
Chapter 1

Some Reasons for the Effectiveness of Fractals
in Mathematics Education

Benoit B. Mandelbrot and Michael Frame

Short is the distance between the elementary and the most so-
phisticated results, which brings rank beginners close to cer-
tain current concerns of the specialists. There is a host of
simple observations that everyone can appreciate and believe
to be true, but not even the greatest experts can prove or dis-
prove. There is a supply of unsolved, elementary problems
that give students the opportunity to learn how mathematics
can be done by enabling them to do new (if not necessar-
ily earth-shaking) mathematics; there is a continuing flow of
new results in unexpected directions.

1 Introduction

In the immediate wake of Mandelbrot (1982), fractals began
appearing in mathematics and science courses, mostly at the
college level, and usually in courses on topics in geometry,
physics, or computer science. Student reaction often was ex-
tremely positive, and soon entire courses on fractal geom-
etry (and the related discipline of chaotic dynamics) arose.
Most of the initial offerings were aimed at students in science
and engineering, and occasionally economics, but, something
about fractal geometry resonated for a wider audience. The
subject made its way into the general education mathematics
and science curriculum, and into parts of the high school cur-
riculum. Eventually, entire courses based on fractal geometry
were developed for humanities and social sciences students,
some fully satisfy the mathematics or science requirement for
these students. As an introduction to this volume, we share
some experiences and thoughts about the effectiveness and
appropriateness of these courses.

As teachers, we tell our students to first present their case
and allow the objections to be raised later by the devil’s ad-
vocate. But we decided to preempt some of the advocate’s
doubts or objections before we move on with our story.

1.1 The early days

A few years ago, the popularity of elementary courses using
fractals was largely credited to the surprising beauty of frac-
tal pictures and the centrality of the computer to instruction
in what lies behind those pictures. A math or science course
filled with striking, unfamiliar visual images, where the com-
puter was used almost every day, sometimes by the students?
The early general education fractals courses did not fit into
the standard science or mathematics format, a novel feature
that contributed to their popularity.

1.2 What beyond novelty?

We shall argue that novelty was neither the only, nor the most
significant factor. But even if it had been, and if the popu-
larity of these courses had declined as the novelty wore off,
so what? For a few years we would have had effective vehi-
cles for showing a wide audience that science is an ongoing
process, an exciting activity pursued by living people. While
introductory courses for majors are appropriate for some non-
science students, and qualitative survey courses are appro-
priate for some others, fractal geometry provided a middle
ground between quantitative work aiming toward some later
reward (only briefly glimpsed by students not going beyond
the introductory course), and qualitative, sometimes journal-
istic, sketches. In general education fractal geometry courses,
students with only moderate skills in high school algebra
could learn to do certain things themselves rather than read
forever about what others had done. They could grow frac-
tal trees, understand the construction of the Mandelbrot and
Julia sets, and synthesize their own fractal mountains and
clouds. Much of this mathematics spoke directly to their vis-
ible world. Many came away from these courses feeling they
had understood some little bit of how the world works. And
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the very fact that some of the basic definitions are unsettled,
and that there are differences of opinion among leading play-
ers, underscored the human aspect of science. No longer a
crystalline image of pure deductive perfection, mathematics
is revealed to be an enterprise as full of guesses, mistakes, and
luck as any other creative activity. Even if the worst fears had
been fulfilled, we would have given several years of human-
ities and social science students a friendlier view of science
and mathematics.

Fortunately, anecdotal evidence suggests that, while much
of the standard material and computerized instruction tech-
niques are no longer novel, the audience for fractal geometry
courses is not disappearing, thus disproving those fears.

1.3 What aspects of novelty have vanished?

Success destroyed part of the novelty of these courses.
Now images of the Mandelbrot set appear on screen savers,
T-shirts, notebooks, refrigerator magnets, the covers of books
(including novels), MTV, basketball cards, and as at least one
crop circle in the fields near Cambridge, UK. Fractals have
appeared in novels by John Updike, Kate Wilhelm, Richard
Powers, Arthur C. Clarke, Michael Crichton, and others.
Fractals and chaos were central to Tom Stoppard’s play Ar-
cadia, which includes near quotes from Mandelbrot. Com-
mercial television (“Murphy Brown,” “The Simpsons,” “The
X-Files”), movies (“Jurassic Park”), and even public radio
(“A Prairie Home Companion”) have incorporated fractals
and chaos. In the middle 1980s, fractal pictures produced
“oohhs,” “aahhs,” and even stunned silence; now they are an
ingrained part of both popular and highbrow culture (the mu-
sic of Wuorinen and Ligeti, for example). While still beauti-
ful, they are no longer novel.

A similar statement can be made about methodology. In the
middle 1980s, the use of computers in the classroom was un-
common, and added to the appeal of fractal geometry courses.
Students often lead faculty in recognizing and embracing im-
portant new technologies. The presence of computers was
a definite draw for fractal geometry courses. Today, a ran-
domly selected calculus class is reasonably likely to include
some aspect of symbolic or graphical computation, and many
introductory science classes use computers, at least in the lab
sections. The use of computers in many other science and
mathematics courses no longer distinguishes fractal geome-
try from many other subjects.

1.4 Yet these courses’ popularity survived
their novelty. Why is this?

Instead of being a short-lived fad, fractal geometry survived
handsomely and became a style, part of our culture.

The absence of competition is one obvious reason: frac-
tal geometry remains the most visual subject in mathematics
and science. Students are increasingly accustomed to think-
ing pictorially (witness the stunning success of graphical user

interfaces over sequences of command lines) and continue to
be comfortable with the reasoning in fractal geometry. Then,
too, in addition to microscopically small and astronomically
large fractals, there is also an abundance of human-sized
fractals, whereas there are not human-sized quarks or galax-
ies.

Next, we must mention surprises. Students are amazed the
first time they see that for a given set of rules, the determin-
istic IFS algorithm produces the same fractal regardless of
the starting shape. The gasket rules make a gasket from a
square, a single point, a picture of your brother, . . . anything.
If the Mandelbrot set is introduced by watching videotapes
of animated zooms, then the utter simplicity of the algorithm
generating the Mandelbrot set is amazing. Part of what keeps
the course interesting is the surprises waiting around almost
every corner. Also, besides science and mathematics, fractals
have direct applications in many fields, including music, lit-
erature, visual art, architecture, sculpture, dance, technology,
business, finance, economics, psychology, and sociology. In
this way, fractals act as a sort of common language, lingua
franca, allowing students with diverse backgrounds to bring
these methods into their own worlds, and in the context of this
language, better understand some aspects of their classmates’
work.

Three other reasons are more central to the continued suc-
cess of general education fractal geometry courses. By ex-
ploiting these reasons, we keep strengthening current courses
and finding directions for future development.

As a preliminary, let us briefly list these reasons for the
pedagogical success of fractal geometry. We shall return to
each in detail.

1.4.1 First, a short distance from the downright
elementary to the hopelessly unsolved

First surprise: truly elementary aspects of fractal geometry
have been successfully explained to elementary school stu-
dents, as seen in Chapters 10 and 13. From those aspects,
there is an uncannily short distance to unsolved problems.
Few other disciplines—knot theory is an example—can make
this claim.

Many students feel that mathematics is an old, dead sub-
ject. And why not? Most of high school mathematics was
perfected many centuries ago by the Greeks and Arabs, or at
the latest, a few centuries ago by Newton and Leibnitz. Math-
ematics appears as a closed, finished subject. To counter that
view, nothing goes quite so far as being able to understand,
after only a few hours of background, problems that remain
unsolved today. Number theory had a standard unsolved but
accessible problem that need not be named. Alas, that prob-
lem now is solved. Increasing our emphasis on unsolved
problems brings students closer to an edge of our lively, grow-
ing field and gives them some real appreciation of science and
mathematics as ongoing processes.
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1.4.2 Second, easy results remain reachable

The unsolved problems to which we alluded above are very
difficult, and have been studied for years by experts. In con-
trast, not nearly all the easy aspects of fractal geometry have
been explored. At first, this may seem more relevant to grad-
uate students, but in fact, plenty of the problems are acces-
sible to bright undergraduates. The National Conference of
Undergraduate Research and the Hudson River Undergradu-
ate Mathematics Conference, among others, include presen-
tations of student work on fractal geometry. It may be uncom-
mon for students in a general education course to make new
contributions to fractal geometry (though to be sure they of-
ten come up with very creative projects applying fractal con-
cepts to their own fields), but their classmates in sciences and
mathematics can and do. (See Frame & Lanski (1999).) In-
corporating new work done by known, fellow undergraduates
can have an electrifying effect on the class. Few things bring
home the accessibility of a field so much as seeing and un-
derstanding something new done by someone about the same
age as the students. Then, too, this is quite exciting for the
science and mathematics students whose work is being de-
scribed. And it can be, and has been, a catalyst for commu-
nication between science and non-science students. So far
as we know, in no other area of science or mathematics are
undergraduates so likely to achieve a sense of ownership of
material.

1.4.3 Third, new topics continue to arise
and many are accessible

New things, accessible at some honest level, keep arising in
fractal geometry. Of course, new things are happening all
around, but the latest advances in superstring theory, for ex-
ample, cannot be described in any but the most superficial
level in a general education science course. This is not to
say all aspects of fractal geometry are accessible to nonspe-
cialists. Holomorphic surgery, for instance, lives in a pretty
rarefied atmosphere. And there is deep mathematics underly-
ing much of fractal geometry. But pictures were central to the
birth of the field, and most open problems remain rooted in
visual conjectures that can be explained and understood at a
reasonable level without the details of the supporting mathe-
matics. While undergraduates can do new work, it is unlikely
to be deep work. In fractal geometry much of even the cur-
rent challenging new work can be presented only in part but,
honestly, and without condescension to our students.

Later we shall further explore some aspects of each of these
points.

1.5 Most important of all: curiosity

Teaching endless sections of calculus, precalculus, or baby
statistics to uninterested audiences is hard work and all too
often we yield to the temptation to play to the lowest third

of the class. The students merely try to survive their mathe-
matics requirement. Little surprise we complain about our
students’ lack of interest, and about the disappearance of
childlike curiosity and sense of wonder.

Fractal geometry offers an escape from this problem. It is
risky and doesn’t always work, for it relies on keeping this
youthful curiosity alive, or reawakening it if necessary. In the
final Calvin and Hobbes comic strip, Calvin and Hobbes are
on a sled zipping down a snow-covered hill. Calvin’s final
words are, “It’s a magical world, Hobbes ol’ buddy. Let’s go
exploring!” This is the feeling we want to awaken, to share
with our students.

Teaching in this way, especially emphasizing the points we
suggest, demands faith in our students. Faith that by showing
them unsolved problems, work done by other students, and
new work done by scientists, they will respond by accepting
these offerings and becoming engaged in the subject. It does
not always work. But when it does, we have succeeded in
helping another student become a more scientifically literate
citizen. Surely, this is a worthwhile goal.

2 Instant gratification: from the
elementary to the diabolic and
unsolved, the shortest distance is . . .

In most areas of mathematics, or indeed of science, a vast
chasm separates the beginner from even understanding a
statement of an unsolved problem. The Poincarè conjec-
ture is a very long way from a first glimpse of topological
spaces and homotopies. Science and mathematics courses for
non-majors usually address unsolved problems in one of two
ways: complete neglect or vast oversimplification. This can
leave students with the impression that nothing remains to be
done, or that the frontiers are far too distant to be seen; neither
picture is especially inviting.

Fractal geometry is completely different. While the solu-
tions of hard problems often involve very clever use of sophis-
ticated mathematics, frequently the statements do not. Here
we mention two examples, to be amplified and expanded on
in the next chapter.

The first observed example of Brownian motion occurred
in a drop of water: pollen grains dancing under the impact
of molecular bombardment. Nowadays this can be demon-
strated in class with rather modest equipment: a microscope
fitted with a video camera and a projector. Increasing the
magnification reveals ever finer detail in the dance, thus pro-
viding a visual hint of self-similarity. A brief description of
Gaussian distributions—or even of random walk—is all we
need to motivate computer simulations of Brownian motion.
Taking a Brownian path for a finite duration and subtracting
the linear interpolation from the initial point to the final point
produces a Brownian plane cluster. The periphery, or hull, of
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this cluster looks like the coastline of an island. Together with
numerical experiments, this led to the conjecture that the hull
has dimension 4/3. Dimension is introduced early in fractal
geometry classes, so freshman English majors can understand
this conjecture. Yet it is unproved.1

No icon of fractal geometry is more familiar than the Man-
delbrot set. Its strange beauty entrances amateurs and ex-
perts alike. Many credit it with the resurgence of interest in
complex iteration theory, and its role in the birth of computer-
aided experimental mathematics is incalculable. For students,
the first surprise is the simplicity of the algorithm to generate
it. For each complex number c, start with z0 = 0 and pro-
duce the sequence z1, z2, . . . by zi+1 = z2

i + c. The point
c belongs to the Mandelbrot set if and only if the sequence
remains bounded. How can such a simple process make such
an amazing picture? Moreover, a picture that upon magnifi-
cation reveals an infinite variety of patterns repeating but with
variations. One way for the sequence to remain bounded is to
converge to some repeating pattern, or cycle. If all points near
to z0 = 0 produce sequences converging to the same cycle,
the cycle is stable. Careful observation of computer exper-
iments led Mandelbrot to conjecture that arbitrarily close to
every point of the Mandelbrot set lies a c for which there is
a stable cycle. All of these concepts are covered in detail in
introductory courses, so here, too, beginning students can get
an honest understanding of this conjecture, unsolved despite
heroic effort.

3 Some easy results remain:
“There’s treasure everywhere”

3.1 Discovery learning

Learning is about discovery, but undergraduates usually learn
about past discoveries from which all roughness has been pol-
ished away giving rise to elegant approaches. Good teaching
style, but also speed and efficiency, lead us to present math-
ematics in this fashion. The students’ act of discovery dis-
solves in becoming comfortable with things already known
to us. Regardless of how gently we listen, this is an asym-
metric relationship: we have the sought-after knowledge. We
are the masters, the final arbiters, they the apprentices.

In most instances this relationship is appropriate, unavoid-
able. If every student learned mathematics and science by
reconstructing them from the ground up, few would ever see
the wonders we now treasure. Which undergraduate would
have discovered special relativity? But for most undergrad-
uate mathematics and science students, and nearly all non-
science students, this master-apprentice relationship persists
through their careers, leaving no idea of how mathematics and

1Stop the presses: this conjecture has been proved in Lawler, Werner, &
Schramm (2000).

science are done. Fractal geometry offers a different possibil-
ity.

Term projects are a central part of our courses for both non-
science and science students. To be sure, some projects turn
out less appropriate than hoped, but many have been quite
creative. Refer to the student project entries in A Guide to the
Topics. Generally, giving a student an open-ended project and
the responsibility for formulating at least some of the ques-
tions, and being interested in what the student has to say about
these questions, is a wonderful way to extract hard work.

3.2 A term project example: connectivity
of gasket relatives

We give one example, Kern (1997), a project of a freshman in
a recent class. Students often see the right Sierpinski gasket
as one of the first examples of a mathematical fractal. The
IFS formulation is especially simple: this gasket is the only
compact subset of the plane left invariant by the transforma-
tions
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Applying these transformations to the unit square S =
{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} gives three squares
Si = Ti (S) for i = 1, 2, 3. Among the infinitely many
changes of the Ti , in general producing different fractals,
a particularly interesting and manageable class consists of
including reflections across the x- and y-axes, rotations by
π
2 , π , and 3π

2 , and appropriate translations so the three re-
sulting squares occupy the same positions as T1(S), T2(S),
and T3(S). Pictures of the resulting fractals are given on pgs
246–8 of Peitgen, Jurgens & Saupe (1992a).

What sort of order can be brought to this table of pictures?
Connectivity properties may be the most obvious: they allow
one to classify fractals.

dusts (totally disconnected, Cantor sets),

dendrites (singly connected throughout, without loops),

multiply connected (connected with loops), and

hybrids (infinitely many components each containing a
curve).

A parameter space map, painting points according to which
of the four behaviors the corresponding fractal exhibits, did
not reveal any illuminating patterns. However, sometimes
(though not always—certainly not in the Cantor set cases, for
example) in the unit square S there are finite collections of
line segments that are preserved in T1(S) ∪ T2(S) ∪ T3(S). In
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Figure 1: Relatives of the Sierpinski gasket: Cantor dust, dendrite, multiply connected, and hybrid. Can you find preserved line
segments in the last three?

the cases where they could be found, these did give a trans-
parent reason for the connectivity properties. This approach
was generated by the student, looking for patterns by staring
at the examples for hours on end.

What can we make of the observation that different col-
lections of line segments work for different IFS? The student
speculated that there is a universal shape, perhaps a union
of some of the line segments from several examples, whose
behavior under one application of T1, T2, and T3 determines
the connectivity form of the limiting fractal. This is an ex-
cellent question to be raised by a freshman, especially in a
self-directed investigation.

This is just one example. Fractal geometry may be unique
in providing such a wealth of visually motivated, but ana-
lytically expressed, problems. Truly, there is treasure every-
where.

4 Something new is always happening

New mathematics is coming up all the time; ours is a very
lively field. However, many new developments are at an ad-
vanced level, often comprehensible only to experts having
years of specialized training. To be sure, deep mathemati-
cal discoveries abound in fractal geometry, too. But because
pictures are so central, here many advances have visual ex-
pressions that honestly reveal some of the underlying math-
ematics. New developments in retroviruses or in quantum
gravity are unlikely to be comprehensible at anything other
than a superficial level to general education students. They
hear about the advances, but not why or how they work. The
highly visual aspect of fractal geometry has allowed us to in-
corporate the most recent work into our courses in a serious
way.

Here we describe one new development, and mention an-
other to be explored in the next chapter.

4.1 Fractal lacunarity

It is difficult to imagine an introductory course on fractals
that does not include computing dimensions of self-similar

fractals. (See Chapters 5, 12, and 15, for example.) The
calculations are straightforward, a skill mastered without ex-
cessive effort. Moreover, the idea generalizes to data from
experiments, opening the way for a variety of student
projects. However, one of the earliest exercises we assign
points out a limitation of dimension: quite different-looking
sets can have the same dimension. For example, all four
fractals in Figure 1 have dimension log(3)/ log(2). The Sier-
pinski carpets of Figure 2 (Plate 318 of Mandelbrot (1982))
both subdivide the unit square into 49 pieces, each scaled by
1
7 , and delete nine of these pieces. So both have dimension
log(40)/ log(7). On the left, these holes are distributed uni-
formly, on the right they are clustered together into one large
hole in the middle. Lacunarity is one expression of this dif-
ference, and is another step in characterizing fractals through
associated numbers. Here the number represents the distribu-
tion of holes or gaps, lacunae, in the fractal. This reinforces
for students the relation between numbers and the visual as-
pects they are meant to represent. But also, this is current
work, and even some of the basic issues are not yet settled.
With this, our students see science as it is developing, and
can understand some components of the debate.

To give an example of the kinds of results accessible to
students having some familiarity with sequences and calcu-
lus, we describe an approach to the fractals of Figure 2. For a
subset A ⊂ R2, the ε-thickening is defined as

Aε = {x ∈ R2 : d(x, y) ≤ ε for some y ∈ A}
where d(x, y) is the Euclidean distance between x and y.

Now suppose A is either of the Sierpinski carpets in Fig-
ure 2. For large ε, Aε fills all the holes of A and the area of
Aε , |Aε |, is 1 + 4ε + πε2. As ε → 0, the holes of A be-
come visible and increase the rate at which |Aε | decreases.
Calculations with Euclidean shapes—points, line segments,
and circles, for example—show |Aε | ≈ L · ε2−d , where d is
the dimension of the object. This relation can be used to com-
pute the dimension, a technique developed by Minkowski and
Bouligand. A first approach to lacunarity is the prefactor L ,
or more precisely, 1/L , if the limit exists.
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Figure 2: Two Sierpinski carpet fractals with the same dimension.

A general Sierpinski carpet is made with initiator the filled-
in unit square, and generator the square with M squares of
side length s removed. The iteration process next covers the
complement of these M holes with N copies of the generator,
each scaled by r . (Note the relation 1 − Ms2 = Nr2.) For
the carpet on the left side of Fig. 2 we see M = 9, s = 1

7 ,
N = 40, and r = 1

7 ; on the right M = 1, s = 3
7 , N = 40, and

r = 1
7 .

It is well known that for the box-counting dimension the
limit as ε → 0 can be replaced by the sequential limit
εn → 0, for εn satisfying mild conditions. Although the pref-
actor is generally more sensitive than the exponent, we begin
with the sequence εn = srn−1/2. For Sierpinski carpets A
it is not difficult to see Aεn fills all holes of generation ≥ n,
while holes of generation m < n remain. They are squares
of side length s(rm−1 − rn−1). Straightforward calculation
gives

|Aεn | = (4εn + πε2
n) + Ms2

(( 2

1 − Nr
rn − 1

1 − N
r2n

)

+ (Nr2)n
( 1

1 − Nr2
− 2

1 − Nr
+ 1

1 − N

))
.

Using L ≈ |Aεn |εd−2
n , we obtain

L ≈ M22−dsd
( 1

1 − Nr2
− 2

1 − Nr
+ 1

1 − N

)
.

Substituting in the values of M , s, N , and r , we obtain
L ≈ 1.41325 and L ≈ 1.26026 for the left and right carpets.
So provisionally, the lacunarities are 0.707589 and 0.793487,
agreeing with the notion that higher lacunarity corresponds to
a more uneven distribution of holes.

Unfortunately, different sequences εn can give different
values of L . Several approaches are possible, but one that
is relatively easy to motivate and implement is to use a loga-
rithmic average

lim
T →∞

1

T

∫ T

0

|Ae−t |
(2e−t )2−d

dt.

The 2 in the denominator is a normalizing factor. For these
carpets, this reduces to

Msd

log(1/r)

( 1

1 − Nr2

1 − r2−d

2 − d
− 2

1 − Nr

1 − r1−d

1 − d

+ 1

1 − N

1 − r−d

−d

)
.

Substituting in the values of M , s, N , and r , we obtain
1.305884 and 1.164514 for the left and right carpets. The
respective lacunarities are 0.765765 and 0.858727.

These calculations involve simple geometry and can be ex-
tended easily to gaskets, their relatives, and the like. Even
as the concepts continue to evolve, this is a rich source of
ideas for student projects. Comparison with other lacunar-
ity candidate measures—crosscut (Mandelbrot, Vespignani &
Kaufman (1995)) and antipodal correlations (Mandelbrot &
Stauffer (1994)), among others—in simple cases, is yet an-
other source of projects. This has proven especially interest-
ing because it shows students first-hand some of the issues
involved in defining a measurement of a delicate property.
Without being too heavy-handed, we point out in calculus that
the definitions have been well-established for centuries. And
even students in general education courses can appreciate the
visual issues involved in the clustering of the lacunae.
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4.2 Fractals in finance

As of this writing, the most common models of the stock
market are based on Brownian motion. In fact, the first
mathematical formulation of Brownian motion was Louis
Bachelier’s 1900 model of the Paris bond market. However,
comparison with data instantly reveals many unrealistic fea-
tures of Brownian motion X (t). For example, X (t1) − X (t2)
and X (t3) − X (t4) are independent for t1 < t2 < t3 < t4, and
X (t1) − X (t2) is Gaussian distributed with mean 0 and vari-
ance |t1 − t2|. That is, increments over disjoint time intervals
are independent of one another, and the increments follow
the familiar bell curve, so large increments are very rare. The
latter is called the short tails property.

Are these reasonable features of real markets? Why should
price changes one day be independent of price changes on a
previous day? Moreover, computing the variance from mar-
ket data assembled over a very long time, events of 10σ , for
example, occur with enormously much higher frequency than
the Gaussian value, which is (!) 10−24. Practitioners circum-
vent these problems by a number of ad hoc fixes, adding up
to a feeling similar to that produced by Ptolemy’s cosmol-
ogy: add enough epicycles and you can match any observed
motion of the planets. Never mind the problems produced
by the physicality of the epicycles, among other things. (Of
course, in finance the situation is much worse. No one has a
collection of epicycles that predicts market behavior with any
reliability at all.)

In the 1960s, Mandelbrot proposed two alternatives to
Brownian motion models. Mandelbrot (1963) had increments
governed by the Lévy stable distribution (so with long tails),
but still independent of one another. In 1965 Mandelbrot pro-
posed a model based on fractional Brownian motion (See
Mandelbrot (1997).) This model consequently had incre-
ments that are dependent, though still governed by the Gaus-

sian distribution. Both are improvements, in different ways,
of the Brownian motion models.

It is a considerable surprise, then, that Mandelbrot found
a better model, and in addition a simple collection of car-
toons, basically just iterates of a broken line segment, that by
varying a single parameter can be tuned to produce graphs in-
distinguishable from real market data. The point, of course, is
not to just make Pick the Fake quizzes that market experts fail,
though to be sure, that has some entertainment and educa-
tional value. All these cartoons have built in the self-affinity
observed in real data. Pursuing the goal of constructing the
most parsimonious models accounting for observation, these
cartoons suggest that dependence and non-Gaussian distribu-
tions may be a consequence of properly tuned self-affinity.
More detail is given in the next chapter.

Finally, these cartoons are a perfect laboratory for student
experimentation.

5 Conclusion

Some view science, perhaps especially mathematics, as a se-
rious inquiry that should remain aloof from popular culture.
Many of these people regret our teaching of fractal geometry,
because its images have been embraced by popular culture.

We take the opposite view. As scientists, our social re-
sponsibility includes contributing to the scientific literacy of
the general population. That fractal geometry has the visual
appeal to excite wide interest is undeniable. This introduc-
tion argued that fractal geometry has the substance to en-
gage non-science students in mathematics, in a serious way
and to a greater degree than any other discipline of which we
are aware. The chapters of this volume amplify this position
by showing how a wide variety of teachers have done this in
many settings.






