B = ¢
t=0 t=k+1

or
91(6) [92(8) — g3()] — 94(d) =0,

say. All the g;’s are continuous, g1, g2 increasing, gs, g4 decreasing. Thus g =
91 [92 — g3] — g4 is continuous and increasing. Moreover,

%1_1)1% g(6)=Ar <0 61}2100 g(d) = +0

so that there is just one o > 0 such that g(d) =0 and IRR = % — 1 is the only
positive IRR. O

342 Remark and Example (Leasing). Financial leasing is an alternative
form of financing. It takes a form of an agreement between two parties, the lessee
and the leasing company called lessor. The lessee obtains the right to use a (usually
real) asset for a period of time while the ownership of that asset remains with the
lessor. At the end of the lease the ownership still remains with the lessor. But
the residual (or salvage) value is usually negligible. There are many reasons for
leasing, let us mention some of them. First, a company or an individual may not
have money available to purchase the asset. This is often the case if the asset
is too expensive like tanker or airplane. Second, there is a risk that the asset will
become obsolete. Third, in most countries there exists a tax deduction advantage to
promote investment. See [141], p. 512 for details. The following numerical example
presents an analysis of leasing a car. The SKODA car priced CZK 227900 is leased
under the following conditions: the lessee pays the sum of CZK 34185 immediately.
Then the lessee pays (i) CZK 6943 =: PM T3 monthly for 36 months or (ii) CZK
6192 =: PMTy2 monthly for 42 months. In both cases the payments are at the end
of the month and the salvage value of the car is CZK 122. The question arises, what
is the effective interest rate counted by the lessor. The /RR methodology gives the
answer. We have PV = —34185 + 227900 = 193715, annuities with the minus sign
given above, T = 36 and T = 42 months, respectively. Using a financial calculator
or a spreadsheet program, we find the respective IRR’s are IRR3¢ = 1.446 and
IRR4, = 1.449 per cent monthly, so that TRR}2 = 17.35 and TRR.3 = 17.39 per
cent p.a.
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Investment projects represented by cash flows are called normal or regular if the
payments change their sign just once, and are called nonnormal or irregular in the
opposite case.

In the above definition of /RR we have implicitly supposed that the inflows from
the project will be reinvested at the same interest rate, i.e., /RR. More often, the
inflows are reinvested at the interest rate equal to the current cost of capital k, say.
We can overcome this problem by a modification of the definition of /RR following
the principle:

(29) PV (outflows, k) = PV (FV (inflows, k}, MIRR)

where MIRR is called modified rate of return. In symbols, MIRR is defined by the
equation

1
(30) § j = § . CR(1+k)T
o (1 + k)t (1+ MIRR)T w0

It is obvious that in this case (given k) MIRR can be expressed explicitly. Also
note that for kK = IRR we have MIRR = IRR.

Another modification of IRR makes use of different interest rates for outflows
and inflows, i.e., the different costs of investment and reinvestment capital, ko and
kr, respectively. The modified rate of return MIRR (we use the same notation) is
then defined by

1
(31) Z CF,(1 + k)T
X Trior ” G, L,

MIRR can be explicitly calculated again.

Note that sometimes this idea is also used for the valuation of cash flows if
different valuation interest rates are used for outflows and inflows. Using the above
notation, the present value is expressed as

(32) PV(CF,ko,ki)= Y
t:CF, <0

1+ ko)t ko)t Z (1 + kl)t

t:CF>0

3.5 Duration

The duration is defined as the time-weighted average of the discounted payments:

Yoo tCFv' _
ZZ:O CFut PV(CF Z tCFvt.

(33) D(CF,v) =

Duration is expressed in time units. So if the payments are semiannual, for instance,
the duration is expressed in halves of year. It is also called discounted mean term
of the cash flow. We have

3PV_(C.__F v) = —ZtC’Ftv = -D(CF, v)PV (CF, v)
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and thus the duration may be expressed as

v OPV(CF,v
(34) D(CF,v) = (CF, ).
PV(CF,v) v
In economics the last expression is known as elasticity so that we may interpret
the duration as an elasticity of the net present value with respect to the discount
factor. An alternative formula for the duration expressed in terms of the interest
rate reads

__1+i_8PV(CF,i
PV(CF,i) &

(35) D(CF,i) =

From the above expressions it follows that the duration may serve either as a
measure of the sensitivity of the cash flow to the interest rate or as the duration
of the corresponding investment project. The first interpretation will become clear
if we write the first few terms of the Taylor expansion of the relative increment
of the present value of the given cash flow as a function of the interest rate; the
derivatives are taken with respect to the second argument:

PV(CF,i+ Ai) -~ PV(CF,i) _
PV (CF,i) B
PV'(CF,i) . . 1 PV"(CF,i)
PV (CF,i) 2 PV(CF,3)

(36)

(A +... =~ -T%r—iD(CF,i)Ai.

Note that duration, unlike the present value, is not a linear function of the
CF’s. To overcome this disadvantage sometimes the dollar duration is used:

T
(37) Ds(CF,v) = Y tCF'.
t=0

In literature and applications we can also meet the modified duration:
Diod(CF,v) = v - D(CF,v)
or, in terms of 1

b .____1 _0PV(CF))
wed = TPV (CF, 1) A

3.6 Convexity

A finer measure of the sensitivity of a cash flow to the interest rate is the con-
vexity:

YT t(t+ 1)CFt

38 C(CF,v
(33) (P = S
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Convexity is expressed in squared time units. If the payments are accomplished
semiannually, convexity is expressed in [year?/4], e.g. Taking into account that

" N\ 1 . .
PV"(CF,i) = aT0e C(CF,i)PV(CF,1)
we can substitute in (36) and get a more precise formula for the relative increment
of the present value in the form
PV(CF,i+ Ai) - PV(CF,i)
PV(CF,3) -

(39)

- T%D(CF,i)Ai + rl1_—2,)—20(01?, i) (Ad)?.
In literature we can find a slightly different definition of the convexity, as an ana-
logue to the modified duration:
PV"(CF,1)
PV(CF,qi)
Then the equation for the relative change of the present value may be expressed in
terms of the modified measures as
PV (CF,i+ Ai) — PV(CF,1)

PV (CF\,i)

Cmod(CF, 1) =

(40)

~ —Diod(CF, i) Ai + 1Croa(CF,1)(Ad)?.

3.7 Comparison of Investment Projects

As usual, investment projects will be represented by the corresponding expected
cash flows. Since the future cash flows are uncertain, the results of decision making
process are also uncertain. The detailed qualified analysis may reduce uncertainty,
however.

We will deal with a set of competing projects. The decision maker may accept
one or more projects and may even decide not to accept any. The projects are said
to be mutually exclusive if at most one of the involved projects can be accepted.
And they are said to be independent if an arbitrary number of the competing
projects (including none of them) can be accepted.

There are two broad classes of investment projects that often arise in practise.
In the first case, the investors use their own capital for the initial investment and
they obtain incomes generated by the initial investment in successive periods. Such
projects are characterized by negative payments in the initial period(s) and positive
ones afterwards. Call them class I projects. In the second case, the investors take
a loan at the beginning, make an investment, and then they acquire the benefits
and also should pay back the loan. Such projects are characterized by positive
payments in the initial period(s) and negative ones afterwards. Call them class Il
projects.

There is a variety of methods for decision making and we will mention only some
of the principles. All the methods start with a careful analysis of the expected
stream of payments including dividends, interest obtained or paid, salvage value of
the assets at the end of the project’s life, etc. The cost of capital (the valuation
interest rate) should take into account the riskness (uncertainty) of the project.
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3.7.1 Profitability Index

A simple indicator for a class I project CF = (CFy,CF,...,CFr) is the prof-
itability index defined by

(41) PI(CF,i) = ———PV((CFi,...,CFy),i).
Ch

This measure seems to be trivial but in fact it is, in some sense, equivalent to the
measures based on the present value profile as we will see later. Among competing
projects we select those with highest profitability indexes greater than one; we select
none of them if all PI’'s are less than one.

3.7.2 Payback Method

Another simple and rough method is the payback method applied again to class
I projects. It is based on the payback period that is the number of periods required
to recover the initial outflows. Formally, let us keep assumptions of Theorem 3.4.1.
For a class I project we have Ag < 0. Let k be the first index such that Ax > 0.
Then the payback period is defined by
Ag—1
CF,’
Here & — 1is the period just preceeding the full recovery, —Ag—1 is the uncovered
cost at the beginning of this period, and C'Fy, (obviously positive) is the payment
in the recovering period. If such a k does not exist, we set formally the payback
period to infinity. Based on the payback method, we select the project(s) with the
shortest payback period, or none of them if their payback periods all equal infinity.
A little better method based on this idea is the so called discounted payback
method. Let ¢ be a properly chosen project’s cost of capital and define Ay) =

{=0 CF;/(1+1)t. Assume again A((,i) < 0 and k the first index such that Ag) >0.

Then the discounted payback period is defined as
42,

4 PB(CF,i)=k -1 — ——7———.
(43) (CF,) CR/(T+0)F
If such a k does not exist we set formally the discounted payback period to infinity.
The decisions based on the discounted payback method are the same as in case of
the usual payback method.

(42) PB(CF)=k—-1-

3.7.2.1 Exercise and Problem. Analyze and try to prove the following con-
jecture. For a class I project of length T (Ap > 0), the discounted payback pe-
riod approaches T as the interest rate approaches the internal rate of the project,
i = IRR.

3.7.3 Methods Based on the Present Value Profile

Typically, for class 1 projects the present value is a decreasing (and often also
convex) function of the valuation interest rate i and the opposite is true for class
II projects; the present value is an increasing (and often concave) function of .
However, this is not the rule as shown in the following counterexample.
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3.7.3.1 A Counterexample

Consider an artificial cash flow CFz = (-6,-10,—-4,—8,-3,-5,18.5,18.5).
The assumptions of Theorem 3.4.1 are fulfilled. The only IRR is 0.006372. But
PV(CFgz,1) is decreasing for ¢ < 0.39 and increasing for ¢ > 0.39.

Hence the investor should take care of the individual present value profile, i.e.,
the graph of the present value in dependence on the interest rate involved.

The leading rule is simple; for a given ¢ accept the project if its present value at
this interest rate ¢ is positive:

Accept if PV(CF,i) > 0|.

For class I projects, the criterion of positive present value is equivalent to
PI(CF,i) > 1. In case of independent projects we select all the projects with
the positive present values at the given interest rate. If the projects are mutually
exclusive we select that with the highest present value. If we investigate a set of
projects which are mutually exclusive dependent on the valuation interest rate we
should select the project that is determined by the upper envelope of the present
value profiles.

For one project, the critical point is /RR. If PV is a decreasing function of ¢ then
we accept the project if the valuation interest rate is less than IRR and reject it
otherwise. Analogously, if PV is an increasing function of 4, we accept the project
if the valuation interest rate is greater than /RR. For projects which do not possess
a monotonous present value profile, we should perform a more careful analysis.

For two or more projects, the critical points are not only the /RR’s of the in-
dividual projects but also their crossover rates. A crossover rate of two projects
is such an interest rate for which the present values of the two projects are equal.
Formally, let us consider two projects CF4 and CFg. The crossover rate i4p is
defined as a solution to the equation

PV(CF4,isp) = PV(CFB,iaB)-

Obviously, there may be more than one solution so that we must select that one with
a reasonable economic interpretation. Since the present value is a linear function
on the space of cash flows, we see that the crossover rate ¢4p is in fact the internal
rate of return determined by the difference between the two projects, IRR4—p:

PV(CF4 — CFg,IRR4._5) = 0.

In the neighborhood of the crossover rate the investor should take care and carefully
study also the sensitivity of the present value profiles with respect to the interest
rate. This is best done by looking on the duration and possibly on the convexity.
Such an analysis will be better understood from the example.

3.7.3.2 Example. Let us consider five projects:
(1) A: CF4 = (-1000, 300,500,200, 100)
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(2) B: CFg = (—1000,47,47,47,1047)

(3) C: CFo = (—851.18586, 281.0005, 170.39716, 300, 200)
(4) D: CFp = (=600, 500, —300, 400, 500, 600)

(5) E: CFg = (1200, —400, —300, —200, —400).

Projects A, B, C, D are class I projects while E is a class II project. CFg represents
the cash flow of a four years coupon bond purchased for the par value 1000 giving
the holder yearly coupons of 47 with redemption value 1000. The present value
profiles of these projects are shown in Figure 4. Visually the present value profiles
of the projects A and C coincide. The payback periods for the first four projects
are

PB(CF4) =3.00 PB(CFp) =382 PB(CF;)=350 PB(CFp)=483

and the discounted payback periods for two selected interest rates (; = 0.02,
¢ = 0.04) are: PB(CF4,0.02) = 3.40, PB(CFg,0.02) = 3.89, PB(CF,0.02) =
3.70, PB(CFp,0.02) = 4.99 and PB(CF4,0.04) = 3.84, PB(CFp,0.04) = 3.97,
PB(CF¢,0.04) = 3.92, PB(CFp,0.04) = +o00o. In case of independent projects,
based on the discounted payback method we accept projects A, B, C, D ifi =0 or
¢ = 0.02. For ¢ = 0.04 we accept A, B, C and reject D. If the projects are mutually
exclusive, we accept only A for all three values of 3.

Projects A,C

150 . Project B

S~ | me=-- Project D

100 .
Project E

50t

-50¢ - S~

=100 =

-150¢ S~

Figure 4: Present values of 5 projects

The present value is a decreasing function of ¢ for projects A, B, C, D, and an
increasing function for project E. Thus the acceptance region depends on the cor-
responding /RR’s:

IRR4 = 0.0471 IRRp = 0.0470 IRRc = 0.0472 IRRp = 0.0208 IRRg = 0.0333.
Consider first the case of independent projects. We accept A, B, C, D for

i < 0.021(= IRRp). For 0.021 < ¢ < 0.033(= IRRg) we accept A, B, C. For
0.033 < ¢ < 0.047 (approximately) we accept A, B, C, E; and we accept only E for
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1> 0.047.
Difference of PV’s Difference of durations Difference of convexities
0.12 27.5
0.1 0.1 25
0.08
0.01__ 0. 0.03 22.5
00§ -0.1 20

o P
i -0.3 ” 0.02 0.03
t 12‘5[_/'”n

0.01 0.02 0.03

Figure 5: Characteristics of A and C

Second, consider mutually independent projects A, C, E only. Since the projects
A and C have almost identical present value profiles, we must look first at the
difference of their present values. In Figure 5 we have plots of PV(CFg¢,i) —
PV (CFa,t), D(CFg,i) — D(CF4,i), and C(CF¢,i) — C(CF4,i). We see that
PV(CFg,i) > PV(CFjy4,i) and that the difference is negligible. We also have
PV (CF4,0.02) = PV(CF¢,0.02) and D(CF4,0.02) = D(CF¢,0.02). Since the
convexities fulfil the inequality C(CF¢,i) > C(CFa,i) we can decide in favor of
project C against A. Further, the crossover rate for projects C and Eis IRRc_g =
0.0391. Thus to summarize, for ¢ < 0.0391, we accept C and for ¢ > 0.0391 we
accept E, among the candidates A, C, E. If we consider all the five projects, then
we obviously select B for ¢ < IRRp_g = 0.041 and E for greater values of 4.

3.7.4 Internal Value

Suppose that the cash flow in question depends also on another variable or
parameter y say, CF = CF(y). For decision making, an important measure is the
value of y = y(¢) such that the present value for a given interest rate ¢ is zero.
Call this value the internal value of the cash flow and denote it by HIV. (HIV has
been introduced in [83] but we admit that such a simple indicator might have been
known before.) Mathematically, HIV is defined implicitly by the relation

T .
(44) Z@M=O‘

(1 +4)

t=0

Often, the dependence of the present value on y is simple, for instance linear or
quadratic. Hence, for a fixed interest rate, the analysis of the present value profile
becomes more simple. Application of HIV is many-sided. Particularly, HIV is
useful in valuation of all transactions where the foreign exchange rate appears, like
currency swaps. In this case y = F'X, the foreign exchange rate. The HIV can also
be employed for the risk analysis of loans payable in foreign currencies or cash flows
dependent on interest rates like LIBOR, etc. If more than one variable influence
the cash flow involved, the above definition is still of use. The analysis is more
complex in this case, however. Also a two-dimensional analysis if both the interest
rate ¢ and yvary is a rather complex task and needs a further research and analysis
of particular situations.
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3.8 Yield Curves

Generally, a yield curve plots interest rates paid on interest bearing securities
against the time to maturity. Such a plot makes sense only for a class of comparable
securities. Thus we may plot yield curves for government zero coupon bonds for
maturities 1, 3, 6, 9, 12 months getting a completely different picture for AA rated
firm’s bonds for same maturities. Thus we should take into account the risk factors
(cf. decomposition of interest rate) and also comparable taxation conditions.

Even for the same type of securities (like T-bills), the shape of the yield curve
differs in time, i.e., the shape is different in years 2000 and 2001, say, ceteris paribus.
This feature may be explained by many factors, like the change in spot riskless rate,
inflation, and other exogenous factors. Another important feature is the internal
need of the issuer for short, medium, or long financial funds.

Another problem arising with a yield curves’ presentation is that the yields may
be either declared or actually observed on the market. Here, by declared yields we
mean the promised coupon rates for usual fixed coupon bonds while the actually
observed yields are derived from the spot market price of the respective security,
see 1.4 for the calculation.

There is an obvious connection between the yield curve and the term structure of
interest rates (cf. 2.5); for a given type of security (or a group of similar securities)
with different maturities and for a given particular date ¢, the yield curve is the
plot of the spot rates R, » = 1,2,.... The difference R, — +R; is called yield
spread. Sometimes the forward-rate curve calculated from (2.5.13) is plotted.

A typical shape of the yield curve is upward-sloping, which simply means that
the corresponding function is increasing and often concave. Such a yield curve is
called normal yield curve. On the contrary, the yield curve which is downward-
sloping (decreasing and often convex) is called inverted yield curve. Another shape
often arising in practise is a humped curve; the yield curve increases at first and
then decreases for longer maturities. Rarely we can meet a flat, i.e., constant yield
curve or U-shaped curves. However, rather strange images, different from the above
mentioned, can be met with in practise.

The shape and magnitude of the yield curve depend on many factors. Most
important are the risk factors, the liquidity preference, and the expected inflation.
Increasing risk factors (mainly default risk) cause approximately parallel upper
shift of the yield curve. The higher the liquidity preference, the higher the liquidity
premium for lending for longer time periods. With increasing expected inflation in
future periods the longer-term rates become higher and vice versa. See 2.3 and 2.4
for explanation.

For financial decision making and also for analysis we often need yields for ma-
turities which are not available on the market. Thus we must construct them from
existing market data. To this purpose one may use purely numerical approaches
like linear interpolation, e.g. Another recommended approach is based on regres-
sion models. Suppose that we have N comparable fixed or zero coupon bonds 1,
... ,N with maturities T, ... ,T and observed yields y1, ... ,yn, respectively. The
postulated parametric regression model is (see [55], e.g.)

(45) Un=9(Tn;0) +e,, n=1,...,N,
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where the hypothetical yield curve g of a known analytical form depends on an
unknown vector parameter & which is to be estimated, and €, are disturbances
with zero means. The estimate @ of @ is obtained as an argument of

N
i - -
(46) min Y |y = 9(Tn; 0)|

n=1

for a properly chosen v (y = 2 for the least squares method and 4 = 1 for the
absolute deviation criterion, e.g.). There is also a variety of possible choices for
the analytical form of g. Having the estimate 5, we may estimate the yield for a
nonobserved maturity T # T, n=1,...,N as

(47) gr = g(T;6).

One of the simplest forms of g is a polynomial function of a small degree K

K
(48) 9(t;0) = 6xt*

k=0

which leads to a polynomial regression. For K = 3 the corresponding function is a
cubic function and 4 parameters are to be estimated. Due to bad experience with
polynomial regression, other types of g are recommended.

One of the successful and recently frequently used models is the model of cubic
splines. Assuming 11 < Ty < --- < Ty, we consider functions g such that (i) gis a
piecewise cubic function, i.e., g equals

(49) gn(t) = ap + But + Yut® + 05t fort € [Tho1,Ty], n=2,...,N,

(ii) g is twice continuously differentiable everywhere; this is (together with (i))
equivalent to

gn(Tn) = gn—l(Tn)a g;;(Tn) = g;z—l(Tn)a gZ(Tn) = g;:—l(Tn); n=2,...,N.

We then choose the function § from this class that minimizes a combination of the
residual sum of squares and the integrated squared 2nd derivative of g:

= argmln { Z(yn - 9(T)* + A/ 9" (t))*dt}

with a smoothing constant A > 0. The resulting g represents a compromise between
fit of data and smoothness of the fitting curve. Values of the smoothing constant A
cover ordinary least squares fitting by a straight line (A — co) as one extreme, and
pure numerical interpolation by a piecewise cubic functions (A = 0) as the other
one. Details of the method together with an algorithm can be found in [150].

Another flexible model has been treated by Bradley and Crane in [24] (see also
Example 11.5.4.4):

(50) 9(t;a,8,7) = atPe.
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This model should be taken with care, however, because with wide range of observed
maturities severe discrepancies may appear, see the Example below and Figure 8
in I1.6. After the logarithmic transform and the reparametrization a* the last
equation becomes

(51) Ing(t;a*,8,y) =a" + Blnt+ 4t

which is linear in parameters and these may be simply estimated by ordinary least
squares method.

Two alternative techniques of modeling the term structure of a coupon bond will
be discussed in 4.1.3.

3.8.1 Example. Consider declared interest rates for term deposits of the Czech
saving company as in February 1999:

Maturity (in days) 7 14 30 60 90 120 150 180 210 240 270 290
Interest rate (p.a.) 54 54 6.2 6.1 6.1 6.00 6.00 59 59 59 59 58

The yield curve is humped. Let us make a comparison of three estimating pro-
cedures: (i) fitting by a cubic function, (ii) fitting by cubic splines, (iii) fitting by
(50). For (i), (iii) there are no alternatives while in case (ii), we have experimentally
chosen the smoothing constant as to get the best fit from the optical point of view.
The estimated curves along with the original rates are plotted in Figure 6. We see
that for such a pattern it is difficult to fit the data satisfactorily by simple analytic
models. Particularly, fitting by the cubic function may lead to a dangerous conclu-
sion, i.e., that for longer maturities the yield curve rises again. This is not the only
exception. Another example (not presented here) shows that even the polynomial
interpolation of a very nice smooth yield curve observed at discrete times (years)
1, ... ,30, resembling a parabola, by a polynomial of the degree 29 reveals unrealis-
tic values for some points within the intervals. We strongly recommend not to use
the polynomial fitting procedure.

Figure 6: Fitting the yield curve
original rates (broken line) cubic splines (- - - -)
cubic function {- - -) Bradley-Crane (— — —)
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I.4 RETURN, EXPECTED RETURN, AND RISK

return, rate of return, random walk hypothesis, Black-Scholes model, risk, para-
metric value at risk (VaR), nonparametric VaR

Warning

Some symbols used in the following text are very popular both in financial and
financial mathematics literature, unfortunately with a different meaning. Particu-
larly, symbols 7 or R may serve as typical representatives. Sometimes R or r means
a return, sometimes the rate of return, sometimes the expected rate ofreturn, some-
times the interest rate, etc. Also, there is an ambiguity in distinguishing between
a random variable and the expected value of it. In financial literature, a random
variable is often stressed by the wave, like X, and the expected value is simply X,
while in mathematics X is reserved for a random variable and EX stands for its
expected value. The reader is politely asked to pay attention what the respective
symbols mean.

4.1 Return

The concept of return should be considered in a dynamic setup; by refurn of a
financial asset we mean the difference between the wealth (in monetary units) at
the end and the beginning of the period under consideration. Consequently, this
leads to the following definition of the rate of return ROR, say:

wealth at the end of the period — wealth at the beginning of the period

ROR = wealth at the beginning of the period

Suppose that the (market) price of the underlying asset (security) at time ¢ is P;.
Following the above idea, we may simply define the rate of return as

BB
(1) R, = R

As in the case of interest rate, we will alternatively use a percentage or a decimal
form of the rate of return; R; = 0.1 and R; = 10% mean the same. Taking into
account the accumulation (multiplicative) effect and an analogy with the force of
interest, we can define another measure r; as a rate of return by

2) 1+ R = Plt_:t'l =: exp(r}),
that is,
* Pt-l'l
(3) Ty = ln(l + Rt) =In P, =InPy —InF = py1 — py,

by definition. Note that p;’s as defined above are often called logarithmic prices.
For small values of the rate of return, r} does not differ from R; too much. By
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Taylor expansion, In(1 + R;) = Ry — RZ/2 + ..., so that the difference is of order
O(R2?). Thus, for Ry = 0.05 we have 7} = 0.04879, e.g. For higher values of R; the
difference increases. The rate of return RT for the time horizon 7 is then defined
by the relation

T T p
4 1+RT=H(1+Rt)=exp (er) =FZ-.

t=1 t=1

In case of securities, let us denote by R; the rate of return for the period t, P;
the (market) price of the respective security at the end of period ¢, and Dy the
dividend paid for the time interval [¢, + 1]. Then

_ P+ D —PB _ D + Py, - P

(5) Be 2 =7, 2

The first part of the rate of return, Dyt1/P;, represents the so called dividend
yield, or in case of coupon bonds, coupon yield, while the second part, (Pt —
PB,)/ P, represents the capital yield. Note that the dividend is usually paid rarely
in comparison with the time period considered, once, or twice a year, say. For
a correct expression of the rate of return we should incorporate the corresponding
part of the dividend into the formula (1). If we consider the time period of one week
with the yearly paid dividend D, we substitute Dy := D/52, e.g. In the theory,
we must also distinguish between expected returns (ex ante) based on subjective
probabilities and returns coming from historical data (ex post).

For an asset paying no dividends the rate of return becomes

=Pt+1"Pt =Pt+1 1

(6) Ry 2 P,

4.1.1 Random Walk Hypothesis

Under the random walk hypothesis the logarithmic prices follow the model
(7) Per1 — Pt = p+er, t=0,1,...

where &;’s are either uncorrelated (weak form) or independent (strong form) iden-
tically distributed random variables (shortly iid for the latter case) with Ee; = 0
and vare; = o2, and p represents a drift or trend. Next we will suppose that the
e¢’s are iid. It follows that the r}’s are iid random variables under the random walk
hypothesis. Since for T' € N

T

pT=po+,uT+Zst
t=1

we have E pr = pp + 4T and varpr = 02T In the stationary case p = 0 there are
only random fluctuations about the initial logarithmic price pp. For the original
prices P;’s we have

Py = Pebtesn
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or

T
Pr = Pyexp ([J,T + Zst> .

t=1

The ratios Py/Py, Py/Py, ... ,Pr/Pr_; are therefore iid random variables. Also
the returns Ry, ... ,Rp are iid under the above assumptions. The case of normally
distributed €’s will be treated in the next Section.

Sometimes it is supposed that the original price process is driven by

Py —FPo=p+eq

with analogous assumptions on &¢s.

Sometimes even an unrealistic assumption is made that the P;’s are independent
identically distributed. However, the independence of P;’s does not generally guar-
antee the independence of the returns R;’s. Just look on the covariance between
two successive rates of return:

(8) cov(Ry, Ri—1) = cov(Piy1 /P, Pi/Pi—y) =
E(Pi11/Pi-1) — E(Pyy1/P)E(P;/Pi—1) =
(independence) = EP41E(1/Pi—y) — EP,WEP,E(1/P,)E(1/P;_) =
(identically distributed) = ER,E(1/P;)(1 — ERE(1/F,))

which could hardly be zero.

4.1.2 A Simple Model for Price Development

The model presented in this Section serves as a background for more compli-
cated models like Black-Scholes model for option valuation etc. We need only two
assumptions concerning an efficient market: (i) all the past history of the price
development is reflected in the present price; (ii) the response of the market on
any new piece of information is immediate. Assumption (i) resembles a Markov
property.

Let At > 0 and denote AP := Pypar — Py, P := P, for a moment, P, being a
starting price. In the model it is supposed that the return, AP/P in our case, can
be decomposed into a deterministic and a stochastic part in the following way:

(9) A—If = plt + cAW.

Here the first term pAt is the deterministic part, u is called drift or a trend coef-
ficient while the second part is a stochastic term with so called volatility, standard
error or diffusion o and AW := W (¢t + At) — W(t) standing for the increment of
a standard Wiener process. In more general models, both ¢ and ¢ may be also
functions of P and t. Recall that the Wiener process {W(t),t > 0} is a stochas-
tic process with continuous trajectories such that W(0) = 0 with probability 1,
for s, t positive the distribution of W(t) — W(s) is normal N(0,|t ~ s|), and for
any 0 < tp < #; < --- < t, < oo the random variables W (to), W (t1) — Wi(to),
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W(t,) — W(tn—1) (the increments) are independent. See Part III for more
details. Since the distribution of AW is N(0, At), (9) may be written in the form

(10) AP = uPAt + cPevVAt

where £ is an N(0, 1) random variable so that the return AP/P possesses the
normal distribution N(uAt,o2At). This formula is useful for discrete modeling
and simulation. Formally, for At — 0, we obtain the stochastic differential equation
(SDE, see Theorem 12.6, p. 223 in [93])

(11) %l; = pdt + odW.

This equation describes the so called geometrical Brownian motion, see Part III
2.2.12. We will now make use of It6 formula to characterize the development of
logarithmic prices. For f = f(P,t) the It6 formula reads (see Part 1II, Corollary
2.2.9)

0 162 a a3

(12) df = ( f P+23PJ; o?P? + a{)dHanD PdW.
Put f(P) :=InP. The first and second derivatives of f with respect to P are 1/P
and -1/ P2, respectively. After some algebra we obtain the solution to (11) for the
logarithmic prices:
(13) dlnP = (p - 10%)dt + gdW.

The discrete version of the last equation is (recall that ln P = p)
(14)  InPuyas —In P =In(Pyae/P) = perar — o = (p— 10%)At + oev/At

with e distributed as N(0, 1) again.
The solution to the SDE for the price process with given initial value Py is

(15) P, = Pyexp{(u - 1o?)t + oW (1)}
(see also 3.1.1 in Part III) so that
L(p; — po) = N(( - §0°)t,0°t)
(see 3.1.2 in Part III) and therefore
(16) L(P,/Po) = LN((n - £0*)t,0%0),
where by the symbol LN(m,s?) we mean the distribution of the random variable

exp{N(m, s?)}, the log-normal distribution with parameters m and s* which are
not its mean and variance, respectively. The density of LN (m, §?) is

—L _1(lnz~m)?2
(17) g(z;m,sz) = { (:)z 2752 exp{ 2 ( s ) } z >0,

otherwise.
The mean of LN(m,s?) is ELN(m,s?) = exp(m + }s®), and the variance is
var LN (m, s?) = exp(m + }s?)(exp(s?) ~ 1).

As a consequence of (16) we can deduce that the conditional distribution of P;
given By is
(18) L(P;|Py) = LN(In Py + (p — 30*)t,0%t).
After some algebra we obtain the conditional expectation and variance:

E(P,|Py) = Poe*t, var(Py|Py) = P2e(e”t — 1).
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4.1.3 Important Remark

In this Part, unless otherwise stated, by returns we will mean either returns or
rates of returns without further specification. Either of the return defined above
will be considered as a random variable denoted by p, p;, or p(t) for the respective
time period.

4.1.4 Expected Return

Often, return is a nonnegative random variable but this is not the rule. Let us
denote F the distribution function of p. The expected return of p is the expected
value

r:=FEp= /00 zdF(x).

—00

4.2 Risk Measurement

Here we will restrict our explanation only to cases of quantitative measures of
risk. All of the measures discussed here are based on the variance of the random
variable in question, the return in our case.

4.2.1 Standard Deviation — Volatility

Basically, the risk of the return is defined as the standard deviation of p:

o = /E(p— Ep)? = \/Ep? — (Ep)?.

A riskless asset is an asset with ¢ = 0 so that the return is a constant with proba-
bility one.

In literature we can find an analogous measure based on the variance of the
return, called volatility. This term is used either for the variance or for the standard
deviation of the return or of another stochastic financial variable.

4.2.2 Example. Let us consider two assets, A and B. Suppose that the rates
of return randomly depend on the state of the economy in the way showed in
Figure 7. Obviously, both assets have the same expected rate of return, 74 and rg,
respectively:

ra=03-100+04-15-0.3-70 =15 [%),

rg=03-20+04-15+0.3-10 = 15 [%).

Return [%0]
State of Economy Probability A B
Boom 0.3 100 20
Normal 04 15 15
Recession 0.3 -70 10

Figure 7: States of Economy
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Their respective variances are
0% =0.3-1002+0.4-15% + 0.3 - (=70)% — 15% = 4335 [%?], % = 15 [%?],

so that the risks are o4 = 65.84[%) and op = 3.87[%). We conclude that the
investment into asset B is less risky than into A.

4.2.3 Value at Risk

Another useful and recommended measure of risk is called Value at Risk, shortly
VaR. (Distinguish between symbols VaR — Value at Risk and var — the variance.)
Value at Risk at confidence level 1 — o, shortly VaR,, is defined by the relation

(19) P(p < —VaR,) = a.

In words, —VaR, is the cut-off point under which the return will attain values
only with some given (small) probability a. Thus —VaR, is the 100a per cent
quantile of the distribution of p. Different financial institutions use different levels
of confidence; the Bankers Trust 99 per cent, J P Morgan 95 per cent, Citibank
95.4 per cent, e.g. Otherwise the confidence level is stated in reverse form, 1 per
cent, 5 per cent, etc., but the meaning is the same; the maximum possible loss will
be more than VaR with probability « or it will be less than VaR with probability
1-a.

4.2.3.1 Parametric VaR

Let us start with the so called parametric VaR. Suppose that the random return
possesses a distribution from a location-scale family of distributions. Let G(z) be a
distribution function free of any other parameters and suppose that the distribution
function F, ,(x) of the return p is of the form

(20) Fuo(z) =G (”” = ”)
where g is a real number called location parameter and o > 0 is called scale param-
eter. In what follows, we deal with distributions for which the location parameter p
is equal to the expected return and the scale parameter ¢ is equal to the standard
deviation. If we denote the 100a per cent quantile of the distribution function G(z)
as uq, then we get for VaR,

(21) P(p< —VaR,) =P (p—,u < —VaR, ‘N) e (—VaRa —p,) —

(2 o g

and therefore

(22) IVaRa = —[i — OUg. |

Sometimes, the last quantity is called absolute value at risk while

(23) VaRgrel = —0u,
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is called relative value at risk. Parameters g and ¢ are usually unknown (even if
the analytical form of the distribution G is supposed to be known) and typically
they should be estimated by their sample counterparts.

Such an approach is good if we want to calculate VaR for the return based on
data coming from the respective period. If we need VaR for a subsequent period
or periods, we must take into account that both the mean g and the volatility
parameter o can change in time. There are two simple models with a theoretical
background that overcome this problem.

Firstly, we assume that the mean return does not change in time, but the variance
of it is proportional to time. So if we consider the prospective return after 7" periods
after the original parameters had been obtained, we suppose that the variance is

(24) 0% =To>.
It follows that the value at risk may now be computed from the formula
(25) VaRa = —p — 0 VT tq.

Secondly, if we suppose that the mean is proportional to time, i.e., ur = Ty, then
the formula for VaR becomes

(26) VaRa = —Tu — 0VT U,

Often it is supposed that G is the distribution function of the standard normal
distribution ®. Numerous examples show that this is not a frequent case in practise,
however.

Formulas (20) to (26) relate to return p and to its characteristics u, 0. If p is
the rate of return instead, and p, o its characteristics, then the value at risk in
(20) — (26) is expressed in terms of the initial investment Py as unit, in other words,
the maximum possible loss (in dollars) is —uPy — oueFp.

4.2.3.2 Nonparametric VaR

If only little is known about the analytical (parametric) form of the returns’
distributions but a sufficient amount of (historical) data is available, then a proper
method for the risk analysis may be based on a nonparametric approach. Suppose
that the observed returns during a given period (one year, say) are Ri, ... Rr. For
data based on daily closing prices from a stock exchange we have about 7' = 250
observations yearly, e.g. We rank the observed returns to get the ordered random
sample

Ray <+ < Ry
Instead of the theoretical quantile u, in the above considerations we will use the
empirical ath quantile UG, defined for 0 < o < 1 by
(30) 2, = { Il%(lTa 141) %f To 76 an.mteger .

3[R(Ta) + R(Tas1)] if Ta is an integer

For a chosen confidence level & we may state that the return will not fall under i,
with probability 1 — a. Similarly, the conclusion for VaR in case of a loss follows.
This may be accepted as true for a one-period prospective, in the above case for one
year ahead. The extension to more than one period needs some kind of speculation,
however. Some regression techniques for a trend investigation may be helpful in
this case.
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4.2.4 Remark (The Distribution of R and Related Quantities)

The simplest assumption in accordance with the random walk hypothesis is that
the R’s are iid and moreover that they are normally distributed. The empirical
studies reveal that this is often not the case. Usually we meet a violation of the
zero skewness and zero excess property of the supposed normal distribution. Some-
times the problem of symmetry is not too severe for returns, but an important
violation may be observed with other characteristics. Concerning excess, the differ-
ence between the theoretical value for a normal random variable (equal to 0) and
the actually observed values sometimes appears to be significant. In [159], p. 45,
the reader may find an analysis of the excess of stock returns which shows that the
distribution of the respective returns is far from normal. See also [109].

4.2.5 Stress Testing

Often it is of interest for an investor to know what will happen if the market
conditions attain their extremes, either in positive or negative direction from the
investor’s point of view. Of course, the more unfavorable, the more important
they are for the investor’s decision making, and they resemble VaR (in the sense of
maximum possible loss) to some extent. A possible method to see what will happen
is based on a scenario analysis. Stress testing starts with a construction of scenarios
covering the extreme situations involved. The scenarios may be developed either
from historical experience (historical scenarios) or from a theoretical model of the
further development of the characteristic in question (hypothetical scenarios).

Stress testing catches the dynamics. It is therefore a task for the decision maker
to state the limits or maximum likely changes for the periods of time under inves-
tigation. There are some recommendations. For example (see [89]), the Deriva-
tives Policy Group suggests the following guidelines for the extreme movements
of the variables involved in derivative’s products (all given in basic points) for a
one month’s period; parallel yield curve shift +100, yield curve twisting (change in
shape) +25, stock exchange index change +10, foreign exchange rate change +6,
volatility change +20.

A computational problem can arise with stress testing. If the time horizon covers
T periods, say, and we consider four possible outstanding values of a variable in
question (typically maximum, minimum, mean, and median), we have to generate
4T scenarios and afterwards to evaluate the desired indicator or measure. For a
typical ten years’ currency swap described in Example 1.6.4.4 with the interests
paid semiannually we have T' = 20, so that the total number of scenarios is 4%° =
1,099, 511, 627, 776, a pretty large number of scenarios to be analysed. Note that
actually two variables affect the resulting cash flow in Example 1.6.4.4; the exchange
rate and LIBOR. Hence in fact there are even more than four possibilities at every
period, at least at the initial and the final period.

To avoid this trouble, usually only a few (relative to the total number) of scenar-
ios are selected and the desired measures evaluated. The typical trajectories then
cover the most optimistic and most pessimistic (worst—case) scenarios consisting of
all maximum and minimum values together with the average or median trajectory.

Another reduction of the size of the problem may be reached by a careful se-
lection from the whole set of scenarios. A useful technique of such a selection is a
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Monte Carlo simulation approach. We sample a number of scenarios at random and
evaluate the desired characteristics of every sampled scenario. Such characteristics
create a random sample and its useful descriptive statistics can be calculated. Since
these statistics are obtained from a large number of characteristics, thousands say,
we may employ the standard statistical inference based on a normal distribution’s
assumption, using the central limit theorem’s argument. Note that the Monte Carlo
simulation is generally a very useful device for the risk analysis.
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I.5 VALUATION OF SECURITIES

valuation of different securities (bonds, options, forwards, and futures), arbitrage,
hedging, put-call parity, Black-Scholes formula, binomial model

5.1 Coupon Bonds

Consider a simple coupon bond, coupons fixed, see 1.6.1.5. For the sake of
simplicity assume that the coupons are paid annually. The cash flow to the
holder of the bond is —P,C,C,...,C,C + F, where P is the value invested into
purchasing the bond. At the time of issuing, the issuer sells the bond for its face
value F. If this is not the case, there is something wrong with the initial setup
of the coupon rate. Usually bond valuation does not consider the initial cost of
purchasing the bond, P, and rather takes into account only the future cash flow
resulting from the coupon payments and the redemption of the face value at the
maturity date, so that the corresponding cash flow becomes C, C,..., C, C + F.
Moreover, the history of the past payments is of no interest for the holder, and he
or she values the security on the basis of the expected future cash flow only.

More formally, let us suppose that the time of valuation is ¢ while the maturity
timeis T, ¢t < T. The coupon payments take place in times T—{T—t|, T—|T—t|+1,
... ,T. At time T there is the additional payment of the face value F. Altogether we
have |T'—t|+1payments. With the valuation interest rate ¢,and the corresponding
discount factor v = 1/(1 + ), we can express the present value of the above cash
flow sometimes called the dirty, gross, fair, or full price or value of the bond as

(1) PV = oT-IT-t=t  gpT-IT-t=t41 oy (0 4 )Tt =
g
c Z UT—[T—tJ—t+j + F’UT_t.
Jj=0

This formula provides a correct expression of the present value of the bond.
There is one point to be discussed, however. If T"— ¢ is an integer, the above
formula assumes the immediate payment of the coupon at time ¢. In practise this
is hardly the case because the issuer states the clause of so called ex-coupon. It
means, that after some date, called ex-coupon date, the bond is traded without the
first forthcoming coupon and the coupon payment belongs to the former holder of
the bond. Thus it is more realistic to adapt (1) to

T—t
(2) PV=Cv+Cv*+ -+ (C+Fp™t=C> v + P

=1
Sometimes it is useful to invert the time by setting n = T —t. In this case, n means
the time to maturity (n need not be an integer). Then

in)
(3) PV = Cvl™t 4 Cul™H o (C + F)o™ = Col™ Zvj + Fo"

=0
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with the first term missing if n is an integer. The value Cv{™ is called accrued
interest. Using the simple interest method, the accrued interest can be expressed as
C/(1+{n}i). The two values slightly differ, of course. Accrued interest is a reward
to the seller of the bond compensating the loss of the next forthcoming coupon.
The difference between the dirty price and the accrued interest is called pure price,
pure value, net value of the bond which therefore takes the form

(=)
(5) PV, = Cv(™ Z v+ Fu",

Jj=1

which is also quoted in the financial press.

A very important measure of a bond is the so called yield to maturity. Let us
suppose that the market price of the bond is MP. Consider the value of the bond
expressed in terms of interest rate £, either from (1) or (3), PV (4), ceteris paribus.
Then the yield to maturity, YTM, is defined as a solution to the equation

(6) MP = PV(YTM).

Since YTM is in fact the internal rate of return and the assumptions of Theorem
3.4.1 are fulfilled, there is just one YTM.
Another very simple but frequently used measure of a bond is its current yield:

. c
(N Current yield = UP
Note that so far we have supposed that the coupons are paid annually. We will
discuss other than annual frequency of coupons later.

For further analysis it is convenient to suppose that n is an integer. Then the
value of the bond (immediately after the coupon payment), now identical with the
net value, becomes

(1l — ™)

(8 PV(e,Fni)=C) o +F"=C——

Jj=1

+ Fo" =

%F(c +(1+1)"( = ).

Note, that in ancient literature this formula is used for calculation of the net value of
the bond if » is not an integer. In this case, the net value is calculated as the linear
interpolation between values Py = PV (c, F,|n| + 1,i) and P, = PV(c, F, |n},1).
The interpolated value is P, = Po+(1—{n})(P1—P,). The dirty value is calculated
as P+ (1 - {n})C, the term (1 —{n})C standing for the accrued interest, without
taking into account discounting.

From formula (8) we can immediately deduce that the net value of the bond
at the maturity date equals its par value: PV(c, F,0,i) = F. Further, for the
valuation interest rate ¢ equal to the coupon rate ¢, © = ¢, the net value of the bond
is equal to the par value independently of the time to maturity: PV (e, F,n,c) = F.
For ¢ > ¢, PV(c, F,n,i) is a decreasing function of n and PV(c, F,n,t) < F for
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n > 0. The reverse is true for ¢ < ¢, so that the net value is an increasing function
of n and PV{(c,F,n,i} > F. Hence, in case ¢ > ¢, the bond is called a discount
bond while in case ¢ < ¢ the bond is called a premium bond. Thus, an increase of
the interest rate will cause the value of the bond to fall, whereas a decrease of this
rate will cause it to rise. As n approaches 0 (this means, to the maturity date), the
net value of the bond approaches its par value F. An analysis of (8) also shows
that, ceteris paribus, bonds with longer maturities are more sensitive to changes of
¢ than those with shorter ones.

After some algebra we get a formula for the duration corresponding to the net
value expressed in terms of the discount factor:

1 n—1-nv(l+c)
T1l-v  l-v+cv(v-1)

(9) Dy

or in terms of the valuation interest rate:
1 1+i4+n(c—1)
10 Dy=14--—- ; .
(10) " +z i+c((L+4)m-1)
For i = c the expression for the duration simplifies to
_1l4+c—(1+ot"
. .

(11) D,

5.1.1 Example. Suppose we have a bond with par value F = 1 and coupon
C = 0.1 (all in thousands CZK) so that the coupon rate is ¢ = 0.1, that is 10 per
cent p.a.

1.4 1.4
1.3 1.3
1.2 1.2
o [ & i 1.1 KN AR EA AN
. SR .-é o é.- ;I:-U
0 0.9
0.

Figure 8: Value of the bond: left ~ normal time, right — inverted time
sawed — full price, smooth — pure price, dashed - full price for i = ¢

If the market interest rate is 0.05, the bond is a premium one, if it is 0.15, the bond
is a discount one. The dependence of the price of the bond on time to maturity is
graphically illustrated in Figure 8. The decreasing function on the left part of the
figure corresponds to the price of the bond with the valuation interest rate ¢ = 0.05,
etc.

5.1.2 Exercise. Investigate modifications of the above formulas in case that the
coupon payments appear semiannually, i.e., with frequency 2, which is perhaps the
most frequent case.
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5.1.3 Remark (Construction of the Yield Curve of Coupon Bonds)

The simplest way is to take a set of similar coupon bonds with different maturities
and their calculated yields to maturity. Then some method of fitting discussed
above may be applied. An alternative approach is known as bootstrapping. (Do
not confuse with the same term used in statistics!) The idea consists in valuating
every coupon payment (and also the principal) using the corresponding spot interest
rate. Thus the present value formula (8) for the valuation of the bond with maturity
T at time ¢ is now

__¢ ., _°¢ ..., _C+F
T 14+ Ry (1 + tR2)2 (1 + tRT)T.

(12) PV

Suppose for the simplicity that there are exactly T coupon bonds with maturities

1, ..., T, fixed coupons Ci,...,Cr, face values Fy, ... ,Fr, and (observed) market
prices M Py, ..., MPr. For the bond j, the present value is expressed as
C; C; + F;
13 PV; = I e LI i1, T.
(13) TRy + (1+¢R;)I J

For the first bond, the yield to maturity (R, is, according to (6), calculated from
the relation
_ Ci+ F

14 Ry ’

(14) MP,

For the second bond we use or bootstrap the information from the first bond (; R;
already ascertained) using the relation

Cy Cy + Fy
MP, = ,

2 1+ :R; (1+tR2)2
and by recursion, havingknown Rz, ... ,+R;_1, we calculate the yield ;R; from
the relation

i-1

C; C;+F;

15 MP; = L I I
(15) ! ; (1+¢Re)* * (L+¢R;)

Care should be taken if the maturities are not equally spaced. In any case, some
fitting procedure is almost always necessary.

5.1.4 Callable Bonds

A callable bond means that the issuer has the right to call back the bond prior
to the designed maturity. In fact, in our terminology, the issuer is the holder of a
call option which has some value itself. Therefore, from the point of view of the
holder of the bond, the price of the callable bond is

Lprice of the bond without callable feature — price of the call optionj

The value of this call option may be derived by standard methods given later in
5.2.5 and Part III. Similarly, putable bonds can be issued and valued, see 11.6.4.
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5.1.5 Remark (Amortized Bonds)

An amortized bond is characterized by constant installment payments of the
principal and interest like a loan, see 3.3.8. Suppose that the cash flow of the
usual coupon bond is CF, = (C,...,C,C + F) and that of the amortized bond
CF, = (C*,...,C*), both of the same length. As an exercise, find C* such that
the two bonds are equivalent in the sense of the equality of their present values
under the valuation interest rate equal to the coupon rate ¢ = C'/F. Remind that
an amortized bond is less risky than a classical coupon bond (it immediately repays
the principal) and hence, in practise, the risk premium offered by the issuer is not
as high as in case of the usual coupon bond. The actual C* is less than that of
calculated on the above equivalence principle.

5.1.6 Remark (Simple Bonds under Uncertainty)

Suppose that a zero coupon bond pays F with probability p and pays nF with
probability 1 — p at maturity, where n € [0,1) is called the recovery rate and
A :=1-—nis called the loss rate. The case n = 0 is equivalent to the default.
Suppose that the valuation interest rate is ». The fair value of the bond is the
expected present value:

—_ 1

Further, let us consider a one-period coupon bond with coupon C and par value F
which sells for par F now and pays C + F with probability p and #{(C + F) with
probability 1 —~ p at maturity, # having the same meaning as above. The question
is what is the fair value of the coupon C under the valuation interest rate r. We
equate the present value and the discounted expected future value

F= Flr_rip(m F) + (1-p)n(C + F)],

solve for C, and get the fair value of the coupon
_Fll+r—p—(Q1-pnl
p+(1—ph
As an exercise, extend the above one-period case to a multiperiod one.

5.2 Options

We start with the valuation of options since the ideas of their pricing are general
enough to be used for the valuation of other derivative securities. The key concepts,
arbitrage and hedging play a crucial role in the mathematical modeling.

5.2.1 Arbitrage

All the models treated in this book assume no-arbitrage principle, in other words,
the absence of arbitrage opportunities. By an arbitrage opportunity we mean any
of the two situations:

(1) At the same time, the same asset is sold at different prices at different

places. Nowadays, this can hardly happen in the financial world since the
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information from one stock exchange is available on the stock exchange on
the opposite side of the globe within a second.

(2) With zero investment at time O there is no probability of loss but there is
a possibility of a riskless profit at time 1. More rigorously, an arbitrage
opportunity in this case is a self-financing trading strategy with no initial
investment, and a positive probability of positive profit and zero probability
of negative profit later on (cf. II1.3.3 and II1.3.3.1).

Arbitrage opportunity is often characterized as a “money pump” and no-arbi-
trage principle by the slogan: “There is no such thing like a free lunch.”.

5.2.2 Hedging

Hedging may be compared to insurance. It provides an insurance against un-
favorable development of the market from the investor’s point of view. Hedging
may reduce the risk but, under no-arbitrage principle, risk cannot be fully elimi-
nated. In principle, hedging consists of taking two opposite positions in the assets
which are highly negatively correlated. The investor who hedges his/her position is
called hedger. A perfect hedge means that the hedger combines an option and an
underlying asset in such proportions that result in a riskless position and provide
a riskless profit (equal to the riskless interest rate). See also III. 3.3.5. This is
a rather idealized situation, however, since it does not take transaction costs into
account.

5.2.3 Notation

We will assume the continuous-time world with constant riskless rate of interest
(force of interest) r applied both to borrowing and lending. Symbols ¢ and p will
stand for the price of a European CALL and PUT, respectively. Analogously,
symbols C and P will be used for prices of the respective American options. The
price of the underlying asset (usually stock) will be denoted S and we will suppose
that there are no liabilities like dividends connected with this asset during the
period involved. We will also assume that S is a random variable or, more generally
a stochastic process, an approach consistently adopted in Part III. Finally let K
denote the strike price and T the expiry date. If necessary, we add subscript ¢ to
stress the dependence of the respective quantity on time, Si, St, ¢, etc. If the
option is exercised, denote the time of exercising by =, 7 < T. For Europeans,
T=T.

The payoff of an exercised call option is

(16) (S- ~K)*
and that of a put option is
(17) (K - S,)*.

(16) and (17) are called terminal payoffs. At any given t < T, the value S; — K for
a CALL and K — S; for a PUT is called the intrinsic value of the respective option.
This is the value which the option would have if it were exercised at time ¢. If the
intrinsic value is positive, zero, or negative, we say that the option is in the money,
at the money, or out of money, respectively.
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524 PUT - CALL Parity

Let us consider the portfolio long one asset, long one PUT, and short one CALL.
It means that we have bought one asset plus one PUT on that asset and sold
one CALL on the same asset. Both the options on the asset in the portfolio are
European with the same expiry date T and the same strike price K. The value of
the portfolio at time ¢ < T' is therefore

(18) II; = St + pt — ¢t
Look what will happen at the expiry date. The value of the portfolio becomes
(19) It = Sy + (K — ST)+ — (St - K)+.

If S < K, then lIr = S+ K-St -0 = K, and if Sy > K, then IIy =
St +0— (St — K) = K. We conclude that such a portfolio is riskless and leads
to the certain gain K. What is the value of the portfolio at time ¢ < T? Since
the future value is K, the present valueis IT; = Ke~"(T=) (for riskless investment
we have used the riskless interest rate r). Thus we have obtained so called put-call
parity relation:

(20) Si+pi=Ke"Tt 4¢, t<T.

This is an example of risk elimination. Note that this formula cannot be applied
to American options due to the early exercise feature.

5.2.5 Option Pricing

5.2.5.1 Natural Boundaries

The limited liability condition says that all option prices are non-negative. Since
American options have all features like Europeans plus the right of an early exercise,
they must be worth at least the Europeans:

Ci > ¢, P > pt.
Further, from the put-call parity relation it follows that
et > (Sy — Ke (T—th*,
For an American CALL we have
C: > (S - K)*.

The proof is by the contrary; suppose that 0 < C; < S¢ — K. Then we can buy
the CALL at C¢, immediately exercise it and thus get a riskless profit 5; — K — C;
which is in a contradiction to the no-arbitrage principle.

5.2.5.2 Exercise. The quantities which are not explicitly mentioned remain con-
stant. Prove the following propositions:
(1) Ift1 S to then Ct1 Z Ct2 and Pt1 Z Ptz-
(2) If K1 < K, then (K1) > ei(K32) and pr(Ky) > pi(K2). The same holds
for the Americans.
() If S; < Sy then ¢:(S1) < ¢(S2) and p:(Sy) > pe(S2). The same holds for
the Americans.
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5.2.5.3 The Black-Scholes Formula

Let us consider a European call option on a stock, the current price of which is
known and equal to S;. Since the payoff at the expiry date T is (S7 — K)¥, the
present value of this payoff is

e "T0(Sp — K)*.

Next we adopt the so called risk-neutral valuation. Under this approach we do
not consider any risk preferences of the investors. Since the higher the level of risk
aversion, the higher the expected return p will be for a risky asset, by excluding
the risk preferences we conclude that the only correct risk-neutral g is p = r, the
riskless rate. At this point it is important to emphasize that by the above choice
we do not assert that the conditional distribution of Sp given S; is that for which
p = r! It seems to be reasonable to take the conditional expected value of the
discounted payoff given the current value of the underlying asset S; as the value of
the option but with the expectation taken with respect to the riskless rate r:

(21) e = e " T B ((Sp — K)T|Sy).

where E* stands for the expected value in a risk-neutral world. In Black-Scholes
approach we suppose that the conditional distribution of St given S adjusted for
risk-neutrality (see formula (18) in 4.1.2) is log-normal

(22) £*(SrlS:) = LN(In S, + (r %02)(T —4),6%(T — 1))
To evaluate (21) under assumption (22) we first calculate the expected value
E(m,s?) = E(X - K)*

where the random variable X possesses a log-normal distribution LN (mn, s2) with
the probability density function given by formula (17) in 4.1.2. After some algebra
we get

@) Blm,s*) = [ (o~ K)glaim,s)ds =

e <m+32—ln'K> Ko (m—an)

8 8

where & stands for the distribution function of the standard normal distribution
N(O, 1). Substituting m — In Sy + (r — 202)(T — t) and s> = o%(T —t) into the
expression for E(m, s?) gives

(24) E* (St — K)*|S;) = Se” T 98(d,) — K8(dy),

where

In(S¢/K) + (r + Lo2)(T - t)

_ In(S¢/K) + (r - %02)(T —t)
ovT =t )

25 d = ds =
@) d g e
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Altogether, going back to (21) we have derived the Black-Scholes formula for the
value of a European call option:

(26) e = S ®(dy) ~ Ke " T-9%(d,).

An elementary application of the put-call parity relation provides the value of a
European put option

(27) pt = KeT" T 0&(~dy) - 5,8(~dy),
where we used ®(z) =1 — ®(—z).

5.2.5.4 The Binomial Option Pricing Model

We will now assume that the stock price changes only at the equally spaced time
instants ¢, £+ 1, ... . The time unit may be arbitrary (month, day, hour, ... ).
Further let us suppose that if the stock price is S at time ¢, then at time ¢ + 1 it
may take only one of two values, dS; or wS; with probability p or 1 —p, respectively.
Thus

(28) P(St+1 = ’uSt|St) =D, P(St_H = dStISt) =1- p=iq.

Also suppose that the changes are mutually independent and the probabilities do
not depend on time. By the no-arbitrage principle we may suppose that the riskless
interest rate 7 fulfills d < 1 4+ 7 < u. (Suppose on the contrary that 1 +r < d < u,
e.g. Then the investor could borrow any amount of cash at the riskless rate r, buy
the stocks and sell them for at least d after one period. Such a strategy would lead
to a riskless profit d — 7 — 1.) Note that the usual assumptionis d < 1 < u so that
the price can move up and down. Next we state a relationship among p, 4, d, and
r in a risk-neutral world. The expected return from holding the stock should be
the same as the riskless return resulting from the investment S; at the riskless rate
7. Since

E (St4115:) = puS; + qdS:,

by the above argument we conclude that
puS; +qdS; = (1 +71)5:

and this is fulfilled for

1+r—-d
(29) p=m= —ﬁ

Due to our assumptions, w € (0,1) is a probability called the risk-neutral probabil-
ity. We can also obtain the risk neutral probability by the following construction.
Consider the so called replicating portfolio consisting of A stocks and B riskless
bonds which gives the same payoff as one European call option on the stock with
the strike price K and expiry date ¢+ 1. The terminal value of the option is

ey = (uSy — K)*  with probability p
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and
iy = (dSy — K)* with probability g.

Thus A and B must satisfy the system of equations
AuS; + B(l+71) =clyy, AdSi+B(l+71)=cf,.
The solution to this system is

c¥, , —cd uct, , — det
4= ST G ’ _ UCpyy 141
(30) w-05" 2T T+nw-a

From the obvious inequality uc;i_‘_1 < dci,, we observe B < 0 so that the repli-
cating portfolio always involves borrowing cash and buying the stock in the above
proportions. The present value of the CALL is, after substitution from (30), given

by

(Q+r—dje+@=-1-r)cfy; _

(31) Ct:ASt+B= (1+1‘)(u—-d)

1
ﬁ(ﬂ'cg+1 +(1- 7r)Cgl+1),

where 7 is the risk-neutral probability defined in (29).
Up to now we have considered a one-period model. Let us look on a simple
generalization for a multi-period model. After two periods we obviously have

P(Sir2 = u28:|S:) = p®, P(Sir2 = udSi|S:) = 2pq, P(Si+2 = d>S:|S:) = ¢°.

Generally, after T — ¢t periods (T >t , T integer)
j ST—t—j T—t\ ;74
(32) P(Sp =v'd 75:¢|Ss) = i rq I 5=0,...,T—t.

This is the binomial model describing the probability distribution of the stock
price after T — t periods. By Bi(n, p) we will denote the binomial distribution with
parameters n, p, i.e., the distribution of a random variable X such that P(X =
=P, i=01...n

Consider now a European call option with strike price K and expiry date T.
Using the same argument as in the derivation of (21), but with discrete discounting,
the value of the option at time ¢ is given by

(33) ¢t =1+ TE((ST — K)YS).

In a risk-neutral world we should have used the risk-neutral probability « but the
option price can be expressed for an arbitrary p. We have

(34) = (1+r)t" TZ( )p’qT t=i(yd dT-t-18, — K)*.

j=0



58 STOCHASTIC MODELING IN ECONOMICS AND FINANCE

Let J be the smallest non-negative integer such that u/dT—t=95, > K. Put

x,_ _Up «._ dq
P11 T 51
Then
T-t T—t
T-t ; ; T—t\ . _
(35) Ct:StE:( i )(p*)’(q*)T‘t‘J—K(1+r)t‘TE ( j )p’qT—t—:.

j=J i=J

If p = m, the risk-neutral probability, then p* + ¢* = 1 so that in this case we can
express (35) in the form

(36) et = SyP(BI(T — t,p*) > J) — K1 + )" TP(Bi(T - t,p) > J).

With the binomial model, a number of questions arise. We have seen that even
under the assumption of the risk-neutral probability there are some degrees of free-
dom in choice of © and d. We just mention how to handle the unknown parameters
appearing in the model. Some ideas are based on comparing the parameters of
the discrete model to those of the continuous one. Another popular relationship
between u and dis u = 1/d. The choice p = % is also popular. Such assumptions
reduce the dimension of the respective parametric space and open space for a broad
discussion. See [172] and [105] for more details.

Like in classical probability theory, also here there is a close connection between
the binomial model and its limiting counterpart, the normal distribution model,
as a consequence of the central limit theorem for iid random variables with finite
positive variances. See [144] for more details.

Since the binomial model is discrete, it enables a straightforward modeling by
Monte Carlo simulation. The simulation models take the advantage of the fact
that on different stages of the dynamic simulation, numerous specific features and
movements of the real life problems may be incorporated. Note that some of the
mentioned movements, particularly shocks, may hardly be considered in a theoret-
ical model.

5.2.5.5 Options on Assets Paying Dividends

So far we have considered the underlying stock that does not pay any dividend.
We can modify the above results also for a dividend-paying stock. If a stock pays
a dividend during the life time of the option, the payment of the dividend causes
the stock price to fall by an amount equal to the dividend. The dividend yield y is
expressed as a proportion of the stock price. For the purposes of this Part, we will
suppose that the dividend yield is constant and understood as continuous like the
force of interest. Hence during the time interval (t,t + At) the stock pays yS;At.
For European options we may still use Black-Scholes’ type formulas (25), (26) but
now with
_ In(S¢/K)+(r—-y=+ 1o3)(T - t)

37 dio =
(37) 12 oVvT -t

The formula for a PUT is given by (27) but with d; 2 from (37).




I. FUNDAMENTALS 59

5.2.5.6 Valuing American Options

The following widely used, but, in our opinion, questionable argument enables
to value an American option on an asset which does not pay dividends. From the
inequalities of 5.2.5.1 we have

Cy>c 28— Ke (T 5 S; — K.

If the option is exercised at time 7 < T, then its value immediately becomes
Sr — K which is less than the lower bound if the option is still alive. It follows that
an American call option will never be exercised prior to its expiry date and hence
the value of an American CALL should be the same as that of the corresponding
European CALL.

There is no such argument for American put options and/or American options
on dividend paying assets. Further information on the topic can be found in [105],
[116], [172], e.g.

5.2.5.7 Comparative Statics — The Greeks

In option pricing formulas there are actually five variables (also called parame-
ters), S, K, r, T —t, and o. The sensitivity to the option prices on these variables
plays a crucial role in financial decision making and is measured by partial deriva-
tives. Since traditionally these sensitivities are denoted by Greek letters, they are
often called Greeks.

In what follows we will suppose that the options involved are European and that
their prices are driven by the Black-Scholes formula (26) and (27). Note that the
definitions in the form of derivatives given below can be used in a more general
setup. Also note that the respective sensitivities for PUTs can be usually simply
calculated using the put-call parity relation (20). Let V denote the value of either
a CALL or a PUT.

Delta. The delta A is defined by

1%
(38) A= 95

After some algebra we get the delta for a call and a put option:
(39) Ac=8(d), Ap=Ac—1=—(—dy).

Obviously, since A, > 0, the value of a CALL is always an increasing function of
St. The reverse is true for a PUT. The concept of delta is used for so called delta
hedging. Suppose we are long one asset and short A call options on that asset. The
value of such a portfolio is therefore II; = S; — Ac;. We wish to determine A so as
to make the value of the portfolio invariant with respect to (small) changes in the
asset price, i.e.,

o, _

sy
It follows that the desired A = 1/A,, the so called hedge ratio. Nevertheless,
since delta is changing in time, the portfolio should be rebalanced frequently and
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the hedge should be a dynamic hedge. A dynamic hedge can be rather costly,
particularly in case the transaction costs are not negligible. So dynamic hedging
strategies (as well as other strategies dependent on a frequent trading in time) are
good for market makers or brokers and others with low transaction costs. Observe
that the lower the asset price in comparison with K, the higher the hedge ratio.
A similar measure of the sensitivity is the elasticity of the call price with respect
to the asset price defined by E. = A.S;/c;. Note that always E, > 1 (prove as
an exercise). Hence the call option is more risky than the underlying asset. An
analogue to delta is the duration.

Gamma. The gamma I is the second derivative of V' with respect to the asset
price:

v
N= —-.
40) 957
Gamma for CALL and PUT is the same:
<P(d1)
( ) ¢ P StO'\/T -1

where ¢ is the probability density function of the standard normal distribution
N(0, 1). Since I’ > 0, the values of both types, CALL or PUT, are convex functions
of S;. Observe that gamma resembles the convexity introduced in 1.3.6.

Theta. The theta © is the time derivative of V:

v

The calculation is a bit cumbersome but useful exercise (a good idea is to use some
CAS (Computer Algebra System) like Mathematics®):

(43) 0, = —Ke (Tt (2\/—;—?—7%(12) + <I>(d2)) .
Alternatively, using the identity
(49) Kop(dz) = 5™ T p(dn)

we get it in the form:

O'St
2T -t

We see that ©. is always negative. From the put-call parity relation we obtain

(45) O, =— @(dy) — Kre "9 &(dy).

(46) 0, =0, + Kre T,

Nothing can be said about the sign of the last expression.
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Rho. The rho P expresses the dependence on the riskless rate:

(47) P ?9_‘:;

for a CALL it takes the form

(48) P. = K(T - t)e " T-9&(dy)
and for a PUT

(49) P, = —K(T — t)e " T9(-d,).

Immediately we see that P, > 0 and P, < 0.

Vega. The vega V measures the sensitivity of the option price with respect to
the volatility ¢ of the underlying asset:

ov
(50) V=
For both types of options V is the same:
(51) V= Va = Vp = St\/T - tgo(dl)

Sometimes it is also of interest to investigate the sensitivity to the strike price
but for unknown reasons the corresponding Greek is missing. Nevertheless we have

0
(52) a_c}% — _e—r(T—t)Q(dz)
which is always negative and

s _r(1-p)
(53) —6—12 =€ <I>(—d2)

which is always positive, both these conclusions in accordance with an intuitive
insight.

5.2.5.8 Exercise. Derive formulas (41), (48), (51), (52), (53).

5.2.5.9 Volatility and Implied Volatility

The parameter o, the volatility, is of vital importance in option pricing. Since it
is difficult to speculate on its value, usually some estimates must be used.

One of the most frequently used estimates, called the historical volatility, is
based on past data. In practise, this estimator is, in fact, the usual sample standard
deviation, for instance, of quantities In(Sg4+1/S:), t = 1, ..., T — 1 in the Black-
Scholes model. A care must be taken however: The time steps for such a calculation
must be in accordance with time units in which the other quantities are measured.
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More sophisticated estimation procedures are based on models of the stochastic
behavior of volatility. See [26] for a review and [127] for a bootstrap estimation of
volatility.

Since the other parameters in the formulas for option pricing are known at time
t, and also the market value V;* of the option is known, then, after substituting
these known values of the parameters into the Black-Scholes formula (26), we can
determine the unknown volatility. The corresponding equation reads

(54) VM = f(S,K,0,T,t,r),

where f is the function resulting from the Black-Scholes formula. A solution & to
(54) is called implied volatility. Equation (54) is to be solved for an unknown o given
the values of all remaining quantities. We see that volatility cannot be explicitly
expressed from (54) so that a solution must be found numerically. Moreover, it is
not clear, how many solutions to the mentioned equation exist. If there are more
than one, we should carefully analyze them with respect to a reasonable financial
interpretation.

Modern computer algebra systems provide the users with a variety of routines
and financial application libraries which can be used for the above analysis. See
[147], [148], and http://www.wolfram.com for a possible approach. Some specific
cases may be found in the series of papers of Benninga and Wiener: [9], [10], [11],
[12], [13], [14].

5.2.5.10 Example. Let us consider 6 options, 3 CALL’s and 3 PUT’s, on a Volk-
swagen stock priced at EUR 70.72 April 23, 1999, expiring 3rd Friday, June 1999
with strike prices K3 = 67.5, Ky = 70.0, K3 = 72.5. The actual prices for the
respective CALLs were 6.31, 4.92, 3.77 and those for the PUTs 2.92, 4.08, 5.48. We
have T — ¢t = 58/360, r = 0.05. The implied volatilities computed using function
FindRoot in Mathematica are 0.38, 0.38, 0.35 for CALLs and 0.41, 0.42, 0.43 for
PUTs, respectively.

fe8 70 4 74 76

Figure 9: Payoff at expiry of a butterfly spread
Let us further consider the portfolio consisting of four the above options: long
CALL with strike K7, long PUT with strike K3, short CALL with strike K3, and
short PUT with strike K2. The value of that portfolio as a function of the stock
price S at expiry with today’s prices of the options is:

V(S) = ~6.31—-5.48+4.92+4.08+ (S - K;)" +(K3-8)T - (S—K3)" — (K2~ S)™ .
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This is an example of a combination of options, particularly the so called butterfly
spread. See Figure 9 for the payoff of this portfolio.

5.2.5.11 Exercise. Examine and plot the payoffs of the following combinations of
options (all on the same asset) at expiry:

(1) long CALL with strike K; and short CALL with strike K2 > K7 and prices
¢z < ¢1 (bullish spread),

(2) long one CALL with strike K7, long one CALL with strike K3 > K3, short
two CALLs with strike K, = (K; + K3)/2 and prices ¢; > ¢2 > ¢3. This is
also a butterfly spread.

(3) long one CALL, long one PUT with the same strike K, called a bottom
straddle,

(4) reverse of (3): short one CALL, short one PUT with the same strike K
called a top straddle.

Explain the motivation for the above strategies.

5.3 Forwards and Futures

Valuing both forwards and futures is practically the same from the mathematical
point of view and since there is no option but obligation to deliver, it is simpler than
that of valuing options. The seller must deliver the asset at time 7. We can derive
the forward price by the non-arbitrage principle. The seller borrows an amount S
(=the price of the underlying asset at time t) at riskless rate and buys the asset.
Hence the forward price must be

F, = Ster(T—t)

otherwise there will be a riskless profit or loss in contradiction to the nonexistence
of the arbitrage. The asset may pay a dividend or need to be stored (like gold,
grain, or oil) with some additional costs. If the corresponding rate is y, then the

forward price becomes
F, = S;elr—v(T-t),

Note that y > 0 in case of dividends and y < 0 if there are some additional costs.
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.6 MATCHING OF ASSETS AND LIABILITIES

matching, immunization, dedicated bond portfolio, static model, dynamic model,
stochastic model

6.1 Matching and Immunization

In what follows in this Chapter, by assets we mean the inflows and by liabilities
the outflows of a company. The main purpose of matching is to balance assets and
liabilities in such a way that the deficiency is either zero or as small as possible.
Perhaps only of theoretical value is the case of absolute matching; let a¢ and £; be
the total assets and liabilities at time ¢, ¢t = 0,...,T, respectively. If a; = £, for
all ¢t we say that assets and liabilities are absolutely matched. This does not sound
realistic, however, so that an alternative approach is needed. The most frequent
method is to match the discounted cash flows and/or other characteristics of assets
and liabilities.

Suppose that the liabilities (assets) are represented by a cash flow I € L7+!
(@ € LT+1), see 3.1. The principle of matched present values of assets and liabilities
at force of interest § is then expressed as

(1) PV(i,5) = PV(a, ).

This identity can only be satisfied for finite number of ’s with the exception of { =
a, the absolute matching. In practise, one can choose the force of interest 8o which
he or she believes will be most likely for the period of time under consideration.
Then the matching condition for the present values is

(2) PV(l,&o) = PV(a, 50)

Since dp is only an estimate of §, there is a danger that for some other forces of
interest, even close to the estimated one, the present value of liabilities will exceed
that of assets. So it is a good idea for an investor to immunize his or her position
by imposing further conditions expressed in terms of derived characteristics of cash
flows. The condition

(3) D(l,40) = D(a, bo)
requires the same duration of assets and liabilities and the condition
(4) C(l,&)) < C(a,50)

guarantees that at least in a small neighborhood of dg, PV (a,do) > PV (1,dy) will
hold. If we change condition (4) and require instead

(5) 0(1;60) = C(ﬂ;,do),

we can give an explicit solution to the problem.

Y


Administrator
ferret
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Suppose I € LT*! is a given vector of liabilities, fixed in the sequel. Let A C LT+1
be a 3-dimensional linear subspace of available assets generated by the base assets
€1, ez, e3 which form the basis of A. Let us denote E := (e;,es,e3),a (T + 1) x 3
matrix. Thus every @ € A may be expressed as @ = Ex, where the coefficients
x = (21, 2, x3) " are uniquely determined. Let us further denote

& -5 —26 —T5\T
d] = W(l’e ,€ 2,...76 ) 6:60’
the derivatives of the discount factors taken at § = dp, j = 0,1..., and D =

(do,dy,d2), a (T + 1) x 3 matrix. The three conditions (2), (3), and (5) may now
be rewritten in the form

dja=d/l, =012

or equivalently
D'a=D"L

If we substitute @ = Ex, we get the system of three linear equations for unknown
x:

D'Ex=D"1

which possesses the unique solution
(6) x=(D'E)"'D"l

provided the inverse exists. Exactly the same formula holds true if we, instead
of three matching conditions, impose matching conditions employing higher order
derivatives.

6.2 Dedicated Bond Portfolio

An important application of the idea of matching assets to liabilities is the invest-
ment strategy known as a dedicated bond portfolio, (see [60] e.g.) which deals with
a proper selection of available bonds. In general, we may think about allocation
of funds among arbitrary investment opportunities represented by their expected
cash flows. A stochastic version of this problem is treated in Part I1.1.2.

6.2.1 Static Model

Suppose that we have the time horizon t = 1,...,T with investment oppor-
tunities represented by cash flows CFy, ..., CFy, CF, = (CF,,,...,CF,r)7,
n = 1,...N and initial acquisition costs (i.e., the cost for buying these cash
flows)e = (c1,...,en) 7. It means that ¢, is the cost of the investment at time

= 0 resulting in the expected future cash flow CF,, n = 1,..., N. Further, let
l=(,... ,lT)T be the expected liabilities over the considered time horizon. Let
the initial wealth of the investor be W = 1. The objective is to create a portfolio
x = (x1,...,2N) " (to find the weights in other words, 1Tx = 1) consisting of the
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above cash flows so as to minimize the total acquisition costs ¢ x subject to J + 1
matching conditions

N
(7) > 2,PVO(CF,,8) =PVI(1,5), j=0,..,J

n=1

where PV stands for the jth derivative of the present value with respect to the
force of interest 8. For j = 0 it means the perfect match of present values both of
assets and liabilities, for 7 = 1 and 2 the perfect match of durations and convexities,
respectively, etc. Further imposed conditions on portfolio may be of the type

(8) by <x<by.

The lower limit by may represent the reasonable amounts of investment while the
upper limit by may take into account some legal requirements. For example, in the
Czech Republic, pension funds are not allowed to invest more than 10 per cent into
one asset. In our terms, it means that the respective z, < 0.1. We also add the
natural condition x > 0. Altogether, we have a problem of linear programming:

9) Find minc'x under restrictions (7), (8), x> 0.

If we abandon condition (8), the theory says that the optimal solution x* will consist
of at most J + 1 (=number of conditions) positive weights. For J > N — 1 there
may be no solution to the problem. However, this case is of theoretical interest
only, since in practise we usually ask just for matching up to convexity, J = 2, in
this case.

Since there is an uncertainty about the valuation force of interest 4, weusually
need to solve the above problem for a set (scenarios) of expected interest rates and
to discuss the solutions from the fundamental point of view.

6.2.2 Dynamic Model

In the above model, the only dynamics involved has been included via present
values. In practise, the liability schedule is often determined at any time instant,
t =1,...,T. This may be the case of obligatory balances, reserves, or solvency
margins. At time ¢, the inflow is

N
(10) ap = anCFnt,

n=1
so that the necessary conditions to meet the liabilities at any time now read

N
(11) > @nCFu2l, t=1,..,T.

n=1

It is a good idea for the investor, even under condition (11), to reinvest a possible
surplus. Suppose that ¢; is the short-term reinvestment interest rate for the period
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(t,t+1), and s7 is the surplus at time ¢. Then the inequality condition (11) becomes
the equality

N
(12) > wnCFu+ (1 +ia)si, —sf =l, t=1,...,T,

n=1

with the initial surplus 33', if any. Again, the optimal solution is given by solving
the linear program

Find min(c"x + s) under restrictions (8), (12), x>0, s* >0,

+ +)T‘

where st = (sT,...,sF

6.2.3 Discussion of the Restrictions

Note that if the short-terms interest rates are higher than the interest rates
coming from the investment into CF’s, the solution will naturally result in x = 0
and some positive s*’s.

6.3 A Stochastic Model of Matching

Here we give a simple stochastic version of the model given in 6.1. Suppose that
the force of interest § is now a random variable. Denote d := (1, e s, ... ,e‘Ta)T,
the vector of discount factors. Note that if § possesses a normal distribution then
e~7%’s posses log-normal distributions. Then the surplus S is also a random variable
that may be expressed as

(13) S=PV(a,d)-PV(,)=a'd-1l"d=(a-1)"d

and the expected surplusis ES = (a—1)TEd. The elements of Fd are the moments
of the log-normal random variable e~%. We will find the assets @ which minimize
the mean squared error ES?. Put V := Edd'. We have then

(14) ES’ = E(a"d—-1"d)? = E(Ex—1)Tdd" (Ex 1)) = (Ex-1)"V(Ex—1).

This is obviously a convex function in x so that the minimum can be found by
putting the gradient equal to zero:

2
(15) OES _ 9RTVEx — 2ETVI =: 0.
ox
The solution is
(16) x = (ETVE)"'E"VI

provided the inverse exists. Thus the assets are in the form

(17) a=EETVE)'E"VL
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1.7 INDEX NUMBERS AND INFLATION

construction of index numbers, properties of index numbers, stock exchange in-
dexes, inflation, retail price index

In this Chapter we will use the following notation. Let @ = (a1,...,a,)",
b=(b,....0n)T €R*, a€R, 1:=(1,1,...,1)T. The symbols ”-” (more often
omitted), ”+”, */” will mean: @' -b:=a'b:= i a;b; (the scalar product),

but @b’ is the n X n matrix with elements a;b;, @ *b := (a1by,...,a,b,)", a/b:=
(@1/b1,...an/bn)T, a/a = (afay,...,afan)T, afa=(a1/e,...,an/a)T,a +a =
(a1 +a,...,an+ )", a® = (af,...,ad)T.

7.1 Construction of Index Numbers

Index numbers (or simply indexes) serve as a means for the comparison of the
same complex event either among territories at the same time (cross-section) or on
the same territory in different times (time series), see [18]. Without loss of generality
we will compare the events over time. The well-known indexes are RPI (Retail Price
Index, used in UK; the USA equivalent of RPI is CPI, Consumer Price Index)
and many of the stock exchange indexes like PX (Prague Stock Exchange), FTSE
(Financial Times Stock Exchange), Dow Jones, Standard and Poor’s (New York
Stock Exchange). All of the mentioned stock exchange indexes appear in various
modifications. Let us consider a complex event A, say the cost of living, which may
only be observed via some particular events Aj, ..., An like consumption of food,
household expenditures, etc. Usually N is large so that only n < N representatives
out of Ay,...,An can be used for computation purposes. We can renumber the
representatives to become A;, ..., A,. In period ¢, let the indicator of the particular
event A; be pi with weightg}, t =0,...,T,i=1,...,n. Denote p; := (p},...,p} T,
g: = (q},...,q")". Index t may be the index of a region or of a time period, e.g.
As we note above, we will consider ¢ as time. Similarly, the p’s will usually stand
for the prices while the g’s for the corresponding quantities or weights. It is the
goal of the theory of index numbers to find a scalar characteristics of changes of
a global price level over time. The price index is a number which shows how the
complex event A changes over time with changing prices p’s, while quantity index
measures the influence of changes in the quantities g’s.

Let s be the initial (base) period and ¢ be the current period, I the price index
describing the change in price level from time s to t. From the historical point of
view, the first attempt resulted in the following naive index

nog T
(1) I = Z:.fl pt = lTpt’
Zi=1 22 1'ps
which has the disadvantage that it depends on the quantity units in which the
prices are given. Another index suggested by Edgeworth is simply the geometric
mean of the corresponding ratios of prices:

2
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which has the same unfavorable property as (1) but there is an idea behind, i.e.,
if the ratios pi/p’ are random variables possessing a log-normal distribution then
the geometric mean would be a good estimator. A better approach starts with the
idea that the price index should be a weighted arithmetic mean of the ratios pf/pt
with weights w = (wy,...,ws) " :

n 1
(3) Ist=zwip—:=w1—&-
ps ps

i=1

A suitable (and generally accepted) choice of weights takes the form

Ds *qr
4 w= .
@ P;q:
For 0 = 7 = s we get the Laspéyres price index

)T

(5) IL —_ (ps * qs & — p;rQS
st p:‘]s Ds Pqus

and putting ¢ = s, 7 = t we get Paasche price index

p_(Ps*xa)" p _ pla
(6) Ist = T = T
- bs;qt DPs Dsq:
The meaning of the so called aggregate p_l q, is clear; it is the price of a consumer’s
basket if he or she buys quantities g, for prices p,. The index numbers are defined
as the ratios of these aggregates.

In practise, there are two ways of comparison: a) we compare the price level
with the initial (base) period and afterwards we obtain I, ... J& if we take the
weights from the base period (base-weighted index) or I§, ... Iir if we take the
weights from the current period (current-weighted index), b) we create the chain
of indexes Ip1, T2, ..., IT—1,7, with the same meaning as in a).

The index numbers should have some desirable and natural properties: (i) Iy =
1, (i) Islis = 1 (change of time), (iii) H;’r:_ol I ++1 = Ior (chain rule). Neither
Laspeyrese nor Paasche index generally fulfil (ii) or (iii). For example,

_PiQo

_PLOPIa .
2" plao

IEIE =
01712 ™ plgo P @

The equality in the last expression is achieved if go = g1 which is not too realistic
since the individuals adapt to price level. The ratio

(7 Bz =

is called bias. Let us examine the bias for the Laspeyres index number. Put
X = p2/P1, Y = q1/qo, and £ = (p1 * go)/P; go. Obviously 17f = 1, so that f are
weights. Then
T, T T T T T T
P190Pq1PoG _ P2q1 , P q1Ps 0 xxy) f
(8) -B(I)L2 ¥ 2 0 _ 2 /( 1 2 ( )

PogoPiqiPid Pig Pl@oP g xfy'f’
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Denote further Z := x'f, § := y'f, the weighted means, s, := /fT(x — Z)2,
sy := /T (y — §)?, the weighted standard errors,

(x*xy) f—zy
Tgy i= ———————,
528y
the correlation coefficient, Vy := s,/%, V, 1= s,/§, the coefficients of variation.
Then
SzSyTgy + TY
9) B =W T 4, Vi,

If 7z, > 0 which is the case if the demand increases, g1/go , consequently the
prices in the next period go up, ps/p1 . We can conclude that the Laspeyres
price index has positive bias. The reverse is true for the Paasche index. The basic
ideas concerning this problem may be found in [18].

We give three examples of more sophisticated index numbers which avoid some
lacks of the above indexes. The Lowe price index is defined by

T
w _ Pt 4

(10) Ist - p;r q’

where g are weights constant over time, possibly constructed artificially. The

Edgeworth—Marshall price index takes the weights as the arithmetic mean of the
weights of the compared periods %(Qs +q):

T
+qt)
(11) ot p.;r(Qs +qt)

The geometric mean of the Laspeyrese and Paasche index gives the Fisher price
index number

"\ pla, pla:

Lowe and Fisher indexes have already the desirable properties (1), (ii), and (iii).

7.2 Stock Exchange Indicators

Most of the stock exchange or market indicators are constructed in a similar
way as the Laspeyres price index. There are some exceptions, however. We start
with one of the oldest indicators, the Dow Jones Industrial Average (DJIA) which
monitors 30 best stocks (called blue chips) traded on the New York Stock Exchange
(NYSE). It is defined by:

1 30 . 1.+
DJIAt = B: Zpt = D_tl Pt
i=1
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where D; is called divisor. Originally the divisor (in 1928) was just the number of
involved stocks, D1g2s = 30. Later it served to ensure continuity of the correspond-
ing time series due to mergers, splits, replacement of the companies in the index,
etc. In 1991, Digo1 = 0.559. This phenomenon may be recognized as the change of
representatives and the problem of continuity can be generally settled down in the
following way. Let to be the time of change. Let I, ... ,I, be the values of the
indicators based on old representatives, and It’o, ..., the values based on new
representatives. To ensure the continuity, the following relation must hold:

Ito = OtoIéo'

The indicators based on new representatives are afterwards multiplied by Ct,, the
continuity factor, until a further change of representatives. Hence the series will
look like

1 1
I]_,...,Ito = CtOIt07Ct0Ito+1""7

till the next change of the representatives. Most of the indicators are also adjusted
(multiplied by a factor) to commence with the initial value 100 or 1000, say.

Other market indicators use the weights; the market prices p; are weighted by
the numbers of shares outstanding g;. Therefore the value of the indicator is

Cto P;FQta

where Cy, is a proper continuity factor. A popular composite index of this type is
Standard & Poor’s 500 (S & P 500) consisting of 400 industrial, 20 transportation,
40 utility, and 40 financial stocks. Another one is NYSE Composite Index which
consists of about 1600 stocks. Finally, let us mention a sample of other frequently
used indicators which are constructed similarly; NASDAQ (the National Associa-
tion of Security Dealers Automatic Quotation), AMEX (American Stock Exchange)
and non-American indexes Nikkei (Tokyo), FTSI (Financial Times Share Index,
London), DAX 30 (Germany), PX 50 (Prague).

7.3 Inflation

In 2.4 we have seen that inflation has an important impact on the determination
of the interest rate. Inflation means an increase of the general price level and, as a
consequence, a decrease of the purchasing power of money. An opposite to inflation
is the deflation which can occasionally also be observed as in the United Kingdom in
the period 1920-1935. Inflation is measured by the retail price index (RPI, United
Kingdom) or by the consumer price index (CPI, USA).

Usually, the retail price index is constructed as a slight modification to the
Laspeyres price index by a government statistical office and its construction is a
rather complex task. The weights are derived from the sample surveys of the
composition of a consumer basket. They have to change from time to time. At the
beginning of last century, the consumer basket consisted mainly of the essentials;
in the United Kingdom the weight of food was 60 per cent in 1914; some sixty years
later it was only 25 per cent and it decreased to 16 per cent in 1990.
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731 Example (RPI in the Czech Republic). Thousands of goods are
grouped in 10 main groups and the total of weights is 1000. The groups and
their weights in 1993 were: food 327.1, housing 143.7, transport 104.8, leisure 97.5,
clothing 90.9, household goods and services 77.2, other goods and services 50.5,
public catering and accommodation 47.2, health care 44.2, education 16.9. Thus
the importance of food in the index was 32.71 per cent. Denote these weights as
g1993. Let us look on the situation in August 1997 (denoted as 8/1997). The current
monthly inflation is calculated from the index

T
Dg /199791993
I7/1007,8/1007 = S[9TTT = 1.007,

T
P7/1997111993

i.e., 100.7 per cent with 7/1997 set to 100 per cent. Thus the monthly inflation was
0.7 per cent. In comparison to August 1996

T
Dg /109791993
I3/1996,8/1997 = 39977 - 1.099

-
pg/]ggﬁQlQQS

or 109.9 per cent. Comparison with the yearly average of 1994 is calculated as

T
Dg /199791993
Tg94,8/1007 = SB[ 1.319.

T
DP199491993

Finally, the yearly inflation for the period September 1996 to August 1997 (9/1996—
8/1997) compared to the same period of the past year is calculated from

-
_ Py/1996-8/199791993
Io/1995-8/1996,9/1996-8/1997 = —F = 1.079
9,/1995—8,/1996 91993

so that the current yearly inflation was 7.9 per cent.
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1.8 BASICS OF UTILITY THEORY

utility function, marginal utility, risk aversion, certainty equivalent

8.1 The Concept of Utility

Utility in economic theory means a degree of satisfaction or welfare coming from
an economic activity, from possession or consumption of goods. In financial world,
by utility we usually mean the welfare originated from investment. Suppose that we
have an N-dimensional set of investment opportunities X'. For x = (z1,...,znN)" €
X, x, will be understood as the volume of the investment into the nth investment.
In utility theory we suppose that there is an ordering relation on X x X denoted
by . If x, y € X, then x ZZ y means that X is weakly preferred to'y. If x =y
but not y 7 x we say that x is preferredto y, and write x > y. If x = y and
y 7~ x we say that x is equivalent to y and write X ~ y. It is reasonable to assume
that ¥V x, y, z € X either x = y ory 2 x (completeness), x - x (reflexivity), and
(x =y Ay Z z) = x 7z (transitivity).

8.2 Utility Function

If there exists a real valued function U : X — R such that
U)>Uy)ex=y)AURX =Uly)ex~y),

it is called ordinal utility function, shortly utility function, and the underlying
theory is known as ordinal utility theory. Obviously from x > y it follows that
U(x) > U(y). For any given ¢ € R, the set Z, = {x € X : U(x) = ¢} is called
the indifference set. The corresponding plot is called the indifference surface or
indifference curve. This means that from the point of view of an investor, all the
investment opportunities from Z,; provide the same degree of satisfaction and the
investor cannot distinguish among them.

Finally note that for decision making the utility function contains only the in-
formation on ordering. In most cases there is no interpretation of a specific value
of U(x). If we consider any increasing function of U(x), the conclusions remain the
same. Such an invariance property may be an advantage in calculations.

8.2.1 Example. Let us consider the utility function (N = 2)

’LL(.’L‘1,1L'2) = /71 + V225.
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The indifference curves for ¢ = 2, 2.5, 3 are shown in Figure 10.

3

2.8

Figure 10: Indifference Curves

In the rightward direction the utility increases.

8.3 Characteristics of Utility Functions

Obviously, the utility function is increasing in the sense of preferences. The
slope of the indifference curve can be expressed in terms of the respective derivative
dz;/dz;. If U(x) = c then the total differential

dU = —a—gdml-f-""l‘a—UdilJN:O
oz, Ozn

and if we let all z{ s but z; and z; constant we get
k F] g

_dz;  OU(x)/0z;

Si; gives the marginal rate of substitution; the increase by one unit of i must be
compensated by the increase of S;; units of j. Since usually S;; < 0, the increase
of ¢ results in a decrease of j by |S;;| units. (Remark, that for unknown reasons
in literature the marginal rate of substitution is defined with the opposite sign as
—dSCj / dfl)z)

A simple observation of the behavior of a rational investor leads to the law of
diminishing marginal utility:

With increasing amount of investment the additional satisfaction

or utility will decrease, ceteris paribus.

The explanation is simple. Suppose that in situation A you invest USD 10,000
and get 10 per cent return, i.e. USD 1,000. In situation B you have already invested
USD 1,000,000 and have got 10 per cent return again, i.e. USD 100,000. If you
invest some additional USD 10,000 in situation B, your return will increase to USD
101,000. Surely these additional USD 1,000 in situation B will not be valued as the
same amount in situation A.

Mathematically, the law of diminishing marginal utility says that the utility
function describing reasonable principles of decision making is concave. We can
summarize natural assumptions on a utility function:

The utility function is increasing, concave, and twice differentiable.
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It should be emphasized that the invariance property (application of an increas-
ing function to the utility function) does not preserve concavity in general.

In practise, utility functions usually depend on x through some aggregate func-
tions which may be functions of another utility functions as is the following case.
Let the costs of the respective investments be expressed by the price vector p =
(p1,...,pn) . Further let us suppose that the wealth of the investor is W so that
he or she can choose an arbitrary x satisfying the condition p"x < W. If we do
not suppose an immediate consumption (which brings another problem), we may
suppose p' x = W. Given a utility function U = U(x) we can define another utility
function

e Us(W) = max {(U(x) : p"x = W)
which, given p, depends only on W.

8.4 Some Particular Utility Functions

A broad class of utility functions are separable in the sense

N
U(X) = Z wnUn(xn)

where U,’s are utility functions and w,’s are positive weights. Such a utility func-
tion is additively separable but since the equivalent utility function

N
exp{U(x)} = [] exp{wnUn(zn)}

n=1

is multiplicatively separable we do not need to stress the kind of separability.
An example of the above is

1 N
®3) Uy(x) = = > anay
v n=1

for positive constants a, and 0 < v < 1. For v =1 this function is linear and for
~ < 1 it is concave. For 7 — 04 it becomes

N
(4) Up(x) = Z aplnz,
n=l

which is always concave. This utility function is evidently related to the Cobb-
Douglas production function

N

(5) Ucp(x) = [ =5

n—1
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but this function is both increasing and concave only for 0 < a, < 1. Next we
review some other frequently used types of utility functions. Some of them will be
analyzed in the next Section. The utility function

(6) vu(w) = =2 (2 +n)7

is defined for the values W satisfying BW/(1 — ) +n > 0, where 8 > 0, v # 1, and
n are parameters. The exponential utility function

(7 Ug(W) = —11—76"’7W

is defined for W > 0, where 7 > 0 is a parameter. The already mentioned power
utility function

(8) Up(W) = %W”

fory — 04 becomes the logarithmic utility function
(9) UL(W)=InW.
8.5 Risk Considerations

In mean-variance portfolio theory (see Chapter 9 for details) there are two de-
cision variables involved: p and o, the expected return and risk, respectively. One
possible choice among various utility functions is the quadratic utility function

(10) Up,o;k) = p — ko2,

Since the objective is to maximize the utility with respect to some budget con-
straints, the parameter £ may be interpreted as a measure of the investor’s risk
aversion. The higher &, the more adverse to risk the investor is. An analogy to (10)
with parametrized expected return is

(11 U(p,03)0) = A — o>,

Obviously, the lower A, the higher the risk aversion, see 11.3.2.1.

So far we have not dealt with random arguments of utility functions. The above
mentioned risk aversion may be explained as follows. The investor may decide
between two investment decisions; the first one results in a fixed certain amount W
while the second one results in arandom amount W +&, where € is a random variable
with zero mean and a positive variance, E&€ = 0, vare > 0. Since we suppose
increasing utility functions it follows that with probability P(e > 0) the resulting
utility will fulfill U(W +¢) > U{(W) but with P(e < 0) it will be U(W +¢) < U(W).
The expected value of the resulting amount is the same in both cases, equal to W,
but the risk averse investor will prefer certain utility to the expected one:

(12) EUW +¢) < UEW +¢)) = UW).
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It is reasonable to suppose that the last inequality is true for all acceptable levels
of W. By Jensen inequality, (12) is assured if U is strictly concave, ie., VA €
(0,1) Vwlw? UQw!+ (1 - Nw?) > XU (w!) + (1 = AU (w?).

If the utility function of an investor is linear, then the investor is called risk-
neutral, and if it is convex, the investor is called risk loving or risk seeking.

In what follows we will suppose that the investors are risk averse. The investor’s
aversion to risk can be measured in many ways but there are two measures of
particular importance: absolute and relative risk aversion. Assume (see [143], p.
478) that the total investment of USD 10,000 is divided between (risky) stocks and
the Treasury bills in equal proportions, USD 5,000 in stocks and USD 5,000 in T-
bills. That is the decision of the investor with the initial wish to invest USD 10,000.
Suppose now that there are USD 100,000 at the investor’s disposal. If the investor
increases the amount invested in stocks from USD 5,000 to USD 20,000, say, then
he or she manifests the decreasing absolute risk aversion. This is the most common
behavior of the investors. With increasing investor’s wealth, the amount invested
in risky assets also increases. Analogously, the increasing absolute risk aversion is
characterized by the behavior of the investor who reduces the dollar investment
into risky assets as his or her wealth increases. If the amount invested into stocks
remains the same (not proportion but amount!), we speak of the constant absolute
risk aversion.

A convenient measure of the absolute risk aversion based on an underlying utility
function has been proposed by Arrow and Pratt and is known as the Pratt-Arrow
absolute risk aversion function:

_ U"(W)
(13) AW) = T
The related relative risk aversion function is defined by
(14) R(W) = WA(W).

8.5.1 Remark (HARA Utility Functions)

In (6) we have defined a class of utility functions {Ug}. The utility functions from
this class are called HARA utility functions (abbreviation for Hyperbolic Absolute
Risk Aversion). To find the reason just calculate the corresponding A(W) from
(13).

8.5.2  Exercise. Derive A(W) and R(W) for utility functions presented in 8.4
and comment the results.

8.6 Certainty Equivalent

We have seen that for risk averse investors the utility function is concave. A
natural question arises, what certain amount is needed to achieve the same utility
as the expected utility with a random wealth. In other words, let W be a random
variable representing the wealth and W, be an amount called certainty equivalent.
By the principle, W, is the amount that satisfies the equation

(15) UW,) =EUW).
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Since for strictly concave utility functions EU(W) < U(E W), surely the certainty
equivalent satisfies W, < EW.

8.6.1 Example (Multiperiod Certainty Equivalent Model). Suppose a

nonnegative random cash flow CF = (CFy,...,CFr), the logarithmic utility func-
tion U(W) = In(1 + W), and the valuation discount factor v. We are looking for
a certainty equivalent cash flow C = (Cy,...,Ct) which gives the holder the same

utility in terms of the present value as the expected discounted random cash flow:

T

T
(16) S Ut =) EUCEW

t=1 t=1

and which is “minimal” in the following sense:
T
an mén ; Ct,
see [100]. The solution is given by the method of Lagrange multipliers. The corre-

sponding Lagrange function is

T
L(C,N) = Y_[C: — AU(C)) ~ EU(CF))]".

t=1
The solution is found by setting the gradient of L equal to zero

0L(C) _
ac = °

which is equivalent to the system of equations

A
1*0t+1—0,

We conclude that the certainty equivalent cash flow is constant, C; = C*, and C*
can be found from (16):

¢ oo [ D= EUCEWY
(18) C* =exp ( 23;1 " ) 1.
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.9 MARKOWITZ MEAN-VARIANCE PORTFOLIO

portfolio, efficient market, market portfolio, efficient portfolio, minimum-variance
portfolio, Sharpe ratio, optimal portfolios of riskless and risky assets, separation
theorem, tangency portfolio, geometry of minimum-variance portfolios

We have mentioned earlier that almost every investment is uncertain with respect
to the gain obtained in the future. A natural question arises, is it possible to reduce
the risk related to investment by some sophisticated procedure? The answer is yes,
and the method is diversification. A very old rule says that you should divide
your disposable funds (wealth) into three equal parts; one third put into deposits,
one third invest into shares, and buy gold for the remaining third. This approach
may seem to be naive but clearly it is a method for reducing risk. Here we deal
with more exact, still elementary procedures, which give the investor hints how to
diversify his or her funds. We deal with the classical topics concerning optimal
portfolio selection, the rigorous treatment of which has been started by Markowitz
[112]. In the explanation we will restrict ourselves to financial assets only (shares,
bonds, derivatives) despite the fact that the ideas and results may be applied to
real assets as well. More details and specific models are treated in Part II.

Although it is not necessary to assume too much for the purpose of the mathe-
matical construction of an optimal portfolio, usually some reasonable and some ar-
tificial restrictive economical assumptions are made in this case, and follow Marko-
witz, Tobin, and Sharpe. A market is said to be the efficient market if it fulfills
the assumptions below. (We add the comments to the assumptions in brackets:
realistic — usually fulfilled, limited — may be fulfilled in most cases, restrictive —
unlikely in most cases, unrealistic — hardly to be fulfilled.)

(1) The investors make decisions on their portfolios exclusively on the informa-
tion based on the expected returns and covariance structure of returns, or
in other words they have homogeneous expectations (realistic).

(2) The investors choose portfolios with the highest expected return among
those with the same risk (rational behavior, realistic).

(3) The investors choose portfolios with the smallest risk among those with the
same expected return (risk aversion, realistic).

(4) The assets are infinitely divisible (limited, because trading on a stock ex-
change is usually performed in lots — a /ot means one hundred stocks,
say — and there are extra costs for trading the fractions of lots).

(5) The investment horizon is one period of time (realistic).

(6) There are no transaction costs and taxes (limited, but the costs or taxes
may partly be incorporated into the returns if they are linear functions of
a traded volume).

(7) There exists just one riskless interest rate and all the investors can lend or
borrow any amount of necessary funds at this riskless interest rate (unreal-
istic).

(8) All the assets in question are marketable (realistic).

(9) The investors can sell assets short (restrictive, mostly by legal regulations).
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(10) No investor can affect the returns of the respective assets substantially (re-
strictive, since, in other words, it means that there is no investor with funds
exceeding the other investors’ funds too much).

(11) All necessary information (about means and covariances) are equally avail-
able to all the investors at the same time (restrictive).

Under these assumptions, the market equilibrium takes place since the investors
have perfect knowledge of the market and behave in a rational way (they are risk
averse).

9.1 Portfolio

By portfolio we mean a group of (financial) assets. A rational investor chooses
his/her portfolio so as to maximize the expected return and to minimize the risk.
More precisely, let us consider N assets, 1,..., N, say, and the wealth (disposable
money) equal to 1. Portfolio is then the vector x = (z,...,zn)", Where z,
represents the fraction of the unit wealth invested in the nth asset, n = 1,..., N,
so that 17x = 1. Generally, at the moment, we do not suppose 2, > 0 since the
case z,, < 0 has an economic meaning. This is the case of short sales; the investor
can sell a security that he or she does not own. It is equivalent to the borrowing
of the respective asset, a kind of speculation. Further, let us suppose that the
returns (alternatively the rates of return) of the N mentioned assets are random
variables p = (p1,...,pNn)" with the expected returnst = Ep = (r1,...,7N)"
and the covariance matrix V = (oy;) where oy = cov(pi,p;), 4,5 = 1,...,N.
Alternatively, we will denote the diagonal elements o2 := gy;, the o;’s standing for
standard deviations of the returns: o; = /0. For a given portfolio p, represented
by weights x, the expected return on the portfolio p is

(1) rp=r'X

and the variance of the portfolio (which is an abbreviation for the variance of the
portfolio return) p is

(2) af, =x'Vx.

The risk of the portfolio p is simply the standard deviation
(3) op = 4/02.

9.1.1 Example. Let us consider two assets A and B in the period of nine years
with the corresponding returns (in per cent): 17, 13, 15, 20, 10, 16, 14, 12, 18
for the asset A and 13, 17, 15, 10, 20, 14, 16, 18, 12 for the asset B. The mean
returns for both the assets based on these historical data are the same and equal
to 15. The risks are also the same, 3.1225. If we invest all the unit wealth to any
of the assets, we can expect a risky return 15 per cent. If we divide our unit wealth
equally between the two assets, we have certain return 15 per cent over the given
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time interval with no risk. This is the case if the returns are perfectly negatively
18

correlated, see Figure 11.
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Figure 11: Returns of two assets

9.1.2 Market and Efficient Portfolio

A market portfolio is any portfolio in which all the assets come in the same
fractions as they appear on the capital market, expressed by their capitalization
(market value of the respective asset multiplied by the number of the assets). This
is an abstract notion and in practise we usually substitute it by a properly chosen
stock exchange index. A portfolio x* is called efficient portfolio if there is no other
portfolio x such that

ETx*<r’x A X TV X V) V(' x*=r"x A x* Vx* > x"Vx).

In other words, an efficient portfolio is a portfolio for which there is no other
portfolio with the same or greater expected return and smaller risk.

9.2 Construction of Optimal Portfolios and Separation
Theorems

There is a variety of problems concerning the choice of an “optimal portfolio”.
Our decisions here will be based just on the information about the expected returns
and the covariance structure of the returns. This is known as Markowitz approach,
see Part II for more details. Two basic problems appear in this context:

(i) to minimize 1x7 Vx subject to 17x =1, r' x = u, where 4 is the prescribed
expected return. In other words, the investor seeks the expected return p with
minimum risk. The corresponding portfolio is called minimum-variance portfolio.
Note that minimizing the risk is equivalent to minimizing the variance.

(ii) to maximize the so called Sharpe’s ratio or Sharpe’s measure of portfolio

expected return on portfolio  r'x

risk of portfolio T VXTVX

(4)

subject to 17x = 1.
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In any of the problems above the following cases may be considered: x arbitrary
(short sales allowed), x > 0 (short sales are not allowed), V positive definite (which
implies that there is no riskless asset), or V just positive semidefinite. The latter
case may occur if there exists a riskless asset or if the returns of two assets are
perfectly correlated, e.g., in which case the matrix V is singular. Note that if V is
singular then (ii) has no sense.

9.2.1 Example. Let us consider two assets with expected returns r = (8, 14)7,
o011 = 9, 023 = 36, 012 = 021 = 0/011022 = 189 where g is the correlation between

returns p; and po so that
{9 18
V= (189 36 ) )

We will analyse the portfolio of the two assets with ¢ as a parameter. Obviously,

the risks of the assets 1 and 2 are 3 and 6, respectively. Let x = (xy,z5) " denote a

portfolio p. Since z; + 2 = 1, we can express the expected return on the portfolio
rp = 81 + 14(1 - .’131) =14 — 62,

and the variance of the portfolio

02 = 9x% + 360z1(1 — z1) + 36(1 — 21)°.

Figure 12: Efficient Frontiers

The dependence between the expected return and risk is usually plotted in the
risk — expected-return plane or the standard-deviation — expected-return plane and
the corresponding curves are called efficient frontiers. For selected values of g, the
dependence is illustrated in Figure 12 for z; € [0,1]. We see that zero risk can
be attained only in the case of perfect negative correlation between the returns,
¢ = —1. Next we find the minimum-variance portfolio. Since for Jo} < 1 the
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portfolio variance a3 is a positive definite quadratic form, it suffices to find the root
of the equation
do?

P _ _18(- - = 0.
T 18(—20+ 11(4d0~5) +4):=0

The solution to this equation is

2(e-2)
zy = e x5 =

The corresponding expected return and variance of the portfolio are

o 440 — 46 o2 = 36(0® — 1).
P 40-5 P 40-5

A simple analysis shows that for ¢ < 0.5 the corresponding 7 is in the range [0,1],
while for o > 0.5 it exceeds 1, so that to reach the minimum risk it is necessary
to sale short or to borrow the asset 2. In the extreme case ¢ = 1, 7 = 2, so that
the necessary additional fund is obtained by selling the asset 2 of value 1 short,
5 = —1. With zero risk, the maximum expected return is only attainable for
o = —1 in which case the expected return is 10. This can rarely happen in the real
world. We can also observe that for all risks but one there are two portfolios with
the same risk but two different expected returns.

9.2.2 Remark

The reader may verify that in case of two assets with V = (035), ¢,5 = 1,2, the
minimum-variance portfolio has

o = o2(02 — 001)
T = .

011 — 200102 + 022

: — * . _ O —_ * __ a _
Particularly, for g = —~1wehave z7] = —2—01 T foro=02z7 = ———22—-011 e and forpg =1
¥ = 22— provided o, # o3.

g2—01

9.2.3 Example (Riskless Asset). Suppose that we have just two assets, one
riskless with return ro, and one risky (call it A), with expected return r4 and
variance 0. Let us build a portfolio from these two assets with weights zo standing
for the riskless asset and x4 for the risky asset, zg + 4 = 1. Then the expected
return on the portfolio is rp = (1 — za)re + £4T4 With variance o2 = z%0%. The
dependence in the risk — expected-return plane is linear. For 0 < 4 <1 it means
that the investor lends the portion 1 — x4 of his or her money at the interest rate
ro while for z4 > 1, the investor borrows at the riskless interest rate. Borrowing
money at the riskless interest rate seems not to be quite realistic, however. The
Government are an exception.
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9.2.4 General Solution (Risky Assets, Short Sales Allowed)

Here we will solve the problem

minimize %XTVX subject to 1Tx =1, r"x = p, p prescribed.

Suppose V positive definite. We exclude the case r = k1 for some constant k
since in this case the solution is trivial; simply take just one asset ng for which
no = arg glligN o2. Now we can obtain the solution by the method of Lagrange

multipliers. The Lagrange function for the problem is
1
L(x,)M1,A2) = ExTVx + 01 -1Tx) 4+ A(p—r'x)

and the equation 5
—L=Vx—-—M1-)r=0
ox

gives the optimal solution

(5) xX* =MV 4+ AV,

Put A:=1"V~'1, B:=1"V~Ir, C:=r"V~!r, and A := AC — B2. Obviously,
A>0,C >0, A >0. The last inequality is a simple consequence of the Schwarz
inequality since we have supposed 1 and r linearly independent. The constants Ap,
A2 can be derived from the initial conditions:

1=1"x=MA+ XB,

p=r"x=MB+\C,

so that

(6) AL =

Now we have to distinguish the two cases:

() 1"V-lr=0

First, let us note that we can hardly meet this case in practise, but, from the
theoretical point of view a for given V we can find a subspace of ¥s of dimension
N-—1 satisfying 1TV~1r = 0. In this case

1 [z
M=y M T v

so that the minimum-variance portfolio is

v-11 pV-ir
17V-11  pTV-1p

x*

(b) 1TV-lr £0
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Put
v-11 .  V7ir
v X T TveI
The minimum-variance portfolio may now be expressed in the form (with §’s de-
pendent on p)

(") x!

x* = §1x! + dox?

with 8; = A(C — uB)/A =: §(u) and 6, = B(uA — B)/A =1 — §(u) where x!, x?
may be considered as the basis portfolios.
Note that
1'x*=1= (51].TX1 + 521Tx2 =8 +0s.

The optimal portfolio may be expressed in an alternative form:

(8) x* = §(u)x" + (1 - 8(u))x”.

It is important to emphasize that the basis portfolios x! and x? are independent of

the prescribed g but the weight §(x) does depend on .

9.2.5 Remark (Alternative Form of the Minimum-Variance Portfolio)
Put z; = x(CV™'1—-BV~Ir) and z, = £(AV~'r — BV~'1), where z; is a

portfolio. Then (8) may be expressed in the form

9) x* = 2y + uze.

9.2.6 Two Funds Separation Theorem. Letx,, Xy be two minimum-variance
portfolios with expected returns rq; Ty, respectively, v, # ry. Then every minimum-
variance portfolio X. can be expressed in the form X, = aXq+ (1 —a)xp for some .
Every portfolio of the form X, = aX,+ (1 —a)xp is a minimum-variance portfolio.

Proof. Let r, denote the expected return on the minimum-variance portfolio x,.
Choose « such thatr, = arg + (1 — a)rp, thatis, @ = (rc — rp)/(re — 7). The
coefficients A;, A2 in (6) for portfolios a, b are

1 1 .
/\li = K(C - ’l‘iB), /\2,’ = Z(T,,A - B), 1= a,b

and since X, is also a minimum-variance portfolio, the above relations hold for 2 = ¢
as well. Now

Xe =MV 4+ M Voir= %(C -r.B)V7l1 4 %(TCA -B)V7ir=
1
%(0 ~ar,B = (1~ @) BYV"1+ 1 (ars A+ (1= @A~ B)V"'r =

%(a(C—wQB) —(1—a)(C—rsB)V-11+ %(a(raA—B)+(1 —a)(rsA—B))V-1r =
(@ria + (1 = )A) V7L + (adge + (1 = @)Agp) V7 ir =
a(Ma V11 + 22, Vi) + (1 = @) (A V™ 1 4+ Ay V7 ir) =
ax, + (1 — a)xp.

The second assertion is obvious. O
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9.2.7 Remark (Covariance Between the Returns of Two
Minimum-Variance Portfolios)

Let x4, xp be two minimum-variance portfolios with expected returns rg, 7,
respectively. Then, after some algebra, we get the covariance

(10) cov (x4 p,Xp p) =X, VX =
MV 4+ X, VI TV VI 4+ X, V) = %(Ararb — Br, — Bry + C).

As a consequence, the variance of a minimum-variance portfolio x with the expected
return r is

(11) o*(r):=varx p= %(Ar2 —2Br + C).

The global minimum-variance portfolio Xg is defined as the portfolio for which the
variance ¢2(r) attains its minimum. We have

do%(r) 2Ar —2B
or A

Thus the expected return rg corresponding to the global minimum-variance port-
folio is

B
rg = _A._
sothat A\g = 1/4, X2 = 0and
V-1
(12) X6 = Fv-i1
and the variance of the portfolio xg is
var (x%p) =

1
The usual graphical representation of the set of minimum-variance portfolios is in
the so called expected-return—variance plane or in the expected-return — standard-
deviation plane. The resulting plot is also known as minimum-variance frontier.
From the expression for the variance of minimum-variance portfolios o2(r) we im-
mediately see that the dependence of the variance on any given expected return
is expressed as a parabola while the dependence of the risk on any given expected
return r is expressed as a hyperbola:

(13) o(r) = \/%(Ar2 —2Br+C).

The focus of this hyperbola is at the point zg = B/A and o(rg) = 1/v/A. The
derivative of o(r) is

Ar - B
VA(Ar2 Z2Br +C)
Taking the limits of this expression as r — 00, r — —o00, we get the slopes of the
asymptotes of the hyperbola, \/A/A, —/A/A, respectively. For historical reasons,
the plot is in the form where the standard deviation (risk) is on the horizontal axis

while the expected return is on the vertical one. The asymptotes expressed as
functions of ¢ are r(¢) = B/A+ o+/A/A in this case.

a'(ry=
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9.2.8 Remark

With the exception g = B/A, there are two minimum-variance portfolios with
the same risk but two different expected returns. If we have the prescribed expected
return 4 < B/A then a simple calculation shows that the minimum-variance port-
folio with the prescribed expected return & = 2B/A — p has the same variance,
0%(u) = o%(f). Thus, in accordance with the definition of an efficient portfolio, the
set of efficient portfolios consists of all minimum-variance portfolios with expected
returns g > B/A. In literature, the minimum-variance portfolios with expected
returns less than B/A are often called inefficient portfolios.

9.2.9 Remark (Orthogonal Minimum-Variance Portfolios)

Let us seek the condition for expected returns of two minimum-variance port-
folios @, b with uncorrelated returns. (Verify that this problem has no solution
if either of these portfolios is the global minimum-variance portfolio.) From the
formula in Remark 2.8.4 it follows that Arary — Br, — Bry + C = 0 so that
ro = (Bry — C)/(Ary — B), rp # B/A, orequivalently, r, = (Br, — C)/(Ar, — B),
re # B/A. Note that portfolio a is efficient if and only if b is inefficient.

9.2.10 Remark

The global minimum variance portfolio has a peculiar covariance property. We
have cov (pTxg, p'x) = 1/A for every portfolio x. This is of course also valid for
any single asset: cov (p' Xg,pn) =1/A,n=1,...,N.

9.2.11 Maximum of Sharpe’s Ratio (Risky Assets, Short Sales Allowed)

There is no straightforward approach to the problem of direct maximizing the
Sharpe’s ratio defined in (4). Instead, we will solve the problem
maximize the square of the Sharpe’s ratio

(r'x)?

(14) xTVx

subject to 17x =1, V positive definite.

It is important to emphasize that the two problems are not equivalent. The
maximum of (14) may be reached for a portfolio giving negative expected return.
Such a result is useless, of course. Despite the fact that such a case can be rarely met
with on efficient markets, it is necessary to be careful when handling the emerging
markets or in the cases where the investors are not risk averse or simply do not pay
attention to the return to risk ratio.

To attack the problem first note that from the assumption of positive definiteness
of the matrix V it follows that there exists a symmetric square root matrix V1/2,
From Schwarz inequality it follows that

(xTx)? = (xTV-2V2%)? < (£ TV~ Ir) (x V)

so that T V~!r is the upper bound for the squared Sharpe’s ratio, and the equality
holds if and only if x = AV~!r for some . Since x should be a portfolio, it follows
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that A = 1/17V~!r provided the denominator is nonzero. If the denominator
equals zero then there is no solution to the problem. With this exception, the
optimal portfolio is

_ V7Ir
T 1TV-1pS

9.2.12 General Solution (Riskless and Risky Assets, Short Sales
Allowed)

(15) x*

In the presence of a riskless asset (also called riskfree assef) we can not fully
adopt the above theory since the covariance matrix between returns becomes sin-
gular. The modification of the previous results is possible, however. The portfolio
selection problem may now be formulated in the following way. Suppose we have
N risky assets 1,..., N with expected returns r as above, r # k1, and one riskless
asset 0 with return ro. Let p = (rg,p")T denote the (N + 1) x 1 vector of the
returns. It is economically plausible to suppose that on efficient markets the riskless
return 7o is less than the expected return on any risky efficient portfolio. Since the
global minimum-variance portfolio possesses the expected return rg = B/A, we
will therefore assume

o < —.

A

The covariance matrix of returns of the risky assets V is again assumed to be
positive definite. The unit wealth is allocated among N + 1 assets 0,1,..., N with
weights xo, 1, - - -, TN, and we are seeking a portfolio p represented asX = (zo,x™)T
which minimizes the squared risk (independent of the portion of the riskless asset)

1
(16) §XTVX
under the conditions
17 1"=1 zoro4r'x=p

where g is the prescribed expected return on the portfolio and symbol 1 now means
the (N + 1) x 1 vector of 1’s. Taking into account that zp = 1 — 17x, the second
condition may be rewritten as

(18) (r—rol) X = — 1o =: e

where . is called expected excess return, that means the return over the return of
the riskless asset. So we are forced to solve the problem of finding

1
(19) min —2-xTVx under condition (r —ro1) "X = pe.
Weight zg is not involved since afterwards it will be calculated using o =1—1"x.
The Lagrange function for this problem is

1

2xTVx + (e — (r —701) Tx)

L(x,v) =
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and from the equation

oL
5;=Vx+’y(r01—r)=0

we obtain the optimal solution

(20) x* =YV Hr - rel) Tp=1-1Tx*

with 7y satisfying the condition
(x —7o1) TV Hr —1o1) = o

or
He

V= AT " 2Bro + C’

where A, B, C are defined in 2.8. Such a portfolio is the portfolio with minimum
risk with prescribed expected excess return g and will be called minimum-variance
portfolio.

9.2.13 Two Funds Separation Theorem with Riskless and Risky Assets

Define X' := (1,0,...,0)7, the portfolio consisting of riskless asset only, and by

V-1(r —rel)
t
(21) X = e

the so called tangency portfolio, and %2 := (0,xt")T.

9.2.14 Two Funds Separation Theorem. Every minimum-variance portfolio
can be expressed in the form

% = 0% + (1 - 6)%2

where

pe(B — Arp)

=0l =1- 4 r 5B+ C

Proof. The proof is obvious. O

9.2.15 Corollary

Every portfolio consisting of minimum-variance portfolios is a minimum-variance
portfolio.
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9.2.16 Remark (Covariance Between the Returns of Two
Minimum-Variance Portfolios)

Let X,, X3 be two minimum-variance portfolios with expected excess returns pieq,
Heb, respectively. With weights 4’s given by Theorem 2.10.1 we get

(22) cov (X1 §, %7 p) = cov (0, % + (1 — 6,)%2) 5, (Xt + (1 — 8,)%2) T p) =

1-8)(1—6 Txt pTxt) = — Healleb
( )( b)COV(p x)p X) AT%—2B’I‘0+C

Thus the variance of a minimum-variance portfolio in the presence of a riskless
asset with expected return p becomes

20, — (1= 10)?
(23) o0 (k) = Ari ~2Bro +C’

9.2.17 Remark (Properties of Tangency Portfolio)

A simple calculation shows that the tangency portfolio has the expected return
rt = (C — Bro)/(B — Aro) so that the expected excess return is

AT% —2Brg +C

(24) - Het = B — Arg

As a consequence, the variance of the tangency portfolio is

Ar2 —2Bro +C

25 o2 :=var(p'xt) =" "0 7
( ) t (p ) ( B _ AT0)2
Note that, since both the numerator and denominator in (24) are positive, also the
expected excess return is positive.

9.2.18 Assertion. The tangency portfolio belongs to the set of efficient portfolios
of risky assets.

Proof. Since the expected return on the tangency portfolio is
rt = (C' ~ Bro)/(B — Arg), we just calculate the Lagrange multipliers:

1

T
M= Fd M= BT

B—A’I‘o
g

9.2.19 Remark

For expected excess return p. € [0, pet] we get § € [0,1]. This is the case of no
short sales either of the riskless asset or of the tangency portfolio. A very unrealistic
case is the case of borrowing the riskless asset, i.e., § < 0 which leads to higher
expected returns than the tangency portfolio provides.
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9.2.20 Remark (Geometry of the Minimum-Variance Portfolios with a
Riskless Asset)

The dependence of the variance on the expected return in the expected-return —
variance plane is again a parabola but in the expected-return — standard-deviation
plane it becomes straight line

T—To

26 =
(26) o) = T —Bras 0

, T >Tp.

We have already mentioned that the tangency portfolio is a member of the set of
efficient portfolios of risky assets. The point corresponding to this portfolio in the
expected-return — standard-deviation plane is

- 2 _
P, = {C Bry /Arj —2Bro +C

B—A’I’o’ B—A’I‘o }

The line connecting the points Pg = {rg,0} and P; may be expressed as

(r) = = (r = o)
YW= Ja —2Bror 0.

For the derivative of the standard deviation of the return of the minimum-variance
portfolio consisting of risky assets only we have

do(r) Ar - B
or VA(Ar?2 = 2Br + C)

and if we substitute the expected return on the tangency portfolio,
r— (C - BTQ)/(B - A'I"o)

into the last expression, we get the tangency

1
Ar —2Bro + c

So P; is the tangency point of the hyperbola and therefore line y(r) is the tangency
line to the hyperbola.

9.2.21 Remark (Short Sales not Allowed)

If short sales are not allowed, we are not able to give an explicit solution to
the problem. The solution may be found by solving the quadratic optimization
problem:

(27) min -12-xTVx under the conditions #p =1=1"x>0 (r—rol)"x > pe.
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.10 CAPITAL ASSET PRICING MODEL
market portfolio, Sharpe-Lintner model, security market line, capital market line

10.1 Sharpe-Lintner Model

In this Chapter we keep the notation of 9.2.12 and the assumptions of an efficient
market. Capital Asset Pricing Model, shortly CAPM, expresses the expected excess
returns of the individual assets in terms of the market expected excess return.

10.1.1 Alternative Form of the Expected Excess Return

Denote p; := r'x* the expected return on the tangency portfolio and o the
vector of covariances between excess returns of the risky assets and the excess
return on the tangency portfolio. We have

r—rgl

(1) s =cov(p—rol,p'xt) = Vxt = B Ao

Hence the variance of the tangency portfolio is
r'xt —rolTx!  p—1o
B — Arg T B-Arg

(2) ol = xt Vxt =
so that B — Arg = (us —19)/02. On the other hand, r — rol = (B — Arp)o; so that
o
(3) r—rol = = (ps — 70).

gy

10.1.2 Market Portfolio

Under the assumptions of an efficient market all investors on the market select
their portfolios from the set of efficient portfolios. The investors differ only in their
risk aversion. Mathematically it is expressed by weight § in Theorem 9.2.14. Higher
values of § reflect higher risk aversion. Thus the weighted portfolio (according to
the individual investors’ wealth) consisting of the individual investors’ portfolios
also belongs to the set of efficient portfolios. The aggregate demand for risky assets
is in the proportions of the tangency portfolio. In equilibrium demand and supply
are equal and the proportions (both for riskless and risky assets) create the so called
market portfolio. In other words, the market portfolio is a wealth-weighted average
of the individual investors’ optimal portfolios. If there is no supply of the riskless
asset, the market portfolio coincides with the tangency portfolio. In practise, the
market portfolio is often approximated by a composition of a stock exchange index.
Let us denote such a market portfolio ¥™. It may be expressed in the form

(4) M = 6+ (1 - 0p)%2

for some 0 < 8y < 1. Put xM™ = (1 — é)s)xt, the part of the market portfolio cor-
responding to risky assets only. The return on the market portfolio M is therefore
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pM = Spro+(1—6a)pTxt, the expected return on M is par = Sarro + (1= Spr) e,
the variance of the return on M is o3, = (1 — dar)%0?, the expected excess return
on M is pen = piar — 1o = (1 —38pr) (e — 7o), and the vector of covariances between
excess returns of the risky assets and the excess return on the market portfolio
reads

r—'l"o].

(5) o = cov(p—r01,pxM) = (1= 6u) V' = (1= bar) =g

= (1 —5M)0't.

Now we substitute into formula (3) and after cancelling the factor (1 — dar) we get

(6) r—rl= ZTA":(uM — 7o) = B — 10)

where 8 = o /03, The last formula is known as CAPM also Sharpe-Lintner
model CAPM. For individual assets the CAPM becomes

(7) [ta =70 = Balpr —10), n=1,...,N|

with 8, = anM/a%,, or

a.
(8) T =10 = —2L (ppr — o),
oM

if we denote ap,p 1= cov(pn, pM).

The concept of the market portfolio is a bit abstract. By definition, it is the
wealth-weighted sum of the portfolio holdings of all investors. The weights can
hardly be observed in practise however, so for calculation an observable indicator
of the market performance is needed. Usually the market portfolio is approximated
by some stock exchange index like DJIA, S&P 500, FTSI, etc. The stock exchange
indexes serve as proxies for the market portfolio and the US Treasury bill rates
proxy the riskless rate.

10.2 Security Market Line

The graphical representation of (7) and (8) is known as the security market line,
SML. We see that (7) expresses the expected return on the nth asset as a function
of B, while (8) expresses the same quantity in dependence on the covariance o,ps.
We refer to (7) as to the B-version and to (8) as to the covariance version of the
security market line. The quantity 8 for an asset or a portfolio is called factor
beta and it plays an important role in equity (stock) valuation. For the market
portfolio, the corresponding ¥ = 1 and for the riskless asset By = 0. Obviously,
B =1 also for any efficient portfolio. The factor beta may be considered as a risk
factor. Assets with 8 > 1 are riskier than the market average and those with 8 < 1
are less risky than the market average.

For an arbitrary portfolio x, the factor 8, of that portfolio is 8, = x' 3, the
weighted average of the respective f,’s, B defined in (6). While the variance is a
risk measure of an efficient portfolio, beta may be considered as an indicator of the
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market risk of an individual security. For the asset n, we can express (7) in an
alternative way

(9) pn="0+Ba(pM —10)+€n, n=1,...,N

where the €,,’s are disturbances, E¢, =0, vare, = a,zw. From this equation we get
the expression for the variance of pn:

(10) 0n = Brods + one + 2c0v(pM, €5).

Often it is supposed that p™ and e, are not correlated (questionable) so that (10)

simplifies to

¢8)) op = Bho4 +ope

with the interpretation that the total risk o2 is decomposed into the market risk
202, and the unique or specific risk oZ,. Only the specific risk is diversifiable in

the sense that by holding the asset n in a sufficiently large portfolio, the prevailing

part of the risk of the whole portfolio is that of market risk. In practise, however,

it is not necessary to hold a portfolio mirroring the whole market portfolio. A

comparatively small portfolio of some tens of assets would eliminate most of the

specific risk.

Betas have to be estimated. The most common approach is based on linear
regression from historical data. If we have T observations of returns pp,; on the
asset n and on the market return p} (represented mainly by the actual value of a
stock exchange index), ¢t = 1, ... ,T', we can rewrite (9) in the form of regression
equations

(12) pnt = 1o + Ba(p} ~10) + €nt, t=1,...T
for unknown parameter S, if the riskless rate rq is supposed to be known or as
(13) Pt = Qp + BapM +Ene, t=1,...T

for unknown parameters o, By, if the excess return is not directly observable. The
estimate of beta obtained by the least squares principle is

=~ YT (o —P,) (oM = pM)
14 n = -
(4 Y (M — p)2

for model (12) where p,, and /W denote the respective averages. Under (13), the
estimate of B, is (14) again, and for «, the estimate is
(15) : @n = Pp, — BrpM.

In equilibrium the returns of all securities would lie along the security market
line. If this is not the case, there is something wrong either with their risk parameter
beta or with their pricing. If the beta on an asset is correct and the return is below
SML, the asset is overpriced. If the return is above SML, the asset is underpriced.
(Explain this phenomenon as an exercise. Note that with increasing price of a
security the return decreases and vice versa.) The difference between the actual
and expected (given by SML) return is called Jensen measure.

Betas are published in financial press and in the so called Befa books both for
individual companies and for industries. For industry like essentials usually 8 < 1.
This is typical for goods and services the demand for which is irrespective of the

economic cycle. Thus food manufacturing may have 8 = 0.9 while car industry
B =1.27, and tourism 3 = 1.66.
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10.3 Capital Market Line

Let us have aportfolio p with expected return p, and standard deviation o,. In
the presence of a riskless asset we can modify the Sharpe’s measure of portfolio:

Bp —To
(16) bt

and we will call it modified Sharpe’s measure of portfolio.

10.3.1 Assertion. All efficient portfolios have the same modified Sharpe’s mea-
sure of portfolio.

Proof. For an efficient portfolio p the expected excess return may be expressed
as pp — 1o = 0pro + (1 — dp)pte — 10 = (1 — 8p) (14 — r0) for some &,. Similarly, for
the standard deviation we get g, = (1 — ,)0¢. Thus

Hp—To _ Hi—To
op ot

0

Since we can take any of the efficient portfolios as a numeraire, we choose the
market portfolio M. From the above assertion it follows that mean the g, and the
standard deviation o, of any efficient portfolio fulfill the relationship

(17) Hp =To + M%-
oM

The dependence of the expected return on an efficient portfolio on its standard
deviation is linear and its graphical representation is called Capital Market Line,
CML.

The substantial difference between CML and SML is that CML expresses the
excess return on the efficient portfolios while SML is valid for any security or
portfolio.
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.11 ARBITRAGE PRICING THEORY

regression model, multifactor model, factor analysis, modified method of principal
components

Arbitrage Pricing Theory, (APT), also known as Arbitrage Pricing Model, APM,
serves as a generalization of the single factor CAPM to a multifactor model. The
idea behind the APT is that the returns vary from their expected values due to
unanticipated changes in production, inflation, term structure, and other economic
factors. In the multifactor model it is supposed that the return on an asset is
explained in terms of a linear combination of more factors or indexes. Note that
in CAPM, the expected return on an asset is a linear function of the expected
market return only. The development of APT is based on the assumptions of an
efficient market, see 19. A technical realization of APT uses two popular statistical
methods; regression analysis and factor analysis.

11.1  Regression Model

We suppose that the return p, on an asset n {n fixed in this Section) fulfills the
usual model of linear regression

(1) Pn = PBuFL+ -+ BamFn +€n
where Fy, ... ,F,, are explanatory variables independent of the asset return in
question, &, is a zero mean random disturbance, and B,1, ... ,fnm are unknown

parameters which are specific for the given asset. Usually an absolute term must
be considered which can be simply done by setting F; = 1. In the regression model
we suppose that the values of F;’s are observable while the random deviate g, is
not. If we have T observations of the vector {p,, F1,...,Fy,) then (1) becomes

(2) Pnt = BraF1e + -+ BomFmt +€ne, t=1,...,T.

Such observations are usually gathered historical data. It should be emphasized
that Bpi, ... ,0nm are characteristics of the underlying asset and Fi, ... ,Fime are
independent of the asset but they take different values for different #’s. In a sim-
ple regression model it is supposed that Een: = 0 and cov (€ns,€nt) = 02684,

s,t =1,...,T, where §st = 1 for s =t and &, = O for s # ¢, 02 being also an un-
known parameter. Put prn := (ppi,...,pn1) ", Ba 1= (Bn1, -+ s Bom) T, F = (Fy),
i=1,...,m,t=1,...,T an m x T matrix, and €, := (€n1,-..,&x7) . Then we

can express (2) in the matrix form

(3) ‘ Pn = FTﬁn + €p,

Ee€, = 0, cov €, = o2Ir. Further let us suppose that T > m and that F has the
full rank, r(F) = m so that the inverse(FF ")~ exists. The ordinary least squares
estimator of 3, is

4) B, = (FFT)"'FTp,
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with the covariance matrix covﬁn = o2(FFT)~!. An unbiased estimator of g2 is

(5) 3121 = ’T__%—l'(pn - FTBn)T(Pn - FTBn)'

The last statistic is used for the construction of the confidence intervals for 3,,.

11.1.1 Remark

An empirical study of this type with m = 7 may be found in [143] together with
further references. The variables, based on monthly observations are: F; = 1, F» =
monthly growth in industrial production, F3 = change in expected inflation, F =
unexpected inflation, F5 = risk premium as the difference in yields of corporate
bonds and long-term Treasury bonds, Fg = change in the term structure as the
difference in yields of long-term Treasury bonds and (short-term) Treasury bills,
F; =return on the market portfolio measured by the NYSE index.

11.1.2 Remark

In the preceding remark we have seen that one of the explanatory variables was
the market return. Since we may always include this variable in APT consideration
together with additional explanatory variables, we can not obtain worse fitting than
that with CAPM. This is a well-known fact, the more parameters you have, the
better fit you get. The number of explanatory variables has to be chosen with
care, however, since including highly correlated variables brings the problems with
multicollinearity etc. Refer to standard textbooks on regression analysis, like [180].

11.2 Factor Model

Instead of returns p, we will now consider standard scores or standardized re-
turns

(6) =By N

Pn = \/M’

at a given time instant. In the factor model we suppose that
(7) pnzbn1f1++bnmfm+en’ 7I,=1,,N

where f1, ... ,fm, €n are random variables with zero means. fi, ...,fn are
called common factors or sensitivities, e, is called unique or specific factor, and
bni, - .- ,bnm are called factor loadings on the asset n. Note that in this context,
en 18 also known as the idiosyncratic risk, the asset-specific or firm-specific com-
ponent. The crucial assumption of the factor model is that neither the common
nor the specific factors can be directly observed, i.e., they are unobservable. It
is also supposed that all the factors are mutually uncorrelated. Denote, as usu-
ally, p := (p1,...,o8)", B = (bpj),n =1,...,N,j=1,...,mthe Nxm
matrix of factor loadings, f := (f1,...,fm)" the vector of common factors, and
e:= (e1,...,en) " the vector of specific factors. The matrix form of (7) becomes

®
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This is the factor model of returns. We summarize the above assumptions and
make some additional ones:

Ef=0, Ee=0, cov(f,e)=Efe' =0,

(9) covf =1, cove=diag(¥},...,v%)=".

The last assumption means that for different assets, the specific factors are uncor-
related and may have different variances. Under these assumptions, the covariance
matrix of p is

(10) R =covp=BB’ +ﬂ

Since we have supposed that p is a standardized random vector, R coincides with
the correlation matrix of standardized returns. Hence the nth element of the diag-
onal of R can be expressed in the form

(11) 1=1—92 +92 = hZ + 2.

The quantity A2 is called communality and 2 is called uniqueness, specificity, or
specific variance of the respective asset.

Note that the decomposition (10) is far from being unique. For example, if U is
any m X m orthogonal matrix then

(12) R=B'B*T +¥

where B* = BU is called an orthogonal rotation.

The main objective of the factor analysis may be formulated in the following
way: Given the correlation matrix R, find the number m of common factors, a
matrix of factor loadings B and a diagonal matrix ¥ with nonnegative elements
such that (10) holds. The number of common factors should be small. This is
a natural requirement since with a high number of common factors we loose the
possibility of their proper interpretation.

There is a plenty of statistical methods aimed for solving the above problem. We
just briefly mention one of the simplest but frequently used method with a clear
motivation. The method is known as the modified method of principal components.
The theoretical background of this method is based on the Lemma below. First
recall that every symmetric N X N matrix allows a spectral decomposition

(13) A= A1X1X-1r + -4 )\NXNXL
where A1 > Ag > -+ > A are the eigenvalues and xi, X2, ... , X the orthonormal
eigenvectors corresponding to the eigenvalues A;, Az, ... ,Any. By the Euclidean

norm of a matrix A we mean A} = /3" 3" a%;.
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11.2.1 Lemma. Let A be an N x N symmetric positive definite matrix, r(A) =
r, and let m < r. Then the solution to the problem

minimize { [A —~BBT|, B an N x m matrix },
i.e., the best approximation of Aby BB in the sense of Euclidean norm, is given
byﬁ = (VAiX1, -, VAmXm)-
Proof. The proof can be found in textbooks on matrix calculus. O

The estimation procedure starts with a guess of the number of common factors.
A heuristic rule says that we take m equal to the number of the eigenvalues of R
greater than or equal to one. Then we estimate the communalities. A good initial
approximation is given by

(14) 1 - 92 = max|ri|
i#En

or by the square of the multiple correlationcoefficient rfl,lw.’n_l,n +1,..,N In the
regression of the nth variable on the remaining N — 1 variables. From (14) we form

the estimate @0 = diag(z,’b\f, ceey 1?;]2\,) Now we define the reduced correlation matrix
by
(15) R; =R - T,

Note that in the theoretical model (10) it is assumed that this matrix is positive
semidefinite. It may not be the case for (15) since instead of ¥ we have used
an estimate of it. Nevertheless, since we suppose m < N we can expect that at
least m eigenvalues of R, are positive and we can therefore construct the best
approximation of it based on Lemma 11.2.1:

(16) R, = B,Bf

where l§1 = (VA1X1,...,VAnXpy) from the spectral decomposition of the (surely
symmetric) matrix Ry = S, _; AnXnX,. We then obtain a new estimate of speci-
ficities

(17) ¥, = diag(R — Ry).

n=1

We must take the diagonal only since R-R, may not be a diagonal matrix. We go
back to (15), form the new reduced correlation matrix Ry = R— @1 and iteratively
improve the estimates of ¥ and B until the differences in successive iterations are
sufficiently small. Eventually we get the decomposition

(18) R=BB"+¥
or an analogy to the original model (8)
(19) p=Bf+e

with f still remaining an unknown vector of common factors. But with known
matrix B, we may look on (19) as on a linear regression model with unknown
parameters f. By ordinary least squares method we get an estimate of f:

(20) f=B"B)"'B7p.
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11.2.2 Remark (Principal Components)

Factor analysis is a generalization of principal components. In the method of
principal components we directly use the spectral decomposition (13) of the covari-
ance matrix of returns X:

N
3= Z )\nxnxl—.

n=1

The random variable Yy, := x' p is called nth principal component, n = 1, ... ,N.
The principal components have some plausible properties: (i) they are uncorre-
lated, (i) varY, = An, (iii) the total dispersion of returns measured by 0% = tr ¥ is
explained by all the principal components since tr X = Eiv__.l onn. The eigenvalues
are supposed to be ordered, hence the first principal component explains the great-
est part of the total dispersion etc. In practise, often only a few components (3,
say) explain most of the total dispersion (95 per cent, say). We see that the model
of principal components coincides with that of the factor model if we put m := N
and ¥ := 0, i.e., if no specific factors are considered.

11.2.3 Remark

The interpretation of the common factors represented by their factor loadings is
a difficult and fairly controversial procedure. Roughly speaking, only the first two
common factors may be usually identified with a more or less clear interpretation.
The first factor represents an overall performance of economy giving higher loadings
to the assets with greater importance. The second factor, often interpreted as a
bipolar factor, usually divides the assets into industries which may act in opposite
directions: oil — gas, nuclear power plants — heat power plants, etc.

The interpretation of the factor loadings is easier if each asset is highly loaded
on at most one factor, and if all factor loadings are either large or close to zero.
The assets are then grouped into disjoint sets, each of which is associated with one
factor. The factor ¢ has an influence on those assets for which by; is large. Since
|bni] < 1, by term ”b,; large” we mean b,; close to 1 or —1. We have seen that
the decomposition (10) is also valid for any orthogonal rotation of B. There is a
lot of methods of rotation which, up to some extent, improve the interpretation
of factors in the above sense. Generally, their principle is to find the orthogonal
matrix U such that the rows of the transformed matrix BU contain a few large
loadings while the others are close to zero. The most popular orthogonal rotation
method is varimax. There are also non-orthogonal methods (oblique rotations) like
quartimin. Note that under oblique rotations the factors are no longer uncorrelated.
All these methods are iterative and difficult from the computational point of view.
See Rao’s contribution in [109], pp. 489-505, for further discussion.
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1.12 BIBLIOGRAPHICAL NOTES

Many of the topics treated in this Part are classical pieces of finance, financial
mathematics, financial management, and partly of economics. Hence it is quite
natural that there are hundreds of books on similar subjects but they differ in their
viewpoint on the subjects. Also the material involved is treated on very different
levels. Hence the following notes may cover only a small part of the vast existing
literature on the related topics.

Money, capital, and securities. A thorough text on basic financial concepts and
financial institutions is [138]. In [143] the reader will find both theory and many
examples of investment management. [25] and [141] may serve as readable books
on financial management together with accounting considerations which are not
mentioned in this book, however. Only the most important securities (this applies
particularly to derivatives) are mentioned. For more see [60], [88].

Interest rate. A simple arithmetics of interest rate is contained in [114], a deeper
insight in [161]. The section on decomposition is based on various sources like
[143], [25]. Inflation is also treated in 1.7.3. Term structure is important in fixed-
income securities’ analysis. In continuous case, various models of the term structure
are known as Vasicek mean reversion, Cox-Ingersoll-Ross, Merton (Ho-Lee), Hull-
White, Heath-Jarrow-Morton, and other models, see [43], [82], [105]. For modeling
term structure in Mathematica® see [11] and [13].

Measures of cash flows. An elementary approach may be found in any book on
financial arithmetics like [114] or on financial and investment management like [25],
[141], [143]. A thorough discussion on the benefit to leasing is in [76]. The concept
of duration has been ascribed to Frederick Macaulay. Yield curves are often treated
in the context of term structure models.

Return, expected return, and risk. A comprehensive but still elementary trea-
tise on return and random walk’s hypothesis may be found in [26]. [159] is devoted
to modeling returns as time series. Further recommended reading consists of [43],
[85], [109]. The historical development of the log-normal model for a price develop-
ment can be roughly traced as: Bachelier [4], Einstein [56], Merton [116, reprinted
paper of 1973], Black-Scholes [23]. Concerning volatility, here we confine ourselves
only to the case of a constant volatility. Stochastic models of volatility including
popular GARCH are treated in [26], [105], [107], [109], e.g. VaR is ascribed to [118],
despite in Statistics this statistic is known as the quantile for almost one hundred
years. Some recent books on VaR and related topics are [42] and [89].

Valuation of securities. Valuation of coupon bonds is a simple application of
the cash flows’ measures but some literature do not handle the related cash flow
properly. There is a vast literature on the derivatives’ pricing, usually starting
with the Black-Scholes model and covering a lot of generalizations. The pioneering
works are [23], [81], [116]. Recommended reading with further references: [41], [82],
[105]. An original approach based on so called fundamental transform taking into
account stochastic volatility together with a Mathematica® code is presented by
Lewis [107]. The valuation of stocks (value of the firm) is not explicitly covered
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here since it often depends on accounting principles which are beyond the scope of
this book. We refer to [25], [36], and [143]. We should emphasize that the practical
derivatives’ valuation needs an extensive computing and some symbolic calculation
is often necessary. See books [147], [162], [163], and papers on special related topics
[9], [10], [12], all making use of Mathematica®.

Matching of assets and liabilities. Problem of matching of assets and liabilities
likely originated in life insurance industry, see [114] for reference and description
of Redington’s theory of immunization of a life office. Further reading [143], pp.
638-658, [60], [178]. For a related actuarial model see [173].

Index numbers and inflation. Perhaps the first comprehensive study and theory
of index numbers is the 1922 book The Making of Index Numbers by 1. Fisher. Here
we closely followed Bily [18] who was one of the promoters of actuarial sciences
and econometrics in former Czechoslovakia and before 1948 the chief official at
the Ministry of Finance. Our notation has been adapted for the computational
purposes.

There are hundreds of stock exchange indexes. If from related markets, they are
usually highly correlated. See [61] and [143] for more information. An example of
a relationship between stock prices and inflation is given in [3].

Basics of utility theory. The use of utility theory in modern financial decision
making has origins in the von Neumann—Morgenstern theory. For a detailed analysis
see [85]. Some particular observations are in [88], [116], and [178].

Markowitz mean-variance portfolio. The pioneering contribution to the mod-
ern portfolio theory is paper [112] of Markowitz. Many other authors elaborated
his fundamental idea of portfolio diversification, let us mention [57], [85]. Basically,
the Markowitz model is a one-period model. For multiperiod-selection models as
well as for continuous-time models we refer to [116], [43], and [85]. Generalizations
of portfolio separation theorems to more than two funds may be found in [85],
[116], e.g. Useful nonlinear programming techniques suitable for portfolio selection
algorithms via Mathematica® are in [17].

Capital asset pricing model. CAPM presented here is based on the mean-
variance portfolio theory. For generalizations of the CAPM (consumption-based,
continuous-time, intertemporal, and others) refer to [116].

Arbitrage pricing theory. Originally, the model has been developed as a multi-
factor model (as a model of factor analysis) by S. A. Ross (Arbitrage theory of
capital asset pricing, J. of Economic Theory 13 (1976), pp. 341-60). Due to its
rather difficult tractability caused by a necessity of the interpretation of common
factors, the regression form of APT with specified independent variables seems to
be more convenient in practise, see [143], [109].
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AAA, 4,17
absolutely matched, 64
aggregate, 69
algorithms for stochastic programs, 206-227
decomposition, 214-215
interior-point, 214
L-shaped, 215-217, 219-221, 225
Lagrangian-based, 217
progressive hedging, 217-218, 223
stochastic decomposition, 224
stochastic quasigradient, 224
ALM model, 141-144
AMEX, 71
annuity, 21, 23
due, 23
immediate, 23
APM, 96
approximation, 158-179, 224-225
APT, 96
arbitrage, 52-53
arbitrage opportunity, 52-53, 350
Arbitrage Pricing Model, see APM
Arbitrage Pricing Theory, see APT
arborescent form, 113
asset, 3, 64
base, 64
commodity, 8
financial, 1, 8
real, 1
riskfree, see riskless asset
riskless, 43, 82, 83, 88
underlying, 7
asset—specific component, see idiosyncratic risk
atom, 104
auction, 4
autoregressive model
vector, 160
available information, 159-164
low level, 163, 166-167
average strike call, 10

backward recursion, 110, 120, 121

bankruptcy, 7
time, 330

barter, 1

Beta books, 94

bias, 69

bill of exchange, 12

binomial lattice, see Black—Derman—Toy model
fitted, 190, 195

binomial model, 56-58

bipolar factor, 100
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Black—Derman-Toy model, 160-162, 171, 175,
187, 188, 193
calibration, 188-190
Black-Scholes calculus, 319-333, 368
Black-Scholes formula, 55-56, 61, 199, 353
for European call, 56
for European put, 56
sensitivity to volatility, 199-200
Black—Scholes model, 41, 322
blue chip, 4, 70
bond, 3
amortized, 52
callable, 5, 51
convertible, 11
convertible, with call option, 11
convertible, with put option, 11
coupon, 5, 48-52
dirty price of, see value of bond
discount, 50, see zero coupon bond
fair price of, see value of bond
floating—rate, 6, 11
full price of, see value of bond
gross price of, see value of bond
I bonds, 7
inflation—indexed saving bonds, see I bonds
net value of, 49
premium, 50
pure price of, see net value of bond
pure value of, see net value of bond
putable, 51
to call, 5
under uncertainty, 51
value of, 48
zero coupon, 6
bond portfolio management problem, 180-198
BONDS model, 116-117, 139-141, 173-174
bootstrapping, 51
bottom straddle, 63
Brownian motion, 231, 238-244
geometrical, 291
Brownian representation, 277, 314, 367
BS—model, see Black—Scholes model
bullish spread, 63
butterfly spread, 62, 63
buyer, 8, 9

calendar convention, 13, 14-15
call back, 11

call date, 5

call on a call or put, 10

call premium, 5

call-on-a-call, 10
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CALL, see call option
cap, 11
capacity expansion,
capital, 1
Capital Asset Pricing Model, see CAPM
capital market, 12
capital market line, see CML
caplet, 12
CAPM, 92, 93, 96
cash flow, 1, 2, 21, 31
certainty equivalent, 78
continuous, 23
measures of, 21-38
net, 2
Cauchy problem, 356
CBOE, 9
CBT, 8
CD, see Certificate of Deposit
CEP, see capacity expansion
certainty equivalent, 77-78
multiperiod, 78
Certificate of Deposit, 4, 12
checking account, 4
Chicago Board of Trade, see CBT
Chicago Board Options Exchange, see CBOE
claim, 339
admissible valuation, 339, 341
minimal admissible valuation, 339, 341
minimal price, 339
valuation, 339, 340
class I projects, 31
class 1II projects, 31
clearing house, 8
cluster analysis, 172
CML, 95
Cobb-Douglas production function, 75
communality, 98
completeness, 73
compounding, 13
continuous, 13, 19-20
period of, 14
compromising model, see tracking model
conditional expectation, 241
consistent
family of distribution functions, 236
constraints
chance, 109
induced, 109
probabilistic, 109
consumption process, 324
contamination method, 167-169, 185-186, 193—
195
contingent claim, see financial derivative se-
curity
continuity factor, 71
continuity theorem, 272, 283

150-153

continuous time market model, 324

conversion premium, 11

convex program, 107

convexity, 21, 30
modified, 30

convexity properties, 111-112

correlation matrix of standardized returns, 98

cost of capital, 16, 21, 22, 31

Counterparty, 3

coupon payment, 48

coupon, 5,48
rate, 5, 48

covariance, 237

CPI, 7, 68, 71

criterion for optimization
chance-constrained, 129
expected utility, 130
expected value, 131
mean-variance, 127
probability, 109, 129
quantile, 130
safety-first, 129

crossover rate, 33

cubic spline, 37

currency unit, 21

curse of dimensionality, 121

é-theorem, 166
daily price limit, 8
Daniell-Kolmogorov Theorem, 236, 238
data process, 181
DAX 30, 71
debt, 3
decision rule, 110, 119-121
dedicated bond portfolio, 65-67
dynamic model, 66-67
static model, 65-66
stochastic model, 105-106
deflation, 71
delivery date, 8
delivery price, 8
delta, 59
delta hedging, 59
demand deposit, 4
density theorem, 231, 257-263, 261, 367
derivative, see financial derivative security
derivative process, 300
descendant, 114
deterministic process, 317
diffusion, 41
diffusion process, 290
discount, 21
discount factor, 21
discount function, 21, 319
discount process, 21, 319
discounted base, 4



INDEX 379

discounted function, 19
of the Stoodley’s force of interest, 20
discounted mean term of the cash flow, see
duration
dividend, 7
divisor, 71
DJIA, 70
Doléans equation, 292
dominated convergence, 283, 285
Doob’s inequalities, 243
Doob-Meyer decomposition, 231, 263-269, 264,
287, 367
Dow Jones, 68
Dow Jones Industrial Average, see DJIA
down-and-in, 10
down-and-out, 10
drift, see trend
duration, 29-30, 64
dollar, 30, 134
modified, 30
duration matching, 198
dynamic hedge, 59
Dynkin arguments, 235

e-constrained problem, 125, 135
E-process, see stochastic process with states
in E
economic power dispatch problem, 153-154
Edmundson-Madansky bound, 177-178, 204—
205
efficient market, 79
elasticity, 60
elasticity of the net present value with respect
to the discount factor, see duration
empirical quantile, 46
equation of value, 21, 25
equity, see common stock
equivalent, 73
errors due to estimation,
EVPI, 208
ex-coupon, 48
date, 48
exercise price, 11, 353, see strike price
exercise time, 353
exercised, 9, 53
expected excess return, 88, 90
alternative form of, 92
expected return, 80
on the portfolio, 80
expected utility, 130-131
expected value, 39
Expected Value of Perfect Information, see
EVPI
expected-return-standard-deviation plane, 86
expected-return-variance plane, 86
expiration time, see exercise time

195-197

expiry date, see maturity date

Fi-adapted process, 237
Fi-progressive set, 247
face value, 4, 5, 48
total, 4
factor
common, 97
loading, 97
specific, see unique factor
unique, 97
factor analysis, 97-99
factor beta, 93
factor model, 97-99
feasibility cut, 109, 215, 220
figure
black, 2
bracket, 2
red, 2
filtration, 237
canonical, 237, 246
complete, 231, 252-257, 255, 263, 269, 300
P-completion, 256
right continuous, 245
financial asset, 3
financial institutions, 1, 2, 12
financial intermediaries, 2, 12
financial market, 1, 12
financial security, see security
financial system, 1, 12
financing the business, 1
firm-specific component, see idiosyncratic risk
fixed rate, 7
floatingrate
long-term, 7
short-term, 7
floor, 12
floorlet, 12
flower-girl problem, 117-119, 121-122
force of interest, 19, 21, 39
random, 67
forward, 3, 8
forward contract, see forward
forward price, 63
forward rate implied in the term structure
for one period, 18
j-period, beginning at time ¢t + &k, 18
forward-rate curve, 35
free lunch, 52
frequency, 48

FTSE, 68
FTSI, 71
funds, 15

furnace charge optimization
electric-arc three-stage, 156157
induced two-stage, 155-156
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future value, 13, 21, 24-26
futures, 3, 8

price, 8
futures contract, see futures

gamma, 60
GAMS, 212-213,226-227
Gaussian process, 237

centered, 237

continuous, 237
geometrical Brownian motion, 42
Girsanov calculus, 319, 333-350, 368
Girsanov theorem, 277, 303, 367
goal programming, 126, 131, 133-134, 176
Greeks, 59-61

hedge ratio, 59

hedger, 53

hedging, 53

here-and-now approach, 133, 207
HIV, 35

holder, 9

homogeneous expectations, 79
horizon, 116-117

immunization, 64
immunize, 64
in-barrier, 10
incomplete input information, 199
about liabilities, 204-205
increment, 42
independent projects, 31
index number, 68-70
base-weighted, 69
construction of, 68
current-weighted, 69
indifference
curve, 73
set, 73
surface, 73
individual scenario problem, 112, 133
inflation, 71-72
inflation rate, 7
inflow, 2, 21
initial endowment, 323, 324
installment savings, 25

integral of a process with respect to a process,

259

integral representation property, 277, 315
interest, 1, 5, see coupon rate

accrued, 49

compound, 13

mixed simple and compound, 13-14

simple, 13
interest rate, 13-20, 13

annual, see p.a.
constant, 20
decomposition of, 16-18
determinants of, 13, 15-16
in continuous math, see force of interest
nominal, 14, 16
quoted, see nominal interest rate
risk free, 16
spot, 18
term structure of, 13, 18, 35, 193
interest rate process, 319
internal value, see HIV
International Swaps and Derivatives Associa-
tion, see ISDA
interstage independence, 120
intrinsic value, 53
invariance property, 73
investment, 1
financial, 1
real, 1
investment projects, 21
comparison of, 31-35
investor, 1
10U, 12
IRP, see integral representation property
irregular project, see nonnormal project
IRR, 21, 26-29
ISDA, 10
It6 formula, 42, 277, 286-295, 288, 367

Jensen inequality, 167, 204
Jensen measure, 94

knapsack problem

deterministic, 206

stochastic, 206-208
Kolmogorov-Chenstov Theorem, 236
Kunita-Watanabe inequality, 273, 367
kurtosis, 46

Langevin equation, 291
law of diminishing marginal utility, 74
law of iterated logarithm, 240
leasing, 28
Lenglart inequality, 272
lessee, 28
lessor, 28
Lévy theorem, 277, 295-299, 296, 367
one dimensional, 297
liability, 3, 64
limited, 7
LIBOR, 6
linear program, 107
stable, 187
liquidity, 12, 36
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load duration curve, 150

loan, 23

localization of integrands and integrators, 280—
282, 286

location parameter, 44

location-scale distribution, 44

logarithmic prices, 39

London Interbank Offered Rate, see LIBOR

long-term, 5, 6

loss of load probability, 152

loss rate, 52

lot, 79

low information level, 163, 166-167, 204-206

margin, 8, see spread
initial, 8
maintenance, 8
variation, 8
marginal rate of substitution, 74
market equilibrium, 80
market regulation, 319, 350-363
marking to market, 8
Markov decision problem, 120
Markov property, 121
data structure, 172-173
Markov time, 231, 244-251
Fi-Markov time, 244
Markowitz model, 81-91, 127-128, 200
sensitivity to expected return, 200-203
martingale, 231, 233, 238-244, 377
complex local F¢-martingale, 296
exponential, 277, 295-299, 296
Fe-martingale, 241
Ly-martingale, 231, 257-263
Ly-martingale, 244
local, 231, 252-257, 254, 277
local Fy-martingale, 252
local Fi-martingale on [0,7], 297
matching, 64-65
absolute, 64
stochastic model of, 67
Mathematica, 15, 60
mathematical program, 106-107
matrix
scenario tree nodal partition, 174
maturity, 5, see exercise time
date, 4, 5,9, 53
mean, 237
mean squared error, 67
mean-reversion property, 162
measure
extremal, 311
martingale, 316
T-Girsanov, 334
melt control problem, 154-157
metamodeling, 227
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minimum-variance frontier, 86
MIRR, 28
model management, 226-227
moment

prescribed values, 175

problem, 175
moment bounds, 167

minimin and minimax, 167
money, 1

at the money, 53

in the money, 53

out of money, 53
money market, 12
Monte Carlo simulation, 47, 58
Moody’s, 3, 17
mortgage, 3
MPS standard format, 210-211
multifactor model, 96, 162-163
multimodeling, 227
multi-objective program, 123-127, 131-136
multiple cut, 216
mutually exclusive projects, 31

NASDAQ, 71
network structure, 146, 217
New York Stock Exchange, see NYSE
Nikkei, 71
no-arbitrage principle, 52, 175
nominal value, see face value
nonanticipativity, 104, 106, 108, 113, 137, 148,
217

implementability constraint, 149
nonnormal project, 28
normal distribution model, 57
normal project, 28
note, 6
NYSE, 70
NYSE Composite Index, 71

objective function, 107
probability, 109
separability property of, 120, 121
two or more, see multi-objective program
oblique rotation, 100
one-directional bias, 165-166
open interest, 8
opportunity cost rate, see cost of capital
optimality cut, 215
optimization software, 209-212
option, 3, 8, 9-10, 52-63
American, 9, 361, 368
American put, 361
American, value of, 362
Asian, 10, 359
as-you-like-it, see chooser option
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barrier, 10
binary, 10
call, 9
chooser, 10

compound, 10
digital, see binary option
European, 9, 353
European put, 357
European put, value of, 358
European, value of, 354
exotic, 9, 358
exotic binary, 359
exotic binary, value of, 360
exotic, value of, 358
g-option, 353
g-option, American value of, 361
g-option, hedging strategy against, 353
g-option, value of, 353, 357
lookback, 10
on assets paying dividend, 58
path-dependent, see exotic option
premium, 9
price, see option premium
pricing, 319, 350-363
pricing, natural boundaries, 54
put, 9
vanilla, 9
optional sampling, 248
Ornstein-Uhlenbeck process, 162, 291
orthogonal rotation, 98
out barrier, 10
outflow, 2, 21
output analysis, 159, 164—167, 186187, 195—

197, 200
p.a, 14
p.d., 14
pm., 14
pq., 14
p.s., 14

par value, see face value

parametric family, 160
asymptotic results, 166167

parametric program, 107, 112, 124-126

Party, 3

payable mthly, 14

payback method, 21, 31
discounted, 32

payback period, 31
discounted, 32

payoff rate, 349

perfect hedge, 53

perpetuity, 23

polynomial function, 36

pool, 6

portfolio, 80-91, 191, 323

barbell maturity structure, 141
efficient, 81, 87, 127—129
global minimum-variance, 86
inefficient, 87
laddered, 141
market, 78, 80, 91-92
minimum-variance, 81, 89
minimum-variance, alternative form of, 85
minimum-variance, geometry of, 91
minimum-variance, orthogonal, 87
no arbitrage, 351
optimal, 81
replicating, 56
revision, 137-139
Sharpe’s measure of, see Sharpe’s ratio
tangency, 89-90
portfolio immunization, 134
portfolio process, 324
associated with T-strategy, 324
position
long, 3
short, 3
postoptimality analysis,
186, 192-195
Prague Interbank Offered Rate, see PRIBOR
preferred, 73
weakly, 73
premium
default risk, 16
inflation, 16
liquidity, 16, 18, 36
maturity risk, 16
present value, 13, 21-23
net, 21
profile, 22
Present Value Interest Factor of an Annuity,
see PVIFA
PRIBOR, 6
price index, 68
Consumer Price Index, see CPI
Edgeworth—Marshall, 70
Fisher, 70
Laspeyres, 69
Lowe, 70
Paasche, 69
Retail Price Index, see RPI
price vector, 75
principal, see face value, see present value
principal components, 100
modified method of, 98
principle of optimality, 121
private investor problem, 103-105, 114-115
probability
arc, 114
path, 114
scenario, 114

158, 167-169, 185-
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transition, 114, 120
transition, state and control dependent, 120
probability distribution, 234
binomial, 57
finite dimensional, 234, 236
log-normal, 42, 321
probability space
complete, 255, 263, 269
production planning, 148-150
profit, 323
process associated with T-strategy, 324
profitability index, 31
projection theorem, 309
put-call parity, 54
PUT, see put option

PVIFA, 23
PX, 68
PX 50, 71

quadratic optimization problem, 91
quantity index, 68
quartimin, 100

Radon-Nikodym derivative, 259
random variable, 39
random walk hypothesis, 40-41, 322
strong form, 40
weak form, 40
rate of interest, see interest rate
effective, 14
real, 17
riskless, 53
rate of return, 15, 39, 320
expected, 39
internal, see IRR
modified, see MIRR
rating, 3, 17
real percentage increase, 18
real return, 17
rebalancing the portfolio, 145, 182
recourse, 111
cost, 132
fixed, 111, 132, 216
matrix, 132
network, 111, 217
random, 112, 132, 183
relatively complete, 111, 132, 183, 216
restricted, 136
simple, 132, 144, 209
recovery rate, 52
redemption value, see face value
reduced correlation matrix, 99
reflection principle, 251
reflexivity, 73
regression model, 96-97

regular project, see normal project
retained earnings, 7
return, 39-43, 43
ex ante, see expected return
ex post, 40
expected, 40, 43
return process, 320
rho, 61
Riemann integration, 283, 286
risk
alternative definitions of, 128-131
credit, see default risk
default, 16
idiosyncratic, 97
interest rate, 16
market, 94
maturity, 16
quantitative measures of, 43
reinvestment rate, 16
specific, see unique risk
total, 94
unique, 94
value at, see VaR
risk — expected return plane, 82
risk averse, 76, 80
risk aversion, 76, 128
absolute, 77
constant absolute, 77
decreasing absolute, 77
increasing absolute, 77
Pratt-Arrow absolute risk aversion function,
71
relative, 77
risk loving, 77
risk neutral probability, 57
risk neutral, 77
risk of the portfolio, 80
risk seeking, see risk loving
risk-neutral valuation, 55
robust optimization, 134-135
ROR, see rate of return
RPI, 68, 71

o-algebra
pre-t, 244
S & P 500, 71
safety of funds, 12
salvage value, 28
sample information, 163
sampling methods, 172-173
importance, 174-175
nonrandom, 190
random, 224
saving account, 4
scale parameter, 44
scenario, 104, 108, 158
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approximation via, 158-179
conditional generation, 174-175
designed by expert, 163, 167-169
generation, 159-164, 180, 187
historical, 46, 163
hypothetical, 46
independent, 148
out-of-sample, 185-186, 194-196
tree, 113-114, 169-179
scenario analysis, 46
SDE, see stochastic differential equation
security, 1, 3-12
adjustable-rate, 7
financial derivative, 7
fixed-income, 4
floating-rate, 6
mortgage-backed, 6
pass-through, see mortgage-backed secu-
rity
variable-rate, 7
security market line, see SML
seller, 8, 9
semimartingale, 254
continuous, 285
d-dimensional, 287
d-dimensional 1t6, 294
decomposition, 255
Fi-semimartingale, 254
Gaussian It6, 294
Ito, orthogonalization of, 295
positive, 321
sensitivity, see common factor
sensitivity to estimated parameters, 166, 199—
203
Separate Trading of Registered Interest and
Principal of Securities, see STRIPS
separation theorem, 85, 89
share, see stock
ordinary, see common stock
Sharpe’s ratio, 81, 128
modified, 95
upper bound, 87
Sharpe-Lintner model, 92-93
short sale, 80, 82, 127
skewness, 46
SML, 93-94
beta-version, 93
covariance version, 93
solution
efficient, 123
feasible, 107
ideal, 123
specific variance, see uniqueness
specificity, see uniqueness
spectral decomposition, 98
split variable representation, 113

spread, 7
stability properties, 186-187
stage, 108, 109, 116-117
staircase structure, 112
Standard & Poor’s, 3, 17, 68
Standard & Poor’s 500, see S & P 500
standard deviation, 43
standard error, 41
standard score, 97
standard-deviation—expected-return plane, 82
standardized contract, 8, 9
standardized return, 97
stochastic chain rule, 282, 285, 293, 295
stochastic differential, 255
stochastic differential equation, 42, 162, 290
solution to, 291
stochastic integral, 277-286, 277, 278, 285,
293, 367
quadratic variation, 279, 285
isometry, 280
L2-integral, 280
limit definition, 284
linearity, 279
localization lemma, 279
stochastic per partes, 277, 286-295, 287
Lebesgue-Stieltjes, 286
stochastic process, 231
almost surely continuous, 232
almost surely decreasing, 232
bounded, 252
bounded continuous, 261
canonical, 237
canonical representation on C(R+t), 238
continuous, 232
continuous modification, 236
coordinate, see canonical process
d-dimensional, 231
decreasing, 232
equivalent, 231
Fi-localization sequence, 252
Fi-progressive, 247
Fe-progressively measurable, 247
Fi-simple, 261, 277
independent increments, 238
locally bounded, 285
orthogonal, 268
with states in £, 231
stochastic program, 106, 107
applications in finance, 137-148
dynamic with discrete time, 117, 119-122
general features in portfolio optimization,
144-148
integer, 119
multistage, 106, 108-119
multistage linear with recourse,
nested two-stage, 110

111-114
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scenario-based, 131
scenario-based linear, 112-114
scenario-based multiperiod two-stage, 182—
184

scenario-based two-stage linear,
solution techniques, 209-225
with probabilistic constraints, 109
with recourse, 111

stock, 3, 7, 319
common, 7
preferred, 7
price, 320
traded, 323

Stock Exchange, 3

stock exchange indices, 68

Stoodley’s formula, 20

stopping theorem, 231, 244-251, 249

strategy
admissible, 331, 338, 346
admissible up to time 7, 331
consumption, 323
portfolio-consumption, 324
PC-strategy, see portfolio-consumption strat-

egy

self-financing,
suicide, 332
T-strategy, see trading strategy
TC-strategy, see trading-consumption strat-

132-133

323, 325

egy
trading, 323, 324
trading-consumption, 323, 324
stress testing, 4647
strike price, 9, 53
STRIPS, 6
submartingale
Fi-submartingale, 241
growth, 352
supermartingale
calculus, 335
Fe-supermartingale, 241
surplus, 67
expected, 67
swap, 3, 8, 10-11
combined, 11
cross-currency, 11
currency, 10, 11
interest rate, 10, 11

T-bills, see Treasury bill
terminal payoff, 53, 349
terminal value, see future value
theta, 60

time deposit, 4

top straddle, 63

tracking model, 131, 133-134
trajectory, 108
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transition function, 119
transitivity, 73
Treasury bill, 4, 12
trend, 40, 41

uniformly positive definite, 294
uniqueness, 98
uniqueness theorem, 328
unit commitment problem, 153-154
unit of time, 14
up-and-in, 10
up-and-out, 10
upcrossing a level, 307
utility, 73
marginal, 73
utility function, 73, 130, 352
additively separable, 75
characteristics of, 74
convex, 352
exponential, 76
HARA, 77
logaritmic, 76
multiplicatively separable, 75
ordinal, 73
power, 76
quadratic, 76
separable, 75
utility theory, 73
cardinal, 73
ordinal, 73

valuation interest rate, see cost of capital
value at risk, see VaR
Value of the Stochastic solution, see VSS
VaR, 44, 130
absolute, 45, 130
at confidence level 1 — o, 44, 45
nonparametric, 45-46
parametric, 44-46
relative, 45
Varadhan Theorem, 238
variance, 43, 134
variance of the portfolio, 80
variation, 233
finite, 232
quadratic, 231
quadratic, of local martingale, 269
quadratic, of stochastic process, 233
of function, 232
of stochastic process, 232
varimax, 100
Vasi¢ek model, 162
Vega, 61, 199
volatility, 41, 43, 61-62, 320
historical, 61
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implied, 61, 199

matrix, 320

parametric estimation of, 190
VSS, 208

wait-and-see approach, 206
warrant, 11
weak convergence, 165
consistency, 165
wealth, 323
equation, 327
process, 327
process associated with T-strategy, 324
process, positive, 329
Weierstrass theorem, 288, 367
“what if”” analysis, see postoptimality analysis
Wiener process, 41, 238
d-dimensional, 240
Fi-Wiener process, 241
quadratic variation, 239
stability, 239
stability w.r.t. a filtration change, 242
trajectories, 239, 240
writer, 9

yield
actually observed, 35
capital, 40
coupon, 40
current, 49
declared, 35
dividend, 40, 58
to maturity, 49
spread, 35
yield curve, 21, 35-38, 188-189, 196
constant, see flat yield curve
downward-sloping, 36
estimating, 188-191
flat, 36
humped, 36, 37
inverted, see downward-sloping yield curve
normal, see upward-sloping yield curve
of coupon bonds, 51
U-shaped, 36
upward-sloping, 36
YTM, see yield to maturity

Zero, see Zero coupon bond





