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Abstract
The scaling properties of financial prices raise many questions. To provide
background—appropriately so in the first issue of a new journal!—this paper,
part I (sections 1 to 3), is largely a survey of the present form of some
material that is well known yet repeatedly rediscovered. It originated in the
author’s work during the 1960s. Part II follows as sections 4 to 6, but can to a
large extent be read separately. It is more technical and includes important
material on multifractals and the ‘star equation’; part of it appeared in 1974
but is little known or appreciated—for reasons that will be mentioned. Part II
ends by showing the direct relevance to finance of a very recent improvement
on the author’s original (1974) theory of multifractals.

Introduction
As usual, a power-law distribution of financial price changes
will be written as Pr(U > u) ∼ u−α . The key question
is whether or not the exponent α is restricted to α < 2.
Such is the case in the now classical model Mandelbrot
(1963) based on Lévy-stable independent increments. In
contrast, the multifractal model described in Mandelbrot
(1997) corresponds to dependent increments and allows 1 <

α < ∞. In that model, price is a fractional Brownian function
of a trading time, which itself is a non-decreasing multifractal
function of clock time.

Indeed, a major asset of multifractals, hence of my 1997
model, is that under wide conditions the power-law distribution
is provided with one of its very few legitimate derivations. This
feature vanishes in the familiar non-random examples of the
binomial multifractal and related ‘cartoons’. In addition, it
did not matter in the best known early applications to physics.
In finance, in contrast, it emerges, arguably, as one of the
most important features of the original form of multifractals
presented in Mandelbrot (1974) and now generalized in Barral
and Mandelbrot (2000).

The standard restriction to α < 2 can now be inverted
to imply that α < 2 is required for the price changes to be
independent, as long as they have an infinite variance. In
contrast, the full multifractal model of Mandelbrot (1997)
allows variance to be finite but involves infinite-range
dependence.

Related empirical questions are: (i) for which prices is α

well defined? (ii) Fama (1936b, 1965) observed instances of
power law tails with α > 2, which is incompatible with scaling
under addition combined with independence. (iii) Officer
(1972) made the very important empirical discovery that some
financial prices clearly contradict additive scaling combined
with independence. These findings became familiar among
economists and were later rediscovered by many newcomers
to the field; they are obviously important; how should one react
to them?

The old and new issues are discussed in this paper
informally and in historic sequence. The paper that follows
discusses the same issues formally in the context of a
fundamental functional equation, called the ‘star equation’.
It expresses invariance under different successive forms of
rescaling (or ‘exact renormalizability’ in the language of
physics). The star equation went through successive stages,
in parallel with successive financial models.

The ancient original form, introduced by Cauchy in 1853,
was the pioneering form of the concept of scaling and expressed
that the distribution of a random variable is invariant under
non-random weighting, a form of addition. The equation’s
full solution is a (Lévy) stable distribution, in which the tail
probability follows a power law whose exponent is restricted
to α < 2. Independent Lévy stable price changes are the
basis of a model that Mandelbrot (1962, 1963, 1967) applied
successfully to the variation of some financial prices, namely,
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cotton and other some commodities, some securities, as well
as some interest rates. Fama (1963b, 1965) promptly extended
this model to represent a wider variety of securities prices.
A more general star equation was introduced in Mandelbrot
(1974). It was applied to prices when chapter E6 of Mandelbrot
(1997) generalized scaling to involve exact renormalizability
simultaneously in time and price and investigated models of
price variation in which the rules of dependence are scaling
and take a multifractal form.

‘Generically’, the multifractal model yields power-law
tails and can yield any value α > 1. This generic property
has remained little known, however, because it was not used
much. Also, the heuristic presentation that many scientists
follow says nothing directly about the probability distribution.
The basic finding underlying the distribution of the values
of multifractals contributed to the (correct) reputation that
Mandelbrot (1974) is complicated. It took much space to show
that in cascade-generated random multifractals the Cauchy
scaling invariance under non-random weighting is replaced
by invariance under random weighting and associated with a
power-law distribution having a critical exponent.

However, Mandelbrot (1974, 1997) was necessarily
limited to multifractal interdependence with an artificial grid-
bound cascade, which is also the source of examples without
a power-law distribution. To the multifractals in Barral
and Mandelbrot (2000), the star equation does not extend
naturally. But they have an important property: for them the
unboundedness of α is a generic property.

After the fact, a parallelism exists between this sequence of
star equations and the progression of models of price variation
from the Brownian, to the ‘mesofractal’ Mandelbrot (1963)
and to the multifractal Mandelbrot (1972, 1997).

Taken together, those examples suffice to establish that all
observations of power laws in finance can be accounted for, at
least in principle, as long as scaling is redefined in a suitably
generalized form.

1. Preliminaries
1.1. The challenge of ‘lifetime’ data stated
graphically

The challenge this paper faces is that of representing financial
price variation by suitable random models. The sequence of the
three models I have developed since the early 1960s is rooted
in an important and parsimonious concept, an early form of
scaling.

However, the underlying motivations and the degree to
which they succeed are best assessed by combining the analysis
of actual data with the synthesis of model ‘data’. In the past,
graphics were slow, expensive and inaccurate. Hence, it was
of no help and all fields had to compare scientific models
and reality via short lists of numerical quantities investigated
by analytic statistical methods. With computers, the actual
data and simulated samples of the models must continue to be
compared analytically. But they can also be displayed side by
side and compared visually.

Figure 1. A collection of diagrams, illustrating, in no particular
order, the behaviour in time of at least one actual financial price and
of at least one mathematical model of this behaviour. It would be
difficult to identify the models.

The challenge made graphic by figures 1 and 2. It is even
easier to create confusion or lie by pictures than by words,
numbers and statistics. Two major visual exhibits I often use,
reproduced here as figures 1 and 2, are specifically devised to
illustrate and avoid a certain form of confusion.

The financial press was forward-looking in using graphics,
but is accustomed to plotting the price itself. In this spirit,
figure 1 intermixes two extremely different synthetic records
and two actual price data sets over horizons of a ‘lifetime’,
namely, a few times ten years. The four lines are very hard to
tell apart.

One of those lines represents the early and idealized
Brownian motion model put forward by Louis Bachelier in
1900 (see section 7 in part II). A standard response is that figure
1 confirms that the actual data are adequately represented by
Brownian motion, hence there is no need to search for better
models.

Very different conclusions are reached by examining
figure 2. Instead of the real or synthetic prices themselves,
it plots their ‘daily increments’. By design, the ‘pen width’
chosen in preparing figure 2 is about the same as the time lag
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Figure 2. A stack of diagrams, illustrating the successive ‘daily’
differences in at least one actual financial price and some
mathematical models. It is obvious that lines 1 and 3 do not report
on data but on models; in contrast, to identify the models among the
lower five lines is difficult. As to line 2, a referee greatly flattered
me by observing that the fact that it illustrates a model is not
obvious. But it does indeed illustrate the model I introduced in
1963, the best available until a few years ago.

between observations. The resulting ‘strip’ is an artefact but a
very useful one.

The top line illustrates white noise, the sequence of
increments of Brownian motion. Lines 2 and 3 illustrate
my two early and very imperfect would-be improvements on
Bachelier. Because of the main dates associated with them,
they will be called the M1963 (Mandelbrot 1963) and M1965
(Mandelbrot 1965) models.

The remainder of figure 2 is a medley whose main point
is that the sources of the different lines are difficult to identify
either by eye or by algorithm. Told that at least one is a real
record and at least one is computer generated, the reader is free
to guess which diagrams are real and which ones are forgeries.
Here is the answer to the game: the fifth line plots the price
of IBM shares and the sixth line, the Dollar–Deutschmark
exchange rate. The remaining lines are synthetic records of
the latest multifractal model, M1992/1997, first fully described
in Mandelbrot (1997). It is hoped that the forgeries will be
perceived as effective.
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Figure 3. G W Schwert’s financial index in New York for over a
century. This index is pieced together from several sources
described in section 1.2. Daily standard deviations are plotted in
units of monthly standard deviations.

1.2. The challenge of ‘secular’ data stated
graphically

Figure 3, kindly provided by G W Schwert, is a composite
of squares of daily returns. It has been ‘processed’ and,
therefore, is not directly comparable to the real data included
in figure 2. But it suffices for the point to be made here. The
variability of the real data remains extreme over a century and
is approximately of the same form as the variability figure 2
reports over a lifetime.

A minor complication is that, by necessity, the underlying
returns are, first, of the DJIA, later, of the S&P composite,
then of the CRSP value-weighted index, and again of the S&P
composite.

A major complication is that this figure incorporates two
mean-square averages: it plots the standard deviation for days
in units of the monthly standard deviation. Hence, the evenness
of the minima is due to the fact that the variability of the
variance on the scale of a century has been largely eliminated
by averaging. Figure 3 must not be compared directly to the
unaveraged figure 2, but averaging has a much lesser effect
on the features of figure 3 that attract the strongest and most
immediate attention.

1.3. Can the challenges of short- and long-range
modelling be combined?

The unconventional thinking behind my work on price
variation can only emerge gradually through this paper but
deserves to be briefly stated here. The natural and usual
response is that the data in figures 2 and 3 must be dealt with
separately. To the extent that price variation follows any rule,
it is, indeed, generally taken for granted that changes over a
day, a week, a month, a year, a lifetime or a century follow
separate sets of rules. That is, each time increment raises a
separate and distinct challenge.

Quite to the contrary, my belief is that the great overall
similarity between figures 2 and 3 suggests that, in a first
approximation, price variation presents very similar features
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over a century and a lifetime. A similarity of features not only
suggests that the existence of underlying rules is not excluded,
but that those rules may be the same at all time scales.

The reader may be tempted to stop here and ponder a
priori whether or not my claims agree with economic thinking
or make ‘intuitive’ sense. I suggest it is more reasonable to go
ahead and first see what the multiscale models accomplish.
Those models are parsimonious and their parameters have
clearcut individual meanings, for a reason that is important to
state. My parsimonious models postulate that price records are
invariant under scaling or multiscaling—and the parameters
are the defining characteristics of those invariances. They may
involve unfamiliar mathematics, but they are as intrinsic as can
be. In contrast, the alternative approaches that concern each
scale separately tend to borrow and generalize some existing
formulae addressed to past needs. They inevitably involve
large numbers of parameters as well as delicate problems of
actual matching. In order to be preferred to the joint models,
they will have to present special advantages, which I do not
think exist as of now.

1.4. Essential characteristics of the price-increment
records, in contrast to the ideal coin-tossing
hypothesis

1.4.1. Three basic observations. Figure 3, as well as the
medley at the bottom of figure 2, exhibit many features that are
familiar even to those who know little about financial markets.

Firstly, a substantial number of ‘spikes’ stand out clearly:
all correspond to unusually large price changes and many
correspond to instantaneous discontinuities.

Secondly, most relative changes other than the spikes
merge into a strip. On the top line of figure 2, the strip’s width
is constant but on the bottom five lines, it constantly varies. In
figure 3, it is more or less constant because of the averaging
that is part of its construction.

Thirdly, the spikes tend to cluster and occur during periods
when the strip is broad. This behaviour brings up the notion
of ‘volatility’. In the Brownian universe, the volatility can be
defined by a single number. It is the width of the strip or the
standard deviation σ that is roughly four times smaller. In
this sense, the five bottom lines of figure 2 exhibit ‘variable
volatility’. My very different response is that the definition
chosen for the very elusive concept of volatility will have to
be thoroughly re-examined.

Of those and other characteristics of real markets, the
white noise on the top of figure 2 incorporates none. The strip
is of constant width and no spike stands out. That is, Brownian
motion, Gaussianity and independence represent the observed
price series P(t) very poorly.

To quantify how poorly, note that for both ideal and real
charts, one is free to define the overall strip as leaving outside
about 5% of the cases. In the Brownian case, this width is of the
order of 4σ . However, many real charts, such as those plotted
in figure 2, include many ‘10σ ’ spikes. In an ideal market
where σ is the standard deviation, those events would have
a probability of about 10−23, a few millionth of a millionth
of a millionth of a millionth. This is roughly the inverse of

Avogadro’s number. The ideal market completely disregards
those spikes—but a realistic model cannot.

The observed extremes deserve to be further documented.
IBM saw its stock fall instantaneously by 10% early in
1996, and later in that year rise instantaneously by 13.2%.
Concentration with or without discontinuity is striking even
in the extensively averaged portfolio based on the Standard
& Poor 500 index. Of this portfolio’s returns over the 1980s,
fully 40% was earned during ten days (0.5% of the number
of trading days in a decade.) This concentration contradicts a
fundamental theorem about the ideal market, namely that even
the most active day makes a negligible contribution.

1.4.2. Comments on the basic three observations reported
in section 1.4.1 Even if it were true (it is not) that an
ideal market model represents data correctly 95% of the time,
its fit would not be sufficient because the 5% remainder
includes most major events. Indeed, it cannot be questioned
that, irrespective of the measures chosen for the notion of
‘cumulative effect of events’, the partial effect of the 5% largest
far exceeds 5% of the total effect. As a preview, my models
predict that the effect of the largest 5% may dwarf the effect
of the remaining 95%. That is, all told, the study of finance
cannot be blind to extreme price changes.

A further criticism of the ideal market hypothesis is
qualitative but deep. Financial dailies, weeklies and monthlies
can thrive because every day in the market is unlike any other
day, one week, month or year unlike any other. In an ideal
market, in contrast, daily chapters of the history books might
vary from one another, but all yearly chapters would seem
effectively alike.

1.5. The combined challenges of short- and
long-term data, continued

While the limitations of the ideal market using B(t) are
generally acknowledged, that model became the basis of
the very sophisticated ‘modern portfolio theory’ and of the
‘calculus of risk’ highlighted by the Black–Sholes–Merton
theory. This development was unavoidable and sensibly
followed the well-trodden example set by the exploration of
matter, which began by inventing and exploring the simplifying
concept of perfect gas. But many practitioners and academics
have now joined the search for realistic models.

This effort, like every feature of financial markets, pits
bulls against bears. To the question, ‘can large events
be handled quantitatively?’, the bearish answer is that
this is impossible, the argument being that large events
are individual ‘acts-of-God’ or ‘anomalies’ that present no
conceivable regularity. To the question, ‘can the so-called
changes in volatility and other long term effects be handled
quantitatively?’, the bearish answer is, again, that it is
impossible, the argument being this time that everything in
the financial markets is non-stationary. Other bears assume
without even seeking evidence that short- and long-term effects
follow different rules.

The bulls disagree, of course, and believe that one must
not give up without having tried.
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A question is immediately thrown back. ‘Do you view the
large events as mostly exogenous or endogenous?’ The
presence of universal regularities in the exogenous economic
fundamentals would be absurdly far-fetched. Therefore, if
changes were exogenous, it would be hard to expect any model
to be of wide applicability. The endogenous alternative is that
the complex interactions in financial markets are strong and
systematic enough to create the very specific structures that are
observed. In any event, I take the decidedly bullish position
that the variation of financial prices does follow rules of its
own, therefore may be modelled on its own. For the sake of
the already-informed readers, section 1.7 will sketch the rules
I propose today. Details will be provided in later sections.

Another question is: ‘Don’t you bulls agree that in the
economy the non-stationarity of everything is blindingly
obvious?’ My response to this question went through several
stages.

Before the fact, I answered that this may well be true but
‘stationarity’ is an example of the broader notion of ‘existence
of unchanging rules’. Without such rules, there is no science,
therefore anyone who agrees with the bears’ question agrees
that the market’s behaviour will forever remain inaccessible to
rational description.

After the fact, the M1963 model and ever more so the
M1972/1997 model prove that the most customary meaning
of the word ‘stationary’ is a poor description of anything
in finance. Therefore, section 1.4 became the stimulus for
the identification of generalized forms of stationarity and the
elaboration of a suitable calculus.

Therefore, my response to the bears’ question concerning
stationarity takes the following form, which is the key to all my
work in this area: ‘I disagree that non-stationarity is obvious
and do my best to avoid it’.

1.6. Quirky joint responses to the challenge stated in
section 1.5; sketch of the author’s three successive
models based on invariances

Denote by P(t) the logarithm of a financial price at time
t . For reasons hinted at in section 1.3, and to be elaborated
momentarily, the only models that I ever considered, respond
simultaneously to the challenges posed by data over a century,
a lifetime and shorter time spans.

A classical invariance property of the Wiener (‘ordinary’)
Brownian motion B(t). It is well known that, if B(0) = 0,
the function |µ|−HB(µt) has the same distribution for all
µ �= 0. It reduces to its form for µ = 1, which is B(t) itself.
Until the 1960s, this special form of scaling was standard but
nameless. I put forward the term, ‘self-affinity’, which was
widely accepted as part of the vocabulary of fractal geometry.
The Brownian self-affinity exponent is H = 1/2.

Self-affine processes are exactly renormalizable (in other
words, they provide fixed points) under suitable linear changes
applied simultaneously to both the t and P axes.

Self-affinity as mathematical expression of market folklore.
As is widely known, a fractal is a geometric shape that can
be separated into parts such that each part is a reduced-scale
version of the whole. To implement this characterization, one
must define the notion of ‘reduction’. Fractals using isotropic
reductions are called self-similar. They have become well
known, but prices call for the more novel concept of self-affine
fractality.

Self-affinity expresses mathematically the claim that all
market charts look alike. The ‘whole’ chart is usually wider
than it is high, but its small parts are higher than they are wide.
That is, in order to move from the whole to a part, one must
reduce the time scale far more than the price scale. Self-affine
fractality makes available many powerful tools of analysis.
Some are very new; others are described in Mandelbrot (1982,
1997, 1999, 2001).

1.7. Fractional Brownian motion compounded in
multifractal trading time: subordination; three
examples investigated earlier

My present preferred model of price variation combines two
essential notions I had originally introduced for different
purposes. Those notions need not be defined until section 5
but those who are familiar with them may welcome an early
survey.

The combination of fractional Brownian motion and
multifractality first described in Mandelbrot (1997) postulates
that P(t) is a ‘compound process’ of the form P(t) =
BH [θ(t)], where BH(θ) is a fractional Brownian motion
(FBM) in terms of an auxiliary variable θ , and θ(t) is called a
multifractal trading time (MTT) and is a multifractal function
of the clock time t .

FBM and MTT are both self-affine, and self-affinity is
preserved when they are compounded.

Special cases that reduce to models considered in 1900 or
the 1960s. The compound process BH {θ(t)] is specialized
but of great generality. In addition, it has the virtue of
including, as very simple special cases, three models advanced
in the past.

The standard Bachelier model, when H = 1/2 and θ(t)
reduces to the degenerate limit case θ(t) = t. Then, the
compound function BH(θ) reduces to the classical Wiener
Brownian motion postulated by the Bachelier model. Once
again, its increments are drawn on the top line of figure 2.

The M1965 model, when H �= 1/2 and θ(t) = t. Then
P(t) reduces to fractional Brownian motion of time and the
model falls back on one proposed in Mandelbrot (1965). Once
again, its increments are drawn on the third line of figure 2.

The M1963 model, when H = 1/2 and θ(t) reduces to
a ‘stable subordinator’. Mandelbrot and Taylor (1967)
reproduced in chapter E21 of Mandelbrot (1997), showed that
P(t) reduces to a L-stable function of time and the model
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falls back on one proposed in Mandelbrot (1963). Its high
explanatory power will be described in section 3.2, but it is not
general enough. Once again, its increments are drawn on the
second line of figure 2.

Beyond the special cases: general compounding as
compared to the special case of subordination. By a
definition that deserves to be left unchanged (that is, not
generalized), ‘subordinators’ are monotone, non-decreasing,
random processes with independent increments. P Clark,
in Mandelbrot (1972) (chapter E21 of Mandelbrot (1999)),
as well as numerous other authors considered non-fractal
subordinators. The formalism became complicated but
preserved independent increments; that is, did not face the
critical presence of strong dependence. In contrast, general
compounding allows the increments of the trading time to
be statistically dependent. As a result, while preserving self-
affinity, the FBM (MTT) model allows P(t) to follow a wide
variety of specific behaviours.

Useful fractal terminology. The above three special
examples are jointly called fractal. When emphasis is needed,
the Bachelier model is called Fickian, the M1965 model is
called unifractal and the 1963 model, mesofractal.

For the sake of symmetry with the M1963 and M1965
models, multifractals are said to define the M1972/1997
model. This construction has also been referred to as BMMT:
Brownian motion of multifractal time or (in Mandelbrot,
Calvet and Fisher (1997) and Calvet and Fisher (2000)) as
MFAR: multifractal model of asset returns.

In the most useful models, the number of parameters is as
small as possible and they have independent significance;
uni- and multivolatility. The Fickian case is unique in
its being fully specified by location and scale, and a single
parameter, namely, scale, suffices to define and measure
volatility. The models offered in Mandelbrot (1963, 1965)
are specified by scale and location, but also one or a few
additional numbers. Those additional numbers have a clearcut
independent significance and must be made part of the
measurement of volatility.

The limit-log-normal model. Among multifractal mea-
sures, families that involve few parameters deserve special at-
tention. The limit log-normal family, studied in Mandelbrot
(1972), chapter N14 of Mandelbrot (1999), happens to provide
a surprisingly close approximation to the Dollar–Deutschmark
exchange rate (see Mandelbrot, Calvet and Fisher (1997) and
Calvet and Fisher (2001)).

Beyond the limit-log-normal model. In general, the
specification of a multifractal involves a ‘spectrum’ that is in
effect a probability distribution function. Its full specification
involves parameters in large (theoretically infinite) numbers.
Once again, the saving grace is that each of those parameters
has a well-defined meaning.

Levels, or degrees, of stationarity. To the eye, the top line of
figure 2 is clearly stationary, the third line is dubious and all the
others appear to be non-stationary. In fact, all are stationary,
at least ‘conditionally’. This very important issue is addressed
in Mandelbrot (1982) starting on page 383.

2. Challenges raised by the power laws of
exponents α and H that rule the tail and
dependence
The discussion began in section 1 will now be resumed in
detail.

2.1. The power laws

Personal incomes. Pareto (1896) discovered purely
empirically that the distribution of personal income has a high-
income tail that follows a power law Pr{U > u} ∼ u−α .
Papers I published around 1960 interpreted Pareto’s power law
in terms of Lévy stability (see several chapters of Mandelbrot
(1997)). Then I moved on to financial price change data sets
and discovered two power laws in their context.

Fat tails of financial prices. For all time increments �t ,
the tail distributions of the price increments are ‘fat’ and
follow a power law with an exponent that usually continues
to be denoted by −α. Mandelbrot (1963) derived this power
law through a theory, as a necessary consequence of a form
of postulated ‘self-affinity’, scale-invariance or scaling. The
assumption is that, after suitable renormalization, the same
distribution holds for the price changes �P over all values of
�t .

Infinite dependence: correlation or another suitably
defined measure of statistical dependence is ‘infinitely long’
with a tail that follows a power law with an exponent that is
usually denoted by 2H − 2. ‘Infinitely long’ is not a loose
wording but a precise technical term. When a correlation C(s)

is defined, the condition for infinitely long dependence is that∑
C(s) from s = −∞ to s = ∞, is infinite or zero. An

example is C(s) = s2H−2 with 1
2 < H < 1. This power law

introduced in Mandelbrot (1965) involved a different form of
theoretical scale invariance. Scaling was postulated in order
to account for an empirical discovery called the Hurst puzzle.

2.2. The scientific challenges posed by the power
laws were recognized instantly in the 1960s and
again attract wide attention

• When data sets of tail and dependence properties are
examined in isolation from each other, which are the
empirically observed ranges of the values of α and H?

• For which values of α are power-law tail distributions
compatible with an absence of dependence?

• For which values of H is the power-law dependence
compatible with the absence of fat tails, for example, with
Gaussianity?
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• To be realistic, one must examine tail and dependence
properties together. When this is done, is it possible to
prove mathematically, or at least illustrate by examples,
that the tail and dependence power laws are mutually
compatible for either some or all values of α and 2H −2?

• Last but not least, are the various power laws, with suitable
ranges of α and H , compatible with scaling? That is, can
both power laws be valid simultaneously for all values of
�t used in taking price differences?

2.3. Empirical power laws first occurred in
economics and social sciences

Zipf (1949) is noteworthy in several contradictory ways. The
book’s principal conclusion was that many social sciences data
follow a power-law probability distribution that generalizes
Pareto’s law of income distributions. This conclusion
was sharply attacked and dismissed by most statisticians,
but eventually vindicated and expanded. Zipf’s broader
conclusion was that the distinction between the Gaussian
and the power-law distribution coincides with the distinction
between the physical and the social sciences. This claim
was thoroughly discredited by my work and (implicitly, but
thoroughly and definitely) by statistical physics of critical
phenomena. Zipf was not satisfied with pioneering curve-
fitting but claimed having explained the power-law distribution
as resulting from a purely verbal argument he called ‘principle
of least effort’.

2.4. Generalization of power laws: the critical
moment exponents

Many examples involve a power law with a slowly varying
prefactor, therefore require a generalization of α. One says
that a random variable X has a finite critical moment exponent
α if EXq < ∞ for q < α and EXq = ∞ for q > α.

2.5. Digression on multiplicative growth models for
positive variables with a power-law distribution

Pareto inspired a multitude of authors to try and explain why
personal incomes are power-law distributed. The number of
models and the fact that many fall into a fairly small number of
basic patterns are painstakingly documented in a very useful
but inaccessible paper over 100 pages long, Chipman (1976).

Among those models that actually yield a power-law
distribution, all too many are old, new, or even brand new
variants of the following steps. (i) When u itself satisfies
Pr{U > u} = u−α , the transform logU = V satisfies
Pr{V > v} = exp(−αv). (ii) Physics knows a plethora of
arguments that look different but ultimately agree in yielding
an exponential behaviour for V . (iii) This explains the power
law behaviour for Pr{U > u}. The key ingredient to the scaling
output of these models lies in the ‘principle of proportionate
effect’ that is used to justify the transform logU = V .

A skeptic’s opinion is described in chapter 10 of
Mandelbrot (1997). One reason for skepticism is that
seemingly innocuous changes in the assumptions often yield

a thouroughly different prediction: the log-normal instead
of the power law. For large values of u the power law is
correct. In contrast, the log-normal fails. For smaller values
of u, the log-normal automatically includes a bell, which is
a testable prediction. In contrast, the power-law distribution
must somehow, be either truncated or smothed off into a bell; to
this end, new conditions, beyond multiplicative growth, have
to be added.

The scope and significance of the preceding remarks will
become manifest in sections 4 and 5 (next paper), where the
fractal and multifractal models will be shown to yield a bell
and a power law tail simultaneously.

3. Extensive informal summary in
historical sequence
The responses to the various questions raised in section 2.2 are
continually improving. Many partial responses are available
but scattered among the reprints and newly-written chapters
that are collected in Mandelbrot (1997, 1999, 2001) and also in
Mandelbrot (2000) and in forthcoming papers. Now that those
questions are again widely asked, this paper begins by bringing
some scattered thoughts together, with additional references
and substantial new material.

In addition to power laws, the main conceptual tools
are the ancient notion of scaling and the notion of
renormalization together with the more precise notion of exact
renormalizability. For a long time, I was vaguely aware of the
uses of those notions in the study of turbulence. Since 1965 for
scaling, and 1972 for renormalization, these notions also came
to play a central role in the chapter of statistical physics that is
concerned with critical phenomena. Those notions’ uses in my
work on both turbulence and finance were closely interrelated
through multifractals, and came before 1965 and 1972.

The key facts are as follows. In the case of independence,
a form of scaling is a classical concept in probability theory. It
is expressed by a functional equation put forward by Cauchy
and generalized by Lévy. In the case of dependence, a
generalized form of scaling and the corresponding generalized
functional equation are part of the theory of multifractals,
which I put forward (in 1969, 1972, 1974) in papers reproduced
in Mandelbrot (1999).

From the old form of scaling to its little-known
generalizations, the most logical and convenient informal
approach happens to follow chronology.

3.1. Brief reference to Mandelbrot’s early work in
the 1950s

My earliest use of scaling, renormalization etc concerned a
topic of limited importance, (see Mandelbrot (1999), middle
of page 104) but acquired some significance because of its date:
it came out in 1956.

3.2. Scaling properties reported in Mandelbrot
(1962, 1963, 1967)

The original treatment of financial prices with independent
increments was the topic of Mandelbrot (1963) and its delayed
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Figure 4. The original evidence of scaling in finance/economics.
This evidence, reproduced from Mandelbrot (1963), is discussed in
section 3.2. The following series of data are plotted, the positive and
absolue negative values being treated separately in both cases. (a)
X = loge Z(t + 1 day) − loge Z(t), where Z is the daily closing
price at the New York Cotton Exchange, 1900–1905 (data
communicated by the US Department of Agriculture). (b)
X = loge Z(t + 1 day) − loge Z(t) where Z is an index of daily
closing prices of cotton on various exchanges in the US, 1944–1958
(communicated by Hendrik S Houthakker). (c) X = loge Z(t + 1
month) − loge Z(t), where Z is the closing price on the 15th of each
month at the New York Cotton Exchange, 1880–1940
(communicated by the US Department of Agriculture).

but important follow-up, Mandelbrot (1967). Both papers’
contents first came out in an IBM Report, Mandelbrot (1962),
which circulated widely. To some of the questions raised in
section 2.2, those papers gave partial answers characterized by
strong assets and limitations.

The M1963 model’s main asset is the fact that the power-
law tail behaviour is obtained as an immediate consequence of
postulated scaling combined with serial independence. Power-
law tails characterize the (Lévy) stable distribution, an analytic
(though non-explicit) formula that can be used to fit the whole
range of price changes.

The case of cotton. The data reported in Mandelbrot
(1963) concerned the changes of the spot price of cotton
for t = one day and t = one month. Figure 4 combines,
(a) the cumulated density function of the symmetric scale
distribution of exponent D = 1.7, which is actually a slightly
overestimated value ofD, with (b) the doubly logarithmic plots
of tail frequencies. In all cases the ordinate gives the relative
frequency of cases where one of the quantities changes by more
than |u|. For a close examination, make a transparency and the
theoretical curve will superimpose on either of the empirical
graphs with slight discrepancies. More specifically, I was led
to the following inferences.

• Power law. For both �t , the tail exponent is α =
1.7. Comment. The M1963 model’s most widely noted
limitation was that variance was divergent because of
α < 2. Worse, α = 2 plays a complicated role. For the

small samples that were available in practice, values of α
close to 2 yield a very narrow power-law range and that
range vanishes in the theoretical limit α = 2. Fortunately,
the α = 2 bound did not matter in the first stage of the
theory because for cotton α was safely below 2.

• Asymmetry of the tails. For both �t , the frequency
distribution is conspicuously asymmetric requiring stable
distributions other than the symmetric only. Comment.
This asymmetry, not known before 1962, is not great but
consistent. It manifested itself by comparison with the
symmetric L-stable case. The transition between the bell
and the left histogram tail exhibits a more pronounced
bump and the transition between the bell and right tail, a
flattening.

• Scaling, that is the commonality of rules between the
short- and the long-run. In a first approximation,
horizontal translations suffice to superpose the two-tail
histograms corresponding to the two �t . This method
was independently imagined by physicists, who call it
‘collapse’.

Comment (i). First approximation: independence
and Cauchy–Lévy stability. Collapse suggested that the
distribution is well-fitted for both �t by the (Lévy) stable
distribution. The first approximation involving independence
is therefore reasonable and became widely known.

Comment (ii). Second approximation dependence. A
closer comparison of the prefactors for daily and monthly
data showed that the corresponding �P are definitely not
independent except in a first approximation. Those deviations
from independence were duly noted in Mandelbrot (1963).
They became well known to readers of a critique—Cootner
(1964)—that was not answered publicly until chapter 17 of
Mandelbrot (1997). In 1963, this approximation could not be
studied for lack of appropriate statistical tools.

Commodities other than cotton, securities and interest
rates. A first step was taken in Mandelbrot (1962, 1967),
but these papers are less well known than Mandelbrot (1963),
which they preceded or followed. They dealt with wheat,
other commodities, securities from the 19th Century (mostly
railroads), and several interest rates. On the topic of the sign
and value of α = 2, this broader evidence was mixed. This is
why my early papers’ titles include the cautious terms ‘certain’
and ‘some other’.

Specifically, exponents about α = 1.7 were found in
diverse cases other than cotton. But wheat prices suggested
a power-law exponent α closer to 2 and holding over a broad
range of values of the price change. Once again, in contrast,
the power-law range of the (Lévy) stable distribution with the
same α is short if α is just below 2 and disappears in the limit
α = 2.
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3.3. Fama (1963a, b, 1965) and the extension of the
applicability of power laws to a large class of
then-recent current securities

The step beyond Mandelbrot (1962) was taken by a student of
mine. Fama (1963b, 1965) dealt with then-recent securities
prices and concluded that the increments are definitely not
Gaussian and the M1963 model applies with α close to 2. This
raised serious difficulties that were not solved until much later,
in my work on multifractals.

Fama’s conclusion was confirmed repeatedly in the
economics/finance literature. In addition, it started—several
years ago—being continually ‘rediscovered’ on the basis of
present data.

3.4. The significant year 1972: the ‘Officer effect’
and the remark concluding chapter N14 of
Mandelbrot (1999), written in 1972

The year 1972 was significant for two independent reasons:
the scaling I used in 1963 was challenged and I conceived
and developed a generalized form of scaling—that was not
developed until 1997.

The attack: Officer (1972) examined securities data for
different values of �t . The collapse test had established that
scaling holds in the case of cotton. But its application to diverse
other financial data sets revealed unquestioned sharp deviations
from scaling. This finding was repeatedly confirmed and
continues to receive fresh confirmations.

Officer’s challenge to the M1963 model immediately
became influential in the financial community. It stands out as
a milestone because the responses were immediate, strong and
diverse. Their diversity becomes best understood by assigning
financial models into the three main ‘states of variability and
randomness’ described in section 3.5.

3.5. The fundamental new concept of ‘states of
variability and randomness’

Here is a paraphrase from chapter E5, p 120 of Mandelbrot
(1997). ‘While a unique theory of physical interactions
applies to every form of matter, the detailed consequences
of those unique general laws differ sharply and physics has
to distinguish between several states of matter. I argue that
a similar distinction should be useful in probability theory.
Nearly every scientist engaged in statistical modelling used
to deal with a special form of randomness, which will be
characterized as mild. It will also be argued that entirely
different states of randomness must be distinguished and faced,
namely wild and slow. Mildness is characterized by an absence
of structure recalling a gas. Wildness is characterized by the
presence of structure recalling a solid and slow randomness
recalls liquids.’

Practical consequences concerning the effectiveness of
risk reduction by diversification. The proposed distinction
between states of variability and randomness is neither
philosophical nor simply metaphorical. It concerns directly a

foundation of finance, namely, the notion that risk is reduced by
averaging. Denote by N the number of items being averaged.
Under mild randomness, the central limit theorem says that
this reduction proceeds as 1/

√
N . In wild randomness the

typical reduction is smaller or non-existent. Moreover, the
variability around the typical value is greater and can be very
large, accounting for the occurrences of discontinuity and
concentration in economics. There is no space to dwell further
on this effect, which, once again, is the topic of Mandelbrot
(1997) and also of Mandelbrot (1999, 2001).

I view the study of wild variability/randomness as being at
present one of the proposed frontiers of scientific knowledge.
But here it will serve the modest goal of showing that different
reactions to the Officer effect proceeded in three altogether
distinct directions.

3.6. Mild randomness; the claim that the Officer
effect establishes that coin tossing and Bachelier can
safely be trusted, after all

There is no question that Officer has shown convincingly that
the M1963 model (however effective it may be in some cases)
is not the last word on financial markets. However, the nascent
quantitative finance community of the day concluded that
Officer also discredited the overwhelming evidence of non-
Gaussianity. Surviving witnesses recall that this impression
helped overcome the, then, widespread awareness of the
M1963 model and unblocked the door to the Brownian
‘modern portfolio theory’.

Critique of the revival argument. There are several reasons
why the step back to Bachelier is thoroughly unwarranted.
Asymptotically for large �t , the move away from long tails
to shorter ones only describes a trend but not its limit. The
notion that in the long-run everything is safely Brownian is
sharply contradicted by figure 3. In any event, portfolio theory
deals primarily with short-term price changes, therefore is not
primarily influenced by the fact that the distribution of �P(t)

has increasingly short tails as �t increases. What matters most
is the fact that short-term changes are clearly non-Gaussian.
In addition, they are non-independent, a feature that Officer
himself and seemingly all those who reproduced his results
failed to investigate.

3.7. Slow randomness; the ‘durable transients’
argument: Brownian motion holds for large time
increments, but small time increment changes are
neither Gaussian nor independent

3.7.1. A generic ‘durable transients’ argument. The
overall theme is that Bachelier is not completely right but not
too far off and the details must be fine tuned for small �t . But
the averaging that underlies diversification proceeds as usual
and it continues to be safe to believe that financial reality can
be modelled without having to give up any essential tool, such
as the law of large numbers and the central limit theorem.
In terms of states of randomness, this means that fine-tuning
adjustments are needed.
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The best developed and known implementation of this
attitude is the GARCH model. It immediately involves a large
number of parameters.

3.7.2. Truncated power-law distribution, an extremely
dangerous dead end pioneered in Pareto (1896) that
unfortunately is back in fashion. Instead of fitting the
distribution tails, several recent writers trained in physics fitted
the central bells and reported extremely small values of α in
the range of 1.3 to 1.4. Since those values clearly fail to fit the
tails, those authors proposed diverse forms of tail truncation.
The details do not matter much, therefore complete references
are unnecessary, but some general points deserve to be made.

The atypical Grand Duchy of Oldenburg. The underlying
issue was identified in Pareto (1896): in Oldenburg, the high
income tail was far shorter than in a power-law distribution.
Pareto suggested an exponential factor exp(−βu). One may
just as well replace the power law by exp(−βu) for large u.

A cynic might observe that tiny Oldenburg hardly justified
individual attention. Perhaps a few high incomes have
been excused from being reported. Be that as it may,
the exponential correction became very popular among old-
fashioned statisticians for the sole reason that it avoids
divergent variance.

Cut-offs in the physics of Pareto’s time. Quanta did
not merely avoid an unpleasant divergence but became the
physically real seed of much of 20th Century physics.
A second cut-off postulate was meant to avoid certain
divergence paradoxes of Newtonian gravitation by ‘replacing’
the hallowed 1/r2 by exp(−βr)/r2. The paradoxes proved
non-lethal and the correction unnecessary and short lived.

Cut-offs in critical phenomena. The words ‘high critical
temperature superconductors’ hit front page headlines a few
years ago. The critical Tc is the value of the temperature T ,
below which a compound is superconducting and above which
it is not. The underlying concept is old: for magnets, Pierre
Curie observed that magnetism disappears above a certain
‘Curie temperature’, Tc.

The very attractive and important notion of criticality is
meaningful only in the presence of a concretely meaningful
variable that can be tuned very precisely, like a magnet’s
temperature. It was shown in the 1960s and 1970s that in the
‘critical’ case T = Tc, magnetism and other phenomena are
ruled by power laws. In the neighbourhood of Tc, all those laws
change; one needs exponential corrections, that are not ad hoc
but physically real functions of the distance from criticality.
Moreover, both the critical exponents and the corrections are
obtained by exact analytic arguments.

Unfortunately, turbulence and finance lack an intrinsic
tunable parameter. These examples show that power laws and
fractality can have sources other than criticality and its variants.

Having participated to some extent in the development
of the theory of critical phenomena, I observed a by-product
of the existence of physically meaningful cut-offs: the
physicists rarely faced infinite moments. Few acquired the

necessary specialized skills in probability theory. Few became
acquainted with the fine points of multifractals that are needed
in finance (see part II). This is perhaps why many physicists
proved to be ill-prepared for the study of power laws in finance.

Be that as it may, they suggested one should follow the
lead of Pareto and superpose an exponential correction on the
Lévy stable distribution. When combined with independent
price increments, the exponential correction only holds for
one value of �t . Moreover, it destroys scaling. Therefore,
the evidence that was interpreted as demanding the truncation
was also interpreted as marking the limit of validity of scaling.

3.8. Wild randomness; financial prices’
‘misbehaviour’ never settles down to the Brownian;
their variation remains ‘wild’ even on the scale of
the century; scaling need not be abandoned, only
amended

The third approach to financial data, mine, begins with the
notion that the search for transients towards Brownian motion
is a thoroughly ill-conceived idea. The evidence exemplified
by figure 3 shows that the deviations from the Gaussian and
the Brownian are not limited to small �t .

Financial reality is not mildly variable even on the scale
of a century. All things considered, one must adjust to the
fact that financial reality is wildly variable. It would be totally
unmanageable, unless there is some underlying property of
invariance.

My search for an invariance beyond those that led to the
M1963 and M1965 models was not triggered by Officer. Well
before 1972, I had recognized that the M1963 model had to
be amended to include global long-term dependence. I was
strongly pressed by a very astute observer of finance, William
S Morris, an early promoter and pioneer of the use of computers
in trading. In describing the M1963 model, Morris suggested
that one should be able to model dependence by analogy with
Berger and Mandelbrot (1963). This brilliant insight was
impossible to implement and the underlying idea had to wait
for the discovery of multifractals.

By coincidence, the key to the solution of the Officer effect
was also given in the same year 1972, in the last remark of one
of my first papers on multifractals (reprinted in Mandelbrot
(1999) as chapter N14). That paper was the first in which I
showed how multifractals can generate power-law probability
distributions. It was not hastened either, which I now regret.
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