
Preface 

Time series analysis is one of the most flourishing of the fields of present day 
statistics. Exciting developments are taking place: in pure theory and in 
practice, with broad relevance and with narrow intent, for large samples and 
for small samples. The flourishing results in part, from the dramatic increase in 
the availability of computing power for both number crunching and for 
graphical display and in part from a compounding of knowledge as more and 
more researchers involve themselves with the problems of the field. 

This volume of the Handbook of Statistics is concerned particularly with the 
frequency side, or spectrum, approach to time series analysis. This approach 
involves essential use of sinusoids and bands of (angular) frequency, with 
Fourier transforms playing an important role. A principal activity is thinking of 
systems, their inputs, outputs, and behavior in sinusoidal terms. In many cases, 
the frequency side approach turns out to be simpler in each of computational, 
mathematical, and statistical respects. In the frequency approach, an assump- 
tion of stationarity is commonly made. However, the essential roles played by 
the techniques of complex demodulation and seasonal adjustment show that 
stationarity is far from a necessary condition. So too are assumptions of 
Gaussianity and linearity commonly made. As various of the papers in this 
Volume show, nor are these necessary assumptions. 

The Volume is meant to represent the frequency approach to time series 
analysis as it is today. Readers working their way through the papers and 
references included will fifid themselves abreast of much of contemporary 
spectrum analysis. 
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Wiener Filtering 
(with emphasis on frequency-domain approaches) 

R .  J. B h a n s a l i  a n d  D .  K a r a v e l l a s  

1. Introduction 

Let {Yt, x,} ( t =  0, __+1 . . . .  ) be a bivariate process. An important class of 
problems considered in time-series analysis may be formulated in terms of the 
problem: How can we best predict y, from {xs, s ~< t}? If y, = xt+~, ~, > 0, then 
the problem is that of predicting the 'future'  of xt on the basis of its past. I f  
xt = ~t + ~t, where ~, is 'noise' and ~t the 'signal' and Yt = ~t+v, then for u = 0 the 
problem is that of 'signal extraction'i for v > 0 that of predicting the signal and 
for u < 0 that of interpolating the signal, in the presence of noise. If Yt and xt 
are arbitrary, then the problem is simply that of predicting one series from 
another.  This last problem is itself of interest in a number of disciplines: for 
example, in Economics, interest is often centred on obtaining a distributed lag'  
relationship between two economic variables (see, e.g., Dhrymes [11]) such as 
level of unemployment  and the rate of inflation. 

A complete solution to the problem of predicting y, from the past, {xs, s ~< t}, 
of xt would consist of giving the conditional probability distribution of the 
random variable Yt when the observed values of the random variables {x,, s ~< t} 
are given. However,  this is seldom practicable as finding such a conditional 
distribution is usually a formidable problem. A simplifying procedure of taking 
the mean value of this conditional distribution as the predictor of Yt is also 
rarely feasible because this mean value is in general a very complicated 
function of the past x's. Progress may, however, be made if { Yt, xr} is assumed 
to be jointly stationary and attention is restricted to the consideration of the 
linear least-squares predictor of Yt, i.e. the best predictor, Yt, say, of y, is chosen 
from the comparatively nar r fw class of linear functions of {x~, s ~< t}, 

Y, = ~ h(j)xt-j ,  (1.1) 
j=0 

the coefficients h(j)  being chosen on the criterion that the mean square error  
of prediction 
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rl 2 = E ( # , -  y,)2 (1.2) 

be a minimum. 
Formation of ~gt from the {xs, s ~< t} may be viewed as a filtering operation 

applied to the past of xt, and, especially in engineering literature, )3, is known as 
the Wiener filter. 

It should be noted that if {Yt, xt} is Gaussian, then the linear least-squares 
predictor, )3t, of Yt is also the best possible predictor in the sense that it 
minimises the mean square error of prediction within the class of all possible 
predictors of yt; hence for the Gaussian case the consideration of only linear 
predictors is not a restriction. 

2. Derivation of the filter transfer function and the filter coefficients 

Suppose that {yt, xt} (t = O, --_1 . . . .  ) is real-valued jointly stationary with zero 
means, i.e. Ext = Eyt = O. If the means are nonzero, then these may be 
subtracted out. Let R=(u)  = E(xt+,,xt) and Ryy(u) = E(yt+,,yt) denote the auto- 
covariance functions of xt and Yt, respectively, and let Ryx(u) = Eyt÷uxt denote 
their cross-covariance function. Assume that 

U = ~  U = - e ¢  U = - o o  

and let 

f~x(A)= (2zr) -1 ~ Rxx(U)exp( - iuA) ,  

fry(A) = (27r) -1 ~ Ryy(u )exp ( - iuA)  

denote the power spectral density functions of xt and Yt, respectively, and 

fyx(A) = (27r) -1 ~ R y x ( u ) e x p ( - i u A )  
tt = - o r  

their cross-spectral density function. Assume also that f=(A) # 0 (-oo < h < ~). 
Under these conditions xt has the one-sided moving average representation 

(see Billinger [9, p. 78]) 

x, = ~ b(j)e,_/, b(O)= 1, (2.1) 
j=O 

and the autoregressive representation 
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a(j)xt_j = e,, a(0) = 1. (2.2) 
j=0 

Here et is a sequence of uncorrelated random variables with 0 mean and finite 
variance 0 -2, say, and the {b(j)} and {a(j)} are absolutely sumtnable coefficients, 
i.e. they satisfy 

Also, if 

IbU)l < ~ ,  ~ I-(J)l < ~o. 
j=o j=o 

B(z) = ~ b(j)zJ, A(z) = ~ a(j)zJ, (2.3) 
j=o j=o 

respectively, denote the characteristic polynomials of the b(j) and the a(]), 
then B(z)#  O, A ( z )#  O, Izl-< 1 and A ( z ) =  {B(z)} -1. The transfer functions 
B(e -i~) and A(e -~) of the b(j) and a(j) are denoted by B(A) and A(A) 
respectively. We have A(A)= {B(A)} -1 and f=(A)= o-2(2zr)-llB(A)t 2. 

If f=(A) is known exactly, then the {b(j)} and {a(j)} may be determined, by 
the Wiener-Hopf spectral factorization procedure (Wiener [25, p. 78]). The 
assumptions made previously on R=(u) and f=(A) ensure that logf~(A) is 
integrable and hence has the Fourier series expansion 

logf=(A) = ~ c(v)exp(-ivA), (2.4) 
t~=--oo 

with 

c(v) = (2~r) -1 log f=(A) exp(ivA) dA (2.5) 

and 

Ic(v)l < ~ .  
1 ) = - o ~  

Set 

B(A)= expv= 1 c(v) exp(-ivA , (2.6) 

A(A) = {B(A)} -1 (2.7/ 
and 

0-2 = 2zr exp{c(0)}. (2.8) 
Then f" b(j) = (2~r) -1 B(A) exp(i]A) dA, (2.9) 

a(j) = (2~r) -~ A(A) exp(i]1) dA, (2.10) 

and the {b(j)} and {a(j)} thus obtained are absolutely summable (Brillinger [9, 
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p. 79]); see also Doob [12, pp. 160-164] and Grenander and Rosenblatt [16, pp. 
67-81] for related work. 

Next, consider prediction of yt from the past, {xs, s ~< t}, of x, and in 
particular the determination of the filter coefficients h(j) of the linear least- 
squares predictor 13t of Yr. The mean square error of prediction 72 is given by 

rl 2= Ryy(O)-2 ~ h(j)Ryx(j)+ 2 ~ h(j)h(k)Rx~(k -j). 
j=o j=o k =0 

(2.11) 

If the h(j) minimise ~72, then we must have Orl2/Oh(j)= 0 (] = 0, 1, . . . ) .  This 
requirement leads to the equations 

h(k)R=(k - j )  = Ryx(j) (j = 0, 1 . . . .  ).  (2.12) 
k=O 

That the h(k) satisfying (2.12) also minimise ~/2 may be established by using an 
argument analogous to that given, for example, by Jenkins and Watts [18, pp. 
204--205]. 

Equations (2.12) provide discrete analogues of the Wiener-Hopf integral 
equations (Wiener [25, p. 84]). As their left-hand side is of the form of a 
convolution, the use of Fourier series techniques is a natural approach to adopt for 
solving them. However, as discussed by N. Levinson (see [25, p. 153])a direct use 
of the Fourier series techniques for obtaining the h(]) is not feasible as well, 
because (2.12) is valid only for ] ~> 0. Therefore, a somewhat indirect approach is 
adopted for expressing h(j) in terms of f~(A) and f=(A). 

The representation (2.1) implies that 

Put 

and 

where 

and 

R,~(u) = o -2 ~ b(s)b(s + u) (u = 0, 1 . . . .  ).  (2.13) 
s = 0  

D(A) = fyx(A)A(A) = ~ d(u) e -i~a , 
tt=--eo 

(2.14) 

[D0t)]+ = ~ d(u) exp(-iuh), (2.15) 
u = 0  

d(u) = (2~) -1 frx(A)A(A) exp(iuA) dA 

Id(u)l < 
U = - - o a  

(2.16) 

Note that 2~rd(u)= E(y~H,)  
function of Yt and et.  

From (2.14), we get 

and DOt ) gives the cross-spectral density 
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Rye(j) = 27r ~ b(s)d(j + s). 
s = O  

Hence, (2.12) may be rewritten as 

(2.17) 

b(s)d(j+s)=~--~ h(k)b(s)b(s+j-k) (j = 0, 1 , . , . ) ,  
$ = 0  = = 

o r ,  a s  

0 -2 
d ( v ) = ~ h ( k ) b ( v - k )  (v=O, 1 . . . .  ). 

k=0 
(2.18) 

Since, b(v) = 0, v < 0, (2.18) may be solved by the Fourier series techniques. On 
multiplying both the sides of (2.18) by e -i~ and summing for all v >t 0, we get 

and 

H(A) = ~ h(k)exp(-ikA) 
k=O 

= -~2 B(A)-I[D(A)]+ = 
2~" 
-~- A (A)[fyx (A)A(A)]+ (2.19) 

h (j) = (27r) -1 H(A) exp(ija) d a .  (2.20) 

Since the d(u) given by (2.16) and the a(j) given by (2.9) are absolutely 
summable, so are the h( j )  (see, e.g., Fuller [14, p. 120]). Thus, the h( j) ' s  satisfy 

Ih (j)l < ~ .  
1=0 

The mean square error of prediction ~72 is 

~72 = E { ( y t -  33t)2} = Ryy(0)-  ~ h(j)Ryx(j) 
j=0 

,, 4Ir 2 ~-, 

(2.21) 

Equations (2.19) and (2.21) are consistent with the results of Whittle [24, pp. 
66--68], but note that a dividing factor of o .2 is missing in equation (3.7.2) of 
Whittle [24, p. 42]; see also Bhansali [3]. 

It is instructive to compare the, 'one-sided'  predictor (2.10) with the cor- 
responding 'two-sided' predictor of  Yt obtained by assuming that the complete 
past, present and the complete future of xt is known. Let 
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Yt = ~ g(j)xt-/ (2.22) 
j=  -0o 

be the 'two-sided' linear least-squares predictor of y,. Then, as in (2.12), the 
g(j) are the solutions of the equations 

Ryx(u)= ~ g(j)R=(u-j) (u = 0 , -+1 , . . . ) .  (2.23) 

Since these equations are two-sided and are valid for all integral values of u, 
they may be solved by the Fourier series techniques. On multiplying both the 
sides of (2.23) by (2'n') -1 e -i"a and summing over u, we have 

and 

F(A) = ~ g(j) exp(-ijA) = &(A)/fx~(A) 
j=-e~ 

(2.24) 

g(j) = ~1 f_r~ F(A) exp(ijA) . (2.25) 

Let r 2 = E { ( y , -  9t) 2} be the corresponding mean square error of prediction. 
We have 

f: { I:,x.,)121 f: "r z = ,~ fry(A)- f=(A) I dA = ,, {1 - C2~(A)}fyy(A) dA, (2.26) 

where Cyx(A)= ]fyx(A)l/{fyy(A)fxx(A)} 1/z is called the coherence between y, and 
x, Note that 0 ~  < Cyx(A)~ < 1, all A. Expression (2.26) therefore shows that if 
Cyx(A) is close to 1 at all frequencies, then r 2 is close to 0, and one would 
expect to obtain a close linear fit between Yt and x,. In this sense, Cyx(A) may be 
interpreted as a correlation coefficient 'in the frequency domain' (see, e.g., 
Priestley [22] and Granger and Hatanaka (15]). 

On using (2.14)-(2.16), (2.21) may be rewritten as (see Whittle [24, p. 69]) 

4zr2 ~ dZ(j). (2.27) ~/2= ,r2 + _.~__. 
j= -oo  

The second term to the right of this expression gives the increase in mean 
square error due to the restriction that only the 'past' of xt may be used for 
predicting Yr. In general, therefore, 72/> r 2. 

There is, however, one important situation in which 72 - r 2. This occurs when xt 
is the input to, and yt the output of, a physically realizable linear time-invariant 
filter with uncorrelated noise, i.e. when, 

Yt = ~ l(j)xt-j + zt, 
j=O 

(z,} is a stationary process uncorrelated with x, and E ]l(j)] < oo. 

(2.28) 
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L(A) = ~ l ( j ) e x p ( - i j A ) =  {f:(X)/ f=(A)} = F(A).  
/=0 

T h u s ,  

D(A)  = f,:,(A)A(A) = L(A)f ,=(A)A(A) 

= O.2(2¢r)-'L(A)A(A)= [D(A)]+, 

the last equality following from the fact that the Fourier coett~cients, l(]) and 
a(j), respectively, of LOt) and A(A) vanish for j < 0. We, therefore, have 

H(A) = L(A) = F(A),  ~12 = r2. (2.29) 

Let fzz(A) denote the power spectral density function of the 'residual' process 
z, of (2.28). We have 

f=(A) = ~ ' f . (A)-  If:(A)12/ (2.30) 
f~ (,~) l" t 

3. Realization of the Wiener filter in some special cases 

First consider the case of pure prediction, and, thus suppose that Yt = xt+~, 
v I> 1. We have 

Hence 
Ryx(u) = Rx~(u + v) , fyx(A) = ei~"f=(A). 

H(A) =-A(A)[ei'AB(A)]÷ = {B(A)} -1 ~ b(j  + v) exp(-i]A) 
j=0 

gives the transfer function of the prediction constants, and 

(3.1) 

v-1 
r)2 = o.2 E b2(j) 

j=O 

gives the mean square error of v-step prediction. Note  that if v = 1, then 
,/2= o.2, which m a y b e  determined using (2.8). 

Let 2t(v) be the linear least-squares predictor of xt+~ (i~ I> 1) when {xs, s ~< t} 
is known. Then, an explicit expression for 2t(v) in terms of ~t(v - 1 ) , . . . ,  ~t(1) 
and {xs, s ~< t} may also be written down. We have 

v-1 
2t(v) = - ~,  a(j)J¢,(v-  j ) -  ~ a(j)x,+,,q, 

j=l j=u 

where the first sum to the right is 0 if v = 1. 

(3 .2)  
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That (3.1) and (3.2) are mutually consistent is easily verified. Thus, for v = 1, 
(3.1) gives 

h ( j )  e -ip~ = H (A ) = ei~{1 - A(A)} 
j=o 

= a ( j  + 1) e -i& (3.3) 
.i=0 

Hence on comparing the coefficient of e -i/~ on the right- and the left-hand sides 
of (3.3) we get 

h ( j ) = - a ( j +  1), 

which is immediately seen to be consistent with (3.2), see also Whittle [24, p. 
33]. The argument may similarly be generalised for an arbitrary v, though the 
algebra now is more complicated. 

A comparison of (3.2) with (2.2) shows that the linear least-squares predictor 
of x,+~ when the past {xt, x,-1 . . . .  } is known is obtained by (i) setting e t+v-  0; 
and (ii) for j < v replacing the unknown xt+,-i by their linear least-squares 
predictor ~t(v - j). A related reference is Box and Jenkins [8, pp. 130-131]. 

An alternative expression for ~t(v) is given by Bhansali [7]. 
We note from (3.3) that if xt is a finite autoregressive process of order m, i.e. 

if in (2.2) for some finite m t> 1, a ( u ) - O ,  u > m, then ~t(v) depends only on 
x H  . . . . .  xt-m. Similarly, if xt is a finite moving average process of order p, i.e. if 
in (2.1), for some finite p I> 1, b(u)  - O, u > p, then (3.1) shows that ~t(v) = 0 if 
v > p; and for this particular class of processes, the knowledge of the complete 
history of the process does not help, in the linear least-squares sense, for 
prediction more than p steps ahead. Related reference is Akaike [2], who 
studies some of the properties of the 'predictor space' spanned by {~2t(v), v ~> 1}, 
when xt is a mixed autoregressive-moving average process. 

Second, consider the case of prediction in the presence of noise. Suppose 
that 

x, = ~, + ~, ,  y,  = ~,+~ 

and E(¢tlds) = 0 (all s and t). Then 

Rrx(u ) = Ree(u + v ) ,  J)x(A) = eivXf~(A), 

where R u ( u  ) and fu(A), respectively, denote the autocovariance function and 
the power spectral density functions of ~:, process. Hence 

H ( A )  = 27r -~- A (A)[fee (A) e i v x A ( x ) ] + ,  (3.4) 

where A(A) and tr 2 are obtained by factorising the spectral density function, 
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f=(A), of X,, f=(A)=f~.(A)+fu:(A ) and fc;(A) denotes the spectral density 
function of the ~, process. 

Also 

F(A) = {ei~*/ee(h)}/{&(A) + f~(h)}, (3.5) 

which reduces to the expression given by Whittle [24, p. 58], if u ~ 0. 
Third, consider the system (2.28), but now assume that the processes xt and zt 

are correlated and let R=(u)= E(z,+,x,) be the cross-covariance ifunction of 
{zu xt} and !' 

fyx(A) = L(A)f=(A) + fzx(A), 

be their cross-spectral density function. Then 

H(A) = L(A) + 2¢r --~ A(A )[A(A )fz~(A )]+ , 

F(A) = L(A) + {f=(A)/f=(A)}. 

Thus, in this case, H O t ) ~  L(A) includes the contribution from the nonzero 
f=(A) and could be different from F(A). Related references are Akaike [1] and 
Priestley [21]. 

4. Estimation of the Wiener filter 

So far, we have assumed that the spectra/=(A), fyy(A) and fyx(A) of the 
process { Yt, xt} are known exactly. In practice, these are invariably unknown a 
priori, and have to be estimated from data. Suppose that we are given T 
observations, {X1; . . . .  Xr}, {I:1 . . . . .  IT} from each series. We consider esti- 
mation of the filter coefficients from the 'window' estimates of fyx(A) and/=(h) .  

Let 

2¢r r-1KT(A 2¢rs~.,r,/21rs\ f~r~)(A) = -~- ~ ----~-]l'yx'k----~-), (4.1a) 

2zr r-1Kr(A 2¢rs _,r,/2crs\ 

be the 'window' estimates of fyx(A) and f=(A), respectively, considered by 
Brillinger [9]. Here 

T T 

Iff)(h) = (2~rT) -1 E ~ Y~,  exp{- iA(t-  s)}, (4.2a) 
t = l  s = l  

T }12 
I~)(A) = (2~rT)-' ~ X~ exp{-i l t  , (4.2b) 

t = l  
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are, respectively, the cross-periodogram and (auto) periodogram functions, 

Kr (~)  = ~ B~K{B~(rz + 21rj)} (-oo < )t < oo), (4.3) 
j=  -00 

{BT} (T = 1, 2 , . . . )  is a sequence of constants, such that BT-+ O, THr ~ oo as 
T--;oo and K(ot) is a fixed weight function satisfying Assumption I stated 
below. 

ASSUMPTION I. Let K(a), - o o < a  <0% be a real-valued, even function of 
bounded variation and suppose that 

K(a)da = 1, 1~I31K(~)I da  <oo,  K2(a)da <oo. 

Note that the estimates (4.1) are obtained by assuming that the observed 
time series have been mean corrected. In practice, the means Ext and Eyt of 
the processes {xt} and {yt} are unknown. Hence this is not an unrealistic 
assumption. 

The estimates (4.1) are obtained by directly smoothing the cross-, and auto-, 
periodogram functions. A closely related class of 'window' estimates are of the 
form (see, e.g., Hannan [17]) 

where 

1 T - 1  

f~'ff)(A) = ~ ~ kr(u)R~)(u) exp(- iuA) ,  (4.3a) 
u = - T + l  

T - 1  

f*(r)(A)=(27r)-I ~'~ kr(u)R~(u)exp(-iuA), (4.3b) 
u = - T - n  

RtrT)(u) = T -1 r~,l Yt+~X,, R~I(A) = T -1 r~UlXt+~, , (4.4) 
t = l  t -1  

kr(u)  = k(Bru) and k(x) is a fixed weight function. If we define 

k(x) = f~_® K(o~) exp(ixa) d a ,  (4.5) 

where K(a) ,  as before, satisfies Assumption I, then a uniform bound on the 
difference between fff)(A) and f~r)(A) is given by Brillinger [9, p. 265]. 

The estimation of the coefficients h( j )  and the transfer functions H(A) and 
A(A) involves estimation of the Fourier integrals, (2.5), (2.16) and (2.20), and 
infinite Fourier series, (2.7) and (2.15). Since, with a finite record fyx0 t) and 
fx~(A) can only be estimated at a finite number of points, we estimate h(j) by 
approximating the Fourier integrals by the Trapezoidal rule, and the infinite 
Fourier series by a finite Fourier series. 
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Suppose that f(y~)(A) and f ~ ( A )  are calculated at NT + 1 points, Aj = flr/NT 
(j = 0, 1 , . . . ,  ArT) equally spaced in [0, rr], and let Pr  = 2NT. Here NT >/1 is a 
sequence of constants tending to infinity simultaneously with T, but at a slower 
rate than BT approaches 0. The estimate of h(u) is given by 

NT-I 

h(r)(u) = P¥~ ~ H(T)(Aj) exp(iuAj) (u = 0, 1 . . . . .  N r ) ,  (4.6) 
j = - N  T 

where 

O ~  r N T - 1  } 

HtT)(Aj) = ~ A(T)(Aj){ ~ dtr)(u) exp(-iuAj) , (4.7) 
(7" t u=0 

N T - 1  

d(T)(u) = p?l ~ f~r)(Aj)A(r)(Aj) exp(iuAj), (4.8) 
j=-Nr 

f NT-1 ) / ~r2 \1/2 
A(T)(AJ) = exp/i  Z c(T)(v) sin vA t ~ ~--~) {f~r)(Aj)}-~/2, (4.9) 

V=I 

d "2 = 27r exp{c(T)(0)}, (4.10) 

N T - 1 

c(T)(v) = p~l ~ logf~)(Aj) exp(ivAj). (4.11) 
j = - N  T 

Let hN(u) be the corresponding quantity obtained from (4.6) to (4.11) when 
fx~(Aj) and fyx(Aj) are known exactly. Then, for each finite Nr, h(r)(u) may be 
viewed as estimating hN(u), rather than the true parameter  h(u). A bound on 
the difference between hN(u) and h(u) may be given by using the results of 
Davis and Rabinowitz [10, p. 109]. Suppose that, for an integer 10 ~> 1, Rr~(u ) 
and R=(u) satisfy an additional regularity condition of the form 

~. lul2~÷llR,x(u)l < o~, ~ lul2~÷,lR=(u)l < o~ . ( 4 . 1 2 )  
u = _  ~ u = - ~  

When this condition is satisfied, up to 210+ 1 derivatives of frx(X) and f=(A) 
with respect to A exist. Then, as NT ~ ~, for all u, 

IhN(u)-  h(u)l = O(N~ 2'°+1) (4.13) 

and, hN(u)-~ h(u) as NT--~ ~. 
The estimation of the two-sided filter coefficients (2.25) and the transfer 

function (2.22) has also received considerable attention in the literature; see, 
e.g., Hannan [17, Chapter VIII, Brillinger [9, Chapter 8] and Wahba [23], 
amongst others. The corresponding estimate of F(A) is given by 

F(T)(x)  = (T) (r) ,~ frx (A)/f= ( ) (4.14) 
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and that of g(u) by 

NT-1 
g(r)(u)= P• ~ F(r)(;tj)exp(iu;tj). (4.15) 

j=-N'r 

The above 'frequency-domain' approach to estimating the filter coefficients 
should be contrasted with its 'time-domain' alternatives. Notable amongst 
these is the 'transfer function' model suggested by Box and Jenkins [8], which 
expresses the filter coefficients h(u) as functions of a finite number of 
parameters. Dhrymes [11] gives a survey of the 'econometric' techniques cur- 
rently in use for estimating the filter coefficients. 

5. Asymptotic properties of the estimated filter coefficients 

Bhansali [5] studied the large sample behaviour of the estimates ctr)(v), 
A(r)(Aj) and t~ 2. Karavellas [19] has studied the corresponding large sample 
behaviour of the statistics d(r)(u), h(r)(u) and g(r)(u). His proofs are too 
lengthy to be given here. Only a summary of his main results is given below. 

Suppose that the process {y,x,} satisfies Assumption 2.6.1 stated by 
Brillinger [9, pp. 25-26], the spectral density function, fxx(A), of the process xt is 
bounded away from 0 and that (4.12) holds with l0 = 3. Further, suppose that 
the estimates f~)(A) and f~r~)(A) of f~x(A) and fyx(A) are obtained in accordance 
with the formula (4.1), where K(a)  satisfies Assumption I, and that Br = 
O(T-b), Nr = O(T c) where b 'and c lie in the shaded region shown in Fig. 1. Set 
Q(T) = TBrPr{2~r f-~® K2(a)da} -1. Then, for given u and v, the random vari- 

c 

o { { 1 %  
Fig. 1. Constraints on B r  and NT when BT = O(T-b) ,  NT = O(TC). The  shaded area shows the 
region where the constraints are satisfied. 
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ables Q(T)l/2{d(r)(u)-d(u)} and Q(T)lCZ{d(r)(v)-d(v)} are, as T--->~, ap- 
proximately normally distributed with zero means and covariance structure 

0"2 
4¢r2 Ryy(u - v) + d(u)d(v)- ~ d(u + j)d(v + j). 

j=l  
(5.1) 

Also, for given u and v, the random variables Q(T)l/2{h(r)(u) - h(u)} and 
Q(T)V2{h(r)(v) - h (v)} are, a s  T---> 0% approximately normally distributed with 
zero means and covariance structure 

1 ~ ~ a(u - l ) a ( v -  m)Ryy(l- m) 
0"2 I=0 m=O 

0-4 ~.~ a(u - l)a(v - m)d(m + p)d(l + p) 
l=0 m=0 p=l 

+ ~ h ( u - 1 ) h ( v - l ) - ~  ~ h ( v -  m ) a ( u - l ) d ( l -  m) 
1=0 I=0 m=O 

27r ~ ~ h ( u -  l)a(v - m)d(m - l). 
0"2 l=O m=O 

(5.2) 

Hannan [17, p. 480], Wahba [23] and Brillinger [9, p. 286] investigate the 
asymptotic distribution of the 'two-sided' estimates, g(r)(u), by assuming that 
the relationship between Yt and xt is linear, time-invariant and open loop. If Yt 
and xt are arbitrary stationary processes and the regularity conditions stated 
above hold, then, for given u and v, as T--->oo, the random variables 
Q(T)lrZ{g(r)(u) - g(u)} and Q(T)lrZ{g(r)(v) - g(v)} are approximately normally 
distributed with zero means and covariance structure 

1 f_,~'~ {1 - CZx(A)} ]xx(A) ~ exp{i(u - v)A} dA, (5.3) 

which is consistent with the result of Brillinger [9, p. 318]. 
For comparing the behaviour of the h(73(u) with that of g(r)(u), first suppose 

that Cyx(A)=0, all A, i.e. there is no linear relationship between yt and x, 
Then, h ( u ) - 0  (u = 0, 1 . . . .  ) and expressions (5.2) and (5.3) reduce to 

~ f ~  ~ exp{i(u - v)A} dA, (5.4) 

so that the h(r)(u) and the g(r)(U) are asymptotically equivalent. 
Next, suppose that the relationship between yt and xt is given by (2.28). 

Expression (5.2) then simplifies to 

f' 2~r fzz(A)A*(A)A*(A) exp{i(u - v)A} dA - ~  ~ 
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where A*(A) = X~=0 a(]) exp(,i]A) anf f~(h)  is given by (2.30). In particular, if 
u- -  v, then the asymptotic variance of h(r}(u) is given by 

r fzz (A) A J n* (5.5) 
3 - . f * ( * )  

where f * ( h ) =  tr2(27r)-1[A*(h)[ -2, while that of g(T)(u) is given by 

,~ ~ dA. (5.6) 

Hence, the difference between their asymptotic variance is 

Az (x ){l A *u (X )l 2 - [A(A)I 2} dA. (5.7) 
~r 

Note that if xt is a finite autoregressive process of order m, then for u >/m, 
(5.7) is zero and the two estimates are asymptotically equivalent. In other cases, 
the behaviour of these two estimates will depend upon that of /zz(h). If 
f,z(A) = P, a constant, for all A, then it is clear that (5.7) is negative for all A, 
i.e. the asymptotic variance of h(r)(u) is smaller than that of g(r~(u). 

On the other hand, suppose that 

fzz(,)  c *  f=(h)  = , a constant, all A, (5.8) 

i.e. the 'signal-to-noise' ratio is constant (e.g. Fishman [13]). Then, by using a 
result of Parzen [20], (5.7) may be shown to be nonnegative for all u, and thus, 
for this case, the asymptotic variance of h(r)(u) is greater than that of g(r)(u). 
Note, however, that when (5.8) holds and l ( u )=  0 for u sufficiently large, the 
g(T)(u) provide asymptotically efficient estimates of the (nonzero) l(u), relative 
to the maximum likelihood in the Gaussian case, see Hannan [17, Chapter 
VII]. 

It is interesting to note that for prediction one step ahead, i.e. when Yt = x,+l, 
expression (5.2) simplifies to 

a(u - r)a(v - r) ,  (5.9) 
r = 0  

which is consistent with the result of Bhansali [5], since, from (3.3), for this 
case, h(])  = - a ( j  + 1) (] = 0, 1 . . . .  ). 
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6. A simulation study 

The finite sample behaviour of the statistics h~r~(u) and gCr)(u) is extremely 
difficult to derive analytically. The usual practice is to use the asymptotic 
results obtained by letting T~oo,  as approximations for the finite sample 
behaviour of these statistics. To examine the usefulness of this procedure, 
several different systems of known structure were generated on a computer and 
these estimates were computed. The detailed results are given by Karavellas 
[19]. To save space, in this paper, we only consider the following two systems, 
in which {ut} and {v,} are sequences of independent normal deviates with zero 
mean and variance 1: 

System I 

Yt = 0 . 5 x t - 1  "]- 0.15xt-2 + 0.05xt-3 + 0.5zt, 

xt = 0.75xt-1 - 0.5xt-2 + ut, 

Zt = 0.75Zt-1 -- 0.5Zt-2 + l)t , 

System H 

Yt = 0.5xt-1  '[- 0 . 5 u t ,  

xt = 0 .55xt -1  -[- 0 .05xt -2  Jr vt .  

The {ut} and {v t} were generated using the two-sequence method, described by 
Bhansali [6]. A stretch of T + 100 observations on { Yt} and {xt} was generated 
from these systems, but the first 100 observations were discarded to avoid the 
transients. The modified Daniell window, which takes a weighted average of 
2m + 1 periodogram and cross-periodogram ordinates, was used to estimate 
f=(h)  and/yx(h)  at ~Nr + 1 equally spaced points in [0, 7r]. Several different 
values of T, and, for each T, several values of m and Nr  were considered. 
However, to save space, only the results for T = 960, m = 5 and Nr  = 48 are 
presented here. Note that the choice of Nr  is in accordance with the results of 
Bhansali [4]. The estimates, htr)(u) and gtr)(u), of the filter coefficients were 
computed by using formulae (4.6) and (4.15), respectively. These calculations 
were repeated 100 times, with a different set of observations each time, and the 
observed means and variances of the estimated filter coefficients were cal- 
culated. The computing was done on the 1906A/7600 computer of the Uni- 
versity of Manchester. 

The observed means of h(r)(u) and  gCr)(u) (u = 0, 1 . . . .  ,5) are presented in 
Table i for System I, and in Table 2 for System II. 

The htr)(u) and the g(r)(u) are seen to provide biased estimates of the filter 
coefficients. Moreover, the bias in estimating the nonzero coefficients is greater 
than that for the zero coefficients. The actual magnitude of the bias is about the 
same for both these estimators, since their means differ from each other only in 
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Table 1 
Means of h(T)(u) and g(r)(u) for System 
I 

Table 2 
Means of h(r)(u) and g(r)(u) for System 
II 

Mean of Mean of Mean of Mean of 
u htr)(u) g(r)(u) h(u) u h(r)(u) gtr)(u) h(u) 

0 0.00315 0.00263 0.0 0 0.00357 0.00298 0.0 
1 0.47348 0.47303 0.5 1 0.47172 0.47167 0.5 
2 0.14149 0.14106 0.15 2 -0.00067 -0.00087 0.0 
3 0.04531 0.04527 0.05 3 -0.00181 -0.0016 0.0 
4 0.00083 0.00043 0.0 4 0.00147 0.00115 0.0 
5 0.00160 0.00215 0.0 5 0.00147 0.00222 0.0 

the fourth decimal place. Both the systems generated here are linear, time- 
invariant, open loop and physically realizable. Hence the last finding is in 
accordance with the results of Section 2. The htr)(u) and the gtr)(u) are based 
on the 'window' estimators f(T)(A) and f~)(A). The latter are known to be 
biased for/yx(A) and f=(A), and their bias may partly account for the bias of 
htr)(u) and gtr)(u) in estimating the filter coefficients. A relevant reference is 
Hannan [17, p. 479]. 

0 0 0 0 6 0  
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Fig. 2A. Plot of the variance of htr)(u) for System I [T = 960, m =5 ,  N r  = 48]. 
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Fig. 2B. Plot of the variance of g(r)(u) for System I [T = 960, m = 5, Nr  = 48]. 
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The observed variances of htT)(u) and gtT)(u) are plotted in Figs. 2A and 2]3, 
for System I and Figs. 3A and 3B for System II, along with the corresponding 
'expected' variances, which were calculated by using expressions (5.5) and (5.6), 
respectively. For checking whether the observed variances differ significantly 
from the 'expected', the 1% critical limits are also shown. These enable the 
X 2 test for variances to be applied graphically. 

For System I, the signal-to-noise ratio, (5.8), is constant for all A, while, for 
System II, the residual process ut is serially uncorrelated. Hence, as discussed 
,~arlier in Section 5, for System I, the gtr~(u) are expected to be asymptotically 

0 0005 ! 

0.0004 
A 

. C  

~6 0.0003 

0.0002 ;> 

0.0001 

- -  Observed variance 

. . . . . . . . . . .  Expected variance 

1% critical limits 

~__ Upper 1% critical limit __~_Expected 

. . . . . . . . . . . . . . . . . . . . . . . .  \ . . . . . . . .  - 7 - -  . . . . .  

Lower 1% critical limit 

,0 2'0 30 40 

Fig. 3A. Plot of the variance of h(r)(u) for System II [ T  = 960,  m = 5, N r  = 48].  

Observed variance 

. . . . . . . . . . . .  Expected variance 

I 1% critical I ) m i t s  

0.0005 Upper 1% critical limit 

" r -  
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- 1 5  ~10  - 5  0 5 10 15 u 

0.0001 

Fig. 3B. Plot of the variance of gtr)(u) for System I [ T  = 960,  M = 192, N = 48].  
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more efficient than the htT)(u), but conversely for System II. This asymptotic 
comparison is seen to hold also with a finite T, since the observed variances are 
closely approximated by the asymptotic variances. 
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The Finite Fourier Transform of a Stationary 
Process 

D a v i d  R .  Br i l l i nger*  

1. Introduction 

The Fourier  t ransform has proved of substantial use in most  fields of science. 
It  has proved of special use to statisticians concerned with stationary process 
data or concerned with the analysis of linear t ime-invariant systems. The  
intention of this paper  is to survey some of the uses and propert ies  of Fourier  
transforms of stochastic processes. 

In the case of an observed function X(t ) ,  0 < t < T, the finite Fourier 
transform is defined as 

f0 T dr(A) = X ( t )  exp{-iAt} dt (1.1) 

-oo < A < ~. The computat ion of the quantity (1.1) was suggested, for example,  
by Stokes (1879) to test the observed function for the period 2~/A. In the case 
of discrete data X ( 0 ,  t = 0 . . . . .  T - 1 ,  Schuster (1898) proposed the com- 
putation of 

T-1 
d r (a )  = ~'~ X ( t )  exp{-iAt} (1.2) 

t~O 

whose real and imaginary parts appear  in the sample correlation of the values 
X ( t )  with the values cos At and sin At, respectively. Schuster further suggested 
the computat ion of t h e  per iodogram 

l r ( A )  = (2~rT) - l ld r (A) l  2 (1.3) 

in a search for hidden periodicities in the series X(-).  
In the case that the quantity (1.2) is computed  for the particular frequencies 

A = 27rs/T, s = 0 . . . . .  T -  1, the corresponding operat ion is referred to as the 

*This work was supported by NSF Grant PFR-790642. 
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discrete Fourier transform. It turns out that for various values of T in th~ case, 
the transform may be computed much more rapidly than might have been 
expected. If such a computation is employed, one speaks of the fast  Fourier 
transform. 

The Fourier transform turns up in problems of functional approximation and 
interpolation. The particular value T-~dX(O) corresponds to the sample average 
value, so often used as a summary statistic for a set of data. The value T-ida(A) 
occurs as the maximum likelihood estimate of the parameter ~o exp{kb} in the 
model 

x(t) = p cos (At+  , / , )+ eCt), (1.4) 

t -- 0 , . . . ,  T -  1, with the e (t) a sample from a zero mean normal distribution 
and A of the form 2~rs/T, s an integer. In the case that X(.)  is a stationary time 
series with mean 0 and power spectral density f(A), the expected value of the 
periodogram, (1.3), is close to f(A) suggesting that estimates of f(A) be  based 
on the values (1.2). In seismic engineering the Fourier transforms of observed 
strong motion records are taken as design inputs and corresponding responses 
of structures evaluated prior to construction (see, for example, Vanmarcke, 
1976). On other occasions responses of systems to sinusoidal input, at 
frequency A, are recorded and the Fourier transform (1.2), (or (1.1)), computed 
in system identification. For example, Regan (1977) proposes the examination 
of an individual's visual system by having him view a sinusoidally oscillating 
light as his E E G  is recorded. The E E G  is subjected to Fourier analysis at the 
frequency of oscillation (and some of its harmonics). 

The transforms (1.1) and (1.2) refer to the cases of continuous and discrete 
equispaced time, respectively. The Fourier transform 

M 
dT(A) ---- X X(o'j) exp{-iA~.}, (1.5) 

,~1 

with the trj irregularly spaced, is also of important practical use (especially in 
the case that X ( . ) - 1 ,  when one speaks of point process data). So too is the 
transform 

T T 
d T ( , h  . . . .  , ; ~ )  . . . .  X ( t l  . . . . .  t . )  

× exp{-i(Altl + . - .  + Aptp)} d h . - -  dtp (1.6) 

of spatial data. (The domain of X(.)  may even be an abstract group.) 
In another form of extension, the Fourier transform may be best viewed as a 

functional defined on a convenient function space. The entity, X, of concern 
may be described by a differential equation and the equation may have 
solutions on ly  in a generalized function (Schwartz distribution) sense. In a 
related procedure, one sets 
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aT(A) = ~ ~bT(t)X(t) exp{-iAt} (1.7) 

with t,b x vanishing if t < 0 or t i> T. The function th T is usually called a data 
window or taper here. This form of extension makes the Fourier transform 
more useful and a more powerful tool. Details will be provided later in the 
paper. 

There  are various classes of functions that may be viewed as subject to a 
harmonic analysis. These include the functions belonging to some lp space, that 
is satisfying 

Ix(t ) lP < o~ (1.8)  
t= - -e¢  

from some p t > l .  Examples include X ( t ) =  texp{-/3t}  and X ( t ) =  
Ekotk exp{--flkt}COS(ykt+ 6k). Such functions provide models for transients. 
They have Fourier representations 

X( t )  ~ exp{iAt}z(A) dA. (1.9) 

From (1.2), for such functions 

dr(A) - e x p { - i a ( T  - 1)/2} sin t~T/2 z(A - a )  dot. 
. sin ot/2 

(1.10) 

The function Dr (a )  = (sinotT/2)/(sina/2) is called the Dirichlbt  kernel. It 
integrates to 1 and has most of its mass in the interval (-27r/T, 2rr/T). The 
finite Fourier  transform might be expected to be near z(A) in this case. 
Classical Fourier analysis (see, for example, Timan (1963) or Lorentz (1966)) is 
concerned with just how near it is. It is further concerned with how the 
nearness may be increased by the insertion of convergence factors, ~b T, as in 
(1.7). In this case 

aT(A) -- ~T(a)z(A -- a )  da  (1.11) 

with ~bT(a) = g t  ~bv(t) exp{-iat}. The particular data window employed is seen to 
affect the result directly. 

Quite a different class of functions is provided by the realizations of 
stationary stochastic processes. Suppose that one has functions X(t ,  to) indexed 
by the values of a random variable oJ. If EIX(t ,  oJ)l 2 < ~, and cov{X(t + u, to), 
X(t ,  to)} does not depend on t, then one has the spectral (or Cramrr)  represen- 
tation 



24 D. R. Brillinger 

X(t, oJ)~ exp{itX}Z(dX, ~0) (1.12) 

:with Z a stochastic measure satisfying 

cov{Z(I, z(J ,  = F(I n J) (1.13) 

for intervals I and J. F is a nonnegative measure on the interval (-~r, ~r]. If 
this measure is absolutely continuous, its density f(A) is called the power 
spectrum of the process X. (The covariance in (1.13) is defined via coy{U, V} = 
E ( u -  EU)(V-  EV).) 

Suppressing the dependence on ta, one can write 

cov{Z(da), Z(d/.t)} = 8(h -/.t)/(A) dh d~ (1.14) 

in the absolutely continuous case with 8(.) the Dirac delta function. In an 
important class of situations, all the moments of Z exist and are given by 

cum{Z(dA1),..., Z(dAk+l)} 

= ~(A1 + " "  + Ak+l)f(A1 . . . .  , Ak)~dA,""" dA~+l (1.15) 

for k = 1, 2 , . . . .  (Here cum denotes the joint cumulant of the variates involved. 
It is defined and discussed in Brillinger (1975a,b), for example.) An effective 
way of ensuring that values of the process well separated in time are only 
weakly dependent (the process is mixing) is to require that the f(A1 . . . .  , A k )  be 
absolutely integrable. For then, one has the representation 

cum{X(t + Ul) . . . .  , X(t  + Uk), X(t)} 

f " "  I exp{i(ulA1 + . - " +  blkAk)}f(A1 . . . . .  Ak) dAl"" "dAk (1.16) 

and the cumulant is seen to tend to 0 as any lu A --> ~, by the Riemann-Lebesgue 
lemma. 

The spectral representation (1.12) is useful for indicating the result of linear 
filtering the series X. Specifically if A(A), the transfer function of the filter, 
satisfies f_~= JA(a)J2F(dot) < ~, then the filtered series given by 

f "  exp{itA }A (A)Z(dA ). (1.17) 

Similarly, the finite Fourier transform (1.7) may be written 

f_" q~T(A ct)Z(da) (1.18) 
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showing that, when ~x is a weight function with mass concentrated near the 
origin, the value of (1.7) is proportional to the value of Z for a neighborhood 
of A. Further, from (1.14), 

var d~(X)- ~ I~T(X - o`)l=f(o`) do` 

y(X) J* I ¢'T(O`)I ~ do, (1.19) 

if f is continuous at A. Similarly, from (1.15), 

cum(aT(al),..., aT(4+1)} 

X f (o `x  ..... o`k) d o ` l  " • " d o ` k .  ( 1 . 2 0 )  

The results (1.19)and 0.20) are useful in practice because the moments of a 
random quantity provide essential information concerning its statistical dis- 
tribution. 

The just-indicated results refer to the case of a univariate series and discrete 
time. In the case of an r vector-valued series, the spectral representation (1.12) 
becomes 

X(t) ~ exp{itA}Z(dA) 

with Z r vector-valued and such that 

(1.21) 

cov{Z(dA), Z(d/z)} = 8(A-/.n,)CF(dA) d,tt, (1.22) 

F being an r x r Hermitian matrix having nonnegative definite increments. In 
many cases F(dA) will be of the fo rm/ (A)  dA. The matrix f is called the spectral 
density matrix of the series. In the case that time is continuous, the represen- 
tation (1.12) becomes 

X( t )  ~ f~® exp{ith}Z(dh). (1.23) 

In the case of a spatial process, X(t l  . . . . .  tp), with - ~  < tl . . . . .  tp < o% one 
has 

t o o  f o ~  

X ( t l  t p )  - -  1__ "'" I_~ exp{i(tlAt + ' "  "+ tpAp)}Z (dA, . . . . .  dAp) 

(1.24) 
with 
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cov{Z(dA, . . . . .  dAp), Z(d#~ . . . .  , d/zp)} 

= 8 ( A , - / z ) .  • • 8(Xp -/zp)F(dX, . . . . .  dap) d/.,~ • • • d/~p. (1.25) 

All that is changed is the domain of the functions involved. 
As a final example to illustrate just how unifying the concept of the spectral 

representation is, consider the case of a nonstationary process with stationary 
increments. The spectral representation now takes the form 

with 

X ( t ) _  r®j_= exvt,.., j~s;,~ 1,iA - 1 Z(dA) (1.26) 

cov{Z(dA ), Z(d/z )} = 6 (A -/X)F(dA ) d/.~ (1.27) 

as betore (see Yaglom, 1958 or Brillinger, 1972). However ,  suppose one defines 
the finite Fourier transform, including a data window, as 

dT(A) = f ~br(t) exp{-iAt} dX( t ) ,  (1.28) 

then, using (1.26), one sees that 

dT(A)-  f ~T(A -- a ) Z ( d a )  (1.29) 

as in (1.18), with ~ r ( a ) =  f exp{iat}(#X(ot)dt. By considering frequency rather 
than time, domain statistics, one finds oneself working with expressions of 
identical form. This phenomenon holds as well for generalized processes 
(random distributions) defined only by the values of certain linear functionals 
based on them. The expression (1.29) continues to describe an appropriate 
statistic (see Brillinger, 1974, 1981), 

This paper will consider, in particular: the large sample distribution of the 
finite Fourier transform d r for a broad variety of stationary processes, the use 
of d r in linear models, the use of d T in estimating finite-dimensional parameters 
and finally, some interesting related results. 

2. Central limit theorems 

In the case that the time series X(t) ,  -oo < t < oo is stationary with power 
spectrum f(A) and mixing (see Appendix), one has the following large sample 
results concerning the finite Fourier transform (1.1). 

(i) For A # 0, dX(A) is asymptotically complex normal with mean 0 and 
variance 2~-Tf(A). (The complex normal is defined in the Appendix.) 

(ii) For 0 < A1 < ' "  " < At, d r ( A 1 )  . . . . .  dT(AK) are asymptotically independent. 
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(iii) For A~=2~rs~/T~A, with the s~ distinct nonzero integers, 
dr(AT),. . . ,  dT(A~) are asymptotically independent complex normals with mean 
0 and variance 27rTf(A). 

(iv) For A ~ 0, V = T/K and ~(kV 
dr(a, k) = X(t )  exp{-iht} dr, (2.1) 

k-1)v 

k = 1, 2 , . . . ,  K, dT(h, 1 ) , . . . ,  dr(A, K) are asymptotically independent complex 
normals with mean 0 and variance 2~V/(A). 

(v) For h ~ 0, Ohm(t) = ~bk(t/T), ~bk bounded and integrable, and 

k) = f q~x(t)X(t) exp{-iAt} dt,  (2.2) dT(A, 

{dT(A, 1) . . . . .  dT(A, K)} is asymptotically NC(0, ~Tf(A)) with the entry in row j 
and column k of ~T being 27r f qb~(t)~b~(t) dt. (The variate (2.1) is a particular 
case.) 

(vi) For A~-> A with TAr, T(A~-A~)~  oo, with ~(A) the Fourier transform 
of ~b bounded by L(1 + Ix [)-~, o~ > 2 and 

dX(A) = ~ $r( t )X(t )  exp{-iXt} dt,  (2.3) 

dX(A~ . . . . .  dT(X~:) are asymptotically independent complex normals with mean 
0 and variance 27r f ~bT(t) 2 dtf(A). 

In the case that the mixing condition assumed is one based on joint 
cumulants of the process, these results are proved directly and simply by 
demonstrating that the standardized joint cumulants of order greater than 2 
tend to 0, i.e. to the cumulants of a normal variate. Details may be found in 
Brillinger (1970, 1975a,b, 1981). References to central lima theorems for finite 
Fourier transforms, or equivalently for narrow band-pass filtered series include: 
Leonov and Shiryaev (1960), Picinbono (1960), Rosenblatt (1961), Hannan 
(1970) and Brillinger (1974). 

The results (i) to (vi) suggest that in practice it may be reasonable to 
approximate the distribution of the Fourier transform of a long data stretch (or 
a series such that well-separated values are approximately independent) by a 
normal distribution. Further, Fourier transforms at distinct frequencies and 
based on nonintersecting data stretches may be approximated by independent 
normals. The variance of the approximating normal is proportional to the 
power spectrum of the series. This suggests how a direct estimate of the power 
spectrum may be constructed from the Fourier transform. (Details will be given 
in the next section.) 

For result (i) to make sense, it is necessary that f (A)#  0. In the case that 
f(A) = 0, it is sometimes possible to demonstrate asymptotic normality, with 
the asymptotic variance of an order different than O(T). Specifically, suppose 
that f (a)  = (re - A)Sg(ot) with g continuous and nonzero at A. Then the large 
sample variance of dX(A) may be shown to be of order T 1-~, and provided that 
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the large sample cumulants are of corresponding lower orders, asymptotic 
normality will follow. 

In the case that the series is not mixing, asymptotic normality need not 
occur. Rosenblatt (1981) derives a non-Gaussian limit for the transform of a 
process with long-range dependence. 

Results (i) to (vi) were set down for the case of a scalar-valued series. 
Corresponding results hold in the r vector-valued case. Suppose, for example, 
that X(t)  = {Xl(t) . . . . .  Xr(t)} and that 

d~(A) = f ~bj(t)Xi(t ) exp{-iAt} dt, (2.4) 

then dT(A)  = {dT(A),... ,  dT(A)} may be shown to be asymptotically NC(0, ST) 
with the entry in row j and column k of ~a- being )~k(A)27r f dp~(t)qb[(t)dt. In 
the case that ~bj = th for all j, the covariance matrix of the large sample 
distribution is seen to be proportional to f(h), the spectral density matrix of the 
series. 

The above results continue to hold for other types of stationary processes 
and their corresponding finite Fourier transforms, such as (1.2), (1.5), (1.6) and 
(1.7). A distinct advantage of working with the Fourier transform is that the 
large sample results are the same for the frequency-domain statistics, whereas 
time-domain statistics have drastically differing appearances and properties. 

Hannan and Thomson (1971) develop asymptotic normality under a different 
form of limit procedure. The hope is to obtain a better approximation to the 
joint distribution in a case like (iii) above when the values f(h~), k = 1 . . . . .  K 
vary noticeably. The variates dr(A T) are found to be asymptotically dependent 
with the limiting procedure adopted. 

3. Direct estimation of second-order spectra 

The results indicated in the previous section may be used to construct 
spectral estimates and to suggest approximate distributions for the estimates 
constructed. Specifically, result (iii) suggests taking 

$ 

with the summation over K distinct integers with 2*rs/T near A, as an estimate 
of f(A). Further, it suggests approximating the distribution of if(A) by that of 
f(A)K -1Es Izs[ 2 where the zs are independent complex normals having mean 0 
and variance 1. (This distribution is the same as that of f(A)x2r/2K, see 
Brillinger, 1975.) 

Results (iv) suggests the estimate 
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K 

fT('h') = K-1 E (27rV)-lldT( A, k)l z (3.2) 
k = l  

and the approximating distribution f(A)X2K/2K once again. 
The estimate (3.2) involves averaging periodograms based on disjoint stret- 

ches of data. Of course, periodograms based on overlapping stretches might be 
averaged to form an estimate (the shingled estimate). Result (v), taking 
~b~(t) = 1 for the jth stretch and =0 otherwise, indicates that the large sample 
distribution of the estimate may be approximated by f(A)K-1 Ej tzj[ 2 where the 
zj are 0 mean, variance 1, complex normals as before; however, now the zj are 
correlated in a manner depending on the overlapping employed. 

Result (vi) suggests the estimate 

fT(A) = K -1 ~ (27r f ~br(t)Zdt)-lldT(A~)l 2 
k = l  

(3.3) 

in the case that tapering has been employed, with the approximating 
distribution f(A)X2/2K if the A ~ are sufficiently far apart. Groves and Hannan 
(1968) discuss the above estimates in a comparative fashion. 

The above estimates are for the scalar case. For a vector-valued process, the 
only change necessary is for the term IdOl 2 t o  be replaced by the matrix 
dT(A)'dT(A), with d r the (row) vector of finite Fourier transforms of the 
component processes. The large sample approximating distributions will now 
be complex Wisharts rather than chi-squares (see Brillinger, 1975). 

Direct estimates of higher-order spectra may also be formed from the finite 
Fourier transform. Such estimates are considered in Brillinger and Rosenblatt 
(1967) and Rosenblatt (1983, this volume) for example. 

4. Linear models 

The finite Fourier transform is of substantial use in the analysis of random 
process data assumed to satisfy a linear (time-invariant) model. Suppose that 
the data {X(t), Y(t)}, 0 < t < T is available and satisfies the model. 

Y(t)  = tt + f a(t - u )X(u)  du + e(t), (4.1) 

where # and a(-) areunknown parameters, e is a zero mean stationary mixing 
process with power spectrum f~(A) and X is fixed. Set A()t)= 
f a(u) exp{-iAu} du. Taking Fourier transforms of the relationship (4.1) leads 
to 

T 2~'S . T 2~S dr(--~--) = a ( A ) d x ( - ~ )  + d, ~--~)'r/2rS\ (4.2) 
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for 27rs/T near A. From the results in Section 2, in many situations it is 
reasonable to approximate the distribution of several d~(27rs/T) with 21rs/T 
near A by independent complex normals with mean 0 and variance 27rTf,~ (A ). 
Rewriting expression (4.2) as 

Yk -- aXk + ek (4.3) 

with k indexing K distinct frequencies near A, shows (4.2) to be (ap- 
proximately) the standard linear model. The estimate 

a = E Yk k /E  Ixkl 2 (4.4) 
k k 

of a = A(A) is the Gauss-Markov estimate. Its distribution may be ap- 
proximated by a complex normal with mean A(A) and v.ariance 
27rTf~, (A)/Ek [Xk [2. The error spectrum may be estimated by the residual sum of 
squares 

lyk - gtXk12/(27rT(K- 1 ) )  ( 4 . 5 )  
k 

and the strength of the linear relationship may be estimated by (the coherence) 

(4.6) 

These results are developed in detail in Brillinger (1975) for discrete time and 
for both the scalar and vector cases. Asymptotic distributions are derived and 
approximate confidence regions are constructed. The results for the (con- 
tinuous time) model (4.1) are the same. 

The approximate relationship (4.2) also occurs for other sorts of processes. 
Suppose that {X(t), Y(t)} denotes a bivariate point process with X(t) counting 
the number of points of one type in the interval (0, t] and Y(t) counting the 
number of points of a second type. Then the relationship 

Prob{dY(t)= l l X}= [g + f a ( t -  u)dX(u)] dt (4.7) 

may be shown to yield (4.2) in the case that the process is stationary and 
mixing. The models (4.7) and (4.1) look very different in the time domain; 
however, in the frequency domain they have similar forms and analyses. 

The extension of these results to the case of vector X is immediate and 
analogous to multiple regression. The extension to vector Y is also immediate. 
Details may be found in Brillinger (1980) where various extensions and tests of 
hypotheses are also given. 
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The finite Fourier transform is also of use in examining the traditional model 
of multiple regression, but with the errors stationary rather than uncorrelated. 
Specifically, consider the model 

Y( t )  = OX(t)+ e( t ) ,  (4.8) 

t = 0 . . . .  , T - 1 ,  with 0 an r (row) vector, with X(t )  an r (column) vector 
and with e a stationary series having power spectrum f~(A). Taking the finite 
Fourier transform leads to 

dT /2~rs\ _ .~ /27rs\ + d~(~-) 
y~--¢-) = O , x ~ T  ) (4.9) 

s = 0 , . . . ,  T -  1. Treating the d~(2zrs/T) as uncorrelated zero mean, variance 
21rTf,~(27rs/T) normal variates leads to 

• x /2~rs\  -x/2~rs\" 

[ ~  .x /21rs \ .x  [2zrs\,  [ 2 ~ s \ \  -1 × (4.10) 

with W(l~)=fee(t~) -1 a s  the best linear unbiased estimate of 0. Further,  the 
distribution of (4.10) may be approximated by a normal with mean 0 and 
covariance matrix 

2 r-l(f w(a)aVxx( ))-i 
x (f w(A)dFxx(A)) -1 (4.11) 

assuming that the sequence X is subject to a generalized harmonic analysis and 
has spectral measure Fxx. Specific assumptions leading to this approximation as 
the asymptotic distribution of 0 may be found in Hannah (1973) and Brillinger 
(1975). The minimum of (4.11) occurs for w(h) = f6~(A) -1 and is 

2 z r T - l ( f  L~(A )-l dFxx(A )) -1 (4.12) 

This last expression is of use in questions of experimental design, i.e. choice 
of the regressor series X. It shows that it is advantageous to concentrate the 
power of the components  of X at frequencies at which the noise spectrum is 
smallest. It will be further advantageous to take the components  of X ortho- 
gonal to each other. 
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5.  Parametric models 

The linear model (4.8) is a particular case of the following model of 
considerable practical importance, 

Y(t) = S(t, 0)+ e(t) (5.1) 

with 0 a finite-dimensional parameter, with S a function of known form and 
with e a stationary series having power spectrum/~,(h) as before. The problem 
is to estimate 0 given the data Y(t), t = 0 . . . . .  T -  1 say. For example, Whittle 
(1952) considered the case of 

S(t, O) = ~ a/cos(yjt + 6i) (5.2) 
J 

with 0 = (al, Yl, 61 , . . . ,  a j, yj, 6j) while Bolt and Brillinger (1979) considered 
the case 

S(t, O) = ~ aj exp{-/3jt} cos(yjt + 6j) (5.3) 
J 

with 0 = (at,/31, Yl, 81 . . . . .  al,/31, yj, 61). The problem is that of nonlinear time 
series regression. In many cases it is convenient to address the problem by 
means of finite Fourier transforms. 

Taking the finite Fourier transform of the relationship (5.1) leads to 

d T/2zrs\ d ~ ( ~ - , O )  d T(2zrs] (5.4) 

s = 0 . . . .  , T -  1. Taking the d~(27rs/T) to be independent zero mean, variance 
2~rTf~,(27rs/T) normal variates gives (5.4) the form of the usual nonlinear 
regression model, considered for example in Jennrich (1969). The least-squares 
estimate of 0 is the value minimizing 

~'~ IN( t ) -  S(t, 0)1 z = ~'~ d~ - ds r ,0  
s=O s=0 

(5.5) 

It is also convenient to consider the weighted least-squares estimate minimizing 

r-~ ,w/27rs\ dT{2~r s ) 2 w ( _ ~  ) 
la@-T-)- o 

s=O 

(5.6) 

with w(h)=f , , (A)  -1 for example. The asymptotic properties of this estimate 
may be derived and, for example, approximate confidence regions constructed 
for 0, by linearization. That is by reducing the model (5.4) to the model (4.9) by 
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making a Taylor series expansion of d~ as a function of 0 in the neighborhood 
of its true value 00. Details for the cases (5.2) and (5.3) may be found in Whittle 
(1952), Bolt and Brillinger (1979) and Hasan (1983, this volume). The general 
case is discussed in Hannan (1971) and Robinson (1972) for example. In the 
case of models (5.2) and (5.3), it is convenient to minimize separately the terms 
in the sum (5.5) that are believed to be in the neighborhood of an individual yj. 
This reduces the computations involved and allows one to treat the weights 
w(2zrs /T)  of (5.6) as constant. One can alternatively consider a stepwise 
procedure involving the estimation of f,~ using the estimate of 0 at the previous 
step and then minimizing (5.6) with w = )~g2. 

The asymptotic properties of the finite Fourier transform, indicated in 
Section 2, suggest a means of estimating the value of an unknown finite- 
dimensional parameter in a circumstance of quite different form. Suppose that 
X is a stationary process with power spectrum f(h, 0) of the known function 
form, but with the value of 0 needing to be estimated. Were the values 
dT(2zrs/T), s = 1, 2 . . . . .  ( T -  1)/2 independent complex normals with mean 0 
and variance 2zrTf(27rs/T, 0), one could set down the likelihood function 

./2~rs T 27rs 2 2~'s °) exp{ I (T) (5.7) 

and consider as an estimate of 0 the value maximizing (5.7). Once the 
expression (5.7) has been set down, one can consider the properties of the 
value maximizing it, quite separately from whatever motivated one to set the 
expression down. This has been done. See, for example, Whittle (1954, 1961), 
Hannan (1970) and Dzhaparidze and Yaglom (1974). It turns out that this 
estimate is consistent and asymptotically normal, under regularity conditions. It 
proves of special use in fitting A R M A  and A R M A X  models (see Hannan, 
1976) and in dealing with data that has been modeled in continuous time, but 
observed in discrete time (see Brillinger, 1973). Asymptotic properties of the 
estimate are discussed for the case of poin~t process data in Brillinger (1975b). 

The results of this section provide another example of situations that have 
substantially different appearances in the time domain, yet essentially the 
s~ame form in the frequency domain. 

6. Other topics 

This section presents an indication of some other results that have been 
derived concerning finite Fourier transforms. 

Results (i) to (vi) of Section 2 all relate to finite collections of Fourier 
transform values. There are situations in which one is interested in a collection 
whose number goes to oo with the sample size, for example, the collection 
dX(27rs/T), s = 0 . . . . .  T -  i. Freedman and Lane (1980) demonstrate that the 
empirical distribution of these values tends to the complex normal distribution 
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function, in the case that X(t), t = 0 . . . .  is a sequence of independent identic- 
ally distributed random variables with finite variance. In related work, Chen 
and Hannan (1980) prove that the empirical distribution of the standardized 
values [dr(2¢rs/T)12/(2zrTf(21rs/T)), s = 1 , . . . ,  ( T -  1)/2 tends to the distribution 
of g~/2 (i.e. the exponential). There are situations in which one is interested in 

A s 

In probability and almost sure bounds are given in Whittle (1959) and Bril- 
linger (1975a) for example. The asymptotic distribution of the second statistic 
of (6.1) is considered in Fisher (1929) and Whittle (1954). 

The results of Section 2 lead to approximating the distribution of ]dT by a 
multiple of X 2. Wittwer (1978) derives an improved approximation in the case 
that X is Gaussian. 

Physical models involving echoes have led to the computation of log dr(h) in 
quite a number of situations (see Childers et al., 1977). This statistic is known as 
the complex cepstrum or kepstrum. There are, further, quite a large number 
of situations in which essential information is provided by the computation of 
the finite Fourier transform for (possibly overlapping) segments of the series 
and displaying it as a function of frequency and time. See, for example, Levshin 
et al. (1972). Complex demodulation is an effective means of carrying through 
these computations (see Bingham et al., 1967 and Bolt and Brillinger, 1979). 

The Fourier analysis considered in this paper has been that of sine and 
cosine transformations. There are situations in which the symmetries of the 
problem are  such that other transformations are relevant. Hannan (1969) 
indicates a number of these. Morettin (1974) and Kohn (1980) consider the case 
of the Walsh transform. 

The computation of the Fourier transform of a data stretch is essential to its 
use in statistics. One general reference to problems of computation is Digital 
Signal Processing (1972). Computer programs became available in the 1960s 
allowing the computation of the discrete Fourier transform of T data points 
with number of multiplications proportional to T log T. The Winograd-Fourier 
transform algorithm (see Winograd, 1978) reduces this to a number proportional 
to T. 

In summary, the Fourier transform proves an effective tool mathematically, 
statistically and computationally. It is of great use in mathematics because 
convolution occurs so often and is greatly simplified by the Fourier transform. 
It is of use in statistics, in part, because its (large sample) properties are much 
simpler than those of corresponding time-domain quantities. It is of use in 
computations because fast Fourier algorithms allow the evaluation of quantities 
of interest more rapidly and with smaller round-off error, than proceeding by 
direct evaluation. 
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Appendix  

1. T h e  c o m p l e x  n o r m a l  dis tr ibut ion 

An r vector-valued variate U, with complex components, is said to have the 
complex normal distribution with mean # and covariance matrix $, (denoted 
NC(#, $)), if the variate 

LIm U 

is distributed as 

NE'([IRme~] ' [IRme~ Re.,~ J] 

N2r denoting the usual multivariate normal. In the case that # = 0 and that .~ is 
nonsingular, the probability element of U is 

r 

rr-'(Det ~ ) - '  exp{O'~- 'U} 1-I (d Re U/)(d Im U/). 
]=1  

2. M i x i n g  

A random process is said to be mixing if well-separated (in time) values are 
only weakly dependent (statistically). The property has been formalized in a 
number of ways. In the case of a continuous time series these include: 

(a) With F~ denoting the or algebra of events generated by the random 
variables X ( u ) ,  s <~ u <<- t 

sup ]Prob{A fq B }  - Prob{A} Prob{B}[ ~< a (u)  
AEFt-~, BEFit+ u 

with a ( u )  $ 0 as u--* ~ (see Rosenblatt, 1956). 
(b) With C(Ul, . . . , Uk)= cum{X(t + ul)  . . . . .  X ( t  + Uk), X(t)} 

f " " f [c(ul ,  . . . ,  Uk)[ dUl" 'dUk < °° 

for k = 1, 2 . . . .  (see Leonov, 1960 and Brillinger, 1970). 
(c) With f(A1 . . . . .  Ak) the cumulant spectrum defined by (1.15) 

vrai suplf(A1 . . . . .  Ak)t <, ~ 

for k = 1, 2 . . . .  (see Shiryaev, 1960 and Brillinger, 1981). 
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Seasonal and Calendar Adjustment 

Wil l iam S. C leve land  

1. Introduction 

1.1. Seasonal and calendar adjustment 

The results of seasonal and calendar adjustment procedures are directly 
consumed by millions of people via radio, television, magazines, newspapers, 
government reports, company business reports, and scientific journals. For 
example, each month thousands of economic and business series are adjusted, 
including the important and widely reported national economic series such as 
unemployment,  housing starts, industrial production, money supply, and price 
indices. Surely this makes seasonal and calendar adjustment one of our most 
important statistical tools. 

What does adjustment mean? Many time series, particularly economic and 
business time series, contain variation due to the time of the year or the 
arrangement of the calendar. Calendar and seasonal adjustment refers to the 
removal of this variation so that other variation can be revealed. (Calendar 
adjustment frequently is called 'trading-day adjustment'.) 

As an example of a series with seasonal and calendar effects, consider the 
number of first-class postage stamps sold at a post office window. The series 
might vary, in part, due to the following factors: 

Month-length effects: On the average more stamps will be sold in March than 
in February since March has more days. 

Day-of-the-week and holiday calendar effects: Sales for Sunday and national 
holidays are zero, and sales for other days will depend on the day of the 
week. The changing proportion of holidays and Sundays in a month and the 
changing proportion of each day of the week in a month cause calendar 
variation in the series. 

Seasonal effects: Each month will tend to have a different value due to the 
time of the year. For example, more stamps are sold in December  than in 
other months due to Christmas mailing. 

If the goal in compiling the postage series is to assess changes in the demand 
for stamps due to business factors such as quality of service, price, the general 
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level of the economy, and availability of competitive services then we would 
want to remove the variation due to month-length, calendar, and seasonal 
effects to enable us to better assess the business factors variation. As we shall 
see, adjusting for month length is easy; we just divide an aggregated monthly 
series (a flow) by month length. But describing and removing seasonal and 
calendar variation requires much more methodology. 

1.2. Seasonal variation 

Many time series contain seasonal variation: a periodic or nearly periodic 
component. One example, shown in the top panel of Fig. 1, is monthly 
concentrations of atmospheric CO2 in Mauna Loa, Hawaii from January 1960 
to December 1978. The acquisition, calibration, and selected properties of the 
data are described by Keeling et al. (1976a,b). The yearly seasonal component 
is caused by vegetation in the Northern Hemisphere; plants take in CO2 during 
the growing season and then release it in the late summer and fall. 

A second example of a seasonal series, shown in the top panel of Fig. 2, is 
the number of telephones installed by the Bell System each month from 
January 1962 to December 1978. The seasonal variation in the installations 
series is in large part a result of the seasonal variation in household moves. The 
values plotted are the logarithms of the aggregated series corrected for month 
length: 

aggregated series for month m 
Value for month m = logo 30.4375 number of days in month m ] '  

where 30.4375 = 365.25/12 is the average month length. 
The term seasonal is used since in most applications of seasonal adjustment 

the fundamental frequency of the component is one cycle/year, but the 
methodology does not in principle depend on the frequency; thus we could 
equally well deal with a daily series with a weekly periodic component. But we 
will suppose in this account that the series is monthly and has a yearly seasonal 
component, partly because it will make terminology simpler and partly because 
many computer implementations of seasonal adjustment procedures are prin- 
cipally for this case. 

1.3. Describing or removing seasonal variation: Decomposition 
into trend, seasonal, and irregular 

With a seasonal series there is often one of two goals: 
• Describe the seasonal component in order to understand its behavior 
• Remove the seasonal component since its variation obscures other im- 

portant variation. 
(Of course, in some applications we want to ao both; that is, describe the 
seasonal component for understanding and then remove it to see the behavior 
of other components.) For example, we want to study the seasonal component 
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Fig. 1. MAUNA LOA CO2: DATA AND COMPONENTS. The average monthly concentrations 
of atmospheric CO2 in Mauna Loa, Hawaii are plotted in the top panel, and the three components 
are plotted in the other panels. The components are from a SABL decomposition with the length 
of the trend smoother equal to 75 and the length of the seasonal smoother equal to 11. The scales 
of the panels are not the same. The bars at the right portray the relative scaling by representing the 
same amount of change in each panel. The upward trend in the concentrations is the result of 
emissions from the burning of fossil fuels. The seasonal component is the result of photosynthetic 
activity .of the Earth 's  vegetation. 
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Fig. 2. TELEPHONE INSTALLATIONS: D A T A  AND COMPONENTS. The natural logarithms 
of month-length corrected Bell System telephone installations are plotted in the top panel, and the 
four components are plotted in the other panels. For this example the SABL decomposition was 
run with the length of the trend smoother equal to 15 and the length of the seasonal smoother 
equal to 11. The seasonal and calendar components account for a substantial amount of variation in 
the series. The irregular component reveals two outliers, one in 1968 and one in 1971, both of 
which are the result of strikes. 
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of C02 in order to make inferences about the mechanism causing the seasonal- 
ity. However, for the telephone installations series the main goal is to remove 
the seasonal variation in order to get a sense of the overall growth in installations. 

The second of the two goals, removing the seasonal component, is referred 
to as seasonal adjustment. But the methodology for removing the seasonal 
component involves first describing it, so the methodologie.s for the two goals 
are identical. In both cases the series is decomposed into~omponents: 

• Trend component---describes" the long-term change in the level of the 
series 

• Seasonal component---describes the variation in the data that repeats itself 
or nearly repeats itself every 12 months; this pattern can be exactly 
periodic, that is, exactly repeat itself, or it can slowly evolve through time 

• Irregular component---describes the remaining variation. 
As we shall see shortly, a calendar component is added to the decomposition 
when calendar effects are present. 

1.47 Decomposition of the C02 series 

The lower three panels of Fig. 1 show a decomposition of the CO2 series into 
trend, seasonal, and irregular that is additive. If x(m) is the CO2 concentration 
for month m, then 

x(m) = t(m)+ s(m)+ i(m). (1.1) 

The procedure used to carry out the decomposition is SABL (W. S. Cleveland, 
Devlin and Terpenning, 1982. N.B. There are references to W. S. Cleveland 
and W. P. Cleveland; initials will be used in all cases in order to differentiate). 
SABL will be described, together with other procedures, in Section 2. The 
increase in the level of the CO2 series, which is described by the trend 
component, has received great publicity because of predictions that further 
increases in CO2 may have the potential to produce changes in global climate 
(Hansen et al., 1981; Kukla and Gavin, 1981). 

A careful look also shows that the seasonal component of the CO2 series 
reveals a consistent pattern through time (W. S. Cleveland, Freeny and 
Graedel, 1982). Fig. 3 is a monthly subseries plot of the seasonal component. 
First the January values of the seasonal are plotted for successive years, then 
the February values, and so forth. For each monthly subseries the midmean of 
the values (the average of all values between the quartiles) is portrayed by a 
horizontal line. The individual values of the subseries are portrayed by vertical 
lines emanating from the midmean line. The seasonal subseries plot allows an 
assessment of the overall pattern of the seasonal component (as portrayed by 
the horizontal midmean lines) and also of the behavior of each monthly 
subseries. Since all of the values are on the plot we can see whether the change 
in any subseries is large or small compared with the overall pattern of the 
seasonal component. 
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Fig. 3. MAUNA LOA CO2: SEASONAL SUBSERIES. The seasonal component for Manna Loa 
from the third panel of Fig. 1 is plotted. For each monthly subseries of the seasonal component--  
for example, the January values---the midmean of the values is portrayed by a horizontal line; the 
values of the subseries are portrayed by the vertical lines emanating from the midmean line. The 
overall seasonal pattern, with a May maximum and an October minimum, is attributed mainly to 
photosynthesis by the Earth's vegetation. The consistent changes in the seasonal subseries might be 
due to increasing global photosynthetic activity. 
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The seasonal subseries plot for Manna Loa contains two features of sub- 
stantial interest. The first is the overall seasonal pattern, with a May maximum 
and an October minimum. This pattern has long been recognized (e.g. Keeling 
et al., 1976a), and is attributed mainly to photosynthesis by the Earth's 
vegetation, particularly the forests (e.g. Lieth, 1963; Woodwell, 1978). 
However, ocean and altitude effects are also present (Fraser, Hys0n and 
Pearman, 1981). The second feature is the patterns in the monthly subseries. 
The values for the months November to May--the time of year when the CO2 
yearly cycle is rising--are stable or increasing from year to year. The biggest 
year-to-year decreases occur during the months September and October. 

A seasonal subseries plot for CO2 measurements at the South Pole shows a 
very similar pattern except that, since the South Pole is within the Southern 
Hemisphere, the effects are shifted by about six months. The changes in the 
monthly series through time at Mauna Loa and the South Pole are most likely 
due to changes in global photosynthetic activity due to the increasing level of 
CO2 concentrations, but changes in the pattern of fossil fuel use or changes in 
ocean temperatures cannot be ruled out, at this time, as causes (W. S. 
Cleveland, Freeny and Graedel, 1982). 

1.5. Calendar variation 

Many monthly time series that represent a total of some variable for each 
month contain variation as a result of a weekly cycle in the daily data. One 
example is the installations series. The number of installations on a particular 
day depends on the day of the week and whether the day is a holiday; on 
Sundays and many holidays, for example, there are no installations. Thus the 
monthly installations series will have variation due to the changing fraction of 
each day of the week in the months and variation due to the changing fraction 
of holidays. This is referred to as calendar variation. 

As with seasonal variation we are often not interested in the calendar 
variation since it obscures the important movement in the series; for example, 
for the installations series we would not want to misinterpret a decrease due to 
a larger than average number of Sundays and holidays in a particular month as 
a decrease in the demand for telephones. Removal of the calendar variation 
from the series is referred to as calendar adjustment. And as with seasonal 
adjustment, calendar adjustment is carried out by first describing the calendar 
component and then subtracting it from the series. 

1.6. Decomposition of the telephone installations series 

Fig. 2 shows a decomposition of the telephone installations series into trend, 
seasonal, calendar, and irregular components, and Fig. 4 is a monthly subseries 
plot of the seasonal component. If x(m) is the natural logarithm of the monthly 
installations divided by month length and multiplied by 30.4375, then 

x(m) = t(m)+ s(m)+ c(m)+ i(m). 
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Fig. 4. TELEPHONE INSTALLATIONS: SEASONAL SUBSERIES. The seasonal component 
for telephone installations from the fourth panel of Fig. 2 is plotted. The dashed vertical lines are 
the predicted values for one year beyond the end of the series. The overall pattern of the seasonal 
is one in which September is the highest month; this is caused by the large number of household 
moves that occur in September. The monthly subseries are nearly stable in the sense that the 
changes in the subseries are small compared with the changes from month to month in the 
midmeans. 
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The decomposition procedure in this case is SABL (W. S. Cleveland, Devlin 
and Terpenning, 1982), which will be described in the next section. It is clear 
that the seasonal and calendar components account for a large fraction of th~ 
variation in the series. 

1.7. Decomposition magnifies subtle effects 

If we look very carefully at the top panel of the telephone installations series 
we can see two somewhat unusual points. One, toward the beginning of 1968, is 
a somewhat unusually low value compared with installations at the same time 
of year in other years. A second, in the middle of 1971, is a trough between the 
double peaks, lower than in other years. Both of these effects do not stand out 
in an obtrusive way because their magnitude is not large compared with the 
total variation in the series. But in the irregular component, the variation after 
the trend and seasonal variation are removed, the two effects appear as two 
very prominently low values; they were both caused by strikes, which sub- 
stantially reduced the number of installations during the months in which they 
occurred. 

For the CO2 series, after decomposing and plotting we found a subtle effect 
in the seasonal--an increasing amplitude. The plot of the data in the top panel 
of Fig. 1 does not provide any suggestion of this effect. In fact, even knowing 
that the effect occurs, it would be quite difficult to measure it just from the data 
itself without a decomposition. Again, the reason why the decomp6sition has 
helped is that the effect is subtle compared with the overall variation in the 
data. 

2. Methods for seasonal adjustment 

2.1. X-l l  

The traditional seasonal adjustment package is X-11, which is widely used 
throughout the world. The initial development of the X-11 procedures beganin 
the 1950s (Shiskin, 1955); they evolved through time and culminated in the 
current version (Shiskin, Young and Musgrave, 1967). The computer im- 
plementation of the first versions of X- l l  was one of the first uses of the 
electronic computer to carry out complex statistical procedures. While it will be 
argued shortly that substantial improvements in X- l l  methodology are not 
possible, one cannot argue that X- l l  has not been a reliable performer over the 
years. Criticisms of X- l l  have come (Nerlove, 1965) and gone (Grether and 
Nerlove, 1970). 

Part of the X- l l  reliability undoubtedly stems from the fact that the 
designers started with the data, knew the intricacies of the data, and built the 
procedures to realistically face the data. Robust estimation is one example. The 
X- l l  designers were aware that real time series in need of adjustment contain 
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outliers and that, unless special procedures are used to deal with these outliers, 
they will frequently distort seasonal adjustments. Robust estimation is now a 
popular topic after nearly two decades of research (e.g. Huber, 1964; Andrews 
et al., 1972; Hampel, 1974; Mosteller and Tukey, 1977; Mallows, 1980). Today 
we can substantially improve on the X-11 robustness procedures, but we should 
remember that the X-11 designers developed and implemented automated 
methods of robust estimation long before the subject became popular. 

X-11 carries out the decomposition into trend, seasonal, and irregular by 
applying a series of weighted moving averages, which we shall refer to as 
smoothers or filters. The smoothers are designed to accommodate series that 
have persistent trends such as those in the CO2 and installations series. The 
characteristics of the smoothers can be varied somewhat in order to vary the 
smoothness of the trend and seasonal components. Young (1968) describes 
linear approximations to these filters. 

X-11 has an additive version and a multiplicative version. In the first, the 
decomposition is additive as in (1.1) and the seasonal and irregular components 
both vary around 0. In the second, the decomposition is 

x ( m )  = t ( m ) s ( m ) i ( m )  

and the seasonal and irregular components vary around 1 (or 100 depending on 
how the output is scaled). 

The basic design of the X-11 procedures in the multiplicative version goes 
back to Macaulay (1931, Appendix I). The procedure suggested by Macaulay 
for a monthly series of call money rates is the following: 

(1) Apply a 43-term weighted moving average to the data to get an estimate 
of the trend. 

(2) Divide the result of (1) into the data. 
(3) Smooth each monthly subseries of (2) by a moving trimmed mean of 

length 9; each trimmed mean is computed by dropping the smallest and largest 
values and averaging the remaining. 

It is quite interesting that the result of (3), which is the seasonal component, 
utilizes a robust smoother--a moving trimmed mean. But it was not until the 
book of Tukey (1977), where moving medians are used, that robust smoothing 
became a widely used tool for data analysis. 

The X-11 procedures achieve a degree of robustness by iteration: 
(1) Initial trend and seasonal components are computed. 
(2) An irregular component is computed by subtracting (in the additive 

version) the trend and seasonal components from the data. 
(3) The data are altered on the basis of the irregular; if the irregular is very 

large at a particular time point, the observation at that time is replaced by a 
linear combination of other observations. 

(4) Step (1) is repeated with the altered data. 
(5) Steps (2) to (4) are repeated several times. 
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2.2. DeForest extension 

Filtering methods for seasonal adjustment, such as X-11, apply a series of 
symmetric weighted moving averages, or symmetric filters. If the filter length is 
2k + 1 and the values being smoothed are v (1 ) , . . . ,  v(n), then the smoothed 
values for m = k + 1 , . . . ,  n - k are 

k 

E °Lsv(m +J) 
j=-k 

where the filter coefficients are symmetric: aj = a_ s. The problem is to extend 
the smoothed values to the ends, that is, to compute smoothed values for 
m = l  . . . . .  k a n d m = n - k  + l , . . . , n .  

DeForest (1877) suggested a method for extending a symmetric filter to the 
ends of a series: forecast the series both forward and backward and apply the 
filter to a new series consisting of the old series together with the forecasts 
appended fore and aft. The forecasts need to extend k time units beyond the 
ends of a filter of length 2k + 1. Greville (1979) gives a thorough discussion of 
DeForest's method and other methods for taking a filter to the ends. For 
seasonal adjustment this idea has been utilized by Dagum (1978) and by 
Kenney and Durbin (1982). In the first reference, forecasting is carried out by 
fitting ARIMA (autoregressive integrated moving average) time-series models 
to the data; in the second reference, autoregressive models are fit with the lags 
selected bY stepwise autoregression. The x-11 trend and seasonal filters are 
symmetric ~/t time points sufficiently far from the ends and become more and 
more asymmetric near the ends (as they must, of course). The reason for 
appending forecasts and then applying X-11 is to improve the performance of 
the seasonal adjustments at the ends of the series. This idea is discussed further 
in Section 2.5. 

2.3. ARIMA modeling of data and seasonal components 

One approach to decomposition that recently has received much attention is 
to model the data and each of the three components by time-series models and 
then use signal extraction techniques to estimate the trend and the seasonal 
component s. The first papers using this approach appear to have been (Couts, 
Grether and Nerlove, 1966) and (Grether and Nerlove, 1970), in which ARIMA 
models are used; this work culminated in a book (Nerlove, Grether and 
Carvalho, 1979), several chapters of which are devoted to such modeling. The 
ARIMA approach has been investigated and further developed in a more 
recent series of papers: (Brewer, Kagan and Perazzeli, 1975), (Box, Hillmer 
and Tiao, 1978), (Pierce, 1978), (Burman, 1980), (Hillmer and Tiao, 1982), and 
(Hillmer, Bell and Tiao, 1982). A similar approach has been taken by Abra- 
hams and Dempster (1979) who fit FRIMA (fractional integrated moving 
average) models to the data. 

To illustrate the methodology we will consider the work of HiUmer and Tiao 
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(1982). Here the data x(m)  are assumed to be an additive decomposition into 
trend, seasonal, and irregular: 

x(m)  = t(m)+ s(m)+ i(m) 

where the data and all compOnents follow Gaussian ARIMA models, but  with 
certain constraints. For .~xample, the seasonal component is assumed to obey 
an ARIMA model ,of~the form 

(1 + B + . . "  + Bn)s (m)  = O(B)b(m) 

where B is the backward shift operator defined by Bs(m) = s(m - 1), O(B) is a 
polynomial of degree no more than 11, and b(m) is white noise. These constraints 
on s (m) imply certain constraints on x (m); if the identified model for x (m) did not 
sausfy these constraints, the seasonal component could not then be sPecified in 
this way, but in fact the constraints on x(m)  are very reasonable for the data to 
which seasonal adjustment methods are usually applied. Having identified a 
model for x(m)  that is consistent with the seasonal model, 0(13) is derived, and 
s (m) is estimated by using signal extraction techniques. Thus these models lead to 
filters for the trend and seasonal components and to sampling distributions for the 
components, conditional on the model being correct, of course. 

2.4. SABL: Another filtering approach 

The starting point in the development of the SABL seasonal adjustment 
procedures (W. S. Cleveland, Devlin and Terpenning, 1982) was methodology 
that already existed in statistics--methodology that was a part of the seasonal 
adjustment domain and methodology that was brought to this domain from 
other areas Of statistics. The chief sources were the following: 

• The  X-11 seasonal adjustment procedures 
• Methods of robust estimation developed during the past 15 years for 

domains other than seasonal adjustment 
• The work of John W. Tukey on nonadditivity in two-way tables, power 

transformations, and smoothing 
• New de~velopments in statistical graphics. 
The SABL decomposition procedure has employed many of the smoothing 

ideas in X-11: 
• Forming successive estimates of trend and seasonal components by esti- 

mating one, subtracting it out, and then estimating the other 
• Smoothing each monthly subseries separately to estimate the seasonal 

component 
• Applying a trend component smoother to the seasonal component and 

subtracting the result to center the seasonal component at zero. 
But the actual smoothers used in SABL are quite different from those in X-11. 
For example, the SABL smoothers reproduce linear effects, either in the trend 
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component or in a monthly subseries of the seasonal component. X-11, on the 
other hand, underestimates the magnitude of the slope of a linear effect at the 
beginning and end. 

SABL takes advantage of the recent revolution in computer graphics to 
produce eight graphical displays that are powerful tools for judging the 
adequacy of the adjustment of a series and for understanding the behavior of 
the trend, seasonal, calendar, and irregular components (W. S. Cleveland and 
Devlin, 1980; W. S. Cleveland and Terpenning, 1982). The importance of 
graphics for seasonal and calendar adjustment will be discussed in more detail 
in Section 4. All of the displays in this chapter were generated by the SABL 
package. 

In X-11 there is a set of procedures that carries out a purely additive 
decomposition and another set of procedures that carries out a purely multi- 
plicative decomposition. In SABL these possibilities are expanded by using 
power transformations just as they are used in other areas of statistics (Box and 
Cox, 1974; Tukey, 1957). The class of power transformations is defined by 

x p i f p > 0 ,  
X00 = log~ x if p = 0, 

- x  p if p < 0. 

In SABL a value of p is selected and x~(m) is additively decomposed. If p = 1 
the decomposition of the original series, x(m), is purely additive and if p = 0 
the decomposition of x(m) is purely multiplicative. In effect, the use of a power 
transformation makes the decomposition on the transformed scale additive and 
thereby removes the interaction between the trend and seasonal components. 
The motivation for using a power transformation to remove a trend-seasonal 
interaction came from work on removable nonadditivity in two-way tables 
(Tukey, 1949). 

The idea that outliers can have disastrous effects on statistical procedures 
unless care is taken seems to have been clearly articulated throughout the 
history of the development of statistical methodology. One striking statement 
of this for economics can be found in Kuznets (1933). Robust methods of 
estimation have undergone substantial development during the past 15 years 
through the use of statistical theory (e.g. Huber, 1964; Hampel, 1974), through 
extensive Monte Carlo experimentation (e.g. Andrews et al., 1972), and 
through applications (e.g. Mallows, 1980) to attain procedures which are nearly 
efficient over a wide range of conditions and which are not distorted by 
outliers. One high performance procedure is M-estimation (Huber, 1964). In 
SABL, M-estimation is tailored to the trend-seasonal-irregular decomposition 
and to the power transformation selection. In the decomposition, preliminary 
estimates are computed and then iterations are carried out in which the 
irregular is used to determine weights for the next step. This is analogous to the 
use of iterated weighted least squares (Andrews, 1971) in location estimation 
and regression. 
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2.5. Filtering with DeForest extension and A R I M A  methods 
are much more similar than it might seem 

A R I M A  and filtering methods, provided the filter is applied to the series 
extended fore and aft by forecasts based on a model for the series, are not 
substantially ditterent. 

To see why this is so we first need to describe a fact about optimal 
forecasting and signal extraction, which we shall refer to collectively as pro- 
jection. Suppose that 

x(m) = t(m)+ s(m)+ i(m), 

where the probabilistic mechanism for the stochastic behavior of the com- 
ponents is known, and that all series are Gaussian with finite variances so that 
mean square error projection is optimal projection. Let x(1) . . . . .  x(n) be a 
finite stretch of the data. Let x*(m), - ~ <  m <oo, be a series that is x(m) for 
m = 1 , . . . ,  n, and for m not in this set, is equal to the optimal projection of 
x(m) on x(1) . . . .  , x(n). Now suppose the optimal projection (extraction) of 
s(v) on all x(m), - o o < m  <oo, is 

~_~,~(v) = ~ ~jx(v + ]) 
j= - o o  

then the optimal extraction of s(v) from x(1) . . . . .  x(n) is 

gl,n(v)= ~ ajx*(v+j) .  (2.1) 
j=-oo 

Equation (2.1) is often attributed to W. P. Cleveland (1972) but it is actually 
a special case of a simple fact about geometry. If $1 and $2 are two subspaces 
with $1 C $2 and P1 and P2 are projection operators onto $1 and $2 then 

PlY = P1P2Y. 

That is, to project o n  Sl we can project onto $2 first and then project the result 
onto Sl. To see this note that 

Y = P2Y + 02 

where 02 is in the orthogonal complement of S2 and therefore in the orthogonal 
complement of Sl. Then 

P1P2Y = PI(Y - 02) = PlY - Plo2 = Ply.  

Equation (2.1) is now clearly true if we take 81 to be the space spanned by 
x ( 1 ) , . . . ,  x(n) and 82 to be the space spanned by x(m), -oo< m <~.  
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This fact about signal extraction and forecasting is helpful for several 
reasons. First, it gives a convenient method for computing extractions based on 
a finite amount of data since formulas for forward and backward prediction and 
extraction from the infinite x(m) series are typically simple. (We cannot, of 
course, actually use all of the aj, but rather just a very large finite number.) 
Second, we can easily see that in principle (practical considerations aside) 
seasonal adjustment by ARIMA modeling and signal extraction is the same as 
seasonal adjustment by filtering and DeForest extension. (For simplicity we 
shall assume x(m) is stationary, but the argument does not depend on this.) 
The seasonal filters of X-11 and SABL for values of the series not too close to 
the ends are symmetric in x(m); let us write any such seasonal filter as 

fljx(m + j) (2.2) 
j=-tJ 

where/3j =/3_j. Now suppose the spectrum of x(m) is S=(f). Then the spectrum 
of the estimated seasonal is 

I ~v e 2~j-¢ 2 f3j S=tf). 
j = -  

The spectrum of an optimally extracted s(m) (based on x(m) for -oo < m < oo) 
is 

s=tf)'  

where S~(f) is the spectrum of s(m). Thus if seasonal adjustment is carried out 
using DeFOrest extension and applying the seasonal filter (2.2), the procedure 
can be thought of as optimal extraction when the seasonal is taken to be a 
process whose spectrum is of the form 

I.~-~ flj e 2'nit S=(f). 
J=-tJ 

All of this provides a powerful argument for adding DeForest extension to 
current filtering methods such as X-11 (Dagum, 1978; Kenney and Durbin, 
1982) and SABL. It also shows that choosing between filtering and component 
ARIMA modeling methods is largely one of practicality. Is it easier to specify 
the extraction filter directly and thereby specify a model for the component, or 
is it easier to specify the component and derive the filter? This is likely to be a 
personal choice based on the user's background and experience. It should be 
appreciated that in neither case will one be led to a unique answer. Without 
more criteria, the choice of the seasonal must in part be subjective; and an 
arbitrary fixed choice does not remove the subjectivity. In Section 4 we shall 
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discuss graphs and a soft criterion that give some assistance in judging the 
adequacy of the estimated seasonal component.  

The author's preference is to choose the filter directly and thereby not go 
through the trouble of specifying a model for the seasonal and deriving the 
filter. This allows direct control of the amount of smoothness in the monthly 
subseries of the seasonal component ,  which can then be judged by the 
graphical displays described in Section 4. No implementation of the A R I M A  
component  modeling approach yet allows such a direct control over smooth- 
ness, although that does not mean such an approach does not exist. 

2.6. In the footsteps of Whittaker and Henderson: Seasonal 
adjustment by criterion optimization 

In the 1920s Whittaker (1923) and Henderson (1924) independently sug- 
gested a method for smoothing a time series (or any sequence of numbers), 
x(m). The method is to take the smoothed values to be the numbers, t(m), that 
minimize the expression 

a ~(Aat(m))  2 + ~ (x(m)-  t(m)) 2 (2.3) 
r n  m 

where a is a positive parameter  and A is the difference operator  

At(m) = t (m)-  t(m - 1). 

The sum of squares of the third differences of t(m) in (2.3) is a measure of the 
smoothness of t(m); a smaller sum means a smoother function. The sum of 
squares of deviations of t(m) from x(m) measures how well the smoothed 
values fit the data. As a increases, t(m) becomes smoother,  so a serves, in 
effect, as a smoothness parameter.  

This idea was first generalized to trend-seasonal-irregular decompositions by 
Leser (1963), simply by adding a stable seasonal component  in the minimiza- 
tion. That is, we now find the t(1) . . . . .  t(n) and the s(1) . . . . .  s(n) that 
minimize 

a ~'~ (A2t(m))2 + ~ (x(m)-  t (m)-  s(m)) 2 , 
m m 

where s(m) is exactly periodic with period 12. Note that second differences are 
used rather than third differences to measure smoothness. 

A method by which the Whit taker-Henderson criterion can be generalized 
to trend-seasonal-irregular decomposition and allow for an evolving seasonal is 
the following: choose s(m) and t(m) to minimize 

a ~'.(A2t(m))Z+ ~ ~_. (s(m)-  s(m - 12)) 2 
m ?tl 

+ Y ~'~ (s(m)+ s ( m -  1 ) + . . . +  s ( m -  11)) 2 
m 

+ E (x(m)-  t (m)-  s(m)) 2 (2.4) 
m 
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where a, /3 and y are positive parameters. The first term, as before, is a 
measure of smoothness of the trend. The second term is a measure of 
smoothness of each monthly subseries of the seasonal and is therefore a 
measure of stability of the seasonal; as the measure decreases the subseries 
becomes smoother so that the seasonal becomes more nearly stable. The third 
term, which tends to keep the overall level of the seasonal from wandering too 
far from zero, is the sum of squares of a moving average of s(m) of length 12. 

Interestingly, the generalization in (2.4) of the Whittaker-Henderson method 
appears to have arisen independently in both Akaike (1980) and Schlicht~ 
(1981). The minimization in (2.4) can in fact be carried out relatively quickly, 
since it involves inverting matrices with simple structure. Akaike adds~,t0 this 
approach an assumption of Gaussian processes and, using what he calls a 
Bayesian information criterion, is able to specify values for a, /3 and y. The 
Akaike procedure has been further developed by Kitagawa and Gersch (1982). 

2.7. Other methods 

Quite a few other methods of seasonal adjustment have been suggested, 
investigated, and put into use in certain areas (Joy and Thomas, 1928; Kuznets, 
1932; Wald, 1936, Menderhausen, 1937; Lovell, 1963; Burman, 1965; Nullau et 
al., 1969; Hannan, Terrell and Tuckwell, 1970; Stephenson and Farr, 1972; 
Haan, 1974; Durbin and Murphy, 1975; Havenner and Swamy, 1981; Raveh, 
1982). This is not the place for a full discussion of all of them but the interested 
reader can consult Kuiper (1978) for a discussion and comparison of methods in 
use by statistical agencies in countries in North America and Europe. 

3. Calendar adjustment 

Recall that calendar adjustment is appropriate for aggregated monthly data 
when there is a weekly cycle in the aggregated daily data, as there often is. Let 
X(D) be the aggregated daily series for the Dth day. Then the aggregated 
monthly series for the m th month is 

X(D), 
m 

where Em means the sum over all days in month m. In this section we shall 
hypothesize a model for X(D) and then derive the properties of the aggregated 
monthly series. The approach is that of W. S. Cleveland and Devlin (1982). 

2.1. The daily model 

We shall suppose that the aggregated daily data has four additive com- 
ponents, 
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X(D) = T(D)+ S(D)+ C(D)+ I(D). (3.1) 

T(D) is the trend component in the daily series; S(D) is the seasonal 
component with a period of one year; I(D) is the irregular component; and 
C(D) accounts for a day-of-the-week effect (i.e. a weekly cycle) in the series: 

C(D) = ak, 

if D is the kth day of the week, where 

7 

E ~ k = 0 .  

k = l  

Modifications of this model to account for the effect of holidays will be given 
later. 

3.2. The monthly model 

A lower case letter will be used to denote a month-length corrected value of 
an aggregated monthly series. Thus 

30.4375 Z. X(D) 
x(m)-  number of days in month m 

and t(m), s(m), c(m), and i(m) are similarly defined. Finally we will let dk(m) 
be the fraction of times the kth day of the week occurs in month m multiplied 
by 30.4375. 

Summing both sides of (3.1), dividing each side by the number of days in 
month m, and multiplying by 30.4375 gives 

where 
x(m) = t(m)+ s(m)+ c(m)+ i(m), 

7 

c(m) =  kdk(m). 
k = l  

(3.2) 

3.3. Holidays 

To take account of holidays we need to modify the model in (3.1) in the 
following way: 

X(D) = T(D) + S(D) q- C(D) + I(D) + H(D) (3.3) 

where C(D) is now modified to be 0 if D is a holiday, where H(D) is flj when 
D is the day of the jth holiday of the year, and where H(D) is 0 otherwise. 



Seasonal and calendar adjustment 57 

Model (3.3) assumes that the holiday effects are additive and that the effect 
of each holiday is the same from year to year and does not change, for 
example, if there is a changing day of the week on which the holiday occurs. 

Suppose the j th  holiday always occurs within the same month, then it is clear 
that the holiday's effect is a purely seasonal one and can therefore be included 
as part of the seasonal component .  In the U.S. the only holiday of any 
consequence that changes months is Easter. Thus we will redefine the S(D) 
and H(D) components  so that  S(D) includes all holiday effects except Easter  
and H(D) describes Easter. 

Suppose the j th  holiday always occurs on the same day of the week and 
within the same month. Let  D be a day on which the j th  holiday occurs and 
suppose it is the kth day of the week. Then we can alter C(D) by changing it 
from 0 to ak, and we can alter S(D) by changing it from S(D) to S(D) - ak ; eq. 
(3.3) still holds and our  new S(D) is still legitimately a seasonal component  
since the value of O~k subtracted is the same each year. Of course, this same 
change cannot be done for a holiday that occurs on different days of the week 
from one year to the next (such as Christmas and January 1), since then the OLk 
subtracted would be different  from one year to the next. 

When we aggregate (3.3) over months and divide by month-length w e  now 
get 

x(rn) = t(m)+ s(m)+ c(m)+ i(m)+ h(m) (3.4) 

where c(m) is defined as in (3.2), but dk(m)/30.4375 now equals the fraction of 
times the kth day of the week occurs in the mth month minus the fraction of 
days on which the kth day of the week is a holiday that does not occur within 
the same month and on the same day of the week. Let  y be the Easter effect, 
then h(m) is y if Easter  occurs in the mth month and is 0 otherwise; thus if 
Easter  is likely to have an effect very different from that of other  Sundays, its 
effect can be included in the calendar model as a dummy variable with y as its 
coefficient, and Easter  should not be counted in dk (m) for S u n d ay .  

In the remainder  of the chapter we shall suppose that the occurrence of 
Easter  has a negligible effect on the series and will not consider it in our 
modeling. The moving holidays used in computing dk(m) will be New Year 's  
Day, Memorial  Day, July 4, and Christmas. 

3.4. Calendar adjustment with SABL 

The model just derived for the calendar component  can be fit to the 
d a t a  by regression techniques and trend-seasonal-irregular decomposition 
methodology. In this section we will use the SABL decomposition procedures 
and illustrate the fitting with the installations series, which has a substantial 
calendar effect. First, we have chosen to work with the logarithms of the 
month-length corrected aggregated series since the logs stabilize the seasonal 
oscillations; it turns out that if x(m) has been transformed by a power 
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transformation, then it is still appropriate to use the model in (3.4) for the 
calendar effects (W. S. Cleveland and Devlin, 1982). 

In SABL the first step in fitting the calendar effects is to decompose the 
transformed series into trend plus seasonal plus irregular. The calendar varia- 
tion is in the irregular, so the ak can be estimated by robustly regressing the 
irregular on the seven calendar explanatory variables, dk(m), but not before 
the calendar variables are altered somewhat by a procedure called matched 
processing that takes account of the fact that it is processed data and not x(m) 
that is used in the regression. 

When this procedure is applied to the telephone installations data the 
estimates of the coefficients are 

Mon ~1 = 0.04, 
Tue &2 = 0.14, 
Wed &3 = 0.13, 
Thur &4 = 0.04, 
Fri &5 = 0.04, 
Sat &6 = -0.17, 
Sun &7 = -0.22. 

The coefficients are low on Saturdays and Sundays, reflecting a small number 
of installations on these days; in addition, the numbers are greater on the 
midweek days Tuesday and Wednesday than on the other weekdays. When the 
calendar coefficients have been estimated, the calendar component can be 
estimated by 

7 
c(m) = ~ &kdk(m). 

k=l 

Now the decomposition procedure is again run, but this time on x(m)-  c(m), 
to yield final trend, seasonal, and irregular components. 

Fig. 2 shows the decomposition of the installations series. Note that the x(m) 
in the top panel, which is the series that is decomposed, is the logarithms of the 
month-length corrected data: 

• r30.4375 (installations for month 
loge[ number of days in month m m ) j .  

] 
x ( / 'n )  

3.5. Calendar adjustment with X-11 

The X-11 calendar adjustment procedure is similar to the procedure just 
described for SABL. The irregular from an initial decomposition is regressed 
on seven calendar variables similar to those in Section 3.4; in X-11 there is no 
division by month length in the additive version, no correction of the calendar 
variables for holidays, and no matched processing. The methodology in X-11 is 
based on the work of Young (1965). 
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3.6. Calendar adjustment with ARIMA modeling 

Calendar adjustment can be introduced into A R I M A  modeling procedures 
by taking x(m)--ETk=lt~kdk(m) to be an A R I M A  model and using the tech- 
niques of Section 2.3. This approach has been followed by Bell and Hillmer 
(1982); HiUmer, Bell and Tiao (1982); and W. P. Cleveland and Grupe (1982). 

As an example let us consider the analysis of U.S. hardware sales data from 
January 1967 to November 1979 carried out by HiUmer, Bell and Tiao (1982). 
The log series, x(m), is modeled by 

(1 - B)(1 - B'2)(x(m) - c(m)) = (1 - 01B)(I - -  O12B12)at. 

The definition of c(m) is similar to that in (3.2) but there is no correction for 
holidays and no division by month length, just as in X-11. The estimates of the 
model parameters are 

61 = 0 . 2 2 ,  

612 = 0.75, 
Mon &l = 0.001, 
Tue &2 = 0.013, 
Wed &3 = 0.004, 
Thur &4 = 0.011, 
Fri t~5 = 0.001, 
Sat &6 = -0.015, 
Sun &7 = -0.015. 

Then the A R I M A  decomposition procedure of Section 2.3 is applied to the 
data minus the estimated calendar component. The data and the four com- 
ponents from this decomposition are shown in Fig. 5. 

3.7. Calendar adjustment with criterion optimization 

A calendar component can be added in a straightforward way to the 
generalization of the Whit taker-Henderson method described in Section 2.6. 
Thus the changed optimization would be to find t(m), s(m), and a l  . . . . .  or7 that 
minimize 

a ~'~(A2t(m))2 + fl ~ (s(m)- s(m - 12)y 
m rtl 

+ 7 ~'~ (s(m)+ s ( m -  1 ) + . . .  + s ( m -  11)) 2 
m 

+ E (x(m)-  t (m)-  s (m)-  c(m)) 2 
m 

where c(m) is defined as in (3.2). A similar approach has been investigated by 
Ishiguro and Akaike (1981). 
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Fig. 5. HARDWARE SALES: DATA AND COMPONENTS. The top panel is the natural 
logarithms of monthly U.S. hardware sales (with no month-length correction). The other panels 
show the four components resulting from the Hillmer-Bell-Tiao ARIMA modeling. 

4. Graphics for seasonal and calendar adjustment 

Whatever  method of decomposit ion and calendar estimation is used we need 
methods  for assessing the performance  of the procedures.  Graphs  can provide 
powerful  tools for doing this. A full discussion of graphical methodology for 
calendar and seasonal adjustment  is given by W. S. Cleveland and Devlin 
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(1980) and W. S. Cleveland and Terpenning (1982). Here we will be content to 
show a few examples. 

We have already seen two kinds of displays: the data and components plot 
(Figs. 1, 2 and 5) and the seasonal subseries plot (Figs. 3 and 4). The first 
provides a useful first look at the decomposition. The panels have been 
arranged in a vertical array so that time is a common horizontal axis, which 
allows the viewer to easily study the variation of all components over the same 
intervals of time. The seasonal subseries plot allows an assessment of the 
overall pattern of the seasonal as portrayed by the horizontal midmean lines 
and also of the behavior of each monthly subseries. 

Another type of graph, the seasonal-irregular plot, provides an assessment of 
the adequacy of the seasonal component. It is important to keep clearly in 
mind what variation in the series is to be described by the trend component and 
by the seasonal component. The trend component is a portrayal of the 
long-term variation in the series. Thus it should appear like a smooth curve 
drawn through the entire series. The seasonal component portrays the periodic 
variation with a period of 12 time units. Each monthly subseries of s(m)---for 
example, the January values--should describe the long-term variation in the 
corresponding monthly subseries of 

x ( m ) -  t ( m ) -  c(m) = s(m)+ i(m) 

if there is a calendar component, or of 

x(m ) - t(m ) = s(m ) + i(m ) 

if there is not a calendar component. Thus each monthly subseries of s(m) 
should appear like a smooth curve drawn through the corresponding monthly 
subseries of s(m ) + i(m ). 

The seasonal smoothers in SABL and X-11 have window lengths; increasing 
the window length of a seasonal smoother increases the smoothness of each 
monthly subseries of the seasonal. For decompositions using ARIMA modeling 
the smoothness is controlled by the form of the model chosen for the seasonal 
component. For decompositions using the Whittaker-Henderson generalization 
the smoothness is controlled by the choices of o~, /3 and ~/ or by the form of 
prior distributions on the parameters. The critical point to appreciate in all of 
these methods is that the amount of smoothness is either explicitly chosen by the 
user. We need methods for assessing the adequacy of seasonal smoothing; the 
seasonal-irregular plot can help us do this. 

The seasonal subseries should be as smooth as possible subject to the 
constraint of reproducing the overall long-term pattern in the seasonal-plus- 
irregular component. This is the soft criterion referred to in Section 2.5. One 
way to judge the adequacy of the smoothing is to plot, for each month, the 
monthly subseries of the seasonal component and of the seasonal-plus-irregular 
component. This has been done in Figs. 6 to 8. The seasonal-plus-irregular 
component is plotted using the symbol 'o' at the plotting locations; the seasonal 
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Fig. 6. U.S. AGRICULTURALLY EMPLOYED MALES OVER 19: SEASONAL-IRRE- 
GULAR. The monthly subseries of the seasonal component and the seasonal component plus the 
irregular component for the cube roots of the number of agriculturally employed males over 19 in 
the U.S. are plotted. The scales on all panels are the same. The cube roots were decomposed 
using SABL with the length of the trend smoother equal to 15 and the length of the seasonal 
smoother equal to 7. Each monthly subseries of the seasonal should represent as smoothly as 
possible ttie long-term change in the monthly subseries of the seasonal plus-irregular component. But 
in this example the seasonal values follow too closely the values of the seasonal-plus-irregular and 
thus are not sufficiently smooth. 
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Fig. 7. U.S. AGRICULTURALLY EMPLOYED MALES OVER 19: SEASONAL-IRRE- 
GULAR. The details of this figure are the same as those for Fig. 6 except that in the 
decomposition the length of the seasonal smoother has been increased to 15. Now the unwanted 
variation in the seasonal subseries has been removed. 

component is plotted using a connected plot in which successive plotting 
locations are connected by straight lines; the values of the seasonal component 
predicted 12 time units beyond the end of the data are plotted by the symbol 
'+'. Sometimes, as in the July panel of Fig. 8, an '*' is used as a plotting 
character instead of 'o'; we will explain this later. 
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T o  assess the appropriateness  of  the s m o o t h i n g  w e  do not  need  any in- 
format ion  about  the overal l  l eve l  of  the values  in each panel  of a seasonal-  
irregular plot.  Thus  the m a x i m a  of the vertical  scales are not  the s a m e  for all 
panels  nor are the min ima .  H o w e v e r ,  w e  do need  to c o m p a r e  the variat ion of  
the values  in o n e  panel  with the variat ion in another  if w e  are to  c o m p a r e  the 
s m o o t h n e s s  of the seasonal  c o m p o n e n t  for different months .  T o  al low this 

Fig. 8. TELEPHONE INSTALLATIONS: SEASONAL-IRREGULAR. The monthly subseries 
of the seasonal component and the seasonal component plus the irregular component for the 
natural logarithms of telephone installations are plotted. The components are from the SABL 
decomposition shown in Fig. 2. For June and September the seasonal does not adequately describe 
the effect in the seasonal-plus-irregular component. 
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comparison the scales on the panels are the same in the sense that one cm 
represents the same number of units on each panel. 

The values plotted in Fig. 6 are from the decomposition of the cube roots of 
agriculturally employed males over 19 in the U.S. from January 1950 to 
December 1976. The SABL procedure has been used with the length, 
NSEASONAL, of the seasonal smoother equal to 7. The overall impression 
from this figure is that the seasonal is not sufficiently smooth. The seasonal 
component values for many of the months follow too closely the values of the 
seasonal-plus-irregular component. To increase the smoothness of the seasonal 
component the decomposition was run again with NSEASONAL = 15. The 
results are shown in Fig. 7; the unwanted variation in the seasonal component 
has now been removed without distorting what appear to be important patterns 
in the seasonal-plus-irregular values. 

Such distortion of patterns does occur in Fig. 8 for the telephone installations 
series. For example, for the month of June the peak in the seasonal-plus- 
irregular values is not described well by the seasonal component. One solution 
might be to reduce NSEASONAL, which is 11, but a better solution is to carry 
out the decomposition for just the last 11 years of data, 1968--1978, rather than 
the entire 17 years of data. This assumes, of course, that seasonally adjusted 
values are not needed for the years prior to i968. 

5. Spectrum analysis 

5.1. Seasonal component 

The spectrum of the seasonal component is, of course, concentrated at and 
near the seasonal frequencies 

1 1 1 1 5  1 
12' 6 '  4 '  3 '  12' 2 cycles/month. 

If the seasonal component were perfectly stable (i.e. periodic) the spectrum 
would have point masses (i.e. lines) at these frequencies. But such lines a r e  
asking too much of real-world phenomena, which cannot be expected to 
behave like perfect clocks; this is particularly true of the kinds of series--many 
of them economic series--to which seasonal adjustment techniques are applied. 

A realistic expectation for the seasonal component is that its spectrum will 
be concentrated in narrow bands around the seasonal frequencies. The more 
nearly stable the seasonal component is, the narrower the bands will be. 

An estimate of the spectrum of the irregular provides another diagnostic tool 
for assessing the adequacy of the seasonal component. Since the seasonal 
behavior should be in the seasonal component, there should not be peaks in an 
estimate of the spectrum of the irregular at the seasonal frequencies; if there 
are peaks, seasonal behavior has leaked into the irregular component. (A check 
of the spectrum of the trend might also be reasonable.) 
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We can, however, expect troughs in the spectrum of the irregular. This has, 
unfortunately, led to some confusion. Nerlove (1965) criticized X-11 adjustment 
procedures on the basis of 'overadjustment' since there were troughs in the 
estimated spectra of seasonally adjusted values; but later, Grether and Nerlove 
(1970) pointed out that troughs were a natural consequence of any sensible 
adjustment procedure. All of this was reenacted in (ZeUner, 1978); Granger 
(1978) states that the spectrum of the adjusted series should 'not have dips at 
seasonal frequencies' and both Sims and Tukey, who discuss Granger's paper, 
rebut. 

One way to see why troughs are inevitable is to think about signal extraction. 
Suppose x(m) is made up of stationary Gaussian seasonal and irregular 
components (for simplicity we will ignore the trend component), 

x (m)=  s(m)+ i(m), 

where s and i are independent series. Let S~(f) and Sii(f) be the spectrum 
densities of the seasonal and irregular components. Consider the estimation 
(extraction) of s(m) from x(v) for - o o < v < o o .  x(m)-g(m) ,  the error of 
extraction, which is also equal to ~'(m), the estimated irregular, has spectrum 
density 

&tf)+ s stf) 

Clearly, the optimally extracted irregular will tend to have troughs in its 
spectrum since Sss(f) has peaks in its spectrum. 

5.2. Calendar component 

The situation for the calendar component is not quite so simple as for the 
seasonal component. To make any headway we shall adopt the unrealistic 
assumption that the ak in (3.2) are perfectly constant through time, which will 
lead us to the unrealistic result that the spectrum of c(m) has lines at certain 
calendar frequencies; but if we keep in mind that there are likely to be changes 
in Ot k through time, perhaps even small ones, which will lead to power in bands 
about the calendar frequencies, we will still be well served by the following 
derivations, which are from (W. S. Cleveland and Devlin, 1980), despite the 
unrealistic assumption. 

We shall think of the unaggregated series as a continuous parameter time 
series X(T),  where the units of the parameter T are daysl Let To be the 
beginning of the first month and let Tm be the time at the end of the ruth 
month. Then the aggregated monthly series is 

ax(m) = X(T)  dT, 
- 1  
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for m = 1, 2 , . . . .  Let  C(T) be a weekly periodicity in X(T) O.e. C(T + 7)= 
C(T)) whose integral over a period of 7 days is 0, and suppose X(T)= 
C(T)+ R(T). Then ax(m)= ac(m)+ ar(m) where ac and ar are the aggre- 
gates of C and R, respectively. (Note that ac(m) differs from c(m) in (3.2) in 
that ac(m) does not take account of holidays and is not divided by month 
length.) 

Since C(T) is a periodic function with period equal to 7 days, we can write 

0 , 
k = l  

where Yk is the amplitude of the cosine at frequency k/7 cycles/day and ~bk is 
the phase. Thus for the aggregated calendar effects 

where 

ac(m) = ~ ykhk(m) (5.1) 
k = l  

arm 
hk(m)= f cos(2~r~+4~k) dT. 

d Tm-  1 \ 

(5.2) 

For two reasons the contributions in (5.1) for small k are the most important 
ones and those for larger k have a negligible effect. The first is that the 
spectrum of hk(m) becomes small for large k. Table 1 shows the important 
calendar frequencies for ac(m), which are defined to be frequencies at which 
the spectrum of some hk(m) is greater than 0.1. Only values of k equal to 1 or 
2 appear. The second reason is an empirical result; for most weekly patterns, 
Yk, which depends on the shape of the weekly pattern, will tend to be small 
except for small values of k. 

A heuristic explanation can be given for the importance of the calendar 
frequency 0.348 cycles/month, which has the largest spectrum value in Table 1. 
Suppose the lengths of all months were equal to the average, 

365.25 
12 days = 30.4375 days.  

Table 1 
Values of spectrum of hk(m) greater 
than 0.1 

Frequency Spectrum k 

0.220 0.151 2 
0.304 0.157 2 
0.348 2.649 1 
0.402 0.119 1 
0.432 0.473 1 
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Suppose a cosine with a period of 7 days is sampled every month. Then the 
sampled series has a frequency of 

= 30.4375/7 cycles 
7 days month -- 4.348 cycles/month 

and the alias of this frequency is 0.348 cycles/month. 
In practice the two important calendar frequencies are 0.348 cycles/month 

and 0.432 cycles/month. These are the frequencies with the two largest values 
in Table 1. 

There are two stages in the overall analysis of calendar effects in which 
spectrum estimates can be used. The first stage is one in which the techniques 
would be used to decide if calendar effects are present and are sufficiently 
important to warrant modeling and adjustment. The second stage occurs after 
an adjustment has been carried out. Here the techniques can be applied to 
check the adequacy of the adjustment by checking for the presence of remain- 
ing calendar effects in the adjusted series. Thus the use of the detection 
procedures is analogous to the use of the usual summed, lagged product 
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Fig. 9. TELEPHONE INSTALLATIONS: SPECTRUM OF THE CLIPPED IRREGULAR. An 
estimate of the spectrum of the irregular of telephone installations is plotted against frequency. The 
irregular component is from a SABL decomposition the same as that in Fig. 2, except that no 
calendar component was included in the decomposition. The dashed vertical lines show the two 
important calendar frequencies, 0.348 cycles/month and 0.432 cycles/month. Outliers in the 
irregular were first clipped to prevent the spectrum estimate from being distorted. The large peaks 
at the calendar frequencies show that there is a substantial calendar effect in the installations series. 
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estimates of autocorrelat ion in time-series modeling (Box and Jenkins, 1970). 
The autocorrelat ion function, which is relatively simple to estimate,  is used 
initially to determine if autocorrelat ion is present . - I f  so, a model  is used to 
account for it, an adjusted series (residuals) is computed , -and  the autocor- 
relation function of the adjusted series is studied to determine if there is any 
residual autocorrelation. 

The  place to look for calendar effects is in the irregular component .  This can 
be seen f rom Table  1, variat iod at the main calendar frequencies is not likely to 
be  captured by reasonable estimates of the trend and seasonal. Fig. 9 shows an 
est imate of the spectrum of the irregular component  (with outliers clipped) of 
te lephone installations with no calendar component  included in the decom- 
position; it is quite clear that a substantial calendar component  is present.  Fig. 
10 shows an estimate of the spectrum of the irregular after a calendar 
component  has been est imated and removed.  The spectrum has been sub- 
stantially reduced; the max imum value of the spectrum in Fig. 9 is about  0.04 
and in Fig. 10 is about  0.001. Fur thermore ,  it is clear that the calendar variation 
has been  satisfactorily removed since no peaks  remain at the calendar 
frequencies. 

TELEPHONE I N S T A L L A T I O N S  
TRANSFORMATION PONER 0 
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a :  . o  
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, Fig. 10. TELEPHONE INSTALLATIONS: SPEC'rRUM OF THE CLIPPED IRREGULAR. 
The details of this figure are the same as those for Fig. 9 except that a calendar component was 
included in the decomposition. The values of the spectrum are now much smaller and the peaks at 
the calendar frequencies are gone, which means the estimated calendar component has adequately 
accounted for the Calendar effects. 
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Optimal Inference in the Frequency Domain 

R o b e r t  B .  D a v i e s  

I. Introduction 

We observe n consecutive observations x 0 , . . . ,  xn-1 from a stationary r- 
dimensional Gaussian time-series. Suppose we have a model for the covariance 
structure of the process depending on a finite number of parameters 01, • • •, 0s, 
denoted collectively by 0. For  example, our series might be just a one- 
dimensional, first-order autoregressive process with unknown autoregressive 
parameter  01 and unknown residual variance 02. Or we might have a model 
especially developed for a time-series we are investigating, involving quite a 
number of unknown parameters.  We might want to estimate 0 or we might 
wish to carry out test to see, for example, if some of i tscomponents  could be zero. 

For any given values of 0 the 'likelihood' of our observations can be 
approximately expressed in terms of the periodogram (or Fourier transform) of 
the observations together with the theoretical spectrum corresponding to 0. 
Tests and estimates can be based on this approximate likelihood. Such tests 
and estimates have the advantage of often requiring less computation than 
those based directly on the exact likelihood. In addition, they can be based on 
only part of the periodogram to reduce the influence of, for example, seasonal 
cycles or slow fluctuations that are not catered for in the model we are trying to 
fit. On the other  hand, the periodgram/spectrum representation gives only an 
approximation to the likelihood and so is applicable only when n is quite large. 

The purpose of this article is to review the asymptotic optimality of various 
tests and estimators which are based on the approximate likelihood. In Section 
2 we summarize some general theory on asymptotic inference in order to put 
the various techniques into context. In particular, we look at some work of 
LeCam and see how this fits in with the more traditional likelihood theory. In 
Section 3 we apply this theory to the time-series problem. This section is based 
largely on e the work of Whittle (1953), Davies (1973), and Dunsmuir and 
Hannan (1976). Finally, in Section 4 we give a brief summary and example. 

Related topics not considered in this paper include regression analysis with 
the residual error  being from a stationary t ime-series--see Brillinger (1980) and 
Hannan,  Dunsmuir and Deistler (1980), and the handling of missing obser- 
v a t i o n s - s e e  Dunsmuir  and Robinson (1981). 

73 
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We reiterate that we will be assuming that our observations come from a 
Gaussian (normal) process. Most studies in this area show that the derivation of 
the asymptotic distributions of the estimators does not require the full Gaus- 
sian condition. However,  in the non-Gaussian case there may be more in- 
formation in the higher-order cumulants or periodograms and so the methods 
described here may not be optimal. At the present time, discussion of optimal 
inference must be limited to the Gaussian case. 

2. Theory of asymptotic inference 

In this section we go over some of the standard theory of asymptotic 
inference theory to put into context the various procedures discussed in the 
next section. In particular, we describe some of traditional theory usually 
applied to the independent,  identically distributed (i.i.d.), random sample 
situation and indicate how this relates to the more general work of LeCam. 

2.1. Traditional likelihood theory 

We suppose in the tradition of asymptotic theory that we have a sequence of 
hypothetical inference problems, the nth one, for example, corresponding to 
the situation where we observe a sequence of n random variables which we 
represent by the symbol X,. That is, X,  represents the complete sequence of n 
random variables. In each of these hypothetical problems we suppose that 
there is the same set of unknown parameters 0 = (01 . . . . .  0s), which determines 
the distribution of the X,. 

Asymptotic theory, in the sense used in statistics, is concerned with the limits 
of distributions of functions of the Xn as n tends to infinity. One hopes that the 
results obtained will hold reasonably accurately for finite values of n cor- 
responding to real practical experiments. Ideally, such 'hopes'  should be 
confirmed by simulation or by a more precise theory. In fact, experience 
suggests that in many cases asymptotic theory is sufficiently accurate to be 
relevant to real situations with moderate  sample sizes. 

Let  L,(O, X,)  denote the likelihood function (or, more precisely, a represen- 
tation of it) and l,(O, X,)  the log-likelihood: 

I.(O, x . )  = log L.(O, X.) .  

The maximum likelihood estimator of 0 is the value 0,(Xn) that maximizes 
Ln(On, Xn) or equivalently maximizes the log-likelihood (assuming there exists 
such a value). Various results have been proved for the maximum likelihood 
estimator when Xn represents a sequence of independent identically dis- 
tributed random variables and where certain regularity conditions have been 
satisfied. These results have been extended to a variety of other  situations, for 
example, Markov chains and processes (Billingsley, 1961). 
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We denote the probability measure defining the distribution of X, when 0 is 
the 'true' value of the unknown parameter by Po and the expectations and 
variances under Po by 17,o and Var0. Distributions are denoted by 5%. 

Letting I, denote the log-likelihood and regarding Ol,,/O0 as a column vector 
when 0 is a vector and 021,/002 as the matrix of sec(;ngl derivatives, again under 
regularity conditions we have 

Eo( Ol./ oO) = o, 

Eo{ oU oO . ( oU oo )*}/n = -Eo( o2U oo2)/n 

= r.(o) ,  

(2.1) 

(2.2) 

(2.3) 

say, where * denotes transpose of a vector. 
Suppose for all 0 

lim F . ( O )  = V ( O )  . 
n..*oo 

(In the i.i.d, case F.(O)= F(O) for all n.) Then the standard property of the 
maximum likelihood estimator O. in 'regular' situations is that the distribution 
of 

n l ~ ( ~  - o) 

tends, as n tends to infnity, to the multivariate normal distribution with mean 
0 and variance/covariance matrix F-I(O). That is, for large n, O, is ap- 
proximately normally distributed with mean 0 and variance/covariance matrix 
FgX(O)/n. 

An indication that the estimate is, in some sense, asymptotically optimal, can 
be obtained by noting that the Cramer-Rao inequality gives F;l(O)/n as a 
lower bound on the variance/covariance matrix for unbiased estimators. That 
is, 

V.(O)-  F;'(O)/n 

is positive semidefinite if V.(O) is the variance/covariance matrix of an u n -  
biased estimator of 0 for the nth hypothetical problem. A more precise 
statement for the i.i.d, case is given by Bahadur (1960). 

Now consider the problem of actually calculating 0.. One approach would be 
to solve the equations 

o/./o0 = 0 ( 2 . 4 )  

for 0. In the situations we will encounter there will be no exact analytic solution 
for (2.4) and numerical methods will have to be used. Suppose O. is an 
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approximate solution for (2.4). Then one iteration of Newton-Raphson would 
give the improved solution 

On ~-~ On - -  (Oq2/n/OO2)-lO/n/OqO (2.5) 

with  the derivatives being evaluated at 0 = 0,. In view of (2.2) one might 
replace the matrix of second derivatives in (2.5) by nF,(O) or nF(O). To solve 
(2.4), of course, one might keep iterating (2.5), possibly with the second 
derivative matrix replaced by nF~(O) or nF(O), until each iteration made little 
difference to ~.  In practice, it seems necessary to be a little cleverer than this 
and use, for example, methods incorporating line searches (see Fletcher, 1980), 
in order to be reasonably sure that the method will converge. However, the 
result we want is that if 0~ satisfies 

lim lim sup P o { l n ' / 2 ( ~ .  - 0)1 > c}  = 0 ,  
C--->oo i1.-->oo 

(2.6) 

that is, the error in 0~ is of order n -1/2, for example, 0~ might be a method of 
moments estimator, then t~, has the same asymptotic distribution as the 
maximum likelihood estimator. Thus, asymptotically, one iteration of (2.5) is 
enough. In the i.i.d, situation, this is Fisher's optimum scoring method (see 
Rao, 1965, p. 302). In practice, it seems more satisfying to continue iterating 
until (hopefully) the maximum likelihood estimator is obtained but we will see 
that there are good reasons for studying 0,. 

The preceding theory was originally worked out and made rigorous for the 
independently identically distributed random sample case and various parts 
have been proved for other situations. One would like to show that at least 
some of these results hold for our time-series situation and this was the 
approach of, for example, Dunsmuir and Hannan (1976). On the other hand, 
LeCam (1960, 1969, 1974) has derived a set of conditions under which results 
similar to the preceding ones can be derived. A closely related method has also 
been developed by Hfijek (1972). LeCam's results, in particular, give a rather 
more satisfactory statement of the optimality of the techniques than was 
traditionally available. To apply them to the time-series problem, one need 
show only that LeCam's conditions are satisfied. This was the approach of 
Davies (1973). 

2.2. LeCam ' s asymptotic theory 

We now very briefly summarize some of LeCam's work, particularly that in 
his (1969) lecture notes (pp. 57-87), but in a slightly more restricted form. Our 
notation is as before. The conditions are: 

(A0) O, the set of possible values of 0 is an open set in ~*. 
(A1) The sequence of probability measures defined by X, under 0 is con- 
tiguous to the sequence defined by X, under 0 + n-1/2t for each 0 E O and 
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s-dimensional vector t. See LeCam (1960, 1969) or Davies (1973) for definitions 
of contiguity. 
(A2) For each 0 E 0 there exists a sequence of s-dimensional random vectors 
A.(0) and an s x s matrix F(O) such that 

I.(0 + nl/2t) - l.(0) - t*A.(O) + ½t*l"(O)t--> 0 

in Po probability for each s-dimensional vector t. 

(A3) l.(O + n-V2t.) - l.(O + n-rot)---> 0 

in Po probability when t. ---> t. 
(A4) F(O) is nonsingular for each 0 E O. 
(AS) There exists a 'prel imina~'  estimator 0., such that for each 0 E ~9 (2.6) is 
satisfied. We will suppose that 0. is chosen to take values only on a lattice of 
points with spacing n -x/2. 

LeCam's estimator is 

7". = O. + n-1/ZF-l(O.)A.(O.). (2.7) 

If A. is chosen to be n -1/2 times the derivative of the log-likelihood, then this is 
essentially Fisher's scoring estimator. 

LeCam shows when these conditions are satisfied that 7". is asymptotically 
normally distributed with mean 0 and variance F-l(O)/n. More precisely 

~o{nl/2(Tn - 0)}~ Jr(0, f'-'(O)}. (2.8) 

Various optimality properties can be proved for 7".. LeCam shows that 7". is 
'asymptotically sufficient', that is, for n large enough, T. contains most of the 
information in X.  concerning the value of 0. One quite simple result that can 
be deduced from the results of LeCam (1969) is the following: 

THEOREM. 
that 

Suppose the conditions (A0)-(A5) are satisfied and S . (X . )  is such 

lim lim sup Po{Is.(x.)l > c} = 0 ,  
C---)c~ n-->oo 

that is, S . ( X . ) =  Oe(1) under Po. Suppose also T is an s-dimensional normal 
random variable with expected value t and variance/covariance matrix F-I(O). 
Then there is a subsequence and a possibly randomized function, So(T), of T 
such that for each K 

-~.o+ .-',2t{S. (Xn)} ~ ~t{So ( T)} 

along the subsequence, uniformly for Iltll < K. 
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Conversely, if S(T) is a function of T there exists a sequence Of random 
variables S,~o(X.) such that 

~.,~O+n-1/2t{ Sn, o(Xn )} "-') 5~t{S( T)}  . 

I f  S is continuous almost everywhere we can take 

s . , o ( x . )  = S{n~/~(T. - o)}. 

In effect, this means that for each 00, making inferences about values of 0 in 
a neighbourhood of 00 of size O(n -1/2) is asymptotically equivalent to making 
inferences about the expected values of a multivariate normal distribution with 
known variance/covariance matrix F-a(o0), given one observation. The first part 
of the theorem shows that a function of X,, after suitable normalization, can be 
mapped to the multivariate normal situation and the converse shows how to 
transfer a technique appropriate for the normal situation back to the 32,. 

For example, suppose an estimator 0, satisfies (0. - 0 )=  Op(n -1/2) under Po. 
Let 

Sn = nl/2(On -- O) 

and work along any subsequence along which ~o(S,) converges. Suppose 0, is 
asymptotically unbiased in the sense that 

lira lim Eo+.-I/2,J-c{nl/2(O~. - 0)}  = t (2.9) 

for all t, where ~-c (x) = x if Ix] < c, 0 if Ixl c, that is ~-c truncates its argument at 
-+c. This truncation function is necessary to avoid dealing with L~ convergence. 
Then, according to the theorem, there exists S(T) with S, tending in distribution 
to S(T). Hence, from (2.9) 

E~S(T) = t 

all t and also 

lira lim [ V a r o  G { n l / 2 ( O .  - 0)}1 = V a r o S ( T ) .  
C - - ~  n - ~ o o  

(2.10) 

From unbiased estimator theory we have 

Varo S( T) >i F-I(O) 

with equality if S(T)= T. In view of the second part of the theorem, putting 
S(T) = T, or using (Z8) directly we can say that the estimator, T,, minimizes 
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the asymptotic variance (2.10) amongst estimators which are asymptotically 
unbiased, that is, satisfy (2.9). 

See Hfijek (1972) for other optimality properties. However, perhaps a better 
approach is to say that if one is happy to use T to estimate t when T has a 
JC(t, F-I(O)) distribution, then one should be satisfied with T, for estimating 0 
(at least when n is large enough). On the other hand, if one believes one should 
use, for example, James-Stein estimators, then the preceding theory would 
enable one at least to begin to set up the corresponding asymptotic estimators. 

The preceding results, of course, apply to LeCam's estimator, T,, defined by 
(2.7). In fact we would like to avoid discretizing the preliminary estimator and 
in fact one can show that this is unnecessary if 

sup [IAn(0 + n-1/2~) - a,(O + n-1/zw)ll-~ 0 
11#[1<8, II#-,ll<e 

(2.11) 

in Po probability, uniformly in n as e ~ 0 for each 0 E 19 and 6 > 0. 
LeCam (1969) does not deal with the maximum likelihood estimator. It is 

probably not possible to find reasonable general conditions for it to satisfy (2.8) 
since it is possible, even in apparently regular situations for the likelihood 
function to have 'spurious' maxima which bear no relation to the true value of 
0. However, we can say that if /7, is the maximum likelihood estimator or 
alternatively a root of the likelihood equation (2.4) which has been ap- 
propriately selected and if /7, satisfies (2.6), An(O)= n-1/zoI, JO0, (A0~(A4)  and 
(2.11) are satisfied, then/7, = T, and so/7, does have the asymptotic optimality 
properties we have discussed above. 

2.3. Hypothesis testing 

Now consider the hypothesis testing problem. Suppose the vector of un- 
known parameters is partitioned into two components, say 0 = (0 (1), 0 (2)) where 
0 (1) = (01 . . . . .  0p), 0 a) = (0p+1 . . . . .  0s) and we are writing column vectors as 
rows to simplify printing. We might want to test the hypothesis 

0 (1) = 0 (2.12) 

against the alternative that at least one component of 0 (1) is nonzero. The 
generalized likelihood ratio test is a commonly used asymptotic method for this 
problem. However, as impler  approach i s the  C(a) test developed by Neyman 
(1959), see also Biihler and Puri (1966), Bartlett (1955) and Moran (1970), 
which has similar asymptotic properties for 0 (1) = O(n-m). Let 

/7. = ( 0 , / 7 ~ )  

be an estimator of 0 satisfying (2.6) when the hypothesis (2.12) holds; for 
example, /7, might be the maximum likelihood estimator under the hypothesis. 
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Then calculate the first component of 0,, that is 0~ according to (2.5) using the 
expected second derivatives 

t~, 1) = [Fgl(~n)Oln/OO]~l)/n, (2.13) 

with the derivative being evaluated at 0n. Let V, be the p × p principal 
submatrix of F~l(On). Then in the i.i.d, situation, under the hypothesis 0 (1) = 0 

n{ 0~)}* V~ 10~) (2.14) 

is asymptotically chi-squared distributed with p degrees of freedom and will 
tend to be large when 00) ¢ 0. When p = 1, 

nl/2 Vnl/20(nl ) (2.15) 

is asymptotically 2¢'(0, 1) under the hypothesis and can be used for one-sided 
tests. 

Application of the formulae for the inverses of partitioned matrices leads to 
the formulae given by Neyman (1959) and Biihler and Puri (_1966). The 
particular advantage of tests based on (2.8) and (2.9) is that once 0. has been 
calculated, they are noniterative and the calculation of On and the expected 
values required for Fn(On) are worked out under the hypothesis, often leading 
to quite simple formulae. When O, is the maximum likelihood estimator (under 
the hypothesis) [tg/n/tg0] (2) vanishes when 0 is replaced by 0, and the C(a) test 
reduces to the Lagrange-multiplier test of Aitchison and Silvey (1958--see 
Hosking, 1980, for additional references). 

Of course, C(a) tests were developed for the i.i.d, random sample case. To 
apply LeCam's work, first note that under conditions (A1)-(A5) the testing 
problem is asymptotically equivalent to testing the hypothesis t 0) = 0 given a 
multivariate normal random variable T with variance/covariance matrix F-I(O) 
and E(T)= (t (1), t(2)). 

The obvious test statistics for the normal situation are [TO)]*V-1TO) and 
V-1/2T o) for multivariate and univariate t (1), where V is the p x p principal 
submatrix of F-I(O). Applying the converse part of the theorem of Section 2.2, 
noting that T~) may be replaced by 0~) and V by Vn leads to (2.14) and (2.15). 

More precisely, the univariate case, one uses an argument analogous to that 
used in Section 2.2 and the theory of similar tests to show that, with an 
appropriate critical point, the test based on (2.15) maximizes the asymptotic 
power 

lim inf Po+n-,~2,(reject hypothesis) 

when 01 = 0 and tl > 0 amongst tests which satisfy 
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lim Po+,-,J2t(reject hypothesis) = a 
rl.--~oe 

for all t (2), when 01 = 0 and tl = O. 
Similarly, tests based on (2.14) are asymptotically most stringent when 0 (1) is 

multivariate. 

2.4. Inference using approximations to the likelihood 

In Section 3 of this paper we will want to base our tests and estimators on a 
function wn = wn(O, Xn) that only approximates the log-likelihood. Naturally, if 
conditions (A0)-(A5) are satisfied when 

An(O ) = n-1/2OWn[O0, 

then one can base estimators similar to Fisher's scoring estimator and tests 
similar to C(a) tests on wn rather than on ln. Similarly, if condition (2.11) is 
satisfied and the estimator obtained by maximizing wn satisfies (2.6), then it too 
is a version of Tn and so has the asymptotic optimality properties we have 
considered. 

2.5. Inference using only part of the data 

It will sometimes be convenient to base one's estimates on only part of the 
data, for example, only the high-frequency part of a periodogram when there 
are low-frequency trends in the data that are not of interest. Suppose J~n 
represents the part of Xn on which we do want to base our estimates. An 
obvious question is, if the conditions (A0)-(A4) are satisfied for Xn, are they 
also satisfied for Xn? In fact, one can show that if An(O) is a function of Xn, 
/~(0) is a nonrandom~nonsingular matrix and 

 e0{an (O)lX'n}--' ::{& (O), r(e) - / ' ( e ) }  

in the sense of convergence of c.d.f.s, in 150 probability, then (A0)-(A4) are 
satisfied for the probabilities generated by J~n if An(0) and F(O) are replaced by 
zin(0) and F(0). 

Tests and estimators which are asymptotically optimal amongst those that 
depend only on P(n can then be found, provided that (A5) is also satisfied. If 

&(o) = n-'/20 ,n(O)/O0 

where fin(0) is a function of Jfn, then one may be able to define an estimator by 
maximizing fin(0). Provided that (2.6) and the analogue of (2.11) were satisfied, 
this would provide an asymptotically optimal estimator. 
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3. Inference in the frequency domain 

This section is based primarily on the papers of Davies (1973) and Dunsmuir 
and Hannan (1976). However,  many of the main ideas have their basis in the 
pioneering work of Whittle (1953). Other relevant early references are Whittle 
(1962) and Walker (1964). 

3.1. Specification of the problem 

Returning to the time-series problem: we observe Xn = (x0 . . . .  , xn-1), a 
series of n r-dimensional observations from a stationary normal time-series. We 
suppose that the covariance structure is determined by the set of unknown 
parameters 0 = (01 . . . . .  0s). We also suppose that the expectation of the process 
does not depend on 0 and it is convenient to suppose that it is zero. In fact all 
the asymptotic results continue to hold when each Xk is replaced by Xk--~, 
where ~ is the sample average so this is no real restriction. Regarding the Xk as 
r-dimensional column vectors, and Xn as an nr-dimensional column vector, and 
letting A* denote the (conjugate) transpose of a (complex) matrix or vector A, 
define 

c,.(o) = covo(x~, xk+, . )=  Eo(x~ . xt+,.) (3.1) 

since we are supposing E(Xk) = 0, and 

c.(o) = covo(X. ,  x . )  = Eo(Xn" X*.) 

Co, cl, . . . ,  Cn-I \  
__ . . . .  c o :  . . . .  

/ 
C-n+l~ C - n + 2 ,  • . . ~ CO / 

(3.2) 

The log-likelihood is given (apart from an additive constant) by 

In(O) = -½{log det Cn(O) + X*C~I(O)Xn}. (3.3) 

Our parametrization is a little different from that used by some others, for 
example, Dunsmuir and Hannan (1976). They use the moving average 
representation of the process 

Xk = ek + ~ aj(O)ek-j, (3.4) 
1 

where {ek; k = 0, +--1, ---2 . . . .  } is a sequence of independent Gaussian (for the 
Gaussian case) r-dimensional random variables with the ek having the same 
variance/covariance matrix, ~r(0), and {aj(0)} is a sequence of r × r matrices. In 
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this case, 

cm(O) = ~ aj(O)o'(O)af+m(O), (3.5) 
j=0 

where ao(O) = I, the identity matrix. When {aj(0)} and o-(0) depend on disjoint 
subsets of (01 . . . . .  0s), the particular advantage of this parametrization is that 
the asymptotic distribution of the maximum likelihood and related estimators 
of the components of 0 on which only the aj depend does not depend on the 
distribution of the ek. That is, they need not be Gaussian although in- 
dependence or the weaker condition of Dunsmuir and Hannan (1976) is still 
required. However, the representation (3.4) can be unnatural and difficult to 
find, particularly in the multivariate situation, and the independence assump- 
tion very difficult to verify. Since this paper is primarily concerned with the 
Gaussian case, we do not use (3.4). 

Following from (3.3), we have 

aln = tr[ C~'(O) ~ Cn(O)Cg'(O){XnX*- C.(O)}] 
aO~ 

(3.6) 

In fact, it might be possible to develop numerical techniques to handle (3.6) for 
n up to a few hundred using Toeplitz matrix techniques (see Cybenko, 1980, 
for references) and one would expect this to be a good approach for n less 
than, say, 100. For autoregressive/moving average processes, various exact and 
approximate formulae have been developed for the likelihood and so when one 
does want to fit such processes they are the appropriate formulae to use. See, 
for example, Gardener, Harvey and Phillips (1980). However, for larger values 
of n, computations with (3.3) and (3.6) become impossible and frequency- 
domain methods are appropriate. We should note though that recent work by 
Brent (1979) shows that it is possible to evaluate expressions such as (3.6) with 
O(n log 2 n) operations and so the computational reasons for using frequency- 
domain methods may disappear. 

3.2. Frequency-domain approximation 

Define the spectrum of the process 

and 

f(/~, 0)= ~ Cm (0)e 2'~i"A (3.7) 
-m 

F,(O) = diag{f(O, 0), f(1/n, 0 ) , . . . ,  f ( (n  - 1)/N, 0)}.  (3.8) 

Let On be an n r x n r  unitary matrix composed of n × n  blocks of r × r  
submatrices; the (j, k)th block (0 ~<j, k ~< n - 1) being the unit matrix multiplied 
by 
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n-l12 e2~rijk/n . 

In effect, multiplication by ~ ,  is the taking of a discrete Fourier transform. If 

then 

l Zn,o 

\ Zn,n- l []  

O,X,  , (3.9) 

n-1  
Zn, k = n -1/2 ~ xj e z'~ijk/". (3.10) 

j=O 

Hence multiplication by ~ ,  can be carried out very efficiently using a fast 
Fourier transform program (the number of operations required is of order 
n log n as opposed to n 3 for ordinary matrix multiplication). Davies (1973) 
shows that 

a . ( o )  = a . c . ( o ) a * .  - F . (O)  

is, in a certain sense, small for large n. Thus the ~ ,  transformation, ap- 
proximately, simultaneously transforms the (2,(0) into block diagonal matrices 
and the 2(, into n approximately uncorrelated complex r-dimensional vectors. 
This suggests replacing the log-likelihood (3.3) by 

w.(O) = -l{log det F~(O) + Z*Fnl(O)Zn} 
n-1 

= _1 ~] [log det ffj/n, O) + z*,j{J:(j/n, O)}-lz.j] 
0 

(3.11) 

and its derivatives (3.6) by 

3wn tr[ F~I(0)~0~ F(O)Fnl(O){ZnZ*n- Fn(O)} ] 

n-1  • " 0 ) }  -1  {ZnjZ *n j = ~o tr[{f(J/n'O)}-l-~f(J/n'O){f(J/n' , , - f ( j / n , O ) } ] .  

(3.12) 

Note that only half the terms in (3.11) and (3.12) need be calculated in practice 
since the (n - j)th terms of f(j/n, O) and z~,j are just the complex conjugates of 
the jth terms. These expressions are vastly more workable than (3.3) and (3.6) 
being usable for sample sizes of many thousand. Several variants of (3.11) and 
(3.12) have been proposed. Whittle (1953) used integrals in the place of the 
sums in (3.11) and (3.12); Dunsmuir and Hannan (1976) introduce a 
modification of (3.11) where the Fourier transform of the data and the 
spectrum are sampled at intervals smaller than the 1In used by (3.11). Whittle's~ 
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version was suggested before fast Fourier transform programs became available 
and is now mainly of theoretical interest. Dunsmuir and Hannan's  version is 
particularly convenient when the sample size, n, is not a suitable number for 
the fast Fourier transform program. Davies (1973) suggests replacing f(A, 0) by 

n-1 
(1 -Iml/n)c, ,(O) e 2~rima (3.13) 

- n + l  

to reduce tt/e bias for finite n. 

3.3. Conditions for LeCam's results to hold 

The conditions given by Davies (1973) for (A0)-(A4) to hold with 

An(O ) = n-t/201.(O)/O0 (3.14) 

and F(O) defined by 

[1-,(O)]u,v= 1 f01 tr{f-'(A, 0)~0~ f ( A ,  0)f-l(~., 0)-~-0v f(~t, 0)}dA (3.15) 

are: 

(B0) The set of possible values of 0 is an open set O in s-dimensional 
Euclidean space. 
(BI.1) The Cm (0) are differentiable functions of 0. 

(B1.2) ~ llcm(0)ll < ~, 

(B1.3) 

(B1.4) 

lim ~ IIc (0 + ~ ) -  Cm(O)ll = 0 
e~O m = - ~  

Cm(O ) < oo, 
m=-~ 

lim -~k c.,(O+ e ) - - ~ c m ( O )  = 0 
e--)O m=-o~ 

for all 0 E O. 

for a l l k ; l ~ < k ~ < s  
and 0 E O. 

det f(h, 0) > 0 for all h ; 0 ~< A ~< 1 and 0 E O. 

(B2) 0 
k=l tk -ff~k f(A, O) # 0 

for some nonnull set of A for each r-dimensional vector t#  0 and 0 E O. 
In order to use the version of  A, (0) based on (3.12), 
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a . ( 0 )  = n-'/2ow.(O)/Oo, (3.16) 

one requires in addition 

(B3.1) 2 m 1/2 Ilcm (0)11 < ~ 
1 

(B3.2) @ O-~k Cm(O) < ~. 

Davies (1973) also shows that the discretization of the preliminary estimate 
can be avoided if (B3.2) and 

(B3.3) sup ~ o@kCm(O+ ~)--O--~kCm(O+ r/) /]l~:-ril l  <°° for some 6 and 
If <8-~ each k and 0 
r/ < 6  
f e n  

are satisfied. 
If f(A, 0) is defined by (3.13) in the expression w,(0), condition (B3.1) is not 

required. On the other hand, to ensure reasonable rates of convergence, 
Davies (1973) suggests 

(B4.1) ~1 ml/2 ff~kO cm (0) 2 <oz 

should also be satisfied for estimators based on /.(0); 

0 (B4.2) 2 /7l 1/2 ~ k  cm (0 )  ( 00 
1 

should be satisfied for estimators based on w~(O) with f(A, 0) as in (3.13) and in 
addition 

(B4.3) ~ mllcm(O)ll < o~ 
1 

should be satisfied when the usual version of w,(O) is used. 
Similar results to those of Davies (1973) have also been obtained by 

Dzhaparidze (1977). These results are for the one-dimensional case with the 
integral version of (3.11). However, they have been extended to include the 
situation where the spectrum is of the form 

q 

Z(A, 0) = I ]  I( e2=i~ - e2=i~012fo(A, 0 ) ,  
1 
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w h e r e / ~ 1 ,  • • • , }[q are real constants which do not depend on 0. Our condition 
(B2) is then weakened to requiring only that foO t, 0) has no zeros. This is the 
situation that arises when a time-series has been filtered to remove specific 
discrete known frequencies, either by the process generating the data or 
analytically after the raw data has been collected. Note that the problem 
becomes rather more complicated if the Aj are allowed to depend on 0 and will 
probably not fall within the present framework. 

The preceding conditions imply that the estimators of the Fisher scoring type 
(2.7) based on either of the various versions of A,(O) we have considered have 
the optimality and distributional properties discussed in Section 2, provided 
that a preliminary estimator 0, is available. In particular, 

~{nl/2(T,, - 0)}---> X(0, F-1(0)), (3.17) 

where F(O) is given by (3.15) and F-I(O) is the 'smallest' possible vari- 
ance/covariance matrix for estimators obeying (2.9). 

Note that estimators of the Fisher scoring type have also been considered by 
Hannan (1970), Parzen (1971) and Nicholls (1977). 

Our results also establish the asymptotic optimality of C(oz) tests based on 
either the likelihood function or its frequency-domain approximation. In parti- 
cular, the optimality of Hosking's (1980, 198!) Lagrange-multiplier tests is 
established and one can see how to find corresponding tests based on the 
periodogram. 

3.4. Maximum likelihood estimation 

To extend our results to include the maximum likelihood estimator or the 
estimator based on maximizing the approximate likelihood (3.11) one must 
show that these estimators are 'root n consistent', that is, (2.6) must be 
satisfied. As we have already indicated, we would not expect to be able to find 
usable general conditions for this to be so. However, if (9 is compact (i.e. 
closed and bounded) with the true value 0 belonging to the interior of 0, then 
the situation is much more satisfactory. The relevant results are given by 
Dunsmuir and Hannan (1976), Deistler, Dunsmuir and Hannan (1978). They 
assume the representation (3.4) and a restricted version of their conditions is as 
follows. 

(DO) (9 is a compact subset of ~s  and 0 belongs to the interior of (9. 

(m) 

(D2) 
(D3) 

Jl la j(e) l l  = < 
]=0 

If 01 # 02, then Cm (01) # Cm (02) for some m. 
The elements of 

k(z, 0)= ~ aj(O)z j 
0 
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are analytic within the unit circle, are continuous functions of 0 and det k(z, O) 
has no zeros within or on the unit circle. 
(IM) k(e i~, 0) and tr(0) have second derivatives with respect to 0 which are 
continuous in 0 and A. 
(DS) Condition (B2) holds. 

Dunsmuir and Hannan (1976) allow these conditions to be weakened on the 
boundary of O so that, for example, their results can be applied to autoregres- 
sive/moving average models with O as the natural parameter  space. They 
show that the estimators obtained by maximizing (3.3), (3.11) or its integral 
version are root  n consistent and (in the case of the components  of 0 on which 
only the aj depend), in fact, have the limiting distribution given by (3.17). We 
do not try to find the relation between conditions (B1)-(B3) and (D1)-(D5) but 
in practice one would not expect to find many time-series that fulfil one set and 
not the other. The results of Dunsmuir and Hannan (1976) establish the 
consistency and limiting distributions of the various estimators that rely on 
maximizing the exact or approximate likelihood, the results of Davies establish 
their asymptotic optimality and sufficiency and also that of the related Fisher 
scoring type of estimator. 

The condition (DO), in reality, is not a serious problem since one will usually 
have some idea of what values of 0 are appropriate and so, in effect, the range 
of values of 0 to be considered is limited to a bounded subset of those for 
which the model is defined. 

3.5. Inference based on only part of the periodogram 

We now consider frequency-domain inference based on only part of the 
periodogram. This is appropriate when one is fitting a model which is intended 
to model short-term effects, but where there are also long-term fluctuations 
which one wishes to ignore or where there is a varying seasonal effect that 
affects a band of frequencies which one similarly wishes to ignore. 

Suppose A represents the union of a finite set of disjoint intervals from [0, 1] 
such that h ~ A C:> 1 ~ A ~ A, and we wish to base our estimator on {zj,,: 
j/n E A }. Using the kind of arguments in Davies (1973), if conditions (B0)-(B3) 
hold and 

O . 
[z[.(O)]~ = n -m ~. tr  [{f(//n, 0)} -~ ~-~f(j/n, O){f(j/n, 0)} -~ 

× {z,,jz*j - f(jln, 0)}] (3.18) 

where the sum is over values of j which satisfy 

j / n ~ A ,  O<~j<-n, 

one can show 



where 
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5¢{A,(0)- A,(O) l zj,~: j/n ~ a } ~  2({0, F(O)- /~(0)} 

['(O),,v= I~atr{f-l(a,O) o-~ f(A, O)f-'(A, O)l dA. 
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In view of the discussion in Section 2.5, tests and estimators which are 
optimal amongst those based only on {z,j: fin ~ A} can be derived from A,(0) 
and F(0) provided a preliminary estimator is available. Formula (3.18) can be 
obtained by differentiating 

- I  Z [log det f(j/n, O)+ z*j{f(j]n, O)}-lz.,j] (3.19) 

with the sum as in (3.18). Thus we can consider estimates obtained by 
maximizing (3.19). We presume theorems similar to those obtained by 
Dunsmuir and Hannan (1976) can be obtained but have not proved this. 

4. S u m m a r y  and example  

We have considered statistical methods based on the likelihood function 
(3.3), its frequency-domain approximation (3.11) and a likelihood-like function 
based on only part of the frequency domain (3.19). We have seen how to derive 
analogues of Fisher's scoring estimator, the maximum likelihood estimator and 
C(a)  tests from these functions. 

Asymptotic optimality of these techniques has been established by using 
some of LeCam's results to show the asymptotic equivalence between the 
actual problem and an inference problem involving a single observation from a 
multivariate normal distribution. 

4.1. Example 
As an example we look at Bdlllnger's (1973, section 2) analysis of measure- 

ment of the 'Chandler wobble' of the Earth's axis of rotation. The data are 
derived from monthly measurements of the shift of the location of the North 
Pole over the period 1902-1969. It consists of two series, G0,... ,  ~,-1 and 
7/0, - . . ,  ~/n-1 corresponding to shifts along and perpendicular to the Greenwich 
meridian. The model proposed by Brillinger leads to the lagged covariance 
matrix: 

( a,~ bin) (4.1) 
c,. = -bin am ' 
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where 
a,, = 0 -2 e -t31mr cos(21rym)/(4fl)  + qJ,,, 

bm = - o  -2 e -almP sin(27rym )/(4/3) , 

~Om=2~b 2 if m = 0 ,  

=-~O 2 i f m = l ,  

= 0 otherwise. 

The parameters to be estimated are /3, 3', or and ~b with /3, or, ~b > 0. The 
parameter y is best regarded as taking values in [0, 1] with the points 0 and 1 
being identified with each other; that is, 2~ry is a point on the unit circle. The 
exact likelihood and its derivatives could, in principle, be calculated using (3.3) 
and (3.6). 

The spectrum defined by (3.7) is 

where 

(f0(x) i/l(a)) 
f (X)= \-if~(A) fo (h)]  

f0(A) = g(h + y ) +  g(h - y ) +  4~b 2 sin(2zrA), 

fl(A) = g(A + y ) -  g(A - y ) ,  

g(oJ) = o'2(1 - e-2a)/[2fl{1 - 2e -a cos(27rw) + e-2a}]. 

(4.2) 

Putting 

"-l (~k )e2,~ijk/, z..j = ,,-1,2 Z ; 
k=O ?7 

(4.3) 

and substituting into (3.11) and (3.12) enables the approximate likelihood and 
its derivatives to be calculated. The conditions (B0)-(B4) are satisfied provided 
we extend 030) to allow 2cry to take values on the unit circle. This extension 
does not pose any problems to the theory outlined in Section 2. Thus, provided 
a preliminary estimator is available, LeCam's conditions are satisfied with 
A,(O) based on either the exact or approximate likelihood (3.14, 3.16) and with 
F(O) as in (3.15). Hence the estimator (2.7) has the asymptotic optimality 
properties we have discussed. 

In fact, the computatiorial procedure can be simplified slightly since the 
matrices (4.2) can be simultaneously diagonalized. 

= 2 diag{g(A + 3')+ 4~ b2 sin2(2~rA), g(A - y ) +  4qJ 2 sinZ(2zrA)}. (4.4) 

Thus f(A) may be replaced by the right-hand side of (4.4) if £k and ~Tk are 
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replaced by 2-1/2(~k + i~Tk) and 2-1/Z(~k- i~Tk) in (4.3). The resultin_g expression 
can then be manoeuvred into the form given by Brillinger. Thus Brillinger's 
method of regarding the data as a single complex-valued series does lead to 
optimal estimates. In general, however, this will be true only when the 
covariances are of the form (4.1) corresponding to a model which is invariant 
under rotation of the ~, ~ axes. 

Brillinger used a method of moments estimator as a preliminary estimator 
and then applied repeated iterations of (2.7) using the version of A, based on 
the approximate likelihood and F(O) replaced by the approximation, Fn(O), 
defined by 

IF, (0)],,v = 2---nl ~ tr {f(j/n, 0)} -1 f(j/n, O){f(j/n, 0)} -1 -~ f ( j /n ,  0 
j=0 

Only two iterations were required for the process to converge and presumably 
the approximate maximum likelihood estimate was obtained. He also used the 
inverse of nF,(O) for estimating the variances of the estimates. 

The raw data were heavily contaminated by a yearly cycle. Brillinger 
compensated for this by subtracting the cyclic term derived from the monthly 
averages. An alternative approach would have been to exclude narrow bands 
of frequencies around the peaks corresponding to the yearly cycle and its 
harmonics as in Section 3.5 and hence allow for slow fluctuations in the yearly 
=ycle as well as the cycle itself. 
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Applications of Spectral Analysis in Econometrics 

C. W. J. Granger and Robert  Engle  

1 .  Beginnings 

The forerunners of modern spectral analysis were Fourier series fitting 
techniques, which assumed a series contained important deterministic cycles of 
known period, and the periodograms, which assumed the same model but the 
components had periods that needed to be determined. These models were 
used by economists, despite the considerable computing costs, the best exam- 
ples being the works by Moore (1914) and Beveridge (1921, 1922). An account 
of these and other early applications can be found in Cargill (1974). The main 
objective of this work was to search for cycles in data with the hope that cycles 
of similar periods in pairs of series would indicate relationships between these 
series, an example being sunspots and rainfall and hence wheat prices. In a 
sense the search for cycles was too successful, for instance Beveridge found 
evidence of over twenty in his long English wheat price series. This unlikely 
multiplicity of cycles brought the basic model into some disrepute and un- 
doubtedly this was partly responsible for G. Udny Yule developing the 
alternative autoregressive and moving average models in the late 1920s and 
early 1930s. The resfilting tension between the time-domain and frequency- 
domain approaches lasted until quite recently. The reason for the periodogram 
giving evidence of too many apparent cycles is explained by the low correlation 
between estimates at adjacent frequencies and the fact that it is an inconsistent 
estimator of the theoretical spectrum. Smoothing procedures used now to 
estimate spectra circumvent these problems. 

The link between Fourier series, the periodogram and modern spectral 
methods was pointed out by Davis (1941) in a book well advanced of its time 
and which received remarkably little attention. By 1959 spectral methods st i l l  
had not been applied to economic data. However, in that year Oskar 
Morgenstern, following up a strong suggestion by John von Neumann, initiated 
a project at Princeton to investigate the usefulness of spectral methods in 
economics. The project was supervised by John Tukey, who had recently 
developed the interpretation of cross-spectral techniques, and was staffed by 
Herman Karreman, Michio Hatanaka and Clive Granger, with Thomas Won- 
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nacott and Michael Godfrey also being involved later. The first report of this 
project was published in 1961 (Granger, 1961) and the complete report resulted 
in the book by Granger and Hatanaka (1964). At the same time Marc Nerlove 
was using these techniques at Stanford to study seasonal adjustment problems 
(Nerlove, 1964, discussed below); and Hannan (1960) had previously worked on 
the same problem. Other early writers in this field were Fand (1966), Morgen- 
stern (1961) and Cunnyngham (1983). 

Empirical studies in econometrics appear to go through phases where 
different techniques become particularly popular. Initially single-equation 
regressions were dominant but were then replaced by the more appropriate, 
but difficult, simultaneous equation models. In the late 1960s and very early 
1970s spectra methods became popular and probably more papers were 
published using these techniques than using the more classical simultaneous 
models. By the mid 1970s time-domain time-series techniques came into vogue, 
due to the appearance of the influential book by Box and Jenkins (1970). Nold 
(1972) produced a bibliography of applications of spectral methods in 
economics covering much of the most active period, listing 101 papers by 68 
different authors, although some of the references given are only marginally 
:relevant. Recently, spectral techniques have largely been out of favor by 
applied econometricians although they are still used as one of the bundle of 
empirical techniques available for analysis of time-series data. The theoretical 
aspects of the frequency-domain representations remain important when the 
properties of these various techniques are considered. 

2. Applications of the power spectrum 

The obvious features of a univariate, power spectrum that can be easily 
noted are any peaks, such as at the seasonal frequencies, 27rk/12, k = 
1, 2 . . . .  ,6, for monthly data, and any shape that is complicated compared to 
the simple shapes that arise from a white noise or first-order autoregressive and 
moving average models. The seasonality question will be considered in Section 
4. Economies have been seen to follow swings with alternating periods of 
prosperity and depression, known as the business cycle. An early and obvious 
application of spectral techniques was to investigate these swings. It should be 
emphasized that the business cycle has never been at all regular, or deter- 
ministic, and so corresponds to one, or several, frequency bands rather than to 
particular frequency points. The obvious problem with this topic is that the 
business cycle corresponds to rather low frequencies and so estimation of this 
component is difficult, even with monthly or quarterly data, unless very long 
series are available. The situation is little improved by considering a number of 
different series from the same economy, as this provides little extra in- 
formation; most parts of the economy are inclined to move together at low 
frequencies. Although some evidence was found for certain low-frequency 
components being especially important (see, for instance, Howrey, 1968 and 
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Harkness, 1968), in general all low frequencies were usually observed to be 
important for the levels of major economic variables, and so the business cycle 
component did not prove to be special or outstanding. The relative importance 
of low-frequency components compared to all higher-frequency components 
was found so frequently that a spectrum that steadily declined from low to 
higher frequencies, except possibly at seasonal frequencies, was called the 
'typical spectral shape' in Granger (1966). Unfortunately there are a number 
of different time-domain models-that produce such a spectral shape, including 
AR(1) with a parameter near one and integrated models of order d, where d 
can be a fraction, 1 and which includes the random walk model. 

Fig. 1 shows a typical spectral shape, that of a composite stock price index 
(taken from Granger and Morgenstern (1970, p. 142)). The estimated spectrum, 
after linear trend was removed from the series, is shown with 95% confidence 
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Fig. 1. Power spectrum of the composite weekly SEC stock price index. 

tSuch models can arise from aggregation of simple dynamic models, as shown for instance in 
Granger (1980). 
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intervals, with extra detail for low frequencies shown in the insert. A monthly 
cycle is evident but few other features of clear significance. 

Because it is difficult to estimate the spectrum at very low frequencies it is 
also difficult to distinguish between these models using the estimated power 
spectrum of the original series. Sometimes it is easier to distinguish between 
some of these models by looking at the spectrum of the first differenced series. 
The typical spectral shape was found so frequently that it was used as a method 
of evaluating a large-scale econometric model by Howrey (1971, 1972). The 
Klein-Goldberger and Wharton econometric models were used to produce 
simulated data and the spectra of these data compared to the typical shape. In 
general, the models passed this not particularly stringent test. The 'typical 
spectral shape' is of course an oversimplification and actual spectra may have 
other discernable properties, as Nerlove (1971) found in a study of U.S. price 
series. He also found difficulty in interpreting these extra properties. 

The other obvious use of the power spectrum is to investigate the relevance 
of a particular model suggested by a theory. For example, a number of 
economic theories suggests that the change in particular series should be white 
noises, so that the spectra of these changes will be flat over all frequencies if 
the theory is correct. This procedure was used by Sargent (1972) to test rational 
expectations for forward interest rates, by Granger and Morgenstern (1963, 
1970) to test the random walk theory for stock market prices and by Labys and 
Granger (1970) to test the same theory for commodity prices. The method was 
found useful and occasionally some slight deviations from the predicted spec- 
tral shape were found. It would be possible to use a similar method to test 
other specific time-domain models, but this has not been done, as economic 
theory does not usually provide sufficiently specific models. 

3. Application of the cross spectrum 

Potentially the most important technique available in the early period was 
the cross spectrum and the functions derived from it, the coherence, and the 
phase and gain diagrams. If xt and Yt are a pair of jointly stationary series, with 
spectra fx(tO), fy(to) respectively, and cross spectrum fxy(to), the derived func- 
tions are 

Coherence: 

Phase: 

Gain: 

Rxy(to) = IhY(t°)12 
fx(O~)/,(,o) ' 

. I-Im f~(~o)q 
6(0)) = arc tan [Re f~(ca)] ' 

Gx (,o) = Ifx (o )l ( ,o).  
Jx 

The coherence measures the strength of relationships (squared correlation 
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coefficient) between corresponding frequency components in the two series. As 
components with different frequencies are necessarily uncorrelated for jointly 
stationary series, the coherence thus totally measures the (second-order) 
strength of relationships between the series and has the added advantage that, 
in theory, its value is not altered by application of the same filters to the 
individual series. The gain essentially measures the regression coefficient of the 
to-frequency component of xt on the corresponding component of y. In the 
case where one series is leading the other, the phase diagram can be used to 
measure this lead. Thus, for instance, if yr = aXt-k -I- et, where et is independeni of 
xs for all t, s, the phase diagram for (Yt, Xt) ~,ill be a straight line of slope k, even 
when k is not an integer. These functions have likely useful interpretation for 
economic variables, particularly if these variables are decomposed into low- 
frequency parts ('business cycle', 'permanent income'), seasonal components 
and high frequencies ('transitory income'). Because economic theory predicts 
that different relationships may hold for different frequencies, spectral tech- 
niques may be uniquely suited to uncover these relationships. An extension of 
this idea discussed below is Band Spectrum Regression. 

As an illustration of cross-spectral diagrams, Fig. 2 shows coherence and 
phase diagrams for wheat spot and medium-future commodity price changes. 
Coherence is seen to be higher at low frequencies and to decline at middle and 
higher frequencies. The phase diagram indicates little or no lag between the 
series and is seen to be highly variable when estimated coherence is very low. 

The cross spectrum may also be used to identify or select time-domain 
models. Because the cross spectrum between two jointly stationary series is a 
fully general representation of the relation between two series it includes all 
time-domain transfer function or distributed lag models as special cases. By 
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Fig. 2. Cross-spectrum between differences in wheat spot and medium-future price series. 
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estimating the cross spectrum first, it may be possible to choose a time-domain 
representation which is supported by the data. Engle (1976) has used this 
approach to specify the relationship between housing investment and interest 
rates. He found that the distributed lag weights change sign as would be 
predicted by an accelerator type of model. Thus spectral methods may be 
useful in a first exploratory look at economic data to pick acceptable models 
for further study. 

Many studies have applied spectral techniques to economic data as the 
primary method of analysis and no attempt will be made to summarize them 
all. Instead, a brief account will be given of results in two fields, the term 
structure of interest rates and evaluation of leading indicators. 

The rates of interest charged on loans depend partly on the length of time 
the loan will be outstanding and various theories attempt to explain this 'term 
structure'. Sargent (1968) found that coherences were generally high, parti- 
cularly between rates of similar term, and that in general the longer (Govern- 
ment) rate leads the shorter rates with the lead longest as the differences in 
term increase. Granger and Rees (1968) using British data found similar 
coherence results but with the lags reversed; however, it seems very likely that 
the data they used were unsatisfactory in quality. Cargill and Meyer (1972) 
used a different approach; they estimated distributed lag relationships from the 
observed cross spectrum and found that long rates could not explain short rates 
but there was "a close relationship between short- and long-term rates and a 
fast response of the long rate to changes in the short rate". Thus the studies do 
not agree, as so often seems to happen with empirical work in economics using 
different data sets and statistical methods. The first two studies have the 
difficulty that lags are inferred from the phase diagram; this interpretation is 
only correct if no feedback occurs between the series. 

The timing of the long swings in the macroeconomy is very irregular and 
prediction of turning points, the upturns and downturns, is of considerable 
interest to governments and companies. One method of prediction is to find 
series that consistently lead at the turns and the National Bureau of Economic 

'Research has suggested many such leading indicators and also an index of these 
indicators. A possible way of evaluating the claims made for these indicators, in 
terms of their consistency and the extent of leads, is by looking at the 
coherence and phase diagrams at low frequencies from the cross spectrum 
between the indicator series and a measure of the state of the economy such as 
the index of industrial production. This has been done by Hatanaka (Chapter 
12 of Granger and Hatanaka, 1964) and by Hymans (1973). They found that the 
indicators did lead, in that the phase diagrams indicate such a lead, but the 
coherences are often lower than might be hoped for and the leads are less than 
those suggested by the National Bureau. The best individual indicator seemed 
to be the layoff rate. Hymans found that the National Bureau's index of leading 
indicators could be improved by a better choice of weights, with some of the 
present components given zero weight. Rather similar results have been found 
recently by Neftci (1979) using time-domain methods. The main criticism of 
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these pieces of work is that the National Bureau choses series that lead at 
turning points and these series do not necessarily lead at other parts of the 
cycle, whereas the studies just mentioned assume a constant lead throughout 
the cycle. 

The potentially important partial cross-spectral techniques, in which the 
relationships between a pair of series is considered in the frequency domain 
after removal of the effects of one or more other series, have been little used in 
economics. One application is by Hatanaka (in Granger and Hatanaka, 1964) 
who considered inventory cycles and the acceleration principle. Using depart- 
ment Store data he tried to distinguish between the acceleration principle and 
two alternative hypotheses but was unable to reach a decisive conclusion. 
However, he states "the reason for this failure is not in the partial cross- 
spectral analysis but in the lack of adequate data". A further application is in 
the Brillinger and Hatanaka (1970) study reported in Section 6. 

4. Evaluation of seasonal adjustment procedures 

Many economic series contain important seasonal components, as shown by 
the clear peaks observable in estimated power spectra at the seasonal frequen- 
cies. As these peaks usually appear to have finite width, the seasonal com- 
ponent appears not to consist only of deterministic terms. The presence of a 
strong seasonal in a series is thought by many econometricians to be rather 
troublesome as it obscures the more economically important business cycle and 
low frequencies. Thus attempts are made to remove, or reduce, the seasonal 
component and many techniques for seasonal adjustment have been suggested. 
Some of these techniques use one- or two-sided linear filters, and so their 
effects on the power spectrum are easily determined, but other techniques, 
including the X-11 method used for all U.S. series and many international 
statistics, are nonlinear and so their effects cannot be completely determined 
from available theory. The natural method for evaluating seasonal adjustment 
techniques is spectral analysis of the unadjusted and adjusted series as seasonal 
questions are easily phrased in the frequency domain. The first use of spectral 
techniques to investigate the seasonal appears to have been by Hannan (1960), 
but a more influential paper is that by Nerlove (1964) who considered the 
effects of the Bureau of Labor Statistics method of seasonal adjustment on 
seventy-five U.S. employment, unemployment and labor force series. The 
spectra of the unadjusted series showed, of course, strong peaks at the seasonal 
frequencies, but, more surprisingly, the adjusted series often had spectra with 
dips at seasonal frequencies, suggesting in a sense that the adjustment procedure 
had removed 'too much'. It is certainly true that if a series containing no seasonal 
is run through many adjustment procedures, something will be taken out. Nerlove 
also ran the cross spectrum between the adjusted and unadjusted series and found 
the gain at nonseasonal frequeflcies was usually substantially lower than the value 
one, particularly at the higher frequencies. This suggests that the higher- 
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frequency components could have been badly disrupted. The phase diagrams 
indicated no further problems. 

A difficulty with the Nerlove approach is that the gain estimates can be badly 
affected by 'leakage' from the strong seasonal peaks for the unadjusted data. 
To circumvent this problem Godfrey and Karreman (1967) constructed non- 
seasonal data from autoregressive models, added a variety of seasonal com- 
ponents, adjusted the resulting series using a number of different techniques 
and finally compared the spectra of the adjusted and the original, nonseasonal 
input series. They also looked at the cross spectra between these series. Ideally, 
one might suppose that a perfect adjustment technique would remove the 
added seasonal component, leaving the adjusted series virtually identical to the 
original nonseasonal component. They also found that the adjusted series had 
spectra with dips at the seasonal frequency and the coherence between the 
adjusted and the nonseasonal series was high at frequencies lower than the first 
seasonal frequency (2~-/12) but was low at all higher frequencies, especially at 
the seasonal frequencies. Thus, the important low frequencies appeared to be 
unaffected by the~adjustment processes, but all higher frequencies were badly 
disturbed. The results are potentially very serious when modeling relationships 
between series and the use of nonlinear adjustment methods has to be justified 
with some care. However, the dips in the spectrum and the coherence in 
adjusted series at seasonal frequencies are to be expected whenever the 
seasonal component is estimated by a regression procedure using a least- 
squares criterion. A similar feature occurs if a mean or a linear trend is 
estimated by least squares and subtracted from a series, the resulting series will 
have a dip at zero frequency. It is seen that an appropriate criterion in spectral 
terms is less obvious than was originally supposed. This question of what 
criterion to use and further examples of the use of spectral techniques to 
evaluate seasonal adjustment techniques can be found in the book edited by 
Zellner (1979), see particularly the papers by Baron, Wecker, Kuiper, Granger 
and by Cleveland, Dunn, and Terpenning and in Grether and Nerlove (1970) 
and Nerlove, Grether and Carvalho (1979). 

5. Spectral regression 

Because regression methods are the main statistical tool in economics it was 
natural that spectral methods would be adapted to the specification and 
estimation of linear regressions. The first analyses examined the estimation of 
regressions where the disturbances were assumed only to follow some sta- 
tionary stochastic process. Watson and Hannan (1956) developed bounds for 
the efficiency of ordinary least squares and Hannan (1963) proposed an 
estimator for this setup later, called the Hannan Efficient estimator. This is 
simply generalized least squares and is easily illustrated. 

Suppose y and x are T x l vectors of random variables with the following 
conditional distributions: 
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E(y  Ix) = x/3, 

Var(y Ix) = 0-212. 

Letting E = y - x/3, then Var(e) = 0-212. 
The generalized least-squares estimator is 

fl = x'12-XY 
X,12-1X • 

If O is the covariance matrix of a stationary process, then it can always be 
approximately diagonalized by the matrix of Fourier coefficients as shown by 
Grenander and Szeg6 (1958). In this case the GLS estimator can be written 
approximately as 

Ejf~(co~) f ;~(oJi) " 

This is Hannan's Efficient estimator which is made feasible by replacing spectra 
by their estimates. 

If 12 can be exactly diagonalized, which could be the case for a process which 
is a circulant or when the sample size is large, then an exact expression for/3 
can be obtained which shows that the particular estimates of fxy and fx required 
are the periodograms. In fact, a simple way to calculate this estimate is to 
regress the Fourier transform of y on the Fourier transform of x weighting 
each observation by f,(toj) -1/2. This is simply a weighted least-squares problem 
with complex data. 

When 1'2 and f, are unknown, these quantities must be estimated from the 
data. Standard methods of estimation of power spectra can be applied to the 
residuals from a consistent estimation method to obtain asymptotically efficient 
estimators which do not require specifying the process of the disturbances. 
Such procedures can also be iterated to obtain maximum likelihood estimates 
of/3 and f,. The ability to find fully efficient estimators assuming simply that 
the disturbances are stationary is very attractive as misspecification of the 
nature of this process may lead to substantial inefficiencies, indeed even worse 
estimates than ordinary least squares for some cases as shown by Engle (1974). 
Against this must be set the problems of window design for estimates of f, and 
the probable deviation of finite sample performance from asymptotic opti- 
mality. Engle and Gardner (1976), using Monte Carlo evidence, established 
that the finite sample results are quite acceptable except where f, has a very 
strong low-frequency peak which is therefore hard to estimate. 

The extension of this argument to dynamic regressions where there may be 
lagged dependent variables was initially considered by Hannan (1965), Ame- 
miya and Fuller (1967), and more recently Espassa (1977) and Engle (1980). In 
this case the problem becomes nonlinear so that iterative methods must be 
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used although there are several ways to formulate the iterations. Under 
Gaussian assumptions, an estimator is found by Engle (1980) to be exact 
maximum likelihood. Spectral simultaneous equations estimation was initially 
discussed in the static case by Hannan and Terrell (1973) and for dynamic 
models by Espassa and Sargan (1977). 

A variety of econometric studies have used these and closely related 
methods. For example, a computationally simpler estimation method, the 
Hannan Inefficient estimator, was used by Sims (1972a,b) and Cargill and 
Meyer (1972). An approximation to Hannan's Efficient estimator was employed 
by Sims (1972a), Cargill and Meyer (1972) and more recently by Geweke (1977) 
and Engle (1979). It would seem that there are substantial opportunities for 
application of such simple mechanical approaches to dealing with serial cor- 
relation in regression. 

A direct extension of this approach is to consider estimating models on only 
a subset of the frequencies. A variety of economic and statistical reasons might 
be offered for such a choice. For example, there may be measurement errors 
which are concentrated in some frequencies (Engle and Foley, 1975), or there 
may be different models which explain short- and long-run behavior, or 
perhaps seasonality should be excluded for either of these reasons. The first 
formal statement and application of this approach was called Band Spectrum 
Regression by Engle (1974). He looked at the consumption function to deter- 
mine whether the marginal propensity to consume an additional dollar of 
income appeared to be different for high frequencies (transitory) and low 
frequencies (permanent). The permanent income hypothesis would suggest a 
substantial difference but none was observed. 

A further justification for running regressions on separate spectral bands is 
as a specification test. If a model is well specified, the estimates should not be 
significantly different. Engle (1978) performed such a test on a set of price 
equations and found some rather significant differences. 

Hylleberg (1977) performed a Monte Carlo experiment of the method for 
eliminating seasonality from a regression. The Band Spectrum Regression 
performed quite well in this application for most of the situations. This is a 
particularly important application in the light of the results of Wallis (1974) and 
Sims (1974) who show that seasonal adjustment can seriously distort parameter 
estimates in linear regression. This may occur either because there is a different 
model at the seasonal frequencies or because the independent and dependent 
variables are separately adjusted. 

The extension of BSR to models with lagged dependent variables and 
simultaneous equations is discussed by Engle (1980) and Espassa and Sargan 
(1977) although there is a difficulty with the empirical results in the latter as 
pointed out in the former. The instrumental variables method formulated in 
Engle (1980) is examined in a simulation experiment by Bunzel and Hylleberg 
(1980) with again satisfactory results although in several of their situations 
other approaches perform equally well. 
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6. Frequency-domain factor analysis 

Spectral methods are generally applied to one or two series at a time but 
there is no reason not to apply them in a multivariate context as well. When 
there are many series, the calculation and interpretation of the gain, phase and 
coherence between each pair at each frequency become formidable. Efforts to 
restrict the generality of the interactions allowed have focused upon principal 
component or factor analytic models. Both of these methods in their traditional 
form deal only with contemporaneous correlations among the variables, and 
similarly the frequency-domain versions depend upon only the cross spectra at 
each frequency. 

The principal component setup was initially proposed by Brillinger, (1975) 
and the factor analytic model appears first in Geweke (1975, 1977)and in 
collaborative work with Sargent and Sims (1977). A variety of economic 
applications of the frequency-domain factor model have been publishe d in- 
cluding the Sargent-Sims (1977) model of the macroeconomy, Geweke's (1977) 
model of production and Singleton's (1980) model of the term structure of 
interest rates. In each case, both the economic questions asked and the 
estimation methods are novel. We will develop a simplified version of the 
Singleton model below. 

Consider an M x 1 vector of economic variables y, which will be the yield to 
maturity of different length bonds. In the Singleton case these included 
Government bonds from 3 months to 10 years. These are assumedto be driven 
by k white noise independent unit variance factors given by the vector Zt and 
possibly serially correlated but independent disturbances specific to each 
maturity given by E,. The model is simply 

yt = ~ AsZt-s q- et, 
s=0 

where Zt and Et have spectral density matrices l and F,(to) respectively. The 
spectral density of y is immediately derived to be 

F,(to) = A(,,,)A(,, ,)  t + F,(to), 

where fi,(to) is the Fourier transform of the series As given by 

fi,(t0) = ~ As e i'°s. 
s=0 

The  estimation problem is to find F, and .4 at each frequency based upon data 
Fy at that frequency. 

The model described above is however simply the familiar factor analytic 
model used in cross-sectional studies but with complex covariances. 2 Standard 

2In fact, all methods of real multivariate analysis have their complex counterpart which may be 
of potential use in time-series analysis. 
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estimation techniques adapted for complex arithmetic can therefore be applied 
for each frequency separately because the frequency bands are independent. If 
however there are some constraints on the As or on F, implied by the original 
time-domain formulation, then the analysis may not decompose so easily. In 
the models discussed here, there are no such constraints; however, in the works 
of Engle and Watson (1981), these constraints essentially argue for reversion to 
time-domain methods. 

The economic question asked by both Sargent and Sims and by Singleton is, 
what is the dimension of Z? How many independent noise sources are there in 
the economy being studied? This question is of interest because the finding of 
several sources of noise could explain how different economic agents could 
have different expectations and information sets. The test is based upon 
sequentially testing increasing values of k as null hypotheses against the 
unrestricted model and stopping when an acceptable level is achieved. 

Singleton finds k = 2 for his term structure model. Thus there are two 
independent information series involved in the formulation of expectations 
about the yields on different maturity securities. This is consistent with earlier 
studies which use the short-term rate and inflation as the key determinants of 
the structure but is also consistent with many other interpretations. As usual, 
factor analytic methods face difficulties precisely labeling the factors. Never- 
theless, the notion that k = 2 suggests that a parsimonious model of the 
multivariate time-series relationship among interest rates is consistent with the 
data. Such a relationship might be particularly useful for forecasting in the 
general multivariate problem. 

7. Advanced techniques 

The traditional spectral techniques deal just with stationary series, linear 
relationships and second moments, but various extensions removing these 
assumptions have been proposed and occasionally applied to economic data. 
For example, Brillinger and Rosenblatt (1967a,b) have provided theory for 
Fourier transforms of sets of higher lagged moments, expressed most con- 
veniently in terms of lagged cumulants, although interpretation of the resulting 
functions is not always clear or simple. Godfrey (1965) has estimated the 
bispectrum being the Fourier transform of their lagged moments, such as 
E[XtXt-pXt-q] when Xt has zero mean, for two economic series--a stock price 
series for a single company (International Telephone and Telegraph) and the 
'Federal Float' which is a quantity of cash held within the Federal Reserve 
System and is used to measure the level of activity of the member banks in the 
System. He found that a transformation of the stock prices Pt to log(Pt + a), 
where a is near zero produces a series that more nearly obeyed a linear model. 
The Federal Float series, which is strongly seasonal, produced a bispectrum 
which rejected "the hypothesis that the entire process including the seasonal 
frequencies is well represented as a linear process". Thus the bispectral results 
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were found useful for detecting nonlinearity but the actual generating 
mechanism is not always readily discerned from the results. 

There are various methods of investigating possible nonstationarity in series. 
The most obvious procedure is to calculate spectra or other functions for a 
variety of overlapping time-periods to see if there is an obvious tendency for 
change. Brillinger and Hatanaka (1970) investigated the permanent income 
hypothesis by estimating moving spectra, cross spectra and partial cross spec- 
tra. They found that a permanent income hypothesis with time-changing 
horizon was consistent with the data. A more sophisticated approach to 
nonstationarity is to estimate the harmonizable spectrum. A harmonizable 
process x, has Cramer's representation 

x, = e i~° dZ(to) 
~r 

but now the terms dZ(to) are not orthogonal, having 

E[dZ(to) dZ(A)] = ddF(to, A), 

where F(to, A) is a bivariate distribution function, so that covariances are given 
by 

E[x,~,_k] = f f e"(°'-~) e'k~ ddF(o~, A ) 

and are thus dependent on t and so the series will be nonstationary. In fact, 
harmonizable processes are a very general class and include most nonstationary 
processes as special cases, including random walks and models with time- 
varying parameters. Thus, for example, a seasonal frequency component can be 
correlated with the business cycle component in some process, so that the 
amplitude of the seasonal could be larger during times of prosperity than 
during depressions. This cannot occur with a strictly stationary series. Joyeux 
(1979) has discussed estimation and interpretation of the harmonizable spec- 
trum, and applied the technique to two individual economic series. With new 
housing starts, it was found that the high- and low-frequency components were 
intercorrelated, and thus the series is nonstationary. When the method was 
applied to a personal income series, the high- and low-frequency components 
were found to be uncorrelated, which agrees with the economic theory that 
permanent and transitory components of income are independent. Harmoniz- 
able processes are a very general class of nonstationary processes with easy 
interpretations, but they do appear to require rather long series for successful 
analysis. 
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8. Conclusions 

Spectral  methods  today  find an impor tan t  place in bo th  theoret ical  and 
applied economic  research,  but  in general  it is as a compan ion  to t ime-domain  
and convent ional  regression me thods  ra ther  than as alternatives. Thus  time- 
domain  and f requency-domain  procedures  are not  compet i tors  but can help 
each other .  The  deve lopment  of est imators  for  most  t ime-series problems 
based on f requency-domain  statistics has general ly been  completed .  Ap-  
plications of  these techniques,  part icularly the more  complex,  are, however ,  
ra ther  scarce. In par t  this is due to unfamiliarity,  but  m o r e  impor tan t  in our  
opinion is the superiori ty of  t ime-domain  parameter iza t ions  for  many  problems.  
The  f requency  domain  provides  simple ways of  est imating models  with large 
numbers  of free parameters  (which increase with sample  size in mos t  cases) 
while the t ime domain  general ly imposes t ighter parameter izat ions .  Empirical ly 
for  the type of data  and quant i ty  of data  generally available to economists ,  the 
t ime-domain  formulat ions  are more  satisfactory. 

F requency-domain  me thods  thus are particularly useful in explora tory  tech- 
niques and in theoret ical  research into the proper t ies  of  statistical p rocedures  
for  s tat ionary data  series. There  is a b road  b o d y  of  l i terature on which these 
research directions can build and it is likely that  this basis will cont inue  to 
develop.  
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Signal Estimation 

E.  J. H a n n a h  

1. Introduction 

The problem we here consider is that where r sensors (antennae, receivers) 
record a signal t ransmit ted to all sensors, each of which also receives noise. 
Examples  are tide gauges or pressure recorders which r eco rd  sea level or 
seismometers  which record the direction of motion of the earth. Somet imes 
there might be  no such easily identified apparatus as in the case of economic 
measurements ,  each being affected by a common economic force. 

The noise could consist partly of noise internal to the system in which case it 
would be regarded as independent  of the signal, or at least incoherent with it. 
(See other chapters for definitions of terms used herein.) It could also be 
regarded-as  incoherent as between sensors. Noise external to the apparatus  
need not be  incoherent as between sensors, for example because this noise is 
constituted by a second signal. The noise might even be coherent  with the main 
signal if, for example,  this second signal was a refracted form of the main 
signal. 

All techniques below are based on the assumption that the records yj(t) of 
the sensors are additively composed of signal and noise and that the records 
are sampled at a discrete sequence t = 1, 2 . . . . .  T of t ime points, choosing the 
t ime unit as the sampling interval, for convenience. It is always assumed that 
this sampling does not eliminate our  ability to measure  appropr ia te  charac- 
teristics of the signal. Of  course, this need not be  so. For  example,  if 
yl(t) = x(t)+ r/l(t) and yE(t) = x ( t - r ) +  r/2(t) and we wish to measure  r but 
only the yj(t) are observed, then if these are Gaussian all that can be known 
that is relevant is the cross spectrum f l E ( t o ) = e x p l r t o - f x ( w ) , - o o < t 0 < o 0 .  
(Throughout  we assume spectra to be  absolutely continuous with, at least, 
continuous densities.) However ,  if only the discrete-time points are used, then 
frequencies are aliased. (See Section 1.3(iv) of Chapter  16, "Review of Various 
Approaches  to Power Spectrum Est imation".)  Thus all that can be known 
about  the spectrum from the data is 

ei'~(~°+2=J}fx(¢_o + 27rj), -Tr < to ~< ~-, (1.1) ' 
j=-oo 
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and if ~- is not an integer we cannot determine it without further assumptions. 
In future we implicitly assume that such problems do not arise. In the major 
applications we have in view this is not a costly assumption since observations 
may be made as frequently as is desired and will be made sufficiently frequently 
to ensure that fx(to) is effectively zero outside (-~r, zr), in which case (1.1) 
reduces to exp i~-to, f~(to). Though x(t) is not observed and hence fx(w) cannot 
be directly obtained, the cross spectrum f12(t0) can be estimated, of course, and 
hence ~" can be estimated since rto is just the argument of the complex number 
f,2(~0). 

In Chapter 1 on "Wiener Filtering", problems of signal estimation are 
considered based only on the spectra and cross spectra (assumed known or 
estimated). This apparatus of Wiener filtering has largely been replaced in 
recent years by Kalman filtering methods, based on, in some ways, more 
special models, namely 

y(t) = Hx(t)+ Du(t)+ ~l(t), x(t + 1) = Fx(t)+ Ou(t)+ K(t + 1), (1.2) 

E{r/(s)~/(t)'} = ~5,,0, E{~(s),~(t)'} = 6s,R, E{~I (s)~'(t)'} = 6,~q. (1.3) 

Here y(t) is a vector of r components, x(t) is not observed and has n 
components and u(t) is observed and has s components. The unobserved signal 
is x(t). There is a large and important theory concerning (1.2), its detailed 
structure and estimation. We have introduced (1.2) and (1.3) partly as a basis 
from which to begin to discuss more special models below. We introduce them 
also because it should be understood that they may provide a good basis from 
which to construct statistical procedures of the kind dealt with in this chapter. 
However, as such methods are not usually frequency-domain methods we shall 
not deal with them here, in any detail. The first part of (1.2) is very general and 
merely expresses y(t) as composed of a signal component, Hx(t), not directly 
observed, and noise. Thus for r = 2 and the example first given H could be the 
unit matrix and x(t) could have the two components x(t) and x ( t -  r). It is the 
second part of (1.2) that is special. Because of that the relations (1.2) cor- 
respond to a rational transfer function model. Indeed they can be rewritten as 

y(t) = Hx(t l t -  1)+ Du(t) + e(t), 

~ x(t + 11 t) = Fx(t It- 1) + On(t) + Ke(t),  
(1.4) 

wherein e(t) is the linear innovation sequence for y(t) and x ( t [ t -  1) is the best 
linear predictor of x(t) from the past of the y(t), u(t) sequences. The rational 
transfer functions are D + H{zI,  - F}-IG, I, + H{zI,  - F}-IK, which describe 
the influence, respectively, of the u(t), e(t) sequences on y(t). Thus (1.2) and 
(1.3) lead to finite parameter models which in turn may lead to economical 
statistical methods. For the reason stated above, we now leave these models 
and return to the main purposes of the chapter. 

In accordance with the purpose of this volume we shall deal with methods 
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based on the Fourier coefficients, 

wj(to~)= T-1/2~,yj( t)e  i~°", toy =27rv/T, -½T<v<-½T.  (1.5) 

As is well known, some computational advantages can arise from replacing too 
by to '=  2~rv/T', T',> T, -½T '< v <-½T', where T' is highly composite. (See 
Chapter 19 on "Computer  Programming of Spectrum Estimation".) It is also 
sometimes recommended that yj(t), on the right in (1.5), be multiplied by a 
'taper'. We omit such details here. Of course, modulo rounding errors, com- 
puter errors, the transformation (1.5) neither gains nor loses information. Its 
use is mainly related to stationarity assumptions. Thus if y(t) is a stationary 
random vector (and some other 'regularity' conditions are satisfied) and to is a 
fixed frequency, then the m vectors wy(tov), composed of the wj(tov), for m 
values of toy nearest to to, m fixed, become, as T ~ % distributed independently 
and identically, with the probability density function, 

(or' det{2,rrf(to)}) -~ exp(-  wy(to.)*{27rf(to)}-a%(to~)). (1.6) 

More is known than this. For example, when r = I we consider the quantities 
Iwy(too)12/{2 f(too)}= zo, let us say, and consider the empirical distribution 
function of these, using 0 < v < ½T, i.e. the function Fr(x) which is the propor- 
tion of the zv that are less than or equal to x, 0 ~< x < ~. It can be shown, under 
appropriate conditions, that this function converges uniformly and almost 
surely to 1 - e -x, which is what would be expected if (1.6) held for all 0 < v < IT  
(which itself will not be true unless y(t) is Gaussian and the matrix function f(to) 
is a constant matrix). In any case, most of the methods of this chapter can be 
obtained, via a certain amount of 'sleight of hand',  by maximum likelihood 
(ML) acting as if (1.6) did hold for all too. It may then be shown that the 
methods are asymptbtically valid in the following sense. Even if y(t) is not 
Gaussian, but is reasonably regular, then the asymptotic distribution of the 
estimates is that which would obtain were the data Gaussian and the true ML 
estimators were constructed. 

2. Regression problems 

In (1.2) if G = 0 we have 

y(t) = Du(t )+ e(t),  

x(t + 1 I t) = Fx(t[ t -  1) + Ke(t), 

Then (2.2) is of the same form as (1.4) with G, D = 0 and with y(t) now called 
e(t). Thus e(t) is generated by a rational transfer function model and methods 

(2.1) 

e(t) = Hx(t] t -  1)+ e(t) .  (2.2) 
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based on (2.1) and (2.2) can be very successful. However, there are also cases 
where methods based on the Fourier coefficients can be useful. One reason is 
that (2.1) may hold only over certain frequencies, as we now explain. Let us 
transform (2.1) using (1.5). Then 

wy(~oo) = Dwu(~o~)+ w,(~o), -~T  < v < ½T. (2.3) 

There may be noise effects so that u(t) is not observed but these noise effects 
may predominate at certain frequencies so that (2.3) holds, to an adequate 
approximation, at other frequencies. Again the apparatus through which y(t) is 
measured may respond effectively to the signal only at certain frequencies. For 
that matter the model (2.1) might itself be valid only if the sequences involved 
are composed only of certain frequencies, being nonlinear, for example, 
outside of this set of frequencies. Thus we now assume that (2.3) holds only for 
~o ~ ~ C (-~r, zr). It will be convenient to put ~ = ~_ t_J ~+ where ~+ c (0, zr) 
and ~_ is the reflection of ~+ in the origin. 

Returning to (2.3) it is suggested that we use these equations, for ~o~ E ~,  by 
means of a regression procedure. This is made simpler by the assumption 
discussed below (1.6) whereby the w,(w~) may be treated as independent with 
E{we(Ogv)aJe(tOv)*} = 27rfe(~0v). If this function were known, then the ML esti- 
mator using ~o~ E ~ would be, for the case where r = 1, 

D :  [ ~  Wy((.Dv)Wu((~v)*fe((.ov)-l][~ Wu(O.)v)Wu(O)v)*fe(O.lv)-l] -1 • (2.4) 

(For the case r > 1, the reader may consult the references in the Bibiliographic 
Notes.) The row vector /9 may be treated, asymptotically, as normal with 
mean vector D and covariance matrix estimated by (2~-) -1 by the second factor 
in (2.4). The quantity wu(to~)wu(tov)*f~(to~) -1 may be considered as (2Ir) -1 by the 
signal-to-noise ratio so that (2.4) would be an excellent formula to use. The 
main problem arises from the need to estimate that function. Unless care is 
exercised t h e  inaccuracy in / )  will be dominated by the inaccuracy in the 
estimate of f~, which should not be so. One procedure would be first to estimate 
by replacing f~(tov) by unity in (2.4). L e t / )  be the resulting estimate. Then we 
may form 

2¢rf'~(w) = ~1 Z Iw,(oJ~)-/)w.(oJv)l 2 (2.5) 

where here and below E~, is a sum over a band of m frequences, wv, centered at 
a~. Of course, (2.5) will be computed for oJ = 2zrj/T for such j as make 2~rj/T lie 
in ~.  Then ~(~o) is used in (2_4) in place of fe(~O). The process should now be 
iterated, using D in place of D, until (say) the trace of the matrix in the second 
factor stabilises. However, m must not be taken too small or else errors in fe 
will be important. Of course, if m is taken too large, then re(w) will constitute a 
smoothed estimate of /e(a  0 and efficiency in estimation will be lost. 
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An alternative procedure would be to construct an estimate of f,(to) based 
on a parametric model, such as (2.2). However,  it may be difficult to do this if 
only a band ~ that is less than [-zr, cr] is to be  used. Used  with care and in 
situations where T is not very small, these methods based on (2.4) seem useful. 

A particular case is that where u(t) is composed of lagged values of a 
variable z(t) so that (2.1) may be rewritten as 

b 
y(t)  = ~'~ f l ( j ) z ( t - j )  + e(t). (2.6) 

- a  

Now s = b + a + 1. We may choose to replace wu(too)wu(tov)* by 

I wz (tov)12[exp i(k - l)too]-a~k.l,b 

and wy(tov)w,,(~o~)* by 

wy(to~)wz(to~){exp(-iltov)}_,<~b . 

One context in which (2.6) has been used (but not via (2.4)) is that where 

y(t) = x(t - r) + ~71(t), z(t) = + •2(t). (2.7) 

Now by expanding exp i~-to in a Fourier series it is easy to check that, for 
stationary x(t), 

x ( t -  r) = ~ sin -rr(j- ~') x(t-j),  (2.8) 

the series converging in mean square. If we estimate (2.6), say, by least-squares 
regression of y(t) on the z ( t - ] ) ,  say for a = b <0% where we choose a 
reasonably large, theft the vector of estimated coefficients/3(j) will be such that 

/~(J)eiJ'~ ( t°)-fx(t°)ei~=fx(t°)~_® I t ( j - l - )  

since both sides represent the cross spectrum between y(t) and z(t). Thus if 
fx(co)/fz(to) is near to constant over (say) a narrow band where fz(w) is 
concentrated, then we can hope that/~(j)  will be approximately proportional to 
sin 7r ( j -  r)/{Tr(j- ~-)}, Which is maximised at j = ~'. Thus a first estimate of 7" 
may be given by the j for which/~(j) is greatest in amplitude. Since 

(1) sin rr(k - j  + r)~ 
'~  '/3(/')eiO'-~')" = ~ elk" {-~a/~'J 'n'(k - j +  'r) J '  
- a  ~ o o  

which should be near to a constant over the band, a better  approximation 
might be got by choosing r so as to maximise, with respect to ~-, 
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~ ^ sinTr(j-~') 
~(J) ~J -  ~) I 

This argument is all rather loose and no precise justification has been given so 
far but the method seems to work well in simulations. Since the method is 
suitable only for narrow band signals, least squares may perform as well as (2.4) 
for such cases as are relevant since ~ may now be narrow and fi(t0) near to 
constant over this band. This means that we are weighting according to i the 
power in z(t) over this band which is  equivalent to using least squares if the 
power in z(t) is neglig~able outside of the hand. Losses (biases) due to the 
approximations introduced may be outweighted by the gain due to estimating 
only a few/3(j) (for small a) compared to more elaborate procedures. The use 
of a finite parameter model in this case leads to the consideration of (1.2), once 
again, as a basis for delay estimation. We shall discuss this topic in the next 
section. 

Of course, the whole apparatus associated with what is often called the linear 
model may be applied to the wy(t0v), wu(t0v), the problems becoming those in 
complex multivariate analysis. (See Chapter 20 on "Likelihood Ratio Tests on 
Covariance Matrices and Mean Vectors of Complex Multivariate Normal 
Populations and Their Applications in Time Series" and Chapter 15 on 
"Frequency-Domain Analysis of Multidimensional Time-Series Data".)  

3. Delay. estimation 

We now consider a spatially arranged array of sensors. For brevity we 
discuss only the case of two-dimensional space and the case where only one 
measurement is taken at each sensor, though the other cases are important. 
The array may be passive (i.e. merely recording the signals it receives) or active 
(i.e. that signal may be a reflected form of a signal transmitted from the array). 
We consider here only the former case. If the source is not far away, in terms 
of the diameter of the array, the wave fronts will be circular but we consider 
only the case where the fronts are linear. W e  ignore frequency shifts, due to 
receiver tuning errors or differential Doppler shifts. We consider the case only 
of a stationary source. Again we consider only 'off-line' estimation situations 
and do not discuss 'on-line', real-time, calculations. All of the other cases can 
be treated (though the treatment becomes very complex in general) and we 
mention them here so as to  indicate the richness of the range of phenomena 
under the heading of this paragraph. We have, at the beginning of the chapter, 
already referred to assumptions relating to coherence between the noises or of 
the noises with the signals. One way of handling the former is to model this 
coherence as due to a second signal (or to more than one other signal). The 
problem of many signal sources does not seem to have received any proper 
treatment. It seems to be more difficult than others mentioned here. 

Let the signal be propagated in the direction given by the vector th of unit 
length. Let, now, p(k)  be the vector giving the position, relative to a fixed 
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coordinate system, of the kth sensor. If the speed of propagation is c, then the 
lag in the arrival of the signal at the kth sensor, as compared to the origin of 
coordinates, is seen to be 

(p(k ), d~ )/c (3.1) 

where we now write (p(k), 40 for the inner product between the two vectors. In 
general, c will depend on to. The quantity (3.1), as a function of to, is known as 
the phase delay. If fx(oo) is the spectrum of the signal at the origin of 
coordinates, then the matrix of spectra and cross spectra of the outputs of the 
sensors is 

fx (to)[exp{ito(p(j) - p(k  ), ¢k )/c(oo)}]j,k=l ..... + f~(oo ) (3.2) 

where f~(to) is diagonal with the j th noise spectrum in that place in the 
diagonal. The quantity A(to)= c(to)/{oo/2zr} is the wavelength at frequency to 
and to&c(to) -1 could be called the wave-number vector or K(to)= oo/c(to) the 
wave number. Thus ooA(oo)/27r = c(to) and to = r(to)c(to). Of course, wave 
number has the same interpretation in terms of oscillation along the direction 
of propagation at a fixed time as does angular frequency to at a fixed point in 
space, as time varies. The situation may be understood by relating it to a more 
general model, namely (using p for a point in the plane) 

x(p, t )=  c2L,, r®L r~L [COS{rK COS(0--~b)- too} de(K, to, qt) 
J I J  

+ sin{rK cos(0 - ~0) - to0} d~(K, oo, ~O)]. 

Here p has been represented in polar form, (r, 0). This formula composes 
x(p, t) linearly from plane waves, in each direction qJ, at each wave number K 
and with each frequency to. The functions ~ and ~ determine the amplitude and 
phase of the oscillation. To see this, keep K, tO and qJ fixed. Then when t is 
fixed also, the integrand is constant along lines orthogonal to the ray in the 
direction q~ and in that direction is a sinusoidal oscillation with (angular) 
frequency r. For (r, 0) fixed and t varying, the integrand represents a temporal 
oscillation with frequency to. The cases we treat in the remainder of this 
chapter are the simple ones where the functions ~ and ~" are concentrated at a 
particular value of ~O and where also their mass is concentrated along a curve 
K = OO/C(to) in the r, oo l~lane. If c(to) -- c, then x(p, t) is a wave form with linear 
wave fronts orthogonal to the direction ~O and the wave form propagates 
without changing its shape. If c(to) is not constant, then each constituent 
frequency component is of this kind but they are propagating with different 
velocities so that the wave form does change shape as different frequency 
components move through one another. The general case is one without a 
predominant direction of motion and consequently without any linear wave 
fronts. 
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We now return to the special case where there is only one direction of 
propagation and K = w/c(w). In fact, there may also be attenuation of the 
signal so that the spectrum of what is observed is 

where 
fdoJ)a(w)a(w)* + f . (w) ,  

a(w)* = (ai(w) exp{-iw(p(j) ,  ~b)/c(w)})j=l ..... r, aAw) > O. 

(3.3) 

The ai(w ) describes the relative attenuation at the j th  sensor. What we seek to 
measure is c(~o)-l~b, though sometimes attenuation may also be of interest. 

The  phase O~k(W) between the output of the j th  and kth sensors, i.e. the 
argument of their cross spectrum, is (from (3.2) or (3.3)) 

Ojk(tO) = w(p ( j ) -  p(k ), qb )/c(w ) , (3.4) 

which is w by the relative phase delay. This quantity is estimated by means of 

Wi(a v)Wk(W ) = e x p i 0 j k ( W v ) ,  j,  k = 1 , . . . ,  r .  
I wj(,o )w ( oo)l 

(3 5) 

It is these quantities that we shall use to estimate c(w) - l& We call O'jk(W) the 
coherence between the output of the j th  and kth sensors. We shall 
parameterise c(w)-lqb by means of a vector ~-. Examples are as follows: 

(a) r = 2, c(w) ---- c. Then ~- = (p (1 ) -  p(2), ~b)/c. Of course, c-l~b cannot itself 
be determined for r = 2 but only the delay, ~-. If ~b is known this determines c 
and if c is known the cosine of the angle between ~b and the line joining p(1) 
and p(2) is known. 

(b) r = 2, c(~o)= (a + bw) -1. Then 7 has two components  a(p(1)-p(2) ,  qb), 
b(p(1) - p(2), ~b). 

(c) r I> 3, c(o~) =- c, ~" = c-l~b, provided the p(j) are not on the same line. 
(d) r I> 3, c(oJ) -1 is represented by a cubic spline with prescribed knots. Then 

r describes the vector ~b together with the parameters of the spline, again 
assuming the p(j)  not to be on the same line. 

Of course, if the p(j)  lie on the same line, then c-~b cannot be determined 
since, in the Gaussian case, all that we may know is contained in the knowledge 
of the (p( j ) -p(k) ,qb)/c;  while if the p(j)  lie along a line the (~) row by 2 
column matrix with typical row p ( j ) - p ( k )  is singular and conversely. If w e  
knew the o-(w), we would choose 4, the estimate of ~', so as to ma~imise 

O(z)  = - ~ ~ o4k(wv)O'jk(Wo) Cos{Oj.k(Wo)-- Ojk(~O~)}. (3.6) 
wvEgS+ j<k 

This is again ML, after a certain amount of reorganisation of the formula. Of 
course, (3.6) is a function of ~- through the Ojk(Wv) (see (3.6)). Here  trJk(w) is the 
typical entry in the matrix that is the reciprocal of the matrix with entries 
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O'jk(~0). If r = 2, then (3.6) becomes 

[1 [ -°2(t°~)o'2(to~)J ~ cos{0(to~)- 0(too)}, (3.7) 
t%E~+ 

where the subscripts 1 and 2 have now been eliminated since there are only two 
records. The minus sign is inserted in (3.6) so that no minus sign appears in 
(3.7). The physical meaning of these formulae is rather direct. Imagine that, in 
the two-sensor case, we can steer the array by rotating it about its centre. We 
do this so that the received signal is strongest, in sum, by rotating the array so 
that it is (nearly) at right angles to the direction of propagation. This estimates 
that direction for us. If we cannot steer the array, almost the same effect is 
achieved by rephasing the outputs of the different sensors. Thus if 0(to~) is the 
relative rephasing at frequency too, then the summed output is 

w1(to,) + w2(oJ,) e i°t~'°) , (3.8) 

whose squared modulus is 

[ Wl(tOv)l 2 q- I W2(tOo)l 2 -t- 2~{Wl(tOv)W2(tO v) e-i°(~°v)}. 

Since I wl( ov)w2(o o)l can be  viewed as estimating o-(too){fl(tO,)f2(too)} 1/2 where fl 
and f2 are the spectra of the ouptuts (see Chapter 15 on "Frequency-Domain 
Analysis of Multidimensional Time-Series Data"),  we are led to replace this by 
o-(t%){fl(too)f2(oJo)} 1/2 cos{0(to~)- 0(to~)}, omitting the terms that do not depend 
on 0(too) and a factor 2. When an appropriate weighting by frequencies is 
introduced, this leads to (3.7). Clearly this is maximised by taking 0(too), on  

average ,  as near to the 0(to~) as possible remembering that it, 0(to~), can be 
varied only by varying ~-. Since {1 -  O-2(O.)v)}/O'2((Dv) is (essentially) proportional 
to the variance of 0(to~), the weighting is clearly the appropriate one. The 
numerical approximation to the steering of an array described above is called 
'delay and sum beamforming'  and the additional detail in (3.6) and (3.7) is due 
to the appropriate weighting of frequencies and a certain amount of re- 
arrangement. The word 'beamforming' occurs because of the duality that exists 
between the problems of arranging an array to optimally receive, and to 
optimally transmit a signal in a given direction. 

Under  rather general conditions the ~ may, asymptotically, be treated as 
normal with mean ~- and variance covariance matrix T -x V -~, where V may be 
estimated as 

[1 ~ ~crJk(tOv)~k(tOv)OO~aV)O~.k(tO~) ] (3.9) 
toyed+ j<k  tgTb I a, b= 1, 2 . . . .  " 

Here ~'a is the a th  component  of ~'. Thus in case ~- = c-l~b, then (3.8) becomes 
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[1  ~ ~o~ 2 04k(~o~)l(rjk(O)~)(P"(]) - p.(k )}{pb(j)- pb(k )} ] , 
ff~+ j<k 

(3.10) 

and in case r = 2 and r = (p(1)-  p(2), ~b)/c, this becomes 

1 (3.11) 

There is no doubt that these procedures would be very effective and that 
under most circumstances met in practice the asymptotic theory would apply 
well but O'~k(~O) will not be known and care must be exercised in its estimation. 
The most obvious procedure is the use of 

[E,o Wj(~o~)Wk(CO~)I (3.12) 
~ ( ~ )  = ~ lw , (~o~) l  = ~ Iw~(~)l=~ '~ '  

where the same notation is used as in (2.5), and (3.12) is computed for 
to = 27r]/T and such j as make this value lie in N+. A main problem is again the 
possibility that errors in the estimation of O'jk(~O) will dominate. It should be 
observed that (m - 1)6"~k/{1 -- 6-~k} is approximately distributed as F with 2 and 
2m - 2 degrees of freedom. Hence for values of m likely to be used in practice 
6"jk(~O) does not differ from zero at any reasonable significance level unless it is 
above 0.30 (i.e. 6-~k > 0.09). It is likely that low values of 6"jk(~O) will occur at 
higher frequencies. It is then dangerous to include these frequencies because, 
as (3.11) shows, they have high weight in the formulae and if a spuriously high 
value of O'~k(COo) leads to overweighting, then an inaccurate estimate of z may 
be obtained. Of course, in practice, the range of frequencies that should be 
used may be known because the range over which the signal is present and the 
range over which the apparatus responds to the signal may be known. It is also 
known that (3.12) will be biased down if Ojk(O~) is not zero and the delay 
(p(j)-p(k),q~)/c(aO, relatively large. Usually the value of this delay is ap- 
proximately known, in which case the yj(t) can be rephased so that this is small. 
This should always be done. If no such information is available, then a first 
estimate of -r could be used to obtain estimates of the delays and the rephasing 
could be done on this basis. 

The calculation of ~ may be aided by the use of a fast Fourier transform 
algorithm. Consider (3.7), for example, for ~- = (p(1)-  p(2), q~}/c. Let M be the 
period of O(r), i.e. M = T/b where b is the largest v for which ~o, E/~÷. Then 
for r = t/2, t = 0, +1 . . . . .  +-M, O(~') becomes the real part of 

where Co 

1 2T 
C~ expO21rvt/2T), (3.13) 

is 2To'2(a~)/{1- ~r2(co~)}exp{-i0(r9~)} for ~o~ E ~ and is otherwise 
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zero. We may evaluate Q(z) for r = t/2 by fast Fourier transformation of the 
Co, choose the value of t/2 maximising Q(t/2) and then locate the actual 
maximum by a standard function optimisation routine. In more elaborate cases 
a similar procedure may be used. For  example, when r = 2 and c(~o)= co~ -1, 
~o > 0, then r = c - l ( p (1 ) -  p(2), ~b) as before and we must break the range of ~o 
into subranges over which ~0 2 is nearly linear and proceed as above to evaluate 
Q(z)  at a discrete set of points in each subrange. 

Finite parameter  models such as (1.2) could be used for the present situation 
and one use is given in Section 2. Such methods are more easily put into a 
recursive form suitable for real-time calculation but we do not discuss that 
here. 

Often the signal will not be stationary, though it is usually relevant to treat 
the noise as stationary. The essential point concerning transient signals is that 
the w~(to) will now vary smoothly with to and not in the chaotic fashion that the 
discussion below (1.6) indicates. 

Thus if we call wx(to) the Fourier coefficient of x(t), the signal recorded at 
the origin and w(to), w,(to) the vectors of yi(t) and noise Fourier  coefficients, 
then, approximately 

where 

= 

= aj ( ,o . )  exp i{~o~(p(j), 

(3.14) 

We shall, however, here discuss only the case where there is no attenuation. Now 
put 

(w)(,o) = 1E w(,oo), 
m a~ 

(3.15) 

using the same notation as in (2.5) and (3.12). Then, provided the transient 
signal is phased so that it is concentrated near t = 0, approximately 

= + (3.16) 

since w, and ~ are smooth features of ~0. The requirement that x(t) not be 
rephased is forced by the fact that a substantial rephasing, by T/2 for example, 
would introduce a factor exp(io~T/2) into wx(o~) which oscillates at such a high 
frequency that averaging over a band of m frequencies would reduce (wx)(~o~) 
well below wx(~oo) in magnitude. Of course, for m = 1 this would not be so. We 
are averaging in (3.15) so as to enhance the signal-to-noise ratio since each 
component  of (w,)(oJ) will have a mean square near m -1 by the mean square of 
that component  of w,(a0. This will be vitiated if (wx)(~o) is much less than 
w~(oJ) in magnitude. 

We may choose ~- by minimising 
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E [{(W)(O')v)- Wx(O')v)~(O')v)}*fn(('Ov)-l{(w)(o)v)- Wx((.Ov)~(f.Ov)}] 
fig+ 

with respect to z and the wx(oJo). This is the same as maximising with respect to ~- 
the function 

0 0 - )  = E (3.17) 
fi+ 

The quantities 

1 
m 1 - 1  

~ {w(too) - (w)(too)}{w(to~) - (w)(tov)}* = )~(to) (3.18) 

may be used to estimate f,(e0~), where now E,o is a sum over a band of ml 
frequencies centred at to. Here ml is chosen having in mind the smoothness of 
f,(~o) while m in (3.15) reflects the smoothness in wx(a 0 and ~(eo). Note that in 
this treatment no assumption of incoherence between the noise series is required. 
An asymptotic theory can be constructed for such methods but we do not go 
into that here. Of course, the weighting by f~(a~o) -1 in (3.17), or for that matter 
the weighting in (2.4) and (3.6), could be replaced by a priori chosen weight 
function, for example f~(eo) -- L. If m -- 1 this would have to be done in (3.17), 
the formula then becoming 

= 1 E 2 
r fi+ (3.19) 

since ~'*(tov)ff(to~) = r. For that matter if f,(oJ) is diagonal, ~'*(tov)f,(to~)-l~(to~) is 
again independent of ~-. In (3.19) or when f~(to~) is diagonal the calculation of 
O(~') may again by simplified by using a fast Fourier transform algorithm as in 
(3.13). Of course, (3.19) may be used in the stationary case also. 

We conclude by mentioning that the virtue of methods such as those based 
on (3.17) or (3.19) is that they lend themselves to the multiple signal case. Thus 
since (3.19) is valid whether or not the signal is stationary, it could be used to 
obtain initial estimates for the multiple signal case. 

Bibliographic Notes 

Section 1 

A general reference on time-series methods is Hannan (1970). The chapters 
on "Wiener Filtering" (Chapter 1), "Likelihood Ratio Tests on Covariance 
Matrices and Mean Vectors of Complex Multivariate Normal Populations in Time 
Series" (Chapter 20), "Frequency-Domain Analysis of Multidimensional Time- 
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Series Data" (Chapter 15), "Review of Various Approaches to Power Spectrum 
Estimation" (Chapter 16) and "Computer Programming of Spectrum Estima- 
tion" (Chapter 19), in this volume, also contain basic information for this 
chapter. The model (1.2) has an enormous literature surrounding it commenc- 
ing from Kalman (1960). A special issue of IEEE, Automatic Control AC-19, 
No. 6, December 1974 dealt with this model. For results of the type of (1.6) see, 
for example, Hannan (1970). The result concerning Fr(x), and related results, 
is given in Chen and Hannan (1980). 

Section 2 

Techniques of the kind in (2.4) were introduced in Hamon and Hannan 
(1963). There is quite a large subsequent literature concerning them. See, for 
example, Engle (1974) and Doran (1976). The method based on (2.7) and (2.8) 
is introduced in Chan, Riley and Plant (1980). 

Section 3 

A special issue of IEEE, Acoustics, Speech and Signal Processing ASSP-29, 
No. 3, June 1981 is devoted to delay estimation and this volume contains a 
great deal of information about the subject of Section 3. Formula (3.6) was 
introduced in Hamon and Hannan (1974). See also Hannan and Thomson 
(1973). The techniques based on (3.16) were introduced in Cameron and 
Hannan (1979). The techniques based on (3.6) have also been used by other 
people. See Carter (1981) for references. We emphasise again the wide range of 
problems in this area and the narrow range covered in this survey and again 
refer the reader to the special issue of IEEE, ASSP-29 mentioned above. 
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Complex Demodulation: Some Theory and 
Applications* 

T. H a s a n  

1. Introduction 

Complex demodulat ion may be viewed in part  as a narrow-band filtering 
technique which lets one look at the components of a t ime series, within a small 
frequency band of interest, as a function of time. Operationally,  it is much like 
heterodyning which is used, for example,  in A M  radio to process information 
carried through the ampli tude and phase modulations.  The theory of modula-  
t ion/demodulat ion is therefore a well-established and often-used technique in 
communicat ions (e.g. see Brown and Palermo,  1969). 

The original motivation for the use of this technique in time-series analysis 
was provided by Tukey (1961) who pointed out its usefulness for viewing the 
components generating either a peak  in the spectrum of a series, or, a 
frequency of interest, as a narrow-band signal. Since the method of complex 
demodulat ion shifts each frequency of interest to zero and then applies a 
low-pass filter, the author observed that it made  sense to look at the resulting 
low-frequency images of the more  or less gross-frequency components  of the 
time series as they wbuld be more  evident to the eyes. 

This technique has the further  advantage of producing  statistics which can be 
used in many  data analytic and formal statistical procedures.  For example,  it 
may be used to detect the presence of narrow frequency band signals, to 
examine a stretch of series for stationarity or to estimate the arrival t ime of a 
transient signal (Childers and Pao, 1972). Alternatively, one can construct tests 
based on the complex demodulates  in order  to formalize the above procedures.  
The technique may be used to est imate t ime-dependent  spectra (Priestley, 
1965) and has p r o v e n  invaluable in situations requiring estimation of higher- 
order spectra (e.g. Godfrey,  1965a; Hube r  et al., 1971). Complex demodulat ion 
has also proved useful in pitch detection by use of a modified procedure called 
' saphe cracking'  (Bogert, Healy  and Tukey,  1963). It  has been used in the 

*This manuscript is part of the author's doctoral dissertation, written at the University of 
California at Berkeley. The research was supported in part by US Public Health Service Grant 
USPHS ES01299-14 and National Scienc e Foundation Grant MCS 7801422. 
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search for a series X(t), driving an observed series Y ( t )  (Brillinger, 1973). In 
cases of frequency modulation where the frequency of the dominant spectral 
peak increases linearly (and slowly) with time, e.g. tot = a + fit, demodulation 
with a time-varying frequency has been successful in estimating the slope fl 
(Munk et al., 1963). By 'remodulating' the demodulates we essentially obtain a 
narrow band-pass filtered version of our original series, denoted X( t ,  tO), which 
can then be used in principal components and canonical analyses of time series 
(Brillinger, 1975). Finally, the method of complex demodulation has proven to 
be very useful in estimating the parameters in certain models in earthquake 
analysis (Bolt and Brillinger, 1979). 

In Section 2, we introduce the basics of complex demodulation and present 
some known results. Section 3 is concerned with formalizing the statistical 
properties of the demodulates and some statistics based on them. Of special 
interest are the subsections on spectrum estimation and the setting of ap- 
proximate confidence intervals. The applications are presented in Section 4, 
along with a large sample result for estimating the parameters in a class of 
models of the form 

K 

X ( t )  = ~ .  R r ( t ;  Ok) COS(tokt + 6k) + E(t), (1.1) 
k=l  

where e(t) is a stationary, mixing time series, {Ok, tok, 6k} are the parameters to 
be estimated, and where the superscript T denotes the dependence of the 
amplitude function upon the length of the series. 

2. Basics of complex demodulation 

In this section we introduce complex demodulation: the methodology, com- 
putational procedures, some general results and a discussion on filters. 

2.1. Methodology 

Let X ( t ) ,  t = 1 . . . . .  T, be a realization of the time series of interest. 
Operationally, complex demodulation requires that we first form a frequency- 
shifted series 

Y ( t )  = X ( t )  exp{-i~oot}, 

where tOo is the center frequency of the band in which we want to view the time 
series. We note that complex multiplication is necessary to discriminate be- 
tween the frequencies too + 8 and to0-8, where 8 is typically small, after the 
frequency shift. Next, we smooth the series Y ( t )  by low-pass filtering, that is, 
by forming 
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L 

Wmx(t, wo) = E a(u)Y(t+ u), (2.1) 
u = - L  

where {a(u)}, u = - L  . . . . .  0 . . . . .  L, are the nonzero low-pass filter 
coefficients. We shall assume that a(u) is of the form h(u/L)/Hm(O), where 
h(v), -o~ < v < 0% is bounded, is of bounded variation and vanishes for Ivl > 1, 
and 

L 

Hm0t) = ~] h(u/L)exp{iAu}. (2.2) 
u = - L  

If the following condition is satisfied, 

[1+ lul~]la(u)l < ~  
U=--av 

for some A > 0, then we can define the transfer function of the coefficients 
{a(u)}, A(A), as 

A( A)=  ~] a(u)exp{iAu}. (2.3) 
u = - ~ o  

We note that A(A) takes on the value 1 at zero frequency which is why we have 
defined a (u) as above. The functions h (u/L) are usually called data windows or 
tapers. 

W~(t, too) appearing in (2.1) is called the complex demodulate at time t and 
frequency too. We shall usually suppress the use of too in the argument in 
Wmx(t, too) which we shall then denote simply as W~(t). 

Let  us denote  the real and imaginary parts of W~(t) by Wl(t) and W2(t), 
respectively. Furthermore,  we note that since Wmx(t) is complex-valued, we cari 
also write it as 

w~(t) = I W~(t)l  exp{- i~b~(t )} ,  (2.4) 

where IW~(t)l is the instantaneous amplitude and ~bxm(t) is the instantaneous 
phase. 

As pointed out by Tukey (see Ref. [28]), the term 'instantaneous' statistically 
implies a stretch of time long enough to provide many degrees of f reedom on 
the frequency band that leads to an (averaged) estimate at time t. It should be 
clear then that I w (t)l and ~bxt(t) represent,  respectively, estimates of the 
'average'  amplitude and 'average'  phase in the frequency band (to0-+ 6), evalu- 
ated in the neighborhood of each time instant t. Similarly, C01W~(t)p, where Co 
is some constant proportional  to the bandwidth of the filter used in demodulat- 
ing, can be thought of as the estimate of the 'average' power evaluated in the 
neighborhood of the time-instant time t (see Priestley, 1965). 
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It is well known that if the series X(t )  is wide-sense stationary, that is 
EX( t )  = c~, cx constant, and cov{X(t+ u), X(t)} = G~(u), then there exists a 
random measure dZx(to) such that 

X( t )  = exp{itot} dZx(to). (2.5) 

By use of representation (2.5), the complex demodulate  at frequency too can be 
written as 

W~(t) = ~ a(u exp{i(to - to0)(t + u)} dZx(to) 
u 7r 

= A (to - too) exp{i(to - too)t} dZx (to). 
qr 

(2.6) 

In order to make certain approximations to the integral in (2.6), we shall 
assume that A(to) corresponds to the transfer function of an ideal low-pass filter 
centered at too with bandwidth 2/t, that is, 

A(to) = 1 for Ito - to0[ ~< A, 

= 0 otherwise,  (2.7) 

for - I t < t o < I t  and A small. In this case, A(to) does not satisfy (2.3). 
However,  it is still possible to define the output of such a filter as a limit in 
mean square, so that 

W~(t) = f~o+a exp{i(to- too)t} dZ~( to ) .  
J to0-A 

(2.8) 

We shall make further use of this representation in illustrating some statistical 
properties of the demodulates. 

2.2. Examples 

Let  us now consider complex demodulation of the following series: 

X ( t ) =  R(t)  cos(tot+ 8) ,  t = 1 , . . . ,  T,  (2.9) 

where R(t)  is a known amplitude function. Frequency shifting by too, we obtain 

V(t) = X( t )  exp{-ito0t} 

= ½R (t){exp{i[(to - to0)t + 8]} + exp{-i[(to + to0)t + 8]}}. 
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If R( t )  is slowly varying I and if tO is close to tOo, then the result of low-pass 
filtering the series Y( t )  using coefficients with the transfer function given by 
(2.7) is 

W~(t) ~- ½A(O)R (t) exp{i[(tO - tOo)t + 6]}. (2.10) 

Since, by definition, A(0) = 1, we obtain the following approximate  expressions 
for the instantaneous ampli tude and the instantaneous phase: 

and 
I W~(t)l ~ ½R (t) 

arg W~(t)  ~- (tO - tOo)t + 6. 

(2.11) 

(2.12) 

Usually we will want to plot either I WNt)l or log I WL(t)[ and arg W f ( t )  against 
time. 

We  now present a few examples of complex demodulat ing the series (2.9) for 
different forms of R(t) .  

EXAMPLE 1 (Constant). Suppose R ( t ) =  R, t = 1 . . . . .  T, then (2.11) becomes 

I wNt)l ~ ½R. (2.13) 

Expression (2.13) indicates that if we plot the instantaneous amplitude against 
time, we can expect a near  constant plot near  R. The instantaneous phase 
(modulo 2~-) will give segments of straight lines with slope (tO - tOo) as indicated 
by (2.12). Such an appearance  of the phase plot, called spiralling, suggests the 
presence of a periodic component  with period near  2~'/tO0. 

EXAMPLE 2 (Beating Waves). Suppose R( t )  = R cos r/t with ~/ very small and 
,7 ~ tOo, then expression (2.11) becomes 

I Wf(t)l ~ R Icos r/tl.  (2.14) 

Now the plot of the instantaneous amplitude will have the appearance  of 
fluctuating slowly as ]cos ntl. 

EXAMPLE 3 (Exponential  Decay).  Suppose 
becomes 

I W~(t)l = ~ exp{-f l t} .  

R( t )  = t~ exp{-flt}, then (2.11) 

(2.15) 

tPriestley (1965) provides a more formal discussion of 'slowly-varying' (or 'evolutionary" as ne 
calls it) processes. Heuristically speaking, for (2.10) to hold even in an approximate sense, it is 
necessary that the length of the filter be much smaller than the maximum interval over which the 
underlying process may be treated as approximately stationary. In this case, we can use standard 
linear filter theory despite the nonstationary character of the input. 
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Suppose we take the log of the instantaneous amplitude, (2.15) then becomes 

logl W~(t)l ---- -/3t + log ct. (2.16) 

When plotted against time, (2.16) will give us an approximately straight line. 

2.3. Ramifications 

(1) As we saw above in Example 3, the log instantaneous amplitude function 
is approximately linear in t when X(t) is an exponentially decaying cosinusoid. 
Therefore, it seems reasonable to fit a least-squares regression line and obtain 
estimates for o~, ft. For other forms of R (t) we could also consider some type of 
curve fitting. 

(2) We could also consider fitting a line to a linear segment of the phase plot 
and thus obtain an estimate of the slope (to - too), call it A, appearing in (2.12). 
We could then complex demodulate the original data again at frequency too + A 
and the procedure could be iterated until the phase plot was approximately 
constant over time (at least in stretches of interest). Once the phase was near 
horizontal, we would be essentially getting at an estimate of the phase angle & 

(3) For the instantaneous phase, ~b~(t), it also makes sense to look at the 
derivative, d~b ~(t)/dt, to see how the phase angle is changing with time. This might 
be useful for estimating arrival times for transient signals. 

2.4. Some computational considerations 

There are a variety of computational considerations suggested in Bingham, 
Godfrey and Tukey (1967). For example, the paper points out that we need 
approximately 6 + 4L computations per data point. To reduce the number of 
computations, the authors suggest that 

(1) We use decimation. That is, since we have low-pass filtered the shifted 
series, we do not lose much information by computing the complex demodu- 
lates at every Dth  point, where D = L/a; i.e. some fraction of L, instead of at 
every value of t, t = 1 , . . . ,  T. In this case we will need approximately 6+  4a 
computations per original data point and we of course expect 

6 + 4 a ~ 6 + 4 L .  

(2) We do the computations via a fast Fourier transform (FFT) algorithm. 
That is, first compute the FFT of the entire time series 

dr = ~ X ( t )  exp - - -  f o r s . = 0 , 1 , . . . , T - 1 .  (2.17) 
t = l  

Next, we multiply by a suitable transfer function, Ar(A), which is centered at 
2Zrso/T ~- A0, the frequency of interest, and is zero except over a relatively short 
band of frequencies. Finally, let us shift the result by 2~rso/T and take the 
inverse Fourier transform. This will yield 

1 N - 1  - -  . . . . .  ~'~ d r (2~r ( s ;  s°))Ar(2~r(s~-s°))exp{'2"rr(s~--s°)t}, (2.18) 
S * - - $ 0 = 0  
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where N = ¢/-{s* E S}. We recognize this as the complex demodulate at time t 
(e.g. compare with (2.6)). 

The authors point out that a possible disadvantage of this method is that we 
have replaced a transverse filter of limited length by a circular filter extending 
over the entire time series. So we now have to worry about leakage across time 
rather than frequency. 

2.5. Use of complex demodulation to obtain a band-pass filter and the 
corresponding Hilbert transform 

We now give a result, well known in the communications theory literature, 
which indicates how complex demodulation may be used to obtain a band-pass 
filtered version of a series, X(t), and its corresponding Hilbert transform, 
Xn(t) .  Let 

Vl(t) = Wl(t) cos toot ~- W2(t) sin toot, 

V2(t) = Wl(t) sin toot - W2(t) cos toot, 
(2.19) 

where Wl(t) and W2(t) are the real and complex parts of the complex 
demodulate, W~(t), and tOo is the frequency of demodulation. We now have 

LEMMA 2.1. Let (a(u)} be a filter with transfer function A(tO), -oo < tO < 0% then 
the operation carrying the series X(t), -oo < t < oo, into the series Vl(t) of (2.19) is 
linear and time invariant with transfer function 

B(to) = A(to - too)+ A(to + tOo) (2.20) 
2 

The operation carrying the series X( t )  into V2(t) of (2.19) is also linear and time 
invariant with transfer function 

C(to) = A(to - too) - A(tO + too) 
2i (2.21) 

[] 

We note that if 

A(tO)--{~ f°r[tO["<A'A s m a l l ' - ~ ' < t o < ~ " o t h e r w i s e ,  (2.22) 

then expression (2.20) becomes 

for ItO+ oot A,- r<tO, tO0< , 
B(tO) -- otherwise, (2.23) 

which is the form of the transfer function for a band-pass filter, centered at tOo, 
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and (2.21) becomes 

Which is the form of the transfer function for the Hilbert transform. 

for Ito - to01 ~< A, 

for [to + to01 ~< A, -zr < to, too < zr, 

otherwise, 

(2.24) 

2.6. Filters 

There is a vast amount of time-series literature written on the subject of 
filters. The usual considerations that are taken into account to make a choice in 
this matter will of course also apply when using complex demodulation. We 
shall, therefore, only briefly discuss some of the filters that have been used in 
conjunction with complex demodulation. 

Bingham, Godfrey and Tukey (1967) discuss filters made up of k successive 
equal-weight moving averages of length 2L/k + 1. For k - 1 we have what is 
known as the simple moving average. Granger and Hatanaka (1964) point out 
that a second application of the simple moving average of length 2 M +  1, 
where M ~< 1, leaves the first zero of the transfer function unchanged; and if 
.M = L the effect on the transfer function is that the ratio of the side peak to the 
main peak becomes approximately 4.5% (compared to 21% for a single 
application of the moving average). The following rule of thumb is proposed by 
the authors in using the above procedure: if we wish to demodulate the 
frequency band (too --- 6), the length of the first moving average should be such 
that [27r/(2L + 1) -  6] is small. Since shifting the frequency of interest too down 
to zero has caused what was at the zero-frequency point to be shifted to too, the 
authors also suggest that the second moving average (of length 2M + 1) be 
chosen such that [too - 27r/(2M + 1)] is as small as possible. 

Filters for complex demodulation, other than those based on combinations of 
moving averages, are discussed, for example, in Bloomfield (1976) and Childers 
and Pao (1972). In analyzing earthquake data where the phenomenon of split 
peaks often occurs, the use of a raised cosine taper had been suggested by Bolt 
and Brillinger (1979). 

Filtering can also be carried out in the frequency domain, specifically, via the 
fast Fourier transform (FFT) algorithm discussed earlier. Besides com- 
putational efficiency, such a procedure would also allow us to compute the 
derivative of the instantaneous phase with (see Anderssen and Bloomfield, 1974). 

3. Statistical properties 

In this section we shall be concerned with certain statistical properties of the 
complex demodulates and the spectral estimates obtained through them. Un- 
less otherwise specified we assume throughout that X(t ) ,  t = 0,---1,. . . ,  the 
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time series of interest, is wide-sense stationary. This will enable us to use 
representation (2.5) to illustrate the properties. We also assume that the 
well-separated values of the time series are only weakly dependent. This last 
property, known as mixing, may be written as 

~ . . .  ~ [cumulant{X(t + Ul) . . . .  , X ( t  + Uk), X(t)} I < oo. (3.1) 
Ul Uk 

Brillinger (1975) discusses in detail the ideas underlying condition (3.1). 

3.1. First- and second-order moments of demodulates 

Using (2.1) it can be shown that 

EW~(t)  = A(tOo) exp{-itOot}Cx (3.2) 

where E X ( t ) =  c~. 
So, for example, if A(tO0) corresponds to the transfer function of a simple 

moving average, with filter coefficients a(u) = 1/(2L + 1), u = - L  . . . . .  0 . . . . .  L, 
then 

sin ~ r-o 
EWe( t )  = exp{-ioot}Cx. (3.3) 

(2L + . OJo 1) sin ~-  

Expression (3.3) tells us that for tOo ~ 0 mod 27r, EWe( t )  will be approximately 
zero for large L (as T -0 ~), even when EX( t )  = cx ~ O. This is not surprising in 
view of the fact that the complex demodulate, when suitably normalized, 
behaves like a finite Fourier transform (which also shares this property), 
computed in the neighborhood of t. We shall explore this relationship further 
later in this section. 

The result discussed above will of course hold for any filter whose transfer 
function satisfies (2.3). 

To find the covariance between the demodulates we note that 

Thus 

W~(t + u) = A(w - Wo) exp{i(oJ - OJo)t} exp{i(to - OJo)U} dZx(oJ). 
~r  

(3.4) 

cww(u) = cov{WxL(t + u), W~(t)} 

= [A(A - to0)l 2 exp{i(h - to0)u}f=(A) dh ,  
$ r  

(3.5) 

where fx~(A) is the power Spectrum of the series X(t )  at frequency A. 
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Since [A(A - 0)0)[ 2 is bounded by definition and f=(h)  is bounded under the 
mixing condition (3.1), we can see immediately by the Riemann-Lebesgue 
lemma that cw~(u) will tend to zero as u ~ .  For example, if A(A-too)  
corresponds to an ideal low-pass filter, then 

Cww(U) = f,oo+a exp{i(A - too)u}fxx(A) dA. 
J too- ,d 

(3.6) 

For small A, we can approximate this by 

~ to0+ A 
fx~(too) exp{i(h - too)U} dh = f=(too) - -  

J mO-A 

2 sin h u 
(3.7) 

We see that as u ~ % Cww(U) tends to zero, although the rate of convergence is 
quite slow. It should be clear that if X( t )  corresponds to white noise, then 
demodulates farther apart than the length of the filter will be independent. 

Fur thermore,  if we take the Fourier transform on both sides of (3.6), we 
obtain 

where 
fww (h) = 2fx (too)A (A ) 

A(A) : {~ if IAI~A' 
otherwise. 

(3.8) 

This shows that the power spectrum of the complex demodulate is box-car 
shaped at zero frequency, as we would expect, with magnitude proportional to 
the power spectrum of the original series, X(t), at frequency too. 

The covariance between demodulates at different frequencies is also of 
interest. Once again, using (2.6) we see that this covariance is given as 

cov{W~(t, o,1), w~(t, to2)} 

f_'f  = A(A1- tol)A(h2- to2) exp{i(hl- tol)t} exp{-i(h2-  to2)/} 

×j6 (h~ -  hE)fx~(A1) dA1 dA2 i, (3.9) 

where 8(h) is the Dirac delta function (e.g. see Papoulis, 1962). Again we note 
that for an ideal low-pass filter, the transfer function is given by 

~1 if toi-  A <~Ai~<toi+A,-7r~Ai ~<7r, A(A1-tol) = 
L0 otherwise 

for i - 1, 2. So for 10.) 1 - -  O.)21 > A 

cov{W~(t, (.Ol) , wL(t,  0.)2)} = 0 .  
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We can also show that  if X(t) is wide-sense stat ionary and Gaussian, then 

/~ log[ W~(t)[ = log[EWLx(t)[ + O(L¥ 1) (3.10) 
and 

L cov{logl0l Wx(t + u)l, lOgl0l W~(t)l} 

+ Re  ~'~ A ( w -  wo)A(-oo- too) exp{icou}fx~(¢o) doJ ] 
, - .  A(wo) 2 

= O ( L ¢ ) ,  (3.11) 

where /~ and cov denote  the expected value and the covariance derived in a 
term by term manner  f rom a Taylor  expansion. We have subscripted L by T in 
(3.11) to emphasize that  we mean  L - ~  as T ~ .  

3.2. First- and second-order moments of instantaneous power ordinates 

As we ment ioned  in Section 3.1, we can think of [W~(t)] 2 as being propor- 
tional to the instantaneous power at t ime t. We shall develop this concept more 
fully in the next subsection. In the meant ime we note  that  

cov{[ W~(t + u)l 2, I WxL(t)p} 

f_° f) f_" )n( = A(A - Ao)A(A' - Ao)A(/x - )to / z ' -  Ao) 

x exp{i[(A - A') + (/z - / z  ')]t} exp{i(A - )t ')u} 

× cov{dZx(A) dZx(A'), dZ~(/x) dZx (/z')}. (3.12) 

If we assume fur ther  that  X(t) is Gaussian, we can show that  

cov{[ W~(t + u)[ 2, ] Wxr(t)l 2} 

= A(A - ho)A(-,~ - Ao)A(A'-  A o ) A ( - A ' -  )to) 
"tr 

f;f; × exp{i(h - A')u}f,~(h)f~(A') dh d h ' +  ]A(A - 10)12 

2 exp{i(A - h')u}f~(h)f~(A') dA dA' .  (3.13) 

So assuming that  the spectrum is reasonably smooth over the bandwidth of 
the spectral window A(A), we obtain approximately,  

c°v{I WLx( t + u)l 2, I Wx (t)l 2} ~- 4f~x (A0) 2 Sin2 A u u 2 (3.14) 
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Expression (3.13) may also be used to show that 

varl W~(t)l 2---- 4A2fx~ (A0) z (3.15) 

and, thus, 

L "2" sin 2 A u  
corr{lW~(t+ u)[ 2, JWx(t)l t -~ ~ • (3.16) 

3.3. Spectrum estimation 

Perhaps one of the most important applications of complex demodulation is 
spectrum estimation. This approach is most fruitful when dealing with 'slowly- 
evolving' or 'evolutionary' (nonstationary) time series because it gives us a 
spectrum estimate which represents the average power of the process in the 
neighborhood of each time instant t for each frequency (band) of interest. It 
also preserves the phase information of the series (at each frequency) which 
ordinary spectrum estimation suppresses. 

The theoretical foundation for carrying out spectral analysis of such proces- 
ses was developed by Priestley (1965) in his work on 'evolutionary spectra'. 
Priestley assumes that the spectrum is changing slowly over time (a measure of 
which he defines) and then by using estimates involving only local functions of 
the time series, he defines some form of 'average' spectrum which essentially 
has the same type of physical interpretation as the spectrum of a stationary 
process. His technique for estimating the evolutionary spectrum for discrete- 
parameter nonsiationary processes is essentially identical to the spectrum 
estimate proposed below using complex demodulates. 

We define the running periodogram as 

where 
,L , ,  tO) = BzllW~(t ,  tO)12 (3.17) 

L 

BL = 27r E a(u) 2 (3"18/ 
u = - L  

is the bandwidth parameter and {a(u)} are the low-pass filter coefficients. 
It can be easily shown that if X ( t )  is wide-sense stationary, 2 then 

(i) ElL( t ,  tOo) = B•  1 ]A(tO - tO0)JEfxx (to) dtO.  (3 .19)  

2Priestley (1965) gives similar results for the evolutionary spectrum for the case where X(t) is an 
evolutionary process. 
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If we also assume that X(t) is Gaussian, then 

(ii) cov{I~(t, too), I~(t + u, too)} 

= BZ 2 A(to - to0)A(-to - to0)A(to' - to0)A(- to ' -  too) 

x exp{i(w - to')u}f~x(to)f,=(to') dto dto + BE 2 ]A(to - too)l 2 

×tlA(to'- ,o0)12 exp{i(to - w')u}f=(to)f=(to') dto dto'. 0.20) 

Furthermore,  if X(t) is strictly stationary and mixing, then 
(iii) I~x(t, too) is approximately distributed as 

(x~/2)f=(to0) for too # 0 mod 27r 

and as 

X2f=(to) for too = -+¢r, ---3~ . . . . .  

Expression (3.19) is seen to be a weighted average of the power spectrum of 
the original series, X(t), with weight concentrated in the neighborhood of too, 
the frequency of demodulation, and relative weight determined by the filter 
coefficients. If we let the {a(u)} correspond to a simple moving average, then 

A(to-too)-sin [2-L2+~1 (to - to°)] (3.21) 

(2L+ 1 ) s i n [ - ~  --~] 

and in this case 

I 1 '2 EILxx(t'to°)=2~l~-'~ (-~L + ~) ~ - i n [ - ~  f=(to) dto. (3.22) 

So, I~(t, too) will be an approximately unbiased estimate of /=(to0) if 
too # 0 (mod 2~r) for large L (as T---> oo). 

Turning to the covariance term (3.20), we see that it may be reexpressed as 

cov{I~(t, too), Iz=(t + u, too)} 

= lBEl f_~a(to-too)A(-to-too)exp{itou}f=(to)dto 2 

+ BZlf_~la(oJ-too)12exp{itou}f~x(to)dto] 2 (3.23) 
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The first term appears to be a contribution from near the origin, while the 
second term is a convolution form over all frequencies except those near the 
origin. 

We are, of course, interested in finding out how far apart the running 
periodogram ordinates must be in order for them to be approximately in- 
dependent. This, in general, will depend on both the behavior of the true 
spectrum, f=(~o), near oJ0 and the particular data window employed. Of course 
for white noise, I t ( t ,  o~0) and l~ ( t  + u, oJ0) will be independent for lul/> 2L + 1. 

To see why (iii) holds, assume for now that the low-pass filter used in 
demodulating the series corresponds to a simple moving average. Then 

1 L 
W~(t) - 2L + 1 .~"L--~ X ( t  + u) exp{-ito(t + u)}. 

Now let us make the following change of variables 

Then 

and 

T ' = 2 L + I  and u = v - L .  

1 T ' - I  
W~(t) = T--7 ~'~ X( t  + v - L) exp{-io~(t + v - L)} (3.24) 

v=0 

(2~rT') -1 r'-i exp{-io~v} 2 (2~-) -1T' I WxL(t)p -- ~] X( t  + v - L) . (3.25) 
V=0 

Recall that the periodogram of the values X(0) . . . .  , X ( T  - 1) is defined as 

T-1 2 
IxTx(~o) = (27rT) -1 ~ X(t)exp{-k0t}  . 

t=0 
(3.26) 

We can thus interpret (3.25) to mean that the running periodogram at time t 
behaves like a periodogram ordinate computed in the neighborhood of t. It is 
well known (e.g. see Brillinger, 1975) that the distribution of a periodograrrl 
ordinate can be approximated by X~. 

The extension of the above argument to the case where the filter coefficients 
{a(u)} correspond to an arbitrary low-pass filter is quite straightforward. 
Brillinger (1975) defines a weighted periodogram as 

Ixx(to) = [2"rr ~t h(t/T)z]-ll ~ h(t /T)X(t)exp{-kot}  2, (3.27) 

where h(v) is the data window whose transform is given by (2.2). If we assume 
that a(u)= h(u/L)/HL(O), then 

L 
W~(t) = (HL(O)) -1 ~ h(u/L)X(t  + u) exp{-i~o0(t + u)}. 

u = - L  

(3.28) 
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Following the same steps as before  we see that  

I~(t, tOo) = [HL(0)] 2 2Ir ~'~ h(u/L) 2 [HL(0)] -2 ~ h 
u=-L A I u = 0  

( t  + v - L) exp{-itOoV} 

= [2~r ~ h ( u / L ) 2 ] - l ~  h( -~-~-)  
u=-L v=O 

x X ( t  + v -  L) exp{-itO0v} 2. (3.29) 

Estimate of f=(to) 
We now turn to the problem of obtaining an est imate of the power  spectrum 

at the frequency of demodula t ion.  Le t  us define 

1 T-I  
fl~(to) = -~ ~ IL(t, to) (3.30) 

t = L + l  

where N = T - 2L. Then,  if X(t )  is wide-sense stationary with zero mean,  

(i) Ef~(Oo) = BL 1 [A(to - too)12f=(o) dto. (3.31) 

Further ,  under  the Gaussian assumption, 

f fr (ii) var f~(too) = N - 2 B z  2 ~" A(to - too)A(- to -  tOo) 
z r  

× A ( t o ' -  too)A(-to' - ~Oo) sin2 N[(to - to')/2] 
sin2(to - to')/2 

x/~x(to)fx~(to') dto dto + N-2Bz  2 IA(tO - tOo)l 2 
7r 

sin 2 N[(to - to')/2] fxx(to)f=(tO') dtO dtO'. × A( tO ' -  tOo)l 2 sin2(tO - tO')/2 

It can also be shown that  

(3.32) 

fl~(too) = HL(too -- ot)I~x(a) dot, (3.33) 

where  
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E ~ E L a (u )a(u  - r) exp{-iar} 
HL(a)  = r=0 u=,-L EuL=-t. a(u)  2 (3.34) 

The estimate of f~(~o0) is seen to be a weighted average of periodogram values 
over frequencies that range over the bandwidth of the spectral window HL(a) .  
If we assume that the spectrum is fiat over the bandwidth of I-IL(a), then 

and 

var fn~(¢90)~-f2=(oJ0)f_~[HL(a)]: do~ • 

(3.35) 

(3.36) 

Turning to the distribution of f~(~o), a common statistical procedure is to 
approximate the distribution of such a variate by a multiple of a chi-squared 
variate, AX2~, where 

and 

2[E/~(~o)12 
v =  var f~(to) (3.37) 

A -- 1/u (3.38) 

(e.g. see Brillinger, 1975). 
From the approximations (3.35) and (3.36), 

equivalent degrees of freedom is approximately 
we see that u, called the 

2[y-'r,r HL(a)  da  12 (3.39) 
f-'r,r Hr(ot) zda  

3.4. Cross-spectral estimates 

Suppose we are given a bivariate time series {X(t), Y(t) ,  t = 0, - 1 , . . . } ;  then, 
as we shall see in this section, it is quite straightforward to extend the results of 
the previous subsection to cross-spectral estimates. First we define the follow- 
ing instantaneous cross-spectral estimates) 

Instantaneous cross periodogram 

I~x(t, ~,o)= nz' w~(t, ,oo)W~x(t, ,oo) (3.40) 

3See Priestley and Tong (1973) for the theory of 'evolutionary' cross spectra. 
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Instantaneous cross spectrum 

1~ t 1 ~M I~x(t + k, tOo). (3.41) f yx( , tOo) = 2 M  + 1 k=- 

Note that we have smoothed over 2M + 1 adjacent complex demodulates to 
obtain the point estimate at time t. Furthermore,  we can write (3.41) as 

1 M 
f~(t ,  tOo) 2M + 1 k=~.. Iw~(t=_~ + k)llW~x(t + k)l exp{i(~byL(t)- ~b~(t))} 

(3.42) 

where ~b~(t) and ~b~(t) are the instantaneous phases. The quantity 

O~x(t, tOo) = 6~(t, tOo)- 6~(t, tOo) (3.43) 

which represents the instantaneous phase difference of the demodulates is also 
of interest (see Burley, 1969, for example). 

Instantaneous cross phase 

the(t, tOo) = t an - l{ - Im[ f~(  t, tOo)]/Re[f~(t, tOo)]} 

+ ~r-sgn{-Im[f~(t ,  tOo)]} (3.44) 

for Re[f~( t ,  tOo)] g 0. Burley (1969) points out that a crude preliminary esti- 
mate of ~brx(t, tOo) may be obtained as 

1 M 
2 M  + 1 ~ O~x(t + k, tOo), (3.45) 

k = - M  

which would be reasonable provided Oyx(t, too) is fairly constant. 

Instantaneous gain 

M M G~(t, too) = [f y~(t, to0)l/f=(t, too) (3.46) 

for f~(t ,  tOo) ~ O, where 

1 
f~(t ,  tOo) - 2 M  + 1 ~ I~( t  + k, tOo). 

k=-M 

Instantaneous coherence squared 

o)[ ~If=(, 0to0)fyy(t, IR (t, to0)l 2 :  If (t, to 2 M t M to0)l. (3.47) 
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If we write (3.47) as 

{~k ~ I WL(t + k)l lW~(t + k')l lWL(t + k)l JWLx(t + k')l 

x cos[Oyx(t+ k, too)- O,x(t+ k', too)]} 

- { ~  IW~(t + k)l z ~ IW~(t + k')12}, 
~ k  k' 

(3.48) 

then we can see that  IR~(t, to0)l 2 has a min imum ~<1 if Oy~(t+ k, too) equals 
Oy,(t+ k', ~Oo)for all k, k ' ,  and the equali ty holds when IW~(t + k)]/IW~(t+ k)l 
is constant  oVer t ime (see Burley,  1969). Finally, we define the 

Instantaneous residual spectrum 

M 2 M f~(t, too) = [1 - IRyx(t, too)[ lf,y(t, too). (3.49) 

Statistical properties o f f , ( t ,  too) 
If {X(t) ,  Y(t), t = 0, - 1  . . . .  } is a bivariate t ime series with EX(t)  = EY( t )  = 

0, cov{X(t  + u), X(t )}  = ca(u), cov{Y(t  + u), Y(t)} = cry(u), and cov{Y(t  + u), 
X(t)}  = cy~(u) and if Xu Ic=(u)l < ~, x .  Ic.(u)l < ~ and E ,  Ic,~(u)l < oo then 
it can be  shown that  

(i) Ef t ( t ,  Wo) = BZ' IA(w - to0)12fyx(w) dto.  (3.50) 

Fur ther ,  under  the Gaussian assumption,  

f'f" (ii) var  f ~ ( t ,  too) = BZ2N -2 IN(to - too)12le(to ' -  too)l 2 
q r  

sin 2 N[(to - to')/2] 
x s in2( to -  ¢o')/2 L,(to)L,(to') dto dto' 

+ BZZN -2 A(to - COo) 
- -  ¢ r  

x A(w'---too)A(-to'- too)A(-w - too) 

sin 2 N[(to - to')/2] 
× sin2(to - to')/2 fYx(to)f*Y(to') do) d to ' ,  (3.51) 

where  N = 2 M  + 1. 
Express ion (3.50) shows that  the expec ted  value of the p roposed  est imate  of 

the ins tantaneous  cross spec t rum is a weighted average of fyx(w), with weight 
concen t ra ted  a round  too. 
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3.5. Bispectrum estimation 

For linear systems, it is well known that an input with frequency tOo emerges 
at the output with the same frequency tOo. However, for nonlinear systems, the 
output contains the harmonic frequencies, 2(o0,3to0,... as well. The bispec- 
,trum, which is defined as 

f~x(tob to2) = (2~') -z ~ ~ Cx~x(tol, to2) exp{-i(tolu + wzv)} ,  (3.52) 
u l) 

where C~xx(to~, toz) is the third-order cumulant, is often used to study the 
nonlinear properties of such systems. 

Several papers discuss the use of complex demodulation to estimate the 
bispectrum. An early reference is Godfrey (1965a) who uses this procedure to 
study nonlinear properties of an economic time series. Since then, Huber, 
Kleiner and Gasse r  (1971), for example, have used it to investigate phase 
relations in an E E G  signal. 

Let W~(t, to1), wL(  t, 0-92) and WLx(t, co3) be complex demodulates of the series 
X ( t )  at frequencies 091, 092 and 0)3, respectively, where 091+ 092+ co3 = O, then 

T - L  

fN~x(tOl, o)2) = N -~ ~ W~(t, to~)W~(t, 0)2)W~(t, w3) (3.53) 
t = L + l  

is an estimate of the bispectrum, where N = T - 2L and the principal domain is 
given by 

0 ~ (.01 ~ qT , 

0 ~< 0)2 ~< ¢r/2, 

0 ~< to1 + 20)2 ~< or. 

Note that the bispectrum of a real-valued series is complex valued. 
We shall now investigate the relationship between estimation of the bispec- 

trum via complex demodulation and via the third-order cumulant (assuming 
E X ( t )  = 0). 

The use of (3.53) yields 

1 [ ~ X ( t + u ) X ( t + v )  = Z Z a(.la( la(u + - r)' 
r u v 

x X ( t  + u + v -  r)]exp{-i[tox(r-  v)+ to2(r- u)]} 

= Z • ~'~ a ( u ) a ( v ) a ( u  + v - r)CNx~(r - v, r - u) 
r u 

x exp{-i[ tol(r-  v)+ 0)2(r - u)]}, (3.54) 
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where 

1 
c ~ ( r  - v, r - u) = -~  E X ( t  + u ) X ( t  + v ) X ( t  + u + v - r) 

T 

is the sample third-order cumulant. It can then be shown that 

f=~(coi, to2) = N HL(to,  - a, co2- fl)IN=~(a, f l)  da  d f l ,  
I t  ? r  

(3.55) 

where I~x(a ,  f l)  is the third-order periodogram and 

H L (  t°l -- o6 t °2-  fl)  = E E E a ( u ) a ( v ) a ( u  + v - r) 
r u 1) I 

×rexp{-i[(tOl - a)(r  - v)  + (to2- f l)(r - u)]}. 

We can see from (3.55) that the bispectrum estimate, f~(tol ,  w2), is essen- 
tially a weighted average of the third-order periodogram. 

3.6. Approximate  confidence intervals ]or the running periodogram 

For a stationary series, the estimated amplitude, or equivalently, power, 
should be constant within sampling fluctuations. So if we have a series which 
is (slowly) evolving in time, then complex demodulation not only lets us 
handle the spectrum of such a series but also lets us inquire into the nature of 
the nonstationarity. Essentially, this technique is designed to bring out depar- 
tures from stationarity in a graphical way, instead of parametrizing particular 
types of departures in advance and then developing formal significance tests 
intended to have high power against these particular alternatives. 

We now suggest a way of setting approximate 100(1-a )% confidence 
intervals around the estimate of the running periodogram. 

We have shown that 

f,=(w) X212" (3.56) 

Thus, we have, approximately, 

P r [ - l n ( 1 - 2 )  < I ~ ( t , w ) / f x x ( t o ) < - l n ( 2 ) ] = l - a .  (3.57) 

Now suppose that fu=(to), defined by expression (3.30), is based on enough 
degrees of freedom so that fx~(to) is well approximated by )~(w). In this case 
we have, approximately, 
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P r [ - l n ( 1 - 2 )  < ,~( t ,  6o ) / f~ (6o)<- ln (2 ) ]  = 1 -  a .  (3.58) 

It is important to note that the confidence intervals (3.57) and (3.58) hold only 
for a given single value of t and for a given single value of to. 

More often than not we will be concerned with lOgl0 I~(t, to). In this case the 
approximate confidence interval becomes 

where 

Pr[logxo ]/1 + loglo f~(6o) < loglo I~(t, to) < loglo ]/2 + loglo f=(6o)] 
= 1 - -  t~ ' ,  

]/1 = - l n ( 1 -  a 2 )  and ")/2 ~--~ - l n ( 2  ) . (3.59) 

We interpret this confidence interval as follows: under stationarity, we expect 
EI~x(t, 6o) to be in the confidence region for (1 - a)100% of the values between 
t = L + l a n d  t =  T - L .  

Fig. 1 is an illustration of the use of this procedure. The error series 
corresponds to Gaussian white noise. We have demodulated here at the known 
underlying frequency. We also note that the background noise level has been 
reached at about t = 600. 

3. 7. Statistical properties of the instantaneous phase 

So far we have not made any explicit use of the instantaneous phase ~b~r(t), 
which is an important byproduct of complex demodulation. We first of all 
present some statistical properties of the instantaneous phase. 

Under assumptions similar to the ones presented for the instantaneous 

X( t )= 50 EXP(-O.OIt)COS(27r/I0 t)+E( t ) 

LOG INSTANTANEOUS POWER AT FREQUENCY .10 
4 . 0 8  

2.77 - 

1.47 - 

^ N  
log fxx(~)  

I 

0 . 1 6  - 

- I . 1 5  - 

- 2 . 4 5 '  
200 400 600 800 I000 

Fig. 1. 



146 T. Hasan 

amplitude, it can be shown that 

/~[thL(t)] = arg EWL(t) + O(L~ a) 
and 

' L 1 [f'~ IA(tO-tO0)[ 2 
cov{thx(t+ u), (b~(t)}: ~ ~|1-. Ja(tO0)J' cos(tou)f•(tO)dtO 

(3.60) 

- Re f_r A(tO - tO0)A(-tO - tOo) 
A(tO0) 2 

×lexp{itOu}f=(tO) dtO ] + O(L¥1). (3.61) 

It is also instructive to know how the log amplitude and phase vary together 
instantaneously and for this purpose it can be shown that 

cov{logi wL(t)[, ~bL(t)} = O(L¥1). (3.62) 

When X(t) is Gaussian white noise, the plot of the instantaneous phase will 
be quite irregular in appearance if L is sufficiently small (compared to the total 
number of data points). As a matter of fact, if X(t) is stationary and mixing, 
then thL(t) will be distributed approximately as a uniform variate on the 
interval (0, 27r) [for h # 0 (mod ¢r)]. In order to see this, recall from (3.28) that 

L U 
w L ( t )  ---- [ H L ( 0 ) ]  -1 u~=_ L h (-~)X(t * u)exp{-ito0(t + u)} 

= [HL(0)] -1 ~ h X( t  + v - L) exp{-itO0v} (3.63) 

for v = u - L, which as we saw earlier is essentially a weighted finite Fourier 
transform (except for a normalizing factor). From Brillinger (1975) we know 
that this transform will be distributed approximately as 

(for tOo # 0 mod or) where N c denotes the complex normal-distribution and 
where N = 2L + 1. In this case, Wl(t) and W2(t), the real and complex parts of 
WL(t), will be approximately independent 

Normal(0,  "n'N-t If01 h ( v )  2 dv/(fo I h(v)dv)2]f=(h )) 

variates and thus 
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q~xL(t ) = tan_ ~ [ W2(t)] 
I W (t)J 

will be  approximately uniform. 
This result is of some interest because it tells us that for a stationary noise 

series (that is EX(t) = 0), the phase plot obtained through complex demodula- 
tion will look random. On the other hand, when  there is a periodic component  
present in the data, say, 

X(t) = p cos(tot + 4,) + E(t), (3.64) 

where E(t) is a stationary noise series, X(t) will be nonstationary in the mean 
and in this case we would not expect the phase plot to appear random. In fact, 
if we complex demodulate the series X(t) given by (3.64) using (for the sake of 
simplicity) a simple moving average, then 

w (t, , oo)  = - -  
1 p 

2 L + 1 2  

2 L +  1 
sin ~ (~o0 - o~) 

exp{i~b} 
sin mo- to 

2 
"1 

sin ~ (tOo - to) / 

+ exp{-i~b} ~ ' ~  o~0 +--'----~ ] " (3.65) 
s i n  -~- 

So for w0 close to o~, we have 

Wmx(t, too) ~ ~ exp{ith} (3.66) 

and we can see immediately that 

arg W~(t, COo) ~- q~, (3.67) 

as expected. Priestley (1981) gives further results on the distribution of the 
phase esiimate for the nonnull case. 

In Fig. 2 we have used 

X(t) = cos(27r/lOt)I {451~<,,550~ + U(t) 

for t = 1 . . . . .  1000, where I~.) is an indicator function and where U(t) is 
uniform white noise. In this example we used a filter corresponding to a simple 
moving average with L, the number of lags, equal to 50. The phase plot is seen 
to be nearly horizontal for t = 400 to 600 as expected. 
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X( t )=COS(2-n'/lO t) I{451<_15550}+U( t ) 

LOG INSTANTANEOUS AMPLITUDE AT FREQUENCY .,OOO 

2r 
ltr 

NSTANTANEOUS PHASE 
o 

.¢ 
I • I 

200 400 

Fig. 2. 

I I 
600 800 10o0 

The above discussion would seem to suggest that the phase plot might be 
useful for estimating arrival times of transient signals. We shall see later, 
however, that the amplitude plot in fact is more sensitive for this particular 
application. The usefulness of the phase, in the context of the above discussion, 
is primarily in confirming the presence of a harmonic component in the data. 

4. A class of amplitude modulated cosinusoids 

In this section we shall be concerned with a general class of time-series 
models for which complex demodulation seems especially suited. We shall 
consider models of the form 

K 

X( t )  = ~'~ R kT(t; Ok)COS(tOkt + 8k)+ E(t), (4.1) 
k~l  

where E(t) is a stationary, mixing time series, Rr(t ,  ") # 0 is a fixed function for 
k = 1 . . . .  , K, {0g ×1, (Ok, 8k ; k = 1 . . . .  , K} are the parameters to be estimated, 
and where T is the length of the series. 

Some examples of R r ( t ,  O) are 

(i) the exponential decay model 

( ~ b t )  f o r t > 0  (4.2) Rr( t ;  0 )= a exp - T 

where 0 = {a, ~b}, 
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(ii) the Childers-Pao transient model 

R r ( t ;  0 ) =  a ( T )  x e x p ( - - ~ )  for t >  ~/, (4.3) 

where 0 = {~, ~b, ~/} A = 0, 1 . . . . .  

(iii) the linear decay model 

Rr(t;O) =01-02 T f o r 0 < t < T ,  (4.4) 

where 0 = (01, 02), 

(iv) a slowly-varying cosine wave 

R r ( t ;  O) = cos(8)t for t > 0  (4.5) 

with 8 small, and finally 

(v) constant amplitude 

Rr(t; O)= O f o r t~>0 .  (4.6) 

In practice, once an initial estimate of COk, call it o3~ °~, has been obtained, we 
would complex demodulate at this frequency to: 

(a) Check for visual confirmation for the presence of a harmonic component 
and, if present, get an estimate for the duration. 

(b) Obtain initial estimates for the unknown parameters through some kind 
of curve fitting since the log amplitude in complex demodulation is essentially 
log /~ ' ( t ;  Ok). 
The final estimates could then be obtained through nonlinear least squares in 
the frequency domain (to obtain a more tractable solution since our errors are 
not uncorrelated) with minimization taking place in some interval, Ik, around 
o3t, °) (suggested, for example, by the periodogram). For this reason we can 
choose to estimate each set of parameters {Ok, Ok, ~k}, for k = 1 . . . . .  K, 
separately; that is, with minimization taking place in disjoint Ik'S for each k. 

4.1. Asymptotic normality of estimates 

Let us assume that there exists a continuous function R(x; O) such that for 
all 0 ~ O, @ compact and where 0 is an interior point of O, 
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Such a choice seems reasonable in discussing asymptotic theory, at least for the 
exponential decay model, since otherwise our signal would disappear for large 
t. Note that if we set tiT = s, then 

RT(sT; Ok) = Rk(S; Ok), 0 ~< S ~< 1. (4.8) 

Assuming the dependence upon the length of the series, T, as characterized by 
expression (4.7), and under further regularity conditions, Hasan (1979, 1982) 
showed that the vector 

[ T~/2(O r - OkO) "] 
, TV2($ r - 6k0) | , (4.9) 

tok0)!J 

where (0[ ,  6 r, o3 r) are nonlinear least-squares estimates, is asymptotically 
normal with mean zero and covariance matrix given by 

2rrf,, (toko)A (0kO) -1 , (4.10) 

where f,~(to) is the power spectrum of the error series, 

[0].×2 -] 
rT(0kO) y~ (0k0)] [ (4.11) A (OkO) = L F 

and where 

f0 
1 

y(O'k, 0'~) = Rk(v; O[,)Rk(V; O")dv, (4.12) 

;/,m (O'k, 0~)= 02y(O'k' 0'~) (4.13) 
O0'klOO~m ' 

t I t  _ _  i o y~v(Ok, Ok) -- V2Rk(V; Ok)Rk(V, O~) dv , (4.14) 

y~(O[,, 07,) = VRk(V; O[,)Rk(V; O'~)dv. (4.15) 

For 0~ = 0~ = Ok, the notation is simplified, for example, to y(0k). 

EXAMPLE 4.1. Let 

X(t )  = 0 cos(tot + 6) + e( t ) ,  0 ~ 0 ,  

where {0, 6, to} are unknown parameters. Trivially, the covariance matrix is 
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given by i 

011 2¢rf,, (tOo) ~0 0°z 02°/2 
0~/2 0o2/3 

Related references are. Whittle (1952), Walker (1971) and Hannan (1971). 

EXAMPLE 4.2. Let 

X ( t )  = (01 - Ozt/T) cos(tot + 6) + e( t ) ,  01, 02 # 0.  
\ 

where {01, 02, 6, to} are the unknown parameters.  In this case the covariance 
matrix is given by 

o oO 
27r/,, (oJ0) 0 021 - 0102+ 02/3 0~12--~0102+ 0~14 

0 03/2-  32-0102 + 02/4 0{/3 - 0102/2 + 0~/5 

Finally, we have 

EXAMPLE 4.3. Let 

X ( t )  = a exp{-ckt /T}  cos(wt + 6) + e(t) ,  ~ # O, 

where {a, ~b, & to} are the unknown parameters.  The covariance matrix is given 
by 

27rf~, (tOo) 

E(6o) -~o~(4o) o o j-' 
-~&(~o) ~h(Oo) o o 

o o a28(~o) a211(~oi 
o o ~ ( ~ o )  ~ ( ~ o  

~h(eo) ~o~(~o) o o 
=2~f,~(too)a~ZJ($o)-~ ao~($o) ~(~o) 0 0 

o o h(~o) -~(~o) 
o o -~(~o) ~(~o) 

where 

I,(~b)= rio 1 v* exp{-2~bv} dv 

J(¢5)= Io( ck )Iz( dp ) -  Ii( ck ) 2 . 

forA = 0 , 1 , 2 ,  
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We now have 

var & =127rT-lf,~(OOo)Ia(c~o)J(q~o) -1 , 

var q~ =27rT-lf,,(tOo)a~ZIo(qbo)J(~bo) -1 , 

var g= 21rT-lf,,(tOo)a~212(6o)J (6o) -1 , 

var 03 = 2rT-3f, ,  (to0)a ~210(60)J(60)-1, 

etc. We shall discuss this model further in the next subsection. 

4.2. Exponential decay model 

Bolt and Brillinger (1979) have considered the exponential decay model, 
discussed in Example 4.3, in modeling the impulse response of the earth to a 
large magnitude earthquake. In their paper the authors present a general 
algorithm for simultaneously estimating eigenfrequenci-es, amplitudes, phases 
and damping coefficients for terrestrial eigenspectra measurements. An im- 
portant use of complex demodulation in their paper is for obtaining initial 
estimates of the parameters in the model, especially the decay parameter ~b, at 
each frequency of interest. 

We shall discuss here how estimates of a and ~b may be obtained directly 
from the log amplitude function. It can be shown that 

Zrx(t)= loglW~(t)] = q~t - - ~ - +  log a 

t -1 ÷ Io exp{ (4.16) 

where 

qSxL(t) = (to - 030))t + ~, 

03c0) is the periodogram estimate, and 

~l(t) = ff'~ a ( t -  u)E(u)exp{-i03O)u}. 
u 

In a recent paper, Toyooka (1979) discusses the following time-series regression 
model 

P 

Y ( t )  = ~ ~.~j( t )  + c(t)  U ( t ) ,  (4.17) 
]=1 

t = 1, 2 . . . .  , where the flj are the unknown parameters, c(t) is a modulation 
function of the form 
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c ( t ) =  exp cwi(t  , (4.18) 

yi(t) is a bounded function of t for each i =  1 , . . . , q ,  {ci;i = 1 . . . . .  q} are 
additional unknown parameters and, finally, U(t )  is a wide-sense stationary 
process. A two-stage procedure for estimating the parameters {/3j} and {ci} is 
proposed and a result showing the large sample behavior of the estimates is 
also presented. 

If we rewrite (4.16) as 

where 

ZLx(t) ~- /3rYj(t)+ exp ~ ci~b,(t U ( t ) ,  
]=1 i=i 

/31 = log a ,  X l ( t )  = 1,  

/32 = -~b, X2(t) = t /T ,  

cl = - log  a ,  tht(t) = 1, 

c2 = 6 ,  ~b2(t) = t[T, 

(4.19) 

then by applying Toyooka's result we can show that 

where 

vat log c? ~ 27rT-lf..(O)a~zI2(~bo)J(49o) -1 , 

var q~ --~ 2~'T-1L.(O)ot~2Io(4)o)J (qbo) -1 , 

Io 1 /j(4~o) = v" exp{-24~oV} dv for j = 0, 1, 2,  

J ( 6 o )  = Io( o)h(6o)- I1( o) • 

(4.20) 

We note that the expression of the asymptotic variance for 4~ obtained here is 
identical to the expression obtained in Example 4.3. This result may be 
significant in applications where the ~b's have to be estimated at a number of 
frequencies since fitting lines to the log amplitude obtained through complex 
demodulation should be computationally more efficient than the nonlinear 
regression method discussed earlier. However, the estimates obtained through 
the linear fit would probably have larger standard errors since they would 
presumably be based upon fewer points. 

4.3. The Chi lders-Pao transient model  for v isual-evoked responses 

Childers and Pao (1972) consider the transient model 

K 
X ( t )  = ~'~ akt exp{--flkt} COS(Wkt + 6k) + e(t) (4.21) 

k=l 
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for t > ~-, for visual-evoked responses (VER's) monitored by scalp electrodes 
over the occipital region of the brain. The term transient here refers to the time 
lag associated with each wavelet before its arrival. 

For K = 1, the problem is immediately seen to be one of two-phase non- 
linear regression where the join point has to be estimated. That is, we can 
rewrite (4.21) as 

X ( t ) =  lx + e ( t ) ,  t =  l ,  . . . , r ,  

X ( t )  = t~t exp{-flt} cos(tot + 6) + e ( t ) ,  t = ~ - + l  . . . . .  T,  
(4.22) 

where {~-,/x, a,/3, to, 6} are parameters to be estimated. We shall find it neces- 
sary to reparametrize a = a / T  and /3 = ~b /T  so that the asymptotics to be 
discussed later will make sense. 

There exists a great amount of literature which deals with the problem of 
estimating the change point for the mean for linear regression. In most papers 
it is assumed that the errors are independent and identically distributed normal 
mean zero variates and that the parameters occur linearly. Further it is 
assumed in some papers that the join point(s) are smooth, that is, the 
regression function is continuous at ~-. 

Clearly the assumptions mentioned above will not be satisfied for the type of 
data for which complex demodulation is best suited. However, complex demodu- 
lation can still be used to obtain a satisfactory estimate of z. The estimation 
procedure for the remaining parameters {a, 4~, to, 6} is then identical to that of the 
exponential decay model considered by Bolt and BriUinger. In the exponential 
decay case, a reasonable estimate of the arrival time is provided by the peak in the 
graph of the log instantaneous amplitude minus one-half the number of time lags 
used for filte_ring (see Hasan, 1979). 

If a noise record preceding the arrival of the transient is available, 4 an 
alternative estimation procedure would be to first set confidence bands in the 
manner described in Section 3. We of course have some cutoff point in mind 
for the noise record and again complex demodulation can be helpful in this 
respect, as long as the onset time is not too close to the beginning of the data. 
This suggests that a noise record of fair length be collected preceding the 
signal, if at all possible. We can now take as an estimate of ~" the first significant 
jump out of our confidence bands (that is, one which remains out for some dur- 
ation of the signal). Using simulated data, Hasan (1979) found that this estimate 
precedes the (known) arrival time by a random amount, but usually within 
one-half the filter length. It seems sensible then to adjust this estimate by adding 
one-half the filter length (or possibly more), since it is probably betterrto err by 
overestimating the arrival time than the other way around. [One reason being the 

4Unfortunately such a record is not always available. For example, for the type of earthquake 
data considered in the previous section, the seismometer would start clipping (going out of bounds) 
at the arrival of the signal and by the time it resets itself the decay phenomenon would already be 
in effect. 
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anomalous behavior of the estimate of the frequency to, under the null (signal 
not present) and alternative (signal present) hypotheses (see Whittle, 1952). 
This erratic behavior could lead to unreliable results if, having estimated ~-, we 
then proceeded to estimate the parameters of the underlying model over a time 
period in which the signal was not present.] 
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Estimating the Gain of A Linear Filter 
from Noisy Data 

M e l v i n  J. H i n i c h  * 

Introduction 

Measuring the gain and phase of a linear relationship between two signals is 
an important  task in a variety of scientific investigations. In some applications, 
one signal called the input is controlled. For  example, various test input signals 
are used to measure the response of a linear amplifier. In other  applications, 
the two signals are stochastic and it is arbitrary which signal is called the input. 
This is the case for the magnetotelluric application discussed by Bentley (1973) 
and Clay and Hinich (1981). 

Filter response is estimated using simultaneously observed data from both 
signals. If there is noise in the input and output data, standard estimators of the 
gain are biased. This bias is a time-series version of errors-in-variables bias in 
linear statistical models (Kmenta, Chapter  9, 1971). This chapter presents an 
asymptotically unbiased estimator of filter gain for a certain class of filters. 

Let  us begin with a brief review of the ,basics of linear filter theory for 
continuous time signals. There  are many texts on the market  that explain linear 
filters. A clear and rigorous exposition is given in Chapter 2 of Kaplan (1962). 

1. Linear filters 

A time-invariant linear filter is characterized by a function called the impulse 
response, which we denote  h(t). The output y(t) of the filter for an input x(t) is 
given by the convolution 

y(t)  = f ~  h ( t ' ) x ( t -  t') d t ' .  (1.1) 

A filter is called stable if Ih(t)l is integrable. A filter is called causal if h(t) = 0 

*This work was supported by the Office of Naval Research (Statistics and Probability Program) 
under contract. 
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for t < 0 ,  and thus y(t) depends only on x(t') for t'<~t. If h(t) is stable and 
causal, then it can be shown using Laplace transform mathematics  that H(s)= 
f-~ h( t )exp(-s t )dt  has no singularities in the half-plane Re s >I 0, i.e. H(s) has 
no poles in the right-hand part  of the complex plane. 

It  is often convenient to express a filter's response in the frequency domain. 
The transfer function 

H ( f )  = f_~ h (t) exp(-i27rft) dt (1.2) 

is the Fourier t ransform of the impulse response. If h(t) is real, then H ( - f ) =  
H * ( f )  where star denotes complex conjugate. 

The gain of the filter is IH(f)l, its absolute value as a function of frequency. 
The phase response i s  

Im H ( f )  
(h(f) -- arc tan Re  H ( f )  (1.3) 

for -o r  < 4) <~ ~'. The output  due to a complex sinusoidal input exp(i2crft) is 

IH(f)l exp[i(2~rft + ~b(f))] = In(f)l exp[i2~'f(t + th(f)/2~rf)]. (1.4) 

For a causal filter, the t ime shift -¢h(f)/2~rf is positive (a delay), and - th ( / )  is 
called the phase lag. Since H(0)  is real, ~b(0) = 0. 

A stable causal filter is called minimum phase lag 1 if H(s) has no zeros in the 
half-plane Re  s/> 0. The  term minimum phase is used for such a filter since its 
phase lag is less than any other  filter with the same gain, provided that H(s) 
has a finite number  of zeros (for Re  s < 0) (Zadeh and Desoer,  Section 9.7, 
1963). The proper ty  of minimum phase filters that is exploited in the estimation 
method featured in this work is that ~b(f) can be uniquely determined f rom 
ln]H(f)[ by means of the Hilbert  transform. We  will discuss this relationship in 
some detail after the following discussion about estimating the phase and gain 
f rom observations of stochastic input and output  signals. 

2. Estimating the phase and gain of the transfer function 

For  many applications, including the magnetotelluric problem that motivated 
this work, the input signal is stochastic. If x(t) is a stationary stochastic process, 
then the output  y(t)  is a stationary stochastic process. Suppose that the 

1For discrete-time systems, the output of a linear filter whose impulse is {h(tn)} is y(tn) = 
~,~=-® h(tm)X(tn - tin). The filter is stable if E~=_® [h(t,n)[ <~¢, and is causal if h(t~) = 0 for all tm <0. 
Setting the origin so that to = 0, a stable causal discrete-time filter is minimum phase lag if its z 
transform ZTn=0 h(t~)z m has no zeros on or inside the unit circle Izl = 1 in the complex plane. 
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autocovariance of x(t) is absolutely integrable. Then the spectrum S,(f) of x(t) 
exists, and the cross spectrum of {x(t), y(t)} is 

Sxy(f) = H(f)S~(f) (2.1) 

(Jenkins and Watts, Section 8.4.2, 1968). 
The phase of the cross spectrum is defined to be ~b=y(f)= 

arc tan[Im Sxy(f)/Re Sxy(f)]. If S~(f).> 0, it follows from (2.1)that ~bxy(f)= ~b(f), 
and the gain is IH(f)[ = Isxy(f)l/s ff). Thus the phase and gain can be con- 
sistently estimated from consistent estimates of S,y(f) and S,(f). 

Nowadays spectra are estimated from digital data. Suppose that x(t) and y(t) 
are sampled after they are filtered using a low-pass filter with cutoff frequency 
1/2~', where ~- is the length of the sampling interval. The frequency components 
for f > 1/2r must be removed to avoid aliasing of data sampled at frequency 
7--1. 

Several methods exist for obtaining consistent estimators of Sx(f) and Sxy(f) in 
the principal band 0<f<l/2r  from a sample {x(nr), y(nT): n = 1 . . . . .  N} 
where N--> o0. Jenkins and Watts (Chapter 7, 1968) advocate the approach that 
begins with the computation of sample covariances. Estimates based on the 
discrete Fourier transforms of {x(nr)} and {y(nz)} are outlined by Hinich and 
Clay (1968). An example of a simple estimator for Sxy(f) is given in Section 5. 
Rigorous coverage of spectrum estimation is given by Anderson (Chapter 9, 
1971), Koopmans (Chapter 8, 1974), Brillinger (Chapter 5, 1975), and Fuller 
(Chapter 7, 1976). 

There is always some noise in measurements of signals. Suppose we observe 

~)(m') = y(m') + e(m') 
and (2.2) 

2(n'r) = x(m') + u(m') ,  

where {e(m-)} and {u(nr)} are stationary noise processes that are uncorrelated 
with each other and with the true signals. This is the errors-in-variables problem 
that was previously mentioned. 

Setting Ex(m ' )=  Eu(nT)= 0 to simplify notation with no loss of generality, 
the autocovariance of ; is 

ci(m) = E$(n.r)~((n + m)r)  

= Ex(n'r)x((n + m)r)+ Eu(nr)u((n + m)~') 

= cx(m)+ c , (m) .  

Thus the spectrum of the true input signal plus noise is 

(2.3) 

Se(.f) = Sx(f) + S,(f),  (2.4) 
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where  Su(f) denotes the spectrum of the noise in £. Similarly, 

&(f) = sAf)+ s,~f), (2.5) 

where S,(f) denotes the spectrum of the noise in y. These expressions imply 
that consistent estimators of Se(f) and $~(f) are inconsistent estimators of S~(f) 
and Sy(f), respectively. 

The cross covariance between Y and )~ is 

cey(m) = E2(nz )y ( (n  + m)~') 

= Ex(n~')y((n + rn)~-) = c~r(m ) (2.6) 

since the noise processes are assumed to be uncorrelated (with each other) and 
are uncorrelated with the true signals. It then follows from (2.6) that the cross 
spectrum of {~(n1'), )~(n~-)} is equal to the cross spectrum of {x(m-), y(y~-)}, i.e. 
Se~(f) = S~y(f). This implies that the phase of Serif) is th(f), and thus ~b(f) can be 
consistently estimated from a consistent estimate of Sea(f). In other words, 

6( f )  = arc tan[Im S~,(f)/Re S. ( f ) ]  (2.7) 

is a consistent estimator of the phase ~b(f) if S~y(f) is a consistent estimator of 
the cross spectrum of the observed signals. 

The gain for the observed signals, on the other hand, is not equal to [H(f)[ 
since 

I&~ff)l= l&~(f)l < = IHG01 (2.8) 
&if) s d f ) +  s,  if) sdY) " 

Thus a direct estimator of the gain based upon consistent estimators of Sxy(f) 
and S~(f) will be inconsistent. The  asymptotic proportional bias of a direct 
estimator is - [ l+Sx ( f ) / Su ( f ) ]  -1, and is thus frequency dependent unless the 
signal and its noise are white. In other words, a direct estimate of the gain will 
not even have the correct shape when the noise in the input signal is serially 
correlated. This inconsistency cannot be eliminated by reversing the labels of 
the observed signals since there is noise in both signals. 

If the filter is minimum phase and ~b(f) satisfies some mild restrictions, it is 
possible to construct a consistent estimator of the natural log of the gain, up to 
an additive constant. The estimator is derived using Hilbert transform mathe- 
matics. Let us now outline the mathematical relationships between lnlH(f)l and 
~b(f) that enable us to derive the estimator and show its consistency. This 
chapter concludes with a discussion of the problem of estimating the additive 
constant. 
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3. Use of the Hilbert transform 

If the filter is minimum phase, 

lnlH(f)l = 1 [~ ~(g) dg (3.1) 
or J _ ® f - g  

(Papoulis, Chapter 10, 1962). A finite sum approximation of this integral using 
estimated phases at discrete frequencies yields a noisy estimate of the log gain 
for modest sample sizes. A statistically more convenient relationship can be 
derived from the following expression (Solodovnikov, 48-51, 1960): For f > 0, 

6( f )=  1 f_ * d ~ ~ [ln[n(f eU)l] ln[coth(lul/2)] du. (3.2) 

Writing y '=  In(if)+ u, (3.2) becomes 

1 i T M  d [lnln0._ 1 eY')l] ln[cothly'-  In(if)l/2] dy',  6 (f) : or j_~ dy' 

and writing further y = ln(if), we obtain 

~b(e y) = 17d,[lnln(T-1 eY')l] ln(cothly'- yl/2) dy' .  (3.3) 
or oy 

Now define 

s(y) = ~y lnlH(r -* eY)l, (3.4) 

S(a) = f?~ s(y) exp(-i2oray) dy, (3.5) 

O(a) = ~_~ ~b(f) exp(-i2oray) dy, (3.6) 

and 

f_~ ln[coth(lyl/2)] exp(-i2oray) dy. (3.7) O(a) 

Since (3.5)-(3.7) are Fourier transforms, it follows from the convolution (3.3) 
that ~ ( a ) =  or-lS(a)Q(a), and~thus 

S(a) = orO-l(a)~(a) .  (3.8) 

From 612.1 in Campbell and Foster (1948), 
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Q(a)  = (2a) -1 tanh(~-2a), (3.9) 

so that Q(0 )=  ~'2/2. Thus from (3.8) and (3.9), we obtain the key relationship 

s(y) = ~ S(a)  exp(i2~ray) da 

= 2~r a ~ ( a )  coth0r2a) exp(i21ray) d a .  (3.10) 

Note that a is dimensionless since y is dimensionless. 

4. Numerical approximations 

In order  to estimate s(y) from a finite sample of discrete-time observations 
of ~ and )~, the integrals in (3.6) and (3.10) must be approximated. 

Define L to be the integer closest to cN% where 0 < c < 1 and 0 < a < 1. The 
parameter  ot plays a vital role in the proof of the consistency of the estimator. 
Let  us approximate the integral in (3.11) by a finite sum using the logarithmically 
spaced grid {yj = In(j/N): j = L . . . .  , N/2}, which is the transform of the equally 
spaced frequency grid ~ = tiN'c}. The grid width at j is 

A yj  = Y ] + I -  Y] -'~ In(1 + 1/j) , (4.1) 

and thus AyL > AyL+I > AyL+2 >"  • ". The  largest width is then AyL = ln(1 + l /L) ,  
which is approximately 1/L for large L. Since L -~ cN ~ for 0 < c, a < 1, 1/L--> 0 
as N--> ~ and thus all the grid widths to zero as N--> ~. It then follows from 
(3.11) that 

N/2 

qb(a) = ~ ~b@) exp(-i27rayj) Ayj + O ( N - " ) .  (4.2) 
)=L 

The sum is not periodic in a since the spacing is logarithmic (Hinich and 
Weber,  1980). Another  approximation, using equally spaced yj, is given by Clay 
and Hinich (1981). 

In many applications the observed signals are high-pass filtered to remove 
frequency components  below some cutoff fL. If SO, define q~ (f) = 0 for 0 < f < fL 
and set a = 1 and c = fLr. ThUS L ~fLN~'. The gain is estimated only in the 
band fL < f < 1/2Z. 

Now let us approximate the integral in (3.10) by a finite sum using the equally 
spaced grid {am = m/M:  m = 0, ___1 . . . .  , ---N}, where M depends on N. In order  
for the approximation to converge to the integral, the grid width am+l- am = 
1 /M must go to zero as N ~  ~, and N / M  must go to infinity so that the grid 
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will span the line in the limit. Setting M = N B for 0 </3 < 1, it follows that 
1/M ~ 0 and N/M--)  oo as N ~ oo. Then 

N 

s(y) = E 
m = - N  

a,.q)(am) coth(Tr2am) exp(i27ra,.y) + O(M -1) (4.3) 

since the integrand in (3.10) is well behaved. Applying (4.2) to (4.3) for 
l = L . . . . .  N/2, we have 

N/2 

s(yt) = E d u ( N ) q ~ )  AYi + O ( N - D ,  (4.4) 
j=L 

where 3' = min(a,/3) and 

2~r 
du(N) = - ~  m=2_j_iV am coth(Tr2am) exp[i2zram (Yl- Yj)] 

47r[  s~ ( 
= - -  Z a-coth(Tr2am) c°s 2 ' ~ a - l n / ] + ~ l - ~ ]  

M L m = l  j ~  z . '~  J "  
(4.5) 

The bias in this approximation goes to zero as N ~ oo since 0 < y < 1. 
Recalling that s(y) = (d/dy) lnlH(f)l, where y = ln(rf), 

lnt'H(fk)l = fi~ s(y) dy + lniH(0)l. (4.6) 

Thus from (4.4) and (4.6) 

where 

k 

InIH(A)[ = Z s(yt) Ay, + C+ O(N- 0 
l=L 

k NI2 

= E ~ du(N)rMfi) Ayt Ayj + C +  O(N- ' )  
l=L j=L 

N/2 

= E wsk(Nl4,O~) Ayj + c +  O(N-,), 
]=L 

(4.7) 

k 

Wjk(N) = ~, du(N) A y, (4.8) 
l=L 

and C = lnlH(0)[. When a = 1 and c = fLr, however, C = lniH(fL)I since the 
lower limit of integration in (4.6) is In rfL. Once again the approximation bias 
goes to zero as N ~ oo. 
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5. Estimating the log gain 

Suppose that we have P disjoint sets of measurements of the input and 
output signals, {2~(tp + m'), yp(tp + nr): n = 0 . . . . .  N - 1}, where tp is the start- 
ing time of the p th  set (p = 1 . . . .  , P) .  The discrete Fourier transforms of the 
p th  set are 

N - 1  

ffp(fk) = ~ 2p(tp + m') exp(-i2~'nk/N) 
n=0 

and (5.1) 
N - 1  

~"p(fk) = ~ ~p(tp + m') exp(- i27mk/N) ,  
n=0 

where fk = k/N~" for k = 0 . . . . .  N/2. The following property of a discrete 
Fourier transform of a stationary time series with well-behaved cumu- 
lants (Brillinger, Section 4.4, 1975) is used in the consistency proof below: 
{Xp(f0), Xp(fl), . . . .  Xp(fN/2)} are asymptotically independent as N ~ o o ,  and 
similarly for {Yp(fk): k = 0 . . . . .  N/2}. Thus the phase estimators (k = 0 . . . . .  N/2) 

where 
¢(fk) = arc tan[Im S~y(fk)/Re Sxy(fk)], (5.2) 

1 e 
L,¢A) = E (5.3/ 

p = l  

are asymptotically independent as N--> oo. When N is large, the mean and 
variance of ¢(fk) are approximated as follows (Hinich and Clay, 1968): 

ano 

where 

E ~  (fk) = th(fk) + O(P  -1) 

1 
var ~(fk) = ~ff [7-20¢k)- 1] + O(p-E),  

Is (f)l = 

(5.4) 

(5.5) 

(5.6) 

is the coherence of the observed signals. Applying (2.4) and (2.5) to (5.6), 

y2(f) = [(1 + r~(f))(1 + ry(f))] -1 , (5.7) 

where rx(f)= S,(f)/Sx(f) and ry(f)= S~(f)/Sy(f) are the noise-to-signal ratios for 
the 2 and )~ signals, respectively. When Y(fk) is small or is near one, then ~(fk) 
iS approximately unbiased for small values of P, i.e. for 1 ~< P ~< 4. 

Approximately unbiased and independent estimators of the phases can also 
be obtained using a smoothed sample cross spectrum computed from a single 
sample of size Ns >> N. In other words, we can use a standard smoothing 
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procedure for obtaining an estimate of Sxy(fk) to use in expression (5.2), 
provided the sample size is sufficiently large so that the estimates are ap- 
proximately uncorrelated across the grid {fk = k/N'r}. The  asymptotic variance 
of ~(fk) for any of the standard smoothing methods will also be proportional to 

y-2(fk) - 1 = r~(fk) + ry(fk) + r~(fk)ry(fk). (5.8) 

To estimate lnlH(fk)[, replace ~b(~) in expression (4.7) by q~(~) for j = 
L . . . . .  N/2. The  estimator is thus 

N]2 
est lnlHffk)l = E w j , ( N ) ~ )  Ay i + C. (5.9) 

/'=L 

Since the approximation converges to ln[H(f0)[ as N ~  oo and f k (m~fo  for a 
properly chosen sequence {k(N)}, and ~b(fk) is asymptotically unbiased as 
p ~ 0% the estimator (5.9) is asymptotically unbiased as P. N ~ oo. 

It will now be shown that this estimator is asymptotically/unbiased for finite 
values of P if (1) 3or + 4/3 > 6 and (2) for some e > 0, var ~b (f) <~ f~ for f ~ 0. It 
follows from (5.5) and (5.8) that for sufficiently large P, condition (2) holds if 
the input and output signal-to-noise ratios (G 1 and G 1) go to infinity at least as 
fast as f-* as f ~ 0 .  Condition (2) is obviated if ~b([) = 0 f o r  f < f L .  

Given a frequency f0, suppose that limN~fk(N)= f0. As is proven in the 
Appendix, 

f 1/2~- 
limN3~+4a-6var[estlnlH(fk)l]<64zr2c-3~oo f-1 var ~ ( f ) d f .  (5.10) 
N--*oo ,) 0 

The integral in (5.10) is finite if condition (2) holds. If condition (1) holds, then 
the variance of the estimator of ln[H(f0)[ goes to zero as N ~  oo. Note that the 
set {a,/3: 3a  + 4/3 > 6, a < 1,/3 < 1} is nonempty. 

The method has been tested using artificial data. Clay and Hinich (1981) 
present some results using an equally spaced approximation of 4)(a). Boehl, 
Bostick and Smith (1977) used a more primitive version of Hilbert transform 
smoothing (which they invented) on magnetotelluric data. I have tested the 
logarithmically spaced approach presented above. For the filters tested, the 
method gave good fits of the log gain (up to an additive constant) for medium 
sample sizes, such as P = 100 and N = 40. 

Let  us now return to the problem of estimating the constant C in (4.7), which 
is a multiplicative constant in the gain estimator 

GOek) = exp[est lnlH(fk)l]. (5.11) 

Suppose that there are frequencies {fh} for which the coherence is high (near 
one). If condition (2) holds, then f l  . . . . .  fL will be in this set. Since the 
coherence is high, rx(fh) is small, and thus the direct estimator S,v(fh)/Se(fh) of 
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the gain is almost unbiased if Se is a consistent estimator. One simple method 
for estimating C is to regress the direct estimates against the G(fh). The  slope 
of the fit is the estimate of C. 

In some applications, it is known that Su(f)= 0 in some band. The direct 
estimates are then unbiased for frequencies in this band, and can be used to 
calibrate G(f). 

If there are no bands where the coherence is high or Su(f)= 0, then the 
phase smoothing method only estimates the shape of the gain. 

Appendix 

Given an fo in (0, 1/2~'), let {k(N)} be a sequence such that fk = k / N  ~ fo as 
N ~ oo. Then 

~ l/2r 
l i m  N 3a+4~-6 var[est lnlHffk)l] < 64zrZc-3~ f-1 var q~(f) df .  
N ~  J 0 

PROOF. Let K = 2a + 4 /3 -  6. Since the phases in (5.9) are asymptotically 
uncorrelated, 

NI2 
lim N K var[est ln[H(fk)l] = lim N K • W]k(Ay/) 2 v a r  ~ . ) .  (A1) 
N-~oo N ~oo j= L 

Recall that hyj >I L -1 + O(N-1), L -~ cN", and M = N a. Applying the Schwarz 
inequality to (4.8), we have 

k k 

W~k <~ E d~_j E (AYt) 2. (A2) 
I=L I=L 

To bound dr-j, note that a coth(Tr2a) < 2aN for 0 ~< a ~< aN when an = N / M  is 
large. Then from (4.5), 

87r  N 2 
]d,_i[ < ~ ~ .  (A3) 

Applying (A3) to (A2), 

W2k < 647r2k2(N]M)4L -2 + O(N-1) .  (A4) 

Thus the right-hand side of (A1) is bounded by 

64~rZc -3 lira f~ ~] var q~ 0~) AYi = 64~'2c-3~ var 4] (f) dy 
N~o~ ]=L 

= 64~r2c-3f~ f v2~. f - '  var q~ (f) df .  
-10 
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A Spectral Analysis Primer 

L.  H .  K o o p m a n s  

1. Introduction 

This introductory chapter is intended for readers who are new to the subject 
of time-series spectral analysis. In it the more important spectral parameters 
and their interpretations will be introduced and some of the applications of 
these parameters will be indicated. Methods of estimation and other ap- 
plications will be given elsewhere in this book. This discussion will summarize 
material presented in [11] and the reader is referred to this source for more 
complete treatments of the various topics. This material is also available in 
various forms and from a variety of viewooints in [2, 3, 6, 7, 8, 9, 10]. 

2. A historical perspective 

Historically, the above references were all written during what might be 
called the second blooming of spectral analysis. As we will see below, there are 
two major methodologies for viewing, analyzing and interpreting time series: 
the time-domain arid spectral-domain methodologies. Theoretical develop- 
ments of time-series methods have followed a rather cyclical pattern first 
emphasizing one domain, then the other. These cycles have, in part, followed 
what wereperceived to be the needs of practitioners in the dominant scientific 
fields of the time. Thus, in the flowering of the hard sciences of physics and 
astronomy in the late 1800s, time-series analysis was born as a spectral-domain 
subject because of the central role spectral methods play in these fields. 

Time-series spectral analysis is the mathematical equivalent of the decom- 
position of light into-its color components by a prism. The idea that other 
physical phenomena could be similarly broken down into spectral components 
and analyzed using the concepts developed from the study of light was (and still 
is) immensely appealing. 

The edge was taken off of the original enthusiasm for spectral-domain 
methods by the horrendous computational effort required to calculate numeri- 
cal spectra. At that time, calculations had to be done by hand and, although a 
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number of simplified methods were developed, it was still a major undertaking 
to analyze time series of the magnitudes usually encountered in the physical 
sciences. 

It was, perhaps, with some relief that interest shifted in the 1920s to the 
shorter and more manageable series seen in economics and the business world. 
The first flowering of time-domain methods began at this time. One of the 
dominant interests of economists and business people is the extrapolation of 
time series into the future--the important problem of prediction. The  statistical 
methods of linear regression developed at that time, with their concomitant 
dimension of prediction, appeared to be a natural and logical methodology to 
apply to time series. One simply fits a regression equation to the time series for 
a block of consecutive times (e.g. days). Replication is achieved by moving the 
block along the time series, thus picking up consecutive blocks of observations. 
Once the fitting has been accomplished, one predicts into the future simply by 
moving the block to the leading edge of the series making the independent or 
explanatory variables the present and immediate past and putting the depen- 
dent or response variable one step into the future. In this way, the usual 
regression predictor of the response variable becomes the predictor of the next 
value of the time series. However, the usual assumptions of classical regression 
are badly violated in this application and the need for mathematical shoring up 
sparked a large and fruitful development of time-domain methodology. This as 
well as some more recent developments is detailed in [1]. 

The seed of spectral-domain methodology was not dead during this period, 
but only dormant. In fact, as the time-domain methods were probed more 
deeply, it became increasingly apparent that many of the mathematical pro- 
perties of these series, even those important to time-domain methods, were 
more usefully and elegantly expressed in terms of spectral parameters. At the 
same time (during the period of World War II), the digital computer was under 
development. The reawakened theoretical interest combined with the realiza- 
tion that many practical problems in engineering as well as in the physical 
sciences could now be attacked by analyzing spectra on computers sparked the 
second flowering of spectral analysis. Much of the key work was accomplished 
in the 1940s and 1950s and was first published in book form in the late 1950s. 
The key work on the theoretical development of spectral methods was reported 
by Grenander and Rosenblatt~[8] while the computational and engineering 
applications of spectra were detailed by Blackman and Tukey [2]. John Tukey 
is widely credited with almost single-handedly sparking the renaissance in the 
applications of spectral methods. 

The other books on spectral analysis mentioned above report subsequent 
details of explosively expanding theoretical developments and applications 
from the 1960s and beyond. Important applications of spectral analysis now 
occur not only in the physical and engineering sciences, but in the natural and 
social sciences and in medicine. Granger and Hatanaka [7] and others have shown 
spectral methods to be of use in economics and the business world, the original 
province of time-domain methods. 
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The most recent swing of the time domain-frequency domain pendulum to 
time-domain methods was sparked in 1970 by the important book of Box and 
Jenkins [5]. By expanding the time-domain methodology and adapting it to the 
computer, these authors and others have evolved a useful and flexible 
methodology for carrying out such important functions as prediction (or 
forecasting). This methodology is currently being rapidly expanded and 
developed in both its theoretical aspects and its applications. Although the 
energy of this development tends to make those who think exclusively in the 
frequency domain feel a little out-of-date and a bit lonely at time-series 
meetings, the data analyst who must actually work with and try to understand 
real time series benefits greatly from it. Such individuals, and there is an 
ever-increasing number of them, must evaluate and learn to use every possible 
tool available. At this time in history, the choice of tools for ~ualyzing time 
series is large (but by no means complete!). This volume is intended to bring 
up to date the catalog of spectral-analysis tools. Since, at first exposure, spectra 
seem somewhat strange and unnatural, especially when compared to time- 
domain parameters, there is a tendency to overlook or even avoid the use of 
spectral methods. In doing so, an important dimension of time-series analysis is 
lost. It is the goal of this chapter to try to convince you that, if you are familiar 
with the regression and correlation methods of elementary statistics, spectral 
analysis will provide a framework for thinking about the structure of one- and 
two-dimensional time series in precisely these familiar terms. Moreover, the 
ideas of partial correlation and the methods of multivariate analysis have 
spectral analogs which make it possible to think constructively about time 
series of dimension greater than two. 

3. The time-series model 

The model we cover here describes phenomena for which the generating 
mechanism can be considered, at least for relatively long stretches of time, to 
be unchanging with the passage of time. The model itself has this unchanging 
or stationary property beginning with the infinite past and extending into the 
infinite future. Moreover, it is assumed that the interesting measurable charac- 
teristics of the mechanism behave in a manner that can be well described 
probabilistically. If X(t)  represents a numerical characteristic measured at time 
t, in the model X(t)  is viewed as a random variable whose value in the given 
observed realization has been selected according to a probability distribution. 
The collection of these random variables for all times - ~  < t < ~, along with 
their joint probability distributions, is a stochastic process. By imposing the 
physical conception of unchangingness or stationarity on the probability dis- 
tributions of the stochastic process, this model becomes a stationary stochastic 
process. However, the spectral theory, at least as we will deal with it, involves 
only the first two moments, the mean and covariance, of the model. Con- 
sequently, it is really only necessary to impose the stationarity conditions on 
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these moments. When this is done, the stochastic process is called weakly (or 
second-order) stationary. 

The stationarity assumption implies that the process means EX(t), (where E 
denotes the expectation operator), are unchanging in time; EX(t)--tm. Only 
the behavior of the residuals of the process from this constant mean value are 
of theoretical interest. We can shift to the residuals without changing notation 
simply by assuming m = 0. This will be taken as the value of the mean 
hereafter. The only process parameter of interest is then the covariance 
function R(h, t2)=EX(h)X(t2) which describes the stochastic relationship 
between measured Values of the physical phenomena at pairs of time points tl 
and t> 

The condition of stationarity implies that the physical phenomenon has no 
relevant time origin; its behavior during one time epoch is the same as it would 
be for any other. If this condition is imposed on the model, it would imply that 
the joint behavior of the process at times fi and t2 is precisely the same as it 
would be for any time translation of these points, t + tl and t + t2. That is, for 
all t, tl and tz, 

R (tl, t2) = R (t + h, t + t2). 

This being true, by taking t = - t l ,  we see that R(fi, t2)= R(0, t2- tl). That is, 
the covariance depends on tl and t2 only through the time difference t2- q. The 
covariance is then completely characterized by the function 

C(r) = R (0, ~'), -oo < ~- < oo, 

called the autocovariance function of the process. 
The implication of accepting this model for the physical process under study 

is that all of the interesting and relevant information about the process is then 
contained in the values of C(~-). One such value is C(0) = EX2(t), the process 
variance. (Because of the stationarity property, this quantity actually does not 
depend on t.) The variance represents the average 'energy' or power of the 
process. It has the physical interpretation of a time average of energy because 
of the property 

lim ~-~ X2(t) d t =  C(0). 
T-,oo J - T 

The precise meaning of this expression in the stochastic setting and its proof 
can be found in several of the references given in the introduction. 

Without the factor of 1/2T in the last displayed expression, power resembles 
a sum of squares similar to the usual measure of variability seen in the 'analysis 
of variance'. The representation of the response vector as a linear combination 
of subcollections of mutually orthogonal vectors makes possible the decom- 
position of the total sum of squares into a sum of component sums of squares 
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each of which represents the contribution of a different factor in the model. 
The term 'analysis of variance' actually refers to this decomposition. 

Spectral analysis performs precisely this same operation on time series. In 
the time-series context, the orthogonal vectors of the decomposition are the 
cosine functions 

A(A) cos(At + 0(A)), -oo < t < oo, 

where, for given frequency A (ifi radians per unit time), A(A) represents the 
amplitude and 0(A) the phase of the cosine function. The functions are viewed 
as being indexed by A and functions with different values of this index are 
orthogonal. The fact that these same functions crop up in so many different 
mathematical contexts is what makes Fourier analysis such a rich field of study. 
Their  appearance in the context of weakly stationary stochastic processes 
provides the mathematical foundation for the spectral analysis of time series. 

4. Spectral representations 

The spectral representations we will deal with involve writing the cosine 
functions in a different form. We first rely on the law of cosines to write 
cos(At + 0) = cos 0 cos A t -  sin 0 sin At. We then use the representation e i4' = 

cos ~b + i sin ~b to write A cos(At + 0) = c e at + ~ e -at, where c is the complex 
number  such that 0 = arg(c) and A = 21c[. It follows that if we let c(A) = c and 
c ( -A)  = ~, then a sum of the form 

A(A) cos(At + 0(A)) 
A~0 

can equally well be represented as 

Z C (A) e TM , 
A 

where both positive and negative frequencies are involved in this second fo rm.  
The functions e at inherit the orthOgonality of the cosine function for different 
values of A. 

For weakly stationary processes, the 'sum' is actually an integral and the time 
series has the spectral representation (or decomposition) 

X(t) = f e TM Z(dA).  

The complex-valued amplitude function Z(A) is a stochastic process and some 
care is required to properly define this integral. However,  intuition is best 
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served by ignoring both mathematical precision and theoretical details. Simply 
view this expression as representing X(t) as a linear combination of the 
orthgonal functions e at. The complex amplitude Z(dA) contains both the 
amplitude and phase of the cosine in the alternative 'sum' representation given 
earlier. Consequently, amplitude and phase are random quantities. Thus X(t) 
can be viewed as being made up of a 'sum' of an infinite number of cosine 
terms, each of a different color or frequency and with randomly selected 
amplitude and phase. 

The analog of the analysis of variance is now obtained from a similar spectral 
representation (decomposition) of the autocovariance function: 

C(~') = f ea'F(dA). 

The function F(A) is called the spectral distribution function or, more simply, 
the power spectrum of the process. It represents the total power in frequencies 
to the left of A. In intuitive terms, the quantity F(dA)= F(A + dA)-F(A)  
represents the amount of power in the time series at frequency A. The analysis 
of variance would correspond to having the total power C(0) equal to the 'sum' 
of the power contributions at each frequency. This interpretation follows from 
the spectral representation of the autocovariance function by setting ~- = 0: 

C(O) = f F(dA). 

However, the spectral representation of the autocovariance function has an 
importance beyond this. It tells us how to obtain C(r) for all ~- if the function 
F(A) were known. It can be shown (with some difficulty) that F(A) could be 
recovered if C(~') were known completely. That is, these two functions are 
equivalent parameterizations of the time series. In a sense, they contain the 
same information about the process. This statement is quite misleading, 
however, and lies at the root of the unfortunate dichotomization of time-series 
analysis into separate time-domain and frequency-domain methodologies. One 
can argue that, since both parameters contain the same information, it is 
sufficient to study one of them. The time-domain devotees concentrate on the 
study of C(~-), while spectrum analysts confine their attention to F(A). The 
problem with this dichotomized effort is that each parameter displays the 
time-series information in different ways. Some features of the series are easily 
detected by looking at C(r) but nearly impossible to detect from F(A). The 
converse is equally true. This is why the practicing time-series analyst must be 
able to operate effectively in both domains. The time-domain tools have the 
advantage of retaining the time dimension, thus the intuition associated with 
time-varying phenomena. 

Spectral-domain methods, on the other hand, exchange time for frequency 
and it is necessary to develop new intuition and thought processes in order to 
interpret the results of spectral analyses for which the goal is the study of F(A). 
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5. The different types of spectra 

Before going on, it is appropriate to look more closely at the kinds of 
physically relevant spectra the mathematical model is capable of representing. 
A physical phenomenon that exhibits all of the relevant forms of spectra is 
light. For example, the spectra of starlight are known to be composed of both 
lines at distinct frequencies (colors) and a more amorphous blend of energy in 
bands of frequencies. These are physical realizations of what are called discrete 
or line spectra and continuous spectra, both of which are representable in the 
mathematical model. 

The power spectrum can be represented as the sum 

F(dX) = p(h) + f(h) dh,  

where p(A), called the spectral function, represents the power in the discrete 
spectrum at frequency A and f(A), the spectral density function, represents the 
intensity of the continuous spectrum at A. There are at most a countable 
number of points A0 = 0, ±A1, -+'A2,--. at which p(A) can be positive. The 
discrete power in any interval of frequencies I is then E,~EIp(AI). The con- 
tinuous power in I is fzf(A) dA. The representation of F(dA), above, admits the 
possibility of a mixed spectrum in which both continuous and discrete power 
are present together, as in the starlight example. Pure spectral types would be 
represented mathematically by taking the function representing the other type 
to be identically zero. By far the more commonly occurring case in practice, 
and the one considered almost exclusively in the statistical estimation of 
spectra, is that of pure continuous spectra. Mixed spectra can be easily reduced 
to this case by first identifying, estimating and removing the discrete com- 
ponents. Since we will not be concerned with spectral estimation in this 
chapter, details of this procedure are omitted. However, in the subsequent 
discussion, we will be concerned primarily with pure continuous spectra. Where 
the theory does not depend on spectral type, the F(dA) notation will be 
retained. Where it does, we will use the spectral density notation. 

6. Spectra and linear filters 

The relationship between the random amplitude Z(dA) and the spectrum 
F(dA) is important and can be expressed as follows: 

J'F(dA) if/~ = A, 
EZ(dA )Z(dI~ ) = [o i f / ~  A. 

This expression tells us that the variance of Z(dA) at frequency A is F(dA). (We 
ignore the measure theoretic niceties and think of Z(dA) as a complex-valued 
random variable with zero mean attached to the frequency A. The variance is 
then EIZ(dA)[2.) Moreover, the covariance EZ(dA)Z(d /~)  is zero if / ~ h ,  
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indicating that the amplitude functions at different frequencies are uncor- 
related. Thus problems of describing and dealing with the possibily complicated 
interrelations of the variables X(t) through the autocovariance function C(~-)-- 
problems, in theory, involving simultaneously the infinity of time dimensions-- 
reduce to an infinite number of uncorrelated and identical finite-dimensional 
problems--one associated with each frequency. Moreover, except for the 
minor complication that complex quantities are involved, these finite-dimen- 
sional problems will closely resemble familiar problems of statistics. 

Perhaps one of the most important applications of the spectral theory, and of 
these intuitive ideas, is to linear filters. The uses of linear filters are woven 
throughout the entire fabric of time-series analysis. They are used to model 
physical mechanisms that convert one time series into another. Thus the earth 
converts the impulse of an earthquake into the complex pattern of waves seen 
on seismographs in a manner that can be, to a good first approximation, 
described by a linear filter. Many other physical 'filters' are also well described 
by linear filters. In other uses, linear filters are designed to perform purposeful 
transformations of time series. Time-series models, such as the autoregressive 
and moving average models, familiar in many applications, are defined in terms 
of linear filters. The construction of a linear predictor of future time-series 
values is the construction of a special linear filter. The list of applications goes 
on and on. 

Granting their importance, just what are linear filters? A general description 
of their properties is as follows. (See [11] Chapter 4 for a more careful 
discussion..) A linear filter L transforms an input time series X(t) into an 
output time series Y(t), written Y(t) = L(X(t)), in such a way that L(tzlXl(t)+ 
a2X2(t)) = otlL(Xl(t)+ ot2L(X2(t)). Here or1 and a2 are real constants which 
change the scales of the two time series Xl(t) and X2(t), and the sum indicates 
addition of the series at each time t. This property accounts for the term 
'linear' in the name of these filters. The separate properties L(aX(t))= 
aL(X(t)) and L(XI(t) + X2(t)) = L(XI(t)) + L(X2(t)) are called scale preservation 
and the superposition principle, respectively. The last property of a linear filter is 
time invariance, which specifies that if L(X(t))= Y(t), then L(X(t+ h))= 
Y(t + h) for any h. Intuitively, this simply means that the filter operates in the 
same fashion no matter what the time origin is--its behavior does not change 
with time. 

The importance of linear filters in the mathematical theory of weakly 
stationary stochastic processes is connected with the fact that they preserve 
weak stationarity. That is~ if X(t) is a weakly stationary process, then so is 
Y(t) -- L(X(t)). Consequently, the behavior of L on X(t) must be observable 
from the relationships between the parameters of the input and output proces- 
ses. The relationship between the autocovariance functions of X(t) and Y(t) 
can be either complicated or simple depending on the specific form of the filter. 
On the other hand, the relationship between input and output spectra is always 
simple, regardless of the form of the filter. This is one of the key advantages of 
the spectral theory. 
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Without going into details, if the input process has spectral representation 

X(t) = f eiaZx(dA), 

the output process Y(t) = L(X(t)) has representation 

Y(t) = f eatD(A )Zx (dA  ) , 

where D(A) is called the transfer function of L. This function is complex- 
valued, in general, and can be obtained by applying the filter to the sinusoids 
e m for each A: 

L(e i-t) = D(A) e i*t . 

For example, an important special linear filter is the derivative 

dXft) L(X(t))= at 

Applying L t o  e i;tt, we see that 

d e i*t 
= iX e iat . 

dt 

Thus the transfer function of the derivative is D(A) = iX. 
To see how input and output spectra are related, we note from the expres- 

sions above that the amplitude functions are related by the equation 

Zy(dA) = D(A)Zx(d*). 

Forming variances, 

ElZy(dX )l ~= ]D(X )12ElZx(dX )l 2 

o r  

Fv (dA) = ]D (X)12Fx (dA). 

Thus the spectra of input and output differ simply by the factor IO(X)l 2. In 
particular, the spectrum of the derivative of X(t) would by ptl2Fx(dX). 

The condition that the output series have finite power or variance is 

f lD(X)12Fx(d~t) < o~. 
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When this condition is satisfied, the filter and input series are said to be 
matched. For example, in order for an input series with pure continuous 
spectrum and spectral density fx(A) to match the derivative, we must have 

f IAI=&(A)dh < oo. 

This clearly imposes a restriction on how much power X(t)  can have at high 
frequencies. If we agree that matching is a necessary constraint, it follows that 
not all time series can be differentiated. 

An intuitive idea of how linear filters operate can be gained by using the 
polar representations of the complex quantities D(A) and Zx(dh). Write 

Zx(dA) = IZx(dA )le i°~) . 

Then IZx(dh)[ represents the random amplitude of the periodic contribution to 
X(t)  at frequency h and 0(h) is the random phase, as described in Section 4. 
Now, writing D(A)= ID(X)I d +(~), we see that 

Zy(dX) = ID(A)[ IZx(dX)l e i(°(x)+~(~)) • 

That is, the effect of the filter is to multiply the amplitude at frequency h by the 
factor [D(A)I and to shift the phase by ~b(A). These separate components of 
the transfer function ~ are called the gain function and phase (shift) function, 
respectively. The gain and phase-shift functions of the derivative are 

and 
DOt) = [A[ 

forA > 0 ,  

forA < 0 .  

Note that if a linear filter with transfer function D(A) is viewed as modeling a 
'black box', whose properties are to be determined from the input and output 
time series, it is not sufficient to compute the power spectra of input and 
output. The reason for this is that only the gain function of the filter can be 
determined from the spectra: 

ID(A)I  = "  
~/Fx(dh)" 

In order to capture the phase shift of the filter as well, we need additional 
spectral parameters for defining relationships between the two time series. 
These parameters are discussed next. 
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7. Spectral parameters for bivariate time series 

Two weakly stationary processes X(t) and Y(t) are said to be stationarily 
correlated if the covariance Rxy(tl, t2)= EX(tl)Y(t2) depends only on t l- t2.  
The cross-covariance function Cxy(r) is then defined to be 

Cxy(r) = EX(t  + r) Y(t).  

A pair of stationarily correlated weakly stationary processes constitutes a 
bivariate weakly stationary process. The cross-covariance function is the new 
time-domain parameter which, along with the autocovariance functions Cx(~') 
and C¢(r), completely describes the relevant properties of the bivariate 
process. The corresponding spectral parameter Fxy(dA), called the cross- 
spectral distribution or, more simply, the cross spectrum, satisfies the relation 

Cxy(z) = f eia'Fxv(dA ). 

The cross spectrum has discrete and continuous components pxy(A) and fxy(A), 
called the cross-spectral function and cross-spectral density, for which 

Fxy (dA) = pxy(A) + fxy(A) dA. 

These functions will be nonzero only where the corresponding spectral func- 
tions or spectral densities are nonzero for both component processes. 

The input and output of a linear filter will always be stationarily correlated. 
Consequently, we can compute the cross spectrum of such series. It is con- 
venient to use the fact that Fxy(dA) is the (complex) covariance of Zx(dA) and 
Zy(dA): 

Fxy(dA) = EZx (dA)Zy (dA). 

If Y(t)= L(X(t)) and L has transfer function D(A), then 

Fxy (dA) = EZx (dA)[D (A)Zx (dA)] 

= P (A)EZx (dA)Zx (dA) 

= D ( A ) F x ( d A ) .  

Thus the transfer function, complete with both gain and phase information, can 
be computed as 

D (A) = Fxg (dA) 
Fx(dX) " 



180 L. H. Koopmans 

This, of course, is only one possible use of the cross spectrum. In general, the 
cross spectrum contains information about the interrelationship between the 
components of a bivariate time series in much the same way that a covariance 
measures the linear relationship between two random variables. In fact, this 
analogy is much closer than one might imagine. In each frequency dimension A, 
the cross spectrum is essentially the covariance of the two 'random variables' 
Zx(dA) and Zy(dA). The chief difference is that these variables are complex- 
valued, which makes the covariance complex-valued as well. 

Two different real-valued representations of the cross spectrum are in 
common use, each depending on a particular expression for complex numbers. 
In order for our notation to agree with that seen in practice, we will take the 
spectrum to be of continuous type. The cross spectrum is then determined by 
the cross-spectral density fxr(A). Representing fxr(A) in Cartesian form (with a 
negative sign) leads to the equation 

f x r (h )  = c(A)- iq(A), 

where c(A) and q(A) are the cospectral density (or cospectrum) and quadrature 
spectral density (or quadspectrum), respectively. Thus one complete list of 
real-valued spectral parameters for the bivariate process would be c(h), q(;t), 
fx(A)  and fy(h). 

A second set of parameters is obtained from applying the polar represen- 
tation z = r d o to fxY0t), where r = ]z[ and 0 = arg z. Here, we let 

[fxY(A)[ and argfxy(A). p ( X )  = 

These parameters are called the coherence and phase, respectively. Along with 
fx(A) and fy(A) they represent an alternate real-valued parameterization of the 
bivariate process. In the author's view, this parameterization is the more useful 
one because of its interpretability. 

Writing Z x ( d h )  and Zv(dA) in polar form, we have 

fxrr(A ) = EZx(dA )Zy(dA ) 

= ElZx(dh)[  [Zy(dA)l e i~°x~-°Y~A)~ . 

If the phases Ox(A) and Ov(h) were constant, the exponential would factor out 
of the expectation giving 

q,(;t ) = OxO ) -  oy(a ) . 

In this case, O(h) would represent the phase lead of the X ( t )  time series over 
that of the Y( t )  series at frequency A. Since, in general, the phases will be 
random, this interpretation will not be precisely correct. However, q~(A) will 
still represent a weighted stochastic average of the phase differences and it is 
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useful to think of this parameter as the (or an) average phase lead of X(t) over 
Y(t). 

The coherence behaves almost exactly like the absolute value of a cor- 
relation coefficient. For example, 0 ~< p(h)~< 1, with values near 0 indicating a 
weak linear relationship at frequency A and values near 1 a strong relationship. 
In the time-series context, 'linear' refers to linear filters. That is, pOt) measures 
the degree to which Y(t) can be represented as the output of a linear filter with 
input X(t). In fact, p2(A) has precisely the interpretation of the coefficient of 
determination. It is the proportion of the variation (power) of Y(t) at A that is 
attributable to its linear relationship with X(t) in the following sense: If/~ is 
the linear filter that minimizes the power, E(Y(t)-L(X(t))) 2 in the 'residual 
process' among all filters L, then p2(A) is the ratio of the spectral density f~,(A) to 
fly(A), where ~"(t) = l~(X(t)). The process ~"(t) represents the best approximation 
to Y(t) as a 'linear function' of X(t) and p2(h) then represents the proportion of 
the power in Y(t) at frequency h attributable to I)'(t). Thus, for example, if Y(t) is 
exactly a linear function of X(t), Y(t)= L(X(t)), and if D(A) is the transfer 
function of L, then we see from earlier calculations that 

p~(~) = If~(~)l = 
fx(X)fy(x) 

[D(X )fx(x )l 2 
= fx (A)(ID (A)12fx (X)) 

----1. 

Another important property of the absolute value of a correlation coefficient 
is its invariance under linear transformation. This property also holds for 
coherence. Thus, if X(t) and Y(t) have coherence function p(A) and if 
U(t) = LI(X(t)) and V(t)= L2(Y(t)), where L1 and L2 are arbitrary linear 
filters, then p(A)-will also be the coherence of U(t) and V(t) at all frequencies 
for which the spectral densities fu(A) and fv(A) are both positive. These 
properties make it possible to translate one's intuition about correlation and 
simple linear regression directly to coherence for a frequency by frequency 
assessment of the association between two time series. 

8. Spectra of multidimensional processes 

The discussion of the last section implies that at each frequency the matrix of 
spectral densities for a bivariate time series, 

[fx(X) fx~(X)] 
f(A) = LfYx(A) fly(A) 

(where flyx(h)=fxy(h)), behaves like the covariance matrix of two random 
variables. 
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Linear filters in two or more dimensions also have a familiar matrix 
representation in the frequency domain. For example, if a 'black box' with two 
inputs and two outputs is a linear filter, each input would contribute linearly to 
each output. If Bij(A) represents the transfer function of the contribution of the 
ith input to the jth output, the behavior of the filter is completely described by 
the matrix of transfer functions 

B(A)= IBex(A) B12(A)] 
[_B21(A) B~(A)J " 

In particular, if Z(dh) = (Zx (dA), Zv(dh))r is the vector of complex amplitudes 
of a weakly stationary bivariate input process, the vector output process can be 
represented as 

W(t) = f eiatB(A)Z(dA), 

where matrix multiplication has been used inside the integral and the in- 
tegration has then been carried out coordinatewise. In the same sense, the 
spectral density matrix of the output process is 

B(A)f(A)B*(A), 

where * denotes the transpose of the coordinatewise complex conjugate of 
eo). 

Thus writing the amplitude vector of the output process W(t) in the form 

Zout(dA) -- B(A)Zin(dA), 

we see that the linear filter behaves exactly like a two-dimensional linear 
transformation in the frequency domain. Moreover, the spectral density matrix 
is transformed by a linear filter in exactly the same way that a covariance 
matrix is by a linear transformation. Again, the only added complication is that 
the matrix elements are complex-valued. 

These ideas and formulas generalize immediately to p-dimensional time 
series for any finite value of p. Then, the parameters and methods of analyzing 
the covariance structure of a vector random variable can be applied to the 
frequency-domain representation of the vector weakly stationary stochastic 
process. Partial and multiple coherences can be used for the same purposes as 
are partial and multiple correlation coefficients. However, in the time-series 
context, phase information is also available in the polar representations of 
these parameters. Partial and multiple coherences are important parameters in 
time-series versions of multiple regression. 

Methods of multivariate analysis such as canonical correlation analysis and 
principal component analysis also have time-series analogs which use these and 



A spectral analysis primer 183 

other spectral parameters defined in analogy with the appropriate multivariate 
parameters. Examples of these methods are given in [4, 6, 11]. The possibilities 
have by no means been exhausted. It is expected that many fruitful applications 
o f  spectral methods to multidimension processes will be made in the future. 
The third flowering of spectral analysis may well lie in this direction. 
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Robust-Resistant Spectral Analysis 

R.  D o u g l a s  M a r t i n *  

1. Introduction 

Resistance and robustness 

This tutorial paper describes some methodologies for obtaining resistant 
estimates of spectral densities. Resistance is a term coined by Mosteller and 
Tukey (1977); roughly speaking it means insensitivity to changes in the data. More 
specifically, a resistant estimate is one which is not affected very much by (i) 
changing a small fraction of the observed data by possibly large amounts, or (ii) 
changing all the data by small amounts. Large changes in a small fraction of the 
data occur either when gross errors are made in recording the data, or when 
the data by its very nature makes occasional large excursions. All the data may 
be changed by small amounts, for example, when grouping, rounding or 
quantization effects are present. 

The term resistant is a purely data-oriented word, which has as both an 
advantage and a disadvantage the fact that technical probability and mathema- 
tical statistics issues are not involved. The quality of resistance is to be judged 
solely in terms of the functional or algorithmic form of the estimate. While this 
may require technical mathematical tools, in order to establish continuity for 
example, the probabilistic aspects of statistics are not really required. The 
advantage is a transparency of concept which is widely accessible. The disad- 
vantage is that without the formal theory of statistics it is not possible to discuss 
important basic issues such as consistency and efficiency, let alone discuss 
robustness, which is the probabilistic counterpart  of resistance. 

The last decade or so has seen a vigorous development of the theory, concepts 
and algorithms of robust statistical procedures for the case where the obser- 
vations are independent. References to much of the literature, excluding the 
very most recent publications and preprints, may be found in the recent book 
by Huber  (1981). Work on robustness in the time-series setting has lagged 

*This research was supported in part by the Office of Naval Research Contract N00014-82-K- 
0062. 
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considerably, and this is perhaps understandable in view of the increased 
technical problems imposed by a serial dependency in the data. 

An overview of robust methods for time series, which gives some indication 
of the problems involved, may be found in Martin (1981). In fact, the difficul- 
ties associated with robustness theory for time series are sufficiently technical 
and so much in a state of current development (cf., for example, Cox, 1981, 
Papantoni-Kazakos and Gray, 1979, and Boente, Fraiman and Yohai, 1982) that 
extensive treatment of robustness aspects of spectrum estimation is both 
premature and beyond the scope of this presentation. Thus the emphasis will be 
on resistant spectrum estimation, with some occasional discussion of robustness 
issues. Since situations sometimes encourage use of the terms robustness and 
resistance interchangeably, and without regard to their distinction (for example, 
one finds 'robustify' a more pleasant term than 'resistify'), we shall freely alternate 
use of the terms. 

That robustness-resistance is indeed an important issue in the context of 
spectrum estimation was exposed by Kleiner, Martin and Thomson (1979), who 
proposed two robust-resistant methodologies (see also Thomson, 1977a,b). 
Although the techniques and emphasis in this paper differ somewhat from those in 
Kleiner, Martin and Thomson (1979), the latter provided considerable inspiration 
for this tutorial. See also Martin and Thomson (1982), which overlaps somewhat 
with this paper. 

The time-series setup 

We shall restrict attention in this paper to the special case of discrete time 
series (or stochastic processes) xt, t = 0, ---1, _+2 . . . . .  corresponding to obser- 
vations at equispaced time intervals t' = 0, _-+-A, _+2A . . . . .  It is of no importance 
here whether the xt are observations of an inherently discrete-time proces ,  or 
are the samples of a continuous time process. In the latter case we simply 
assume that the sampling rate fs = 1//I issufficiently high that aliasing errors are 
of no real concern (Bloomfield, 1976; Brillinger, 1981). For notational con- 
venience the observation, or sampling, time interval A is suppressed through- 
out by assuming A = 1. 

Furthermore, we assume that the time series x, of interest has finite variance 
and is reasonably well modeled by the wide-sense stationarity (WSS) assump- 
tions that for all t = 0, ---1, -+2 . . . .  

I Ext--lx (1.1) 
and L 

cov(xa xt+t) = C(l), l = 0, _+2,.. . .  (1.25 

That is, the mean Ext is constant and the covariance between xt and xt+t 
depends only upon l and not upon t. Given the above second-order description 
of xt in the time domain, the corresponding frequency-domain description is 
given by the spectrum or spectral density 
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S(f):  ~ C(I)e -i2~¢t. (1.3) 

It is easy to check that S(f) is symmetric and periodic, with period unity. 
Correspondingly, the C(I) are Fourier coefficients which may be obtained from 
S(f) as 

f t/2 
C(1) = S(f)  e ~'~ dr. (1.4) 

1/2 

The relationships (1.3) and (1.4) are often referred to as (discrete-parameter) 
Fourier transform pairs. 

A more basic and intuitive interpretation of the spectral density is obtained 
from the so-called spectral representation theorem which roughly states that Xt 
may be expressed as the random Fourier series 

N/2 
xt "~ tz + ~,  At  e e'~lft , (1.5) 

l= - N/2 

where Al are random complex coefficients with the properties: (i) EAt  =- 0, and 
cov(Al, A,,) = 0 for I¢ m, (ii) S(l /N)  = E [ A l l  2. Thus the value of the spectrum 
at frequency fl = I/N is the variance (in the absolute value sense) of the lth 
random coefficient. A precise statement of the spectral representation theorem 
and associated details may be found in many standard references (see, for 
example, Grenander, 1981). 

The basic problem to be treated here is that of obtaining resistant estimates 
of S(f). The paper is organized as follows: Section 2 discusses time-series 
outlier types and corresponding nonnormality of the probability models, illus- 
trated by several examples, and introduces a basic additive outlier (AO) model. 
Section 3 discusses the lack of resistance-robustness of conventional auto- 
regressive (AR) spectral density estimates, and shows how to robustify the 
conventional Ar estimates. Section 4 is a central one in which the lack of 
resistance-robustness of smoothed periodogram estimates is discussed and a 
robust methodology is presented. Section 5 briefly mentions the robustness- 
resistance properties of the methods described in Section 4. Several examples are 
presented in Section 6, and Section 7 briefly mentions some open problems. 

2. Time-series outliers and nonnormality 

Qualitative features 

Time series occurring in practice often exhibit anomalies in the form of 
outliers of various types. For the time being let us use the term outlier quite 
loosely in the time-series setting, and attempt some degree of preciseness a 
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little later on. In this spirit we note that outliers come in many forms, such as 
bumps or patches differing from the remainder of the record, spikes of varying 
shape and frequency, level shifts of varying frequency and magnitude, and gross 
errors or malfunctions in recording. 

Even though we are focussing our attention on the rather narrow class of 
discrete time-series data well approximated by the wide-sense stationarity 
assumption, diversity of qualitative features in observed data records are 
considerable. Specific kinds of features and anomalies are often associated with 
particular subject matter contexts. For example, economic time series often 
exhibit isolated outliers or outlier 'patches' whose onsets are associated with 
specific events such as strikes, oil embargos, etc. In speech analysis ' and 
synthesis, one encounters rather periodic structure, including spikes, in the 
record (or 'waveform') for voiced sounds (see, for example, Rabiner and 
Schaffer, Chapter 3, 1978). 

In one engineering problem, researchers gathering large volumes of under- 
water acoustic data on several recorders simultaneously are concerned about 
level shifts due to the physical process itself, latch-ups consisting of a string of 
constant values due to a measuring instrument saturation or malfunction, and 
isolated outliers due to various causes. Another engineering problem is con- 
cerned with communication at extra low frequencies (ELF) in the range 70-100 
hertz. In this frequency range, electrical activity due to storms, both local and 
distant, produces huge spikes in the data of varying amplitude and frequency of 
occurrence (see Figs. 1 and 2 of Evans and Griffiths, 1974). 

An example of a data set containing many outliers due to a physical 
reverberation phenomenon consists of measurements of so-called 'glint' noise 
shown in Fig. 1 (see, for example, McGrew, 1972, for a discussion of the 

Cd 
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Fig. I. Glint noise data. 
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physical basis for a glint noise model). The ordinate in Fig. 1 displays apparent 
angle of an aircraft target, as observed by a radar receiver, versus angle of 
rotation of the target. The frequently occurring glint spikes, which indicate an 
apparent angle quite different from the true angle, are due to constructive 
interference of the reverberation-like composite return of the reflected signal 
from different positions of the complex structure of the aircraft. 

One can also find special anomalies in time-series data arising in geophysics, 
oceanography and other engineering and applied science problems. The diver- 
sity may at first appear overwhelming, and it might seem that specially tailored 
techniques would be required for each particular problem. Indeed, it is true 
that specialized techniques have been devised for certain problems. For exam- 
ple, intervention analysis, a structured dummy-variable technique, has been 
proposed by Box and Tiao (1975) for dealing with situations where a known 
cause, such as a strike in an economic time series, may cause a special effect, 
which may in some instances exhibit an outlier-like character. This approach 
assumes that the intervention effect has a parametric structure which is either 
known, or easily guessed, except for a few parameter values which are 
estimated along with other model parameters by Gaussian maximum-likelihood 
estimation. Brillinger (1973) proposed a variant of this technique involving 
cross-spectral analysis. 

On the other hand, the intervention analysis technique is hardly of universal 
applicability. First of all, even when the time of onset of a. ~pecial event 
indicates the possibility of outliers, it may be difficult to specify a parametric 
structure for the effect. Second, many time-series outliers have times of 
occurrence which are not specified by the occurrence of other events, and it 
may be that they are not even easily detected by the eye in a plot of the data 
(see Fig. 4D of Kleiner, Martin and Thomson, 1979, or Fig. 6 of Martin, 
Samarov and Vandaele, 1981). 

Thus there is a need for time-series spectrum estimation (as well as 
parameter estimation) methodologies which are insensitive to outliers, and 
which do not rely on very special knowledge about either the location of 
outliers or a probability model which generates the outliers. Fortunately, many 
of the outlier types described above have an important common feature: they 
occur a small to moderate fraction of the time, and except for these times, the 
series exhibits what appears to be a moderately homogeneous and Gaussian sto- 
chastic behavior. The resistant spectrum estimation techniques which we shall 
describe are well suited for series having this general character. For, like other 
robust techniques in the non time-series setting, they are constructed so as to 
provide estimates which represent the bulk of the data. 

The additive outlier model 

Subsequently we shall discuss what constitutes a time-series outlier in rather 
precise qualitative terms. Partly for reasons having to do with notation, it is 
convenient to introduce an explicit outlier generating model at this time. The 
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model is a so-called addi t ive  outlier (AO) model which allows for a particularly 
harmful type of nonnormal probability model which generates outliers. In this 
model the observations are labeled yt, with Yt related to the process xt of 
interest by 

Yt = xt + vt ,  (2.1) 

where vt accounts for outliers, either in isolation or in clumps. 
Any perturbation of the process xt, whose spectrum we are interested in 

estimating, by local disturbances, gross outliers and other aberrations can be 
expressed in the form (2.1) by simply defining v, to be the difference between 
the observations y, and the core process xt. In general, this produces a com- 
plicated dependency between vt and xt that, along with the serial dependency 
needed to adequately describe patchy outliers, greatly complicates any attempt 
to produce theoretical results. For the latter purpose, one would usually 
for convenience require that the vt be independent and identically distributed 
(i.i.d.). However, the only basic attribute of the vt which we wish to stress here is 
that the vt are assumed to be zero much of the time: P ( v t  = 0) = P(Yt = xt) = 1 - 7, 
andtypically we will have y not too large, say 0.01 ~< 3' <~ 0.25. Accordingly, the  
process xt is observed perfectly about 100(1 - 3')% of the time, and is corrupted by 
outlier effects about 1003'% of the time. 

From now on we shall assume that the observed data is yt, with general versions 
of (2.1) accounting for outliers. The situation where xt is observed perfectly is then 
the special case where vt --- 0. 

Univar ia te  a n d  bivariate  outliers 

Outliers in time series are associated with distinct nonnormal or non- 
Gaussian features of the data. Sometimes this is clearly reflected in heavy-tailed 
behavior of the univariate or marginal distribution function F(y ;  t), or density 
f ( y ;  t). Although density estimates are not very useful for revealing a heavy- 
tailedness, except in very large sample sizes, the presence of outliers is some- 
times clearly reflected in normal QQ-plots. 1 For example, the glint noise data 
segment (which is part of a longer record) displayed in Fig. 1 yields the 
QQ-plot of Fig. 2. The heavy-tailed nature of the marginal distribution, which 
is associated with the glint spikes, is quite evident. 

Another segment of the same glint noise record is displayed in Fig. 3, and a 
corresponding normal QQ-plot is shown in Fig. 4. Although the spikes are still 
quite evident in the time record, the QQ-plot of Fig. 4 gives a much weaker 
indication of nonnormality than that of Fig. 2. Since the data would nonethe- 

1A (normal) QQ-plot is a plot of the order statistic values y(i) versus the normal quantiles 
y(pi) = ~-l(pi), Pi = ( i -  1/2)/n, 1 <~ i <~ n, where ~ is the standard normal distribution function. 
See, for example, Gnanadesikan (1977). 
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Fig. 2. Normal QQ-plot for glint noise data. 
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Fig. 3. Glint noise data. 

less appear to be strongly non-Gaussian, one might expect this aspect to be 
more clearly evident in the higher-order distributions for the data. Although 
QQ-plots do not extend easily and naturally to multivariate situations, one can 
easily get some idea of the lag-1 bivariate distribution of the data by looking at 
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Fig. 4. Normal  QQ-plot  for glint noise data• 

scatter plots, i.e., plots of yt versus yt-~. Fig. 5 displays such a plot for the glint 
noise segment of Fig. 3. The nonnormality is more strongly evident here than 
in the univariate QQ-plot. 

O u t l i e r s  m o r e  g e n e r a l l y  

Although time-series outliers which are hidden in a marginal view of the data 
will sometimes be exposed in a bivariate view, this need not always be the case. 

0 

• L I  • 

. .  

• .-; : ' . t  

• .  ".: I:~ S'~'-,'. 
• ..-~..~;~...,, . .  

.. ~.~'t~,:. • .... 
.. ~ . . ; ' :~ ' .  ~.': . .  . 

..~. ! ,~-.: . . . .  
• . a'~'. • ~ ' . :  

• , .  • *  . 

I i I I 

I00 150 2 0 0  2 5 0  3 0 0  

Fig. 5. Lag-1 scatter plot of glint noise data. 
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For example, the artificial data in Fig. 6 produces the lag-1 scatter plot shown 
in Fig. 7, which reveals no outliers. Clearly, a univariate QQ-plot will also reveal 
nothing. On the other hand, the lag-2 scatter plot of Yt versus Yt-2 in Fig. 8 
clearly reveals two outliers (N.B. a single outlier in the original series typically 
results in a pair of outliers in a scatter plot). 

This example suggests that we should routinely plot lag-/ scatter plots for 
l = 1, 2 . . . . .  L, with L chosen large enough that the lag-L plot shows no 
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Fig. 6. Artificial data• 
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interesting correlation situation. Although the suggestion is hardly new, it is 
seldom followed in practice. 

The preceding example also begs the obvious question, "What is a time- 
series outlier anyway?" The following comments provide a natural definition in 
terms of conditional densities for prediction. 

Imagine a probability model giving rise to outliers which are transparent in a 
bivariate view. Denote  the bivariate density for the series at times t~ and t2 

f(Yt, Y2) = f(Yz ] Yl)f(Yl) 

with marginal density f(yl)  and conditional density f(yz[ Yt). Outliers which do 
not apl~ear in a marginal view must fall within the area of concentration of 
f(Yx). But if such outliers are exposed in a bivariate view, they must fall outside 
the area of concentration of f(yx, Y2), which is say roughly ellipsoidal. Hence an 
outlier Y2 at time t2 must fall outside the region of concentration of f(.1 Yl).  

Now let us generalize tO the higher-order case. An outlier YM+I at time 
tM+l is a data point which falls outside the region of concentration of 
f(YM+llYM,-.., Yl) for some M and t l , . . . ,  tM, where Yt . . . . .  YM are the data 
points corresponding to the latter time points. Since selection of noncon- 
secutive time points would be Very difficult in practice, one naturally restricts 
attention to the case of consecutive time points: tu+a = t, tM = t - 1  . . . . .  tl = 

t - M. In order to obtain a fairly transparent interpretation of what this general 
definition means, we shall use a zero-mean Gaussian series as a frame of 
reference• 

For a Gaussian series we would have 

f(yt [y,-1 . . . . .  y,-M) = N(y,; 9~ -1, sM), (2.2) 
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where N(y;/~,  0 "2) is the Gaussian density with mean/z ,  variance 0 "2, and where 

~-1 = E(yt l y,-1 . . . . .  y,-M) (2.3) 

is the conditional-mean predictor of Yt given yt-1 . . . . .  Yt-M, and s 2 is the 
associated conditional mean-squared-error (MSE) of prediction. It is well 
known that in the Gaussian case, 335 -~ is linear: 

M 
f l~-l= Z a~yt-t,  (2 .4 )  

1=1 

where the coefficients a~t = (aM~ . . . . .  ar~vt) satisfy the normal equations 

CaM = g (2.5) 

with C~j = cov(yi, yj), 1 ~ i, j ~< M and gi = cov(y0, yi), 1 ~< i ~< M. For a series 
with nonzero mean, an intercept coefficient y would have to be included in 
(2.4). 

Now since N(yt; ~-1, s~)  = N ( y t -  )3f-t; 0, s2),  we have Yt is an outlier if and 
only if the prediction residual 

r, = y , -  ~ - '  (2.6) 

is large relative to SM for some M. In practice, it seldom appears to be necessary 
to choose M very large in order  to expose outliers that have any substantial 
consequence on estimation procedures. Often M in the range 2 to 4 will be 
adequate,  assuming the data is not oversampled. 

In the event that the time series is non-Gaussian, it sometimes turns out that 
we are justified in using the approximation 

^t-1 , ~ 1  / Y t - Y t  \ 
f(Y, [Y t - t , . . . ,  Y , - M ) - ~ g ~ )  (2.7) 

for some non-Gaussian density g which is approximately symmetric. In such 
cases the interpretation of an outlier as a point Yt for which rt = Yt - -  ) 3~  - 1  is large 
relative to the scale measure st still holds. Here  one needs to be careful about 
details concerning the non-Gaussian model. For example, if y t -  xt is a per- 
fectly observed autoregression of order  M, then (2.7) holds with equality, 
st ~ SM is the scale of the innovations, g is the innovations density and the 
conditional mean predictor ~-1 is linear (assuming the conditional expectation 
exists). On the other hand, if the additive outlier model (2.i) holds, then the 
conditional-mean predictor will be a nonlinear function of the data. In 
particular, )3~ -1 will be a robust-resistant predictor having the general- 
character described in the next paragraph. Further details will be provided in 
Section 4. 
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Robus t  prediction residuals diagnostics 

Now the scale O'r = X/v--~ rt, of rt is often much smaller than (rx = X / v ~ , .  
Correspondingly, outliers which may be small on the scale of trx may be quite 
large on the scale of tr,. Thus we would hope that with well-chosen M, and with 
aM replaced by a good estimate ~M, outliers which do not appear in univariate, 
or even bivariate, looks at the data would be well exposed through examina- 
tion of the prediction residuals rt. 

-Xt=l ti~ayt-t may be severely The only problem is that the predictors j3Fx- M 
degraded by the presence of outliers in the predictor variables yt-t, 
yt-2 . . . . .  yt-M, and also by the effect on tim of the outliers in all the data. This 
can be remedied by replacing the predictor variables by suitable 'cleaned' data 
values yt-1 . . . . .  )3t_M having the following character: if Yu is not an outlier, then 
33u = y~; whereas if y, is a gross outlier, then #~ is some form of interpolate 
based on other )3t. The resulting robust-resistant predictor is 

M 
~-1 _.~ E aM/) ~t-I (2.8) 

/=1 

and outliers in the Yt should be in clear evidence in the residuals r, = Y, - ~-1,  
even when they are not evident in the marginal distribution of y,. Details for 
constructing such cleaned values, and for estimating aM robustly as well are 
given in Section 4. 

3. Autoregressive spectral density estimates 

Standard autoregressive estimates 

There now exists a large literature which discusses and promotes so-called 
autoregressive ( A R )  spectral density estimates (cf. Parzen, 1974; Jones, 1981). 
The basic idea is straightforward. Suppose that in fact the observed data was 
generated by a stationary pth-order  autoregression 

xt = ~lxt-1 + • • • + ~ppxt-p + et, t = 0, --_1, - - -2 , . . . ,  (3.1) 

where the et have zero mean, variance or 2, and are white'noise, i.e. Ee~et+~ = 0, 
l#  0. Stationarity corresponds to the condition that all roots of the characteristic 
polynomial g ( z )  = 1 - ~ l z  -1 . . . . .  ~pz-P lie insidd the unit circle. 

Now we need two facts. The first is that for any linear-time-invariant system 
described by a finite-difference equation with input wt and output xt, the 
transfer funct ion H ( f )  is defined as 

H ( f )  = x.__~_t II (3.2) 
W t  ] wt=e i2"nf! 
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In words, H ( f )  is the (complex) ratio of the output to the input when the input 
is the complex exponential e ~2~¢t, t = 0,-+1, +_2 . . . . .  of frequency f (see, for 
example, Rabiner and Schaffer, 1978). Second, if the difference equation in 
question is driven by (i.e. has input) a wide-sense stationary process ~t with 
spectral density S~(f), then the output process x, is wide-sense stationary with 
spectral density 

sxtf)  = IHtf)I S tf). (3.3) 

See, for example, Rosenblatt  (1962). 
It is straightforward to check that for the autoregression (3.1) we have 

1 1 
H ( f )  = D(f )  - 1 - ~ 1  ~l e i2~" (3.4) 

Since the input et is white noise, we have S, (f) --- 0.~, and (3.3) gives 

0.2 (3.5) 
Sxf f )  = io-- )12 

for the spectral density of an autoregression. 
An autoregressive spectral density estimate then is of the form 

where 

6"2 (3.6) 
i/)tf)12, 

P 
/ ) ( f )  = 1 - ~'~ fit e ~'~ (3.7) 

/=1 

with d "2, i f1 , - - . ,  ffl estimates of 0 -2, ~ 1 , . . . ,  ~Op based on the observed data 
x l , . . . ,  xn. These estimates have traditionally been one of several seemingly 
minor variants of least-squares estimates. 

As it happens, there has been considerable discussion in the literature 
concerning which variant of least squares should be used. One consideration 
has been the desire to obtain estimates f f~ , . . . ,  ffp which correspond to a 
stationary autoregression. Solutions of the so-called Yule-Walker  equations 

z r z ¢  = Z r x ,  

~ T  = (~1 . . . . .  ~ p ) ,  
(3.8) 

x T = (x2, x3 . . . .  , xn, 0 . . . . .  0),  

= ~xl-j+l O<i ' j+l<~n,  
Zij L0 otherwise, 

l<~i<~n+p-1, l<-j<-p, 
(3.9) 
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have this property. However, the zero's in the 'design matrix' Z are quite 
obviously a source of potential harmful 'end effects'. A striking example of how 
harmful this choice can be, may be found in Section 5 of Martin (1980). Much 
attention, beginning with Burg's proposal (1972), has been given to estimation 
alternatives to (3.8) and (3.9) which do not suffer from end effects, yet still yield 
estimates in the region of stationarity. 2 

The robust autoregressive parameter estimates described in the next sub- 
section are not guaranteed to correspond to stationary autoregressions. 
However, this has not proved to be a practical limitation in our applications, 
and the estimates do handle undesirable end effects in a natural way (cf. 
Martin, 1980). 

Robust autoregressive estimates 

Robustification of autoregressive spectral density estimates is easily ac- 
complished by using robust estimates d-S, ~b~ . . . . .  ~bp in (3.6) and (3.7). One way 
to obtain robust ~b's is through the use of generalized M estimates (GM 
estimates) or bounded-influence autoregression estimates (BIAR estimates) as 
they are sometimes called. These estimates are obtained by solving a vector 
equation of the form 

.-1 (Yt+x- ~t~ 
W(~t)~b - V(~--~ ) = 0,  (3.10) 

t=p 

where ~ = (Yt, Yt-1, . . . ,  Y,-p+,), W and V are certain weight functions, ~O is a 
bounded and continuous psi function commonly encountered in robust estima- 
tion (see Huber, 1981), and g, is a robust scale estimate (for the innovations et) 
obtained by solving an additional equation along with (3.10). 

Two particular classes of BIAR estimates correspond to the choices: 

(i) V(~t) -  1, W(~.,) = w(sr~td-l~t) (3.11) 

with the nonnegative and continuous weight function w falling off sufficiently 
rapidly that W(~t)~t is bounded and continuous, and 

(ii) V(£,) = W(~',). (3.12) 

Here C is a p × p robust covariance matrix estimate. 
The general notion that bounded-influence estimation is important from the 

robustness point of view in the ordinary regression context is due to Hampel 

2It is quite unfortunate that the term maximum entropy has come into widespread use in this 
context, since the term is used to impugn additional 'special' qualities to the autoregressive spectral 
density estimate which are quite undeserved. 
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(1975) and also Mallows (1976). The choice of weights (i) yields a Mallows-type 
B I A R  estimate; the choice (ii) is referred to as the Hampel-Krasker-Welsch 
(HKW)-type estimate (Krasker and Welsch, 1979). See also Maronna, Bustos 
and Yohai (1979). 

Details concerning computations of the Mallows-type BIAR estimate, as well 
as some examples, are given in Martin (1980). See also Martin and Zeh (1978). 

Recently Bustos and Yohai (1982) have introduced a quite different and very 
appealing class of robust estimates for general autoregressive-moving average 
(ARMA) processes. These estimates are called RA estimates because they are 
based on robust residual autocorrelations. 

Comments 

If one insists on computing a pure autoregressive spectral density estimate, 
then one will naturally want to compute a robust variant in situations where 
outliers are at all a possibility. In this event one of the above robustifications of 
the ordinary estimate might prove useful. However, computation of only a pure 
autoregressive spectral density estimate, robust or otherwise, is not recom- 
mended. Even when the oft-cited limitation of shortness of the data record is 
used to justify use of AR estimates an alternative such as least-squares or 
robust nonlinear trignometric regression will often be viable. In general, the 
robust prewhitening approach discussed in the next section i s /ecommended,  
with computation of a robust AR-type estimate occasionally being a useful 
adjunct. 

As we shall see near the end of the next section, robust estimates such as 
BIAR~estimates (or RA estimates) are quite useful in providing initial robust 
estimates for our robust spectrum estimation methodology. 

4. Smoothed periodogram estimates 

Standard periodogram based estimates 

The usual nonparametric approach for obtaining spectral density estimates 
for data records which are not too long is as follows. Let fk = k/n. First the 
discrete Fourier transform (DFT) 

m ~ . , , Y( fk )=n  wtyte ~'4k', k 0 , . .  n - 1  
t = l  

(4.1) 

is computed from the observed data Yl . . . . .  Yn, where {wt} is a data window or 
taper which is used to mitigate leakage due to end effects (Bloomfield, 1976; 
Brillinger, 1981). The computation (4.1) is invariably carried out using a fast 
Fourier transform (FFT), the particular variety chosen depending upon whether 
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or not n is a power of 2. This reduces the computational complexity from O(n 2) 
to O(n log n). 

Next the periodogram 

S~(fk) = I Y(fk)l 2 (4.2) 

is computed, and finally the smoothed periodogram estimate 

L 
Sy(fk) = ~ b,S(fk+l) (4.3) 

l=-L 

is computed, where the frequency-domain smoothing weights bt = b,,t are 
chosen to achieve a good compromise between bias and variability. Actually 
the bt also depend upon k, but only so as to make reasonable adjustments for 
k = 0 and [n/2]_, (cf. Bloomfield, 1976). For appropriately chosen sequences 
{b,,t}, Sy(fk)= Sy~fk, b.,t) is a consistent estimate when y, ~ xt with x, a WSS 
process having spectrum Sx(f). See, for example, Brillinger (1981) and Grenander 
(1981). 

For unusually large data sets, or where real-time processing is essential, 
time-domain smoothing of periodograms on contiguous or overlapping seg- 
ments is often used (Welch, 1967). However, we shall not deal with this 
situation here (see Martin and Thomson, 1982). 

One may consult Bloomfield (1976), Brillinger (1981) and Koopmans (1974) 
for more specific information on smoothed periodogram estimates. 

Lack of robustness of the standard estimate 

If in fact the time series contains outliers generated by an AO model 

y, = x, + v,, (4.4) 

then the smoothed periodogram estimate can be extremely unreliable. This is 
particularly true in regions of the spectrum which have relatively low am- 
plitude. This is intuitively clear from the fact that outliers in the data results in 
inflated variance for the data, and they can affect the DFT Y(fk) at  all 
frequencies. 

First of all we note that bias is a problem. For suppose vt is a wide-sense 
stationary series with spectrum S~(fk) and that vt is independent of xt. Then 
under reasonable assumptions Sy0rk) = Sy0rk, b~,l) will provide a consistent 
estimate of Sy(f), f E [0, ~), with Sy(f) given by 

syf f )  = Sxff) + s~ t f ) .  (4.5) 

Furthermore, central limit theorem "behavior of Y(fk) implies that the 
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inflated variance 0-~ of y, due to the vt is propagated to Y(fk) .  T h e  large sample 
variance expression is 

V A I ~  Sy0O = S2(f) = S2(f) + 2Sdf)S~(f) + S{(f). (4.6) 

Thus variability may also be a problem. 
The case of mutually independent v, where Soft) - 0-2 provides a convenient 

case to examine. The bias is then just 0-2, and the variance is inflated by the 
additive term 0-4, which can be quite large, as well as by the cross-product terms. 

Strong narrow-band components of Sx(fk) are unlikely to be obscured by 
small to moderate outliers. For example, Fig. 9 displays the spectrum for both 
an xt process (regarded as Gaussian) having a strong narrow-band component, 
and white noise v, process, which contains outliers, with the two processes 
having a common variance of unity. Think of the vt process as having the 
contaminated normal distribution with degenerate central component 

CND(% o "2) = (1 - y)N(0, 0) + yN(0, 0-2) 

with y = 0.1, and 0 -2 = 10, and where N(0, 0) is the degenerate distribution with 
all of its mass at the origin? Thus vt is zero 90% of the time and is large 
relative to the values of xt 10% of the time. Fig. 10 shows the spectrum of 

ID 

i tO 

t n Ib 

I I I I I 

~ l  ~ 2  ~ 3  ~ 4  ~ 5  

Fig. 9. Spectra of AR2 and outliers orocesses. 

aN(u, o-2) denotes the Gaussian distribution with mean u and variance o -2. 
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~ 0 . 0  0.1 ~2 ~3 ~ 4  0 . 5  

Fig. 10. Spectrum of sum of A R 2  and outliers processes.  

Yt = Xt + Vt, and the dominant peak is still clearly visible (note, however, the 
range of values on the ordinate)? 

On the other hand, interesting peaks in the low-amplitude range of the 
spectrum can be completely obscured by a smallish fraction of relatively small 
outliers. Fig. 11 displays the spectrum of an x, process which contains two 
low-amplitude peaks in addition to the same dominant peak of Figs. 9 and 10, 

to 

Ib 

to 

*'4 

~10.0  0 -1  0 . 2  0 . 3  0 . 4  0 . 5  

Fig. 11. Spectra of interesting and outliers processes. 

4It should be  noted that throughout  we use t he  convention of folding the  spec t rum over so that  
we are really plotting 2S(f), and correspondingly the area under  the  spect rum from 0 to ½ is the 
variance tr 2. 
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Fig. 12. Spectrum of sum of interesting process and outliers process. 

along with the spectrum of a white-noise process v, We  again have in mind a 
Gaussian x, process and a v, process having the CND(T, o "2) distribution with 
yo.2 = var  yr. Here  var x, = 1 while var vt -- 2. In Fig. 12 we display the spectrum 
of y, -- xt + v, and see that the potentially interesting low-amplitude peaks  are 
somewhat  obscured by the additive v, process. 

It should be  noted that while Fig. 12 reflects the expected value of a 
per iodogram-based spectrum est imate for the given additive outlier situation, it 
does not give an indication of the increased variability caused by additive 
outliers. The  latter can be substantial, and we return to this example in Section 
6. 

A basic approach to robust spectrum estimation 

The essential ingredients of a general robustification procedure for com- 
plicated situations consists of cleaning the data to remove  or down-weight 
outliers, followed b y  applications of a standard nonrobust  procedure.  This is 
often carried out in an iterative manner .  The trick, of course, is to construct a 
good 'data-cleaning'  algorithm. Subsequently I shall describe what I consider to 
be good robust filter and smoother algorithms for carrying out the data-cleaning 
phase. These algorithms, which will be  called filter cleaners and smoother 
cleaners, are based on fairly low-order autoregressive approximations say, 
p = 2-6, for convenience. When a good smoother-cleaner  is imbedded in an 
overall i teration loop of the general form described later in this section, it 
produces at the final iteration both cleaned data, which we label ~ '  since they are 
estimates of xt in the A O  model  based on all the data yl . . . . .  y,, and robust  
estimates ffl . . . . .  ~bp of the low-order autoregressive approximation.  
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The robust-resistant spectrum estimate is constructed as follows. Prewhiten 
the cleaned data ~7 using the estimates ~b~ . . . . .  ~bp, thereby forming the 
outlier-free residuals 

P 

rt = ~? - ~ ~bj£~_j. (4.7) 
/ = 1  

Compute the standard smoothed-periodogram estimate 

L 

Srtf )= Z bdrffk+3 (4.8) 
j=-L 

based on the rt. Finally, compute the estimate of the spectrum of xt as 

m 

~-(fk) = Sdfk) (4.9) 
h/Sff)l 2 

with Off )  given by (3.7), but with i f1 , . . . ,  ~bp computed from the iterative 
procedure using the smoother cleaner to be described shortly. This estimate is 
of the prewhitened form suggested some time ago by Blackman and Tukey 
(1958), except that cleaned data is used instead of the original data. As such, it 
has the virtue of leakage control cited by Blackman and Tukey, as well as 
being robust-resistant. 

Note that Sx(fk) differs from a pure autoregressive spectral density estimate 
by virtue of having Srffk) in the numerator rather than a robust estimate d -2 
(which might well be computed as d-~ = ave(r 2) in the present situation). In 
general, the version (4.9) is to be strongly preferred over the pure autoregres- 
sive version, even if a good order-selection rule (e.g. Akiake's AIC, 1973 or 
Parzen's CAT, 1974) is used in conjunction with the latter. The reason is that 
the nonparametric component Sr(fk) of the estimate is more likely to pick up 
fine structure in the low-amplitude region of the spectrum than is the pure A R  
estimate. 

Robust filter cleaners and smoother cleaners 

The data cleaner to be used is essentially a robust filter or smoother operating 
in a special mode. The terminology used here parallels that of the engineering 
literature: a filter uses the data Y l , . . . ,  Yt to form an estimate xt of xt; a 
smoother uses the entire data record Yl . . . .  , y, to construct an estimate ~7 of 
xt. A robust-resistant filter or smoother is one which is not affected much by 
large changes in a small fraction of the data, or by small changes, e.g. rounding 
errors, in all the data. 

A robust filter will be called a filter cleaner when it is constructed so as to 
leave good data points unaltered, while replacing 'sufficiently large' outliers by 
one-sided predictions. A robust smoother will be called a smoother cleaner 
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when constructed so as to leave good data unaltered while replacing 
'sufficiently large' outliers by interpolators based on all the remaining data. As 
in Section 2, 'sufficiently large' is gauged in terms of robust prediction 
residuals. For data sets with a small fraction of outliers, the above types of data 
cleaners will leave most of the data unaltered. The filter and smoother cleaners 
described below have the properties just described. 

Both the filter cleaner and the smoother cleaner utilize the following 
state-variable formulation of a pth,order autoregressive approximation to xt'. 

where 
X t : ~Xt_ I -]- et, 
X T = (Xt, Xt- ,  . . . .  Xt -p+l) ,  

= (e,, o , . . . ,  o ) ,  

(4.10) 

(4.11) 

(4.12) 

t ~01 ~02 i ) 
~p 

1 0 (4.13) 
qb= 0 1 

0 " 1 

Filter cleaners 

Let ~ be a robust estimate of • based on robust estimates ffl . . . . .  ffp and let 
6-2 be a robust estimate of tr2 = var e,. The filter cleaner computes robust 
estimates ~ of the vector Xt according to the following recursions, with ~ and 
0 -2 replaced by qb and 6-2: 

where 

and 

^ --  ^t--1 
~(t = 4~Xt-I + ptstO( t~st "t " ) , (4.14) 

mt  
p, = s 2, 

; ~ - 1 =  ~ - 1  ~_~ (¢~ff~t-1)l (4.15) 

is the prediction of Yt and xt based on Yl . . . . .  Yt-1 through .e~t-1; m, is the first 
column of the matrix M,, which is also computed recursively as 

Mr+ 1 = cpptdpT+ Q ,  

~,-1~ mgnT 
P t = M t - w ( y t - y ,  z ~ • 

(4.16) 

(4.17) 

The functions ~b and w are described below, and Q is a matrix with all zero 
entries except for the 1-1 element which is o -2, and 

S 2 = m11,t. (4.18) 
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The filter-cleaned estimate ~2, is just the first component of ~'t: 

)Ct = ( X t ) l  • ( 4 . 1 9 )  

The psi function qJ and weight function w are the crucial ingredients of the 
robust filter. One reasonably good choice for 0 is the two-part Hampel 
redescending function 

J t~q_~ (b - t) ,  

~Ona(t)= l _ b__a___da (b + t), 

[ 0 ,  

It[ <~ a, 

a <t<-b,  

- b  <~ t <~ -a ,  

[tl > b, 

(4.20) 

with a = 2.5 and b = 5.5 reasonable choices for the constants. 
Psi functions which, like 0ha, are zero outside of a finite symmetric interval 

are referred to as rejection-type psi functions. 
In earlier papers (cf. Martin, 1979, 1981) it was suggested that the ap- 

propriate form for w is w(t) = ~b'(t). The reason for this suggestion was that the 
robust filter is then an approximate conditional-mean (ACM) filter when x, are 
Gaussian, the v, are i.i.d, with distribution Fv, s 2 is modified somewhat, and qJ is 
appropriately specified in terms of Fv. Of course, the conditional-mean filter is 
optimal in the sense of minimizing the mean-squared-error, as is well known 
(Jazwinski, 1970; Meditch, 1967). Unfortunately the choice w = q/ is a dis- 
continuous function for piecewise linear psi functions such as ~O = qtnA, and this 
goes against the minimal requirement that a robust estimate be a continuous 
function of the data (Hampel, 1971, 1974). A better choice of w might be 

w(t) = O(t)/t. (4.21) 

In the case of OnA this gives 

f 1, t ) I,l<a h a 
= 1 , a  <ltL b ( 4 . 2 2 )  

I " 1  

o, ItL>b 

which embodies the general features desirable for a good w: 
(i) w(0) = 1 and w(t) ~ 1 for a range of values 'near' the origin 

(ii) w(t) = 0 for all sufficiently large values of [tl. 
It is still not clear whether we should be quite satisfied with functions w such 

as (4.22), which are nonnegative. The ACM filter approximation quoted from 
above suggests that 0'  should in fact take on negative values for certain 
reasonable shapes of ~b. If this is a good feature, then smooth w functions 
should be constructed accordingly. This is an issue which needs further study. 
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The filter-cleaner recursions (4.14)-(4.19) have a familiar form. When ~b(t)-= 
t, w ( t ) =  1 and s~ = m~l: + 0 -2, with o -2 the variance of the observation noise, 
the filter cleaner becomes the usual Kalman filter recursion. The Kalman filter 
provides the exact conditional-mean estimate when the vt have the Gaussian 
distribution Fv = N(0, o'2). Note that when 0-2 = 0, as in (4.18), the Kalman 
filter is just the identity map. The corresponding feature of the appropriately 
tuned filter cleaner is that it tends to leave outlier free data points unaltered. 
This mode of behavior is in evidence in the examples of Section 6. 

The robust filter (4.14)-(4.19) differs from the simple robust filter of Kleiner, 
Martin and Thomson (1979) in two important aspects. First of all, (4.14) is a 
vector recursion, and the structure of Pt is such that good data points which 
follow an outlier are used to improve the estimate of xt at the outlier position. 
This can yield improved estimates of xt at times subsequent to the occurrence 
of an outlier. 

Second, the current filter incorporates the data-dependent scale st whose 
values satisfy St÷l > st if a gross outlier occurs at time t. This is a particularly 
important feature when using a redescending psi function, such as 0ha. For if a 
fixed scale s were used, the filter could lose track of the data never to regain it 
for the duration of a fixed length data set y~ . . . . .  yn. The fact that outliers cause 
st to increase in value improves the ability of the filter to regain tracking of the 
data. 

Smoother  cleaners 

Now that the details of the filter cleaner have been given, the smoother-  
cleaner algorithm is easily described. Denoting the smoother-cleaned estimate 
of the vector Xt = (xt, xt-1 . . . . .  xt_p÷l) r by X n, we have the backward-time 
recursion 

-- L + (4.23) 

where the -~t, 1 ~< t ~< n, are the filter-cleaned values obtained from the forward- 
time recursions (4.14)-(4.18), with X~ = ~'n as the initial condition for the 
backward recursion. The smoother-cleaned data values are the first com- 
ponents of the ~'~: 

-- (4 .24)  

As in the case ot tlae filter cleaner, there is an approximate optimality result. 
If w( t )=  ~b'(t) and ~b are appropriately specified in terms of Fv, and s 2 is 

^ 

modified somewhat, then X7 and ~ are approximate conditional-mean esti- 
mates (Martin, 1979). 

Translation equivariant  versions 

In actuality, a realistic AO model would differ from (4.4) by virtue of 
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incorporating a location parameter/~:  

y, =/z  + xt + v,. (4.25) 

To account for this, our data cleaners are made translation-equivariant by a simple 
two-step procedure. First, a robust location M-est imate (Huber, 1967)/2 is used to 
center the original time series: 

~, = y , -  t2. (4.26) 

Then the smoother cleaner is used on ~, to produce ~7. Finally, the cleaned 
data is recentered: 

~7 = $7 +/2 .  (4.27) 

Implementation of filter- and smoother-type cleaners 

In order to implement the filter cleaner and smoother cleaner, one needs 
robust estimates ~b and ~ = g~ of q~v= (¢1 . . . .  , q~p) and crZ~. Initial estimates 
may be obtained using bounded-influence autoregression (BIAR) estimates as 
described in Section 3, equations (3.10). 

A basic iteration strategy 

The Mallows-type BIAR estimates (3.10) and (3.11) may be conveniently 
computed via the iterated-weighted-least squares (IWLS) methodology: 

n-1 

~] ~,W({,)w{. (Yt+l-~7~b i+1) = 0, ] = 1 , . . . ,  NIT, (4.28) 
t=p 

with ] denoting the iteration number, NIT the total number of iterations, and 
where the weights w{ are given by 

• g~ / (4.29) w; = 

In the example of Section 6, the IWLS estimate (4.28) and (4.29) is obtained 
by 

(i) letting ~b ° be the least-squares estimate, 
(ii) computing NITH iterations using Huber 's  psi function 

~bH(t)= {K- sgn(t), Itl~g'ltl>g, (4.30) 

with K = 1.5, and 
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(iii) computing NITB additional iterations, starting with ~b Nrrn, g srm, using 
Tukey's redescending bisquare function 

I t ( l -  (t/c)2) 2, It[ < c, (4.31) 
~bn(t) = [0, It[/> c, 

with c = 6.0. 
Typically NITB = 1 or 2 regardless of the value of NITH. For data sets 

where the fraction of outliers is small NITH = 4 will suffice. However, for data 
which has a large fraction of outliers (~30%), larger values of NITH seem to be 
required. 

The reason for the iteration strategy where ~bn is used first with a fair 
number of iterations, followed by 1 or 2 iterations with ~/'B, is that (3.10) has an 
essentially unique root when ~b = ~bH, but not when q, = q'B. We wish to make 
use of the rejection character of ~bB without risk of computing an extraneous 
root. With NITB = 1 the solution is essentially unique, and we are willing to 
seek improvement with small risk by going to NITB---2. We have observed 
cases with higher-order autoregressions where further iteration with ~bB leads to 
an extraneous root. 

Another basic iteration 

After computing ~b and g, as just described, one then computes smoother- 
cleaned values ~ .  At this point one can initiate another iteration procedure 
whereby least-squares estimates are used to obtain new ~p and s, estimates 
based on cleaned data ~ ' .  These new parameter estimates may then be used to 
compute new cleaned data, and so on. However, the implicit estimating 
equation here, namely 

E - ¢T¢)= o, (4.32) 

' ^ 

where ~t = ( - ~ - 1  . . . . .  X~_p), is highly nonlinear and again multiple roots are a 
real possibility. Fortunately, we have found that the initial BIAR estimates ~b 
and g, are sufficiently good that one, or at most two, iterations will suffice here. 

5. Robustness-resistance properties of the spectrum estimate 

A robust-resistant procedure has the following two properties: (i) when the 
data is 'good'--i .e.  Gaussian--the procedure should be almost as good as the 
conventional (often optimal) procedure presuming normality, and (ii) when 
outliers are present the procedure should still work well, and in particular work 
much better than the conventional procedure. 
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Resistance 

The data-oriented resistance version of these properties has the following 
features in the context of the data-cleaning step of computing the spectral- 
density estimate. When the data is 'good' it contains no outliers, and the data 
cleaner should have the property that it alters only a tiny fraction of the data. 
Correspondingly, the final estimate is close to that obtained by the con- 
ventional spectral density estimate without data cleaning. 

Now suppose that 'good' data is altered by adding a not-too-large fraction of 
arbitrarily large outliers. The new spectral-density estimate should not differ 
much from the original estimate. This is done through the interpolation feature 
of the filter cleaner and smoother cleaner: at gross outlier positions the output 
of the data cleaner is an interpolate (an extrapolate or one-sided interpolate for 
the filter cleaner, and a two-sided interpolate for the smoother cleaner). 

The two features just described are evident in the examples presented in the 
next section. 

The second property just described is the resistance property. From a 
general point of view the resistance property is a consequence of the following 
fact about the filter cleaner and smoother cleaner. Viewed as a mapping from 
R" to R ", the filter cleaner and hence the smoother cleaner are bounded and 
continuous functions of the data if both ~b and w are bounded and continuous, 
and the centering-recentering steps are ignored. The reader may easily check 
this claim. 

Robustness 

For parametric problems where consistency of parameter estimates can be 
assured by an (often unrealistic) symmetry assumption, the two properties are 
taken to be (i) high efficiency in terms of variance at the Gaussian model, and 
(ii) high efficiency at strategically selected non-Gaussian distributions. If one 
allows for the realistic assumption that non-Gaussian departures involve 
difficult-to-describe asymmetries, then finite-sample and asymptotic bias will 
occur, and bias control will be an important aspect of the robustness problem. 

Corresponding. i,  for the nonparametric problem of obtaining robust spec- 
trum estimate, we should provide evidence that (i) the bias, although nonzero, 
is negligibly small when the v, contain outliers, and (ii) the efficiency, in terms 
of variance, is quite high when the vt are identically zero, and reasonably high 
when the vt contain outliers. One way of collecting the needed evidence would 
be through careful and-extensive finite-sample size Monte Carlo studies, an 
unattractive task in the spectrum analysis context. Another approach would be 
to obtain the asymptotic bias and variance of our procedure, thereby providing 
approximate bias and variance for largish sample sizes. Although useful analy- 
tic expressions for the desired quantities are not likely to be obtained, some 
headway on the problem seems possible through use of Mallow's (1980) recent 
contribution on the linear part of a nonlinear smoother. 
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The linear part concept 

The linear part of a nonlinear smoother, NL, is defined in the context of a 
general AO model 

Yt = tt + xt + v,, (5.1) 

where/x is a location parameter, x, is a stationary Gaussian process and vt is an 
i.i.d., possibly non-Gaussian process. Let (NLy),  define a smoother intended to 
provide a good estimate of xt. We are interested here primarily in the case 
(NLy)t = ~ .  The linear part L of N L  is the projection of (NLy), onto H{xt}, 
the linear space spanned by the x~. In particular, (Lx)t is defined by the 
coefficients a t which minimize the mean-squared-error 

t 2  l[ NL,,t- ajx,,ll  52) 

In words, the linear part L describes the best approximation to the nonlinear 
smoother NL based on linear smoothing of the unobservable process x,, using a 
quadratic loss function. 

Under certain assumptions, Mallows (1980) has proved that the following 
decomposition holds: 

(NLy)t =(Lx)t  + R, ,  (5.3) 

where the projection (Lx)t = 2 ajxt-j and the residual process R, are uncor- 
related with respect to one another. The frequency-domain, spectral-densities 
version of this is 

s ¢f) = Indf)12sxcf) + s cf), (5.4) 

where SNL(f), Sx(f) and SR(f) are the spectral densities of the smoothed process, 
the Gaussian process xt, and the residual process R~ respectively; Ht( f )  is the 
linear part transfer function defined by 

HLff) = ~ aj e ~¢~, _l<f . .<½. (5.5) 

Although our filter cleaners and smoother cleaners do not exactly satisfy 
Mallow's assumptions, the decomposition can be proved for asymptotically 
stationary versions of them as well. 

Now the desirable characteristics of a good data cleaner in our context are (i) 
L should be nearly the identity operator, and (ii) the residual process Rt 
should be 'small'. Property (i) manifests itself by virtue of the aj being close to 
zero for j #  0, and a0 ~ 1. Correspondingly, the linear part transfer function 
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H L ( f ) = ~  a je  ~¢j, _½~< _<1 f ~ ~, (5.6) 

will be a good approximation to the identity operator transfer function 

(5.7) 

Smoothers with 'small' R, will have var R, = f_1/1~2 SR( f )d f  small, where SR(f) is 
the spectrum of Rt. 

That these properties are achievable with a good smoother cleaner is 
illustrated by some computations of the linear part transfer function and 
residuals spectrum given in Section 6 of Martin and Thomson (1982). 

It should be noted that we may gauge the degree of robustness of both the 
prewhitening coefficient estimates ~ and the final spectrum estimate by con- 
sideration of the approximation 

= ( L x ) ,  + R, xt + R,,  (5.8) 

with xt and Rt uncorrelated. Since the ~ are essentially obtained by applying 
least squares to the ~ (at the final iteration described in Section 4), we have an 
additive noise problem for which the asymptotic bias and variability of ~ can 
be computed. When L is indeed close to the identity operator and the variance 
of Rt is small relative to that of xt, ~b will have a small asymptotic bias, and high 
efficiency. 

The estimate Sx(f) of (4.9) is also based on the ~ ' ,  and the prewhitening step 
plays the same ~ role it always has with good data. The second-order con- 
siderations leading to (4.5) and (4.6) applj¢, and so we have Sx? = SLx(f)+ SR(f). 
When (Lx), ~ xt and var Rt ~ var xt, the Sx(f) of (4.9) will be a good estimate of 
Sx(f). 

The linear part calculations done to date indicate that for good smoother 
cleaners, (Lx), is exceedingly close to xt and var R, is exceedingly small relative 
to var x, when v, --- 0 in (4.4), i.e. when no outliers ar e presen t (cf. Section 6 of 
Martin and Thomson, 1982). The robustness of both ~ and Sx(f) derives from the 
fact that the above statement holds with the adjective 'exceedingly' only 
weakened somewhat when outliers are present. 

6. An example 

To illustrate the robust spectrum estimation procedure, we use the model which 
gives the xt and vt spectra displayed in Figs. 11 and 12. The 'interesting' process xt 
is a Gaussian process comprised of the sum of three second-order autoregressions 
having different variances, with 0-] = var xt ~- 1. The vt process is an i.i.d. (or white 
noise) sequence having the contaminated normal distribution CND (% o'2), with 
y = 0.05 and 0 -2= 4, so that var vt = 0.2 as in Fig. 11. This yields a fairly small 
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fraction of contamination, and the scale o" = 2 of the v, process is not very much 
larger than the scale O'x ~ 1 of the xt process. 

Fig. 13 shows a segment of length 300 which is part of a realization of l eng th  
1000 of the 'interesting' x, process, while Fig. 14 shows the corresponding 
segment of the sum yt = xt + vt of the interesting process and the outliers 
process. Only one outlier is in clear evidence at a casual glance. A closer look 
reveals 6 or 7 more outliers (recall the discussion of Section 2 on the nature of 
time-series outliers). There  are actually 11 nonzero v:s  in the segment used 
here. 

I 

? 

ml- I I I I I I 

1tiff 12fl 14~1 1~1 loft  2~1 2"2~1 24fl 

Fig. 13. Portion of interesting process. 

t 
| I I ! I I I I I I I I [ I I I I I I I I I t I I I 

fl 2fl 4fl ~ ~ tBfl 12fl 14fl I~ loft 2tiff 22fl 24fl 2~31~ 2~ 3~ 

Fig. 14. Portion of the sum of interesting and outliers processes. 
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In Figure 19 we show the data of Figure 14, along with the smoother-cleaned 
data. This display clearly reveals 8 of the 11 nonzero v/s. Figure 20 shows the 
behavior of the data-dependent scale st used in the filter-cleaner (4.14). 

Now Figs. 15 and 16 show conventional smoothed-periodogram estimates 
based on the entire series of length 1000 from which the segments of Figs. 13 
and 14 were obtained. The estimate of Fig. 15 clearly displays the two 
low-amplitude peaks, centered at the proper frequencies. In Fig. 16 we see the 
effects of the outliers: one of the low-amplitude peaks is nearly obliterated 
while the other is both broadened and shifted to the right of its original center 
frequency of f ~ 0.4. In addition, the weak bump at about f = 0.22 in Fig. 15 
has become a more annoying artifact in Fig. 16. 

kO 

U~ 

d 

e~B.~ ~1.1 
I I I 

B. 2 ~ 3  ~ 4  ~ 5  

Fig. 15. Smoothed periodogram for outlier-free data. 

I f )  

Fig. 16. Smoothed periodogram for data containing additive outliers. 

B. 2 RL3 RI, 4 ~ . 5  
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One should also recall that the variability in the Vicinity of the peaks in Fig. 
15 is about S2(f)~ (0.05) 2, whereas the variability in the same region of Fig. 16 
is roughly S2(f)= (0.2) 2, which is a sixteen-fold increase. 

Robust spectrum estimates for the good data and the outlier contaminated 
data are displayed in Figs. 17 and 18. Notice (i) how close the robust and 
conventional estimates are in the outlier-free case, and ( i i ) the  improved 
quality of the robust estimate when outliers are present-- the original peaks are 
now clearly evident and centered at tee proper frequencies; the main blemish is 
the annoying artifact at about f = 0.22. 

The robust spectrum estimates were computed as described in Section 4. The 

iqa 

tO 

tO 

I I I I 

~ 0 , ~  B. 1 B. 2 ~,3 ~ 4  ~ 5  

Fig. 17. Robust spectrum estimate for outlier-free data. 

It) 

ID 

I I I I 

~ B . ~  ~ 1  ~ . 2  ~ 3  B. 4 El. 5 

Fig. 18. Robust spectrum estimate for data containing additive outliers. 
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2~1 4~1 I~1 8 g  10~1 1 2 0  1421 161~ 18~1 2 ~ 1  ,2"2B 24~1 2 ~  2 a B  aEla  

F i g .  19 .  D a t a  ( p l u s  s i g n s )  a n d  c l e a n e d  d a t a  ( s o l i d  l i n e ) .  

LO 

~a 

LO 
to  

tO 

d 

2 ~  4 8  ~ 8121 1 B ~  1221 1 4 ~  l b ' ~  l O ~  28~1 2"2EI 24~1 2~'B 2 8 8  3~10 

Fig. 20. D a t a - d e p e n d e n t  o b s e r v a t i o n  p r e d i c t i o n  s c a l e  S(t). 

preliminary BIAR estimate used NITH = 4 and NITB = 1. In effect, zero 
iterations of the type described in conjunction with (4.32) were used. The data 
was simply cleaned with the smoother cleaner using the BIAR estimates ~b and 
g~, and the final estimate computed from (4.9) using the above ~b to carry out 
the prewhitening step (4.7). 

Further examples using the robust spectrum estimation procedure on both 
artificial data and real data may be found in Kleiner, Martin and Thomson (1979) 
and Martin and Thomson (1982). The latter reference includes the glint noise data 
of Figures 1 and 3. 
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7. Concluding remarks 

The use of robust-resistant spectrum estimation methodologies is still in its 
infancy. Hopefully the weight of evidence presented here, and in the associated 
references, will result in widespread use of a robust-resistant spectrum estimate 
as an important adjunct to computation of a standard estimate. 

Of course, a number of detailed issues needs to be studied more carefully in 
order to provide more secure guidelines for algorithm construction. For example, 
some combination of theory, Monte Carlo, and linear part calculations are 
needed to fine tune the choice of psi functions ~b, and tuning constants used in 
conjunction with the psi functions. Among the other issues that might be raised 
we would include (i) construction of spectrum estimates which are robust and 
also consistent when the nominal Gaussian model holds, (ii) extension of the 
methodology to deal with bivariate time series, (iii) extension of the 
methodology to deal with unequally spaced data, and (iv) special techniques for 
large data sets. Some suggestions on these points may be found in Section 8 of 
Martin and Thomson (1982). However, detailed studies remain to be carried 
out.  

Mean whi l e ,  the robust -res i s tant  spec trum es t imat ion  technique  presented  
here  appears to be  a quite  useful  exploratory  tool .  In particular, it is a tool  
having the p o w e r  to detect  and reso lve  relat ively low-ampl i tude  peaks  in the 
spec trum which  m a y  be  of scientific interest ,  but which are easi ly obscured  by 
the p r e s e n c e  of  outl iers.  
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Autoregressive Spectral Estimation* 

Emanuel  Parzen 

Introduction 

The problem of spectral analysis of time series is clearly of great interest to 
the many applied scientists who use spectral analysis in their scientific research. 
It should be of great interest to statisticians because it embodies prototypes of 
two of the great problems of modern statistics: functional inference and 
modeling. A problem of statistical inference usually assumes three ingredients: 
a sample of observations, a parameter which indexes the family of possible 
joint probability densities of the sample, and a formula for the probability 
density of the sample 

f(sample ] parameter) .  

Classical statistical inference assumes the parameter 0 = (01 . . . . .  Ok). Func- 
tional inference assumes the parameter is a function, such as f(to), 0 <~ to ~ 1. 

The parameter estimation problem seeks to form optimal estimators (denoted 
0) of the parameter.-A typical model identification problem seeks to find the 
smallest number of significantly nonzero components 0j of the parameter 0. 

Estimation of a function often has similar features to model identification, 
since a function can be parametrized exactly by a countable infinity of 
parameters. However, in practice, one can only efficiently estimate a finite 
number of parameters. Therefore, to estimate a function, one must use the 
smallest finite number of parameters which provide an adequate approximation 
of the function. 

The goals of functional inference and model identification are in my view 
best pursued simultaneously. One seeks methods of statistical inference which 
are finite-parametric and nol~-(or infinite-) parametric. One achieves this goal 
by using finite parameter models (which theory indicates might be exact 

*This research was supported by the Office of Naval Research (Contract N00014-81-MP-10001, 
ARO DAAG29-80-C0070). 
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methods) in ways that enable them to be interpreted also as approximating 
models. 

Autoregressive spectral estimation is one of the new techniques for spectral 
analysis developed in the last two decades. Its theory and applications are 
extremely extensive. This article aims to provide an overview (rather than a 
detailed account) of the main ideas. A comprehensive bibliography guides the 
reader to articles in which case  studies and .comparisons of autoregressive 
spectral estimators are described. 

The spectral density is defined in Section 1. Infinite-order A R  and MA 
representations of a stationary time series are introduced in Section 2. Entropy 
as a motivation for autoregressive schemes is discussed in Section 3. Alternate 
parametrizations of an autoregressive scheme are outlined in Section 4. Al- 
gorithms for computing the coefficients of autoregressive spectral densities are 
stated in Section 5. Criteria for determining the orders of autoregressive 
schemes are mentioned in Section 6. Suggestions for empirical spectral analysis 
are outlined in Section 7. The final section provides a guide to the literature of 
autoregressive spectral estimation by listing the articles which correspond to 
some important developments. 

I. Correlations and spectral functions of a stationary time series 

The theory of time series discusses separately discrete-parameter time series 
{Y(t), t = 0, -1 ,  ---2 . . . .  } and continuous-parameter time series {Y(t), -oo < t < 
oo}. Only the former case is discussed in this article. Discrete-parameter series 
usually arise by observing a continuous-parameter time series at equispaced 
times. The frequency variable to of a pure harmonic 

Y( t )  = A cos 27trot + B sin 2rrtot (1.1) 

observed at t = 0, -+1 . . . .  can be assumed to vary in either -0.5 ~< to ~< 0.5 or 
0 ~< to ~< 1. The first interval is usually adopted, but the second interval will be 
adopted in this article because it is more convenient for developing isomor- 
phisms between spectral analysis and nonparametric data modeling using 
quantile and density-quantile functions (see Parzen, 1979). 

The definitions and" notation we adopt for the functions used to describe a 
zero-mean stationary Gaussian discrete-parameter time series Y(t ) ,  t = O, 
+1 . . . .  are as follows. 

A 'time-domain' specification of the probability law of Y(.  ) is provided by 
the covariance function 

R ( v ) = E [ Y ( t ) Y ( t + v ) ] ,  v = 0 , + 1 , + 2  . . . .  ; (1.2) 

or by the variance R (0) and the correlation function 
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R(v)  corr[Y(t), Y ( t +  v)] 
p(v) = R(O) = (1.3) 

To define spectral (frequency) domain specification of the probability law of 
Y(.  ), we first assume summability of R ( .  ) and p( .  ). The Fourier transforms of 
R(v) and p(v) are called the power spectrum S(to) and spectral density function 
f(to) respectively, and are defined by 

S(to)= ~ e-2~i~R(v), 0~<to<~l; (1.4) 
i)~-oo 

f(to) = ~ e-2'~i~°p(v), 0 ~< to <~ 1. (1.5) 
iI=-oo 

The spectral distribution function is defined by 

F(to) = f(to') dto', 0 ~< to ~< 1. (1.6) 

For data analysis, one actually computes a modified spectral distribution 
function denoted F÷(w) and defined for 0 ~< to ~< 0.5: 

F+(to) = 2F(to), 0 ~< to ~< 0.5. (1.7) 

A correlation function p(v) has a mathematical property of being a positive- 
definite function which, without assuming summability, guarantees the exis- 
tence of: (1) a spectral distribution function F(to), and (2) the spectral 
representation of the correlation function p(v) given by 

p ( V )  = f01 e 2"i~ d F ( t o )  

fo '-5 = cos 2rrvto dF+(to). (1.8) 

The notion of an ergodic time series is not given a rigorous definition in 
this article but its intuitive meaning is important for us. We call a time series 
ergodic when the parameters of its probability law possess consistent estimators 
(and thus can be determined with probability one, given a sample of infinite 
length). An example of a nonergodic stationary Gaussian zero-mean time series 
is 

Y(t) = A cos 2~'tot + B sin 2wtot, 

where A and B are independent N(0, 0 -2) random variables. One can infer the 
values of A and B in the sample observed, but one cannot infer the value of 
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0-2. This time series has correlation function 

p(v) = cos 27rt0v, v = 0, -1 ,  - 2 , . . . ,  (1.9) 

and does not possess a spectral density. 
Parzen (1982) proposes that it is useful in practice to distinguish qualitatively 

between three types of time series, which we call 
no memory: white noise, 
short memory: stationary and ergodic, 
long memory: nonstationary or nonergodic. 
A no-memory or white noise time series is a stationary Gaussian time series 

satisfying either of the equivalent conditions: 

p(v)=O f o r v > 0 ;  f ( t o ) = l ,  0 ~ < o ~ < l .  (1.10) 

A short-memory time series is a stationary time series possessing a summable 
correlation function p(v) and a spectral density f(t0) which is bounded above 
and below in the sense that the dynamic range of f(to) 

DR(f) = max f(~o)+ min f(o~) 
0~<~<1 0 ~ 1  

(1.11) 

satisfies 1 < DR(f) < oo. 
A long-memory time series is one which is neither no memory nor short 

memory; alternatively, a long-memory time series is one which is nonstationary 
or nonergodic. It usually has components representing cycles or trends. An 
example of a long-memory time series is (1.1) where A and B are independent 
N(0, 0 -2) random variables. 

For a short-memory time series, one can define the inverse-correlation 
function 

fo fo 1 1 e2rri~f-l(tO) dto + pi(v) = f-l(to) dto (1.12) 

and the cepstral-correlation function 

f0 
1 

7(v) = e 2'~i~ log f(t0) dto. (1.13) 

It should be noted that the inverse-correlation function is positive definite. 
However, the cepstral-correlation function is not. These new types of cor- 
relation functions are introduced because they may provide more parsimonious 
parametrizations in the sense that they decay to 0 faster than does the 
correlation function. Statistical inference from a sample of the probability law 
of a t ime series often achieves greatest statistical efficiency by using the most 
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parsimonious parametrizations. Thus to form estimators f(to) on the spectral 
density f(to) from a raw estimator f(to), greater precision may be attained by 
first forming estimators {f-l(to)} ̂  and {logf(to)} ̂  of the inverse or logarithm of 
the spectral density. Autoregressive spectral estimation may be regarded as an 
approach to estimating f(to) by first estimating f-l(to). 

2. Filter mode l s  of  a s h o r t - m e m o r y  "stationary t ime series 

A short-memory zero-mean Gaussian stationary time series Y(t)  has a 
property of fundamental importance: it can be linearly transformed to a white 
noise time series, denoting Y~(t) or e(t), by a filter that is invertible. The 
definition of Y~(t) is provided by the theory of minimum mean-square error 
prediction. 

The definitions and notation of prediction theory that we adopt are as 
follows: 

Y"'m(t) = E[Y ( t ) t  Y ( t -  1) . . . . .  Y ( t -  m)] 

denotes the memory m one-step ahead predictor, while 

y~,m (t) = Y(t)  - y,,,m (t) 

is the prediction error, and 

0 -2 = E[[ y~,m (012] + E[[ Y(t)lq 

(2.1) 

(2.2) 

Y(t).  Corresponding infinite-memory notation is 

Y~'(t) = E[Y( t )]  Y ( t -  1), Y ( t -  2 ) , . . . ] ,  

Y~(t) = Y ( t ) -  Y~( t ) ,  

0-~ = E[[ Y'(t)] 2] + E[] Y(t)[q.  

(2.4) 

(2.5) 

(2.6) 

Explicit formulas for the foregoing predictors, prediction errors, and mean- 
square prediction errors can be obtained from the correlation function p(v). 
The autoregressive coefficients am (1) . . . . .  am (m) of order m are defined by 

_ y~,m (t) = am (1) Y ( t  - 1) + " "  + am ( m )  Y ( t  - rn), 

Y 'm(t)  = Y ( t )+  am(1)Y( t -  1)+ """ + a = ( m ) Y ( t -  m) .  

(2.7) 

(2.8) 

A predictor is characterized by the condition that the predict ion error is 
orthogonal (normal) to the predictor variables: 

is the mean-square prediction error measured in units of the variance R (0) of 

(2.3) 
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E[y~'m(t)Y(t - k)] = O, k = 1 . . . . .  m .  (2.9) 

By substituting (2.8) into (2.9), one obtains the famous Yule-Walker  equations, 
defining a,, (0)= 1. 

a , . q ) p ( j -  k ) =  O, k = 1 , . . . ,  m .  (2.10) 
j=O 

One obtains o -2 by 

o-2m = E[  Y'm(t )  Y(t)]  + E[I Y(t)121 = ~ am(j)p(l') . 
j=O 

(2.11) 

For a short-memory time series, these equations also hold with m = ~. 
The time series of infinite-memory prediction errors Y"(t) is always a white 

noise series called the innovations. It provides a transformation of the time 
series Y(t) to a white noise time series Y"(t), which we write 

Y(t)+ a=(1)Y(t-  1)+ . . . .  Y"(t) ,  (2.12) 

and call an AR(~)  or infinite-order autoregressive scheme for Y(t). An MA(~) 
or infinite-order moving average scheme representation is 

Y(t) = Y"(t)+ [3=(1)Y~(t- 1 ) + . . . ,  (2.13) 

whose coefficients fl=(k) can be determined recursively from a=(j) by fl=(O) = 1, 
and for k > 0 

k 

fl=(k ) + ~ aoo(j)floo(k - j )  = O. (2.14) 
j= l  

The AR(~)  and MA(~) representations have important implications for 
spectral analysis since they provide formulas for the spectral density function 
f(to) alternative to the formula that f(to) is the Fourier transform of p(v). One 
can show that 

defining 

f ( t o )  = o-Z=lh=(eZ=i~)lZ ' 

f - l ( t o )  = o-=Zlg=(eZ=i~ )12 ' 

h=(z) = kfl=(j)z ' ,  g=(z) = ~ a®(k)z k . 
j=o k=O 

(2.15) 

(2.16) 

(2.17) 

These infinite series converge in general in mean square o n t h e  unit interval. In 
order to guarantee pointwise convergence at each to in 0 ~< to ~< 1, one must 



Autoregressive spectral estimation 227 

make an additional smoothness condition such as a Lipshitz condition on f(to), 
which is implied in turn by the condition 

Ivllo(v)l< . (2.18) 

In spectral analysis we usually assume at least the existence of a continuous 
second derivative, which is implied by the condition 

IvlZlp(v)l<oo. (2.19) 

The notion of a time series Y( .  ) being an autoregressive scheme of order p, 
denoted AR(p),  can be defined in terms of prediction theory as follows: Y( .  ) 
is an AR(p)  if and only if the memory p prediction errors yv, p(. ) is a white 
noise time series and %(p)  ¢ 0. The spectral density of Y",P(. ) can be expres- 
sed in terms of the autoregressive transfer function of order  p 

by 
gp(Z) = %(0) + %(1)z + . . -  + at,(p)z p 

= 1 igp(e2,,io,)lU/(to). &~,,(to) 
up 

(2.20) 

(2.21) 

If the time series Y( .  ) is in the fact AR(p),  then its spectral density equals the 
function 

f,(to)= o- [gAe2 i')l-2, (2.22) 

which we call, in general, the approximating autoregressive spectral density of 
order p. A time series Y( .  ) can be regarded as approximated by an AR(p)  if 

 (to) = [(to) (2.23) 
[p(to) 

can be regarded as not 'significantly' different from the constant 1. In this way a 
test of the hypothesis that a time series Y( .  ) is AR(p)  can be converted to a 
test of the hypothesis that the prediction error  time series is white noise. 

The sequence of approximating autoregressive spectral densities fro(to), m = 
1, 2 . . . .  may be shown to converge as m tends to oo to f(to) at each to in 
0 ~< to ~< 1 under suitable conditions (see especially Nevai, 1979). Sufficient 
conditions are that f(to) has finite dynamic range (and therefore is bounded 
above and below) and has a continuous derivative. When an estimator, denoted 
fro(to), of fro(to) is used as an estimator of f(to), one has to take into account two 
kinds of errors, called respectively bias and variance. Bias is a measure of the 
deterministic difference between fm (to) and f(to), while variance is a measure of 
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the stochastic distance between fr,(tO) and fro(to). As m increases, bi~s 
decreases, while variance increases. This is an example of the fundament~,i 
problem of empirical spectral analysis which is how to achieve an optim;~ 
balance between bias and variance. When one uses autoregressive spectn,I 
estimation, this problem reduces to a question of determining the order m of 
the approximating autoregressive scheme, which is discussed in Section 6. 

It should be noted that basic references for the mathematical propertks 
(especially convergence) of autoregressive transfer functions gin(z) ar~, 
Geronimus (1960) and Grenander and Szeg6 (1958). 

3. Entropy interpretation of autoregressive spectral densities 

The use of autoregressive spectral densities as exact models, and as ap- 
proximating models, for true spectral densities is often questioned by sceptical 
statisticians on the ground that their use in general is ad hoc and without 
theoretical justification. A possible answer to this criticism is provided b~ 
entropy concepts. This section reviews these concepts in order to state their 
application to spectral estimation. 

The notion of entropy in statistics is usually first defined for a discrete 
distribution with probability mass function p(x). The entropy of this dis- 
tribution, denoted H(p), is defined by 

H(p)  = - ~ .  p(x)  log p(x) . (3.1) 
X 

For the distribution of a continuous real-valued random variable X, with 
probability density function f(x), entropy is defined (analogously or formally) 
by 

H(f)  = - I ~  f(x) log f(x) dx. (3.2) 

A concept closely related to entropy is information divergence I(f; g) 
between two probability densities f(x) and g(x), defined by 

I(f; g)= f~ {-log f~x)}f(x) dx. (3.31) 

One should note that I(f;g) equals minus the generalized enWopyH(flg) 
defined by 

f~ f -  f(x) loo f(x)/al'x~ dx n(f l  g)= J-= [ g(x) ~'g(x)J'" " " (3.4) 
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Another fundamental concept is cross-entropy defined by 

H(f;  g) = f ~  {-log g(x)}f(x) dx. (3.5) 

Note that H(f)  = H(f;  f). 
Information divergence is expressed in terms of cross-entropy and entropy 

by 

I(f; g) = H(f; g) - I-I(f). (3.6) 

IMPORTANT INFORMATION INEQUALITY: 

I(f;  g)/> 0 (3.7) 

with equality if and only if f = g; consequently 

H(f)  ~< H(f;  g). (3.8) 

PROOF. Apply Jensen's inequality which states for an arbitrary function h(x) 

f~ {log h(x)}f(x) dx <~ log ~_~ h(x)f(x) dx (3.9) 

with equality if and only if h(x)= 1 for almost all x with respect to the 
probability density f(x). 

Some applications of entropy in probability and statistical modeling are as 
follows. 

The method of maximum likelihood parameter estimation can be described 
abstractly as follows. One introduces a parametric family of probability den- 
sities fo(x), indexed by a vector parameter 0 = (01 . . . . .  Ok). Suppose there is a 
true parameter value 0 in the sense that the true probability density f (x)= 
f~(x). Then O satisfies 

H(f)  = H(f;  fg) = min H(f ;  fo). (3.10) 
0 

To estimate 0 from data, one forms an estimator /-I(f; fo) of H(f;fo) and 
defines an estimator 0 of 0 by 

I t ( f ;  fo) = rain/4(f; fo). (3.11) 
0 

The estimator/-t(f; fo) could be of the form 

it(f; fo) = Ht f ;  f0) (3.12) 

for a suitable raw estimator f(x) of f(x). 
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The parametric families of probability densities fo(x) are often derived 
axiomatically using a maximum entropy principle. 

THEOREM 1. Fix k functions Tj(x), j = 1, 2 . . . . .  k, and k real numbers rl, 
rE , . . . ,  7k such that there exists probability densities f (x )  satisfying 

f • ®  Tj(x)f(x) dx = .c], j = 1 . . . . .  k .  (3.13) 

The density with maximum entropy H( f )  among these densities is of the form 

where 

k 

logfo(x) = ~. OjTj(x)- ~(01 . . . . .  Ok), (3.14) 
j=l  

~_ k 

1/t(O 1 . . . . .  Ok) = log dx exp ~ O]Ti(x), (3.15) 
k = l  

and 01 . . . . .  O k are chosen to satisfy 

f f  Tj(x)fo(x) dx = ~, j = 1 , . . . ,  k .  (3.16) 

PROOF. The theorem may be proved by calculus of variations arguments. A 
quick proof is to verify that for any f (x )  satisfying the moment constraints 
(3.13) 

k 
H(f;  fo) = qt(O, . . . . .  Ok)- ~ Ojzj = H(fo),  (3.17) 

j=l  

and therefore 

H(f )  ~ H(f ;  fs) = H(fo).  (3.18) 

Thus the maximum entropy is achieved by fo(x). 

Natural exponential models. A parametric family of probability densities fo(x) 
is said to obey a natural exponential model when it is of the form (3.14). Thus 
natural exponential models are maximum entropy probability densities. 

To extend entropy concepts to short-memory stationary zero-mean Gaussian 
time series, define the information divergence for a sample {Y(t), t = 1, 
2 . . . . .  T} as a function of the true probability density f of the sample, and a 
model g for f. We define 

I( f;  g) = lim IT(f; g ) ,  (3.19) 
T..o0o 
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-1  [ g(Y(1) . . . . .  Y(T))] 
IT(f; g) = --~ E s log f(Y(1), , Y(T))J " (3.20) 

It should be noted that we are using the notation f and g with a variety of 
meanings. For a Gaussian zero-mean stationary time series, the probability 
density of the sample is specified by the spectral densities f(to) of the true 
distribution and g(tO) of the model. The arguments of the information diver- 
gence I(f;  g) indicate spectral densities in the following discussion. Pinsker 
(1963) derives the following very important formula: 

Iff;g)=1fo1~f(tO)--log f(to) 1} do) . 
tg(to) ~ -  (3.21) 

Since u -  log u -  1/>0 for all u, I has two of the properties of a distance: 
I(f;  g) I> 0, I(f;  f) = 0. However, I does not satisfy the triangle-inequality. 

We define the cross-entropy of spectral density functions f(to) and g(to) by 

H(f;  g ) = l  fo' {log g(to) + f(to))> dtO (3.22) 
g(tO)J • 

The entropy of f is 

fo Hff)  = H(f ;  f)  = ½ {log f(tO) + 1} dtO. (3.23) 

Information divergence can be expressed 

Hence 
I(f;  g) = HOt; g) - H(f ) .  

H(f)  ~< H(f ;  g).  

(3.24) 

(3.25) 

An approximating autoregressive spectral density of order m, denoted fro(tO), 
to a spectral density f(tO) is defined by 

H(f; fro) = min H(f; fro), (3.26) 
f,. 

where the minimization is over all fm of the form 

fm (tO) = 0"2 tgs (e 2~ri~ )1-2, 

gin(Z)= 1+ am(1)Z + ' ' ' +  am(m)z m. 

(3.27) 

(3.28) 

One may verify that 

H ( f ;  f, .)  = ½{log tr2 + ._1_ 1 1 ~r~fo gm I (e2="°)l~f(to) dto } " (3.29) 
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The coefficients ~2,&~(1) . . . . .  tim(m) of the minimum cross-entropy ap- 
proximating autoregressive spectral density satisfy 

Further, 

~0 
1 

~ = ]gm(d'~')[2f(a,) deo 

= g m ( e 2 ~ i ' ) f ( ~ o )  & o  = &q)ofJ) 
]=0 j.1 

= rain Igm(e2'~i~)l=f(o) ) d~o, 
gm 0 

fo gm(e 2~i'°) e-2'~ik'°/(oJ) dco = &,(J)o(J - k) = 0, 
i=0 

H(f; fro) = ½{log ff~ + 1} = H(f~). 

(3.30) 

k = l ,  2 . . . . .  m.  

(3.31) 

0.32) 

The autoregressive spectral density fm (co) can be  derived axiomatically using 
a maximum entropy principle. 

Trmom~M 2. The spectral density with maximum entropy among all spectral 
densities f ( oJ ) satisfying the constraints 

y0 1 e2"i'ff(o)) do) = p(]), j = 1, 2 . . . . .  m,  (3.33) 

for m specified correlation coefficients p(1) . . . . .  p(m) is f,~(oJ). 

PROOF. It may be verified that f,,(o)) satisfies the constraints (3.33) and (3.32) 
holds for any f(os) satisfying (3.33). Since 

H(f)  ~ H(/'; f . )  = H6zm), (3.34) 

it follows that ffm has maximum entropy among all spectral densities satisfying 
the constraints (3.33). 

The maximum entropy principle provides a motivation or justification for the 
use of autoregressive spectral estimators. However,  the maximum entropy 
principle provides no insight into how to identify an optimal order m, or even 
what are the effects of different methods of estimating the parameters o-~, 
a m ( l ) , . . . ,  am(m). It provides no guidance for how to learn from the data 
whether the time series is nonstationary (long memory) or stationary (short 
memory), or whether the best time series model is AR,  MA, or A R M A .  It is a 
principle for deriving probability models, rather than statistically fitting models 
to data. Further, the maximum entropy principle justifies autoregressive esti- 
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mators only for short-memory time series. Autoregressive estimators are 
justified for long-memory time series by the fact that a pure harmonic Y ( t ) =  

A cos 27roJt + B sin 27r~bt satisfies Y ( t )  - dpY(t  - 1)+ Y ( t  - 2) = 0, where ~b = 
2 cos 2~roJ. 

4. Parametrizations of autoregressive spectral estimators 

There are many ways for forming autoregressive spectral estimators, because 
there are four equivalent ways of parametrizing them. 

A .  Autoregress ive  coefficients 

Consider coefficients am(l) . . . . .  am(m)  such that g ( z ) = l + a m ( 1 ) z +  
• "" + a , , ( m ) z "  satisfies g ( z )  ~ 0 for complex z such that Izl ~< 1. We call g ( z )  a 
minimum phase filter transfer function. The autoregressive coefficients determine 
o-2 by 

1 = o -2 Igm(e2'~i°')l-2 dto. 

One computes the correlation coefficients p(1) . . . .  , p ( m )  by 

fo x p(j') = exp(2¢rioJj)cr~lgm(e2"~i°')l-2 doJ . 

B.  Correlations 

A set of m coefficients p ( 1 ) , . . . ,  p(m), such that the matrix [with p(0)= 1, 
p ( - v )  = p ( v ) ]  

p(O) p(-1) 
p(1) p(O) 

p(m - 1 )  p(m - 2) 

. . .  p ( 1 -  m) 

. . .  p ( 2 -  m) 

. . .  p ( 0 )  

is positive definite, is correlation coefficients of a time series. They determine 
autoregressive coefficients by solving the Yule-Walker equations [with 
am(O) = 1] 

~-'~ am(j)p(j- k)= 0, k = l , . . . , m .  
/'=0 

One computes o-2 by o'2 = ET=0 a , , ( j ) p q ) .  
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C. Partial correlations 

Consider coefficients zr(1) . . . .  ,7r(m) satisfying I (J)l < 1, j -- 1, 2 . . . . .  m. 
They represent partial correlation coefficients defined theoretically by 

~'Q') = corr[Y(t), Y ( t  - J)l Y ( t  - 1) . . . . .  Y ( t  - j + 1)]. 

Partial correlation coefficients determine autoregressive coefficients and resi- 
dual variances by a recursive algorithm called the Levinson-Durbin recursion 
(see Levinson, 1947; Durbin, 1960): for k = 1 

a1(1) = -¢r(1), 0-21 = 1 -  7r2(1), 

while for k = 2, 3 . . . .  , m 

- 1  k-1 
ak(k ) = -¢r (k  )=  0-2---~1 ~ ,  ak- l ( j )p(k  - 1 ) ,  

j=O 

0-2 = 0-2_1{1- 7r2(k)}, 

ak(j) = ak-l(j)  - ¢r(k )ak- , (k  - j )  . 

Autoregressive coefficients determine partial correlation coefficients by the 
recursion (see Barndorff-Nielssen and Schon, 1973) 

ak-l(j) = {1-  ¢r2(k)}-l{t~k (j)+ ¢r(k)ak(k - j ) } .  

D. Res idual  variances 

Consider coefficients 0-2, 0-2 . . . . .  0-2 satisfying 

1 > o - 2 > o - 2 2 > . . . > o - 2 > 0 ,  

and m coefficients representing sign zr (1) , . . . ,  sign 7r(m). The o"s represent 
residual variances; they determine partial correlation coefficients by a formula 
noted by Dickenson (1978) 

~r(k) = sign ~'(k)[1 
0-2 ] 1 , 2  

- -  
k 

5. Empirical autoregressive spectral estimation 

Given a sample {Y(t), t = 1, 2 . . . . .  T} of a zero-mean Gaussian stationary 
time series whose spectral density f(to) is to be estimated by an autoregressive 
spectral density estimator 
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im (o))-- a~lgm (e2~i')1-2, 
gin(Z) = 1+ &.(1)Z + ' ' "  + am(m)z" ,  
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we define the order identification problem to be the choice of order m, and the 
parameter estimation problem to be the choice of algorithm for computing the 
coefficients &m(1),..., &m (m) and the residual variance &~. 

For a sample Y(1) . . . .  , Y( t )  of a zero-mean Gaussian stationary time series, 
an approximation for the joint probability density function fo(Y(1) . . . . .  Y (T) )  
indexed by a parameter 0 is obtained as follows. We assume that the time 
series Y(t)  has been divided by {R(0)} 1/2 so that its covariance function equals 
its correlation function. Then 

- 2  log fs(Y(1) . . . . .  Y(T) )  = log(2cr) T det Ko + Y~.K-1yT, 

where * denotes complex conjugate transpose, Y~ = (Y(1) . . . . .  Y(T)), Ko = 
E Y r Y ~  is a covariance matrix with (s, t)-element equal to po(s -  t). The 
subscript 0 on p0(v) and fo(o)) indicates that they are functions of the 
parameters 0, which are to be estimated. 

The covariance matrix Ko is a Toeplitz matrix. Asymptotically, as T tends to 
~, all T by T Toeplitz matrices have the same eigenvectors exp(-2~ritflT), 
j = 0 , 1 , . . . ,  T - 1 .  The corresponding eigenvalues are fo(j[T). An ap- 
proximation for likelihood function frequently adopted is therefore 

1 1 
Tlog fo (Y(1 )  . . . . .  Y(T)) = ~log 2~r + ~ log f0(o)) + do) 

= ½ log 27r + H0~; f0), 

where f(o)) is the sample spectral density defined by 

T T 
Ro)) = Z I Y(t) exp(-2~'ito))l 2 + Z y2(t) • 

t=l t=l 

Maximum likelihood estimators 0 areasymptotically equivalent to the estimators 
minimizing the sample cross-entropy H(f ;  fo). 
If the parametric model [o(o)) is assumed to be the spectral density of an 

AR(p), then estimators ~-~, &p(1) . . . . .  &p(p) of the coefficients satisfy Yule- 
Walker equations corresponding to the sample correlation function 

p ( D )  : fO 1 e2~'ic°vf(~o) do) 

T - v  T 

= ~'~ Y ( t ) Y ( t +  v)+ ~ y2(t). 
t=l t=l 
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The sample correlation function /~(v) can be computed, using the fast Fourier 
transform, by 

/~(v) = ~ ~0 exp(2~ri k - k  

which holds for 0 ~< v < Q - T, 
It should be noted that we are assuming the time series Y(t) to be zero 

mean, or more generally to have been detrended by subtraction of /2 (t), an 
estimator of the mean-value function /z(t)= E[Y(t)]. When /z( t)=/z,  a con- 
stant, we take/2 = ~'. When/x  (t) is a function with period d (as might be the 
case with d = 12 for monthly time series), one might take for/2 (t) the mean of 
Y(s) for all s = t modulo d. 

By recursively solving the Yule-Walker equations, one can determine 
sequences of 
(1) estimated residual variances 

1 > 6 . 2 > 6 . 2 > . . . > 6 . 2  . . . .  

(2) estimated partial correlations 

#(1), #(2) . . . . .  # ( m ) , . . . ,  

(3) estimated autoregressive coefficients 

&~(O) = 1, &re(l) . . . .  , &re(m), 

(4) autoregressive spectral density estimators 

io( ) = 6- 1 exp 1-2 
j=0 

(5) residual spectral densities 

f~(o,) =_L~ /m(,o)" 

By forming a smoothed version fro(to) of f,,(to), one can obtain a final estimator 
t(to) of the unknown spectral density: 

f(o,) =/m(~,)i.(o,). 

When f(o>) is tested for white noise, and found not to be significantly different 
from white noise, then 
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f ( ,o) = i .  (,o), 

and the autoregressive spectral density estimator is the final estimator. 
The important question of criteria for choosing the orders of approximating 

spectral densities is discussed in the next section. 
Computing estimators of autoregressive coefficients by solving Yule-Walker 

equations is called stationary autoregression because the autoregressive 
coefficients obtained are guaranteed-to correspond to a stationary time series. 
When 6 .2 in the foregoing analysis is tending to approximate 0, we consider the 
time series to be long memory; experimental evidence indicates that more 
reliable estimators of the spectral density, and also of the autoregressive 
coefficients, are provided by least-squares autoregression, which solves the 
normal equations 

. . .  /((O, rn) l F  1 l 

for a suitable estimator/((i,  j) of 

K(i, j) = E [ Y ( t -  i ) Y ( t -  j)] .  

Possible estimators (for i, j = 0, 1 , . . . ,  m) are least-squares forward algorithm 

1 T-m-1 

I((i, ]) = T - M ~ 
t=0 

Y( t+  m -  i )Y( t+  m - j ) ,  

or least-squares forward and backward algorithm 

1 T-m-I  
I(( i , j )= ~ {Y(t+ m -  i )Y( t+  m - j )  

2 ( T - M )  

+ Y( t+  i )Y ( t+ j ) } .  

When several harmonics are present in the data, whose frequencies are close 
together, least-squares autoregressive coefficient estimators are more effective 
than Yule-Walker autoregressive coefficient estimators in providing auto- 
regressive spectral estimators which exhibit the split peaks one would like to see 
in the estimated spectral density. 

An important and popular algorithm for estimation of AR coefficients was 
introduced by Burg in 1967 (see Burg, 1967, 1968). For references to descriptions 
of Burg's algorithm, see Kay and Marple (1981). 
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6. Autoregressive order determination 

The problem of determining the orders of approximating autoregressive 
schemes is an important example of the problem of estimating a function by 
using the smallest finite number of parameters which provide an adequate 
approximation of the function. The true spectral density is denoted f(oJ) or 
f~(o)). An approximation f(~o) is defined by assuming a family of densities 
fol ..... 0m(o~) which are functions of m sc~alar parameters Ot . . . . .  Ore. The 
parameter values 01 . . . . .  0,, which minimize the cross-entropy H( f ;  f01 ..... 0m) 
define a best approximating spectral density fm(oJ)= fat ..... a~(oJ). An estimator 
of fm is f~(oJ) = fo~ ..... a~,(oJ), where 01 . . . . .  Or, minimizes H( f ;  fo~ ..... o~). 

To evaluate the properties of fm(OJ) as an estimator of f~(~o), one must 
distinguish two kinds of error. The model approximation or bias error is 

B(m) = I(f~; f~).  

The parameter estimation error or variance is 

V(m, T)= EI(fm;f~). 

As m tends to 0% B(m) tends to 0 and V(m, T) tends to oo. The optimal value 
rh minimizes EI(f~; fro) as measured by 

C(m) = n(m)+ V(m, T). 

In practice, one forms an estimator C(m) of the terms in C(m) which depend 
o n  m.  

One calls C(m) a criterion function for order determination. It should be 
plotted, and interpreted as a function, not just examined for its minimum 
value. It is useful to define a best value of m (at which C(m) is minimized) and 
a second best value of m (at which C(m) achieves its lowest relative minimum). 

One also has to define a value C(0) of the criterion function at m = 0. If 

C(m) > C(0), for m = 1, 2 . . . . .  

then the optimum order is 0, and the time series is considered to be not 
significantly different from white noise. Further research is required on the 
properties of order determining criteria as tests for white noise. 

Tests for white noise provide an alternative approach to order determination 
since an autoregressive estimator fro(CO) is regarded as an adequate fit (or 
smoother) if the residual spectral density f(oJ)+f,,(oJ) is not significantly 
different from the sample spectral density of white noise. 

A widely used order determining criterion is that introduced by Akaike 
(1974). It should be emphasized that Akaike's criterion had a different concep- 
tual basis than the one outlined above; it seeks to determine the order of an 
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exact autoregressive scheme which the time series is assumed to obey. Then 
one can raise the objection against it that it does not consistently estimate the 
order, which is done by a criterion due to Hannan and Quinn (1979). Our point 
of view is that the approximating autoregressive scheme need only have the 
property that f(a~)+f~(oJ) is just barely not significantly different from the 
sample spectral density of white noise. 

Akaike's order determining criterion AIC is defined by 

2m AIC(m) = log 6 -2 + --~---, rn I> 1. 

Possible definitions for AIC(0) are 0 or -1/T.  T h e  Hannan and Quinn criterion 
is 

AICHQ(m) = log #2 + m -~- log log T. 

Parzen (1974, 1977) introduced an approximating autoregressive order cri- 
terion called CAT (criterion autoregressive transfer function), defined by 

m ^--2 m~>l ,  

In practice, CAT and AIC lead in many examples to exactly the same orders. 
It appears reassuring that quite different conceptual foundations can lead to 
similar conclusions in practice. 

7. Suggestions for empirical spectral analysis 

The basic aim of spectral analysis is to obtain an estimated spectral density 
which does not introduce spurious spectral peaks, and resolves close spectral 
peaks. To arrive at the final form of spectral estimator in an applied problem, 
autoregressive spectral estimators can be used to identify the memory type of a 
time series (long, short, or no memory) and the type of the whitening filter of a 
short-memory time series (AR, MA, or ARMA). An empirical time-series 
spectral analysis should involve the following stages. 

A .  Preprocessing 

To analyze a time-series sample Y ( t ) ,  t = 1 . . . . .  T, one will proceed in stages 
which often involve the subtraction of or elimination of strong effects in order 
to see more clearly weaker patterns in the time-series structure. The aim of 
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preprocessing is to transform Y(.) to a new time series Y(.) which is short 
memory. Some basic preprocessing operations are memoryless transformation 
(such as square root and logarithm), detrending, 'high-pass' filtering, and 
differencing. One usually subtracts out the sample mean Y = (1/T)Zr=x Y(t); 
then the time series actually processed is Y( t ) -  ~'. 

B. Sample Fourier transform by data windowing, extending with 
zeroes, and fast Fourier transform 

Let Y(t) denote a preprocessed time series. The first step in the analysis 
could be to compute successive autoregressive schemes using operations only in 
the time domain. An alternative first step is the computation of the sample 
Fourier transform 

r k 
6(to) = E Y(t)exp(-2~ritot), to = ~ ,  k = O, 1 . . . . .  Q - l ,  (7,1) 

t = l  

at an equispaced grid of frequencies in 0 ~< to ~< 1. We call Q the spectral 
computation number. One should always choose Q ~> T, and we recommend 
Q/> 2T. Prior to computing q~(to), one should extend the length of the time 
series by adding zeroes to it. Then q~(to) can be computed using the fast Fourier 
transform. 

If the time series may be long memory, one should compute in addition a 
sample 'tapered' or 'data-windowed' Fourier transform 

ff/w(to) = ~ Y(t)W exp(-21ritot). (7.2) 
t = l  

C. Sample spectral density 

The sample spectral density t(to) is obtained essentially by squaring and 
normalizing the sample Fourier transform: 

/ z k t(o)= 1 , o - 1  ,73, 

D. Sample correlation function 

The sample correlation function ¢~(v) is computed (using the fast Fourier 
transform). 

E. Autoregressive analysis 

The Yule-Walker equations are solved to estimate innovation variances ~2, to 
which are applied order determining criteria (AIC, CAT) to determine optimal 
orders n~ and also to test for white noise. The value of #2 and the dynamic 
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^ 

range of the autoregressive spectral estimator f,h(to) are used to determine the 
memory type of the time series. Two orders (called the best rh and second best 
rh(2)) are determined as candidates as optimal orders corresponding to the 
absolute minimum and lowest relative minimum of the criterion function. 

F. A R M A  analysis 

When a time series is classified as short memory, an approximating AR 
scheme of order 4rh is inverted to form MA(~) coefficients which are used to 
estimate covariance matrix of Y ( t - j )  and Yv ( t - k ) .  A subset regression 
procedure is then used to determine a 'best-fitting' ARMA scheme, and the 
corresponding ARMA spectral density estimator. One will be able to identify 
moving average schemes and ARMA schemes which are barely invertible, and 
require a long AR scheme for adequate approximation. The long AR spectral 
estimator introduces spurious spectral peaks when compared to the MA or 
ARMA estimator. 

G. Nonstationary autoregression 

When a time series is classified as long memory, more accurate estimators of 
autoregressive coefficients are provided by minimizing a least-squares criterion 
or by Burg estimators. When several harmonics are present in the data, whose 
frequencies are close together, least-squares autoregressive coefficient estima- 
tors are more effective than Yule-Walker autoregressive coefficient estimators in 
providing autoregressive spectral estimators which exhibit the split peaks one 
would like to see in the estimated spectral density. 

H. Long-memory analysis 

In the long-memory case, one may want to represent Y(t) as S(t)+ N(t), a 
long-memory signal plus short-memory noise. An approach to this problem 
may be provided by treating the sample spectral density values f(k/Q) as a data 
batch to be studied by nonparametric data modeling methods using quantile 
functions (see Parzen, 1979). The details of such methods are under develop- 
ment. 

I. Nonparametric kernel spectral density estimator 

An estimator /(to) of the spectral density is called parametric when it 
corresponds to .a parametric model for the time series (such as an AR or 
ARMA model), nonparametric otherwise. A general form of the non- 
parametric estimator is the kernel estimator 

0 ~ - - o o  

The problem of determining optimum truncations points M has no general 
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solution; one approach is to choose M = 4rh to obtain a preliminary smoothing 
of the sample spectral density. 

J. Inverse correlations and cepstral correlations 

Estimators of pi(v) and 7(v) are computed and used to form nonparametric 
kernel estimators of/-x(to) and log f(to), which may provide additional insights 
into the peaks and troughs to be given significance in the final estimator of the 
spectrum. 

Extensive comparisons of different methods of spectral estimation are given 
in Pagano (1980), Beamish and Priestley (1981), and Kay and Marple (1981). It 
seems clear that autoregressive spectral estimators can give superior results 
when properly used. One should: determine two best orders; compute auto- 
regressive coefficients by Yule-Walker equations and by least squares since when 
the time series is long-memory autoregressive spectral estimators are most 
accurate when based on least-squares estimators of autoregressive coefficients; 
use approximating autoregressive schemes to determine if an ARMA scheme 
fits better. 

The end of the story of the search for the perfect spectral estimator seems 
attainable if one does not think of spectral estimation as a nonparametric 
procedure which can be conducted independently of model identification. 

8. A bibliography of autoregressive spectral estimation 

The references aim to provide a comprehensive list of the publications in 
English which are directly concerned with developing the theory and methods 
of autoregressive spectral estimation. 

This section lists some of the publications which contributed to the 
development of AR spectral estimation. 

Yule (1972) introduces autoregressive schemes to model disturbed periodicities 
as an alternative to Schuster periodogram analysis and its spurious periodi- 
cities; Yule-Walker (1931) equations relate autoregressive coefficients and, 
correlations of a stationary time series. 

Wold (1938) introduces infinite-order autoregressive and moving average 
representations of a stationary time series; rigorous conditions are given by 
Akutowicz (1957). 

Mann and Wald (1943)_ derive asymptotic distribution of estimators of auto- 
regressive coefficients. 

Levinson (1947) and Durbin (1960) derive recursive methods of solving Yule- 
Walker equations which subsequently lead to fast algorithms for calculation 
of high-order AR schemes. 

Whittle (1954) seems to be the first to use autoregressive schemes to estimate a 
spectral density. He used a low-order model in a case where high-order 
models are indicated by order determining criterion (Akaike, 1974, p. 720). 
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Grenander and Rosenblatt (1956) criticize attempts to apply low-order auto- 
regressive schemes, and develop theory of nonparametric spectral density 
estimation, as do Bartlett, Parzen, and Tukey and Blackman. 

Parzen (1964), Schaerf (1964) and Parzen (1968) discuss autoregressive spectral 
estimation as a method for empirical time-series analysis; no theory is given. 

Burg (1967, 1968) publishes his pioneering work on MEM (maximum entropy 
method of spectral estimation) and his method of calculating their 
coefficients. 

Akalke (1969a,b, 1970) derives asymptotic variance formulas for autoregressive 
spectral estimators, and states FPE (final predictor error) criterion for order 
determination; precursor of FPE in Davisson (1965). 

Parzen (1969) derives heuristically a formula for the asymptotic variance of AR 
spectral estimators, confirmed by Kromer (1969) and Berk (1974); an order 
determining criterion is proposed. 

Kromer (1969) in an unpublished Ph.D. thesis presents first rigorous analysis of 
asymptotic distribution of autoregressive spectral estimators, especially their 
bias; consistency is proved only in an iterated limit mode of convergence. 

Berk (1974) provides first proof of consistency of autoregressive spectral 
estimators. 

Carmichael (1976) in an unpublished Ph.D. thesis provides alternative proof of 
consistency of autoregressive estimators, and extends technique to general 
problems of density estimation. 

Akaike (1973, 1974, 1977) introduces AIC for model order criterion and relates 
it to entropy maximization principles. 

Parzen (1974, 1977) introduces CAT for AR order determination based on 
concept of finite parameter AR schemes as approximations to infinite 
parameter AR schemes. 

Hannan and Quinn (1979) derive a modification of AIC which provides con- 
sistent estimators of the AR order, when exact model is assumed to be a 
finite order AR. 

Huzii (1977), Shibata (1977) and Bhansali (1980) discuss rigorously the con- 
vergence of AR spectral estimators and inverse correlations. 

Childers (1978) and Haykin (1979) contain very useful collections of papers. 
Pagano (1980), Beamish and Priestley (1981) and Kay and Marple (1981) 

provide illuminating reviews of AR spectral estimators and comparisons with 
alternative methods. 
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Threshold Autoregression and Some Frequency- 
Domain Characteristics 

J. Pemberton and H. Tong 

1. Introduction 

It may be said that the basic idea underlying the frequency-domain analysis 
of a linear system is the principle of superposition. Specifically, when probed by 
a linear combination of cosinusoids, a linear system responds with a linear 
combination of cosinusoids of the same frequencies. This property is both the 
strength and weakness of the assumption of linearity. The strength lies in the 
simplicity of its frequency-domain analysis, which may be accomplished either 
by the 'window' method (see, e.g., Jenkins and Watts, 1968) or through fitting a 
parametric linear time-series model (see, e.g., Akaike, 1974; Parzen, 1974). On 
the other hand, its weakness lies in its lack of structure, by which we mean that 
many frequency-domain phenomena frequently observed in science and 
engineering cannot be properly explained if linearity is assumed. Notable 
phenomena are limit" cycles O.e. sustained oscillation of the same frequency), 
synchronization, subharmonics, higher harmonics, jump resonance, time irrever- 
sibility and amplitude-frequency dependency. Many of these have a long history 
and have been associated with many eminent scientists and engineers (see, e.g., 
Minorsky, 1962). 

Again, we may perform a frequency-domain analysis of a nonlinear sYstem 
either by the 'window' method, relying principally on the theory of higher- 
order spectra (see, e.g., Brillinger, 1965) or through fitting an appropriate 
parametric nonlinear time-series model. We describe a method based on the 
latter approach and we supplement it by a diagnostic check based on the former 
approach, similar in spirit to Jones (1974). 

Now, by an appropriate parametric nonlinear time-series model in the 
present context, we mean those models the structure of which is rich enough to 
capture the frequency-domain phenomena listed in the opening paragraph. It 
has been demonstrated by Tong (1978, 1980a,b), Tong and Lim (1980) and 
Pemberton and Tong (1980) that the new class of nonlinear time-series models 
first proposed by Tong (1977b) constitutes one such class of appropriate 
models. 

249 
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2. Some motivation 

The class of threshold autoregressive time-series models, TAR, that we are 
about to describe is based on two fundamental notions, namely the time delay 
and the threshold value in the state space. In this section we give some 
motivation for these. 

In ecology, solar physics, control engineering, etc., difference-delay equa- 
tions and differential-delay equations play an increasingly important role. For 
example, the now classic logistic-delay equation due originally to Hutchinson 
(1948) in the field of ecology 

d t ~x,t,= x( t ) (a  - b x ( t -  T))  
dt 

(2.1) 

is based explicitly on the notion of a time delay T which, in ecological terms, 
reflects the development time of the species. For some recent references in this 
field, see May (1980). Lim and Tong (1981) have discussed a statistical ap- 
proach. Another example comes from solar physics. Recently, Yoshimura 
(1978) has developed a magnetohydrodynamic model for the sunspot activity. 

O~ [1-- ~z 2 O 2 a 2 
a t  r 2 Op.2 q--~r2] ¢* + k ( g ~ ( t -  T ) ) R ~  ' 

oa,  = 02 +- + f2(a (t- T))C-,/,, 
at tg[L~ 2 (2.2) 

where fl and f2 are two 'low-pass' functions, 

~/, = poloidal field, 
= toroidal field, 

R = regeneration operator ,  
G = generation operator ,  
T = delay t ime,  

and/~ and r are two of the three components of a spherical co-ordinate system. 
This equat ion may be viewed as a mathematical formulation of Babcock's 
model (see Tong, 1980a). Again, it is the delay parameter that holds the key to 
an understanding of the apparent cyclical phenomenon of the annum sunspot 
numbers. 

In many natural phenomena, a qualitative change may take place as a result 
of an accumulation of many quantitative changes. The qualitative change often 
takes the form of a 'phase transition' when a certain critical value, i.e. a 
threshold value, is crossed. For example, it is known in animal population 
studies that some animal may change its reproductive behaviour when its 
population density exceeds a certain critical level. In other words, there is some 
self-regulation which perhaps ensures a near optimal exploitation of the natural 
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resources (see, e.g., Solomon, 1969; Lim and Tong, 1981). Another examPle 
relates to Babcock's model mentioned earlier, according to which an eruption 
of the internal magnetic field takes place when a critical toroidal field strength 
is exceeded. In Yoshimura's mathematical formulation, this critical level is 
taken care of by the 'truncation' points of the low-pass functions fl and f2. 
Whittle (1954) has discussed the following mathematical model in relation to 
the interesting nonlinear phenomenon of higher harmonics in his pioneering 
statistical study of the seich record: 

; 0 if x,>1 h, L(x,) (2.3) [ K i f x t < h ,  

where L is a linear differential operator, x, is the water level, K and h are some 
constants. Here, h represents the critical water level. The physical idea is, of 
course, very closely related to an electrical relay system: 

Control 

l 
' 

A B 

Fig. 2.1. 

i > Signal 
C' 

The system has two control actions which are 'on' and 'off'. When the signal is 
at the origin, the control action is in the 'off' mode and will remain there until 
the increasing signal reaches B, at which point the control action is switched to 
the 'on' mode. On-the other hand, if the signal is decreased from the point C, 
the control action remains in the 'on' mode until the signal reaches the point 
A', at which the control action switches to the 'off' mode. The points A and B 
are the threshold values. There are many other interesting examples of 
thresholds from diverse fields. They include models of a brain (Lindgren, 1981), 
neuron firing (Brillinger and Segundo, 1979), antigen-antibody dynamics 
(Waltman and Butz, 1977), and hydrology (Sugawara, 1962), etc. These 
references are directly relevant to the development of TAR models. 

Leaving aside motivation from the natural science, we would just mention 
that a TAR model may also arise quite naturally from a Bayesian data-analytic 
point of view. Specifically, Tong (1981) has considered a simplest nonlinear 
time-series model for the time series {X,: n = 0, +--1, ---2 . . . .  } in the form 

E[X ,  IX,_1 = x] = tz (x)x ,  (2.4) 

where/z is a 'smooth' function. Suppose that we consider approximating the 
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nonlinear model (2.4) by a linear model in the form 

where 
E[x,  I x . - 1  = x]  = Ox, (2.5) 

0 ~ N(C ,  V ) .  (2.6) 

Let L denote the loss function given by 

L(O) = h [i - exp{-½k-l(O -/z)2}1, (2.7) 

where/x is of course the most desirable value of 0 (we have suppressed the 
argument x for brevity), k represents the relative tolerance to difference 
between /z and 0, and h quantifies the maximum loss. We may now decide 
whether (2.5) is an acceptable approximation of (2.4) or not by evaluating the 
expected loss of making the decision. Let D denote the decision space and let 6 
denote an element of D. It turns out that if the uncertainty, V, of belief of the 
value of 6 is an increasing function of 8, the optimal decision, i.e. one which 
minimises the expected loss, is to adopt the linear approximation (2.5) for as 
long as / z -  C is no greater than {(1+ y2)v2_ 1}y-l, where y is equal to 
{k + V(0)} -1/2. Repeating the same linear approximation process, we may 
conclude that the nonlinear model (2.4) is adequately approximated by a 
(usually) small number of locally linear models, the exact number being 
determined by the relative tolerance k, and the degree of uncertainty at zero 
action V(0). It is noteworthy that this kind of discontinuous decision process is 
intimately related to catastrophe theory (see Smith, Harrison and Zeeman, 
1981), thus vindicating the belief of a link between TAR modelling and 
catastrophe theory which was expressed in Tong and Lim (1980). 

3. A simplest TAR model 

TAR models in discrete time were first mentioned by Tong (1977b) and 
reported briefly in Tong (1978, 1980a). A comprehensive account is now 
available in Tong and Lim (1980). We start our discussion with a time series 
{Xt: t = 0, +_1,-2, . . .} which is generated by the simplest form of TAR, the 
so-called self-exciting threshold autoregressive model, which consists of two 
piecewise linear autoregressive models each of first order, i.e. AR(1). We 
denote this by SETAR (2;1,1), the first numeral denoting the number of 
submodels and the numerals preceded by the semicolon denote the respective 
orders of the linear submodels. Specifically, 

Sa~l)Xt_l + 17, if Xt-1 <~ r, (3.1) 
Xt = [a~2)XH + 7, if Xt-1 > r, 

where r is a real constant, called the threshold parameter, {~t} is a sequence of 
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independent identically distributed random Variables, and a t  1) and a~ 2) are real 
constants. Trivially, model (3.1) includes the usual AR(1) as a special case by 
setting r equal to -oo. We also note that {Xt} as defined by (3.1) is clearly 
Markov. Appealing to some standard results on the ergodicity of Markov 
process, we may establish the following: 

THEOREM 3.1. Suppose that the distribution of *h is absolutely continuous, with 
finite mean. A sufficient condition for the existence of an invariant measure for 
{Xt} given by (3.1) is that la~i) I < 1, i = 1, 2. 

REMARK. Intuitively, the sufficient condition ensures a drift back to the 
'centre'. 

PROOF. Simply note that 

Ex[la~i)X,-l+ ~ , l -  IX,-ll] <~ (]a~°[- 1)lxl + E(In,I), 

where Ex denotes that conditional expectation given that Xt-1 = x. Here, 

{2 i fx~<r ,  
i = i fx  > r .  

Since lat°l < 1, i = 1, 2, it holds that 

Ex[la~°X,-1 + ~ltl- IX,-~l] ~< I x l -  1, 

for x ~ K, where 

g = {x: Ixl-< [1 + E(Iw,I)]/[2- max(la 'l, 

Also, the conditional expectation is finite Vx E K. Hence, using Theorem 3.1 of 
Tweedie (1975, p. 390), we have proved our theorem. 

If we consider {X,: t =  0, 1, 2 . . . .  }, with X0 having the distribution deter- 
mined by the invariant measure, then {X,: t = 0, 1, 2 . . . .  } is strictly stationary. 
We shall henceforth adopt this convention. We also note that Theorem 3.1 is 
easily generalised to the case of more than two linear submodels. 

We may now rewrite (3.1) in the more conventional form 

agl)+ a~l)X'-l + e~l) i fX'- l  <~r' (3.1') 
Xt = [a~2)+ a~2)Xt_l + e~2) i fX t - l>r ,  

where {el i)} i = 1, 2 is a sequence of independent identically distributed random 
variables with zero mean. We have now allowed e~ ~) and e~ 2) to have different 
variances. 
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Jones (1978) has discussed methods of calculating stationary distributions and 
joint moments. For example, he has considered 

=~ 0.5+Xt-l+et  i f - 2 . 0 < X t - l ~ < l . 5 ,  
XI [ ,-1.5 + e, otherwise, e, ~ N(O, 1), 

(3.2) 

and has calculated, among other things, the autocovariances of various lags 
which are shown inTable  3.1. 

Table 3.1 
Autocovariances of model  (3.2) 

Lag Autocovar iance Lag Autocovar iance 

0 2.21893 7 0.25 x 10 -2 

1 0.58111 8 0.13 × 10 -2 
2 0.04384 9 0.29 x 10 -3 

3 -0.0720 10 - 0 . 6  x 10 -4 

4 -0.0468 11 -0 .1  x 10 -3 

5 -0.0135 12 - 0 . 2  x 10 -4 
6 0.48 x 10 -3 

The Fourier transform of these autocovariances up to lag 14, i.e. the spectral 
density function, is shown in Fig. 3.1. It has a maximum at a nonzero 
frequency, in contrast with the case of a first-order linear autoregressive model. 

For this simple model, it is possible to use the standard 'cobweb' type argument 
to investigate stability of the systematic part (i.e. var et set equal to zero). As we 
can see from Figs. 3.2, 3.3 and 3.4, which are reproduced from Lim (1981), 
there may be an.array of  possibilities, namely divergence, stable limit points and 
stable periodic recursions. The same 'cobweb' type argument may be applied to 
the case of more than two piecewise linear submodels, all of the first order. 

0.6 

> .  
• ~ 0.4 

,ff 0.2 

d i f i 
.2 0.4 0.6 0.8 

Frequency, o~/~ 

Fig. 3.1. 
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x t [-3 / x21 

X t = - 1 + 2 X t _  1 ! , 

255 

-2 

1 , '  . ! 

I 
-3 -2 x b -1 1 1  [ 2 3 

I I T I I I 

~,J X ~  X t - -  1 x ~ / - - . / I  t / x0 

/ x~ 

-1 

X t = 1 + 2Xt_ 1 
x~ -3 

Fig. 3.2. Initial values less than 1 in modulus lead to the periodic recursion (0.6, 0.2, -0.6, -0.2). 
-1 are stationary points. Initial values greater than 1 in modulus lead to divergence. 

H o w e v e r ,  the  case involving h ighe r -o rde r  lags than  the  first is much  m o r e  
complex .  T h e  ques t ion  of ergodici ty,  joint  dis t r ibut ions and  stabili ty for  non-  
l inear  t ime-ser ies  mode l s  involving h igher -o rde r  lags seems  to await  fu r ther  
invest igat ion in general .  

4. Some generalisation and some frequency-domain characteristics 

A S E T A R  (2;1,1) m a y  be  easily genera l i sed  to a S E T A R  (/; k l , . . . ,  kt) as 
follows: 

Le t  

(-oo, r) U [rl, r2) U " ' "  U [r,-1, ~) (4.1) 

define a par t i t ion  of the  real  line. Le t  
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X t 

I 
I 

I 
I 
I 

-41 II 

x~ I 
i 

i 

l 
b 
t 

x4 I n 

-2 

t ,  . . . . . . . . . . .  < .  ! 

- - 2  

X t - 1 

x. 1 

X t = 1 . 5 - 0 . 5 X t _  1 

Fig. 3.3. Initial values of the t o r m  3n, (n = 0, 1 . . . .  ), lead to the periodic recursion ( -3 ,  3, 0). Other  
initial values lead to the limit points -1 .  Note that a cycle of period 3 does not necessarily imply a 
chaotic state for SETAR (cf. Li and Yorke, 1975). xti • 

x 3 

x s ~ "  T ~ x f  
- 6  - 4  - 2  , ,J t~ i - - - I  - "  - /  ! 2 4 6 

I I j ~ / "  I I I ~ l  I I I" I 
A $ I ' i i x  

x 2 /  I I ' 1 /  ~ * I 0 X t - 1  
. . . . .  q- T - - - /  I I 

~ I ] 1 7  j I I 
I l y  . . . .  ~ a , X ~  I I 

/ i / i ^ ~ i 

1 - 0 . S X t _  1 ~ ,  
Fig.  3.4. A l l  in i t ia l  va lues lead to  the  pe r i od i c  recurs ion  (,0.4, - 1 . 2 ) .  
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X,  = a°o) + ~ a°)X,_i + e °') , (4.2) 
i~l 

conditional on Xt-a E [rj-1, r/), ] = 1, 2 . . . .  , l, where r0 =-oo  and rt = oo. T h e  
{e~)}, j = 1 . . . . .  l, are allowed to have different variances. {Xt} is then said to 
follow a SETAR (l; kl . . . . .  kt). Here, the conditioning variable is Xt-d which is 
a member of {Xt} itself; this explains the term 'self-exciting'. There are l -  1 
threshold parameters, namely rl . . . . .  rt-1, and d is the usual delay parameter. 
On the other hand, if the conditioning variable is defined by an exogeneous 
variable, say Yt-a, then we may have what is now termed an open-loop threshold 
autoregressive system, or TARSO in short. Specifically, 

,,,j ,,,) e~) X,  = a Oo) + ~'~ a?)Xt_i + ~_, b °/)Yt_i + (4.3) 
i=l i=0 

conditional on Y~-a E [rj-1, r~). 
It is now clear that the main abstract idea behind the above models is the 

explicit stipulation of a conditioning variable, whose concrete expression may 
assume a variety of forms (see Tong and Lim, 1980, for further details). In the 
rest of this section, we allow ourselves the freedom of choice of the concrete 
expression. The choice is almost invariably suggested by analogy with non- 
linear vibrations. 

We now demonstrate that SETAR and TARSO models have very rich 
structure. Specifically, we exhibit their frequency-domain response to mainly 
deterministic excitations. The characteristics to be demonstrated are well 
known in nonlinear vibrations. 

(i) J u m p  resonance 

The output amplitude of a nonlinear system, unlike the linear case, may have 
a 'resonance jump' at different frequencies depending on whether the input 
frequency (of constant amplitude) is monotonically increasing or monotonically 
decreasing (see Fig. 4.1a--c). 

The time plots of Figs. 4.2a and 4.2b clearly show that our SETAR can 
capture this engineering notion. The engineering terminology of a 'hard spring' 
and a 'soft spring' is an indication of the mode of the 'restoring force' of the 
system. Figs. 422a and 4.2b correspond respectively to the SETAR (2;9,3), 

Output 
amplitude 

Linear spring 

Output 
amplitude 

Output 
amplitude b 

Hard spring 
Fig. 4.1. 

Input Input Input 
frequency frequency Soft spring frequency 
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,L  h~put 

Fig. 42a. Jump pnenomenon of SETAR(2;9,3). d = 5 (hard spring type). 

~=o.:o= • cts, 

Output 

600 800 I000 1200 1400 

: i"  = k ':"1 : il ' l ~ l ; i i :  =:  ' 
6oo 

[--a ,t~ 

Fig. 42b. Jump phenomenon of SETAR(2;3,8), d = 6 (soft spring type). 

d = 5, and S E T A R  (2;3,8), d = 6 given below. (White noise inputs are replaced 
by  s i n u s o i d s  in this  exerc i s e . )  

0 .4655  + 1.1448Xt-1- 0 .4801Xt-2  + 0.1273Xt-3 
-- 0 .3580Xt-4  + 0 .2565Xt-5  - 0 .0781Xt-6  - 0 .0493Xt-7  

Xt = + 0 .2186Xt-8  + 0.0526Xt_9 + i n p u t  if  Xt-5 ~< 3 . 0 5 ,  
1.1940 + 1.1181Xt-1 - 0 .5017Xt-2-  0.0594Xt-3 + input 

if X,-5 > 3.05,  
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1.3003 + 1.3243Xt-1 - 0.7023Xt_2 - 0.0750Xt-3 + input 
if Xt-6 <- 3.31, 

0.2004 + 1.2112Xt_1 - 0.6971Xt_2 + 0.6191Xt_3 
- 1.0178Xt_4 + 0.9967Xt_5- 0.7688Xt_6 + 0.6119Xt:  
- 0.0551Xt_8 + input if Xt-6 > 3.31. 
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The output amplitude of a nonlinear system may also have a resonance jump 
at different amplitudes depending"on whether the input amplitude (of constant 
frequency) is monotonically increasing or monotonically decreasing. Fig. 4.3 
corresponds to the time plots of the following threshold model: 

~Xt_ 1JI- 2 ( V  t - Vt-1) if I Y t - l -  V,-~I/> lO, 
x t  = ( X t _ l  + O.l(Yt - Yt-~) if I V , , -  v,=l < ~o.  

i o p o t  / " ii , .  , , .' . 
amplitude = °  x ~, i ~ t  

input / 
- -  output 

Fig. 4.3. 

input _ 
, ~ p l i t u d e  - 5 

(ii) Amplitude-frequency dependency 

It is well known that, unlike a linear system, the output  signal may show 
different frequencies of oscillations for different amplitudes. The time plots of 
Figs. 4.4a and 4.4b correspond respectively to the two S ETA R (2;3,3), d = 1, 
given below. 

x ,  = 

1.6734 - 0.8295Xt-I + 0.1309Xt_2- 0.0276Xt-3 + et 
if Xt-1 > 0.5, 

1.2270 + 1.0516Xt-1 - 0.5901Xt_2 - 0.2149Xt-31+ et 
if Xt-1 <~ 0.5, var e~ i) = 0.003 z, i = 1, 2 ,  

0.15+0.85Xt_1+O.22Xt_2-O.70Xt-3+et if Xt-1 ~< 3.05, 
0 . 3 0 -  0.80Xt_ 1 + 0.20Xt-2 + 0.70St-3 + et 

if Xt-1 > 3.05, var e~ i) = 0.0032, i = 1, 2 .  

Note that Fig. 4.4a shows the tendency of high frequency of oscillations when 
the amplitudes are high. Fig. 4.4b shows the reverse tendency. The size of the 
noise variance does not seem very critical. 
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E 

I 

Fig. 4.4a. Amplitude-frequency dependency. 

Fig. 4,4b. Amplitude-frequency dependency. 
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x / x .  / ~'x ~ j l  ,,d I ~sl I 

Fig. 4.5. (Input - - ,  Output - - - ) .  

(iii) Subharmonics 

By a subharmonic it is usually meant an output oscillation at a fraction of the 
input oscillation frequency. The time plots of Fig. 4.5 correspond to the 
following simple S E T A R  (3;0,1,0) with a periodic input {Yt}: 

where 

~2Xt-~ + Yt if IXt_ll ~ 2, 
Xt = [ Yt if IXt-l[ > 2, 

yt = {-11 if t is odd ,  
if t is even.  

(iv) Higher harmonics 

By a higher harmonic it is usually meant an output oscillation at a multiple of 
the input oscillation frequency. The time plots of Fig. 4.6 correspond to the 
following simple T A R  model with a periodic input {Yt): 
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- (2+  X/2) Yt - (1 + X/2) 
X t =1 -~/-2Yt-1 

~/-2 Yt_l 
, (2 + ~ / 2 )  Yt - (1 + ~/2) 

if - 1  < Y, ~< - 1 / ~ / 2 ,  
if - 1 /~ /2  < Yt ~< O, 
if 0 < Yt <- 1/~/2, 
if 1/X/2 < Yt ~< 1 .  

(v) Limit cycle and strange attractor 

At present, this is the most important  property of T A R  models and we give a 
slightly more detailed discussion here. 

By a limit cycle in nonlinear vibrations/nonlinear differential equations, it is 
usually meant sustained unforced oscillations under damping, the classic 
example being the thermionic value investigated mathematically by Van der 
Pol and Poincar6 (see, e.g., Tong, 1980a). One of the earliest recognitions of its 
importance in frequency-domain analysis of time series seems to be the 
example due to Whittle described in Section 2, which anticipated the 
development of T A R  models in a truly remarkable way. 

In discrete time, we may formalise by considering a point transformation F 
from an interval J into itself. Let  F°(x) denote x and F"+l(x) denote  F(F"(x)) 
for n = 0, 1 . . . . .  Following Li and Yorke (1975), we say that x is a periodic 
point with period p if x G J and x = FP(x) and x # Fk(x) for 1 ~< k < p .  In this 
case {F"(x)} is a periodic sequence. We say that z E J is asymptotically periodic 
if there is a periodic point x for which 

F " ( z ) - F " ( x ) ~ O  as n--> ~ .  

If the same periodic sequence {Fn(x)} is approached independently of the 
choice of z in some neighborhood, {Fn(x)} may be called a discrete-time 
(stable) limit cycle, or, in more modern terminology, a periodic attractor. A 
periodic attractor of infinite period is called a chaotic state or a strange 
attractor. We now reproduce some of the examples in Lim (1981). 

A limit cycle is demonstrated by the following point transformation 

0.8023 + 1.0676Xt-1 - 0.2099Xt_2 + 0.1712Xt-3 
Xt = - 0.4528Xt-4 + 0.2237Xt-5 - 0.0331Xt_6 

2.2964 + 1.4246Xt_1 - 1.0795Xt_2 - 0.0907Xt_3 
if Xt-2 ~< 3.05, 
if Xt-2 > 3.05. 

The phase planes shown in Figs. 4.7a and 4.7b correspond to two different initial 
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Fig. 4.7a. 
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Fig. 4.7b. 
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Fig. 4.7c. 

values and the same limit cycle is obtained, which has period 9. Beside the 
aforementioned limit cycle, the experiment shows that the model admits another 
stable limit cycle (Fig. 4.7c), which has period 35, consisting of 4 subcycles. 

Fi~. 4.8 demonstrates an unstable limit cycle for the point transformation: 

ix',= 

-0 .1331  + 1.2689Xt-1 - 0 .0102Xt_2- 0 .3789Xt-3-  0.1534Xt_4 
- 0.1313Xt_5 + 0.1837Xt_6- 0.4308Xt-7 + 0.6265Xt_8 
- 0.0520Xt_9 if X~-5 ~< 2.5563,  

0.9019 + 1.2829Xt_1 - 0.9523Xt_2 + 0.6925Xt_3 - 0.8224Xt_4 
+ 0.5990Xt_5 - 0.3584Xt_6 + 0.3072Xt-7 - 0.4053Xt_8 
+ 0.5123Xt_9- 0.1880Xt-1 if Xt-5 > 2.5563.  

The solid line shows that [Xt[ increases unboundedly with t and the dotted line 
shows that Xt---> 2.81 as t increases. 
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Fig. 4.8. Unstable limit cycle. 
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Fig. 4.9. A possibly chaotic state. 
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Fig. 4.9 illustrates a chaotic state obtained by the following point trans- 
formation: 

x,= 

0.5890 + 1.1114Xt_l - 0.1232Xt-2- 0.1430Xt-3 
if Xt-1 ~< 2.5563, 

0.9333 + 1.1918Xt_1 - 0.7569Xt-2 + 0.2723Xt-3 - 0.3867Xt-4 
+ 0.1679Xt-5- 0.0812Xt-6 + 0.0728Xt-7- 0.0399Xt-8 
+ 0.2149Xt-9 + 0.0162Xt-10 if Xt-~ > 2.5563. 

(vi) Synchronization 

The phenomenon of synchronization, also known as frequency entrainment, 
was the first to be studied among many other nonlinear phenomena and was 
apparently observed for the first time by C. Huygens (1629-1695) during his 
experiments with clocks. (He was apparently the inventor of the pendulum 
clock.) He observed that two clocks which were slightly out of step when hung 
on a wall became in step when placed on a piece of soft wood. It has since been 
observed in electrical, mechanical, acoustical, electroacoustical, electronics and 
control systems. Names like Lord Rayleigh, J. H. Vincent, H. G. Moiler, E. V. 
Appleton, van der Pol, A. Andronov and J. J. Stoker have been closely 
connected with it. In control systems, this phenomenon is usually associated 
with relays, i.e. piecewise linear responses. Currently, there also seems to be a 
considerable interest in this phenomenon in physiological systems (see, e.g., 
Hyndeman et al., 1971). 

Consider a nonlinear system, say an electron tube, oscillating with a self- 
excited (i.e. a limit cycle) frequency tOo, called the autofrequency. Suppose that 
it is then excited by an extraneous periodic oscillation of frequency tO, called 
the heterofrequency. 'Beats' of the two frequencies may be observed. The 
frequency of the beats decreases as tO approaches tOo, but this happens only up 
to a certain value of the difference ItO- tO01 after which the beats disappear 
suddenly and the output oscillates with frequency to. There is thus a nontrivial 
zone, {tO: tO0- ZI '< to < tOo + A}, in which the autofrequency is 'entrained' by 
the heterofrequency (Fig. 4.10). 

Intuitively, we may think of a nonlinear system as possessing a number of 
autofrequencies (or natural frequencies) whose values may be located by 
probing the system with some external excitation of various frequencies 

beat frequency 
F 

Cao--A' co o Coo+A 

Fig. 4.10. Zone of entrainment (ABCDEF for non-linear case; ABGEF for linear case). 
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(heterofrequencies) until no beat is observed. Now, the classic set of annual 
Canadian lynx data (1821-1934) has been much analysed using mainly linear 
methodology (see, e.g., Tong, 1977a and the discussions therein). It is generally 
agreed that the data exhibit an approximate A-year cycle. Comments have 
been made about this apparently peculiar timekeeping of the species (op. cit.). 
Now, the following is the systematic part of a SETAR (2;8,3) model fitted to 
the data by Tong and Lim (1980). (For a more thorough discussion, see Lim, 
1981 and Lim and Tong, 1981.) 

x ,  = 

0.5239 + 1.0359Xt_1 - 0.1756Xt-2 + 0.1753Xt-3 
- 0.4339Xt-4 + 0.3457Xt-5 - 0.3032Xt_6 
+ 0.2165Xt-7 + 0.0043Xt-8 if Xt-2 ~< 3.1163, 

2.6559 + 1.4246Xt-1 - 1.1618Xt-2 - 0.1094X~-3 
if Xt-2 > 3.1163. @.4) 

Driving this system with periodic signals of period 7, 8, 9, 10 and 11 in 
succession reveals that beats occur except when the periods are 9 and 10. By 

1 0  

0 

Fig. 4.11. Input signal is periodic with period 10 units of time. Output signal is shown and no beat is 
observable. Similar output signal is obtained when input signal has period 9 units of time. 

Fi ~. 4.12. Input signal is periodic with same amplitude as for Fig. 4.11 but with period 11 units of time. 
Output signal is shown and beats are clearly observable. Beats are also observed when input signal has 
period 7 or 8 units of time. 
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adopting the aforementioned interpretation, it seems plausible that the inbuilt 
regulating mechanism of the lynx population is such that it does not give rise to 
a unique periodicity but rather it may well 'switch' between two adjacent 
periodicities, namely 9 and 10 (see, e.g., Figs. 4.11 and 4.12). 

5. Diagnostic checks of SETAR models from frequency-domain viewpoint 

Earlier we reported some threshold models, the identification of which was 
fully described in Tong and Lim (1980). Our method is basically one of 
extending the commonly used least-squares approach to different subsamples 
defined by the thresholds. Sampling properties are discussed in Lim (1981). We 
omit the details here. 

We now propose to study the appropriateness of the fitted TAR models 
through their frequency-domain behaviour. Specifically, we compare the 
second- and third-order properties of the fitted models with those of the data. 

We illustrate our approach with the Canadian lynx data (1821-1934), 
logarithmically transformed. 

First, Fig. 5.1 shows the estimated spectral density functions (s.d.f.) reported 
by Tong (1977a). They were obtained by the usual window method and through 
a linear AR(11) model. Now, a theoretical study of the s.d.f, of a SETAR 
(2;1,1) has been completed by Jones (1978), from which it is clear that the 
theoretical expressions are usually too unwieldly for practical use. We there- 
fore resort to the simulation method. We generally generate artificial data with 

1 . 5  ¸ 

1.0 ̧  

~ estimate using Blackman-Tukey 
® window. 

" from AR model fitting. 

0.5 

m 0.0 
._= 

-0.5 

-1 .o  

-1,5- 

-2.0- 

-2.5 

-3.0 
0.00 

2.0 

0.10 0.20 0.30 0.40 
Frequency (cycle/year) 

Fig. 5.1. Spectral density functions. 
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the fitted SETAR model using Gaussian random numbers as the input. The 
first one thousand data are generally discarded. Fig. 5.2 shows the s.d.f, of the 
SETAR (2;8,3) model (eq. (4.4) with var ell)= 0.0255, vare12)=0.0516) 
obtained in this way. A Parzen window with a lag parameter Of 200 is applied 
to a sample of 10,000 data. The dominant peak at approximately I cycle per 9.5 
years is clearly visible. Its harmonic at approximately 2 cycles per 9.5 years is also 
visible. The general agreement with the estimates shown in Fig. 5.1 seems good. 
Fig. 5.3 shows that the autocovariance functions of the fitted SETAR model agree 
well with the observed data up to lag 20 and then damp out at a faster rate 
thereafter. 

0.5 

t ~  

r~ -0 .5  
.E 

~ -1.5 

-2 .5  

-3 .5  

0.1 0.2 0.3 0.4 0.5 

Frequency (cycle/year) 
Fig. 5.2. 
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Next, we turn to the bispectrum. Our main reference for its computation and 
interpretation is BriUinger and Rosenblatt (1967). Immediate details are avail- 
able in Subba Rao (Chapter 14), and the necessary computer programs are 
kindly made available by Mr. M. M. Gabr of UMIST. Figs. 5.4 and 5.5 show 
the modulus of the bispectrum estimate for the (log) lynx observations and the 
bispectrum estimate of the fitted SETAR model, respectively. In each case, a 
product of the Parzen window with lag parameter 20 is used. The agreement 
seems very reasonable although a larger lag parameter for the latter is probably 
more appropriate, but will involve a much longer computation. (The data have 
been normalised to have unit third central moment.) It is known that bispectral 
analysis is useful for the study of nonlinearity and non-Gaussianity, although 
the result of Pemberton and Tong (1981) shows that some care is needed when 
using it for the former. Now, one important symptom of nonlinearity and 
non-Gaussianity is time irreversibility. As has been discussed by Brillinger and 
Rosenblatt (1967), the argument of the bispectrum is useful in this respect. 
Specifically, a strictly stationary time series is time reversible (i.e. the prob- 
ability structure of X, is the same as that of X-t) if and only if the imaginary 
parts of all the higher-order spectra (i.e. bispectra, trispectra, etc.) are identic- 
ally zero. Now, Table 5.1 seems to support the general belief that the (log) lynx 
data are time irreversible and Table 5.2 shows that the fitted SETAR model 
has captured this reasonably well. Of particular note is the obvious dis- 
continuity between positive and negative values. It seems quite instructive to 

< 

Fig. 5.4. Bispectral density function estimates (log lynx data)---modulus. 
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Fig. 5.5. Bispectral density function estimate through SETAR (2;8,3)---modulus. 

c o m p a r e  a s imi lar  p a t t e r n  o b s e r v e d  (Table  5.3) for  the  ampli tude modulated 

de te rmin i s t i c  s equence  which  consis ts  of  r epe t i t i ons  of the  bas ic  s equence  
{ 1 , - 5 ,  5, 5 , - 6 } .  A m o r e  sys temat ic  s tudy of  this  type  of p a t t e r n  r ecogn i t ion  
m a y  be  qu i te  useful .  
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The Frequency-Domain Approach to the Analysis 
of Closed-Loop Systems 

M .  B .  Pr ies t ley  

1. Introduction 

The frequency-domain analysis of linear systems is the natural engineering 
approach to the study of such systems. In its simplest form it is based on 
'probing' the system with sine wave inputs of different frequencies and 
measuring the amplitudes and phases of the corresponding outputs. This 
technique provides estimates of the system's transfer function at a number of 
'spot' frequencies, and later developments, based on stochastic inputs and 
cross-spectral analysis, may be regarded simply as more sophisticated statistical 
versions of the sine wave input method. However, the frequency-domain 
analysis was developed primarily for 'open-loop' systems, i.e. where there is no 
feedback loop reconnecting the output to the input. The case of 'closed-loop' 
systems (where a feedback loop is present) can be treated also by frequency- 
domain methods, but here the estimation of the system's transfer function 
raises severe statistical problems. One of the first papers to draw attention to 
this feature is that of Akaike (1967), who pointed out that, in the case of a 
closed-loop system-with a linear feedback controller, there are two transfer 
functions involved in the relationship between input and output (namely, that 
of the system and that of the feedback loop), and consequently there is an 
inherent problem of 'nonidenafiability'. Akaike later suggested that the prob- 
lem of closed-loop systems is probably best dealt with via a time-domain 
analysis in which the system and controller are modelled by fitting a (joint) 
ARMA model to the input and output (see, for example, Akaike, 1968, 1976). 
There seems little doubt that this type of time-domain analysis provides a more 
statisfactory approach to the study of closed-loop systems--particularly in view 
of recent refinements in multivariate ARMA model fitting techniques. Never- 
theless, the frequency-domain analysis is not without interest, and it illuminates 
certain features of closed-loop systems which lie 'beneath the surface' in the 
time-domain analysis. Moreover, being essentially nonparametric in character, 
it can be used as a form of supplementary analysis to that of time-domain 
model fitting, and provides a useful check on the adequacy of the fitted ARMA 
model. 

275 
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In this paper we consider the case of discrete time single input/single output 
closed-loop systems, and investigate the behaviour of an iterative scheme for 
estimating both the system's transfer function and the structure of the noise 
disturbance present in the output. It may be noted that there is now an 
extensive literature on the subject of closed-loop systems. In addition to the 
papers of Akaike cited above, we would refer to the contributions by Box and 
MacGregor (1974), Caines and Chan (1975), Chatfield (1975, Chapter 9), 
Diprose (1968, 1978), Gustavson, Ljung and Soderstrom (1976), Harris (1976), 
Priestley (1969, 1981, Chapter 10) and Wellstead and Edmunds (1975). 

Before describing the analysis of closed-loop systems in detail, we first 
review briefly some background material. 

2. Identification of linear systems 

A discrete time system with noise-infected output, shown schematically in 
Fig. 1, may be described by the well-known model 

Yt = ~ auUt-,+ Nt, t = 0 ,  ---1, - 2 , . . . .  (2.1) 
u=0 

Here, Ut denotes the 'input' (at time t), Yt the 'output' and Nt the 'noise' 
component of the output. (To comply with the condition of physical realisabil- 
ity, the summation over u in (2.1) must not involve negative values of u.) A 
familiar estimation problem associated with this model is as follows: Given a 
set of observations of the input {[-:1, [12 . . . .  , [IN}, together with the cor- 
responding values of the output {Y1, I:2 . . . . .  YN}, estimate the unknown 
weight function {au}, or, equivalently, the unknown transfer function A(to)= 
Z~=0 au e ~i~. This type of problem arises, in one form or another, in many 
different fields; in particular it has important applications in econometric and 
control engineering problems. In the latter situation, however, one's aim is 
usually to devise a suitable feedback loop connecting the output to the input in 
order to 'control' the output Yr. In this case, the form of an optimum 
'controller' will depend not only on the form of the unknown transfer function 
A(~o), but also on the unknown structure of the noise Nt. (See, for example, Aoki, 
1967 and Box and Jenkins, 1962.) Accordingly, if we assume that Nt is a 

Ut I Xt t Yt 
system [ \ 

I A l " > 

Fig. I. 
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linear stationary process, and thus write (2.i) in the form 

Yt = ~ a~Ut-~ + ~ g~e,_~, (2.2) 
u=O v=O 

where et is an uncorrelated (i.e. white noise) stationary process, the estimation 
problem now becomes: given (U1, U2 . . . . .  /-IN) and (Y1, Y2 . . . . .  YN), estimate 
{au} and {go}---or equivalently, estimate A(to) and G(to) = ~ 0  g~ e -i~. Box and 
Jenkins (1963, 1970) considered this problem and suggested the following 
approach. Assume first that both A(~o) and G(to) are rational functions with 
polynomials of known degrees in both the numerators and denominators. The 
unknown coefficients in these polynomials are then estimated by 'searching' the 
parameter space until St d2 is minimised, {~,} being the residuals from the fitted 
model. This technique may be quite useful in cases when the polynomials are 
known, a priori, to have fairly low degrees, but it would be extremely difficult 
to apply this method in more complex situations involving a large number of 
parameters. However, these authors have suggested an alternative iterative 
approach (Box and Jenkins, 1966) which proceeds as follows: 

(1) First estimate A(a~) by minimising ~,t (Y t -  ~,~ a~Ut-u) 2, i.e. first assume 
that G(to) -= 1 and apply standard least-squares theory. 

(2) Having estimated A(to), then estimate G(to) by fitting a model to Nt 
using, for example, autocorrelation analysis of/Qt = Yt - ~u d~Ut-~. 

(3) Using the estimated form of G(to), adjust, if necessary, t h e  initial 
estimate of A(to) and the values of the parameters in G(to) using a 'search' 
technique similar to that described above. 

This alternative procedure is certainly appealing, since stage 1 may be 
performed by standard cross-spectral analysis techniques--or, if A(to) may be 
assumed to be rational, by multiple regression techniques. Similarly, stage 2 
involves nothing more than the standard model fitting techniques of time-series 
analysis. However,- if this procedure is to produce reliable results at the end of 
stage 2 it is clearly desirable that the initial estimate of A(~o) must be 'fairly 
reliable', so that the estimated form of G(to) will in turn be 'fairly reliable'. 
(Note that stage 3 is, of cou]:se, essentially the same as the previously mentioned 
search procedure, using the algebraic forms of A(to) and G(t0) given by stages 
1 and 2.) 

The basic strategy in the above procedure is first to estimate A(to) 'ignoring' 
G(to), and then estimate G(a~) 'allowing for' A(~o). Clearly then, if this method 
is to work successfully, one would like to be able to appeal to some form of 
'orthogonality' property between the functions A(to) and G(to). (In fact, these 
considerations are relevant to the general problem of analysing 'residuals' 
along the lines suggested by Cox and Snell (1968)---see Priestley, i968.) In this 
discussion we suggest a possible definition of 'orthogonality', and examine the 
case when the observations {Ut} and {Yt} are taken with a feedback loop 
already in existence. As Box and Jenkins (1966) observe, data collected from an 
industrial plant (with a view to designing optimal control) will generally have 
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been recorded whilst the plant was operating under some crude form of manual 
control, or during the operation of some pilot control scheme. In such cases it 
is important to allow for the existence of feedback between Y, and Ut. 

3. Closed-loop systems: Basic assumptions and notation 

We retain our previous model, given by (2.2), but superimpose on this a 
'linear feedback plus noise' loop. Schematically, our model may now be 
described as below. 

As before, Ut denotes the (observed) input, Xt the uncorrupted (noise-free) 
output, N, the noise in the output and Y, the observed output. We assume that 
Yt is fed back through a linear controller, with unknown frequency response 
function a(to), the output of which, Z~, is corrupted by a noise component n,. 
The noise process n, is assumed also to be a stationary linear process of the 
form n, = ~ = o  3~k*h-k, where rh is an uncorrelated (white noise) stationary process 
and F(to) = E~=0 ~/k e-it~k is an unknown futiction. The processes {e,} and {~,} are 
assumed to be uncorrelated, i.e. cov{es, 7h} = 0, all s, t. For convenience, we 
assume (w.l.o.g.) that go-- 3/0-- 1, 

E[~,] = E N d  = 0 ,  

E [ ~ ,  2] = , ~ ,  El ,7 ,  2] = ~%. 

The two noise processes, Nt and hi, may be regarded as the outputs of linear 
'boxes' with transfer functions G(to) and F(to) and white noise inputs e, and ~Tt 
respectively, and we have adopted this convention in Fig. 2. 

u; 

Observations --9 

Z t 

n t 

A I (system) 

a 

(controller) 

Fig. 2. 

X t 
> 

Yt 

4-Observations 
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The scheme of Fig. 2 may be described by the symbolic equations 

Y = A U  + O e ,  (3.1) 

U = a Y  + FT .  (3.2) 

Here, A represents the operator A ( B ) ,  where A ( z )  = E:=0 a,,z u and B denotes 
the shift operator BUt = Ut+l. The  operators G, a and F are similarly defined, 
and we have suppressed the suffix t in U,, Yt, st and 9t. In addition, we use the 
same symbol to denote both the transfer function and the corresponding 
operator, since, for example, A ( w ) -  A ( z )  on making the substitution z = e-i'L 

This notation enables one to derive expressions for spectra and cross spectra 
almost immediately by formally equating (say) fuu(w) (the spectral density 
function of Ut) with E ( U U * ) ,  and fvu(w) (the cross-spectral density function of 
Y~ and Ut) with E(YU*),  and replacing each operator by its corresponding 
transfer function. (Here, * denotes the complex conjugate, but we will also use 
the notation A*, [AI 2 to denote the functions A ( 1 / z )  and {A( z )A(1 / z ) }  respec- 
tively, even when z does not lie on the unit circle.) These formal manipulations 
are easily verified using the spectral representations of the relevant processes. 

Since the stochastic nature of the system is determined entirely by the 
'external' processes e and ~7, it is convenient to express both Y and U in terms 
of these two processes. From (3.1) and (3.2) we obtain (assuming a A #  1), 

(1 - a A ) U  = aGe + F~7 , 

(1 - A a ) Y  = Oe + AF~I. 

0.3) 

(3.4) 

Using now the assumption that e and ~7 are uncorrelated, together with the 
above device for evaluating spectra and cross spectra, one immediately obtains 
the following expressions for fvu(w) ,  fuu(w)  and/w(w)---when these functions 
exist. 

and 

Alrl2   + a*lOl    
(,o) = I1 - Aa[ 2 

= lal lGl    27rftrv (to) 
11 - Aa l  2 

IAI IFI  ,  + IOl o-  
27rfry (w) = [ l_Aa[  2 

(3.5) 

(3.6) 

(3.7) 

In the above, the symbol A denotes the function A(e-i~), with a similar 
convention for B, C and D. (Equations (3.5), (3.6) and (3.7) were first derived 
by Akaike (1967).) 
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4. Conditions on the transfer function 

So far, we have assumed that each of the transfer functions A, G, a and F 
represents a 'physically realisable' system, so that, for example, Xt depends 
only on present and past values of Ut, and similarly Nt depends only on present 
and past values of et. However, in what follows we shall need rather more than 
this, since we will wish to assume: (i) that Ut, Yt, Nt and nt are stationary 
processes, and (ii) that the operators A, G, a and F are 'invertible', so that, for 
example, PC, may be written also as an autoregressive process, of the form 
G-1Nt = e, The first condition requires that each of the functions A(z), G(z), 
a(z) and (z) has no singularities inside or on the unit circle, [zl ~< 1, and the 
second condition requires each of these functions to have no zeros in Izl ~< 1. 
(See, for example, Whittle, 1963, Chapter 2.) We therefore impose the follow- 
ing condition: 

Each of the functions A(z), A-l(z), G(z), G-l(z), a(z), a-l(z), F(z) 
and F-l(z) is analytic in the region Izl ~< 1. 

(It may be noted that the equivalent condition for a continuous time model is 
that each of the above functions be analytic in the lower half-plane.) We could 
relax the above condition by allowing G(z) and F(z) to have poles (of finite 
order) at the point z = 1. In this case Nt and ~t are nonstationary processes of 
the 'accumulated' type (see Whittle, 1963, Chapter 8), but can be reduced to a 
stationary form by differencing each a sufficient number of times. For example, 
if G(z) and F(z) each have a pole of order p at z = 1, then APNt and APnt are 
stationary processes, and the subsequent analysis remains valid if we replace Ut 
by APU, and Y~ by APYt (assuming that we know the value of p, a priori). This 
is, in fact, the type of model for Art used by Box and Jenkins (1962, 1970). Thus, 
our conclusions will hold equally well for systems infected by nonstationary 
noise, provided the nonstationarity is of the above type. 

5. Estimation of the system transfer function (A) 

Suppose we are given N pairs of observations on the input { Ut} and output 
{ Yt} of a general system, and wish to model their relationship in the form, 

Y, = AU~ + Oe,, (5.1) 

i.e. we wish to construct the 'best linear form' of the relationship between input 
and output, allowing for possible correlation between the processes {U t} and 
{et}, but assuming that A and G satisfy the conditions stated in Section 2. Given 
observations (UI . . . . .  UN) and (I:1 . . . . .  IN), we wish to compare the two 
estimates of A obtained (i) by minimising 

N N 

S1,N = ~ {O-~(~ - AU,)} 2 = E ~ 
t = l  t = l  
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with respect to both A and G, and (ii) by minimising 

N N 

S2,N = E (Y, - AU,)  2 = E (O~,) 2 
t=l  t = l  

with respect to A. We denote the estimates obtained by methods (i) and (ii) by 
fi~l and A2 respectively. 

We will call A1 the 'weighted least-squares' estimate and fi~2 the 'simple least- 
squares' estimate. If the system is open loop and et is a Gaussian process, the 
estimates of the parameters obtained by minimising SI,N are equivalent to 
maximum likelihood estimates. However, it should be noted that we are not 
claiming optimal properties for either of these estimates in the case of closed- 
loop systems. In general, both fi,1 and A-2 will be biased estimates of A, the 
magnitude of the bias depending on the value of ( 1 -  aA), as discussed in 
Section 6. Our interest in these two particular estimates arises from the fact 
that fi~ corresponds to the original search procedure mentioned in Section 2, 
whereas A2 corresponds to stage 1 of the alternative iterative approach. It is 
interesting, therefore, to examine the circumstances under which the 'crude' 
estimate fi~2 will attain an asymptotic form identical with, or close to, the 
asymptotic form of the more refined estimate fi-1. 

For simplicity we consider the asymptotic case where N-~ 0% so that we have 
a semi-infinite realisation of both Ut and Yt, and, assuming ergodicity we 
replace SLn by $1 = E(E2) ,  and replace S2,N by 82 = E(Get)  2. The weighted 
least-squares estimate .4~ is now obtained by minimising 

S~ = E(~ 2) = E{G-~(Yt - AUt)} 2 (5.2) 

with respect to both A and G, but remembering that A is restricted to the class 
of physically relisable transfer functi0ns---or 'backward transforms', so that 
the power series expansion of A ( z )  contains only positive powers of z. In this 
formulation neither A nor G are assumed to be finitely parameterised, but, for 
example, $2 is considered as a functional of an arbitrary function A which is 
constrained to satisfy the above conditions. In the sense that one is seeking the 
'best linear relationship' between input and output, the asymptotic forms of the 
problem may be regarded essentially as that of the linear prediction of (i) Yt 
from {Us, s ~< t}, and (ii) G-~Yt from {G-1Us; s <<-t}. In this respect, $1 and $2 
may be interpreted as 'prediction error' criteria. 

Before proceeding further, let us consider the unrealistic case when A ( z )  is 
not restricted to being a backward transform but may contain positive and 
negative powers of z. In this case the relationship between Y, and Ut takes the 
form 

Yt = ~ auUt-u + ~ g,,e,-o (5.3) 
U=--oo v=O 

and the estimation of A is now trivial. For, suppose first that G is fixed, and 
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write Y't = G-1yt  and U't = G -1Ut. Then $1 may be written 

$1 = E ( Y ' -  AU',) 2 , (5.4) 

and it is well known that the (unrestricted) estimate of A which minimises (5.4) 
is given by (cf. Priestley, 1981, Chapter 10), with an obvious notation, 

A (w) = &,u,(w)  (5.5) &,u,(w)" 

Similarly, the (unrestricted) estimate of A which minimises $2 = E ( Y t -  AUt)  2 
is given by 

A~(w) - fry  (w) (5.6) 
- f w ( w )  " 

But, we have, of course, 

fv'u'(w) = I G-l(e-i'°)12f~(w), 

fu, u.(w) = I • 

Hence, A~(w)-------fi~(w), and A~(w), being obviously independent of the fixed 
value of G, is the least-squares estimate of A obtained by minimising S1 with 
respect to both A and G. Thus, when A is not restricted to the class of backward 
transforms, methods (i) and (ii) lead to identical estimates. 

We now return to the original form of the problem and investigate under 
what conditions the restricted estimates, A1 and a2, will be identical. The 
above result suggests that this will certainly be the case if the expression 
fyu(w)/ftrts(w) is itself a backward transform--as would be true if we were 
dealing with an open-loop system. We will show, however, that the equivalence 
of a l  and fi~2 may hold even in closed-loop systems, provided the transfer 
function A, (3, a and F satisfy a certain condition. 

Now $1 is most expeditiously evaluated by considering the spectral density 
function of the process 

P, = G-I(Y ,  - A U t ) .  

Using the device described in Section 3, we obtain 

fee(w) = IO-ll2[frv(w) - A*fytz - Af} ts  + IAI2f~] • (5.7) 

We now assume that f tm(w) has the canonical factorisation 

ftag(W) = I , ~ ( w ) l  ~ , 
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where auu(z) has no zeros or singularities in the region [z[ ~< 1. Then fee(to) 
may be written 

(5.8) 
a tsu (to) fuu (¢0) JJ"  

But, $1 = SY~ fee(to)dto, so  that Aii is obtained by minimising 

f '  , fYu(to) _Aawito~[ 2 S , =  ~[G-112 ~ ( ~ )  ~ 'l do.' 

+ IG-,12 fyy(to)_ IAv(to)l / dto (5.9) 
. f w  (to) J 

with respect to both A and G. In order to take account of the fact that A must 
be a backward transform, we adopt the well-known device of decomposing 

aat~v(to)J 

into the sum of its backward and forward transforms. Following Whittle (1963, 
Chapter 2), we use the notation [B(z)]+ and [B(z)]_ to denote the backward 
and forward transforms respectively of a function B(z). More precisely, if 

[n(z)] = E bjzS, 
then 

-1 

[B(z)]+ = ~ bj#, [B(z)]_ = E b] zj" 
j=O 1=-= 

Also, we will write [B(to)]+ and [B(to)]_ for [B(e-i=)]+ and [B(e-i=)]_ respec- 
tively. 

From (5.9) we now obtain 

./_-j r 1 12dto SI= I_Ga~v(to)J+ G ~, LGa~v(~)J-I 

fuu(to) J dto. (5.10) 

In deriving (5.10) we have used the fact that 

r frv(to) ]_Aotv~(to)} 
LGa~(~)J+ 

is itself a backward transform (since G -1, A and ottrts are all backward 
transforms) and therefore the integral of the product of this expression with 



284 M. B. Priestley 

[ 1 
Gaff(to)J_ 

vanishes. 
For each fixed (3, the form of A which minimises Sl is readily found by 

noting that the second and third integrals in (5.10) do not involve A and are 
both positive, and that the first integral vanishes when 

A = A I ( G ) =  G I- ,fyv(to) I (5.11) 
auu(a,) LOa bt,(a,)J+ " 

Similarly, setting G -- 1, the form of A which minimises $2 is given by 

A=A2= 1 [f~(~) ] 
ot~(~o) Labu(~)J+ 

(5.12) 

so that 

4 - 1  1 = 
a~,v(to)J+ La~u(to)J+ " (5.13) 

However, it follows from (5.11) and (5.12) that fi~l(G) -~ A 2 ,  for all G, provided 
that 

~(~,)J  

is a backward transform. (Recall that G -1 is certainly a backward transform.) 
Also, from (5.1) we have 

fYU(W ) = Aftrv(to) + fNV(tO ) , 

fvu(~°)=Aar~j(~o)+(N,u(°J) 
~(~o) ~v(,o)" 

(5.14) 

(cf. Whittle, 1963, p. 42). 
Arguing as in the unrestricted case, it is clear that if AI(G) ~ A2 for all (3, then 

AI(G) is equal to the weighted least-squares estimate A1 obtained by minimising 
S, with respect to both A and G. More generally if fi, l(G) g AE, then assuming 
that $1 is a sufficiently 'well-behaved' functional of A and G so that minA, a $1 = 
minG{minA Sa}, we find fi,1 = fi~l(t~), where G is obtained by substituting (5.11) in 
(5.10) and minimising $1 with respect to G. (Note that when minimising $1 with 
respect to G we must take account of the constraints: (a) that G is a backward 
transform, and (b) that go = 1 ~ fY~ G(to) dto = 2~r.) It now follows thata necessary 
and sufficient condition for the equivalence of .41 and fi~2 is that 



The frequency-domain approach 285 

Since A and axx are both backward transforms, 

abu( o)_l- l_abv( o)l- " 

Thus .A,1 =- AE, provided that 

ab (w)J 

is a backward transform, i.e. provided that 

[fNu(w) _ 0 (5.15) q 
" 

We therefore propose the following definition: 

"The process {Ut} and {Nt} will be termed 'orthogonal' if condition 
(5.15) holds. In this case, the transfer functions A and G may be 
estimated 'independently', in the sense described above". 

This definition includes, as a special case, the usual interpretation of 'ortho- 
gonality' in the sense that (5.15) will certainly be true if {Ut} and {Nt} are 
uncorrelated processes. 

It is important to note that the 'equivalence' between A1 and A2 referred to 
above is a purely algebraic one, i.e. we are saying that under the above 
conditions the expressions SI and $2 are both minimised by the same functional 
form of A. Since we are considering only the asymptotic forms of $1 and 82, 
this result does not, of course, have any bearing on the relationship between 
the sampling properties of the corresponding estimates derived from S1,N and 
S2.N in the finite sample case. In fact, it is fairly clear that, in general, these two 
estimates would not have the same asymptotic efficiency. 

It is, however, interesting to observe the tenuous connection between 
condition (5.15) and the conditions for the efficiency of least-squares estimates 
derived by Greander and Rosenblatt (1957), Hannan (1970) and Watson (1967). 
The problem studied by these writers is somewhat different from ours in that 
they were dealing with the case of regression on a finite number of deter- 
ministic functions with correlated residuals, whereas in our case the 'regression' 
is on an infinite nmnber of past values of a stationary process. The general 
form of their conclusions, however, is that the least-squares estimates (obtained 
by minimising the sum of squares of the correlated residuals) are asymptotically 
efficient provided the spectrum of the residuals is constant over all the elements 
of 'spectrum' of the regression functions. Whilst condition (5.15) is certainly 
different from the above, it nevertheless shares the feature of depending purely 
on the interrelationship between the spectral properties of the 'regression 
functions' and the spectral properties of the residuals. As it stands, (5.15) is 
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expressed in terms of the relationship between the cross spectrum of { Ut} and 
{Art} and the spectrum of {Ut}, rather than in terms of the spectrum of {Nt} and 
the spectrum of {Ut}. But if we now introduce the precise form of the feedback 
loop joining Yt with Ut, we may express the cross spectrum fmj(to) in terms of 
the spectrum of {Nt}, f~( to ) ,  and the connection between the two types of 
conditions is strengthened. 

6. The case of linear feedback plus noise 

Having obtained expressions for fi, l(G) and fi,2, we can now study their 
relationship on the assumption that the observations do, in fact, come from a 
linear system with superimposed linear feedback. Thus, we now return to the 
scheme of Fig. 2 and examine the form of condition (5.15) for this system. 
From (3.3) we have 

(1 - a A ) U  = aGe + Fn = a N  + F n . 

Consequently, 

{ a }* o'2~a*lGI 2 
21rfNu(to) = 2zrf~v(t0) = 27r ~ f~v(tO) = (1 - aA)*"  (6.1) 

Using (6.1) in conjunction with (3.6) yields 

fm1(to) f a  zto ~fNv(t°)] otvv(to)o'2a*lGl2(1 - aA)  
a u(o,) = [   lr12+ cr lal21ol 2 

Since arty(to) is necessarily a backward transform, condition (5.15) will be 
satisfied if the function 

°2a*l GI2( 1 - aA)  
n = = +   la121GI 2 (6.2)  

is a backward transform. Thus, the estimates A1 and A2 will be identical if the 
function H ( z )  is analytic inside the unit circle, Izl ~< 1. When A, G, a and F are 
rational functions (of z) the condition becomes that H must have no poles inside 
the unit circle. Consider the following special cases: 

I :  a = A -1 
Here, H - 0, but this represents a degenerate system. In fact, we assumed in 

Section 2 that a A ¢  I to prevent degeneracy in the expressions for the spectra 
and cross spectrum of Ut and Y, The degeneracy arises from the fact that 
a = A - I ~  A F T  = - G e ,  which contradicts the assumption that e and ~/ are 
uncorrelated processes. Note, however, that when [H]_ ------ 0 the bias of both the 
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estimates, A1 and A2, is proportional to H. Thus, we would hope that ( 1 -  aA)  
was small at all frequencies. 

H:  F = 0  
This case corresponds to a system where the feedback loop is 'noise-free', 

and (6.2) now reduces to 

H = (a - 1 -  A ) ,  

which is clearly analytic in [z[ ~< 1, by the previously stated conditions on a and 
A.  Thus, in the case of a noise-free feedback loop the two estimates ~ and -42 
are identical. 

I I I  : a = 0  
This corresponds to an open-loop system, and, as we have mentioned, we 

would expect A1 and Az to be identical here. This fact is now easily verified by 
noting that a - 0 f f  H - 0. 

IV:  2 2 o%ltr, small 
It is clear from (6.2) that IH(to)[ will be small at all points if the ratio {o-2/~r 2} 

is sufficiently small. Of course, [H(~o)[ may be small without H being a 
backward transform, but one easily shows from (5.11) and (5.12) that 

G A.= ] 
Hence, if I/ (to)l is small for all to, we may expect IAI(G)- A2I to be small (for 
all G), and consequently we may expect I.~1- A21 to be small (at all frequen- 
cies). 

The assumption that 2 2 o-flo-, is small would seem quite reasonable in cases 
where the system is under manual control; for in these cases, one would expect 
the deviations from linearity in feedback loop to be much larger than the 
deviations from linearity in the system itself. 

To summarise the results of this section, we have shown that the least- 
squares estimate of A obtained on the assumption that G ---- 1 is identical with 
the unconstrained least-squares estimate when either (i) the feedback loop is 
noise-free, or (ii) the system is open loop. Otherwise, the result holds if H has 
no poles in the region Izl ~< 1. if n does not satisfy this condition, the two 
estimates may not be identical but will be close to each other when {o-~/o-2,} is 
sufficiently small. 

7. Numerical  estimation of the system transfer function and noise structure 

Suppose now that we are dealing with the practical situation where we have 
a finite number of observations and have decided to use the estimate A2. 
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Further, we are willing to assume that A is a rational function of the form 

A ( z  ) = Y~=o C~kZ k 
2q fljZ / , (j30=1), 

/=0 

but do not assume that we know the values of p and q, a priori. The problem 
now becomes that of estimating {ak} and {flj} by minimising 

S2 ,N  

N 
{ Y ,  + ¢ 1Y,-1 + • • • + t qY,-q 

t=min(p, q) 

- -  o l o U  t - -  Oll U t _  1 . . . . .  o l p U t _ p }  2 . 

The numerical procedure is, in effect, equivalent to a multiple regression 
analysis of lit on Yt-1, Yt-2 . . . . .  Yt-q, U, Ut-1, . . . ,  U~_~, and this is the simplest 
way of estimating {ak} and {/3/}. Moreover, an initial indication of the values of 
p and q may be obtained by starting off with fairly high values and using 
standard regression techniques to decide which variables may be rejected. This 
procedure, however, should be used with caution since the usual assumptions 
of classical regression analysis are not satisfied in this type of problem. One 
technique which has been found to work successfully is to combine multiple 
regression analysis with cross-spectral analysis in the following manner. 

First, compute the 'nonparametric' estimate of A (compare (5.6)), namely 

A ( o , )  = (7.1) 

where f~ ( to )  and ftra(c0) denote estimated cross-spectral and spectral density 
functions. (For methods of estimating fetr and ftrv, see, for example, Jenkins 
and Watts, 1968 and Priestley, 1981.) Then, using the regression analysis 
described above to determine which Yt's  and Ut's are to be retained in the 
model and the associated estimates {t~k} and {/3/}, compute the corresponding 
transfer function, 

A( to )  = ~k t~k e-ik°J 
X//3i e-iJ°' (7.2) 

Now compare the graphs of IA(to)l 2 and I.A(to)l 2. If there is close agreement, 
then we may be reasonably confident that the regression analysis has produced 
a fairly accurate model. If, on the other hand, the fit is poor, then we retrace 
the steps by which the regression analysis rejected the various Y,'s and U,'s. 
Suppose that at the final stage of the rejection procedure the variable U,-3 (say) 
was thrown out. Then we would recomputel~(to)l, retaining &3, and once more 
compare the fit with Ifi,(to)l 2. This procedure would then he repeated until a 
satisfactory fit was obtained--assuming, of course, that the initially chosen 
values of p and q were adequate. If this were not the case, we would eventually 
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be led to increasing the values of p and q until we obtained good agreement 
between the two functions. 

Alternatively, we may compare the residual variance, S 2, estimated from the 
regression analysis with the residual variance, $20, corresponding to the 'non- 
parametric' estimate (7.1). It is easily shown that S 2 is given by (compare the 
third term in (5.10)) 

s0 = 
J 

I: = fw(oJ){1 - (72vtr(oJ)} d o ,  
l r  

where 

= ( ,o)}1:2 

is the estimated coherency between Y and U. Equivalently, S 2 may be 
evaluated from 

So = to (,o)lA(,o)l 2 dto, 

where S~ is the sample variance of (Y1, I"2, . . . ,  Y,). A comparison of S~ and 
So 2 should indicate the adequacy of the regression model, i.e. should indicate 
how well the rational function (7.2) approximates to the estimated transfer 
function given by (7.1). 

It is important to remember that the estimate (7.1) is of the 'unrestricted' 
type, i.e. A(a~) may not turn out to be a backward transform--unless, of 
course, H satisfies the required condition. We should not, therefore, expect to 
find 'near perfect' agreement between the estimates (7.1) and (7.2). In fact, if 
the Fourier coefficients of A(~0) exhibit a substantial tail in the 'forward' 
direction, one would have to resort to an estimate of the form A2(~o) given by 
(5.12). This type of estimate requires the factorisation of the spectral density 
function, fxx(OJ), and one numerical procedure for this operation has been 
given by Whittle (1963, p. 35). Once we have estimated A, we may then 
compute the estimated values of {Nt} using 

/Qt = Y, - AUt,  (7.3) 

and use these values to fit the transfer function G. One usually assumes that G 
is also a rational function---corresponding to an ARMA (mixed autoregres- 
sive/moving average) model for Nt--and there are now a number of well- 
established techniques for fitting ARMA models to data. 
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Summary 

We compare two methods of estimating transfer functions from input/output 
records when the output contains an additive noise component of unknown 
structure. The two methods correspond to (a) a weighted least-squares estimate 
(A1), and (b) a simple least-squares estimate (fi,2). The estimate fi,1 is more 
attractive theoretically since it is equivalent to a maximum likelihood approach 
when the system is open loop and the noise process is Gaussian, but it is 
difficult to compute numerically. The alternative estimate, -A2, is much simpler 
to compute and is the one commonly used in practice, particularly as a first 
approximation in an iterative approach. Both fi~l and A2, however, will, in 
general, be biased estimates when the system is closed loop. We determine 
conditions under which the asymptotic form of A2 will be identical with, or 
close to, the asymptotic form of A1 in the case of a closed-loop system in which 
the feedback is linear with an additive noise component. 
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The Bispectral Analysis of Nonlinear Stationary 
Time Series with Reference to Bilinear 
Time-Series Models 

T. Subba Rao  

1. Introduction 

A considerable amount of work has been reported in the engineering 
literature on the effects of nonlinearity in various physical systems (see Cun- 
ningham, 1958). In this context, the effects of nonlinearity are studied by 
obtaining the distribution of zero crossings, threshold crossings and peaks of 
response functions, etc. However, in recent years several research workers, 
notably Brillinger (1965), Brillinger and Rosenblatt (1967a,b) and Rosenblatt 
and Van Ness (1965), have pointed out the importance of higher-order spectra 
in the analysis of nonlinear time series. In this paper we consider the bispectral 
analysis of bilinear time series, and show the importance of higher-order 
analysis in distinguishing the linear models and bilinear models. The statistical 
tests for linearity and Gaussianity are considered. The optimum estimation of 
the bispectral density is also considered. The bispectral analysis of two well- 
known time series is included. 

2. Stationary time series and second-order spectral analysis 

In this section we briefly discuss the second-order spectral analysis of 
stationary time series, and an extensive discussion of spectral analysis can be 
found, for example, in Brillinger (1975), Hannan (1970), Jenkins and Watts 
(1968), Koopmans (1974) and Priestley (1981). 

Let {X(t)} be a discrete parameter, real-valued time series. We say that the 
time series {X(t)} is second order stationary if 

O) E ( X ( t ) )  = / x ,  independent of t, 

(ii) var(X(t))= o'3, independent of t, (2.1) 
c o v ( X ( t ) X ( t  + s)) = R(s )  = a function of the 
lag s only (s = 0, ---1, ---2 . . . .  ) .  

293 
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The autocovariance function R(s) is symmetric, i.e. R(s)= R(-s) .  It is well 
known that there exists a function F(to), which is bounded and nondecreasing 
such that 

R(s) = e is~' dF(to) .  (2.2) 
7r 

The function F(to) is known as the integrated (nonnormalised) spectrum of the 
stationary time series {X(t)}. If F(to) is differentiable and dF( to)= f(to)dto, 
then we can write (2.2) as 

R (s) = eis~°f(to) dto. (2.3) 
l r  

The function f(to) is known as the (nonnormalised) spectral density function of 
the stationary time series {X(t)}. 

From (2.3) we have the inverse Fourier transform 

co 

f(to) = ~ ~ R(s) e -i~ , Itol ~ (2.4) 

Since R(s) = R(-s) ,  we obtain f(to) = f(-to). The spectral density function f(to) is 
always positive. From (2.3) we have 

R (0) = o-2 = f(to) dto. (2.5) 

In an engineering context, o -2 represents the total power contained in the 
process {X(t)} and the right-hand side integral (2.5) represents a frequency 
decomposition of the total power. In other words, f(to)dto represents the 
power contained in the frequency band (to, to + dto) of the process {X(t)}. Since 
f(to) is the Fourier transform of the autocovariance function of R(s), it is 
natural to define f(to) as the second-order spectral density function. 

If the process {X(t)} is Gaussian, it is well known that all the information in 
the process {X(t)} is contained in the mean and covariances {R (s)} and as such 
second-order spectral analysis on the process {X(t)} is sufficient to draw all the 
useful information about this process. If the process is not Gaussian, one may 
have to perform higher-order spectral analysis, and the simplest higher-order 
spectral analysis one can perform is the bispectral analysis which we shall 
discuss in the following sections. 

3. Second-order covariance and spectral analysis of linear time-series models 

The object in time-series model building can be described as follows. 
Suppose X(t) denotes the given time series, then the object is to seek a 
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function h ( . )  which is such that 

h(X( t ) ,  X ( t -  1) . . . .  ) = e( t ) ,  (3.1) 

where {e(t)} is a sequence of independent, identically distributed random 
variables with E(e( t ) )  = O, E(e2(t)) = o -2. The class of linear models is given by 
restricting h(.) to be a linear function of X(t ) ,  X ( t  - 1) . . . . .  in which case, (3.1) 
reduces to 

o r  

h ~ X ( t -  u )=  e(t) (3.2) 
u=O 

H ( B ) X ( t )  = e( t ) ,  

where H ( Z )  = E~=0 h,Z". If H ( Z )  # O, Izl < 1, (3.2) may be written as 

X ( t )  = H - l ( B ) e ( t )  = F(B)e(t) = ~ g . e ( t -  u), 
u=0 

(3.3) 

where F ( Z ) =  E:=0 guZ". The  (nonnormalised) spectral density function of the 
process X ( t )  satisfying (3.3) is given by 

2 

f ( t o )  = Ir(to) l  2 , (3 .4 )  

where F(to) = X~=0 g, e - i ~  is known as the 'transfer function'. In other words, 
i f  the relation between {e(t)} and {X(t)} is linear, then the system can be 
completely defined by a single transfer function F(to). Recently, Rosenblatt 
(1980, 1981) has shown that if X ( t )  is Gaussian and satisfies the relation (3.3), 
then only the modulus of the transfer function F(to), i.e. IF(to)l, is identifiable. 
However, if X ( t )  is non-Gaussian, but satisfies (3.3), then it is possible to 
estimate the transfer function except for a possible linear phase shift using 
higher-order spectral estimates. If the input/output relationship is nonlinear, 
one may have to define an infinite number of higher-order transfer functions to 
characterise the system (Brillinger, 1970). 

The two linear representations (3.2) and (3.3), though quite general, are not 
very useful in practice since the parameters in the representations are infinite. 
By making further assumptions on H ( Z )  and F(Z) ,  we can obtain finite 
parameter models which are special cases of (3.2) and (3.3). 

If we assume that H ( Z )  = 1 + a l Z  + a2Z 2 + ' "  • + akZ k, then (3.2) reduces to 

X ( t ) +  a l X ( t -  1 ) + . . .  + akX(t--  k)  = e(t) (3.5) 

which is an autoregressive model of order k(AR(k)). 
If we restrict F ( Z )  to be of the form F ( Z )  = 1 + b lZ  + ." • + btZ t, then the 

model (3.3) reduces to the moving average model of order l (MA(I)), 
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X(t)= e(t)+ ble(t- 1 ) + . . . +  hie(t- l). (3.6) 

A parsimonious representation can be obtained by assuming F(Z) to be of 
the rational form 

1 + b l Z  + • • • + btZ ~ 
/ ' (Z)  = 1+ a l Z +  " '"  + ak z k  " 

(3.7) 

Then (3.3) reduces to the autoregressive moving average (ARMA(k, l)) 
representation 

X(t)+ a l X ( t -  1)+ . . .  + akX(t-  k) 

= e(t)+ ble(t-  1 ) + . . . +  ble(t- l). (3.8) 

If X(t) satisfies the model (3.8), one can easily show that the covariance 
function R(s) satisfies the recursive relation 

R ( s ) + a l R ( s - 1 ) + a 2 R ( s - 2 ) + . . . + a k R ( s - k ) = O  ifs>ll+ l .  
(3.9) 

Equations (3.9) are known as Yule-Walker equations and in the later sections 
we show that similar equations are satisfied by the bilinear time-series models. 

It is important to note that in writing the representations (3.2) and (3.5) we 
have assumed that we can find a linear function h(.) such that the resulting 
errors {e(t)} are independent. The well-known Wold's theorem in stationary 
processes clearly shows that this is not always the case. This theorem states that 
if X(t) is a stationary process (with an absolutely continuous spectral density 
function), then X(t) can be written in the form 

X(t) = ~ a,Tl(t- u), (3.10) 
u=0 

where a0 = 1 and E a 2 < ~, {,/(t)} is an uncorrelated process. In other words, a 
stationary process (with an absolutely continuous spectrum) can only be written 
as a linear combination of an uncorrelated process {7/(t)}, and not in general in 
terms of an independent process {e(t)}. 

As far as second-order properties are concerned, e(t) and 7/(t) have identical 
properties, but they may differ substantially in many other aspects (see Granger 
and Andersen, 1978; Priestley, 1978). In order to illustrate this point further, 
consider the process X(t) satisfying the relation (Priestley, 1978) X(t)= 
e(t) + f le(t-  1)e ( t -  2), where {e(t)} are defined as above. Then it can be shown 
that E(X(t)) = O, E(X(t)X(t  + s)) = O, s ¢ 0 and E(X(t)/X(s), s <~ t -  1) = 
¢le(t-1)e(t-2).  This example illustrates the fact that although the process 
X(t), which is nonlinear, is identified as a white noise process by the second- 
order covariance analysis, the past does not contain information on the future, 
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and it is, therefore, possible to forecast its future. For this model, one can show 
that a higher moment analysis would distinguish this model from a linear 
model. 

4. Bilinear time-series models and second-order spectral analysis 

It may not always be possible to represent a non-Gaussian process X(t) in 
the form (3.4) with {e(t)} mutually independent. Motivated by the work of 
Volterra (1930) in series expansion of continuous functions, Wiener (1958) has 
made a systematic study of the nonlinear representations of the continuous 
parameter stochastic process X(t). Wiener's representation, which is in terms 
of Hermite polynomials, can be considered as an analogue of Wold's decom- 
position theorem (see Robenblatt, 1979). Volterra (1930) has shown that, under 
certain conditions, the process X(t) can be written as 

X ( t ) =  2 [ ~ ' "  ~ g ( u l ,  u2 . . . . .  ui) f - I e ( t - u j ) ]  . ( 4 . 1 )  
i=1 • j = l  

Equation (4.1) is known as Volterra expansion and the kernels 
{gl(u), g2(ul, u2)...} are Volterra kernels. As pointed out earlier, we have to 
define an infinite sequence of higher-order transfer functions (see Brillinger, 
1970) to characterise the above relationship. For example, we can define the 
kth-order transfer function as 

Fk(O)l, 092 . . . . .  Wk) = ~'. • " " " Z gk(U,, U2 . . . .  , Uk) e - i ( " ' ' ° '+ ' ' '+u~k)  . 
Ul U2 Uk 

(4.2) 

Although the Volterra and Wiener expansions are very general and elegant, in 
practice, it is difficult to estimate the infinite set of kernels. In view of this, it is 
natural to seek a finite parameter representation of sufficient generality to 
describe the nonlinear relationship. Recently, control theorists have introduced 
the class of bilinear models which have been found useful for describing many 
nonlinear phenomena. Since the 'bilinear models' are nearly linear, their 
structural properties are similar to those of linear models. The analysis of 
bilinear time-series models has been considered by Granger and Andersen 
(1978) and Subba Rao (1981). 

Let {X(t)} be a discrete parameter time series, satisfying the difference 
equation 

X(t)+ 2a.~X(t-j)= £ cje(t,-j)+ 2 2 b,,,X(t-l)e(t-l'), 
j = l  j = 0  1=1 / '=1 

(4.3) 

where Co = 1 and {e(t)} is a sequence of independent random variables. We 
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define the model (4.3) as a bilinear time-series model BL(p, r, m, k) and the 
process {X(t)} as a bilinear process. In their monograph, Granger and Ander- 
sen (1978) have considered the statistical properties of the model BL(1, 0, 1, 1). 
Subba Rao (1981) has investigated the properties of the model BL(p, 0, p, 1) 
and considered the statistical estimation of the BL(p, 0, p, q) model. The 
autoregressive moving average model ARMA(p ,  r) can be obtained from (4.3) 
by setting bu, = 0 for all l and l'. In this paper we briefly describe the properties 
of the BL(p, 0, p, 1) model. 

Vector form of BL(p, O, p, 1) model 

It is convenient to represent BL(p, O, p, 1) in a state space form as follows. 
Let us define the matrices 

(ala  .... ) ( :) 
1 0 "'" o P ~  bll b21 b31 " " b p l ~  

A =  o 1 o , B =  ° o o 

0 0 . . ' . 1  0 0 0 0 

and C' = (1, 0, 0 . . . .  ,0), u '  = (1, o . . . . .  o) ,  

(4.4) 

x'(t) = (X(t),  X ( t -  1) . . . . .  
X ( t  - p + 1)). With this notation, we can write the model (4.3) in the form 

x(t) = A x ( t -  1)+ B x ( t -  1 ) e ( t -  1)+ Ce(t), 

X( t )  = H'x( t ) .  
(4.5) 

We define the model (4.5) as a vector form of the bilinear model BL(p, 0, p, 1) 
and denote it by VBL(p) .  In the following, we assume that {e(t)} are in- 
dependent and each is distributed as N(0, 1). 

Second-order covariance analysis of VBL(p)  

We have from (4.5), 

E(X(t ) )  = H'E(x( t ) ) ,  cov(X( t )X( t  + s)) = H'  cov (x(t)x(t + s))H. 
(4.6) 

Let the spectral radius of a matrix A, p(A) be 

p(A) = max{lA/(A)[}, (4.7) 
i 

where AI(A) is the ith eigenvalue of A. It has been shown (Subba Rao, 1981) 
that a sufficient condition for the first-order asymptotic stationarity is that 
p(A) < 1. Under  this condition, the mean 
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t t  = E ( x ( t ) )  = (I  - A ) - I B C .  

The sufficient condition for the second-order stationarity is that 

p ( A ( ~ A  + B @ B ) < I ,  

299 

(4.8) 

(4.9) 

where A ( ~ A ,  B Q B  are Kronecker product matrices. Under  this condition, 
the expression for the covariances of the process x ( t )  can be shown to satisfy 
the following relations. 

Let C(s )  = E ( x ( t  + s) - I t ) ( x ( t )  - It) ' ,  then we have 

where 

C(O) = AC(O)A '  + BC(O)B'  + A2 ,  

C(1) = AC(O) + A3, (4.10) 

C(s )  = A C ( s  - 1) = A*-lC(1), (s = 2, 3 . . . .  ) ,  

A2 = B i t i t ' B '  + A i t i t ' A '  + A S B '  + B $ ' A  + 2 B C C ' B '  + CC '  - I t i t '  , 

A3 = Aitit '  + B$ - I t i t ' ,  (4.11) 

S = a i t C '  + B C C '  + CI t 'A '  + C C ' B ' .  

If the matrices A and B are of the form (4.4) and H ' =  (1, 0 . . . . .  0), the 
relations (4.10) reduce to 

R ( s ) +  a l R ( S - 1 ) +  . . . +  a p R ( s -  p ) = O  , s >- 2 .  (4.12) 

Equat ions  (4.12) are the s a m e  as the Y u l e - W a l k e r  equations (3.9) for  an 

ARMA(p ,  1) and  thus show that  the bilinear model  BL(p, 0, p, 1) has the same  
covariance structure as an ARMA(p ,  1) . In  deriving (4.12), we have used the 
fact that {e(t)} are independent and each e( t )  is distributed as a N(0, 1) 
variable. 

The spectral density function f(to) can be obtained from C(s )  by taking its 
Fourier transform. For an illustration, consider the BL(1, 0, 1, 1) model 

X ( t )  + a X ( t  - 1) = b X ( t  - 1 ) e ( t -  1) + e ( t ) .  (4.13) 

The mean and variance of this model are 

b 1 + 2b 2 4ab 2 
/ Z - l + a ,  R ( 0 ) = o  " 2 = 1 _ a  2 - b  E ( l + a ) ( 1 - a  2 - b  2) /z2' 

b 2 
R(1) -- ( - a ) R ( 0 )  + 1 + a '  R ( s ) =  ( -a)~- lR(1)  (s = 2 , 3 , . . . ) .  

The graph of the spectral density functions of the process X ( t )  generated from 
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(4.13) when (i) a = -0.4,  b = 0.4, (ii) a = -0.4,  b = 0.8 are plotted in Figs. 1 and 
2, respectively. 

In both cases the spectral density function decreases as to increases; and the 
overall shape is similar to the shape of the spectrum of an AR(1) model. 

The above analysis clearly shows that a second-order covariance analysis 
(spectral analysis) cannot distinguish between a linear A R M A  model and a 
(nonlinear) bilinear model. This suggests the use of higher-order spectral 
analysis. 
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Fig. 1. Spectral density function (a = -0.4,  h = 0.4). 
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Fig. 2. Spectral density function (a = -0.4,  b = 0.8). 
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5. Volterra series expansion of VBL(p) model 

In this section we obtain the Volterra expansion for VBL(p) model and thus 
derive the higher-order transfer functions which characterise the model. 

We now consider the VBL(p) model given by (4.5) and the solution of the 
(4.5) is sought in the form of a power series expansion. In this paper we use the 
'reversion method'.  (For further details, see Cunningham, 1958, p. 133.) We 
consider the model 

x(t) = A x ( t -  1)+ A B x ( t -  1)e ( t -  1)+ ACe(t),  (5.1) 

where A is a numerical parameter introduced to facilitate the solution, but 
ultimately A is allowed to become unity. A solution for (5.1) is sought in the 
form 

x( t )  = AJxj(t).  (5.2) 
]=1 

Substituting (5.2) into (5.1) and then equating powers of A on both sides, we get 

Xl(t)  : A X l ( t -  1 ) +  C e ( t ) ,  (5.3) 

xi(t) = A x , ( t -  1)+ BXi_l(t- 1)e ( t -  1) (i = 2, 3 , . . . ) .  (5.4) 

Assuming xi(O) = 0 (i = 1, 2 , . . . )  and e(t) = 0 (t ~<0), we can show that 

x,(t) = ~ AhCe(t " jl),  
jl=O 

t-1 
xi(t) = E AhBxi-l( t - -  1 -  ] l )e ( t -  1 -  j~) 

h=o 

t 
= • ' ' "  f~ AuI-1BA~-U'-'B "'" AU'-'-~'-2-1BAUr-ui-'CS(ul - 1) 

ul=O ui=O 

i--1 i 
× I-[ 8(uj - uj-1 - l)8(ul - ui-1) l--I e(t - uj), (5.5) 

1=2 1=1 

where the step function 8(u) is defined as 

6(u) = {~ i fu~>O'  
otherwise. 

The Volterra series expansion of x(t)  is obtained by putting A = 1 in (5.1) and 
(5.2) and the final solution of X( t )  (assuming we observe X(t )  = H'x(t))  can be 
written in the form 
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X ( t )  = H ' x , ( t )  . . . .  V/(Ul" • • ui) ]--I e ( t -  uj) , 
i=1 i=1 - ui=O j = l  

where the Volterra kernels V / ( U l  ° ° °  Ui) are given by 

(5.6) 

Vl (u , )  = H ' A u l C ,  

u2  . . . . .  
i - 1  

= U'AU'- lB6(Uli  - 1) I-I [AUFU'-'-lB6(uj - uj-1 - 1)A'-"HCI 
1"=2 

(i = 2, 3 . . . .  ) .  (5.7) 

A comparison of the expansion (5.6) with (4.1) shows that for bilinear processes 
the coefficients g i ( u , " "  ui) of the Volterra expansion (4.1) are zero if any of 
U l ,  U2~ . . . , U i is zero. 

The kernels in the expansion (5.6) are not symmetric, but this expansion can 
be written in terms of symmetric kernels by defining 

W l ( U l )  = W l ( U l )  , 

1 
Wl(/~/1,/-/2 . . . . .  u i )  = ~1 E v / (  u l ,  u2,  • • • ,/.~i) 

per 

(5.8) 

when the summation Er r  is taken over all possible permutations of the 
variables u,, u2 . . . . .  ul. The Volterra expansion can now be written as 

X ( t )  . . . .  ~ Wi(u l ,  uz, . . . , ui) ]-I e ( t -  uj , (5.9) 
i=1 - ui=0 ]=1 

where, for example, the first two kernels are given by 

WI(Ul) = H ' A u ' C ,  

W2(Ul, u2) = ½[H 'AU' - 'BAe -u~Cr (Ul -  1)6(u2-  Ul) 

+ H'A~2-'BAU'-~C~(u2- 1)6(u~- u2)]. 
(5.101 

We can now define the kth-order  transfer function as 

l"k(OJ,,092 . . . . .  OJk) = ~ " '"  ~ Wk(Ul, U2,- . . ,  Uk)e -i(u''°~+'''+"~k) 
Ul=O uk =O 

(k- -  1,2 . . . .  1- (5.11/ 

The transfer functions corresponding to the kernels (5.10) (assuming the 
spectral radius of A is less than 1) are 
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Fl( to)  = H ' ( I  - A e- i ' ° ) - lC ,  (5.12) 

1 , e_i(o,l+~))_lB(i_ /~2(¢-O1, 092) --'-- ~[H (I  - A A e-i~°l)-lC 

+ U ' ( I  - A e-i(~x+°"z))-lB(/- A e-i°'2)-lC] e -i('°1+'~2) . (5.13) 

For  the BL(1, 0, 1, 1) model (4.13), the first two transfer functions are 

1 
Fl(~O) = 1 + a e -i'°' 

bei(~°l+~) [ 1 1 ]  
F2(o~1, ~o2) = 2(1 + a e -i('°x+'~) 1 + a e -i'°1 + 1 + a e -i~ " 

(5.14) 

These transfer functions agree with the corresponding expressions derived by 
Priestley (1978) for the BL(1, 0, 1, 1) model. 

Although an infinite number of transfer functions have to be defined in the 
case of nonlinear systems, one can see that in the case of bilinear models, 
where the norm of B is less than unity, the higher-order transfer functions 
Fk(t01" • • tOk) tend to zero as k tends to infinity. Hence,  as such, a finite number 
of transfer functions would adequately characterise the bilinear model VBL(p) .  

6. Spectral and bispectral density functions and their estimation 

We assume that the time series {X(t)} is a real-valued process, has finite 
sixth-order moments  and is weakly stationary up to the sixth order, so that for 
all t, 

and 
= E ( X ( t ) ) ,  R ( s )  : c o v ( X ( t ) X ( t  + s ) ) ,  (s = O, +-1, +-2 . . . .  ) 

C(T1, T2) = E ( X ( t )  - t x ) ( X ( t  + 1"1) - t x ) ( X ( t  + T2 ) -  ~ )  (6.1) 

= C(T1, '/'2)= C(--T1, T2-- T1)":- C(T1- T2,--T2). 

The spectral density, f(t0), is the Fourier transform of R(s) and the Fourier 
transform of C(rl, T2) is defined as the bispectral density function. It is given by 

1 ~ ~ C(T1, T2) e -i~'l"l-i'r2°rz f (0)1' 0")2) ~--" ~ 

In view of the symmetric relations (6.1), we have 

--qT ~ 601, ¢..02 ~. 7T. 

(6.2) 

f(O)l, 0)2) = f(~02, 0)1) = f(--O)l, - -0)1-  0J2) = f(--¢-01- 0-}2, 0)2) 

= f(--O.)l, -- (.02) , (6.3) 
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where f(--o91, --0)2) is the complex conjugate of f(--o91, --o92). The (o91, o)2) plane 
can be divided into twelve sectors, and because of the symmetric relations the 
bispectral density is completely specified on any one of the twelve sectors, 
including the boundaries (see Van Ness, 1966). 

There is a considerable literature on the estimation of f(og); nevertheless, we 
briefly describe the estimation of f(og) to develop the necessary ideas and 
terminology for later use. 

Estimation of f(o9) 

Let (X(1), X(2) . . . . .  X ( N ) )  be a realisation of {X(t)}. Then the natural 
estimates of/.~, R (~-) and C(zl, z2), respectively, are 

1 N 1N@'l  
2 = N , _ _ ~ l X ( t ) '  /~(~')= N ~ ( X ( t ) - X ) ( X ( t + l r l ) - X )  

(~- = O, _ 1 , . . . ,  -+(N - 1)) 
and 

1 N-,  d('7"1, 7"2) = ~-  ~ (X(t) - -  2)(X( t  + rl) - 2) (X( t  + r:)- X ) ,  

where 3, = max(0, rl, "/'2); "/'1 ~> 0, "r2 ~> 0. 
A form of spectrum estimate is 

I 
(6.4) 

f(og)=~-~ E h ~ R( r ) coso9r ,  (6.5) 
¢=-(N-1) 

where M -- M(N) and A(.) is a lag window generator. If A(s) = 0 for Isl > 1, M 
corresponds to the truncation point. We assume that the function A(s) is a 
bounded, even and square integrable such that A (0) = 1. The integer M (M is a 
function of N)  is chosen such that M ~ oo as N ~ ~ but M/N-~ O. Let r be  the 
largest integer such that 

k (') = lim 1 -  A(s) 
s . 0  Isl ' 

The integer r is known as the 'characteristic exponent'  of the function A (s). It is 
well known (see Parzen, 1957; Priestley, 1981) that E(f(o9))= f(og) and 

M var(f(og))=~-f2(og) A2(s)ds (o9 # O, zr), 

which shows that ](o9) is a consistent estimate of f(og). The basic problem in the 
estimation of f(og) is to find a suitable lag window A(s). During the decade 
1955-1965, several authors suggested various windows, some of which depend 
on unknown parameters of the spectral density function f(o9). A comparison of 
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Table 1 
Lag window generators 

Daniell window AD(S) = sin(s~-) 
s~ 

Tukey-Hamming . . t0.54 + 0.46 cos ,rs Isl < 1 
XT(S) ='to window otherwise 

1 - 6s2+ 61sl 3 Is[ ~<½ 
Parzen window hp(s) = 2(1 - Isl) 3 ~ ~< s ~< 1 

0 otherwise Bartlett- 
Priestley As,(s) = 7-~3 ~ / sin ~rs - cos ~rs ~ 
window (Irsr [ ~rs j 

these windows has been made by Neave (1972). Some of the windows which 
are currently used are given in Table 1. All these windows, given in Table 1, 
have characteristic exponent 2. 

Taking the relative mean square error as the optimality criterion, Priestley 
(1962) has shown that the Bartlett-Priestley window is optimal amongst all 
nonnegative windows with the characteristic component  2. (Bartlett (1966, p. 
316) has suggested the same window independently.) In fact, Priestley (1981) 
defines an 'efficiency index' of a window which is proportional to the relative 
mean square error. He  shows that the Bartlett-Priestley window has the 
smallest index value amongst all the nonnegative windows with the charac- 
teristic component  2. We now consider the estimation of the bispectral density 
function using the spectral window approach, and it is also possible to estimate 
the bispectrum using the fast Fourier transforms and the method of complex 
demodulation (for example, see Huber  et al. 1971; Godfrey, 1965). 

Estimation of the bispectral density function 
Let K0(01, 02) be a-bounded and nonnegative function satisfying 

(i) 

(ii) 

(iii) 

~ f  Ko(01, 02) d01 d02 = 1 

f~ f K~(01, 02)d01 d02 <oo;  f f .  f o2) dO2 o~ , O~Ko( OI, d01 < 

i = 1 , 2  

K0(01, 02).,~-,Ko(02, 0 1 ) =  K o ( 0 1 , -  0 1 -  02) ~- K 0 ( - 0 1 -  02 , 02).  

(6.6) 

Let A (Zx, ~'2) be i[s inverse Fourier transform, 

~( ' r l ,  "/'2) = f_~ f ei~'tol+i'r20'2K0( 01, 02) d01 d 0 2 .  

h (rl, r2) also satisfies the symmetric conditions 
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Then the bispectral estimate f(tol, tOE) is given by 

1 n-1 N-1 (,T1 , T 2 , ~  . _. 
f(tOl, tOE) --421r~2 Z ~ A \ / ~ ,  ~ c(~h, T2) e -' ' '°' ,n,~:, (6.7) 

\ ] r l = - ( N - I  ) r2=- (N-1)  

where M, which is a function of N, is a window parameter chosen such that 
M2/N--->O as M--> °°, N -->°°. 

The variance of the bispectral estimate, when (<Ol, <o2) are defined in one of 
the twelve sectors is given by (see Brillinger and Rosenblatt, 1967a,b; Rosen- 
blatt and Van Ness, 1965; Van Ness, 1966) 

M:) var(f(tol, tO2) = N f(tOOf(tO2)f(tOl + oo2) (0 < tO2 < tOO, 

where 

V 2 = ~ f A 2 ( U l ,  U2) duldtg2=(2,n-)2f/o~fK2(OlO2)dOldO 2 . (6.8) 

If the parameter M is chosen such that, as N ~ ~, M ~ 0% M/N--> O, then the 
bispectral estimate is a consistent estimate of f(Ol, tO2). Under  certain con- 
ditions on the spectral windows, Gabr and Subba Rao (1979) (see also Gabr, 
1981) have shown that the mean square error of the bispectral estimate is 
minimum for the class of estimates of the form given by (6.7) if the bispectral 
window K(01, 02) is chosen as 

~ / 3 1 1 -  1 (0~+02+01021 ] if(Ol, 02) e G ,  
K*(01, 02)= ~ -~  (6.9) 

0 otherwise,  

where the region G is given by the set {(01, 02); 02 + 02 + 0102 <~ zr2}. 
In order to calculate an analytic expression for the inverse transform of 

K*(01, 02), we approximate the region G by the set G1 given by {(01, 02); 
[01] + ]02[+ ]01+ 02] <2~-}. An approximate expression for the lag window is 
now given by 

'~*(Sl, s2) = J [ .  f ei'~+":°:K*(01,02) dOld02 

8 {l[<=s++ =s++ s,s=> =o=<s= s,>= 
--~ 7~3 3 3 -- SIS2  

+ (2s 2 + 5s 2 - 5SIS2) COS $1q'r .~_ ( 5 S  2 "~- 2s~-  5sis2) cos SzZr] 
$32($2- Sl) 3 ( $ 1 -  $2)3S 3 J 

[ - (S2- -  S l )  • , - -  S l  • 
- [ s21s ~ sin(s2 Sl)1r + s2(s 2 -  s1)2 sln(slTr) 

+ S21(Sf 2- Sl)2 sin(s2qr)] } . (6.10) 

--+to 
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An alternative to the optimal lag window it*(sl, s2) is to choose the two- 
dimensional lag window as a product of the one-dimensional windows used in 
the estimation of f(to). 

These product windows can be obtained from 

itsG(Sl, S 2 )  --= i t  ( S l ) i t  ( S 2 ) i t  ( S 1  - -  S 2 )  , (6.11) 

where A (s) are given in Table 1. It is interesting to compare the shape of these 
windows with respect to the optimal lag window (6.10). These windows are 
plotted in Figs. 3, 4, 5, 6 and 7. The optimal lag window has a much flatter 
surface when compared to other windows, and the rate of decay of it (Sl, s2) as 
Sl--->~, s2-->~ is much slower than for other windows. This means that the 

v v - 

Fig. 3. Daniell window. Fig. 4. Parzen window. 

* V  u v 

Fig. 5. Tukey window. Fig. 6. Barlett-Priestley window. 

L v V ~  

> m ! 

t 
Fig. 7. Optimum window. 
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Fourier transform of this window will be like a two-dimensional Dirac delta 
function concentrating all its mass around the origin (0, O) and this, of course, is 
a desirable property. 

7. Bispectral analysis of the bilinear time-series model BL(1, 0, 1, 1) 

In this section we obtain an exact expression for the bispectral density 
function of BL(1, 0, 1, 1) model. For higher-order bilinear models, the expres- 
sions for higher-order spectra are very difficult to obtain. Besides, it must be 
noted that high-order moments need not always exist. 

Let  the time series {X(t)} satisfy the model BL(1, 0, 1, 1), 

X ( t ) +  a X ( t -  1)= b X ( t -  1 ) e ( t -  1)+ e ( t ) ,  (7.1) 

where {e(t)} is a sequence of independent identically distributed N(0, 1) vari- 
ables. The time series {X(t)} generated from the bilinear time-series model 
(7.1) is asymptotically second-order stationary if a2+ b 2 < 1. Under  this con- 
dition, the expressions for mean, variance and covariance are given in Section 
4. In order  to obtain expressions for the third-order moments and hence the 
bispectral density, we proceed as follows. 

From (7.1) we can show 

where 

tz = b/(1 + a ) ,  

tz2 = E [ X 2 ( t ) ]  = [1 + 2b 2 - 4abt t ] / (1  - a 2 - b2),  (7.2) 

1 [b3Q3 + 3a2bQ~ + 3/x (1 - 6ab2)] Ix3 = E [ X 3 ( t ) ]  = 1 + 3ab  2 + a 3 

3 
QI  = E [ X 3 ( t  - 1)e(t - 1)] = ~ (1 + a2/x2 + 2b 2 - 4 a b l x ) ,  

1 
- - _ _  _ 3 Q2 = E [ X 2 ( t  - 1)e2(t - 1)] - 1 + 3ab  2 [ a tx3 + baO3 + 2a2bQ1 + 9/z], 

3 
Q3 = E [ X 3 ( t  - 1)e3(t - 1)] = ~ (5 + 4b 2 + 3a2~2 - 12ab/z). 

Hence,  C(0, 0 ) = / z a - 2 / x ~ 2 +  2/z 3. A sufficient condition for ~3 to be finite is 
that a = + 3b 2 < 1. 

All the third-order moments can be obtained by solving a set of difference 
equations which are too long to describe here. These equations can be solved 
using the generating functions. Then one can show that the bispectral density 
function of {X(t)} is of the form 
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where  

1 
f ( ~ ,  ,o:) = ~ {c(o, o) + F,(,Ox + o~) + F,(- ,o,)  + F,(-~o~) + F~(,Ox) 

+ F:(to2) + F2(-tol  - to2) + gl(wl + tOE)[Fs(to:) + F3(tol)] 
+ gl(-to2)Fs(tO2)+ gx(-to2)Fa(tol) 
+ [gl(--t01) + gl(-to2)]F3(-tOl - o.)2)} , (7.3) 

Z ei,o gl( to)= 1+ a z '  z = , 

g2(,o) = [ - a g 2  + (1 + 2a)g2]gl(o~) ,  

1 
ga(to) = 1 - (a 2 + b2)z [(v2-/z/x2)z 2 + 4a2bz2g2(to)], 

El(tO) = (-alz3  + b Q ~ -  la, tz2)ga(to)- 2/zg2(to), 

F2(oJ) = {v~-  (1 - 2a) /z /z2-  2(1 + 2a)/z3}z + ga(to), 

F3(to) = { - a v ~ -  (1 + 3a)a/z#2 + (2 + 7a + 6a2)/z3}z - ag3( to) -  ~g2(to) 
+ {-2abg2(to) - a2lz ( -  a/z2 + (1 + 2a)lz2)gl(to)}z,  

/21 = a2~3 + b2Q2 - 2abQx + IX, 

v2 = (a 2 + bE)v1 + 4a2btz2 + (1 + 2b 2 - 8ab2)lx. 

T h e  bispectral  density funct ion can now be calculated f rom (7.3) for  any values 
of a and b. For  our  il lustration we have chosen a = - 0 . 4 ,  b = 0.4, and the  
modulus  of the bispectral  density funct ion is es t imated f rom this sample using 
the op t imum weight function.  T h e  modulus  of the bispectral  density funct ion 
calculated f rom (7.3) is shown in Fig. 8. A t ime series (X(t ) ;  t = 1, 2 . . . . .  1000) 
is genera ted  f rom (7.1) when a = -0 .4 ,  b = 0.4. The  bispectral  density funct ion is 
es t imated  f rom this sample using the op t imum weight functions.  The  t runcat ion  
point  M is chosen to  be  equal  to 30. T h e  modulus  of the es t imated  bispectral  

Fig. 8. Parametric bispectrum. 



310 T. SubbaRao 

> < 
> < 
> < 
> < 

< 
> < 

Fig. 9. Estimated bispectrum. 

density function is plotted in Fig. 9. The bispectrum obtained by using the 
optimum weight function compares well with the theoretical bispectrum. 

8. Tests for departure from linearity and Gaussianity 

The use of cumulant spectra in assessing the departure from linearity (and 
Gaussianity) has been pointed out by Brillinger and Rosenblatt (1967a) and 
Brillinger (1965). In this section we briefly discuss the actual construction of a 
test statistic based on the bispectral density function for testing these hypo- 
theses (for details, see Subba Rao and Gabr, 1980). These tests are illustrated 
with two well-known examples in time series. 

Let us now assume that the time series {X(t)} has the linear representation 

X(t)= ~ a(u)e(t-u), (8.1) 
U=--oo 

where {e(t)} are mutually independent with E(e(t))=O, E(eZ(t))=tr 2, 
E(ea(t)) =/x3. Then the following relations can be obtained easily (Brillinger, 
1965). 

2 

where 

f(¢.oi, ooj)= /z3 H(-o2, - wj)H(co,)H(toj), 

H(to)= ~ a(u)e - i - .  
U = - - o o  

(8.2) 

Thus, if we write 
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[ f(~o,, co/)12 (8.3) 
Xii = f (wi ) f (co j ) f ( to i  + toj) '  

then from (8.2) we obtain 

_ x/ j  - all i, j .  (8.4) 

The relation (8.2) shows that if/z3 = 0, then the bispectral density function is 
zero for all toi and to t. Of course, if the random variables {e(t)} are Gaussian, 
then/z3 = 0 and hence f(toi, tot) = O. 

However, it may happen that the process {X(t)} is linear but not necessarily 
Gaussian. In this situation, X~j given by (8.3) is constant for all i and j. In 
other words, the constancy of X~j is a test for adequacy of linearity of the 
process (Brillinger, 1965). This leads us to the construction of the tests 
(i) H0: f(toi, t 0 j )  = 0 for all (.0 i and toj, and (ii) Hi: X / j  is constant for all toi and to t. 
Acceptance of H0 implies that the process is linear and ~l~ 3 ~ 0. Rejection of H0, but 
acceptance of/-/1, implies that the process X ( t )  is linear but/z3 ¢ 0. 

To test the hypothesis f(to~, toj) = 0, all toi, to t, we proceed in two stages. The 
first stage consists of testing the hypothesis f(toi, toj)= 0 when toi and to t are 
restricted to the range 0 < to~ < 7r, toi < toj < 7r (excluding the boundaries and 
the origin of the region (2) of Fig. 10). Within this region the bispectral 

7TB L ~°2 

® 
• o 

4 6~ . . ;~'3 ~'6 A 2 2 • . . ( ~ , - ~ )  

g~ ;~2 Q 

2 :~ 

ff 
g 

0 
~" 2 3 4 5 
6 ~-';r ~ 7r 

Fig .  10. B i s p e c t r u m  s a m p l e  w i t h  K = 6, L = 4, r = 2, P = 7, n = 9. 
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est imate  is approximate ly  a complex  normal  and the test we describe below 
depends  on the  complex  analogue of Hotel l ing T 2 statistic (see Giri, 1965; 
Khatri ,  1965). If we accept the null hypothesis  at the first stage, then in o rde r  to 
confirm that  the t ime series {X(t)} is l inear and/-£3 = 0, we must  also test that  
f(to~, to j ) - -0  when toi and toj are def ined at the origin and on the boundar ies .  
This is our  second stage of the test. In this context ,  we use Hotel l ing T 2 for  real  
r a n d o m  variables (Anderson,  1958; Kshirsagar,  1972). 

We  now consider  the first stage of the procedure .  We  construct  a column 
vec tor  f rom the set of bispectral  densities f(to~, toj) def ined on the plane 
0 < to /< 7r, to /<  toj < 7r. T o  obtain this column vector  we p roceed  as follows. 

Divide the interval  (0, rr) into K equally spaced intervals,  where  K ~ N. In 
view of the symmetr ic  relat ions (6.3) satisfied by the bispectral  density function,  
it is sufficient to restrict  the f requencies  (to/, toj) to  the region O A B  of Fig. 10. 
T h e  equat ions  of the lines OA,  A B  and OB which define the region O A B  are, 

1 respectively,  toj - toi = 0, toj = -~to~ + 7r and toi = 0, where  toi = i~r/K, toj = f l r /K  
(i = 1, 2 . . . . .  L ;  j = i + 1, i + 2 . . . . .  y( i ) ;  L = [2K/3]). T h e  restr ict ion that  L = 
[2K/3] and y( i )  = K -  [i/2] - 1 comes f rom the fact that  the f requencies  (toi, toj) 
must  be  within the region O A B .  

Le t  ~/ij = f(toi, wi) and for  each i (i = 1, 2 . . . . .  L )  define the vector  

1~  : (~i,i+l,  T~i,i+2 . . . . .  T~i,y(i)) (8.5) 

and let the vector  ~/ be  defined by 

7 ' =  (n~, n~ . . . . .  ,tL). (8.6) 

We  now relabel  the e lements  of ~ as 

, I , =  (~r,, ~'2, • • • ,  • ) ,  (8.7) 

where  P = z/L=1 (y( i )  - i), so that  for  each l (1 ~< l ~< P) ,  ~l = ~/ij for  some i, j, 
satisfying 1 <~ i <~ L;  i + 1 <~ j <~ y ( i )  (see Fig. 10 for  an illustration). 

We  now form a set of (approximately)  uncor re la ted  est imates  of each (i by 
construct ing a 'fine' f requency  grid a round  each (toi, toj) point.  Specifically, for  
each (toi, toj), let 

pdrc 
wi, = o~i + ~ , 

qdTr 
% = ,oj + - - i f - ,  

p = - r , - r +  1 . . . . .  0, 1 . . . . .  r ,  

q = - r , - r +  1 . . . . .  - 1 ,  1 , . . . , r ,  (q ~ 0) ,  

where  the distance 'd '  is chosen so that  the bispectral  est imates at ne ighbour ing 
points on this fine grid are approximate ly  uncorre la ted .  (In effect, this means  
that  d must  be  chosen so that  "n'd/N must  be  grea ter  than the bandwidth  of the 
spectral  window corresponding  to the lag window A(s).) N o w  let f(toi~, t%) 
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denote the estimated bispectral density function (as given by (6.7)) at the points 
(oG, ~%). Assuming that the true bispectral density function is sufficiently 
smooth so as to be effectively constant over the 'fine' frequency grid, we may 
write 

E[f(oG, oJjq)] = f ( c o i ,  oJj) all p, q. 

We may thus regard the se t -of  estimators 0?(wip, OJjq)} as n = 4r+,1 ap- 
proximately uncorrelated and unbiased estimates of f(oJ~, ~o~). To facilitate the 
analogy with standard multivariate tests, we now form the bispectral estimates 

{f(~o, rdrr ( r -  1)drr ,o ,)  . . . . . . . .  

f(o, . . . . . .  f(o,,o,+ 

into an n × 1 vector, which after relabelling, can be denoted by 

where 
#~ = (~,,, ~,= . . . . .  # , . ) ,  

( rd~" ) e , , = i  . , , - - - f f - .o~j  . s~z2 = f ( w l  (r - 1)drr 
N , oJj), etc. 

Using this device, we obtain an n × 1 vector of estimates for each element fit 
(1 <~ l ~< n) of the vector rl defined by (8.7). We may thus form the complete set 
of bispectral estimates into a 'data matrix', D, 

where 

[ ~ i  ~12 " ' "  

D =  ~21 ~22 " ' "  
& ~  & ~  " ' "  

~ i )  = (~lj, ~2i . . . . .  ~P/) 

6 . 1  = I ~ / = [~(1~, ~2), • • • ,  G ) I ,  
~J. L~bJ 

(i = 1 , 2 , . . . ,  n ) .  

For large N, ~(1) (i = 1, 2 . . . . .  n) is distributed as complex normal with mean 
and variance-covariance matrix Se. Under the null hypothesis that the process 
is linear (and /-,3 = 0), the mean vector ~ = 0. The maximum likelihood esti- 
mates of ~ and ~e are, respectively, 

= n ~= g (0 ,  S e  = An ' A = 1=1 (g(0 - ~ ) ( g ( 0  - ~ ) * -  

The likelihood ratio test for testing the hypothesis ~/= 0 against the alternative 
7 / * ~ 1 ~ / >  0 leads to the rejection of the hypothesis if the statistic (see Giri, 
1965; Kharti, 1965) T 2= m j * A - l ~  is greater than a constant A, where h is 
determined by the significance level a. Under the null hypothesis the statistic 
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~:1 - 2 ( n  - P )  T2 
2P 

is distributed as a central F with (2P, 2(n - P))  degrees of freedom. If the null 
hypothesis is accepted, we proceed to the second stage of the testing pro- 
cedure. 

Test for linearity 

To test whether {X(t)} is linear, but allowing for /Za g 0, we now use the 
property that the ratio X 0 given by (8.3) is constant for all oJi and to i. As before, 
we form a column vector of the ratios {X~j}, 0 < toi < 7r, toi < t0j < 7r. It may be 
noted that in this column vector we may include the elements X 0 defined at the 
origin and all the points on the line oJi = 0 since X~j's are always real. Let  

+ o,3 

be an estimate of X/j. Then, for large N, -Yij 
distributed (Brillinger, 1965, p. 1368). 

As before, we can form the {X0} into a P x 1 column vector 

(8.8) 

is approximately normally 

r " =  . . . . .  Y , ) ,  

where, for each l, Yl = f~o for some pair of integers (i, j). 
If the null hypothesis is true, then E(Y1)= E(Y2) . . . . .  E(Ye) .  This cor- 

responds to a classical problem of symmetry in multivariate analysis (Ander- 
son, 1958; Kshirsagar, 1972). The test is well known and the details can be 
found in the above references. Let  1"1, I12 . . . . .  Y, be a random sample of size 
n, and let 

~ = l ~ y ~  

n i=l  

l ~ y .  
Sy = ~ (Y~ - Y)(Y~ - ]~)' and ~ y  = n 

i=l  

Define a column vector fl of order O x 1, where O = P - 1, such that 

= B Y ,  

where B is a matrix of order  O x P and it is of the form 

1 0  o 1 1 - 1 .  
B ° ° . ° ° °  • °o° °° 

0 . . .  1 

Under  the null hypothesis, fl is asymptotically jointly normally distributed with 
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mean vector 0 and variance-covariance matrix B,~yB'. The likelihood ratio test 
for testing the null hypothesis leads to the rejection of the hypothesis if the 
statistic T 2 = n/~',~/~, where /~ = BY, S = BSyB', is greater than a constant A0 
where A0 is determined by the significance level a. The statistic 

~ 2 =  n -  Q T z 
Q 

has, under the null hypothesis, an F distribution with (Q, n -  Q) degrees of 
freedom. The statistic is invariant and it is independent of the choice of B 
(Anderson, 1958, p. 111). 

Numerical illustrations 

Sunspot numbers 
We consider the Wolfer annual sunspot numbers for the years 1700-1955 

(Waldmeirer, 1961) consisting of 256 observations. The bispectral density 
function is estimated using the optimum weight function and the truncation 
point is chosen to be equal to M = 30. The modulus of the bispectral density 
function is calculated for several frequencies (to1, O,)2) but in Fig. 11, we have 
given the plot of the modulus of the bispectrum for the frequencies tol = to2 = 
0.107r(0.017r)0.30~'. There is a 'big' spike in the neighbourhood of the 
frequency to1 = to2 = 0.565 which corresponds to the periodicity 11 years (ap- 
proximately). 

'°2v"- ~ t o x  

Fig. 11. Sunspot numbers. 
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Canadian lynx data 
The second series we consider is the annual record of the numbers of 

Canadian lynx trapped in the Mackenzie river district of North West Canada 
for the years 1821-1934 (inclusive), giving a total of 114 observations. The 
bispectral density function is estimated using the optimum weight function, and 
the modulus calculated over the same frequency range as the above example is 
given in Fig. 12. There  is a dominant spike in the neighbourhood of frequency 
ton = to2= 0.6597 which corresponds to, approximately, the periodicity 9.5 
years. 

> 

Fig. 12. Canadian lynx data. 

Logarithm of the Canadian lynx data 
The logarithm transformation has been proposed by several research wor- 

kers as a means of making the Canadian lynx data nearly Gaussian (see 
Campbell and Walker, 1977). Hence it is interesting to consider this series as 
well for test purposes. 

The parameters M, K, L, d, r, P and n that are used for constructing the ~ 
and ~2 statistics are given in Table 2. 

k 

The values of T 2 and ~ are given in Table 3. 
The values of ~1 for the three series are much greater than the percentage 

point confirming the general belief that the series are non-linear. 
We now proceed to test the hypothesis that the series may be linear but 

/z3 = 0. To test the hypothesis we use the statistic ~2. The values of T 2 and ~2 
are given in Table 4. 

From Table 4, it is clear that the sunspot numbers and Canadian lynx data 
are obviously not linear, but, surprisingly, the logarithm of the Canadian lynx 
data is linear, though not Gaussian. 
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Table 2 
Values of (M, K, L, d, r, P, n) 

N M K L d r P n 

Sunspot 
numbers 

Canadian 
lynx data 

Logarithm of 
Canadian 
lynx data 

256 30 6 4 8 2 7 9 

114 25 6 4 3.5 2 7 9 

114 25 6 4 3.5 2 7 9 

Table 3 
Values of (T 2, ~1) 

5% upper point 
T 2 ~r 1 of F(14,4) 

Sunspot 
numbers 11828.063 3379.447 5.89 

Canadian 
lynx data 5038.336 1439.525 5.89 

Logarithm of 
Canadian 
lynx data 2156 .627  616.179 5.89 

Table 4 
Values of (T', ;~2) 

5% upper point 
T 2 ;~2 of F(6.3'~ 

Sunspot 
numbers 

Canadian 
lynx data 

Logarithm of 
Canadian 
lynx data 

620.59 310.29 8.94 

1174.58 587.29 8.94 

8.39 4.20 8.94 
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Conclusions 

In this paper we have considered the second-order and third-order spectral 
analysis of nonlinear time series, and in particular the analysis of bilinear 
time-series models which have been introduced recently. We show that the 
second-order spectral analysis is not sufficient to distinguish between linear 
time-series models and bilinear time-series models, since, as far as second- 
order properties are concerned, they are the same. In view of this, one has to 
resort to higher-order spectral analysis. The bispectral analysis of the time 
series may suggest any departure from linearity and normality; and statistical 
test are constructed for dealing with these problems. Of course, these tests are 
not exhaustive in the sense that for some nonlinear processes bispectrum can 
be zero. Still, in quite a number of situations, tests based on bispectrum can 
provide a useful guide to the presence of nonlinearity as the numerical 
illustrations included in this paper suggest. 
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Frequency-Domain Analysis of Multidimensional 
Time-Series Data 

E n d e r s  A .  R o b i n s o n  

I. Introduction 

Information occurring in the form of an image is basic in our technological 
world. A few examples are television, radar, photographic and X-ray images. 
Many of these images are of fine quality, others are of lesser quality. However, 
some poor quality images are so unique and are of such importance that it is 
worthwhile to devise techniques through which the degrading factors can be 
removed and the image quality enhanced. Such image restoration techniques exist 
either as digital or optical processing schemes. As we know, images are 
representations of objects that are indirectly sensed and that various forms of 
wave motion are the physical mechanisms which perform the sensing. The image, 
as well as the object, is a spatial entity and so can be described in terms of spatial 
coordinates. A two-dimensional image, for example, would be measured in terms 
of length and breadth. However, the wave motion by which the sensing takes place 
is a time phenomenon, so in this respect the time coordinate becomes an essential 
feature. At each spatial point we can conceivably measure a time function, or time 
series, and the ensemble of such time series over a set of spatial points comprises 
multidimensional time-series data. 

Let us give an example. The X-ray imaging of the human body is essential in 
many medical procedures. The desired object is within the human body, and we 
can observe the object by sending X-rays (i.e. wave motion) through the body and 
recording the X-ray image without the body. The problem is to reconstruct either 
optically or digitally the shape or properties of the object within the body from the 
measurements (the image) made outside of the body. The utilization of the 
properties of the wave motion which connect object to image is essential to the 
solution of this reconstruction problem. 

In all practical problems the multidimensional time series represent an 
enormous amount of data, often enough data to challenge the capacities of our 
greatest digital computers. How do we cope with the mathematical analyses of 
such large quantities of data? Any purely statistical approach which involves 
the computation of correlation functions and spectra usually becomes over- 
whelmed by the sheer number of such functions and the need for classifying 
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them in some recognizable and coherent  scheme. However ,  in the case of data 
generated by physical wave motion, we can use the wave equation. The wave 
equation links wave data together into a unified physical whole. This equation 
was first formulated three hundred years ago through the work of Isaac 
Newton, James Bernoulli, Jean Le Rond  D ' A l e m b e r t  and Leonhard  Euler. 
The  wave equation is a second-order hyperbolic partial differential equation, 
and so in a mathematical  sense cannot fairly be described as a simple equation. 
However ,  in a physical sense if we consider how complicated wave motion can 
appear,  it is indeed remarkable  that its essential propert ies can be described by 
an equation that can be written down in a few mathematical  symbols. The fact 
that so much of our  physical world can be described by the second-order 
equations of mathematical  physics is of deep significance, and indicates that 
beauty and simplicity are not foreign to each other. 

In this paper  we are concerned with frequency-domain analysis of multi- 
dimensional time-series data. The underlying physical concept is that the data 
represent  wave motion so the structure is governed by the wave equation. Our  
approach will make  use of Fourier  t ransformations in order to render  space-  
t ime data into wavenumber- f requency  data. Let  us note that we usually use the 
word frequency to mean temporal  frequency (i.e. radians per  second), whereas 
we use the word 'wavenumber '  to mean spatial frequency (i.e. radians per 
meter).  

2. The wave equation 

We live in a three-dimensional world denoted by the x, y and z coordinates. 
The  other vital coordinate is that of t ime t. Thus we deal with four coordinates 
x, y, z and t. Many important  physical systems can be understood as mani- 
festations of wave phenomena.  It is therefore  appropriate  to begin our dis- 
cussion with wave motion.  A significant property of waves is that waves carry 
energy over  t ime from one spatial point to another.  That  is, waves represent  
nature 's  way of transporting energy. In studying wave motion the independent  
variables are x, y, z and t. The dependent  variable represents  the disturbance, 
i.e. the quantity undergoing wave motion. In this paper  we assume this quantity 
is a scalar and denote it by u(x, y, z, t). The  basic equation which governs the 
wave motion is the scalar wave equation, whose homogeneous  form is 

02U I" 02u 02U 1 02u = O .  (2.1) 
Ox---X- ~-~y2 + Oz2 v 2 Ot ~ 

A derivation of this equation f rom first principles can be found in most  books  
on mathematical  physics. For  background materials,  the reader  is referred to 
Robinson and Silvia (1981). 

Let  us look at this wave equation (2.1). On the left is the sum of the three 
second partial derivatives with respect to each of the space variables. Also on 
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the left is the negative of the second partial derivative with respect to time 
divided by the quantity v 2. Throughout  this paper, we assume that v is a 
positive 'constant. The  quantity v is the velocity of the traveling wave. 

In the two-dimensional case, we assume that the wave motion or disturbance 
u is a function of only x, z, t and not a function of y. Then the second partial 
derivative of u(x, z, t) with respect to y is zero, and the wave equation reduces 
to its two-dimensional form 

02u 02u 10Zu 
Ox---~+ Oz---- 5 v20t---- T - O. (2.2) 

In the one-dimensional case, we assume that the disturbance is of the form 
u(x, t), so the wave equation reduces to its one-dimensional form 

OZu 1 02U 
Ox 2 v 20t  2 - -  - 0 .  ( 2 . 3 )  

3. Frequency-domain analysis 

Both from a conceptual and a computational point of view, the entire 
multidimensional wave problem becomes considerably simplified by the intro- 
duction of frequency-domain techniques. For the time being we shall treat the 
case of two spatial dimensions x and z, as this case illustrates all the essential 
properties that we want to develop. First we must agree on the choice of a sign 
convention of the Fourier transform. For each coordinate x, z, t, there is a 
choice of sign. Mathematicians, physicists, and electrical engineers often use 
different sign conventions, and there are good reasons for their choices. 
Because we are interested in the systems approach we will make use of the 
electrical engineering convention, and Write the direct Fourier transform of the 
space-t ime function u(x, z, t) as 

U(kx, kz, to)= f f ® f f ~ f f  u(x,z,t)e-i("-kx~-k~z)dx dz dt. 0.1) 

The inverse Fourier transformation is then given by 

1 
u(x, z, t)=-ff--r~gTr3 ff~ ff~ f f  U(k~, kz, to)ei(°"-kxx-kzz) dkx dkz dto . (3.2) 

The variable to is the angular frequency, whereas the variables kx and kz are 
angular wavenumbers (or angular spatial frequencies). Generally, the word 
angular is understood, so it can be dropped. If t is measured in seconds and x 
and z in meters, then to is in units of radians per second and kx and kz are each 
in units of radians per meter.  The kernel in the inverse Fourier transform is the 
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exponential 

ei(~t-kx~-k~z) " (3.3) 

Notice that the temporal frequency to has a positive sign, whereas the spatial 
frequencies k~ and kz have negative signs. This usage of signs is the one 
according to the electrical engineering convention. If we take the time deriva- 
tive of the inverse Fourier transform, we obtain 

Ou-lf~-=f~-=f~-= [ i t o U ] e i ( ° ' - k x ~ - k ~ z ) d k x d k z d t o O t  8" /7  "3 . (3.4) 

Thus the operation O/at in the time domain corresponds to multiplication by ito 
in the frequency domain. In other words, the engineering sign convention 
associates +ito with O/at, which makes sense because electrical engineers (EE) 
work more often with time than space. Thus, under the EE convention, we see 
that -ikx is associated with O/3x and likewise -ikz is associated with O/az. The 
physics convention is just the opposite choice of signs. Mathematicians, on the 
other hand, would associate the same sign, whether it be plus or minus, with all 
the derivatives. Why then do engineers and physicists have opposite signs 
associated with time and space? The reason is that by convention in physics as 
well as in engineering, waves move in the positive direction on the space axis as 
time increases. As a result, the sign on the spatial frequencies must be opposite 
to the sign on the temporal frequency. We can illustrate this property by 
looking at the above exponential kernel. Its real part is 

cos(tot-  kxx - kzz ). (3.5) 

For fixed kx, kz, to, this is a sinusoidal wave (in this case, a cosine wave). A crest 
of the wave occurs when the quantity within the parentheses is zero, or a 
multiple of 2~r. The rate of change of a crest along the x axis is 

a x  to 
= ,_--, (3.6) 

a--t" xt~ 

which is called the horizontal phase velocity (where x is the horizontal axis), 
whereas 

c3Z 

Ot k~ (3.7) 

is the vertical phase velocity (where z is the vertical axis). The engineering 
choice of signs (as well as the physics choice) makes these phase velocities 
positive, so the wave travels in a positive direction. 

Let us now define a plane wave. The cosine wave just considered is an 
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example of a plane wave. Fig. 1 shows a typical ray along which the wave 
moves and also shows typical wavefronts along which a crest (or a trough) lies. 
The ray and wavefront are at right angles. The angle 0 is the angle between the 
ray and the vertical, and also is the angle between the wavefront and the 
horizontal. The wave crest travels in the direction of the ray with velocity v. 
Suppose that it takes one unit of time for the crest to move from A and B. 
Thus the length of AB is v. The energy of the wave travels along the rays, so 
the segment AB represents the physical velocity v. If we look at the horizontal 
axis only, it appears that the crest moves from A to C. If AB is equal to v, then 
AC is equal to v/sin 0. The apparent velocity v/sin 0 is called the horizontal 
phase velocity. The horizontal phase velocity v/sin 0 does not represent a 
physical velocity. Because sin 0 is less than or equal to one, the horizontal 
phase velocity is greater than or equal to the velocity v. Similarly, the velocity 
of the crest (or wavefront) along the vertical axis is the vertical phase velocity 
v/cos 0. The expression for the wavefront is the line given by 

vt 
z x tan 0. (3.8) 

0 cos 

If we solve for t, we obtain 

t(x, z) -- x sin 0 + z cos 0, (3.9) 
v v 

which is the time at which the wavefront passes any point (x, z). If we use 
t(x, z) to define the time delay r, then the expression for an arbitrary wave 
shape f ( t)  delayed by the travel time ~- is 

0- c0s0). 

A J  - 

J 

V 
m 

sin 0 

~ X  

Z 

Fig. 1. Depiction of a plane wave. 
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This gives the express ion for  a t ravel ing p lane  wave.  In the  case of the 
sinusoidal  wave  tha t  we t rea ted  previously,  the funct ion f was  a cosine,  i.e. we 
had  

cos(o9t - kxx - kzz)  = cos to ( t  - k~ x k~ (3.11) 

On  compar ing  the above  two expressions,  we  obta in  

sin 0 _ kx cos 0 =--.kz (3.12) 
V O9 ' V 60 

Thus  we obta in  the  following re la t ionships  

sin 0 vkx vkz = , cos 0 = - - ,  (3.13) 
(9  O9 

which re la te  physical  angles to veloci ty and Four ie r  componen t s .  If we now 
m a k e  use of  sin 2 0 + cos z 0 = 1, we obta in  

O.) 2 
k 2 + k 2 = ~-~, (3.14) 

which is called the  dispersion relation of  the scalar wave  equation. 
This dispers ion re la t ion is ex t r eme ly  impor tan t ,  so now let us der ive  it in 

ano the r  way. Le t  us t ake  the  comple t e  Four ie r  t r ans fo rm of the  scalar  wave  
equa t ion  

C~2U 02U 1 02U 
Ox---- ~ + Oz----- 7 - v 2 0 t  2 . (3.15) 

Because  a/Ox cor responds  to - ikx ,  it follows that  02/Ox z cor responds  to 
( - ikx)  2 = - k 2. Likewise,  02/Oz 2 cor responds  to - k2z and 02~or 2 cor responds  to 
-092. Thus,  in the  w a v e n u m b e r - f r e q u e n c y  domain ,  the  scalar  wave  equa t ion  
b e c o m e s  

-k xU - k zU = - (o921v2 )U .  (3.16) 

Thus  the  scalar wave  equa t ion  is satisfied wheneve r  the  dispers ion re la t ion 

k~ + k 2 = o92/v2 (3.17) 

is satisfied. 
W e  are now in a posi t ion to explain how mul t id imens iona l  t ime-ser ies  da ta  

gene ra t ed  by physical  wave  mo t ion  is different  f rom ord inary  data.  T a k e  the  



Frequency-domain analysis of multidimensional time-series data 327 

data u(x, z, t) and perform a frequency-domain analysis to obtain U(kx, kz, to). 
Let us now look at an arbitrary value of U(kx, ks, to) that is not zero. We have a 
wavefield if and only if the coordinates kx, kz, to of this value of U satisfy the 
dispersion relation. Thus the dispersion relation represents the interrelationships 
existing in wavefield data. These interrelations make it possible to extrapolate 
wavefield data either over space or time. The solution to many important 
problems rests in the success of such extrapolations. 

4. The distributed source model in seismic exploration 

As an application of the frequency-domain analysis of multidimensional 
time-series data, we want to consider a specific physical situation, namely the 
problem of the seismic exploration for oil and gas in the sedimentary rock 
layers in the earth. The nature of the problem can be visualized by regarding 
the earth's crust as a stack of approximately horizontal sheets of rock, all with 
different properties and thicknesses, some of the layers being tilted, bent, or 
deformed, and some containing traps of varying shapes and sizes. Some of 
these traps may contain accumulations of oil and natural gas. The geophysicist 
sets off sources of energy at the surface and he analyzes the resulting responses 
recorded at the surface. From this information he wants to determine the 
thickness and physical properties of each sedimentary layer, details of the 
interfaces between the layers, and the locations and shapes of the t raps  in the 
layers. With this physical picture we model the earth's crust as an acoustically 
translucent, multilayered medium with the layering exposed along the vertical 
z axis, with depth z measured positively downward from the surface z = 0. The 
traps for petroleum may have an areal extent of only a square kilometer, and 
be as much as seven kilometers deep within the earth, with no geologic 
evidence at the surface that there is a trap below. 

As is well known, the contact or interface between two different rock 
materials can cause reflections of seismic waves. Compared to the wavelength 
of the seismic waves, the magnitude of the roughness of these interfaces is not 
great, and as a result the quality of seismic reflections can be good. In many 
cases, the strata interfaces are quite smooth, with surface roughness of ap- 
proximately one meter. To seismic waves with wavelengths up to one hundred 
meters, these surfaces appear to have a smoothness equivalent to that 
experienced by light striking a high-grade optical reflecting surface. Thus, by 
and large, the subsurface interfaces act as partially reflecting mirrors, and the 
seismic reflection process represents specular partial reflection rather than 
diffuse scattering. 

Suppose now that we have the seismic source and receiver at the same point 
on the surface of the earth. According to ray theory, most of the energy that is 
reflected from a certain interface will travel down and up on the same ray, 
namely the ray that strikes the interface at right angles. The situation in seismic 
field recording corresponds to many such shot-receiver points which are 
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activated in a sequential manner. A time series is obtained for each such point. 
However, once we have collected all these data, we may imagine instead a 
thought experiment whereby all the sources were actuated simultaneously 
instead of sequentially. We, therefore, have one overall wavefield which 
satisfies the wave equation. However, a further important simplification is 
possible. Because the energy goes down and up on the same ray path, we can 
consider that the sources were distributed along the interfaces and the seismic 
recordings at the surface just represent energy traveling up along the ray paths. 
In the field situation the waves go down and then return upward along the 
same ray, whereas in the hypothetical thought experiment they only go up 
along the ray. Thus in the field situation we record two-way time, whereas in 
the hypothetical situation we record one-way time. One-way time t is just one 
half of two-way time. It is a great conceptual advantage to consider the 
wavefield as generated by this hypothetical model, which is called the dis- 
tributed source model. In seismic prospecting it is often the case that all the 
physical sources are explosions, i.e. the sources are impulses (or spikes) at time 
zero. By lining up the time origin on each time series, we obtain the so-called 
seismic record section. This record section may be considered to be the wavefield 
s(x, y, t) observed at the surface (x, y) of the earth due to impulsive sources 
distributed along the subsurface interfaces where all the sources are set off at 
the same instant t = 0. 

The distributed source model of seismic prospecting provides the following 
physical process. The interfaces are defined within the earth as a function of 
three-dimensional space (x, y, z), where z is depth. The surface of the ground is 
z = 0 and depth z is measured positively into the ground. Let the function 
which gives the reflectivity strength of the interfaces be denoted by r(x, y, z). 

source and source and 
receiver receiver receiver receiver 

A B A B 

ace 

(a) 

e along interface 

(b) 
Fig. 2. (a) In seismic data  acquisition, the  surface points A and B are activated sequentially. The  
source and receiver are at the  same point for each time series obtained. (b) Unde r  the  distributed 
source model,  the  sources are regarded as being distributed along the interface, and they are all 
fired simultaneously and recorded at the  surface points such as A and B. 
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For  short, we can call r the reflectivity function. According to the distributive 
source model, the impulses at time zero are made equal to the reflection 
strengths, so r(x, y, z )  also may be interpreted as the wavefield at time t = 0. On 
the other  hand, the time-series data recorded at the surface z = 0, which we have 
denoted by the function s(x, y, t), may be interpreted as the surface wavefield, i.e. 
the wavefield at the surface z = 0. Let  us now denote  the entire wavefield by 
u(x, y, z, t). Then, as we have just seen, the initial value of the wavefield is given 
by the reflectivity, i.e. 

u(x, y, z, t = O) = r(x, y, z )  , 

whereas the surface value of the wavefield is given by the time-series data, i.e. 

u(x, y, z = O, t) = s(x, y, t) . 

This physical process can be simulated within a computer.  The computer  
memory can be used as a representation of physical space (x, y, z), and timelt 
evolves from initial time 0. Thus we would start with the initial value r(x, y, z )  
and let the computer  simulate the wavefield u(x, y, z, t) as time t increases. 
This type of simulation corresponds to what occurs in nature. A nice feature of 
such a simulation is that the wavefield evolves in a unique Wayaepend ing  
upon the initial condition, and generally small errors in the initial conditions as 
well as in model specification do not propagate in an ever-increasing Way. Thus 
given the initial conditions and the structure of the earth, we can find the wave field 
everywhere,  and in particular the surface wavefield s(x, y, t). Such a simulation 
represents the solution of a time-evolution problem, which is also called a forward 
problem. 

In geophysical exploration, on the other  hand, we are faced with what is call- 
ed an inverse problem. The time-series data that we have have been measured at 
the surface of the ground and we would like to determine the structure of the 
underground interfaces which delineate the sedimentary rock layers. In other 
words, we are given the surface time-series data s(x, y, t) and we would like to 
extrapolate the wavefield downward in depth z. That  is, in the inverse problem 
we take data at the earth's surface and extrapolate the data into the earth. 
Under  our distributed impulsive source model, we can thus obtain the structure 
of the interfaces by letting t = 0 in our computed wavefield u(x, y, z, t). It is for 
this reason that this model is so valuable. Thus the solution to the inverse 
problem gives the interface reflectivity function r(x, y, z )  from knowledge of 
the surface data s(x, y, t). As is well known, such inverse problems do not have 
the nice stability and uniqueness properties as do direct problems. However,  
with the ever-increasing use of computers, much more confidence in the 
solution of inverse problems has been gained by means of diligent research and 
careful analysis in recent years, and the outlook for even bet ter  solutions is 
bright. 
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5. Migration o| seismic data 

As we have seen in the previous section, a seismic exploration program 
collects data on the surface of the ground. These data show seismic events due 
to reflections from subsurface interfaces. The purpose of the process known as 
seismic migration is to construct a geometric picture of these geologic interfaces 
from the time-series data measured at the surface. In terms of the distributed 
source model, the problem of migration is to construct the reflectivity function 
r(x, z) of the subsurface interfaces from the surface data s(x, t). Accurate 
migration requires a high-quality estimate of the velocity which is usually 
obtained independently by means of other seismic processing techniques. In 
this paper we assume that velocity v is a known positive constant. 

Reflection seismic prospecting was first used commercially for oil exploration 
in the 1930s. During the 1940s various mechanical migration methods were 
being used by seismic interpreters. Seismic migration was put on a sound 
mathematical basis in terms of wave motion in the pioneering work of 
Hagedoorn (1954). His work was in the space-time domain so the various 
computer implementations which followed Hagedoorn's work were in space 
and time variables. These migration programs made use of wavefront super- 
position methods, diffraction (hyperbolic) summation methods, and finite- 
difference approximations. All of these methods represent digital ap- 
proximations to the solution of the wave equation in the space-time domain. 
Migration in the frequency domain had been known for some time, but it was 
the work of Stolt (1978), Gazdag (1978), and Chen and Jacewitz (1978) that 
gave it the practical edge over the space-time methods. The frequency-domain 
approach is based upon the Cauchy-Poisson solution of the wave equation by 
use of Fourier transforms. For fuller treatment of the Cauchy-Poisson solution 
of the wave equation, see Webster (1950) and Tychonov and Samarski (1967). 
The advantages of frequency-domain migration include rapid computing time 
because of the fast Fourier transform, good performance under low signal-to- 
noise ratio, and good results in the case of complicated structures. One 
disadvantage is that the method as presented here does not handle variations in 
the velocity v as a function of depth. Stolt (1978) devised an approximate 
correction for velocity by an axis stretching procedure which made the method 
practical for field data. Gazdag (1978) extended the frequency-domain method 
so that it can perform in situations where the velocity varies as a function of 
depth. Further improvements were made by Bardan (1980). For a survey of the 
whole field of digital seismic processing, see Robinson (1980). 

In this paper we want to give an exposition of frequency-domain migration. 
Fourier, Cauchy, Poisson and the other great nineteenth-century mathemati- 
cians were able to solve many of the important problems of wave motion, and 
their work is now found in books on partial differential equations. However, 
with the tremendous increase in computer capacity during the last decade, and 
with the excellent quality and large amount of time-series data available, their 
work takes on new meaning. Their work can now be used to solve practical 
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data-processing problems, and the purpose of this paper is to illustrate one 
such case and so indicate how such methods can be applied to other  time-series 
problems. 

In the next section, we consider the case of one spatial dimension as an 
introductory treatment.  Then we consider the case of two spatial dimensions. 
We do not treat the case of the three spatial dimensions as it follows the same 
pattern as the two-dimensional case. 

6. One-dimensional migration 

In this section we want to consider the case of only one spatial dimension, 
namely, the depth z. Such a situation can be visualized by putting a distributed 
explosive charge r(z)  down an oil well, where the function r(z)  is determined 
by the reflectivity of the interfaces cut by the well. At time t = 0, the impulsive 
charges are detonated,  and the time series s(t)  is measured at the top of the well. 
If the wavefield is denoted by u(z,  t), then we have the initial condition 
u(z,  O) = r(z)  and the surface condition u(0, t) = s(t). 

Let us now introduce frequency methods. We wish to consider the two- 
dimensional Fourier transform of the wavefield u(z,  t). A two-dimensional 
Fourier transform is computed as a sequence of one-dimensional Fourier 
transforms. Thus we can represent the steps as 

u(z, t) U(kz, t) 
J, $ 

U(z, U(kz, " 
(6.1) 

The two paths indicate that there is a choice of which variable is transformed 
first. Note  that the capital U is actually used for three different transforms, 
namely the complete transform and the two partial transforms. The arguments 
of U indicate which transform is meant.  

Now we must make use of the wave equation, which is 

02U 1 02u 
Oz 2 - v2 at 2 • (6.2) 

We perform a partial Fourier  transform with respect to z, and obtain 

d2U(kz, t )=  _v2k2zU(kz ' t) (6.3) 
dt 2 

Note that the partial derivative with respect to t has become a full derivative 
because we have transformed out the space variable z. Equation (6.3) is thus a 
second-order ordinary differential equation. By direction substitution, we can 
verify that each of the functions 
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e -ivkzt, e ivkz` (6.4) 

are solutions. Let  us now look at the dispersion relation for the wave equation. 
In this one-dimensional case, it is 

k~ = to2/v 2 , (6.5) 

which has two solutions, namely 

k: = -to~v, k~ = w/v.  (6.6) 

The wavefield, expressed as an inverse Fourier transform, is 

1 
u(z, t )=  ~ f~_~ f~_~ U(k~, to)eit'~'-k~z)dkz dr0. (6.7) 

We see that the kernel 

e i('°'-k,~) (6 .8)  

represents an upgoing wave (i.e. traveling in the direction of negative z) if oJ 
and kz are of opposite signs, whereas it represents a downgoing wave (i.e. 
traveling in the direction of positive z) if o~ and ks are of the same sign. 
Because our sources are at depth and our receiver is on the surface of the 
ground, we are only interested in upgoing waves, so we can discard the case 
k: = to/v. Thus we choose the case kz = -to/v and use the solution 

e i~'= e -ivkZ' (6.9) 

of the differential equation so the kernel 

e i('°t-kzz) = e i(-vkzt-kzz) = e -ikz(vt+z) (6.10) 

represents an upgoing wave. If we let U(k~, t = 0) represent the initial con- 
dition, then the required full solution of the differential equation is 

U ( k z ,  t )  = U ( k z ,  O) e -ivkz` . 

Because the initial condition is 

u(z, O) = r ( z ) ,  

where r(z) is the reflectivity function, we have 

U(k~, O) = R(kz ) ,  

(6.11) 

(6.12) 

(6.13) 
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where R(k~) is the Fourier transform of the reflectivity r(z). Thus we have 

U(kz, t) = R(k~) e -joke' . (6.14) 

The inverse Fourier transform of this function gives the wavefield; that is, 

a o  

u(z, t) = ~ f_~ [R(kz) e -ivkz'] e -ikz~ dkz. (6.15) 

The surface data are the value of the wavefield u(z, t) on the surface z = 0; that is, 

s(t) = u(z = O, t) = ~ R(kz) e -ivkz' dkz. (6.16) 

This equation represents the solution of the forward (or time-evolution) 
problem; that is, given r(z), find s(t). Equation (6.16) can be simplified by the 
change of variable given by to = -vkz.  Thus we have dto = - v  dkz, so 

R(kz)  dk~ = R( - to /v ) ( -1 /v )  do). (6.17) 

When we change variables, we note that the integral with dk~ over -oo to oo 
becomes an integral with ( - l / v ) d t o  over oo to - ~ .  If the minus sign is used to 
change the limits to -oo to 0% we obtain 

s(t) = ~1 f~_~ [(1/v)R(-to/v)] e i°', do) (6.18) 

This equation says that the surface data are the inverse Fourier transform of 
the function (1/v)R(-to/v).  We thus have the following algorithm for the 
time-evolution (or forward) solution 

r(z) ~ R (kz) ~ (1/v)R (-to~v) ~ s(t) . (6.19) 

That  is, we compute the direct space Fourier transform of the reflectivity r(z), 
multiply it by - ( l / v )  and change its argument kz to -to~v, and finally take the 
inverse time Fourier  transform to obtain the surface time series s(t). 

Next let us do the inverse problem, that is, given the surface time series s(t), find 
the reflectivity r(z). We can go backwards. We thus have the algorithm 

s (t) ~ S(to) ~ vS ( -  vkz)'~ r(z) .  (6.20) 

That is, we compute the direct time Fourier  transform S(to) of the data s(t), 
multiply it by v and change its argument to to -vkz ,  and finally take the inverse 
space Fourier  transform to obtain the reflectivity r(z). 

The derivation of this algorithm can also be found along the same lines as 
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the time-evolution algorithm. The 
differential equation 

d2U(z, to) _ toz 
dz z vZ U(z, to), 

which has two solutions, namelY 

e-i(,o/o)z, ei(,o/v)z. 

Because the kernel 

e i(OJt- kzz ) 
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wave equation becomes the ordinary 

(6.21) 

(6.22) 

(6.27) 

represent the surface 
differential equation is 

U(z, to) = S(to)e i('°/v)z 

so the wavefield is 

u(z, t) = ~ [S(to)  ei(°'/°~zl e i~' do) .  

Finally, the reflectivity is the value of the wavefield at t = 0; that is, 

boundary condition, the required full solution of the 

(6.28) 

(6.29) 

e-ikzz = ei(~0/v)z 

of the differential equation, so the kernel 

ei(On-kzz) = ei[a,r+(oJ/v)z] = ei,o(t+z/v) 

represents an upgoing wave. If we let 

s ( to )  = U ( z  = o, to) 

(6.26) 

(6.25) 

(6.23) 

represents an upgoing wave (i.e. traveling in the direction of negative z) if o~ 
and k~ are of opposite signs, and because we are only interested in upgoing 
waves, we use the solution 

kz = -to/v (6.24) 

of the dispersion relation. In other words, we choose the same sign as before, 
as we are dealing with the same physical situation. Thus we pick the solution 
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r(z) = u(z, t = 0) = ~ S(0)) e i('°/v)z do). (6.30) 
c o  

This equation represents the solution of the inverse (or depth extrapolation) 
problem. We can simplify this expression by the change of variables given by 
kz = -0)/v. Then we have 

S(0)) do) = S ( - vk~) ( - v )  dkz (6.31) 
so 

1 r(z) = ~ f_= [vS(-vG)]  e -ikz~ dkz. (6.32) 

This is the required result to justify the algorithm we gave previously. 

7. Two-dimensional migration 

Let us now consider the case of two spatial dimensions, namely, a horizontal 
coordinate x and a vertical coordinate z (with depth positive downward). The 
solutions of the time-evolution problem and the depth-extrapolation problem 
are similar to the one-dimensional case, so we will only treat the depth- 
extrapolation problem. The given surface time-series data are s(x,t)  and the 
required depth reflectivity data are r(x, z). The wave-equation dispersion 
relation is 

0) 2 
k 2 + k 2 = ~-~. (7.1) 

As before, we want to specify upgoing waves only. This means that the vertical 
phase velocity 

Oz 0) 

Ot k~ 
(7.2) 

must be negative (i.e. the wave must travel in the negative z direction). Thus we 
can describe an upgoi;ng wave as one for which the signs of 0) and k, are 
opposite. Thus, when we solve the dispersion relation for 0) in terms of kz, we 
shall pick the sign o f  the square root so 0) and kz have opposite signs. That is, 
in the general solution 

0) = +-v[k~ + k2] 1/2 (7.3) 

we pick the sign so that w and kz have the opposite sign. We can write this 
chosen solution as 
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to = - vkz  [1 + (kx/k~)Z] u2 . 

Solving the dispersion relation for kz, we have 

k z  = +-- [ ( t o / v )  2 - k2x] 1/2 • 

(7.4) 

(7.5) 

If we pick the sign so that to and kz have opposite signs, we obtain 

kz = - (to/v)[1 - (vkxlto)2] 1/z . (7.6) 

Let us now derive the algorithm. On the two-dimensional wave equation we 
perform a Fourier transformation with respect to x and t. We obtain the 
ordinary differential equation 

d2U(kx, z, to) [0)2 1 
dz 2 = - " - ~ -  k 2 U ( k x ,  z ,  t o ) ,  (7.7) 

which has the two solutions 

e-i[(°~/v)2-k~ lr~z , ei[t°~/v)2-k2x ]u2z . (7.8) 

For upgoing waves it is necessary that kz and to have opposite signs. Thus we 
write kz for upgoing waves as 

kz = -(to/v)[1 - (kxvlto)2] v2 (7.9) 

and pick the solution 

e -ikzz = e i(~/v)[1-(kxv/o')2lv2z (7.10) 

of the differential equation. Thus the kernel 

e i('~t-kxx-kzz) = e -ikxx e i'~{t+(zlv)[1-(kxvl~)2llrz} (7.11) 

represents an upgoing wave. If we let 

S(kx ,  to) = U(k~ ,  z = 0, to) (7.12) 

represent the surface boundary condition, then the required full solution of the 
differential equation is 

U (kx, z ,  to) = S ( k , ,  to) e i('~/v)[1-(kxv/°')21v2 (7.13) 

so the wavefield is 
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1 F f  ° u(x, z, t) = ~ j_ .  j_= {S(k~, o) ) ei('°/. O[1-(k~v/'°)2lv2} e i(~°t-k~) dkx do). 
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(7.14) 

Finally, the reflectivity is the value of the wavefield at t = 0; that is, 

r(x, z)  = u(x, z, t = O) 

1 
f~_~ f~_~ S(kx, o) ) e i{(~'O[1-(kxv/~°)2]u2-k~x} dkx do) (7.15) = 47r 2 

This equation represents the solution of the inverse (or depth-extrapolation) 
problem. We can simplify (7.15) by the change of variables given by 

to = - vk~ [1 + (kdkz)2] 1/2 , (7.16) 

which is found from the dispersion relation by requiring that to and kz have 
opposite signs. The derivative 

3o) _ v (7.17) 
Ok, [1 + (kdkz)2] 1/2 

is known as the vertical group velocity. The vertical group velocity, like the 
vertical phase velocity, is negative for upgoing waves. We have 

S(kx, to) dkx do) S(kx, Oo) = to) dk, ~ dkz 

- v dkx dkz = S(kx, -vk~[1 + (kx/k~)2] 1/2) [1 + (kdk~)2] 1:2 

(7.18) 
s o  

1 f= ( ® vS(k~, -vk~[1 + (kdkzT] v2) e-i(kxx+kz~" 
r(x, z )  dk~ dkz . J_• J._= [1 + (k,Jk,)2] lr2 ) 

(7.19) 

This algorithm may be indicated by 

s(x, t)-> S(kx, o))-> vS(k~, -vk~[1 + (kdk~)2]lr2)_) r(x, z )  
[1 + (kdk~)2] ~t2 

That is, the migration algorithm consists of the three steps: 
(1) Fourier transform the surface data with respect to x and t; 
(2) Multiply the Fourier transform by v/[l+ (kdkz)2] v2 and change its 

argument o) to-vkz[1  + (kx/k.)2]v2; 
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(3) Take the inverse Fourier transform with respect to kx and kz. 
The final result is the refiectivity r(x, z). 

8. Two-dimensional example 

Let us now look at a two-dimensional example. Suppose that the surface 
data show only one event. This event lies upon the straight line 

t = a + rex, (8.1) 

where the constant a is the t intercept and the constant m is the slope. For 
definiteness, let us assume that the angle oL that the line makes with the x axis 
is an acute angle so the slope m = tan a is positive. The surface data are. thus 
the line spike model given by 

s(x, t)= 6 ( t -  m x -  a).  (8.2) 

We now want to calculate the algorithm given in Section 7 in order  to find the 
reflectivity r(x, z ). 

In step (1) we compute the Fourier transform. We have 

S(kx, to ) :  ~?~ ~?~ 6 ( t -  m x -  a ) e  -i('~'-kxx) dx dt .  (8.3) 

Using the sifting property of the delta function with respect to t = mx+ a, we 
have 

which is 

S(k,, to) = f~_~ e -i[~(mx+a)-kax] dx,  (8.4) 

S(k,, to) = e -i~'a f_~ e-ix(m'-kx) dx.  (8.5) 

We now make use of the integral expression for the delta function given by 

1 f~_~ e_ik x 6(k) = ~ dx.  (8.6) 

We thus have 

S(kx, to) = 2~" e-i'~"3(mto - kx). (8.7) 

Thus the Fourier transform is a line spike along the line to = (1/m)kx. See Fig. 
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~ X  

J 

o 

(z) 

co = l k  x 

~k x 

(a) (b) 

Fig. 3. (a) The event line in the space-time domain. (b) The event line in the wavenumber- 
frequency domain. 

3. This line goes through the origin. The information as to the intercept a of 
the original line is contained in the phase factor e -i~. We have now obtained 
the Fourier transform of the surface data, which is the first step in the 
algorithm. 

For convenience, let us choose our time and distance scales so that the 
constant velocity v is equal to one (i.e. v is equal to one distance unit per time 
unit). This convention means that an interpreter can plot the geologic section 
r(x, z )  on a transparency over the surface section s(x ,  t) in order to graphically 
see a wave arrival (i.e. a surface event) move in order to become the interface 
that produced the event. In the 1940s and 1950s, before the production use of 
computers, seismic interpreters by geometrical constructions transformed 
seismic events on the (x, t) plane into the corresponding interfaces in the (x, z)  
plane. This movement  was called 'migration', and this usage represented the 
origin of the term. 

Let  us now perform the second step of the algorithm, namely the change of 
variable and the scale factor. With v =  1, the change o f  variable is given by 

to = - k z [ 1  + (k,/kz)2] 1/2 . (8.8) 

Again we note that to and k~ have opposite algebraic sign, because the positive 
square root is always implied. Let  us now define the angle/3 by the equation 

to = - kz/cOs /3. (8.9) 

In Fig. 4 we see how fl is defined geometrically. On the horizontal axis we 
measure kx, and on the vertical axis we measure both to and - k z  (where, as we 
know, to and -kz  have the same algebraic sign, which for illustrative purposes 
we take to be positive). The transformation is as follows. For a given pair 
(kx, to), swing a circle with center at origin and radius to. The point of 
intersection of the vertical line through kx def ines -kz .  A s  we know from the 
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and - k  z 

w ~---~II (kx' co) 

- k  z - - - - - - - - - - - - - ~  (kx, - k  z) // 
L/ / '  

v = l  

Fig. 4. Construction of the angle/3. 

equa t ion  kx = mto (where m = tan a ) ,  the line f rom the origin to the  point  
(kx, to) defines the  angle a with the  vertical .  Similarly, the  line f rom the origin 
to the  cons t ruc ted  point  (kx, - k z )  defines the  angle /3  with the  vertical.  Thus  we 
have  a graphical  way  of construct ing the  angle/3.  

Le t  us now eva lua te  the  quant i t ies  toa and into which occur  in S(kx ,  to). W e  
have  

toa = - (kz /cos /3)a .  (8.10) 

If  we define the  cons tant  b as 

then  

b =  a cos/3 ' (8.11) 

toa = - kzb  . (8.12) 

F r o m  Fig. 4 we have  (because the  circle has radius  to) 

m = tan a =--=kx s in/3 .  (8.13) 
tO 

Equa t i on  (8.13), name ly  tan a = sin/3, is known as the  m i g r a t o r ' s  equa t ion .  
N o w  let us find rnto. W e  have  

tom = - (kz / cos /3 )  tan a = - ( k J c o s / 3 )  sin/3 = - k ~  t an /3 .  (8.14) 

T h e  scale fac tor  in the  a lgor i thm is 
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1 
[1 + (kx/kz)2] 1/'2 - cos /3 .  (8.15) 

We are now ready to perform step (2) of the algorithm. The function S(kx, ~o) is 
transformed into 

cos/3S(kx, - kz/cOs /3 ), 

which is 

(8.16) 

(cos/3)2zr e-i'°at~(mto - kx) = 2~'(cos/3) eikzbt~(--kz tan/3 - kx). (8.17) 

We are now ready to perform step (3) of the algorithm. This step says that 
we must perform the inverse Fourier transform on the above expression. We 
have 

cos/3 f ~  f® r(x, z )  = ~ J_~ J_~ eik~bs(--kz tan/3 - k , ) e  -i(k~*+*~) dk, dk~ 

= c°S2~r fl ff~ elk*b e-i(-*k~t~n'+k~) dkz 

= C0S271./3 f-~ e-ik~(-x tan#-b+z) dk~ 

= cos/38(z - b - x tan/3) .  (8.18) 

The reflectivity function is therefore a line spike model with the interface given 
by the line 

z = b + x tan/3 (interface line). (8.19) 

This is the interface which gives rise to the line 

t = a + x tan a (event line). (8.20) 

t and z 

v=l 

0 
Fig. 5. Migration as the movement of the event line to the interface line. 
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of the received event  on the surface section. These two lines are related by the 
migrator ' s  equation (8.13) and the intercept equation (8.11). Because we have 
chosen our scales so v = 1, we can plot these two lines on the same set of axes, 
as in Fig. 5. The movement  of the lines f rom event to interface constitutes 
migration. One can verify that both of these lines have a common x intercept. 

9. Concluding remarks 

To the interpreter of seismic data from geologically complex regions, the 
process of seismic migration is a necessity in order to transform the observed 
surface events to their proper  spatial position in the subsurface. In this paper  
we have developed the theory of the wavenumber- f requency  method of 
migration which is the most  popular  and successful method in use by the 
geophysical exploration industry. The reader  will note that the method is based 
on physical principles but as it turns out, it also has good statistical properties.  
The reason is that the wave equation organizes the time-series data in a 
systematic fashion, so that methods based on the wave equation work power- 
fully against the unsystematic elements of random noise. Of course, such 
methods can only be  applied to processes characterized by wave equation, and 
for this reason these methods are limited to physical situations where wave 
motion plays a central role. 
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Review of Various Approaches to 
Power Spectrum Estimation 

P. M .  R o b i n s o n  

1. Introduction 

1.1. Introductory definitions and theory 

A sequence of real-valued random variables {x(t)} is defined on all the 
integers t = O, - + 1 , . . . .  No generality is lost by assigning the time interval the 
value 1. We assume x(t)  has finite second moments  and moreover  that the 
expectations of x(t)  and x( t )x( t  + u) do not depend on t, for all t, u. Then x(t)  
is said to be wide-sense stationary and we define 

tx = Ex( t )  , 3/(u) = E(x ( t )  - Iz )(x(t + u ) -  tz ) . 

We call/z the mean of x(t) and y(u)  the uth autocovariance of x(t). 
The 3,(u) must decay to zero at a suitably rapid rate as ]u]-oo0 for their 

Fourier inverse 

f(A) = ~ e-i"~7(u) (1) 

to exist for all real A. A sufficient condition for such existence is that the 
Fourier series converge absolutely, 

2 IT(u)[ <° ° .  (2) 
U = - - o o  

Condition (2) implies in fact that f(A) obeys the Lipschitz condition 
sup , [ f (A+8) - f (A ) ]=O(]8 ]~ ) ,  for all real 8 and some a>½.  Sometimes 
stronger assumptions are necessary such as f(A) is differentiable. For  our 
purposes, the smoother  f(A) (or equivalently the more rapidly the y(u)  decay), the 
better  it will be. 

The function f ( h )  is called the power spectrum (or spectral density, or 
spectrum) and its argument A, the frequency. The period is inversely propor- 
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tional to frequency. We are concerned with the problem of estimating f (h )  at 
one or more values of A, given at most a single realization of finitely many 
consecutive x(t), i.e. of x(t), t = 1, 2 , . . . ,  T, the time origin being arbitrary. 
The availability of two or more such realizations would alter the problem, but 
this case has been little studied, perhaps being of relatively minor practical 
importance, and we shall not discuss it. Our  terms of reference include data 
sets in which observations on x(t) are unavailable for some values of t between 
1 and T (missing data), or in which one knows only that the value of x(t) lies 
within a given real interval, for some or all such t (censored data). 

Finitely many observations can be expected to yield good estimates of f(A) at 
only a finite number of h values, and indeed this number will typically be small 
relative to T. A common practice is to select a representative set of h values, 
perhaps an equally spaced one. In this connection the following properties of 
f (h )  are important. Because e -i~ is periodic of period 27r, so also is f(h). 
Wide-sense stationary implies that y ( - u ) =  7(u), so f(h) is an even, real 
function. Therefore,  it suffices to estimate f(A) over the interval [0, 7r]. The 
frequency ~- is called the Nyquist or sampling frequency. Because the sequence 
{y(u)} is nonnegative definite, i.e. ,~uZvauaoy(u- v)>~O for all real sequences 
{au}, it follows that f ( h )  is a nonnegative function. An analogy is suggested 
between f ( h )  and 7(u) on the one hand, and the probability density function 
and characteristic function of a real symmetric random variable on the other. 

Equation (1) can be inverted, 

T(U) = e i h h = cos uh A dh ,  

in particular, 

y(0) = f(A) dA. 
7r  

The variance of x(t), 3'(0), is decomposed by frequency, f(A)AA being the 
approximate contribution to 3,(0) from the narrow frequency band (Z, A + AA), 
and Tukey (1961), Jackson and Lawton (1969) have investigated the analogy 
with random effects models of the analysis of variance. The magnitude of f(A) 
is thus a measure of importance of the frequency A. When the x(t) are 
uncorrelated (so 3,(u) = 0 for all u ~ 0), all frequencies are equally important, 
f(A) being constant for all A. As a general rule, a power spectrum which is large 
for small values of A, and decreases as A ~ rr, reflects an x(t) with smooth, 
slowly changing, realizations, whereas a rapidly oscillating process is indicated 
by the reverse spectral shape. Spectral peaks can also occur between 0 and zr, 
suggesting important cycles or resonances, such as seasonal effects. 

1.2. Purposes of power spectrum estimation 

O) Description 
Like other  statistical samples, a time series of values of X(t) for t = 

1, 2 . . . . .  T requires a descriptive summary statistic, particularly when T is 
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large. Because it need be computed and inspected over only the range of 
frequencies [0, 7r], the spectrum estimate is convenient and conveys meaningful 
information. It has the desirable property, furthermore, that estimates at 
distinct frequencies tend to be nearly statistically independent when T is large. 
Estimates of 3,(u) contain identical information but they do not share the latter 
property. 

(ii) Detecting hidden periodicities 
Many time series in the natural sciences and economics contain very strong 

periodic effects, and their detection was the objective of some of the earliest 
investigations of time series (Schuster, 1898). An important periodic effect will 
manifest itself in a readily identifiable spectral peak at the corresponding 
frequency, its influence on the process being measured by the magnitude of the 
peak. The presence of spectral peaks leads, however, to serious difficulties in 
power spectrum estimation. 

(iii) Hypothesis testing 
Hannan (1961) proposed a test for a jump in the spectral distribution at a 

given frequency in terms of power spectral estimates. A question frequently 
asked is whether x(t) is white noise, i.e. y(u)= 0 for all u ¢ 0: because, for 
example, least-squares estimators of time-series regressions are efficient if the 
residuals are white noise, or because a strictly stationary point process is 
Poisson if the intervals are independent. The white noise hypothesis cor- 
responds to a fiat spectrum, and indeed it is very easy to obtain good estimates 
of a flat spectrum. Zaremba (1960) gives a test for a more general spectral 
shape. 

(iv) Discrimination and classification 
In some applications, such as in seismography, the object is to distinguish 

between two stationary time series or to classify a series, and the power 
spectrum is a convenient discriminator (Grenander, 1974; Shumway and Un- 
ger, 1974; Dargahi-Noubary and Laycock, 1979). 

(v) Model identification 
Box and Jenkins (1970) have proposed that the integers p and q in the 

stationary autoregressive moving average model 
P q 

x(t)+ ~ ajx( t - j )= e(t)+ ~'~ bje(t-]) (3) 
j=l j=l 

(e(t) unobservable white noise), be determined by examination of time-domain 
statistics. Because the values of p and q correspond, loosely speaking, to the 
numbers of peaks and troughs in f(A), power spectrum estimates might play a 
useful role in model identification. 

(vi) Parameter estimation 
To carry things a stage further, the coefficients aj, bj in the model (3) and 
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parameters in more general models can be estimated by means of power 
spectral estimates. Hannan (1963) proposed the efficient estimation of time- 
series regressions by inverse weighting by nonparametric estimates of the 
spectrum of the residual process, an approach which has the advantage of 
avoiding precise assumptions about the correlation structure of the residuals. 

(vii) Prediction and smoothing 
The Wiener-Kolmogorov theory of prediction and smoothing leads to 

frequency-domain formulas which require power spectrum estimates for their 
practical implementation (Kolmogorov, 1941; Wiener, 1949; Bhansali, 1974). 

(viii) Seasonal adjustment 
Nerlove (1964) and Hannah (1970a) consider spectral methods of seasonally 

adjusting economic time series. 

1.3. Limitations of spectrum estimation 

O) Stationarity assumption 
Many stochastic processes are intrinsically nonstationary and the power 

spectrum ceases to be a meaningful concept although Parzen (1961b) and 
Herbst (1964) apply it to processes that are only 'asymptotically stationary' and 
Priestley (1965b) provides an estension to nonstationary processes. Usually 
some detrending is necessary and the way in which this is done can crucially 
affect spectral estimation of the stationary component. 

(ii) Gaussianity 
The statement that x(t) is Gaussian means that the joint distribution of 

x(tl) . . . . .  X(tk) is k-variate normal for all integers h , . . . ,  tk, k. A Gaussian 
process is entirely characterized by its first two moments and cross-moments, so 
the Gaussian case is ideal for spectrum analysis. Non-Gaussian processes are 
not always adequately described by the spectrum, a striking case being a 
stationary discrete-valued process which can take only the values 0 and 1. 
Spectra of such processes are often estimated but other forms of analysis are 
more informative. Sometimes simple nonlinear instantaneous transformations, 
such as Box-Cox transformations, produce a more Gaussian character, but 
they may also lead to difficulties of interpretation. 

(iii) Series length 
Because of their nonparametric nature, spectrum estimates are unlikely to be 

accurate or reliable unless based on a substantial amount of data. In many 
applications, particularly economics, T is not large and practitioners prefer to 
invest in a finite parameter model such as (3). 

(iv) Aliasing problem 
The interpretation of spectral estimates is complicated by the phenomenon 

of aliasing. As a rule, the sampling interval is not intrinsic to the underlying 
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process, which is defined over a continuum of time points. If x(t), - ~  < t < ~ is 
a wide-sense continuous stationary process with mean /z = Ex(t) and auto- 
covariance function y ( u ) =  E ( x ( t ) -  iz)(x(t + u ) - / x ) ,  -oo < t, u < 0% its power 
spectrum, when it exists, is defined by 

g(A)= e-i~y(u ) d u ,  -oo<A <oo. 

By comparison with (1), 

f(A) = g (h )+  ~ g(h + 2"nj). (4) 
I/1=~ 

The spectrum of the sampled discrete process at a frequency h in (-Tr, ~-) is 
thus the sum of spectra of the underlying continuous process at the 'aliased' 
frequencies h + 2~rj, ] = 0, -+1 . . . .  , and it is impossible to disentangle these 
effects. Equation (4) is merely a manifestation of the obvious fact that un- 
countably many continuous curves can be drawn through the discrete x(t), 
t = 0, -+1 . . . . .  In some applications, it is possible to choose the sampling 
interval sufficiently small that g(h) is negligible for h > 7r, and thus f(A) = g(A), 
0<~h ~< 7r. The bias in estimating g(A) by f(A) is investigated by Robinson 
(1976) and Splettstosser (1980). 

1.4. Data preparation 

Unless the series is too long for this to be feasible, it should always be 
graphed. Graphing is helpful in deciding whether any preliminary trans- 
formation of the data is required, to deal with outliers or remove deterministic 
and nonstationary components. 

The presence of outliers---extreme or surprising observations, or gross 
recording errors--is a considerable cause for concern, and Kleiner, Martin and 
Thomson (1979) have demonstrated the extent to which they can contaminate 
spectral estimates. These authors suggest systematic procedures for robust 
estimation, as an alternative to ad hoc replacement of outliers by more 
reasonable-looking interpolated values. 

Verification of the stationarity assumption is usually desirable, followed by a 
detrending of the data if necessary. We can split the series into consecutive 
sections, containing roughly equal numbers of observations. Simple summary 
statistics, such as the sample means and variances of the x(t) are computed for 
each section, and the results compared. 

Two methods of detrending time series have proved popular. First-differenc- 
ing-replac ing x(t) by x ( t ) - x ( t - l ) - - - a n d  if necessary further differencing, is 
advocated by Box and Jenkins (1970) and others for the removal of certain 
deterministic and stochastic trends. The principal alternative is regression 
methods, usually ordinary least squares. Polynomial regressors are traditional, 
but over a long time span the recently developed spline functions are more 
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effective. Strong cyclic trends such as seasonal effects do not necessarily imply 
nonstationarity but are also often removed in advance, by trigonometric 
regression or linear filtering, to avoid the difficulties inherent in spectral 
analysis of series with large spectral peaks. A further problem that can be 
handled by regression methods is the presence of brief transient signals 
(Brillinger, 1973). 

Even if x(t) can be assumed stationary with smooth spectrum, its mean /~ 
will be unknown. If spectral estimates are formed from the raw data, asymp- 
totically the effect of a nonzero /z will manifest itself only at the zero 
frequency, but in finite series it will produce bias at other frequencies. Usually, 
therefore, mean-correction will be necessary, replacing x(t)  by x(t)-Y~, where 

= T-l(x(1)+ --. + x(T)) .  
The use of regression methods, whether it be to remove polynomial or 

trigonometric trends, or to mean-correct the data, itself introkluces a bias 
problem, because one is using the estimated residuals from the regression, 
rather than the true ones. Hannan (1958) suggests a correction which reduces 
bias, analogous to the factor T / ( T -  1) classically applied to T -1 y T ( x ( t ) -  ~)2  

to estimate the population variance. (See also Priestley, 1964 and Nicholls, 
1967.) To avoid repeated references to this problem we shall assume in the 
sequel, with the exception of part of Subsection 4.2, that x ( t) has known, zero mean. 

1.5. Basic statistics 

Earliest attempts at spectral analysis were based on the discrete Fourier 
transform of the series 

1 T 
w(A) = ~/~-~--f t__~1 x(t) e ia . 

As a preparation for estimation of f(h)  over the whole frequency range [0, zr], 
w(h) is typically calculated at the [T/2] fundamental  frequencies h = Aj = 27rj/T, 
] = 1, 2 . . . . .  [T/2], the w(hj) representing a unitary transformation of the series. 
Naive computation of all these statistics requires the order of T 2 operations, a 
prohibitively expensive task even on today's electronic computers when T is 
very large. The fast Fourier transform (FFT) algorithm (Good, 1958; Cooley 
and Tukey, 1965) requires only O(T log2 T) operations when T is a power of 2, 
and considerable savings are possible even when T is not highly com- 
posite. One can append T' zeros to the series so that T +  T' is highly 
composite and obtain w(h) at the frequencies 2zrj/(T + T'). As well as cutting 
computational time, the FFT may incur less round-off error than the naive 
method. 

We can write w(A) as 

1 ~ ( )h  ( )  ff (A) = ,  / x t r t e itx , 
V z; 7"/'1 t = - ~  
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where hr(t) = 1, 1 ~< t ~< T, = 0, otherwise. Because of its lack of smoothness at 
1 and T, this hr(t) has a Fourier transform which does not decay rapidly to 0 
away from the origin, leading to the possibility of contamination from other 
frequencies. We can reduce this contamination by letting hr(t) fall away 
smoothly to 0 at both ends. A popular hr( t)which accomplishes this while 
leaving most of the data intact, is the cosine bell (Koopmans, 1974, p. 302). An 
alternative, which has a minimum-bias property, is the class of prolate 
spheroidal functions (Thomson, 1977). Such a function hr(t) is called a taper, 
fader or data window. 

The periodogram, or sample spectral density is defined as 

I(A) = Iw(a)l z . 

If f (a )  is continuous, I(h) is an asymptotically unbiased estimator of f(a).  
It is not, however, a consistent estimator of f(a),  the mean square error 
E(I(A) - f(h))2 having nonzero limit as T ~ oo. In fact for T large, the I(&)/fOtj) 
behave like independent X 2 random variables under general conditions. (For a 
discussion of the asymptotic properties of I(h), see Olshen, 1967.) When graphed, 
the periodogram thus exhibits a highly erratic behaviour, and it will be necessary 
to smooth it in order to obtain reasonable spectral estimates. 

Before the advent of the FFT, the prevalent approach to spectral analysis 
was based, not on the discrete Fourier transform or periodogram, but on the 
sample autocovariances 

1 T-u 
c(u)=-~ ~ x(t)x(t + u), u/>0 ,  

and c ( - u ) =  c(u). Under mild conditions, c(u) is a consistent estimator of 
y(u). When T is very large, the computation of the c(u) for many values of u 
will be expensive, but Sande (1966) shows that again the FFT can improve 
on the naive method. Augment the series x(1) . . . . .  x(T) by T - 1  zeros, 
x(T + 1) . . . . .  x ( 2 T -  1) = 0 and compute, by the FFT 

I~' (/~ ~) = l 2T-1 

~/2~r(2T- 1) ~ x(t) el'a}, IJl T -  1, 
t=l  

where h}= 2rrj/(2T-1) and ~(A~) differs from w(A;.) only by a scale factor. 
Compute the I(A~)= Iw(a312-  - ( ( 2 T -  1)/T)I~(AS)I 2. Finally, use the formula 

c(u) -  2rr r-1 
2 T - 1  Z I(A;) e~*" 

j = - T + I  

to compute the c(u) by the FFT. We have thus used the FFT twice, which 
requires O(T log2 T) operations if T is a power of 2. Many of the spectral 
estimates based on the c(u) do not use the c(u)for all lul-< T -  1, but if we 
want M of them, the naive method requires O(TM) operations. 
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2. QuaRratic spectrum estimators 

2.1. Two classes of estimator 

The quadratic estimators can all be expressed as 

T 

)~(A) = • Z a~(h)x(t)x(u), 
t,u= l 

where {a,~(A)} is a given array of functions of h. 
The periodogram I(h) is of this form, but although it is asymptotically 

unbiased, it is not consistent. Our aim, then, is to find alternative choices of 
a,~(A) which will reduce variation without introducing unacceptable bias. 

The periodogram may be written 

1 T 1 T-1 
I(h)=~-~- '-fZ ~x( t )x (u)  ei(t-"> = - -  Z c(u) e-i~ 

2~r t,u=l u = - T + I  

We can compare the rightmost expression with the Fourier series expansion of 
f(A) (1). As T ~ ,  we may have c(u)~ y(u) in probability but the numbers of 
summands also increases as T, resulting in the lack of consistency of I(A). It is 
suggested, then, that the influence of the c(u) be damped for large u by the 
introduction of a lag window kM(U), a sequence of weights such that kM ( u ) ~  0 
as lu[ ~ ~. We have the weighted covariance estimators 

1 T-1 

fc(a) = o= +1 

where the kM(u) satisfy 

kM(U)C(U)e -i*" = 1 r-1 2-7 kM(u)c(u) cos ua,  (5) 
u = - T + l  

kM(--U) = kM(u)<~ kM(O) = 1. 

The integer M plays a very important role in the asymptotic properties of 
spectrum estimators. In many cases, kM(u)= 0, lu[ > M ,  so M could be called 
the lag number. By choosing M small relative to T, the variability of the 
estimator is brought under control; by regarding M as increasing to infinity 
with T, asymptotic unbiasedness will be possible. 

The second class of estimators is motivated by recalling that the I0q) are 
approximately independent for large T, and because f(h)  is assumed smooth, 
their bias as estimates of f(h)  will diminish the closer hj is to h. We consider 
the smoothed periodogram estimators 

)~p(A) = 2Ir ~, KM(A - Aj)I(Ai), 
T , ~  j= l  

where the spectral window KM(A) is periodic of period 2rr and becomes more 
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and more heavily concentrated around h = 0, 

lim KM(A) = {°% A = O, (6) 
U-~ 0, h # 0 .  

The data may have been tapered in which case if(A) is computed instead of 
w(h), and then I ( h ) =  I (x)l =. 

To compare the estimators fc and fp, assume that kM(u) and K~t(A) are 
related by 

Then 

kM(u) = KM(A) e iux dA. 
~r 

~c(h ) = f~,~ KM(A - 0)I(0) dO (7) 

and ie(h) can be thought of as an approximating sum to fc(h) '  Because the hj 
cover the interval [-7r, 7r] more and more densely as T ~ o% the two estimators 
can be regarded as equivalent asymptotically 

Most lag windows take the form 

kM(u) = k (u/M). 

Parseval's equality leads to 

f f  . M ff= k2(u ) du K2(O) dO _ ~ 

A parameter whose value is often quoted is the equivalent degrees of freedom 

T '~ d0} -1 _ 2 T  du} -1 r : ~ { f _ ,  K~(O) ~ { f ~  k2(u) . 

We can control r by choice of M and k(u). For given k(u), the variance of f(A) 
will vary directly with M, so it seems desirable for M to be small. However, a 
small M corresponds to a large bandwidth, that KM(O) is not heavily concen- 
trated around 0. Thus the estimator will have poor resolution, and may be 
severely biased because of undue influence of frequencies neighbouring A. For 
given M, we face a similar dilemma in the choice of k(u). As in many other 
statistical problems, a trade-off between bias and variance is involved. Earlier, 
considerable discussion took place about what constitutes a useful definition of 
bandwidth, and about the relationship between bandwidth, bias, resolution 
and variance of spectral estimators (see Grenander, 1951, 1958; Bartlett and 
Medhi, 1955; Lomnicki and Zaremba, 1957, 1959; Akaike, 1968; Priestley, 
1965a). 
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2.2. Historical note 

It is some interest to reflect upon the historical development of spectrum 
estimators. Daniell (1946) proposed a form of (7), averaging I over frequencies 
neighbouring A. Bartlett (1948, 1950), Tukey (1949) and a number of sub- 
sequent authors looked at the form (5) of fc(A), proposing various candidates 
for ku(u). An important reference is the book of Blackman and Tukey (1959). 
Tukey has indeed contributed much to the terminology of the subject. The 
smoothed periodogram estimators were thought to be computationally im- 
practical until Jones (1965) reappraised the periodogram and Cooley and 
Tukey (1965) published the FFT algorithm. Versions of/~,, particularly those in 
which KM(A) vanishes outside a small band around 0, became very popular. 
More recently, renewed interest has been shown in the weighted covariance 
estimators. At the same time, a variety of alternative, nonquadratic, spectrum 
estimators has become available (see Section 3) and these are now favoured by 
many practitioners. 

2.3. Statistical properties of estimators 

To save space we discuss only the weighted covariance estimators fc(a), the 
smoothed periodogram estimators tip(a) having similar asymptotic properties, 
as indicated above. For fixed M, 

lim E0~c(A)) = Kv(A - Off(O) dO = KM(O)f(A - 0) dO. (8) 
T ~  o~ ~ ¢r 

By (6), we can then increase M such that (8)~f(2t), so fcO t) is asymptotically 
unbiased. For large T, we have under fairly general conditions, for A # 0, ~-, 

var ( /¢ (a ) ) -  Kb(a  - O)f2(O) dO, 

* 27r f r cov(/c(A), f c (v ) ) -  T ~, KM(A -- O)KM(v - O) f2(O) dO. 

(9) 

Notice that if KM(O) is band-limited, being zero outside of a narrow band 
around the origin (as in the case of Daniell's (1946) estimator), the covariance 
will actually be 0 for A and v sufficiently apart. This property will hold 
approximately for many other choices of KM(O). As a rule, spectrum estimators 
are approximately uncorrelated if Ia - v[ i> 27r/M, so a common practice is to 
estimate f (a )  at frequencies a = 27rj/M, 0 <<-j ~ M/2. 

For large T and M, (9) may be further approximated, 

var(fc (A)) - (21r)f2(A). (lO) 

The approximation (10) is widely used in practice but it may be seriously in 
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error if T and M are not sufficiently large, or f is far from constant around A. 
De  Jongh (1980) studies closer approximations. An exact expression for the 
variance is given by Neave (1971). To extend (10), asymptotically fc(A) can be 
approximated by a (f(A)/r)x 2 random variable, a result that is important in 
statistical inference for spectral estimates. It can be easily used to set 
confidence intervals for f(A) (or, more often, for logf(A) which usually has a 
much smaller range). Some finite-sample distribution theory of spectrum esti- 
mators is given by Grenander, PoUak and Slepian (1959) and Poskitt (1978); for 
empirical examinations of small-sample properties, see Hatanaka (1972) and 
Granger and Hughes (1968). Exact finite-sample results are rather complicated 
to use and must be based on precise distributional assumptions, usually 
Gaussianity. Moreover,  the exact distribution will depend on the true f(A); for 
practical use this must be replaced by an estimate, so again only approximate 
inference procedures are available, and it is not clear that they will be much 
more accurate than the asymptotic ones described above. 

A different asymptotic theory is relevant when M and T are both large but 
M is small relative to T, i.e. r--->~. From (10), it follows that then 
var ( fc (A))~0 ,  so fc(A) is a mean square consistent estimator of f(A). Further- 
more, rl/2(fc(A)-f(A)) converges to a normal distribution (for details, see 
Hannan (1970b, p. 289)). Further aspects of the asymptotic theory of spectrum 
estimators are developed by Grenander and Rosenblatt  (1957), Parzen (1957, 
1958), Hannan (1960, 1970b) and Brillinger (1969, 1975). 

The bias of spectrum estimators deserves further comment.  For convenience, 
let T---> o¢ and keep M fixed, and consider (8). It was observed that KM(O) is 
heavily concentrated around 0 = 0, but if it is nonzero for some 0 # 0, a large 
value of f(A - 0) will lead to bias. This phenomenon is known as leakage, and 
leakage can be transmitted from any of the frequencies in [-T r, 7r]. A second 
type of bias is of local origin. Assuming we can expand f in a Taylor series, 

E(fc(A)) # f(h) KM(O) dO + f'(A) 
¢¢ cr  

+ f"(A)2 ( "  02Ku(O) dO 
2 J_,~ 

OKM(O)dO 

and kM(O)= 1, kM(u)= kM(--u) imply 

I F '~ Ku(O) = 1, OKu(O) = O, 

thence 

E(f¢(A))4 f(h)+ f"(~2 2 f_ ~ 02KM(O)dO. 

The second term on the right is a measure of bias, and it has two components. 
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The first component f"(A)2/2 will be small if f is flat around A, or is changing 
linearry but will be large positive (negative) if f has a trough (peak) at A. This 
indicates that the shape of the underlying spectrum can have a profound 
influence on our ability to obtain good estimates. Generally the bias will vary 
over frequency, and fc(A) will appear smoother than f(A). The other bias 
component, f 02KM(O)dO, will be small if KM(O) decreases rapidly to 0 away 
from 0 = 0. 

A variety of additional criteria has been proposed for evaluating the good- 
ness of spectrum estimators: 

E ( f (A ) -  f(A)) 2 : Grenander and Rosenblatt (1957); 

f f  E(/(A)-f(All2dA : 

E(max] f(A) - f(A)[ 2) : 
A 

~f lE(f(A)-f(AI)21 dA: 
. L f ( x )  2 J 

Lomnicki and Zaremba (1957); 

Parzen (1961a); 

Jenkins and Watts (1968). 

These measures are of only limited practical use; each is somewhat arbitrary 
and emphasizes different properties, and no single spectrum estimator will be 
optimal with respect to all. 

2.4. Suggested windows 

Over the years a very large number of lag/spectral windows have been 
proposed. Space does not permit a listing of all, or a comprehensive discussion 
of the properties of any. 

The most common form of smoothed periodogram estimator in use involves 
only the n neighbouring )tj frequencies, with equal weights 

! 

= X Z  I(Aj), 

summing over the n Aj closest to A. This approximates a suggestion of Daniell 
(1946). The equivalent degrees of freedom are 2n = TIM. The resolution of the 
above estimator is not good, but there is little problem with leakage, particularly if 
the I(Aj) are computed after applying a data window. 

We shall now concentrate on the weighted covariance estimators, bearing in 
mind that these have an approximate smoothed periodogram representation. 
We restrict ourselves to cases where kM(u)= k(u/M). 

One class of spectral windows is of the form 

[sin(ZM/q)lq 
Ku(A) oc [ AM/q J ' A # 0, (11) 
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for integers q. Members of class (11) are concentrated around A = 0, and are 
zero at A = 7rjq/M, for all integers j. In between, side lobes appear, and these 
produce leakage. (The exact Daniell window has no side lobes.) For q = 1, 
KM(A) corresponds to the lag window k ( u ) =  1, lul ~< 1, = 0, lul > 1, called the 
truncated window. The magnitudes of the side lobes in this KM(A) are such that 
it is rarely used; indeed, because this KM(A) is sometimes negative, a negative 
spectrum estimate can result. On increasing q, the side lobes of (11) are 
damped and for q even KM(A), and thence f(A) are always nonnegative. A 
modification of the Bartlett (1950) window is the case q = 2, in which KM(A) is 
essentially F6j~r's kernel, and the technique of Cesaro summation is being 
employed. Other windows also borrow from ideas for the summation of 
Fourier series. For example, one of the most widely used windows is that of 
Parzen (1961a); it is (11) with q = 4 and is closely related to the Jackson-de la 
Vall6e Poussin kernel. As q ~ ~, KM(A) given by (11) takes on the shape of a 
normal probability density function (and so does k(u)).  This form is recom- 
mended by Daniels (1962). An alternative window, also considered by Daniels 
(1962), is based on the Laplace probability density function. 

A popular rival to the Parzen window is the window of Tukey-Hanning,  

{u I <l, 
t0,  l u l > l .  

It has less bias, but larger variance than the Parzen window. A closely related 
window is the Tukey -Hamming  

k(u)=  ~0.54+0.46cos u, lu141 ,  
to, lul > 1, 

whose spectral window has smaller first side lobe than the Tukey-Hanning. 
A further class of windows is 

k(u)  oc (1 + (u/a)2J), j = 1, 2 . . . .  , 

for some constant a. Notice that this window requires use of the c(u) for all 
lull<T-I, whereas the truncated, Bartlett, Parzen, Tukey-Hanning and 
Hamming use only the first M c(u). This class was shown by Cogburn and Davis 
(1974) to arise from smoothing spline considerations. A similar approach is 
taken by Byrd, Tapia and Thompson (1978). In the spectral analysis of very 
long series, particularly, there are often substantial computational savings to be 
made by constructing a large number of (possibly overlapping) subseries of 
contiguous observations, and then combining the autocovariance estimates or 
periodograms of the subseries, see Bartlett (1950). One such approach (sug- 
gested by A. Kolmogorov), which employs a polynomial taper and appears to 
possess some computational advantages, has been shown by Zurbenko (1978) 
to possess low mean squared error and weak dependence on distant frequen- 
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cies. For other suggestions concerning window design, see Jenkins (1961), 
Wonnacott (1961), Akaike (1962), Priestley (1962), Welch (1967), Papoulis 
(1973), Eberhard (1973), Yuen (1978), Geckinli (1980) and Pelkowitz and 
Havelock (1980), for example. The range of possible windows is unlimited and 
often it will make little difference which is used. Ideally, because different 
windows are suited to different situations, the choice of window should be 
based on what we know about the data and the underlying model. However, 
many practitioners will use the most readily available computer library pack- 
age, and then it is the producers of such packages who really make the choice. 
Some of these packages, for example MIDAS, do however allow the user to 
choose between a small number of windows. One can at least experiment with 
different values of M, equivalently different bandwidths. As M increases, the 
bandwidth is narrowed, so to speak, and more and more detail emerges, at the 
cost of some instability. This technique is known as window closing. 

3. Nonquadratic spectrum estimators 

It has been seen that peaks or troughs in the true spectrum are liable to 
cause serious bias in quadratic spectrum estimators. Researchers were led to 
search for alternative estimators which can better explain such behaviour. 

3.1. Prewhitening and recolouring 

This is actually a technique to be used in conjunction with window estima- 
tion, rather than an alternative. In Subsection 2.3, it was seen that variation in 
the spectrum is liable to lead to biased spectral estimates, as a result of either 
poor resolution or leakage. Press and Tukey (1956) proposed a prefiltering 
technique that will often reduce this bias. Suppose that f(h)  can be expressed 
as  

b(*) 
a/eiJX[ 

j=0 

(12) 

where b(A) is relatively flat, whereas the denominator can produce any number 
of sharp peaks in f(A) by appropriate choice of p and al.. (If b(A) were flat over 
[-~', rr], (12) would be a pth-order autoregressive spectrum for x(t).) To 
prewhiten the data we fit a pth-order autoregression by least squares or by the 
Yule-Walker relations, and then apply windowed estimation procedures to the 
residuals, to estimate b(A). Then we 'recolour', estimating f(A) by 

i(*)-- E 4 -2i;(*). 
]=0 
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3.2. Autoregressive/maximum entropy estimators 

If we are prepared to choose the autoregressive order sufficiently large, we 
can effectively make b(A) fiat and dispense altogether with windowed estima- 
tion. More precisely, any continuous spectrum that is bounded away from zero 
can be arbitrary well approximated, uniformly over frequency, by an autore- 
gressive spectrum, for large enough p. The autoregressive spectral estimator 
and the closely related maximum entropy estimator (see Parzen, 1969; Akaike, 
1969; Burg, 1975) have been widely used, and objective ways of choosing p 
have been proposed. The pth-order autoregressive spectrum has the form 

(13) 

Many of the quadratic windowed estimators have ku(u)= 0, [u[ > M, in which 
case the probability limit is 

M 
fM(A) ~ E flu e-iXu, 

u=-M 

when T ~  o0 but M stays fixed. The parameters p and M are regarded as 
increasing, albeit slowly, to oo as T ~ ~, and for large p and M it is difficult to 
choose between the two types of estimator. However, in practice, p and M are 
finite and fa(h) is a finite autoregressive spectrum whereas /M(A) is a finite 
moving average spectrum. Because pure autoregressive models tend to provide 
better fits to time series than pure moving average models of comparable 
order, this may help to explain the popularity of the autoregressive spectral 
estimator. We shall not discuss the autoregressive estimator further because it 
is the subject of a whole chapter of the present volume (Chapter 11). 

3.3. Estimators based on other parametric models 

Again our treatment is abbreviated. To generalize the autoregressive model, we 
have the autoregressive moving average model (3), with spectrum 

q 2 /  P 2 
f(A) = ~ bj e ij~ / ~'~ aj e i jx  . (14) 

- j = 0  

It is a better approximation to spectra with narrow troughs, as well as peaks. 
The parameters aj and bj are estimated by statistically efficient procedures after 
initial determination of p and q. More generally, we can model the spectrum as 
f (h;  0), a given function of h and an unknown but estimable parameter vector 
0. Ideally, a conceptual model will be the source. The problem then becomes 
one of classical parametric statistics. A Gaussian likelihood can be maximized 
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to obtain estimates of 0. Several approximate forms lead to computationally 
simpler estimates, with equivalent asymptotic efficiency. A good deal of effort 
has gone into proving that such estimates are strongly consistent and asymp- 
totically normal under mild conditions. These matters are discussed by 
Bloomfield (1973), Davies (1973), Dzhaparidze (1974), Hannan (1973), Ibragi- 
mov (1967), Robinson (1978) and Whittle (1961). 

3.4. Pisarenko estimator 

Denote by C the M x M  matrix with uvth  element c ( u - v ) .  Let ~bu, 
u = 1 . . . . .  M be the eigenvalues of C, with corresponding M x 1 eigenvectors 
0,, u = 1 . . . . .  M. Let H(~b), 0 < ~b < 0% be a strictly monotonic function, with 
inverse function h (.). Pisarenko (1972) suggested the estimator 

( 1  ~ H(4~i) M ) f(h) = h ~ Z ~O,j e ijA 2 , (15) 
/=1 j=l 

where ~b,j is the jth element of Ou- When H(th) = ~b, f(A) is simply the Bartlett 
windowed estimator (and modifications of (15) would reduce to alternative 
quadratic windowed estimators). When H(~b) is nonlinear, nonquadratic esti- 
mators result. For H(~b)= 1/~b, we have the 'high-resolution' estimator of 
Capon (1969) 

U -1 }(/~) ~ { ~i (l_[M.~)d(u)e_iUA} , 
u = - M + l  

where d (u  - v)  is the uvth  element of a Toeplitz approximation to C -1. (The 
high-resolution estimator is closely related to the maximum entropy and 
autoregressive spectral estimators, cf. (13).) Other choices for H considered by 
Pisarenko (1972) are H(~b) = ~b' and H(~b) = log ~b. The Pisarenko estimators 
have similar asymptotic properties to the quadratic ones, but they aim to 
provide less biased estimators in the region of spectral peaks. 

3.5. G-estimator 

Let m/> 1, and A, ,  = ao + ax + " • " + am. For a given positive integer n, the e,- 
transform of A,, is defined as 

en[Am ; l] =11̀ 

Am A m + l  " ' "  A m + n l  

am am+l am+hi 

am+(n-1)l am+nl " ' "  am+(2n-1)l 

1 1 . . .  1 

am am + l am + nl 

am+(n-1)l am+n1 " " " am+(2n-1)l 
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We have 

lim e.[Am; l] = lim Am = A=, 
n--.oQ m ,,-~e~ 

and the convergence of e, is known to be much more rapid than that of Am 
(Gray, Houston and Morgan, 1978). Because the power spectrum has an 
infinite series representation (1), we can apply the e,-transformation as a means 
of summing it; the windows considered in Subsection 2.4 indeed being a means 
to the same end. The G-estimator is defined by 

f(h)= e.[c(O)+ 2 ~ c(u)cos uh; l] . 
u = l  

It is shown in Gray, Houston and Morgan (1978) that if f(A) is in fact the 
autoregressive moving average spectrum (14), then 

f(A)= e.(y(O)+ 2 ~ y(u)cos uA; l] 
u = l  

for all sufficiently large n. Thus we can expect the G-estimator to be most 
useful if the spectrum closely approximates that of a low-order 0utoregressive 
moving average process. Gray, Houston and Morgan (1978) discuss the com- 
putation of the G-estimator. 

4. Spectrum estimation from incomplete data 

4.1. Missing and unequally spaced data 

We say that x(t) is missing for some t if there is no information about the 
value of x(t). Missing data can arise from a number of causes, such as failure of 
recording equipment, clerical errors, rejection of outliers, or because of an 
inability to observe the phenomenon at certain times. The time series will 
contain gaps where observations have been missed, but if the gaps are very 
small and infrequent, satisfactory results will probably be obtained by simple 
methods of interpolating the missing values, followed by application of the 
standard technqiues described previously. Such ad hoc procedures seem less 
acceptable when a significant proportion of the T possible observations has 
been missed, and certainly their statistical properties are likely to be rather 
messy. Over the past twenty years, several methods have been proposed for 
obtaining consistent spectrum estimators from a variety of patterns of missing 
data. 

The usual approach has been in terms of windowed quadratic estimators. A 
commonsense modification to deal with missing observations replaces c(u) by 
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= T - u ~ , , x ( t ) x ( t + u ) ,  u>tO ~(u) 
"IT u ZTa 

where the sum is over all t such that both x(t) and x(t + u) are observed, and 
T, is the number of such summands. Then we form 

1 T-1 
Jf(~.) -- ~-'~u._~_T+l kM(U)e(U)COS uA (16) 

as in Subsection 2.1. Parzen (1963) formalized and somewhat generalized this 
approach by introducing the notion of an amplitude modulating sequence v(t) 

{~ if x(t)is  observed, 
v(t) = if x(t) is missing. 

It is not essential that v(t) be stationary, but the asymptotics require asymptotic 
stationarity : 

lim ~, lim co(u) 
T ~  T ~  

exist for all u, where 

1 T 1T-~ 
: -~ ~ x ( t ) ,  Cv(U) = -~ ~ v(t)v(t + U), 

for u/> 0. The v(t) may be generated by an underlying random process in 
which case the convergence is stochastic. One forms the amplitude modulated 
process 

y(t) = v(t)x(t), 

which is x(t) when x(t) is observed and 0 otherwise. Defining 

1 T-u 
cr(u)=-~ ~ y(t)y(t + u), u >-O, 

we have ~(u)= cx(u)/cv(u ) and thence (16) is 

1 T-1 , z , Cy(U~ 
i ( h )  = ~ u=_~T+ 1 KM[U) Cv(U ) COS U ~ .  ( 1 7 )  

Jones (1971) discusses the computation of (17). He shows how the FFT can be 
used when T is large: the complex series y(t)+ iv(t) is Fourier transformed, the 
periodograms of y(t) and v(t) are derived, and then Fourier transformed to get 
cy(u) and c~(u). 
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Denoting the limit of c~(u) by y~(u), it follows that cy(u) has limit 
yo(u)E(x(t)x(t + u))= yv(u)y(u), so long as x(t) and v(t) are independent, and 
this assumption could serve to define missing data: x(t) is missing due to 
extraneous causes and not as a result of the value it would have taken. 
Assuming 7~(u) ~ 0, we have cy(u)/cv(u)~ y(u), and the consistency of f (h)  
then follows like that of the windowed estimators from complete data in 
Subsection 2.3. Note that v(t) need not be a 0 : 1 process, although it is difficult 
to think of other useful examples of amplitude modulation. 

A disadvantage of (17) is that the sequence cy(u)/cv(u) is not nonnegative 
definite and so use of a kM(U) corresponding to a spectral window KM(A) which 
is everywhere nonnegative does not guarantee that f(A) will always be non- 
negative. It may be possible to design alternative windows which will ensure 
nonnegativity. 

The variance of (17) is studied by Parzen (1963) and Jones (1971). Substantial 
simplifications result when the data are systematically missing: one unequally 
spaced pattern is periodically repeated. The simplest such example is the case 
of a observed values being followed by fl missing values, followed by ot 
observed values and so on (see Jones, 1962b; Parzen, 1963; Alekseev and 
Savitskii, 1973). It is necessary that a >/3. Jones (1962b) finds that the har- 
monic frequencies brought in by the periodic method of sampling adds to the 
variance, and calls this variance leakage. 

When v(t) is generated by a random process for which E_v(t)v(t+ u)= 
y~(u) is known, then an obvious modification of (17) is to replace c~(u) by 
y~(u). Scheinok (1965) follows this approach in the case that v(t) is a sequence 
of Bernoulli trials, so yo(0)= 0, yv(u)= 02, u g 0, where 0 is the probability 
that x(t) is not missed. Bloomfield (1970) considers a more general class of v(t) 
processes. In practice, yo(u) will not be perfectly known but at best will depend 
on finitely many parameters. These parameters can be estimated from ,the 
observed sequence v(t), t = 1 . . . . .  T, if possible by a statistically efficient 
method such as maximum likelihood. For example, for Bernoulli trials we have 
 o(o) = = u 0 .  

Because of improved sampling capabilities, it is sometimes possible to 
increase the frequency at which economic variables are observed. For example, 
an economic time series may consist of quarterly observations initially, fol- 
lowed by monthly observations. The first time segment will then, in effect, 
contain missing observations. Neave (1970a) applies Parzen's (1963) amplitude 
modulation technique to this problem to obtain estimates of the form (17). An 
important modification is needed to produce a sensible asymptotic theory, 
however. In order to prevent the early, infrequent, observations from being 
swamped by the later, frequent, ones, we define the time span over which x(t) 
is observed as [ - b ( T ) +  1, a(T)], where a(T) and b(T) are positive integers 
that increase with T, such that a(T)+ b(T)= T and a(T)/b(T) converges to a 
finite, nonzero constant. We observe x(t) for all integers t E [0, a(T)], but only 
at intervals of r > 1 for t ~ [ - b ( T ) +  1,-1] ,  so r = 3 for the quarterly/monthly 
example mentioned above. As indicated previously, (17) may produce nega- 
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tively biased, even negative, spectrum estimators, so Neave (1970a) proposes 
an alternative estimator 

) = f * ( a  ) f2(h ) , 

where f*(h) is the windowed estimator obtained from the unit spaced second 
segment x(1) . . . . .  x(a(T)); fl(A) is the windowed estimator obtained from the 
skip-sampled sequence x(0), x(r) . . . . .  x([a(T)/r]); f2(A) is the windowed esti- 
mator obtained from x ( - [ ( b ( r ) -  1)/r]), x ( - [ ( b ( r ) -  1)/r]+ r) . . . .  ,x(0), 
x(r) . . . . .  x([a(T)/r]). Both f2(A) and f20,) are periodic of period 2¢r/r. Because 
f*, f l  and f2 are also computed from equally spaced data, the use of a 
nonnegative spectral window will guarantee that each is nonnegative, in which 
case so is 1~ 

Missing data are really only a special case, albeit a very important one, of 
unequally spaced data. Actually time intervals are quite often unequal, but if 
the deviations are small they are ignored. For example, calendar monthly 
economic data are unequally spaced because of differences in the number of 
days, or working days, per month. Granger (1962) analyses the effect of such 
deviations on spectral estimates and finds them to be negligible in the case of 
instantaneously measured variables, but possibly significant for aggregated flow 
variables. 

Time intervals may be chosen to be unequally spaced in order to avoid the 
aliasing problem described in Section 1. Suppose x(t) is defined on the whole 
real line, and consider the estimation of its spectrum g(A), -o0 < h < o% from 
the sequence {x(t,), n = 1 . . . .  , T} where t, > t,-x all n. Shapiro and Silverman 
(1960) (see also Beutler, 1970) show that if the increments t , -  tn- 1 are in- 
dependent Poisson variables, alias-free estimation of g(h) is possible. For most 
other examples that come to mind, some aliasing creeps in, however, such as 
for 'jittered sampling', t, = n +  e, where the e, are independent random 
variables with zero means and variances much less than 1. Akaike (1960) 
examines the effect of the timing errors e, on the spectral estimators of the 
discrete sequence x(t), t = 0, + - 1 , . . . .  For details of how to construct spectrum 
estimates from unequally spaced data, see Jones (1962a) and Brillinger (1972). 

Poisson sampling is not always technically feasible. Often the frequency of 
observation is bounded from below, and it is desired to keep it constant for 
reasons of convenience or economy. If two or more recorders are available 
however, extension of the estimation frequency range may still be possible, as 
shown by Neave (1970b).-One recorder is calibrated to read at the minimum 
interval, 1; the other at 1 + 6, 0 < 6 < 1. If 6 = 1/n for some integer n > 1, then 
the combined data from the two recorders enable frequencies up to mr to be 
detected. 

Finite parameter models have been used to estimate spectra of continuous 
processes from discrete observations. Robinson (1977) and Jones (1979) esti- 
mate rational spectral densities, g(h)oc [E p otj(iA)il2/l•0 q fl~.(iAy[ 2 from arbitrary 
unequally spaced observations. Robinson (1980a) shows how the parameters 
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can be identified in the case of Poisson sampling, providing a parametric 
version of results of Shapiro and Silverman (1960). 

4.2. Censored data 

If x(t) is censored, we can narrow down its value to a proper subset of the 
possible values. Thus x(t) is not observed because of the value it would have 
taken. For a comparison of missed and censored data in time-series analysis, 
see Robinson (1980b). The-usual approach to spectral estimation of censored 
data has been via windowed quadratic estimators, following direct estimation 
of sample autocovariances. Finite parameter modelling does not seem promis- 
ing because of the computational difficulties of maximum likelihood estimation 
(Robinson, 1980b). 

Limitations in storage space sometimes require clipping of time series. If x(t) 
is hard-clipped or hard-limited, we store only the sign of x(t), 

1_ if x(t) >i O, 
y(t )= 1 i f x ( t ) < O .  

If x(t) is Gaussian with zero mean, we have the well-known relation 

)) y(u) = y(O) sm Ey(t)y(t + u , u # O. 

We can thus compute 

1 T-u 
c,(u) = -~ ~ y(t)y(t + u), 

and estimate y(u) by 

u > O ,  

3~(u) = y(O)sin(2 c,(u)) (18) 

if y(0) is known. Finally, f(A) is estimated by 

1 T-1 
fl(A) = ~ E kM(U)~/(U) e -ixu. 

-T+I 
(19) 

This procedure is studied by Brillinger (1968), Hinich (1967) and Schlittgen 
(1978). The estimated autocorrelations ~/(u)/y(O) given by (18) are all between 
- 1  and 1, but it is not clear that the 3~(u) will necessarily form a nonnegative 
definite sequence, in which case negative spectral estimates may result. 

A different setup is assumed in Robinson (1980b, 1980c); we observe x(t) if 
and only if x(t)> bt, where the bt are known numbers. (The case that x(t) is 
observed when x(t) < bt is handled by changing signs.) The problem of mean- 
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correction of censored data is not covered by our remarks in Subsection 1.4. If 
Ex(t )  =/x, tz unknown, and bt </z  for all t, the sample median m of x(t)  can 
still be obtained, and this will consistently estimate /z if x(t)  is a symmetric 
random variable. Putting y(t) = x ( t ) -  m, 

! 

(0) = ~-; E Y (t) 2 

is a consistent estimator of 3,(0), where the sum is over all t for which 
x(t) >- m. The autocovariances 3,(u), u ¢ 0, can be estimated by assuming 
Gaussianity and using relations for incomplete moments in terms of the 
autocorrelation function. One possible estimator of 7(u) is 

^ f r 2rr -]1/2 2 " } 
~ (u )=  ~/(O)/[~---~J ~ 2  y ( t ) -  1 , (20) 

where the sum is over t such that x(t) >! m, x( t  + u) >i m, and T~ is the number 
of such summands. Then ](A) is formed, as in (19). Unfortunately, the implied 
correlation estimates ~,(u)/q(O) are not necessarily between - 1  and 1, and the 
~(u) are not a nonnegative definite sequence. The estimator (20) can be used 
only when b, </z,  all t. This requirement is relaxed by Robinson (1980c), where 
more complicated moment estimators, and nonlinear least-squares estimators 
of 7(u) are proposed, from which weighted covariance spectral estimators can 
be formed. 

Another type of censored data is discussed by McNeil (1967). A less drastic 
form of clipping is imposed than that in Brillinger (1968) and Hinich (1967): 
x(t) is digitalized. We observe 

y ( t ) = n d + s ,  i f ( n - ½ ) d - s < ~ x ( t ) < - ( n + ½ ) d + e .  

Then the autocovariance functions of x(t)  and y(t) are related by 

yy(u) = g(y(u)) ,  (21) 

if x(t) is Gaussian, where g has a unique inverse. Once g is found, which may 
be a complicated business, we can invert (21) to deduce an estimate of 7(u) 
from one of 3'y(u), and thence compute (19). A situation that is in most respects 
more general is covered by Rodemich (1966). We observe y(t) = h (x(t)), where 
h is an odd, bounded, nondecreasing function. An example is y ( t )=  x(t)  if 
Ix(t)[ < K;  -- K, if x(t)  > K;  = - K  if x(t)  < - K ,  so that the values that are large 
in magnitude are censored. Again a relationship of the form (21) is obtained 
when x(t)  is Gaussian. 
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Cumulants and Cumulant Spectra* 

M. Rosenblatt 

Introduction 

At first, some of the basic properties of cumulants are discussed. Some of the 
reasons for interest in cumulants are presented. Spectra and cumulant spectra 
for stationary processes are introduced. The relations "between continuous 
and discrete time parameter  processes are dealt with in some detail. A class 
of estimates of cumulant spectra is introduced and asymptotic proper- 
ties of these estimates are noted. There are some remarks on nonlinear 
systems. The use of cumulant spectra in resolving the structure of non- 
Gaussian linear schemes and corresponding phase information is-indicated. 
Finally there are a few comments on applications. 

1. Definition 

Consider the random variables X 1  . . . . .  Xk .  L e t  ~ ( h  . . . . .  tk) be the joint 
characteristic functidn of the random variables 

¢p(fl . . . . .  tk) = E exp i t.~ = ~,(t). (1.1) 

If mixed moments  E X  v = E ( X p . .  • X ~  k) = m~, 

k k 

,~ = (,~ . . . . .  ~ ) ,  ,~ j~o ,  I,,1= ~ ~j, ~ ! =  1-I ~J! 
j = l  j= l  

exist up to a certain order ]vl<~ k, they can be read off as coefficients in the 
Taylor expansion of t# about zero 

*Research supported in part by Office of Naval Research Contract N00014-81-K-0003. 
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q~(t) = f {  ~'~ (it)VxV/M+°([t[k)} d G ( x )  
M~<k 

= E (it)~md M + °(Itlk) • 
M~<k 

The  joint cumulants 

(1.2) 

c~ = c u m ( X p  . . . . .  X~ ~) (1.3) 

can similarly be  read off as coefficients in the Taylor  expansion of log ~p about  
zero 

log ¢( t )  = ~ (it)Vc~/u! + o(Itlk). (1.4) 
Ivl<<.k 

There  are formulas relating the cumulants of order  k or less to the momen t s  of 
order  k or less and vice versa. It  is enough to write out these relations for 
E ( X 1 . . .  Xk)  and c u m ( X 1 , . . . ,  Xk)  since those involving higher powers of the 
random variables are obtained just by identifying random variables. Consider 
the set of integers { 1 , 2 , . . . , k } .  Let  x =  0'1 . . . .  , re) be a partition of 
{1, 2 . . . . .  k}. Then 

E(X . . . = E . . % 0.5) 
v 

where we sum over  all such partitions and C~ is the joint cumulant  of the X ' s  
with subscripts in v. Let  /z~ be the mean of the product  of the X ' s  with 
subscripts in v. The  inverse relation is then given by 

cum(X1 . . . .  , Xk )  -- E (--1)/'-1(10 -- 1 ) ! / ~  • • • / % .  
v 

(1.6) 

This implies that existence of all moments  up to order k is equivalent to the 
existence of all cumulants up to order  k. 

At  this point one can suggest a possible reason for interest in cumulants. One  
classical way of proving a limit theorem for the distribution of a sequence of 
random k-vectors X ("), n = 1 , 2 , . . . ,  is to show that the vth moment  u =  
( v l , . . . ,  Vk), vi = 0, 1, 2 . . . . .  i = 1 . . . .  , k, of X (') as n--->~ tends to the vth 
momen t  of the conjectured limiting distribution F as n -+ ~ for all v when the 
d ~ r i b u t i o n  F is within the domain of the momen t  problem (that is, the 
distribution F is determined by its moments).  F rom our  earlier remarks  it is 
clear that we could equivalently obtain such a limit theorem if we show that the 
vth cumulant of X (') tends to the uth cumulant of F for all v and F is within 
the domain of the mo~nent problem. Later  a context within which such an 
approach is useful will be  described. 
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Of course, the probability structure of Gaussian random vectors (or proces- 
ses) is determined by first and second order moments. The interest in higher 
order moments can then be motivated by a need to detect departures from a 
Gaussian structure or interest in resolving nonlinearity. 

Here we note a few basic properties of cumulants: 
(a) cum(alXz . . . . .  akXk) = a l" ' "  ak cum(X1, . . . ,  Xk) where the a / s  are con- 

stants. 
(b) If X1 . . . . .  X i  can be partitioned into two disjoint sets which are in- 

dependent of each other, then c u m ( X t , . . . ,  X i )  = O. 
(c) The cumulant is a symmetric and multilinear function of its arguments. 
(d) If X1 . . . . .  Xk and Y1 . . . . .  Yk are independent, then cum(Xl+ Yx, 

. . . .  Xk + Yk ) = cum(X1, . . . ,  Xk ) + cum(Y, . . . .  , Y i  ). 
The relations given above hold for complex-valued random variables. It is clear 
from the definition that 

cure(X) = EX,  cum(Xj, Xk) = cov(Xj, Xk) .  

If the means of the random variables are zero 

cum(Xj, Xk, Xt) = EX.r~kXt. 

A discussion of cumulants can be found in [11]. There an algorithm for the 
computation of cumulants of polynomial forms is given. 

2. Spectra 

Let  x(t), -oo < t < 0% be a weakly stationary process 

Ex( t )  ---- m ,  Elx(t)[ z < oo, (2.1) 

cov[x(t), x(~')] = r ( t -  ~) 

that is continuous in mean square. For convenience assume m = 0. Then there 
are corresponding spectral representations of the covariance function 

r(t) = ~® e~ ira dF(A),  (2.2) 

with F a bounded nondecreasing function, and of the process x(t)  itself 

= f ®  le it~ dz(A) (2.3) x( t )  j-® 
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with z(A) a process of orthogonal increments, that is, 

Ez(A) --= 0 ,  E dz(A) dz(~)  = 6(A - re) dF(A).  

Here 6(A) is the Kronecker delta, i.e. 

6(A) = {~ ifA = 0 ,  
otherwise. 

If x ( t )  is real-valued, then 

dz(A) = d z ( - A ) ,  

dF(A) = d F ( - A ) .  

(2.4) 

A case of common interest is that in which F is absolutely continuous with 
f(A) = F'(A). 

If x ( t )  is strictly stationary and moments of order k > 2 exist, then 

mk(ta . . . . .  tk) = E [ x ( t a ) "  " X(tk)] 

will depend only on the time differences t2- tl . . . .  , tk - -  tl: 

ink(t1 . . . .  , t k ) =  rk(tz--  tl . . . . .  tk -- fi). 

A representation for rk analogous to (2.2) with 

f } rk('rl, "r2 . . . . .  rk-1)= exp i ~ ~r~h, dFk(A1,...,/~k-1) 
i. a=  1 

(2.8) 

and Fk of bounded variation is not valid generally. However, if x ( t )  satisfies a 
sufficiently strong mixing condition, such a relation will be valid. Even under 
such circumstances the spectral mass dFk  will be singular on certain sub- 
manifolds of the (k - 1)-dimensional frequency space if k > 3. But if cumulants 
are considered instead of moments, under these conditions the corresponding 
spectral mass will no longer be singular. Let  

C k ( t  2 -  l l ,  . . . , t ;  - -  t l )  ---- c u m ( x ( t l ) ,  X ( t 2 ) , . . . ,  X ( t k ) )  . (2.9) 

The existence of a representation (2.8) for k ~<j is equivalent to that of a 
corresponding representation for k ~< ] 

Ck(T1 . . . . .  '/'k-l) = exp i ~ ~',A, dGk(hl . . . . .  Ak-1) 
a = l  

(2.10) 

(2.6) 

(2.7) 

(2.5) 

(2.5') 
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with Gk of bounded  variation. However ,  with a sufficiently strong mixing 
condition assumed for the process x(.), the spectral cumulant  mass Gk will be  
absolutely continuous with density gk. Also 

cum(dz(hl)  . . . . .  dZ(Ak)) = 6(A1 + ' ' "  + Ak) dGk(A1 . . . . .  Ak-1) 

= 6()~ 1 + ' ' "  + A k ) g k ( A 1  . . . .  , )Lk-1) dA~.. • d A k - 1 .  (2.11) 

Since the cumulants or  cumulant  spectra of order  k > 2 are zero if the process 
is Gaussian, they will usually be  of pr imary interest for a non-Gaussian or 
nonlinear problem.  

If we deal with a column vector-valued stationary process x ( t ) =  (xa(t); 
a = 1 . . . . .  m),  there will still be  a vector-valued representat ion of the form 
(2.3) with 

E dz(A) dz (~ ) '  = 8(A + ~ )  dF(A) .  (2.12) 

He re  the matrix A '  denotes the conjugated transpose of the matrix A. The  
function F(A) is now an m × m Hermi t ian  matrix-valued function that is 
hounded and nondecreasing. The  covariance function r ( t ) =  E x ( . c +  t)x( 'r) '  is 
still given by (2.2) but is an m x m matrix-valued function. We still assume that 
x ( t )  has real-valued components  so that (2.5) still holds but (2.5') is replaced by 

d F ( - A )  = d F ( h ) ' .  (2.13) 

At  a small risk of confusion the following notation is introduced for moments ,  
cumulants, and spectra. 

m,~ . . . . . .  k ( f i , . .  . ,  tk) = Ex,~( t , )x~z( tz)""  X~k(tk) (2.14) 

= ra x . . . . .  ak(t2-- tx, • • • , tk -- tl), 

C~, . . . . . .  ~(t2-- q . . . . .  tk -- q) = cum(x~,(t~), . . . ,  X,~(tk)), 

cum(dz, , (A1) , . . . ,  dZak (Ak)) = 6(A1 + . . . .  + Ak) d G . ,  . . . . . .  k(Aa . . . . .  Ak-~) 

= t~(A1 + " "  + Ak)gal ..... ak(A1 . . . . .  X k - 1 )  dAl" • • dXk-1 . 

The  assumption that the process x ( t )  has real-valued components  implies that 

g a  1 . . . . .  a k ( • l  . . . . .  /~k-1) : g a  1 . . . . . .  k(- - /~l  . . . . .  - - X k - 1 )  • (2.15) 

I t  should be  noted that if the labels al . . . . .  ak are permuted  by a permutat ion 
P and ai is taken into aj by P, then Ai should be  replaced by Aj. We  have given 
the g ' s  as functions of k - 1 variables A1 . . . . .  A k - 1  but it should be  understood 
that there is a hidden variable hk = --A1 . . . . .  A k - 1 .  This is an unsymmetric  but  
conventional  notation. If a number  of the indices ai are the same (as is the case 
when we deal with a univariate t ime series s ince then  a~ . . . . .  ak), there are 
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then a corresponding number of symmetries satisfied by ga~ . . . . .  a k ( A 1 ,  . . .  , ' ~ k - 1 ) -  

A number of these symmetries are discussed in [3] for the case k = 3 and k = 4 
when one has a discrete time parameter. 

If the process x(t) is discretely sampled with sampling interval h, we have for 
t = 0, -+1, -+2 . . . .  

F h x(th) = e i~ dz(A) = e i~a dhz(A), 
~/h 

(2.16) 

and the second order covariance function r is given in terms of the second 
order spectral density function f by 

r(th)= ~_~ei'ha f(A)dAJ= f_,~/"/hheia~hf(A)dA, (2.17) 

E(d~z(a)d~z0~)'} = 8(a + ~,)~(a)da, lal < ~ ,  

if r is integrable. The effect described here in which the original representation 
in terms of f is replaced by one in terms of ~¢ because of the discrete sampling 
is referred to as 'aliasing'. The relation (2.17) can be rewritten in terms of a 
periodic extension of the 8 function 

a s  

~(X)= ~ 8(A +2~rj) (2.18) 

E:a,z(  ) = , ) aa  (2.19) 

Of course, there are higher order effects of aliasing in that for t l , . . . ,  tk-~ = 
0, -+1, -+2,. . .  

ca1 ..... ak(tlh . . . . .  tk-lh ) 

= ( ¢ r / h . .  f'n'lh hgal .. . . . .  k ( ~ l  . . . . .  Ak-1) exp{i ~ A~t=h}dA1.. "dAk-1, 
d-~rlh J-Ir/h ~ a = l  

(2.20) 
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with 

hgal .... .  ak(A1, • • • , Xk-1) 

: ~ gal ... . .  ak(~l-~-2~l,''',~k-ld-~), ( 2 . 2 1 )  

Jl ..... Ik-1 ~-°° 

I~d . . . . .  IXk-d < ~ .  

At times we will write out hgal . . . . . .  k and gal . . . . . .  k in a more  symmetric  form as 
functions of k variables A1 . . . .  , Ak where it is to be understood that Ak = 
- - A I -  A2 . . . . .  Ak_ 1. T h u s  

gal . . . . . .  ~(A1 . . . .  , Ak-1) = gal . . . . . .  k(A1,-. . ,  hk-1, hk). (2.22) 

3. Spectral estimates 

At first spectral est imates will be described in the univariate second order  
case. Af ter  this initial discussion, remarks  will be  made  about  the general 
multivariate kth order  context. 

Le t  x(~-) be  a univariate stationary process sampled at ~-= th, t= 
0, 1 . . . .  , N -  1. The per iodogram hltr)(A) is given by 

E x ( t h )  e - i t ~  
h I r - I  2 

hItT)(A) = 2 - ~ ;  t=o 

If the spectral density f is continuous, one can show that 

, < , r  
Ehlff)(A) ~ h/(A) IAI h '  

as T ~ ~. A further summabili ty condition on fourth order  cumulants implies 
that 

COV[hI(T)(A ), hltr)(~)] ---> ~/((A - / x ) h ) [  1 + ~/(2Ah)] ~ ( A )  

as T--> 0o if 0 ~< A,/x. Though the per iodogram is not a reasonable est imate of 
the aliased spectral density ~f, decent  estimates can be manufactured out of it in 
the following manner .  Le t  W(u) be a bounded weight function symmetric  
about  zero with bounded support  such that f W(u)du  = 1. Set 

WT(u) = B? 1W(u?lu) (3.1) 

with B r  ~ 0 as T ~ c~. The  conditions on W can be relaxed appreciably and we 
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have chosen the conditions cited above for convenience. The bandwidth BT is 
chosen so that TBT ~ oo as T ~ oo. An estimate of if(A) is given by 

~_ r/h WT(A - Or) hl(T)(ot) dot f T (x) = (3.2) 

with 

and 

h T-1 

= ~ t=-(~T-1) WT(th) hm(T)(th) exp(-ithA) 

1 
hm(r)(th) = -~ ~ x (rh)x ( ( ' r  + t)h)  

0~' ,  r+ t~T-1  

I? hWr(th) = W r ( u )  e x p ( - i t h u )  d u .  
~rlh 

(3.3) 

(3.4) 

We have a representation of f(r)(A) as a smoothed version of a periodogram or 
as a Fourier transform of weighted estimates of second order moments. This 
aspect of such a dual representation also holds for higher order spectral 
estimates. For reasons of economy we shall only consider the representation of 
higher order spectral estimates obtained by smoothing analogues of a periodo- 
gram. Given the continuity of f and summability of fourth order cumulants, it 
follows that 

lim B T T  Cov[ftT)(A), f~r)(/.t)] 
T---~oo 

= h ' ~ ( ( X  - ~)h)[1 + n (2Ah)] d~(A) f WZ(u) du (3.5) 

for 0 ~< A, t~, if BT --* O, BTT--~ o~. Also it is clear then that 

lim Ejar)(h) = hf(h) • (3.6) 
T ~  

Under further cumulant mixing conditions, the estimates f(T)(A) at a finite 
number of A values are asymptotically normal with the mean and covariance 
properties indicated above. The cumulant mixing condition (see [2]) will be 
given in the context of higher order multivariate cumulant spectral estimates. 
The mixing condition can be thought of as a form of asymptotic independence 
of the process. 

L e t  x ( t ) =  (Xa(t); a = 1 . . . . .  m )  now be an m-variate stationary series. We 
shall say a cumulant mixing condition is satisfied if 

Itl~al . . . . . .  k ( t l h  . . . . .  tk-lh)[ < oo 
t 1 . . . . .  t k _ l  = - ~  

(3.7) 
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for  j = 1 , . . . ,  k -  1, any k- tuple  al  . . . . .  ak (k = 2, 3 , . . . )  and any h > 0  with 
k = 2, 3 . . . . .  A s s u m e  that  this mixing condi t ion holds. Cons ider  the finite 
Four ier  t ransform 

T-1 
d(aT)(}[) = ~ X a ( t h  ) e x p ( - i t h A ) .  (3.8) 

t=0 

k th  o rder  analogues  of  the pe r iodogram can be defined in terms of these finite 
Four ie r  t ransforms 

/ h \k - I  1 
I (T) 'A Ak) = ~2rr ) Td(T) (A1) ' ' ' d (T ) (Ak ) .  al . . . . .  ak~, 1~ • • • (3.9) 

Le t  W(u~ . . . . .  Uk) be a b o u n d e d  piecewise cont inuous  weight  funct ion on 
E k uj = 0 with b o u n d e d  suppor t  such that  

and 

Set 

f f ] • . .  W(u~ . . . . .  Uk)8 Uj/ d u l - - .  dUk 1 

W ( - u ~  . . . . .  -uk )  = W ( U l , . . . ,  uk). 

W r ( u l  . . . . .  Uk) = Byk+IW(B¥1ul  . . . . .  B¥1Uk) . 

(3.10) 

(3.11) 

(3.12) 

Assume  as before  that  x ( t ) =  (xa(t); a = 1 . . . . .  m)  is m-var ia te  s ta t ionary and 
that  one  observes  x(th) ,  t =  0, 1 , . . . ,  T - 1 ,  with h > 0  fixed. A n  est imate 
g(T) /A , t ~ k )  ' • k  X j  ~" O ,  of  h g a l  . . . . . .  k(/~l, IA, I -< 7r/h, is given by a 1 . . . . .  ak~ 1~ . . . . . .  , 

g~)  . . . . .  k(A1, . . . ,  Ak) 

( k-1 2"rrsl , Ak 
= . . . .  r h J  $1=-~ Sk=-ao 

. . . .  ~ ] al . . . . . .  k\  ~ , - - . ,  (3.13) 

with the  k th  o rde r  pe r i odog ra m  specified by (2.31). H e r e  the funct ion 
• (u~ . . . . .  Uk) = 1 if Ek Uj--0  m o d 2 7 r  but  ~ j e j  u j ~ 0 m o d 2 z r  where  J is any 
nonvacuous  p rope r  subject  of  1, 2 . . . . .  k and ~ ( u l  . . . . .  Uk) = 0 at all o the r  
(ul . . . . .  Uk). T h e  set E k uj =-- 0 is somet imes  called the principal mani fo ld  and  a 
set of  the  fo rm ~,jej uj = 0 with J a p rope r  subset  of  1, 2 . . . .  , k a p rope r  
submanifold.  T h e  use of  the fac tor  • in the est imate  is essential so as to  ensure  
that  the pe r iodogram values on p roper  submanifolds  are deleted.  If  left in, they 
would  have  a bad  effect on  the est imate.  If  BT ~ 0 as T---> ~,  then 

lim E g ~ !  . . . . .  a(A1, • • •, Aa)---> hga, . . . . . .  k(A1 . . . . .  Ak-~) • (3.14) 
T--~.~ 
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Also if Bk-lT~oo as T-~o% then 

lim k-~ (r) . . . .  k),g~i . . . . .  ,~0Xl  . . . . .  /Zk)] BT T cov[ga~ ..... ak(A1, A (r) 
T ~  

2~" 
= -'h-- E '17 ((A1 - /Xp(1 ) )h ) . . .  'r/((Ak - ~p(k))h)f,h.ah~)(A 1) ' ' "  fak, a~k)(Ak) 

P 
k 

(3.15) 

Here  the sum is over all permutations P of the set 1, 2 . . . . .  k. Let  all estimates 
of order  k have the same bandwidth Br. Under  the assumptions made it follows 
that all estimates of order  k are asymptotically normal with the means and 
covariance indicated above. Estimates of different order  k will typically have 
different bandwidths satisfying the appropriate condition Bk- IT~  ~, BT--> 0 as 
T-> o0. It then follows that estimates of different order  are asymptotically 
independent.  A sketch of the details of the arguments leading to these results 
can be found in [2]. An early discussion of bispectral estimates can be found in 
[16]. An exposition in which similar techniques are used to deal with point 
processes can be found in Brillinger's 1972 paper in the 7th Berkeley Sym- 
posium. 

4 .  N o n l i n e a r  s y s t e m s  

Often one wishes to determine the response of a time invariant nonlinear 
system. There  are a number of ways in which this might be done. W e  shall 
briefly comment  on one procedure.  Suppose a Gaussian stationary process x(t) 
is considered as input to the system. Assume x(t) has spectral density function 
f(A). The process x(t) has the Fourier  representation 

X(t) : f e itA d z ( A )  

with z(h)  a complex-valued Gaussian process of orthogonal increments 

E dz(X) dzO ) = a(X + g)f(X) dX, dz(X) = dz( -X) .  

Under  broad conditions, the output Y(t) of a time invariant system when the 
Gaussian process X(t) is fed into it can be represented as a sum of Wiener- I to  
integrals 
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® 1 
Y ( t ) =  j~__o~ q f " " ~ exp{i(Al + " " + Xj)t} 

Ak+A/~O 

x Rj(A1, . . . ,  a/) dz(a~) • • • dz(aj) (4.1) 

with the functions Rj(A1 . . . . .  Aj) complex-valued symmetric functions satisfying 
the conditions 

Rj(& . . . . .  aj) = R j ( - A 1 , . . . ,  - a j ) ,  (4.2) 

~ . . . .  IRj(A, . . . . .  &)12f(ad . . .  f(Aj) d a l . - . d a j  <oo. 

The cross-cumulant spectral density fx...xy(A1 . . . . .  Aj) is then given by 

R j ( - A I  . . . . .  • . f % ) .  (4.3) 

This suggests that a way of determining the j th  order term Rj(A1 . . . . .  Aj) is to 
estimate the cumulant spectral density fx...xy(A1 . . . . .  Aj) and the spectral density 
of the x process. The Fourier representation (4.1) in terms of Wiener-I to 
integrals was chosen for convenience. Alternative Fourier representations or 
representations directly in the time domain can also be given. Ways of going 
from one representation to another are discussed in [9] and [5]. A more 
extensive treatment of related questions can be found in [1]. 

5. Non-Gaussian linear processes and phase information 

Linear processes have been discussed probabilistically. A brief description 
follows. Consider independent, identically distributed random variables v, t = 
. . . .  -1 ,  O, 1 . . . .  .with mean zero Ev, =-0 and variance one Ev  2 = 1. A sequence 
of real constants {aj} is given with 

Now 

~ 2 < ~ .  (5.1) 

x ,=  ~ ant_ j (5.2) 
1=-~ 

is the linear process determined by {ag} and {v,}. The spectral density of {x,} 

1 
f(A) = ~ I~ (e-i*)l ~ (5:3) 

is determined by the frequency response function 
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a (e  - ia)  = ~'~ otj e - i ja .  ( 5 . 4 )  
J 

In the case of a Gaussian linear process {xt}, only the modulus of ot(e-i;t), 
la(e-i~)l is identifiable since the probability structure of the process is deter- 
mined by second order moments, or equivalently by the spectral density. It is 
curious that here the Gaussian case is the atypical rather than the typical case 
as it often is. For if {xt} is non-Gaussian and generated by {vt} having a 
marginal distribution (non-Gaussian) with all its moments finite, then under 
fairly broad conditions the phase information in arg{a(e-i~)} is identifiable up 
to an additive linear term. For the kth order cumulant spectral density of {x,} is 

. . 
bk(A1 . . . . .  Ak-1) = ~ ot(e-ial) " '"  ot(e-"~k-1)ot(el(M+'"+;tk-D)2/k (5.5) 

with Yk the kth cumulant of the independent random variables yr. Since vt is 
non-Gaussian with all its moments finite, it follows that for some k, Yk # 0. Of 
course, one need not assume all moments finite. It is enough to assume that Yk 
exists and is not zero for some k # 0. Also, let 

and 

IJl I ,1 < o0 (5 .6)  
J 

a(e -iA) # 0 for all A. 

Let  ̧  

ar f " - ia-  ot (1)  l 
h(A)= g~ate  )la(1)lf" (5.7) 

The equation giving h(A) above formula (8) in [15] should read as (5.7) does. 
Under the conditions cited above 

h(A1) + " "  + h(Ak-1)- h(A1 + " "  + Ak-~) 

can be determined. This implies that arg{a(e-U)} is identifiable except possibly 
for an additive linear term. A possible estimate 0ased on bispectral estimates is 
suggested in [14] for the-case k = 3. Similar questions are considered in [15]. 

It should be noted that most finite parameter statistical investigations center 
on Gaussian stationary autoregressive moving average processes, that is, solu- 
tions of a system 

P q 

~_~ bjx,-j = ~'~ akVt-k (5.8) 
j = O  k = O  
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(b0, a0 ~ 0). Here it is usual to assume that the roots of the polynomials 

q P 
A ( z )  = ~'~ akZ k, B ( z )  = ~ byz k (5.9) 

k =0 1=0 

all have modulus greater than one. A stationary solution of (5.8) has 

A(e -u) 
a(e -ia) = B(e_iA) • 

If the process is Gaussian, any real zero zj¢ 0 can be replaced by its inverse and 
pairs of nonzero conjugate roots by their paired conjugated inverses 271 without 
changing the probability structure of the process if the process is appropriately 
rescaled. Given distinct real roots there are 2 p+q ways of specifying the zeros 
without changing the structure of a Gaussian {xt}. In the case of a non-Gaussian 
structure satisfying (5.8), the 2 p+q specifications of zeros mentioned above will 
usually correspond to different processes. The actual location of the zeros can in 
principle be estimated in the case of a non-Gaussian solution of (5.8) if Yk ~ 0 for 
some k > 2. 

A continuous analogue of a first order autoregressive scheme with Poisson 
noise is discussed in [19]. This model has been used in the analysis of streamflow 
data. 

6. Applications 

Perhaps the earliest application is that of Hasselman et al. [6] in resolving 
nonlinear aspects of ocean wave propagation. Sunspot records are analyzed in [3]. 
Cartwright [4] carries out a fourth order analysis of tides and surges. Huber et al. 
[8] apply bispectral analysis to the resolution of electroenece-phalograph records. 
These higher order techniques are used in the analysis of oceanographic 
temperature and salinity readings among others in [13]. A series of papers 
consider bispectral methods in the analysis of turbulence and the nonlinear 
spectral transfer of energy (see [7, 12, 18]). Kim and Powers [10] employ bispectral 
estimates and problems in plasma physics. The paper of Sato et al. [17] uses 
bispectral methods to deal with non-Gaussian noise. The National Bureau of 
Standards Technical Note 1036 of P.V. Tryon titled "The  bispectrum and 
higher-order spectra: a bibliography" is a useful bibliography of related literature 
from 1953 to 1980. 
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Replicated Time-Series Regression: 
An Approach to Signal Estimation and Detection 

R .  H .  S h u m w a y  

I. Introduction 

There  are a number  of practical problems arising in the analysis of time- 
correlated data which require extended or generalized versions of classical 
multiple regression. A particular kind of model which is of interest in signal 
estimation and detection problems relates an observed output series to a 
collection of lagged input signals using a deterministic time-varying design 
matrix. The analysis of signals propagating across an array of sensors monitor- 
ing some physical phenomenon requires multiple signal models of this kind. 
For example, seismic applications (cf. Capon et al., 1967, 1969); Blandford et 
al., 1976; Shumway and Husted, 1970; Shumway, 1972) pertain to estimating 
the waveforms and directional properties of propagating plane waves generated 
by earthquakes or explosions. Other  examples can be given relating to estimat- 
ing the source of an acoustic signal in the ocean as in Clay (1966), MacDonald 
and Schultheiss (1969), or to detecting an infrasonic signal in the atmosphere as 
in Mack and Smart (1972) and Smart and Flinn (1971). In radar, it is con- 
ventional to use a phased antenna array to recover a return from a number  of 
possible interfering signals (cf. Ksienski and McGhee,  1968; McGarty,  1974; 
McAulay and McGarty,  1974). 

The multiple signal problems mentioned in the previous discussion can all be 
regarded as special cases of the general time-series regression model 

yj(t) = ~_. f f(u)xj( t -  u)+ ej(t), (1.1) 

t = 0, ±1, -----2 . . . . .  j = 1,2 . . . . .  n, with f l ( u ) =  (fit(u), /32(u), . . . , f lq(U)) '  a q x 1 
vector of unknown deterministic signals and xj ( t )= (xjl(t), xj2(t) . . . .  , xjq(t))' a 
q x 1 design vector describing the way in which the signals are related to the 
value yj(t) recorded by the j th  sensor. The error or noise series el(t), 
e2(t) . . . . .  eN(t) are assumed to be stationary independent identically distributed 
(i.i.d.) processes whose values measured across time are only weakly dependent  
as the separation increases. Brillinger (1980) formulates this 'mixing' condition 

383 
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in terms of the cumulants of the process as 

~ " "  ~ Icum{ej(t + u l ) , . . . ,  ej(t + uk), ej(t)}[ < ~ ,  
Ul Uk 

(1.2) 

k = 1 , 2  . . . . .  t =  0, _ l ,  ___2 . . . . .  j = l  . . . .  ,N,  and notes that it justifies a 
number  of large sample approximations involving the discrete Fourier trans- 
form. It is convenient to summarize the model  (1.1) in the vector  form 

y, = ~ x,-d3, + et, (1.3) 
u = - o o  

t = 0, - 1 ,  ---2 . . . . .  with xt = ( x l ( t ) , . . . ,  xN(t)) the N x q time-varying design 
matrices and e, = (el(t) . . . . .  eN(t)) and y, = (yl(t) . . . . .  yN(t))' the vector noise 
and observation processes. These design matrices are assumed to be well 
behaved in the sense that 

(1+ Itl)llx, ll < oo, (1.4) 
t =  - o o  

where [Ix, l[ = [tr(xtx't)] m, whereas the regression functions need only satisfy 
11/3,11 = c < for all t. The autocorrelat ion matrix of the vector  noise process e, is 
of the form 

E[et+ue~] = Re(U)IN, (1.5) 

where IN denotes the N x N identity matrix with X[Re(u)[ < oo; 

re(A) = ~ Re(u) exp{-iuA}, -~ -  ~< h ~< zr (1.6) 
t = - - a o  

defines the common power spectrum of the identically distributed noise pro- 
cesses. The overall model  defined by (1.2) and the at tendant  conditions will be  
called the replicated time-series regression model.  

Before proceeding any further, it is essential to note that in many  practical 
cases, the design matrices will be  functionally related to some p x 1 paramete r  
vector O = ( 0 1 , . . . ,  0p)', so that an overall nonlinear regression model  of the 
form 

Y, = k X,-u(O)/~u + e, (1.3') 
U = - - a o  

may be more  sensible. As a simple example of this model,  we note that in the 
case of a plane wave signal /3(0 propagating across an array with a fixed 
velocity, the j th  sensor observes 
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yj(t) = f l ( t -  Tj(0)) + e j ( t ) ,  (1.7) 

where the time delay T~(0) at the jth channel depends on the parameter 
0 = (01, 02)'; 01 and 02 in this example are related to the velocity and azimuth of 
the incident wave. The signal model (1.7) is seen to be a special case of (1.3)' 
with p = 2, q = 1, and 

where 
x,(O) = ( 3 ( t -  TI(O)) . . . . .  6 ( t -  TN(O)))' , (1 .8)  

1, t = O, 
3 ( 0 =  O, t = + - l , + - 2  . . . .  (1.9) 

denotes the usual Kronecker delta function. This model is used often in the 
previously mentioned references, where one is typically interested first in 
detecting a signal and then in estimating' the velocity, azimuth, and waveform 
of the detected signal. A generalization of interest would be the case where 
multiple interfering signal sources are present, generated perhaps by storms or 
multipath reflections. The simultaneous resolution of these multiple signal 
models can be approached by stepwise regression techniques. 

Other versions of (1.3) arise in experimental designs where one might 
observe time series originating from different types of phenomena or as 
responses to different treatment combinations. Brillinger (1980) has given an 
exhaustive treatment of the frequency-domain approach to analysis of vari- 
ance; an example involving a frequency-dependent test of whether under- 
ground nuclear explosions and earthquakes have significantly different mean 
waveforms is given in Shumway (1980). Other regression models which have 
the same general form as (1.1) can be developed by assuming that no repli- 
cation is present (N = 1) and that the q input series X l l ( t ) ,  X 1 2 ( t ) ,  • • . ,  Xlq(t) are 
stationary processes. For example, A k a i k e  (1964), Brillinger (1969, 1974), 
Hannan (1963, 1970), Parzen (1967), and Wahba (1968, 1969) have given 
treatments from this point of view. Computational details and some examples 
can be found in Otnes and Enochson (1978). If one assumes that the relation 
(1.1) 'is not a lagged regression and that xjl(t)  . . . .  , xjq(t) are fixed known 
functions, typically polynomials or sines and cosines, satisfying 

q 

yj(t)  = ~113kxjk(t)  + ej(t) , (1.10) 

a trend regression model results. Fairly complete asymptotic results for trend 
functions satisfying regularity conditions due to Grenander (1954) are given in 
Hannan (1970) or Anderson (1971, 1972). 

In this discussion, however, we will concentrate on the versions of (1.3) and 
(1.3)' which lead to multiple signal models of interest in various practical 
situations. The problems considered will divide roughly into those involving 
tests of hypotheses for various subsets of the q regression signals in (1.3) or 
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(1.3)' and those primarily concerned with estimating waveforms for those same 
signals. The techniques for attacking both  of these problems will depend on the 
properties of the discrete Fourier transform (DFT) of a finite sample from the 
model (1.3). We begin by discussing the problem of constructing finite time 
estimators for the q regression functions. 

2. Estimation of the regression functions 

It is convenient to consider first the problem of constructing the best linear 
unbiased estimators (BLUE) for the regression vector tit in the general linear 
model (1.3) over t - 0, +1, +2 . . . . .  We note that applying an extended version 
of the Gauss 'Markoff  theorem (cf. Shumway and Dean, 1968) leads to 

/~, = ~ h~yt-,, (2.1) 
u = - ~  

where h, is the q x N matrix valued function (Xl]h,[I < ~) 

with 

ht = (2~r) -1 [ X ( A ) ' X ( A ) ] - a X ( A )  ' exp{itA} dA, (2.2) 
qr 

X(A) = ~ xt exp{-iAt} (2.3) 

the Fourier transform of the N x q time-varying design matrix xt. T h e  vari- 
ance-covariance matrix of the estimated regression functions is given by 

E~,+u - ¢l,+u)(~,-/~,)' = (2~r)-' f e ( t ~ ) [ X ( t ~ ) t X ( l ~ ) ]  -1 exp{iuA} dA, 

(2.4) 

with the variance terms obtained by substituting u = 0. 
As a simple example, consider the model (1.7) where Tj(0), j = 1, 2 , . . . ,  N 

are assumed, for the moment,  to be a collection of known time delays which 
determine where the signal appears on each recording channel. Then,  applying 
(2.2) with the definition (2.3) yields 

and 
X(A) = (exp{-iATl(0)} . . . . .  exp{-iATu(0)})' 

h,  = ( 8 ( t  + T a ( O ) ) ,  . . . , 8 ( t  + T N ( O ) ) ) ,  

(2.5) 

(2.6) 

so that the B L U E  estimator (2.1) takes the form 

N 

/3(t) = N -1 ~2 yj(t + T/(0)), (2.7) 
/ = 1  
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which is just the ordinary 'beamformed' estimator for the signal f l( t) .  T h e  
variance of this estimator is given by (2.4) as N-iRe(O),  where Re(" ) is the 
common autocorrelation function of the error or noise series in (1.7). 

Although the transform (2.2) could be evaluated conveniently in the case of a 
single regression function, the multiple signal case frequently leads to an 
intractable expression, and it is simpler to develop a frequency-domain ap- 
proximation of the form 

M - 1  _ _  

h ~  = M -1 ~ [X(~o,,) 'X(wm)]-IX(oJ,,)  ' exp{-iOJmt}, (2.8) 
m = 0  

where o)m = 27rmM -1 for some M < T. The approximation for the filtered 
output (2.1), assuming that Yt is observed at t = 0, 1 . . . .  , T -  1, can be written 
in the form (M even) 

M/2-1 

h ,  Yt-u, (2.9) 
u =-M/2+ 1 

for the points t =  M / 2 - 1  . . . . .  - 1 ,  O, 1 . . . .  , T - M ~ 2 .  T h e  choice for M 
depends on balancing a desire to reduce the bias and mean square error by 
increasing M, against the effect of losing M / 2  points off the beginning and end 
of the filtered output (2.9). Kirkendall (1974) has shown that the bias in the 
finite estimator (2.6) is bounded by 4yMK where 

and 

YM = Z Hh,II (2 .10)  
ltl>~M/2 

K = sup IlfltH ~_~ nxtH • (2 .11)  
t t = - - c ~  

The mean square difference between the finite approximation (2.6) and the 
infinite two-sided BLUE estimator (2.1) satisfies 

Ea'2ll   -  ,tl 2 ~ 4yM ( K  + N m R  ~e/2(0)). (2.12) 

The quantity yM plays a major role in controlling both the bias and the mean 
square error of the finite approximation; for example, choosing M large 
enough so that ht = 0 for It[ >i M can eliminate the error completely, and this 
should be an objective of the design procedure. On the other hand, the filtered 
output (2.6) is free of other end  effects only for t = ( M/ 2 ) - 1  . . . . .  T -  M/2 ,  so 
that M cannot be increased arbitrarily without losing potentially important 
portions of the signal. 

As a nontrivial example of the preceding analysis, we consider the problem 
of estimating a waveform in a contrived mixture of two signals 131(0 and/32(0 
following the model 
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yj(t) = f l ,( t)  + 0.5(/32(t - Tj) + fl:(t + Tj)) + ej( t) ,  (2.13) 

j = 1 , 2 , . . . ,  10. The model is applicable to a vertical array of recording 
instruments where i l l(t)  represents a generalized mean present at the same 
time on all series and fl2(t) represents a signal coming in at an angle and then 
being reflected off the surface so that it appears twice on each channel except 
for the surface. Fig. 1 shows such a mixture on the last of N = 10 channels 
where the regression function of interest is an exponentially decaying sine wave. 
The arrows show the respective entry points on the tenth series (T10 = 23) and 
we note that /32(0 has been completely obscured by the noise. The model 
described by (2.13) can be written in the form (1.3) by noting that q = 2 and the 
elements in the j th  column of the N x 2  matrix x, are x#( t )= (5(t) and 
xj2(t) = 0.5(8(t - Tj) + 6( t  + Tj)) respectively. If we define the 2 x N matrix 

H(A) = [X(A )'X(A )I-'X(A )' , (2.14) 

the optimum filters (2.2) will be the Fourier transform of this matrix, with 
elements of the form 

and 
Hlj(A) = A-I(A)[A(A) - B(A) cos(ATj) 

H2j(X) = a-I(X)[N c o s ( a ~ ) -  B(X)], 

(2.15) 

(2.16) 

j = 1, 2 . . . . .  N, with 

Yl0(t) =/~1 (t) + 0.5[/31 (t-  23) + fll (t + 23)] + el0(t ) 

l 

Fig. 1. A por t ion of the contr ived mix ture  of/31(t)  and fl2(t) wi th  the arrows denot ing the entry 
points for  the second regression function/32(t).  
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N 
A(A) = ~ cos2(ATj), 

]=1 

N 
B(A) = ~'~ cos (ATj), 

j=l  

A (A) = NA(A) - B2(A). 

(2.17) 

The singularity (A (0) = 0) at h = 0 can be adjusted by using a ridge type correction 
or by taking H(0) = 0 so that the filters do not pass the zero frequency. In this case, 
the finite filters, computed using (2.8) with M = 128, are shown in Fig. 2, with the 
second filter preserving the signal by essentially averaging the primary waveform 
and its reflection, with the negative center peak cancelling the first regression 
function. The estimated regression function fl2M(t), calculated using (2.9), is shown 
in Fig. 3 and we see that it is an excellent estimator for the known true signal. The 
interpretation of these results in terms of significance tests is given in the next 
section. 

d 1 sec (20 pts) I 

Fig. 2. Portions of the B L U E  filters corresponding to eq. (2.8) with Htj( ' )  and/-/2j( ')  given by eqs. 
(2.15)-(2.17). 

True effect function/32(t) /'~ / \ ]1 [ I [ I [ I / \  [ \ ~ /~ / ~ ~  
i 1 sec (20pts) i 

Estimated effect function ~2 M (t) 

Fig.  3. T rue  regression func t i on  compared  w i t h  the  app rox ima te  B L U E  es t imato r  (2.9). 
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3. Tests of hypotheses in the frequency domain 

In many cases, one may be more interested in determining how many 
regression functions are present than in estimating the waveforms of the 
separate functions in time. In this case, a partitioned form of (1.3) may be of 
more interest, say 

Y, = ~ x °),-u~-a0). + ~ ~,-,~-,"(2) a(2)+ et, (3.1) 
u u 

where fl~x) = (fix(t) . . . . .  flql(t))' and fl~2)= (fiql+x(t) . . . . .  flql+q2(t))' are qx x 1 and 
q2 x i subvectors of the q x i (q = ql + qz) vector fl, = (fl~x),,/~z),),, and x~ x) and 
x~ 2) are N x qx and N x q2 time-varying design matrices. The question of 
interest becomes whether a specified subset, say the q2 regression signals in fl~2), 
are present or absent. This generally occurs within some restricted frequency 
range or band, and it is useful to express the basic model (3.1) in the frequency 
domain. The discrete Fourier transform (DFT) of a finite sample involving the 
vector y, t = 0, 1, 2 . . . . .  T -  1, is 

T - 1  

Y^(k ) = T -m ~ Yt exp{--iAkt}, (3.2) 
t-O 

which is generally evaluated at the frequencies Ak = 27rk/T, k = 0, 1 , . . . ,  T -  1. 
Now, applying the DFT to both sides of (3.1) for Ak -- A, leads to 

Y^(k ) = X i ( k  )Bi(k ) + X~(k )B~(k ) + ~k + %.~.(1), (3.3) 

where B~(k), B~(k), X~l(k), and X~(k) are the vector DFT's of fl~l), fl~2), x~a), and 
x~2); ~'k denotes a zero-mean complex normal with covariance matrix fe(A)IN. 
The expression Oa.~.(1) (see Brillinger, 1980) denotes a term tending to zero 
almost surely as T ~ o0. 

In this partitioned model, we may be interested first in testing whether the 
first qx time series are related to Y^(k), that is H0: B~(k)= 0, so that the 
comparison is between 

and 
Y^(k ) = X~(k )B~(k )+ ~k + Oa.s.(1) 

Y^(k) = ~k + Oa.s.(1), 

(3.4) 

(3.5) 

or simply, noise alone. This is basically the problem of detecting the ql x 1 
vector signal B~l(k) which, under (3.4), would be estimated as 

B;(k ) = [X~(k )'X~(k )]-x X'~(k )' F ( k  ) . (3.6) 

The analogue of the classical F statistic for testing the hypothesis B~(k) = 0, (cf. 
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Shumway, 1970; Brillinger, 1973, 1980) can be written as the ratio of the 
regression mean square to the error  mean square, say 

where 

SSR,(k) (N - q~) 
FEql, 2 ( N - q 1  ) = SSEI(k) ql 

SSRa(k) = II~(k)Bi(k)ll 2 

(3.7) 

(3.8) 
and 

SSE~(k) = II V ̂  (k) - X](k)~(k)112 

= II Y^ (k) [ f  2 - IIX;(k ) /~; (k)112 (3.9) 

denote  the regression and error  sums of squares, ([[a[[ 2 =  •rn [am[ 2 is the usual 
squared norm of the complex vector a.) The notation F,I , ,  2 denotes an F sta- 
tistic with nl numerator  degrees of f reedom and n2 denominator  degrees of 
freedom. It should be noted that if the numerator  (3.8) and denominator  (3.9) 
are summed over K frequencies in the neighborhood of A, then 2ql and 
2(N - ql) are replaced by 2Kql  and 2 K ( N  - ql) respectively in (3.7)-(3.9). The 
statistic (3.7) gives a test function for detecting the presence of the q~ x 1 vector 
signal B~(k) at frequency A. The sums of squares can be arranged in an analysis 
of power table as shown in Shumway (1970) and Brillinger (1973, 1980). 

Another  test which is often useful develops from a requirement to test for 
the presence of the q2 X 1 signal vector B~2(k) given that the first q~ signals are 
present. This compares the residual sums of squares computed under the 
models (3.3) and (3.4). We note, for example, for B ' ( k ) =  (B]l(k)', B~(k)')' and 
X' (k)  = (X~(k), X~(k)), the usual least-squares estimator for B ' (k)  in (3.3) is 

f r ( k  ) = [X'(k  ) 'X ' (k  )]-IX'(k ) ' F ( k ) ,  (3.10) 

leading to an F statistic of the form 

where 

and 

SSR2(k) (N - q l -  q2) (3.11) 
F2q2,2(N-ql-q2) = SSEE(k) q2 ' 

SSR2(k) = f l i t ( k )  - X~ffk)/l~(k)ll 2 -II  Y^(k) - X^(k)fl^(k)H 2] 

= [l[X^,(k)/~r(k)112 - IlX~l(k)B~(k)1121 (3.12) 

SSEdk)=  I l F ( k ) -  X'(k)g"(k)II 2 

= [llrtk)ll 2 -  llX'(k)B'(k)ll2]. (3.13) 

Again, smoothing over K frequencies replaces 2q2 and 2(N - ql - q2) b y  2Kq2 
and 2 K ( N  - q l -  q2) in (3.11)-(3.13). The resulting sums of squares can again be 
summarized in an analysis of power table. 

As an example, consider the mixture of q = 2 regression functions discussed 
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in the estimation section where we choose ql = q 2  = 1 and the series are 
recorded for T = 1024 points assumed to be sampled at 20 points per second. 
The frequencies are of the form A k - - - - 2 ¢ r k / 1 0 2 4 ,  k = 0, 1 . . . . .  512, and the 
power components are averaged over K = 17 frequencies. The resulting F 
statistic (cf. (3.7)) for detecting the presence of ill(t) will have 2(17)= 34 and 
2(17)(10- 1) = 306 degrees of freedom. It is convenient to plot the test statistic 
as a function of frequency f = 20A/2¢r in cycles per second (Hz). We note from 
Fig. 4 that the evidence for a single regression function appearing on all 
channels is very strong over a frequency band ranging from 0 to 5 Hz. The test 
statistic (3.11) is also shown in Fig. 4, where we have again averaged the sums 
of squares over K = 17 frequencies, leading to F statistics with 2(17) = 34 and 

5.0 

0.0 

TESTING HYPOTHESIS ~ l ( t )  = 0 

F .99(30,00) 

I I I I cps 
2.5 5.0 7.5 I0,0 

5.0 

0.0 

\ 
F STATISTIC FOR TESTING HYPOTHESIS 

B2(t) = OGIVEN THAT Bl(t ) ~ 0 

I I I , J cps 
2.5 5.0 7,5 I0.0 

Fig. 4. F statistics for sequentially testing for the presence of ill(t) and fl2(t). 
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2(17)(10 - 2) = 272 degrees of freedom. Here, one may note the very significant 
detection at 3 Hz, corresponding to the frequency of the regression function 
/32(0. 

A problem of interest in many applications involves the case where the 
matrix of design functions depends nonlinearly on some p × 1 vector t9, as in 
(1.3)'. The frequency-domain version of (1.3)' (see also (3.3)) can be written in 
the form 

Y^(k) = X^(k; O)B^(k)+ Kk + Oa.s.(1) • (3.14) 

Jennrich (1969) has derived the asymptotic properties of general nonlinear 
least-squares estimators. His results in this case apply to the values O,/J^(k; O), 
obtained by minimizing 

SSE2(k ; O)=  II Y^(k)-  X^(k;O)B^(k)ll2, (3.15) 
where 

B^(k; O)=  S-l(k; O)X^(k; O)'Y^(k). (3.16) 
with 

S(k; O) = X^(k; 0) 'X(k ;  0 ) .  (3.17) 

Wu (1982) has given regularity conditions involving the derivatives of the 
matrix X'(k; O) which imply the strong consistency (N-~ ~) of .0 ,  !T(k; 0) ,  
and of 

re(A; O) = N-1SSEE(k; O) (3.18) 

as an estimator of re(A; O), the spectrum of the error series. He also showed 
that the estimators were asymptotically normal and gave the limiting covari- 
ance structure. These results will be shown later for the important single-signal 
case (q = 1). 

An approach to testing hypotheses for models depending on the parameter 
O is suggested by noting that if O is known, one may make the partition 
O = (@~, O2')', where O1 and @2 are pl x 1 and p2x 1 parameter vectors and 
X~(k ; O) = (X~l(k ; O1), X~2(k ; 02)). Thus, we may compare 

r^(k) = X~(k; O1)B~(k) + ~k + Oa.s.(1) (3.19) 

against (3.5), using the approximate F statistic 

with 

Fl(k; O1) = SSRI(k; O1) (2N - 2ql) (3.20) 
SSEI(k; O1) 2ql 

/J~(k; O1) = S;~(O1)X~(k; 01)'r^(k) (3.21) 

maximizing 
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SSE,(k; O, )=  II¥^(k) - X;(k;O,)B;(k;@,)ll 2 

= IIY^(k)H 2 -  HX~(k;191)B~(k;O,)112 , (3.22) 

where we have defined the matrix 

Sll(O1) = X~(k; O1)'X~(k ; O,),  (3.23) 

and the regression power is 

SSRI(k; O1) = IIXi(k; O1)BT(k; o , ) 1 1 2  . (3.24) 

For a given value O1, the statistic Fl(k; O1) will be distributed as a doubly 
noncentral F distribution with 2ql and 2 ( N - q l )  degrees of freedom. The 
noncentrality parameters are 

3,2(O1) = 2B~(k)' X~(k ; @°)'D,(Ol)X~(k; @°)B~(k)lf,(A) (3.25) 

for the numerator and 

y2(01) = 2B~(k)' X~(k ; 0°1)'(1 - DI(Ol))X~(k; O°)B~l(k)/fe(A) (3.26) 

for the denominator, with O ° the true value for O1 and D(O1) the matrix 
product 

D1(19,) = X~(k; @l)'Sfi~(k; @l)X~l(k; 01). (3.27) 

If B~(k)= 0, the signal is not present at any 01 and the test statistic (3.19) 
becomes a central F distribution for any fixed O1. If B~ffk) ~ 0 but 01 = 0 °, then 

3"2(0°) = 2Bi(k )'Sn(O°)B~ffk )/fe(Z ) (3.28) 

and 3'2(0°)= 0, so that the distribution reduces to a singly noncentral F. 
Generally, the procedures is to plot Fl(k; 01) as a function of {91, if that is 
convenient, with the value @1 which maximizes Fl(k; 01) yielding the least- 
squares estimator. One may then apply the asymptotic arguments to note that 
the strong consistency of the least-squares estimator t91 would imply that 

Fffk ; 01) = max FI(k ;191) (3.29) 
01 

is distributed proportionally to a singly noncentral F distribution with 2ql and 
2 ( N -  ql) degrees of freedom. This approach is similar to that advocated by 
Doksum and Wong (1981) in another context. 

The doubly noncentral F distribution which obtains when 191 ~ 1901 can be 
approximated by a constant multiplied by a central F distribution as in Johnson 
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and Kotz (1970, p. 197) or by more exact methods as in Mudholkar et al. 
(1976). For the cases considered here, the ratio y~(On)/y2(On) decreases rapidly 
as O1 moves away from O ° so that using the critical value implied the central F 
distribution seems to give a conservative approximation. 

It should be noted that a modification of the above procedure relating to the 
likelihood ratio test On = O °, B'~(k) = By(k)  has been given by Gallant (1975). 
The asymptotic results imply that the statistic (3.19) should be distributed as an 
F with 2qn + pl and 2 N -  2qn-Pl  degrees of freedom and a slightly different 
noncentrality parameter. The difficulty in applying those results stems from the 
fact that/~l(k) enters linearly so that, for B~°~ (k) = 0, the parameter tgn can take 
on any arbitrary value. 

In order to test for the presence of the second regression function assuming 
that the first has been identified, we may use the generalization of (3.11), 
namely 

_ SSR2(k; O) (N - qn - q2) 
F2(k; O) = F2(k; On, 02) - SSE2(k; O) q2 

with 
B(k; O)= S-l(k; O);C(k; O)'¥^(k) 

m i n i m i z i n g  

SSE2(k ; O) = HY^(k)-X'(k; O)/r(k  ; O)112 

= IIy^(k)ll 2 -  IIX^(k;O)B^(k;O)ll 2 

(3.30) 

(3.31) 

and the regression sum of squares defined by 

SSR2(k; O ) =  IIX'Kk ; O)B'(k; O)1[ 2 .  IIX~(k; On)/~Kk ; ol)112 , (3.32) 

wi th /~(k  ; (91) given, as before, in (3.21). 
For a fixed (gn, the distribution of F(k ; O) may be approximated by a doubly 

noncentral F distribution for O2 ¢ O ° and by a singly noncentral F distribution 
for 02 = O °. For the applications given here, it is adequate to compare 

F(k; 01, O 2 ) =  m a x  F(k; 01, 02) (3 .33)  
02 

with the critical point on the central F distribution with 2q2 and 2(N - q l -  q2) 
degrees of freedom. In this case, O2 also minimizes SSE2(k; On, O2) for a fixed 
O1. Again, we note that the alternate approach given by Gallant (1975) would 
indicate that the numerator and denominator degrees of freedom are 2q2 + P2 
and 2 N -  2q- / )2  respectively. The modifications (3.20) and (3.30) are im- 
portant in applications to signal detection where the directional characteristics 
of the signal depend on the parameter O and must be estimated. The following 
section considers in more detail a particular problem arising in signal detection. 
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4. Appl icat ions  to signal detection 

In the processing of time-series data from arrays monitoring data from such 
diverse subject areas as seismology, radar, underwater acoustics, and in- 
frasonics, one may be interested in the possibility that one or more propagating 
signals are present. In general, the model expressing the fact that q propagating 
signals are arriving at an array can be written as 

q 

yj(t) = ~ tim(t-- Tj(0m))+ ej(t), (4.1) 
m = l  

j = 1, 2 . . . . .  N where tim(t) is the ruth signal, ej(t) is a zero-mean stationary 
noise process as in (1.1), and Tj(0m) is the time delay experienced by the nth 
signal of the j th  sensor relative to its arrival at the origin. The time delays 
depend nonlinearly on the Pm× 1 parameter  vectors em which model the 
particular mode of propagation experienced by the ruth signal. We consider 
here the particular example corresponding to a planar array so that Pm = 2 for 
each of the m = 1, 2 . . . .  , q signals. The parametrization will be in terms of the 
wavenumber vector 8m = (Oral, 0m2)' which can be related to the velocity cm and 
azimuth am of the ruth plane wave signal. For example, if the coordinates of 
the j th sensor are r~ = (rjl, rj2)', the time delay in (4.1) can be expressed as 

Tim (Ore) = 2rrO" rj/a (4.2) 

at some frequency of interest A, and the velocity and azimuth are given by 

and 

A 
Cm : 2~rl0mll (4 .3)  

,44, 

If the signals tim(t), m = 1 . . . . .  q are assumed to be fixed waveforms, the 
model (4.1) is just the regression model considered in the first section and in 
(2.5)--(2.7) for q = 2. In the general case, the N × q matrix of design functions, 
x , ( O ) ,  0 = (01, O' , ' 2 . . . .  0,~)', has elements of the form 

xj~(t) = 3 ( t -  rj(Om)). (4.5) 

It follows that the frequency-domain version of the above model can be written 
in the form 

Y^(k) =,X'(k; @)B'(k)+ • + oa.s.(1) (4.6) 

for some frequency h~ = 2 z r k / T - A ,  where B'(k)  is the D F T  of the signal 
vector and the elements of X ' (k ;  O) are given by 
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X;~ (k; O)  = exp{- i& T/(0~)} 

= exp{-2rr iO'r j } ,  (4.7) 

j = 1 . . . . .  N, rn = 1 . . . . .  q, using (4.2). 
The regression model now can be used to approach the problem of identify- 

ing and resolving a collection of signals propagating across a planar array. We 
will consider separately the case of a single signal q = 1 and the more general 
case where a collection of q signals may be present. The identification of a 
single signal from a specified source can be modeled in terms of detecting a 
signal in a collection of N stationarily correlated time series as in Shumway 
(1972). The incorporation of a procedure for estimating the parameter vector 0 
into the analysis was treated by Hinich and Shaman (1972) for regularly spaced 
sensors using maximum likelihood techniques. We consider here a least- 
squares approach which applies to sensors with coordinates chosen from a 
general bivariate distribution. In addition, we consider the identification prob- 
lem for a multiple signal model using stepwise multiple regression techniques. 

4.1. Detection of a single propagating signal 

In order to derive the regression detector for a single signal ill(t) propagating 
with some general wavenumber coordinate 01 at frequency h as in (1.7) we may 
write the frequency-domain version as in (3.19), giving 

where 
Y~(k) = x~(Ox)BT(k)+ ~, + Oa.dl), 

XI(O1) = (exp{-2zri0[rl} . . . . .  exp{-27ri0{rN})' 

(4.8) 

(4.9) 

is the N x 1 vector describing the propagation characteristics of the single 
signal. The approximate least-squares estimator for the signal with 01 specified 
is (cf. (3.67) and (3.17)) 

/~i(k; 01) = N-1x~1(01) ' Y*(k ) 

N 

= N -1 ~,  exp{2criO[rj}Y;(k) ,  (4.10) 
j = l  

which is just the ordinary beamformed estimator expressed in the frequency 
domain. The estimators 0 and/)~(k ; 0) are defined as the minimizing values for 

SSEI(k ; 0a) = n Y~(k) - x~(O1)B~x(k)ll 2 . 

In this case, using (3.24), 

SSRI(k; 01) = N[/~7(k ; 0,)[ 2 

(4.11) 

(4.12) 

is just the ordinary beampower,  evaluated at 01. Since the range of 01 can be 
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restricted in applications, it is convenient to plot the beampower as a function 
of 01 for a fixed k. Then because of (4.11), the value of 01 maximizing the 
beampower will be the approximate least-squares estimator. 

The test statistic (3.20) may also be plotted as a function of 01, say 

Fl(k, 01) = SSRI(k ; 0,) (2N - 2 )  
SSEI(k ; 01) 2 

(4.13) 

which is also maximized at the least-squares estimator 01, so that F(k; 0x) can 
be compared with the critical point on an F distribution with 2 and 2 N -  2 
degrees of freedom. This is generally more informative than the beampower, 
SSRI(k; 01), since one has an approximate significance test available for any 
observed peak. The distribution of Fl(k; 01) in (4.13) will be again doubly 
noncentral F with noncentrality parameters (3.25) and (3.26) given by 

and 

where 

2NIBI(k )I2-2,,~ , (4.14) 

2NlB~Kk)12 (1 - e:(01)) (4.15) 
~'2(01) = f~(A) 

E2(01)- [Xl(k; O1)'Xl(k; O°)[ 2 
N 2 

~, O°)'rj} 21N2 = exp{2~ri(01 - (4.16) 
j=l 

lies between 0 and 1 and takes the value 1 when 01 = 0 °, the true value of 01. 
The behavior of the noncentrality parameters will depend on the rate at which 
e2(01) decreases as 01 moves away from 0 °. 

The regularity conditions of Jennrich (1969) have been verified by Wu (1982) 
under the conditions that (1) the measure Of bivariate coordinates rj converges 
to a bivariate probability distribution with finite fourth moments, and (2) there 
is positive probability that the location coordinates are linearly independent. 
Hinich and Shaman (1972) have given conditions for uniformly spaced sensor 
locations with the locations scaled by N. Hinich (1981) has studied the array 
response on a geometry with coordinates limited to rational numbers. 

Under the above conditions, one can say that 01 is approximately bivariate 
normal with mean equal to the true value 0 ° and with the covariance matrix 
estimated consistently by 

co"'v(/~l) = ½(2rr)-211~(k;O1)l-2N-~fe(A; 0~)A -~ , (4.17) 

where A is the sample covariance matrix of the bivariate coordinate locations. 
The elements of A are defined as 
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N 
amn = N - 1 E  (Y]m - rrn)(F]n -- Yn) (4 .18)  

j=l 

for m, n = 1, 2, where f,. is the sample mean 

N 
L. = N-  E r#.. (4.19) 

j=l  

The error spectral estimator is given by 

f e ( ~ ;  01) = N -1 S S E I ( k  ; 01) (4.20) 

where SSEI(k; 01) is the error sum of squares defined in (4.11) evaluated at 01, 
/~(k ;  01). A joint (1 - a )  confidence ellipse for 011 and 012 can be computed 
using the inequality 

0 ~1-2 fe(A ; 01) F , (01 - 0 1 ) ' A ( 0 1  - 01) ~ (2~r)-2lBi(k ; 1)[ ( N -  1) 2,2~¢-2;~ (4.21) 

where F2,2N_2; a denotes the upper a critical point on an F distribution with 2 
and 2N - 2 degrees of freedom (see also Gallant (1975) who recommends 2 and 
2 N -  4 degrees of freedom). The confidence region (4.21) can be "displayed in 
the usual way as the region enclosed by an ellipse in (011, 012) coordinates. 
Confidence intervals for the related velocity and azimuth, Cl and al, defined by 
(4.3) and (4.4) can be read directly off the plot of (4.21) by noting that Cl is the 
length of a radius line centered at 01 ~--- (0, 0) and passing through 01 = (011, 012)', 
whereas a is the angle measured clockwise from north. Alternately, the delta 
method may be applied as in Hinich and Shaman (1972) or Wu (1982). 

In order to give an example of the detection procedure for a small (N = 5) 
seismic array, consider the two long-period signals, taken from Lambert  and 
Der (1973), shown in Fig. 5. Those signals were generated by events from Baja, 
California and Guatamala and were measured at a small subarray within the 
Large Aperture Seismic Array (LASA) in Montana consisting of a center 
element and four outside elements spaced approximately uniformly on a circle 
with radius 30 km. The 'signals' of interest are assumed to be long-period 
Rayleigh waves with periods of 21 seconds and wavenumber coordinate satis- 
fying (-0.02 <~ 011 ~0.02, -0.02 ~< 012 <~ 0.02) which are roughly compatible with 
signals traveling faster than 3km/sec. The sampling rate was 1 point per 
second, yielding a folding frequency of 0.5 Hz, whereas the frequency interest 
was 2~'h -- 0.047 cycles per second. In Fig. 6, it is obvious that the beampower 
and F statistics have the same maximum, which corresponds to least-squares 
estimators of 01 = (-0.002769, -0.01146)' for the first signal and 02 = (0.008308, 
0.009167)' for the second signal. Converting these values to velocities v and 
azimuths (measured clockwise from 12:00 o'clock), using (4.3) and (4.4), we obtain 
Cl = 3.98km/sec and al  = 194 ° for the first signal and c2 = 3.79km/sec and 
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Fig. 5. Two long-period signals separately and combined with noise (taken from Lambert  and D e r ,  

1973). 
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Fig. 6. Analysis of first two signals in Fig. 5 showing peaks at respective wavenumber coordinates 
(the outer dotted circle denotes c = 3 km/sec). 
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a2 = 132 ° for the second signal. The  critical value for the F statistic in this case, say 
F2,8,;0.01 = 8.65, can be compared  with the max imum values 220 and 100 which are 
observed on the two wavenumber  F plots. It can be seen that the values decay 
rapidly down to insignificant levels once we move  away from the estimated center 
coordinates.  

Thus, the problem of detecting a single signal using the wavenumber  F 
detector  seems to be  reasonably straightforward when there are no interfering 
signals. However ,  the third set of observed series in Fig. 5 shows a contrived 
mixture of the two signals with an additive noise component .  The  wavenumber  
plots resulting f rom analyzing this mixture are shown in Fig. 7, and we note 
that  the observed value of 16 exceeds F2,8;0.05 = 4.46 so that the peak  is 
significant at the a = 0.05 level. The est imated wavenumber  coordinates f rom 
this mixture correspond to a velocity of c2 = 4.19 km/sec and an azimuth of 
a2 = 125 °. However ,  we note also that there is little indication in either of the 
plots that there might be  a second signal present  at another  set of wavenumber  
coordinates.  Since, in this case, the other  signal is known to be present,  we 
would like to be able to design further test statistics which could detect 
additional signals. This problem is considered in the following section. 

4.2. Detection in the multiple signal case 

We assume now that an array may have more  than a single-signal present  
and consider a sequential method for determining the number  of unknown 
signals q as well as their associated wavenumber  parameters ,  say 01,/12 . . . .  ,/1q. 

More  specifically, we assume the presence of ql propagating signals at some 
stage with Wavenumber parameters/11, /t2 . . . . .  /1ql and test for the presence of 
an additional signal. That  is, for a model  of the form 

Beam Power =SSRI (k ;  21) F-Statistic Fl(k; 01 ) 

Mixture 

o o11  , 
I 1, '  ',,', 

eli ol-..--~l, i o I - - - . . . i  ! 

U, .o.o,[ 
- ° - °21~' - , ,  , , - -  , , 

-0.02 -0.01 0 0.01 0.02 

0.01 

.o.o, 

- 0 . 0 2  
h i 

-0.I02 -0.I01 0 0.01 0.02 

011 011 

Fig. 7. Analysis of the mixture of two signals showing a weak preliminary detection corresponding 
to the approximate coordinates of the second signal. (The outer dotted circle denotes c = 3 kin/see.) 
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ql  

Y~(k) = Y. x~,(Sm)B~,(k) + xql+a(Oql+l)Bq,+l(k ) + l~k + Oa.s.(1) , 
m = l  

(4.22) 

we wish to examine the effect of the (ql + 1)st regression signal. As a simple 
approach, the following stepwise procedure has been used with some success. 
Assume that a single has been detected by the method given in the previous 
section with the estimator for 01 given by 01. Then, regard 01 as being fixed at 
01 in (4.22) and consider testing the hypothesis that a second signal B'~(k) is 
present at some unspecified wavenumber coordinates 82. This would involve 
fitting the reduced model estimating B~(k) only and then fitting the full model 
estimating B~(k), B~(k) and 02 as in (3.30) to (3.33). If the test statistic 
F2(k; 01, 02) with 2 and 2N - 2 degrees of freedom indicates that B~(k) is present, 
then consider calculating F2(k; 01, 02) fixed at 02, the estimated coordinates of the 
second signal. The procedure can be repeated until 01 and 02 change by negligible 
amounts. Blandford et al. (1976) have shown that this procedure converges when 
applied in the time domain with known values for 01 and 02. In general, at the stage 
when ql signals are present at wavenumber coordinates 0x, 02 . . . . .  Oq~ as in (4.22), 
setting the wavenumber coordinates at the current estimated values leads to a 
version of (3.28) with 2 and 2 ( N -  q0 degrees of freedom, where X](k; O1) = 
(x~(01) . . . . .  Xql(Oq~)) and /~(k ; O1) = (B~(k ; 01) . . . .  , Bq~(k; 0q~))'. Furthermore, 
B^(k; @a, 8q~+1) and ~ = A , (@1, 8q1+0 jointly minimize 

SSE2(k; O1, 0q,+l)= IIY^(k)ll 2 -  IIX^(O1, 8ol+0B^(k; O1, 6q,+0112 , (4.23) 

regarded as a function of the regression coefficients and the last wavenumber 
coordinates 0q1+1. 

In order to apply this method to the mixture of two signals in Fig. 5, consider 
testing the hypothesis that another signal is present against the alternative 
single signal model indicated by the wavenumber plots in Fig. 7. In this case, 
since the signal added first was the second signal in Fig. 5, we consider testing 
B~(k ) = O . 

Fig. 8 shows that the other signal (B~(k) in this case) is present with an 
observed F of 29, well over the 0.01 significance value Fz6;0.m = 10.9. The 
estimated wavenumber coordinates for this signal correspond to a velocity of 
3.83 km/sec and an azimuth of 184 °. After B~(k) is in the model a test was 
made to consider deleting B'~(k) and the result is shown as a contour plot of 
Fl(k ; 01, ~2) on the right-hand side of Fig. 8. In this case, the maximum value of 
81 for the F statistic gives a much stronger detection than the initial value 
indicated by the wavenumber plot in Fig. 7. No change was indicated for the 
estimated wavenumber coordinates in this second determination. A search for 
a possible third signal using the model (4.23) in the special case ql = 2 yielded a 
plot with no significant peaks. The two plots of the F statistic in Fig. 8 then, 
may be regarded as the final diagnostics relating to the number and origin of 
signals in this particular mixture. Table 1 below compares the known velocity 
and azimuth computed for the pure signal case with those obtained by the 
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Fig. 8. Stepwise regression detectors for the mixture of two signals shown in the third column of 
Fig. 5. 

Table 1 
Es t imated  velocities (ci) and azimuths 
(ai) for the  mixed signal case compared  
with the  known values 

Known Estimated 

Cl (km/sec) 3.98 3.83 
O~ 1 (o) 194 184 
c2 (km/sec) 3.79 4.19 
t~2 (o) 132 125 

stepwise resolution of the mixed signal data. It is evident that the estimators 
from the mixed signal sample are slightly biased. In this case, one might iterate 
further using Gauss-Newton corrections for the complete parameter  vector 
(B~(k), 011, 012, B~(k), 021, 022), but we have not investigated this procedure.  

4.3. Other procedures derived from stochastic signal models 

While the approach advocated here has been formulated using a deter- 
ministic signal model, there may be certain situations where a random signal 
model might be more appropriate. For  example, suppose that in t h e  multiple 
signal model 

q 

Y^(k) = ~, xd,(O,,)Bd,(k)+ ~k + Oa.s.(1), (4.24) 
m=l 



404 R. H. Shumway 

we regard the regression coefficients as being DFT's of normal zero-mean 
stationary processes. If the signals are uncorrelated with EIBF.(k)I2=f,.(,X), 
then the complex covariance matrix of the vector Y^(k) will be 

q 

XO t) = E(Y^(k)Y^(k)  ') = ~ f,.Ot)x£(O,,)Xm(O,,)' + f,(A)IN. 
rn= l  

If one obtains a sample of Y^(k) over a set of K frequencies in the neighbor- 
hood of A, a nonsingular estimator for the spectral matrix in (4.25) can be 
constructed as 

.,~(;t ) = K - '  ~'~ Y^(k )Y~(k ) ' (4.26) 
k 

if K > N .  
The ordinary beampower (4.12) in the single signal case, say (4.12) can be 

written in the form 

SSR,(k; 01) = N-Xx~(O~)'Y^(k)Y^(k)'x~(Oa) 

so that smoothing over K frequencies yields 

SSRll = K -1 ~ SSRl(k ; 01) 
k 

= N-'x7(O3'2(, )xi(03 (4.27) 

which is a Hermitian form in the sample spectral matrix. Capon (1969) 
considered an alternate detector, defined in terms of the spectral matrix which 
takes the form 

d ( o l )  = (4.28) 

and was shown by Capon and Goodman (1970) to be distributed proportionally 
to a chi-square random variable with 2 ( K - N  + 1) degrees of freedom. The 
proportionality constant depends on x~(O1)'Z-l(A)x~(el) where ,X(A) is the true 
covariance matrix (4.25), so that a rejection region with a specified significance 
cannot be defined unless one assumes values for 01, fl(A) and/e(A). Further- 
more, the matrix $()t) will be singular unless one smooths over a broad band 
or makes a ridge type modification suggested by Capon (1969) which amounts 
to replacing 2~(A) by 2~(A)+ 82IN, where 82 is a small positive constant. Some 
examples are given in Lambert and Der (1973), Woods and Lintz (1973), and 
Capon et al. (1967, 1969). 

Another possible estimator is suggested by the principal component 
representation (cf. Booker and Ong, 1972) 
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N 
,~(A ) = Z Amama~ , ( 4 . 2 9 )  

m=l 

where A1 . . . . .  , Au are the eigenvalues of the spectral matrix ,~(A) and the 
eigenfunctions a l , . . . ,  aN presumed to correspond approximately to the com- 
plex vectors x~,(Ox) appearing in (4.24). In general, plane wave vectors (unlike 
the eigenfunctions) are not necessarily orthogonal, and Der and Flinn (1975) 
have shown simulated examples where the principal component resolution 
gives the incorrect components. 

5. Discussion 

The approach presented in this paper has concentrated on a lagged regres- 
sion model which adapts well to applications involving the resolution of 
propagating signals. Hence, the main thrust of the presentation involved a 
known design matrix, depending possibly on an unknown parameter vector O. 
The special assumptions made in this particular version of the lagged regression 
model were supported by noting the great number and variety of applications 
existing in the physical sciences. In general, the nature of the various physical 
phenomena under consideration was such that the waveforms of the various 
signals generated tended to be confined within relatively narrow frequency 
bands. This suggests that the frequency domain would provide" the natural 
setting for estimation and testing problems. 

If the number of signals and their propagation characteristics, as measured 
by the parameter O, are well known, one may develop approximations to 
BLUE estimators for their waveforms, using equations expressed in the 
frequency domain. This problem is an important one when the primary object 
of the processing is to provide an undistorted version of the signal for use in a 
possible identification procedure. For example, the problem of distinguishing a 
waveform originating as an underground nuclear test from that generated by an 
earthquake (cf. Shumway, 1980) requires that one make certain measurements 
directly from a waveform. The problem of using an array of sensors to process 
physical data expressed in terms of propagating plane waves then, is exactly the 
problem of estimating the regression functions in the model that we have 
considered in the second section. 

The case where neither the number nor the general propagation charac- 
teristics of the signal sources are known poses two additional problems. Even if 
we assume that the plausible sources are known exactly, determining the 
number of signals present in the mixture depends on simultaneous evaluation 
of a number of different models. If the source characteristics as well as the 
number of signals are unknown, some of the approximate theory available for 
nonlinear least-squares methods can be combined with stepwise methods to 
produce simultaneously, estimators for the number of signals q and their 
associated wavenumber parameters O = (0~, 0~ . . . . .  0~)'. This approach is 



406 R. H. Shumway 

g iven  fo r  t h e  g e n e r a l  case  in S e c t i o n  3 a n d  i n v e s t i g a t e d  br ie f ly  wi th  s o m e  

e x a m p l e s  i n v o l v i n g  t h e  d e t e c t i o n  of  i s o l a t e d  o r  m u l t i p l e  p r o p a g a t i n g  s ignals  in 

S e c t i o n  4. T h e  r e a d e r  is c a u t i o n e d  tha t  t he  a p p r o x i m a t e  d i s t r i bu t i on  t h e o r y  fo r  

th is  ca se  d e p e n d s  b o t h  on  t h e  s a m p l i n g  p r o p e r t i e s  of  t h e  D F T  and  on  r e g u l a r i t y  

c o n d i t i o n s  fo r  t h e  d e r i v a t i v e s  wi th  r e s p e c t  to  O of  t h e  m e a n  r e g r e s s i o n  f u n c t i o n  

) ( ' ( k  ; O ) B ' ( k ) .  T h e  sma l l  s a m p l e  va l id i ty  of  t h e  F s ta t i s t ic  a p p r o x i m a t i o n  u n d e r  

t h e  nul l  and  a l t e r n a t i v e  h y p o t h e s e s  s h o u l d  b e  v e r i f i e d  by  s i m u l a t i o n s  l ike  t h o s e  

p e r f o r m e d  by  G a l l a n t  (1975). 
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Computer Programming of Spectrum Estimation* 

T o n y  Thra l l  

I. Introduction 

In this chapter  we present an overview of computat ional  approaches to 
nonparametr ic  univariate spectrum estimation. Our  goal is to familiarize the 
statistical software user with the terminology and methods  embodied  in cur- 
rently available programs,  and to mention some recent developments  that 
should soon be available. 

The  basis of our discussion is a real-valued time series x(t), t an integer, 
which we observe for t = 0, 1, 2 . . . . .  T -  1. We suppose that x(t) has finite first 
and second moments  

Elx(t)[, Elx(t)lZ<oo for all t (1.1) 

and that it satisfies certain stationarity and mixing assumptions of the form 

cx = Ex(t)  

c=(u) = cov(x(t  + u), x(t)), independent  of t (1.2) 
and 

Ic=(u)l < (1.3) 
U ~ - - e e  

The stationarity assumption (1.2) implies that the mean  value and correlation 
structure of x(t) do not change over  time. The  mixing assumption (1.3) implies 
that any pair of observations far removed  in t ime are essentially uncorrelated.  
Assumptions (1.1)-(1.3) are sometimes extended to higher than second 
moments ,  and (1.3) is sometimes strengthened to be of the form 

[ulPlcx~(u)l <00 (1.4) 

for some positive integer p. 

*This work was supported by the VA Brentwood Medical Center, the Alcohol Research Center, 
UCLA, and by NSF grant no. CDP80-30837. 
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We call c=(u), regarded as a function of integer lag u, the autocovariance 
function of x(t). Assumption (1.3) enables us to define the Fourier transform 

s=(a)= ~ Cx~(U)exp(-27riau) (1.5) 
U=--e~ 

called the spectrum (spectral density, power spectrum) of x(t)  at frequency a. 
From (1.2) and (1.5), it may be shown that 

s=(a) >I O, (1.6) 

s ,~(-a)  = Sxx(a), (1.7) 

s=(a + n) = Sx~(a) for integer n .  (1.8) 

Also from (1.5), we have the inverse relation 

f 1/2 

Cxx(U) = Sx,(a) exp(27riau) d a .  
a - 1/2 

(1.9) 

Setting u = 0 gives 

f 1~2 
var x(t) = c,~(O) = s,=(a) d a .  

3 - 1/2 
(1.10) 

From (1.10), we see that the variance of x(t)  is distributed over a continuous 
range of frequencies, and that Sx~(a) is the density of this distribution. Using 
the Cramer representation (see, for example, Brillinger, 1975, Section 4.6), we 
may further interpret Sxx(a) as the relative contribution of sinusoidal variation 
at frequency a to the overall variation exhibited by the time series x(t). 

In this paper, we address the problem of computing an estimate of s~(ot) from a 
single, partial realization x ( 0 ) , x ( 1 ) , . . . , x ( T - 1 )  of the time series x(t). 
Historically, the approach to this problem has been to estimate the auto- 
covariance function 

with 

1 
e=(u) = To_ Y  (x(t + u)-  2)(x(t)- 2) (1.11) 

, t+u<T 

1 T - 1  
2 = -~ ~,  x(t)  (1.12) 

t=O 

for a number of lags u and then to calculate the estimated spectrum g=(o~) as 
a weighted transform of 6xx(U): 

U 

g=(a)=  ~ w,~=(u)exp( -27r iau) .  (1.13) 
u = - U  
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With the popularization of the fast Fourier transform (FFT) by Cooley and 
Tukey (1965), another approach to spectrum estimation has been widely 
adopted. This entails Fourier transforming the data 

T-1 

J~(w) = ~', x(t) exp(-2zriwt) (1.14) 
t=O 

at a discrete set of frequencies, e.g. 

toj=j/T, j = 0 , 1 , 2  . . . . .  T - l ,  (1.15) 

forming the periodogram 

1 
hx(o ) = I/x(o )l 2 (1 .16)  

as a crude estimate of the spectrum, and then smoothing periodograms to 
obtain the final estimate, i.e. 

g=(ol) = weighted average (hx(tOj)), toj near a .  (1.17) 

Both covariance-based estimates (1.13) and periodogram-based estimates 
(1.17) are used in present-day statistical packages (e.g. BMD, BMDP, SAS, 
SPSS) and subroutine libraries (e.g. IMSL, STATLIB). Both approaches are 
highly flexible due to a number of refinements which we shall discuss. 

General references for this chapter are Bloomfield (1976), a well-written 
introduction to frequency-domain analysis containing pertinent Fortran 
subroutine listings, Brillinger (1975), containing precise formulations and 
proofs for a wealth of useful results, and Thomson (1977), treating in depth the 
more sophisticated techniques mentioned here. 

2. Two methods of estimation 

We now turn to a more detailed discussion of the sequence of computations 
for covariance-based and periodogram-based spectrum estimates. 

The weights wu used for the covariance-based spectrum estimate (1.13) are 
conveniently generated by an autocovariance weighting function, or lag window, 
w(x) with Fourier transform 

W(a) = f~® w(x) exp(-2zriax) dx. (2.1) 

W(a)  is often called the spectral window. From (2.1) follows the reciprocal 
relation 
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w(x) = f~= W(a) exp(2rriotx) da .  (2.2) 

We usually require w(x), W(o~) to be real-valued, even functions satisfying 

and 

w(0) = I_= W ( a ) d a  = 1, 

f~_w(x)2dx=f?. W(ot)2 dot < ~ , 

f~_~ Iw(x)ldx, f~_= Ixl Iw(x)l dx < ~ ,  

(2.3) 

(2.4) 

(2.5) 

the last requirement implying the existence, boundedness, and continuity of 
W(a), W'(a). The lag windows commonly used for covariance-based estimates 
also vanish outside some interval, i.e. 

w(x) = 0 for Ixl > x0, (2.6) 

typical examples being 

I 1 - 6x2(1 - Ixl), 
Wp(X) = 2(1 -Ixl)  =, 

10, 
and 

(1 + cos rrx)/2, 
w ~ ( x )  = O, 

[xl~<½, 
½~ I xl~ 1, (2.7) 
Ixl~l,  

Ixl-< 1 ,  (2.8)  
Ixl>l. 

The cubic spline function (2.7) was proposed by de la Valle-Poussin and by 
E. Parzen, while the cosine-shaped function (2.8) is associated with R. W. 
Hamming and J. W. Tukey. Both (2.7) and (2.8) have nonnegative Fourier 
transforms W(.). A concise survey of window functions is given by Ge~kinli 
and Yavuz (1978). 

A general class of covariance-based spectrum estimates may be written as 

T - 1  

gx~(a) = ~ w(13rU)e=(u)exp(-2~riau) (2.9) 
u = - T + l  

with expected value 

O 1 =f==W(w)s=(ot-~7~o)dw+ (~rT)" (2.10) 

See Sections 5.9 and 7.7 of BriUinger (1975) for further details. 
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The integrand in (2.10) becomes concentrated about frequency a as band- 
width parameter fiT approaches zero, while the error term is reduced as/3rT 
becomes large. Hence the estimate (2.9) is asymptotically unbiased if/~r ~ 0 
and flTT--'> oo as T-+ oq e.g. if f iT  = O(T -r) with 0 < y < 1. If, as in (1.13), lags u 
with [u[ > U are to receive zero weight and if (2.6) holds, we may set 

fiT = Xo/(U + ½). (2.11) 

Selection of bandwidth parameter fiT is further discussed in Section 6. 
The sequence of computations for the covariance-based spectrum estimate 

(2.9) is thus: 
(a) form ~ ( u ) ,  
(b) multiply by W(13TU), 
(C) Fourier transform. 
In the next section we describe how steps (a) and (c) may be efficiently 

carried out using a fast Fourier transform (FFT) algorithm. 
Employing the above notation and taking particular note of (2.10), a general 

class of periodogram-based spectrum estimates may be written as 

1 1 W (~_~ZTO')I= (Oj), 
~=(~) = ~ j,0~o~ ~ 

(2.12) 

The expected value of (2.12) is again given by (2.10). By excluding integer 
multiples, j = nT, from the sum in (2.12), the weight given to I=(n) is zero. This 
is done because I=(n) (=I~(0)) is not even a crude estimate of s,~(n) (=s=(0)), 
but rather reflects the sample average 2, i.e. 

1 
I ~ ( n )  = -~ [Jx(n)l 2 = T ~  z . (2.13) 

In principle, the summation in (2.12) may extend over all noninteger Fourier 
frequencies oj = fiT. In practice, of course, the summation is finite, for using 
the periodicity of the periodogram 

Ix~(O + n) = 1=(o), n an integer, (2.14) 

we may weight the periodogram I~(Ok), 0 < O k < 1, by 

-- --oi+ n) 
n = - ~  ~ T  / ~ 0 , ~ t o / < l  n = - ~  

(2.15) 

We have thus 'folded' the weights (1/13T)W((oe- ¢oj)/13T), --oo<oj <~, oj 
noninteger, into the frequency range 0 < ok < 1 and normalized these weights 
so that they sum to unity. By taking advantage of symmetry about ½, i.e. 

Jx(1- o)  = Jx(o),  
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implying, 

1=(1  - w )  = Ix~(~o), (2.16) 

we may further fold weights Wk(a) into the interval 0 < o k ~ 1 viz. 

so that 

~w,(a)+ WT-k(~), O<o~k<½, 
W~(~) = (W,(,),  o,, = ~, 

W~(a)= ~ Wk(a)=l. 
0<tok~l/2 0<t0k<l 

(2.17) 

(2.18) 

Under these conventions, the spectrum estimate (2.12) becomes 

0<t0k~<l/2 

= ~ Wk (~)1= (O,k). 
O<t~k<l 

(2.19) 

The periodogram-weighting procedure we have outlined works for any 
spectral window W(a) (assuming the divisor in (2.15) is nonzero), but we 
usually simplify the procedure by requiring W(a) to vanish outside some interval, 
i.e. 

W(a)  = 0 for la[ > ao- (2.20) 

(In general, (2.6) and (2.20) do not hold simultaneously.) Then for 0 < a < 1 
and for sufficiently small ~T, Wk(a) is proportional to W((a- tOk)//3r) and 
therefore at most (1 + 2flrTao) out of T periodogram values receive nonzero 
weight. Common choices for W(a) are the rectangular window 

{1, {~l~<l, (2.21) 
WR(,~)= O, I'~1 >~, 

and a cosine-shaped window 

Wc(a)= ~ 1+cos , 1~1~, 

lo ,  I~[>~, 
(2.22) 

(the coefficients of the latter having 19een chosen so that Wc(a) and WC(O~) 2 
integrate to unity as discussed in Section 5). 

The spectrum estimate (2.9) is the discrete Fourier transform of a weighted 
sample autocovariance function, while (2.19) is a weighted average of periodo- 
gram ordinates. In both cases the weights are generated by sampling a rescaled 
lag or spectral window function, w(x) or W(a),  respectively. This has been 
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done as a matter of convenience, allowing us to obtain asymptotic expressions 
of the form (2.10). In many spectrum estimation computer programs, the user is 
offered a limited selection of weighting functions (i.e. windows), but even when 
the user desires or is required to construct his own set of weights, it is usually 
convenient to think in terms of a window, or weight-shaping function. 

A point to be noted in this framework is that the choice of bandwidth 
parameter /3T may not in reality by takeh as arbitrarily large or small. If (2.6) 
and (2.9) hold, taking fiT > x0-produces a constant spectrum estimate, i.e. 
g~(a) = ~(0)  for all a. If (2.19) and (2.20) hold, taking fiT < (2Ta0) -1 produces 
estimates that are either zero or equal to the nearest periodogram value. 

Another practical point is that we usually estimate the spectrum at a grid of 
frequencies, i.e. we compute and plot 

gx~(aj), a i = j/n~, j = O, 1, 2 , . . . ,  In J2] .  (2.23) 

Computational efficiency is achieved for covariance-based estimates by 
employing the fast Fourier transform (see Section 3). For periodogram-based 
estimates, computing time will be reduced if the periodogram weights Wk(aj) 
need not be recomputed for each aj. This is the case when a simple average of 
periodogram values is formed (W(a) = WR(a)) or when the band centers aj are 
restricted to a subset of the Fourier frequencies Wk, and g=(aj) is a moving 
average of Ixx(tOk) with fixed coefficients. Bloomfield (1976) and others have 
suggested this last approach. 

The choices of method, window, and bandwidth parameter are no longei 
hotly contested as they were during the period of intense development of 
spectrum estimation techniques following the Cooley-Tukey (1965) paper. 
These choices, nevertheless, have no simple resolution and must be left to the 
user's discretion. 

On computational grounds, covariance-based spectrum estimates require up 
to three Fourier transformations, whereas periodogram-based estimates require 
only one. The covariance-based estimate may be more efficient, nonetheless, 
when the number of nonzero weights Wk(a) for the corresponding periodo- 
gram-based estimate is large. See Cooley, Lewis and Welch (1977, p. 406). 

Qualitatively, the two methods produce similar results. To better compare 
the methods, we may rewrite the covariance-based estimate as (1) a cosine 
polynomial and (2) a continuously weighted periodogram average. The first 
version is obtained by supposing that lags u, lul > u,  receive zero weight, so 
that 

U 

gx~(a)= ~] W(13ru)d,~(u)exp(-27riau) 
u=-U 

U 
= ~(0 )  + 2 ~ W(13TU)e~x(U) cos(2zrau) 

U=I 

U 

= 6xx(O) + 2 ~ W(13ru)6=(u)Pu(cos(2~ra)), (2.24) 
u = l  
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where Pu is the Chebyshev polynomial of degree u. Thus (2.24) is a polynomial 
in cos2crot of degree U. By (2.11), U and /3T are approximately inversely 
proportional, so that a smaller bandwidth parameter/3T implies a higher degree 
polynomial in cos 2~-a. Conversely, covariance-based smoothing via selection 
of a larger bandwidth parameter/3T amounts to the selection of a lower degree 
polynomial. 

Expression (2.24) may be used to highlight the difference between the two 
methods, for the density estimate (2.24) is a polynomial approximation to the 
underlying spectrum, whereas periodogram-based estimates bear a closer 
resemblance to histograms. 

The next expression for covariance-based estimates emphasizes the similarity 
between the two methods. Let 

Y(t) = x ( t ) -  ~ (2.25) 

so that 

I~(o~) = 1 ij~(o~)l = 

I T-1 T-1 
= -T ~ ,=o ~2 ~(s)2(t) exp(-2~ri(s - t)o)) 

T-1 
= ~'~ d=(u)exp(-27riwu). 

u=-T+l 
(2.26) 

We may thus obtain 

~=(~)  = W (13Tu )d=( u ) exp(-2~riau) 
lul<T 

(f_i  W(a-t°]exp(27ri(a-t°)u)dw) 
I.l<T \ ~ ]  

x 8=(u) exp(-2criau) 

f_° 1 ( a - t o ) (  exp(-27ritou)) dto = w -  ~ e=(u)  
~ T  fiT [u[<T 

~° 1 W ( a -  oJ~ I~(oJ) doJ (2.27) 

The covariance-based estimate (2.27) therefore closely resembles the periodo- 
gram-based estimate (2.12), especially in light of the fact that 

I,e(toj) = I=(toj) for noninteger toj = f iT .  (2.28) 
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See Theorem 5.9.1 in Brillinger (1975) for a bound on the difference between 
the two estimates (2.12) and (2.27). 

Summarizing the issue of which method to use, we may say that for 
moderate values of T, e.g. less than 500, the covariance-based estimate, viewed 
as a cosine polynomial (2.24), tends to produce a smoother result than the 
periodogram-based estimate, particularly when the latter employs the rec- 
tangular window WR(a). On the other hand, periodogram-based estimates are 
often computationally simpler an.d faster than their covariance-based counter- 
parts. 

As for the selection of lag or spectral window and the selection of bandwidth 
parameter fiT, both choices effect the smoothness of the estimate, i.e. the 
apparent continuity of g=(aj). The bandwidth parameter /37, however, is 
probably more deserving of our attention for it usually has a more pronounced 
effect upon the estimated spectrum. Also, the question of exactly what value of 
/3r to choose may be (and typically should be) circumvented by estimating the 
spectrum at several bandwidths. From (2.10), we see that what is being 
estimated is not precisely the spectrum but a smoothed version of the spec- 
trum. Thus the estimand changes with our choice of fiT. The selection of fiT 
must be a compromise between a small value that better portrays the spectrum 
at one frequency and a large value which increases the number of periodo- 
grams averaged and thus reduces the variance of the estimate. See Section 6 for 
further remarks. 

3. Fast Fourier transform (FFT) algorithms 

The spectrum estimate g=(a) requires the Fourier transform of either the 
estimated autocovariances dxx(U) or the data sequence x(t). A direct ap- 
plication of the formula for Jx(to), the Fourier transform of x(t), entails T 
operations (complex multiplications and additions) per frequency. In 1965, 
Cooley and Tukey published an algorithm for calculating the Fourier transform 
at T equispaced frequencies involving significantly fewer operations than the 
number T 2 used in directly applying the formula. It turns out that similar 
algorithms had been published previously by other authors, but under the 
impact of the Cooley-Tukey paper, what had once been an impractically long 
calculation became a widely used tool and a model of computing efficiency. 
The algorithms for the rapid calculation of the Fourier transform at a discrete 
set of frequencies are collectively known as the 'fast Fourier transform' or 
'FFT'. See Cooley, Lewis and Welch (1977) for a detailed discussion of these 
algorithms and their history. 

A brief description of one version of the algorithm is as follows. Suppose T 
can be factored into two integers T = T1T2 and that frequencies to of interest 
are of the form to = (jlT2+j2)/T, with jl, j2 integers. Then 
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T - 1  

Jx(to) = ~ exp(-2~itot)x(t) 
t=0 
TI-1  T2-1 

= ~ ~ expl -~- ( j lT2+j2) (h+t2TOIx(h+t2TO 
tl=0 t2=0 I ~t ] 

r1-1 r 27ri, / ~ 27ri. ) = E expl-  Jlt'  exp/- TJ2t'/ 
tl=0 

T2-1 

exp l -  ÷ (31, 
t2=O 

Now consider the following steps: 
(a) arrange X(tl + t2TO in a rectangular array, with row-index tx and column- 

index t2; 
(b) Fourier-transform each row at frequencies j2/T2, ]2 = 0, 1, 2 , . . . ,  T2- 1 so 

that j2 becomes the new column index; 
(c) for each element (h, ]2) of the array multiply by exp{-(2rri/T)j2h}; 
(d) Fourier-transform each column of the array at frequencies jl/T1, J1 = 

0, 1 , . . . ,  T1- 1 so that ja becomes the new row index. 
The number of required operations is T~T~ in step (b), T in step (c), and 

TET 2 in step (d) for a total of (1+ 7"1+ T2)T operations (we should also 
mention that a fair amount of computational effort may be required in step (a), 
where the original sequence x(t) is permuted). If T2 may be factored as 
7"2 = T~T3, then the T1T~ operations in step (b) may be replaced by T1(1 + T~+ 
Ta)T~T3. In general, the algorithm may be refined and extended so that for 
T = T1, . . . ,  Tk the required number of operations is of the order (Ta+ . . .  + 
Tk)T. As an example, if T = 1024 = 2 ~°, the algorithm requires approximately 
twenty thousand operations compared to one million operations, ap- 
proximately, required by direct application of the formula. 

Cooley, Lewis and Welch (1977) provide further modifications of the basic 
algorithm that allow one to take advantage of the sequence x(t) being real 
rather than complex, that produce an inverse Fourier transform, or that 
simultaneously calculate the Fourier transform of two real sequences x(t) and 
y(t). We will concentrate on using the FFT to calculate estimated auto- 
covariances ~xx(U). 

Let U be the largest integer lag at which d~(u) is to be calculated, and take 
an integer S/> T + U. Note that U need not exceed T -  1 for our purpose, 
since 6=(u) = 0 for lul > T -  1. Now form the sequence 

£ ( t ) = { ;  ( t ) - £ '  T < t < S  .O~<t<t' (3.2) 

Using the fast Fourier transform to compute 

S-1  T - 1  

Je(tOk) = ~ X(t) exp(--2~'itokt)---- ~ 2(t) exp(--27ritokt) (3.3) 
t=0  t=0 
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for Wk = k/S, k = 0, 1, 2 . . . . .  S - 1, we form the periodogram 

1 
-- IJ (,o )l 2 

= ~ 6xx(V) exp(--2~rio~kv) (3.4) 
Iol<T 

as in (2.26). Using the FFT a second time, we may compute 

1 s-1 1 s-a 
- ~  I~(O~k) exp(27riwku) = E dxx(V)-~ exp(27rkok(U - v)) .  (3.5) 

k=O= I~I<T k=O= 

The second factor in (3.5) is unity when v - u is a multiple of S and is zero 
otherwise. For  lu[ < T, (3.5) thus reduces to 

ex (U + S), - T u 0 , 
dx~(u)+d,~(u-S), 0 ~ < u < T ,  (3.6) 

and we therefore obtain 

6=(u) = 1 s-1 
~k~_0 Lu(O)k) exp(2zrlO)kU), lul < U, (3.7) 

as desired. In order to conveniently compute the spectrum estimates 

g=(aj )= ~'~ W(13Tu)~,~,(u)exp(--2~riaju), 
lul<U 

ai =j/n~, j = 0, 1 , 2 , . . . ,  [n J 2 ] ,  (3.8) 

we may take n~ I> U + 1 and use the FFT for a third time. When n~ > U + 1, 
this can be done by padding the calculated covariances with zeros: 

dxx(U)= ~x~(U), [u[ ~< U,  (3.9) 
t o ,  U <lul<n , 

Cooley, Lewis and Welch (1977) recommend special variants of the FFT for 
cases, such as (3.8), where the sequence to be Fourier transformed is real and 
even. 

4. Tapering and padding the data 

The periodogram can be regarded as a crude estimate of the spectrum. Its 
primary defect as an estimate is its large variance, but it also suffers from bias. 
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If 

and 

then 

T - 1  

Jx(o~) = ~'~ x( t )  exp(-2rrio~t) 
t=O 

Xx (,o) = l l jx( ,o)12 ,  

! fl/2 fsin 7rT(o~ - a)]2 i , , 1 [sin 7rToJ] 2 z 
Elxx(tO) = T J-m [ sin zr(to - a )  J s~(a)  da + -~ [ ~ J  cx, 

(4.1) 

where cx = Ex(t ) .  
When o~ is a Fourier frequency, i.e. of the form ~o = k/T,  the second term 

will vanish. Nevertheless, bias will remain in the estimate because the function 
multiplying the spectrum s=(a) in the first term of (4.1) has not only a major 
lobe at frequency oJ but also has sidelobes of significant magnitude. Thus 
values of the spectrum s=(a) at frequencies a removed from oJ can affect the 
expected value. This phenomenon is sometimes called leakage across frequen- 
cies. 

One way of reducing the effect of the sidelobes is to multiply the data 
sequence x( t )  by a function, or data taper (data window), hr ( t )  which is 
typically taken to be symmetric about ( T -  i)/2 where it assumes a maximum. 
Tapering thus consists of the operation 

where 
fc(t) = h r ( t )x( t )  , (4.2) 

h r (t) = h ((t + ½)/T) (4.3) 

for some tapering function h(x).  As a matter of convenience, we often define 
h (x )=  0 for x < 0  or x >1 .  

We define the Fourier transform of the tapered data to be 

T - 1  

J~(oJ) = ~ ~(t)exp(-2~rioJt). (4.4) 
t=O 

The periodogram of the tapered data (sometimes called the modified periodo- 
gram) is scaled to have the same order of magnitude as the ordinary periodo- 
gram: 

/ T - 1  ",-1 

(4.5) 

with expected value 
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= (fill 1If 
+ IHT(,o)12c2x}, (4.6) 

T - 1  

Hr(ot)  = ~ h r (t) exp(-27riat).  (4.7) 
t=0 

In practice, we typically center the data, i.e. subtract some estimate ~x of the 
mean cx, prior to tapering. Using the tapered mean 

T - 1  T - 1  

cx = ~ h T ( t ) x ( t ) / ~  hT(t) (4.8) 
t=0 t=0 

and setting 

$(t) = hr ( t ) ( x ( t ) -  e~) , (4.9) 

we have 

k J - l / 2  J - l ] 2  

- n % o ) n ~ ( - , ~ ) / n ~ ( o ) l z s d  (~) d,~. (4.10) 

It may be shown that as T becomes large, (4.10) approaches s=(~0) under broad 
regularity conditions for h(x) (Brillinger, 1975, Section 5.3). Hence the 
modified periodogram I~(~o) may be used to form periodogram-based spec- 
trum estimates as described in Section 2. 

We may similarly define the estimated autocovariance function for tapered 
data as 

T - 1  

6x,(U) = ~ ~(t+ u)£(t)/~'~ hr(t)  2, (4.11) 
O<-t,t+u<T t=0 

and proceed with the covariance-based spectrum estimation of Section 2. Note 
that we may still employ the FFT, described in Section 3, to rapidly compute 
(4.11). 

The purpose of tapering is to produce functions H r ( a )  with smaller 
sidelobes than that of sin 7rTa/sin 7ra and to thereby reduce the periodogram 
bias due to 'leakage'. The price paid for reducing the magnitude of the 
sidelobes is that the main lobe will typically be broadened. Tapering therefore 
involves some loss of frequency resolution, e.g. if x(t)  were a sine wave at a 
Fourier frequency COg the untapered periodogram would assume a positive 
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value at tOk and would be zero at other Fourier frequencies, whereas with 
tapering the spike at O)k would be blurred over adjacent Fourier frequencies. 
See Section 5.8 of Brillinger (1975) for further details. Tapering also increases 
the variance of the periodogram slightly, as discussed in the next section. These 
drawbacks are typically minor compared with the potential bias reduction 
obtained by tapering. 

One tapering function in common use is 

t ~(x - p) 
½(1+ cos ) p ' 

hc(x;P)= i ( l + c o s  ] ¢r(x - 1 + p)~ 

P 

O~x<~p,  

p < ~ x < ~ l - p ,  

1 - p ~ x < ~ l ,  

(4.12) 

with hc(x; p) = 0 for x ~ 0 or x I> 1. A computational advantage of this tapering 
function is that the middle portion of the data need not be multiplied. Another 
advantage is that p may take values between 0 and ½, a larger value of p taken 
to counter the more severe frequency leakage problem. Bingham, Godfrey and 
Tukey (1967) proposed this taper with p = 0.1. For further discussion of 
tapering functions, see Brillinger (1975, Section 3.3), Brillinger (1981), Ge~kinli 
and Yavuz (1978), Hannan (1970, Section 5.3), and Thomson (1977). 

The question of whether or not to taper the data prior to spectrum estima- 
tion may be broadened to the question of which tapering function h (x) to use, 
because 'not tapering' really amounts to the use of the uniform or rectangular 
taper 

1, 0~<x~<l,  (4.13) 
hR(x)= 0, otherwise. 

Padding the data consists of appending zeros to the data after centering and 
possibly tapering have been performed. A primary consequence of extending 
the data in this manner 

x'(t) = ~2(t), 0 ~ t < T, (4.14) 
(0, T ~ t < S ,  

is that the fast Fourier transform applied to x'(t) yields Fourier frequencies of 
the form k/S, k = 0, 1, 2 ; . . . ,  S - 1 rather than j/T, j = 0, 1, 2 . . . . .  T - 1 .  This 
finer mesh of Fourier frequencies allows greater flexibility when smoothing the 
periodogram Ix'x'(~Ok) and, by inverse transforming Ix,x,(O)k), provides a rapid 
means of calculating the sample autocovariance function G,(u), fl ~ !u  t ~ S - T. 

Another reason f-or padding the data is that the fast Fourier transform is 
most efficient when the length of the input sequence is a highly composite 
number (capable of being factored into many smaller numbers). If the length T 
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of the original data sequence is not highly composite, padding the data out to a 
highly composite number S can substantially reduce computing time. 

For periodogram-based spectrum estimation, we recommend that the data be 
centered, i.e. have an estimate of the mean subtracted out, prior to any 
padding. (Note that our covariance-based estimates automatically use centered 
data.) This is because padding changes the set of Fourier frequencies so that 
the second term in (4.1) (periodogram bias due to the mean cx) will no longer 
vanish, i.e. ~0 will no longer be of the form fiT. 

S. Variance approximations 

The large sample variance of the spectrum estimate gx~(a), 0 < a < I, may be 
approximated using the asymptotic variance 

var gxx(a) s=(a)2 fO1 h(x)4 dx ~ 
~rT (fd h(x)2dx) 2 W()')2dT" (5.1) 

The asymptotic variance is doubled at ot = 0, ½ where, due to symmetry 
properties (2.14) and (2.16), half as many 'independent' periodograms are being 
averaged. 

Using Schwarz's inequality, it may be seen that the use of a nonuniform data 
tapering function h(x) increases the asymptotic variance (5.1). Similarly, when 
W(a) has bounded support, the usual case for periodogram-based estimates, 
the rectangular window WR(ot) minimizes the variance. The use of (nonuni- 
form) tapers h(x) and spectral windows W(t~) is justified by their potential for 
bias-reduction (Brillinger, 1975, Sections 5.5 and 5.8). Thomson (1977) heavily 
tapers the data prior to spectrum estimation because bias, rattier than variance, 
is the overriding concern. Similarly, Alekseev and Yaglom (1980) report 
substantial reductions in bias achieved in simulation studies using a special 
family of spectral windows. 

A proof of (5.1) and related expressions may be found in Brillinger (1975, 
Theorem 7.7.1) for covariance-based estimates. This asymptotic variance may 
be similarly derived for periodogram-based estimates (Brillinger, 1975, 
Theorem 5.6.4). One possible approximation to (5.1) consists of replacing the 
squared spectrum s=(a) 2 by the squared estimate g=(~t) 2. Recall that we have 
normalized the spectral window W(a) so that 

[ f  W(ot) da = 1 (5.2) 

which is equivalent to the normalization 

w(O) = 1 (5.3) 
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for lag window w(x). The evaluation of (5.1) will be further simplified by the 
normalizations 

and 
f • o o  w(x)2 dx = f~= W(a)  2 da = 1 (5.4) 

f ~ h ( x )  2 dx = 1. (5.5) 

As noted above, the symmetry properties of the periodogram account for the 
discontinuity of the asymptotic variance at frequencies 0, ½. For a finite sample 
size T, these symmetry properties come into play for frequencies a near 0 or ½. 
For periodogram-based estimates we may adjust for this using the ap- 
proximation 

L E  T-1 T ,=0 hr(t)4 S s-1 

vaAr s~(a )=  ( 1  ~,r01 hT(t)z'~2-T k~__l Wk(a)2g'=(°t)2' 
) 

(5.6) 

where the periodogram weights Wk(a), which sum to unity, are obtained from 
the spectral window W(a) as explained in Section 2, and where S is the overall 
length of the padded data (producing a spacing of 1/S between Fourier 
frequencies). 

In the untapered, unpadded case (S = T, h (x )=hR(x)=l ) ,  the ap- 
proximation (5.6) may be further refined to allow for the periodogram at 
Fourier frequency ½ having double the asymptotic variance of periodograms at 
adjacent Fourier frequencies (Brillinger, 1975, Theorem 5.2.5). We thus obtain 

[ T-, ] 
vars=(a )=  2Wr(a)2+ ~ Wk(Ot) z g,=(a) z 

k=l_. 
k¢t 

for h(x)= hR(x)= 1, S = T, T even, and t = T/2. 
For covariance-based estimates (2.9) the expression 

(5.7) 

t-. E, h T (04 
var g=(a) = ~] W(flrU)2g,~(a) 2 hr(t)2) 2 (5.8) 

may be a more convenient approximation to (5.1) than those presented so far. 
A useful result in addition to that of (5.1) is the asymptotic normality of 

g,=(a) as [3TT becomes large. Brillinger (1975, Theorem 5.6.3) proves this result 
for untapered, unpadded, periodogram-based estimates, but we may use nor- 
mality as an approximate distribution in other cases as well. Because g=(a) is 
approximately normally distributed and has variance proportional to s=(a) 2, we 
may regard the logarithm of the estimate as a convenient variance-stabilizing 
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transformation, i.e. In g=(a) is approximately normally distributed with ap- 
proximate variance (for 0 < a < ½) 

1 f_oolh(x)4dx f= W(a)2da .  
In g=(a) ~ f lrT (fd h(x) 2 dx) 2 J-= (5.9) 

More commonly, the logarithm base 10 is taken, with 

lOgl0 gx~(a) = (loga0 e) In g=(a) -- (0.4343) In g=(a),  

introducing a factor of 0.4343 for the corresponding variance approximation. In 
addition to stabilizing the variance, the logarithmic transformation is useful 
when plotting the spectrum estimates g~x(aj). Detail is preserved in the log scale 
plot even when the computed spectrum assumes a wide range of values at 
different frequencies. The refinements to the approximation (5.9), particularly 
the doubling of the variance at a = 0, ½, parallel those for (5.1). 

By taking square roots of the above variance approximations, we arrive at 
standard errors for spectrum estimates. We may also use the approximate 
normality of the estimates to construct approximate confidence limits (Bril- 
linger, 1975, Section 5.7). Under the log transformation, (5.9) shows that the 
confidence intervals will be of approximately the same width for frequencies 
interior to the interval (0, ½). 

6. Bandwidths and degrees of freedom 

We commonly attach a number of 'degrees of freedom' to a spectrum 
estimate as a rough index of its statistical variability. This terminology may be 
motivated as follows: suppose that x(t) consists of independent and identically 
distributed normaI random variables having zero mean, and that we refrain 
from either tapering or padding the data prior to Fourier transformation. Then 
for any frequency to in the interval 0 <  to <½, Jx(to) is a mean-zero complex 
normal variable, i.e. the real and imaginary parts of Jx(to) are independent 
normal variables having mean zero and common variance. Thus the periodo- 
gram 

1 
I =  (to) = IJx(to)l 2 

= 1 {[Re Jx(to)]z+ [Im Jx(to)] 2} (6.1) 

is proportional to a variable having a chi-square distribution with two degrees 
of freedom. Moreover, the entire set of discrete Fourier transform values, 
Jx(tok), 0 ~ tok ~ 1, are independent complex normal variables having mean zero 
and common variance. If we estimate the spectrum of x(t) by taking a simple 
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average of K adjacent periodograms, viz. 

1 j+K 
E I=(wk) (6.2) 

k=/+l 

with 0 <  tOj+l<tO/+K <1, then our estimate is proportional to a chi-square 
variable having 2K degrees of freedom. In this simple case, our description of 
the spectrum estimate as having 2K degrees of freedom is in strict accordance 
with standard terminology. 

The above periodogram average employs uniform weights, i.e. the rec- 
tangular spectral window (periodogram weighting function) WR(a). Since the 
Fourier frequencies are spaced 1/T apart and the average is over K adjacent 
Fourier frequencies, the bandwidth used is/3 = K/T. We therefore obtain 

v = 2/3T (6.3) 

relating degrees of freedom v to bandwidth/3 and data length T. 
When x(t) is not a sequence of independent, identically distributed normal 

random variables, but is a stationary mixing time series, the spectrum estimate 
(6.2) is proportional to a random variable having, as T becomes large, an 
asymptotic chi-square distribution with 2K degrees of freedom (Brillinger, 
1975, Theorem 5.4.3). So the chi-square terminology remains consistent with 
standard statistical usage when uniform periodogram weights are used. When 
we estimate the spectrum using a weighted average of the form 

with 

g=(a) = ~'~ Wk(a)I=(tOk) (6.4) 
k 

Wk(O 0 = 1, 
k 

the asymptotic distribution will not in general be chi-square. However, we may 
still make a chi-square approximation to the asymptotic distribution using the 
first two moments of the spectrum estimate as follows (BriUinger, 1975, p. 145). 

If X is proportional to a chi-square distribution with v degrees of freedom, 
i.e. 

then 

so that 

x ~  ~x~, 

E X  = Ov and 

v = 2 (EX)2 
v a r X  " 

var  X = 2 0 2 v ,  

Using the approximations 
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and 

we obtain 

E~=(a)- s=(a) 

var gx~(a)-- (~k Wk(a)2)s=(a)2, 

(6.5) 

(6.6) 

v = 2 (E~= (a))z 
var ~=(a) 

2 
Ek Wk(a) 2" (6.7) 

When we use (5.1) instead of (6.6) as the approximate variance of g~,(a) we 
obtain an approximate degrees of freedom appropriate for either periodogram- 
based or covariance-based estimates, providing T is large, bandwidth 
parameter fir is small, and 0 < a < ½. This is 

v _  2flTT (fd h(x)2 dx) 2 1 
fd h(x) 4 dx f2~ W(ot) 2 da (6.8) 

which agrees with (6.3) for untapered data (h(x)= hR(X)= 1) with uniform 
periodogram weights (W(a)= WR(a)). 

We have so far used the 'bandwidth parameter' fir as some indication of the 
width of the frequency interval in which periodograms were averaged, under 
the normalization 

W(0)= ff~ W ( a ) d a  = 1. (6.9) 

From (5.1) and (6.8), however, we see that a given bandwidth parameter can 
yield different asymptotic variances, and consequently different degrees of 
freedom, depending on the tapering function h(x) and spectral window W(a) 
used. One convention is to define 'the bandwidth' of a spectrum estimate so 
that it reflects not only the bandwidth parameter fiT, but the effects of h(x) and 
W(a) as well. Using the discussions leading to (6.3) and (6.8) as a basis, we 
define 

bandwidth = 1 (Eg~x(Ct))2 
T var g=(a) 

2T 

-- fir (foX h (x) 2 dx) 2 1 
fd h(x) 4 dx f_~ W(t~) 2 da"  (6.10) 
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We see that bandwidth parameter /3r is 'the bandwidth' when the data are 
untapered (h(x)= hR(x)= 1) and when the transform pair w(x), W(a) satisfy 

~ =w(x) 2 dx = ~_~= W(a)  2 dt~ = 1 (6.11) 

in addition to (6.9). Clearly we may refine (6.8) and (6.10) parallel to the 
refinements of the asymptotic variance expression (5.1). 

An advantage of the terminology we have discussed here is that it can assist 
us in the selection of weights, tapers, and bandwidth parameters. A narrow 
bandwidth estimate can reveal important detail, but a large number of degrees 
of freedom (hence a large bandwidth) is also desirable as it provides a more 
reliable estimate. Values for the bandwidth parameter are often most easily 
selected on the basis of the corresponding degrees of freedom. In the absence 
of other guidelines, we might initially estimate the spectrum at three band- 
widths, with corresponding degrees of freedom u = 8 ,  3T 1/3, T 2/3, ap- 
proximately. The three plots of the spectrum estimate may then be used as a 
basis for further adjustment of parameters. 

Several alternative definitions of the bandwidth of a spectrum estimate have 
been proposed. See, for example, Sections 3.3 and 5.8 of Brillinger (1975). Our 
definition essentially follows that of Blackman and Tukey (1959). No matter 
what approach is taken, one should remember that, under the broad sta- 
tionarity and mixing assumptions about the distribution of x(t) implicit in our 
discussion, standard errors, degrees of freedom, and bandwidths can only be 
rough indicators of the statistical behavior of the nonparametric spectrum 
estimate gx~ (a). 

7. Prefiltering and recoloring 

From Section 2 we see that the expected values of both periodogram-based 
and covariance-based spectrum estimates are weighted averages of the spec- 
trum of interest in a band of frequencies. The smoothing operation used to 
form the spectrum estimates thus reduces variance but also entails a loss of 
precision, i.e. a locally averaged spectrum rather than the spectrum at one 
frequency is being estimated. 

An exception to the loss of precision occurs when the underlying spectrum is 
constant. Then a smoothed version of the true spectrum is identical to the true 
spectrum. A constant, i.e. fiat, spectrum corresponds to a time series whose 
values are uncorrelated. Such a time series is called a noise series. Although 
rare in practice, it is an important concept. 

A simple means of regaining some of the lost precision incurred by spectral 
smoothing is to form a linearly filtered version y(t) of the input sequence x(t) of 
the form 
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y(t) = a ( u l ) x ( t -  u) + . . . + a ( u x ) x ( t -  uK), (7.1) 

to then estimate the spectrum syy(a) of y(t), and finally to estimate the 
spectrum s=(a) of x( t )  by adjusting gyy(o 0. 

When y( t )  is a linearly filtered version of x(t) ,  as given in (7.1), the spectra of 
y and x have the relation 

sry(~) = IA(a)lZs=(,x), (7.2) 

where A(a)  is the frequency response function, or transfer function of the 
filter, and is given by 

K 

A(ot) = ~ a(uk)exp(-2rriauk). (7.3) 
k = l  

The proposed estimate of Sx~(a) is then 

g=(a)  = [A(a)l-2gry(o0. (7.4) 

The idea of the prefiltering and recoloring procedure, given in (7.1) through 
(7.4), is to obtain filter coefficients a(u )  such that the spectrum of y will be 
much flatter than that of x. The loss of precision brought about by the 
smoothing operation, discussed in Section 2, used to form the spectrum 
estimate gyy(ot) will therefore be diminished. The prefiltering operation is also 
called prewhitening and the adjustment to the computed spectrum is called 
recoloring. These names derive from the fact that white light exhibits a nearly 
fiat spectrum as opposed, say, to red light having a spectrum concentrated at 
low frequencies. 

An effective method, proposed by Parzen and by Tukey, of obtaining filter 
coefficients a(u )  is to fit an autoregressive scheme to x( t )  by minimizing 

T - 1  

[x( t ) -  ~b(1)x(t- 1) . . . . .  q b ( m ) x ( t -  m)] z (7.5) 
t = m  

with the understanding that 

I 1, u = 0 ,  
a ( u ) =  - (b (u ) ,  l <~ u <~ m , 

tO, otherwise. 
(7.6) 

Note that the ~b's constitute a set of regression coefficients of x( t )  upon its 
past (thus the name autoregression) and that the output sequence y(t), 
obtained from (7.1), (7.5) and (7.6), represents the set of residuals from the 
autoregression. 

There are several possible algorithms for obtaining the autoregressive 
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coefficients ~b. Durbin (1960) gives a recursive algorithm which is a com- 
putationaUy efficient version of the Levinson (1947) algorithm. The Durbin or 
Levinson algorithm, as it is commonly called, is also described in Bartlett 
(1955) and in Box and Jenkins (1976). It consists fn solving the Yule-Walker 
system of equations 

where 
/~b = ti, (7.7) 

cxx(li 1 ~< l <~ m (7.8) = 

are the sample autocorrelations of the sequence x(t)  and where 

/~,k = { 1 lifJ = k ,  
Plj-kl i f j ¢  k, 

(7.9) 

for 1 ~ j, k ~< m, are the elements of the sample autocorrelation matrix of x(t).  
From (7.9) we see that R differs from a general correlation matrix in its 
Toeplitz structure, i.e. the main diagonal consists of unity, the first upper and 
lower diagonals consist of ~1, and so on. The Levinson, or Durbin, algorithm 
takes advantage of this structure and calculates the solution of (7.7) for 
increasing orders m of the autoregressive scheme. 

The recursive algorithm has been criticized for numerical instability, i.e. the 
numerical solution tb may be quite sensitive to small perturbations in the 
sample correlations if the matrix i~ is ill conditioned. See Cybenko (1980), 
however. Hannan suggests calculating the residual variance as d -2= 
(1"  ~(m)2)d-~_l to guarantee its nonnegativity, a slight modification to the 
Durbin algorithm. Pagano (1972) presents an alternative algorithm based upon 
the Cholesky decomposition of matrix/~, the algorithm being a special case of 
that presented by Golub (1969) and known to be numerically stable. Voevodin, 
Boyle, et al. (1979) describe a subroutine library for the solution of general 
Toeplitz systems of equations, where recursive algorithms are again employed. 

Two interesting variations on autoregressive prefiltering have recently been 
proposed. McClave (1975) provides an algorithm for finding an optimal subset 
of lags Ul, . . . .  Uk under the constraints 

O "~ l~l < U2 < " " " < Uk ~ g ~ k <- K , 

where U and K are user-designated. The resulting filter is of the form 

y(t)  = x ( t ) -  a ( u l ) x ( t -  uai . . . . .  a (Uk)X( t -  Uk). 

The possible optimality criteria include AIC, BIC (Akaike, 1978), or CAT 
(Parzen, 1980). In another direction, Kleiner, Martin and Thomson (1979) 
:robustly fit ~b, and use the autoregressive filter to detect two subtle outliers. 
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Their  robustly prefiltered and recolored spectrum estimate differs markedly 
from the initial spectrum estimate, and is in better  agreement with other 
information about the data. 

8. Trend removal 

Many economic series, for example the consumer price index, display an 
upward trend over time. A different, cyclic type of pattern is sometimes 
apparent in both economic and meteorological data. For example, both un- 
employment and temperatures tend to be higher during summer months. We 
often wish to remove the effect of these trends or patterns by fitting some 
parametric model to the data. We may then calculate the spectrum of the 
residuals, or otherwise analyze the residuals, to see how the model might be 
refined, or to uncover subtle features in the data that were not initially 
apparent. 

We begin our discussion with a consideration of seasonal adjustment, i.e. 
removing a periodic component  from the data. As an example, the data might 
consist of monthly temperatures over several years, from which we can 
estimate and remove (subtract) the average temperature for each month of the 
year. We thus proposed the formation of a residual series 

r(t) = x ( t ) -  fit (t), 

where rh (t) is an estimate of a P-periodic trend m (t) (in our example P = 12). 
When the total length T of the input sequence x(t) is a multiple of P, this 
operation has a very simple effect; the Fourier transform of r(t) is zero at the 
seasonal Fourier frequencies tOg = k /T  such that tOkP is an integer (i.e. such 
that k is a multiple of T/P), and equals the transform of x(t) at nonseasonal 
Fourier frequencies. Whereas the estimated spectrum of x(t) may have peaks 
at the seasonal frequencies, that of r(t) may have valleys at these frequencies if 
we do not allow for the seasonal adjustment. See Grether  and Nerlove (1970). 

A simple remedy is to estimate the spectrum using the periodogram- 
smoothing method, taking care to assign a weight of zero to periodogram 
values at seasonal frequencies. This procedure may be extended to the case 
where T is not a multiple of P by first truncating the sequence r(t) to the 
nearest multiple of P and making sure that the number of padded zeros, if any, 
prior to Fourier transformation is also a multiple of P. See Thrall (1979) for 
further remarks. 

For large values of T, the above refinement to the estimated spectrum is of 
less consequence, because each estimate gxx(a) is an average of a large number 
of periodogram values I=(tok), no single periodogram value having undue 
influence. (Recall that the Fourier frequencies tok = k /T  become dense as T 
becomes large.) This observation is generalized in a theorem to the following 
effect: the fitting by least squares and subsequent removal of a parametric 



432 Tony Thrall 

trend which is linear in the unknown parameters will result in consistent 
estimates, both of the parameters and of the residual spectrum, as T becomes 
large. A key condition here is that the trend components possess a spectral 
measure. See Brillinger (1975, Section 5.11) for a precise formulation of the 
theorem. In our example above the trend spectral measure is concentrated at 
the seasonal frequencies. 

The theorem cited above is useful, but not all-encompassing. It does not 
include the case of a simple linear trend, for example. The removal of a linear, 
or polynomial trend deflates the spectrum at low frequencies, as one would 
expect. But there is no simple remedy for estimating the residual spectrum in 
the affected frequency range, unlike the case for seasonal adjustment. Hannan 
(1960, 1970) gives a detailed treatment of polynomial and other parametric 
trend removal. One of Tukey's suggestions in this area is that we forego the 
linear parameterization and instead remove low-frequency sinusoidal com- 
ponents from the data. Depending on how close the removed frequencies are 
to zero, this operation can have very much the same effect as linear trend 
removal. 

The removal of low-frequency sinusoids from the data is akin to another 
operation, that of extracting the trend by passing the data through a lowpass 
filter. The residuals are then a highpass filtered version of the data. In general, 
filtering is a promising alternative to parametric trend removal in the absence 
of a clear choice for the functional form of the trend. An advantage to linear 
filtering as a means of trend removal is that the spectrum may be easily 
recolored, as described in Section 7. An important limitation to filtering is that 
one must either decide how to extend the original data or else accept the loss 
of some data at the beginning and end of the filtered sequence. Hamming 
(1977) gives a valuable introduction to linear filters. 

Taking nonparametric trend removal a step further, Huber (1978), Mallows 
(1980a,b) and VeUeman (1980), discuss the robustification (and nonlineariza- 
tion) of linear filters, e.g. replacing a simple moving average by a moving 
median. Recoloring the residual spectrum is no longer a simple matter. 
However, given any nonlinear filter, Mallows obtains linear components for 
both the filter and its frequency response, leading us to the possibility of using 
Mallow's linear approximation to recolor as described in Section 7. 

9. Missing values 

Time-series data, like most types of data collected in real life, are occasion- 
ally incomplete for a variety of reasons. Wyzga (1978) analyzes the coefficient 
of haze and mortality in Philadelphia, where a few values for the haze are 
missed due to a failure in the recording equipment. Wu (1978) discusses an 
entomological experiment where daily counts were made for the treatment 
group of insects but counts of the control group were taken only about 80% of 
the time during the week and 10% of the time during weekends. 
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Generally speaking, there are two types of procedure commonly used to 
estimate the spectrum of a time series in the presence of missing values: (1) to 
replace the missing values as accurately as possible and then to proceed as 
though the series were fully observed, (2) to calculate the sample auto- 
covariance function from observed values, to adjust the sample autocovariance 
function according to the pattern of missing values, and to Fourier transform 
the adjusted autocovariance function. In both types of procedure, we assume 
that the mechanism causing values to be missed, and the values of the time 
series are independent. Jones (1980) derives a parametric spectrum estimate for 
time series with missing values, thus providing a third type of procedure. 

A number of methods for missing value replacement suggest themselves, 
including linear interpolation, or taking a local mean or median of observed 
values. Leneman and Lewis (1966) compare a number of these methods under 
the criterion of mean squared error for the replaced value. Jones (1980) fits an 
ARMA scheme to the data in the presence of missing values. While a spectrum 
estimate may be obtained directly from the fitted parametric model, we might 
also use the model to replace missing values. 

The second type of procedure, that of Fourier transforming an adjusted auto- 
covariance function, is obtained by Jones (1962), Parzen (1963) and Bloomfield 
(1970). Jones and Parzen assume that missing values occur in a fixed pattern, 
while Bloomfield assumes they follow a renewal process (e.g. sporadic failures 
in the recording equipment). Computationally, the three authors derive essen- 
tially the same technique. 

For the sake of simplicity, assume that the time series of interest, x(t) ,  has 
zero mean. Let z ( t )  denote the observed series, with missing values coded as 
zero, and let y( t )  denote a 0-1 valued series indicating the absence or presence, 
respectively, of an observation at time t. Thus 

and 

{~0 if x( t )  is observed, 
y(t) = otherwise, 

z ( t )  = x ( t ) y ( t ) .  (9.1) 

In the absence of the assumption E x ( t )  = 0, we may form z ( t )  by taking the 
sample average of the observed values, subtracting the sample average from 
each of the observations, and replacing missing values by zero. Letting m(.) 
denote second-order moments, we have 

rnz~(u) = E { z ( t  + u)z ( t ) }  

= E { x ( t  + u )x ( t ) }E{y ( t  + u)y(t)} 

= rn~(u)myr(u  ) . (9.2) 

Here we have made use of the assumption that x(.) and y(.) are in- 
dependent. When y( t )  is nonrandom, myy(u) is defined (and assumed to exist) 
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by the limit 

myy(u) = lim 1/T ~ y(t+ u)y(t).  (9.3) 
T~oo O<~t,t+u<T 

Since we have assumed Ex(t) = 0, implying Ez(t) = 0, (9.2) may be written as 

C z(U) = (9.4) 

From (9.4) we see that the recovery of C~x(U) from c=(u), rrlyy(U) is only 
possible if m , (u )  # 0 for all lags u, clearly an important restriction. Supposing 
myr(u ) > e, for some e > 0, we may estimate c,=(u) by 

where 

and 

~=(u) (9.5) d=(u) = (1 - l u l /T )  max(e, rh,(u)) 

d=(u)= 1/T ~ z(t + u)z(t) (9.6) 
O<~t,t+ tt<T 

myy(u)= 1/T ~ y(t + u)y(t).  (9.7) 
O<-t,t+u<T 

When missing values occur in a predetermined pattern, we may calculate 
m,(u) exactly and use it rather than max(e, rh,(u)) in (9.5). Note that when 
there is no pair of observations at lag u, rh,(u), dzz(U) and ~=(u) are all zero. 
The factor ( 1 -  lu[/T) has been inserted into (9.5) so that d=(u) is the usual 
positive-definite autocovariance estimate when x(t) is fully observed, i.e. has no 
missing values. We may now use d=(u) to form a covariance-based spectrum 
estimate g,~(a) as given by (2.9). 

There are, of course, other methods of spectrum estimation which are 
appropriate for special patterns of missing values. If the sequence x(t) 
contains one or more fully observed subsequences of moderate length we could 
form a spectrum estimate for each subsequence, perhaps averaging them to a 
form a final estimate. In another special situation, Thrall (1980) provides a 
method appropriate for quasi-periodically missing values, i.e. the y(t) are 
assumed to be independent, taking the value 0 or 1 according to periodic 
probabilities p(t). Thrall applies the method to the Wu (1978) control group of 
insects mentioned above. 

All of these methods depend heavily on underlying assumptions (particularly 
on the independence of x(.) and y(.)) to produce consistent, or otherwise 
acceptable estimates of the spectrum. Even when the assumptions hold, the 
adjusted autocovariance procedure may produce negative spectrum estimates 
at some frequencies, and the missing value replacement procedure may 
seriously bias the spectrum estimate. A precise assessment of the replacement 
procedure would need to take into account the pattern of missing values, the 
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spectrum of x(t), and the actual method used to replace missing values. We are 
led to some obvious conclusions (1) for the purpose of spectrum estimation, it 
is almost always worthwhile to obtain a fully observed sequence if possible, and 
(2) if missing values are unavoidable, several methods of spectrum estimation 
are worth trying. 

I0. Other problems in spectrum estimation and computation 

Lengthy series. Occasionally the data sequence x(t) is too lengthy to be held 
in the available high-speed core storage of the computer so that som~ 
modification must be made in the methods described above. Welch (1967) 
discusses the formation of overlapping segments of data and the computation 
of tapered periodograms for each segment. The final spectrum estimate is 
obtained by averaging periodogram values, not at adjacent frequencies but 
rather across data segments. Zhurbenko (1979) examines the statistical proper- 
ties of this spectrum estimate, and shows that near optimal mean square error is 
achieved when a data taper suggested by A. N. Kolmogorov is used. Welch's 
method offers a solution to the lengthy data problem, for we need only hold 
the current data segment, its Fourier transform, and the currently accumulated 
average of periodograms in core storage. 

Another possibility is to compute the Fourier transform of the entire data 
sequence using external storage. Singleton (1967) gives an algorithm ap- 
propriate for magnetic tape or any other external storage device, while Brenner 
(1969) provides an algorithm appropriate for a disk, drum, or other direct 
access device. The Fourier transform, requiting the same amount of storage as 
the data, must also reside on an external storage device. Periodogram values 
and spectrum estimates could be computed, printed and plotted, by reading the 
transform into core in successive frequency intervals. This method typically 
requires many more input-output and computational operations than t he  
Welch method. The advantage here is that the Fourier frequencies are very 
finely spaced, thus permitting high-resolution spectrum estimates. 

Outliers have not been treated in our discussion. See R. D. Martin (Chapter 10). 
The primary approach to this problem has two stages: (1) robustify the 
estimation of autoregressive coefficients, using robust regression methods, and 
(2) modify the prefiltering and recoloring technique described in Section 7 by 
'cleaning' the residuals (filtered output) of outliers. The approach may be 
automated so that the user need not identify outliers. Brillinger (1973) gives a 
simpler method that may be used when outliers are easily identified. 

Locating a peak in the spectrum. Geophysicists Concerned with the exact 
frequencies at which the earth 'tings' or freely vibrates (as evidenced by the 
earth's response to a seismic disturbance) have turned to autoregressive and 
other parametric spectrum estimates. The autoregressive spectrum estimate is 
similar to the prefiltered, recolored estimate of (7.4), but the residual spectrum 
estimate gyy(a) is replaced by a residual variance estimate t~2y (constant across 
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frequencies t~). See the chapters by E. Parzen and P. M. Robinson for detailed 
discussions. 

Further references include Kleiner, Martin and Thomson (1979), Thomson 
(1977), Alekseev and Yaglom (1980) and Childers (1978). The first two papers 
extend Welch's spectrum estimate and further discuss robust spectrum estima- 
tion in the presence of outliers. Alekseev and Yaglom discuss parametric and 
nonparametric methods of spectrum estimation, and the Childers volume 
consists of selected papers in parametric spectrum estimation. 
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Likelihood Ratio Tests on Covariance Matrices and 
Mean Vectors of Complex Multivariate Normal 
Populations and Their Applications in Time Series 

P. R.  Krishnaiah,* 3. C. Lee and T. C. Chang 

1. Introduction 

It is known that certain estimates of spectral density matrices of the sta- 
tionary and Gaussian multiple time series are distributed approximately as 
complex Wishart matrices. So, complex multivariate distributions are useful 
(e.g. see Brillinger, 1974; Hannan,  1970) in the area of inference on multiple 
time series. These distributions are useful in the area of nuclear physics (see 
Carmeli, 1974) also. 

Wooding (1956) introduced the complex multivariate normal distribution. A 
complex random vector is said to be distributed as a complex multivariate 
normal if its real and imaginary parts are distributed jointly as a multivariate 
normal with a structured covariance matrix. Motivated by applications in time 
series, Goodman (19633,b) made a systematic study of the complex multi- 
variate normal distribution and complex Wishart matrix. Since then, James 
(1964), Khatri (1965), Krishnaiah (1976) and other  workers in the field have 
investigated various aspects of complex multivariate distributions. For a review 
of the literature on complex multivariate distributions, the reader is referred to 
Krishnaiah (1976). In this paper, we review the literature on the likelihood 
ratio tests on mean vectors and covariance matrices of the complex multi- 
variate normal populations as well as some of  their applications in the area of 
inference on multiple time series in the frequency domain. 

In Section 2 of this paper, we discuss the complex multivariate normal and 
complex Wishart matrix. The distribution of the determinant of the complex 
multivariate beta matrix is discussed in Section 3, whereas Section 4 is devoted 
to the likelihood ratio test procedure for testing the hypothesis of multiple 
independence of several sets of variables when their joint distribution is 
complex multivariate normal. Likelihood ratio tests for the hypothesis of 
sphericity and the hypothesis specifying the covarianee matrix are discussed in 
Sections 5 and 6 respectively. In Section 7 we discuss the likelihood ratio test 

*The work of this author is sponsored by the Air Force Office of Scientific Research under 
Contract F49620-82-K-0001. Reproduction in whoie or lin part is permitted for any purpose of the 
United States Government, 
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for the homogeneity of the covariance matrices, whereas the likelihood ratio 
test procedure for the homogeneity of several complex multivariate normal 
populations is discussed in Section 8. Likelihood ratio test procedure specifying 
the covariance matrix and mean vector is discussed in Section 9. Applications 
of some test procedures on the covariance matrices of the complex multivariate 
normal populations to the area of inference on multiple time series in the 
frequency domain are discussed in Section 10. Various tables useful in im- 
plementation of certain likelihood ratio test procedures are given in the 
Appendix. These tables are constructed by approximating a suitable power of 
the likelihood ratio statistics with Pearson's type I distribution by using the first 
four moments.  The accuracy of these tables is found to be good. 

2. Complex multivariate normal and complex Wishart distributions 

Let z = x + iy, where x and y are of order p × 1 and (x', y') is distributed as 
2p-variate normal with mean vector 0tt~,/z~) and covariance matrix 

where A'  denotes the transpose of A. Then, the distribution of z is known to 
be the complex multivariate normal distribution with mean vector ~ and 
covariance matrix ,~ where ~ = it1 + i~2 and Z = 2(,Y,1- i~2). The probability 
density function (p.d.f.) of z is given by 

1 f(z) = _--sgr~ exp{- (z -/*) '~?-l(z - / * ) } ,  7r- {~{ (2.2) 

whereas the characteristic function of z is 

~b(t) = exp{iPtt - 1P2~-lt}, (2.3) 

where t = tl + it2 and 7 is the complex conjugate of t. Wooding (1956) derived 
expressions for the p.d.f, and characteristic function of z. The maximum 
likelihood estimates of tt and ,~ based on a random sample (zx . . . . .  zN) are 
known to be 

N N 

/2 = N -1 ~ zj, ~ = N -1 ~ (zj - /2)(zj  - / 2 ) ' .  (2.4) 
j = l  j = l  

Also,/2 and ~ are distributed independent of each other. 
Next, let S = N~. Then, the distribution of S is known to be a central 

complex Wishart matrix with n = N -  1 degrees of freedom. The probability 
density of S is known (Goodman, 1963b) to be 



Likelihood ratio tests on covariance matrices and mean vectors 

IsI.-, etr{-Z-1s} 
f ( s )  = ~,~,_,)/2 rty=~ r ( n  - j + 1)1-~1" ' 

where etr B denotes the exponential of the trace of the matrix B. 
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(2.5) 

3. Distribution of the determinant of the complex multivariate beta matrix 

In this section we discuss the distribution of the determinant of the complex 
multivariate beta matrix. This distribution is useful for testing the hypothesis of 
the equality of several mean vectors and the equality of two covariance 
matrices when the underlying distributions are complex multivariate normal. It 
is also useful in testing the hypothesis//1:X12 = 0, where -~12 is the covariance 
between two sets of variables whose joint distribution is complex multivariate 
normal. 

Let  A l : p  x p and A2:p x p be independently distributed as the central 
complex Wishart matrices with n and q degrees of freedom, and let E(Ax/n)  = 
E(AE/q) = ~. Then AI(Ax+ A2) -1 is known to be a (central) complex multi- 
variate beta matrix. Now, let 

U = IA,(AI + A2)-al . (3.1) 

The hth moment  of U is known to be 

~1 [ r ( n  + h - j + 1)r(n + q - j + 1)] 
E ( U h ) =  [ F ( n - j +  l ) F ( n + h + q - j +  l) " 

j=l 
(3.2) 

Using the first four moments  of U l/b, Lee, Krishnaiah and Chang (1975) have 
approximated the distribution of U vb with  the Pearson type I distribution, 
where b is a properly chosen integer. The constant b is chosen to be equal to 1 
or 2 according as M > 20 or M < 20, where M = n - p + 1. By making use of 
this approximation, values of c~ are computed, where 

P [ G  ~< cd = ( 1 -  , 0 ,  (3.3) 

¢ 1  = - ( 2 n  + q - P )  log U/x~m,~, and X2m,~ is the upper 1001% value of X 2 with 
2pq degrees of freedom. The values of cl are computed for a = 0.005, 0.01, 
0.025, 0.05, 0.1, 0.90, 0.95, 0.99, 0.995, M = 1(1)10(2)20, 30, 60, 120, where 
M = n - p + 1. These values are given in a technical report  by Lee, Krishnaiah 
and Chang (1975). The upper 5% and 1% points are reproduced in Table 7 of 
the Appendix. To check for the accuracy of the entries in Table 7, the above 
authors compared some of the values obtained by the Pearson type ap- 
proximation with the corresponding exact values. These comparisons are given 
in Table 1. 



442 P. R. Krishnaiah, J. C. Lee and T. C. Chang 

Table 1 
Comparison of the Pearson type approximation with exact 
expression for the distribution of C1 

p = 2  q = 3  p = 2  q = 2 0  

M a L-K-C Exact a L-K-C Exact 

1 0.05 1.286 1.289 0.05 1.928 1.932 
1 0.01 1.350 1.349 0.01 2.085 2.080 
5 0.05 1.029 1.029 0.05 1.243 1.243 
5 0.01 1.033 1.033 0.01 1.262 1.262 
9 0.05 1.010 1.011 0.05 1.128 1.128 
9 0.01 1.012 1.012 0.01 1.137 1.137 

The constant a in Table 1 is defined by (3.3). Also, the values under the 
column 'L-K-C' are the values of cl obtained by Lee, Krishnaiah and Chang 
(1975) using the Pearson type approximation, whereas the values under the 
column 'Exact' are the corresponding values given by Gupta (1971). Table 1 
indicates that the accuracy of the Pearson type approximation is sufficient for 
practical purposes. 

4. Test for independence of sets of variates 

Let z ' =  (z~ . . . . .  zq) be distributed as a complex multivariate normal dis- 
tribution with mean vector ~ '  = (/t~ . . . . .  ~ )  and covariance matrix Z. Also, let 
E{(zi - tti)(zj -/tj)'} = ~0, and E(zi) = tti. It is assumed that zi is of order p~ x 1 
and p l+""  + pq = s. In this section we discuss the problem of testing the 
hypothesis H2, where 

/-/2: Zij = 0 (4.1) 

for i C j  = 1 , . . . ,  q. Now let 

A =  

I AI, Alz "" A lq l  
A21 A22 A2q , 

Aql Aq2 

where 

N N 
= - -  Z ' = N -1 E z g /  Ash ~'~ (Zgi Zg.)(Zhi-- h.) , Zg. 

j=1 i=i 

and (z[j . . . . .  z~/) is j th  independent observation on (z~ . . . . .  z~). The likelihood 
ratio statistic for testing H2 is 
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Iml (4.2) 
As = nj%l IA#I" 

In  the ana logous  real  case, Wilks  (1935) der ived  the l ikel ihood rat io test for 

mul t ip le  i ndependence .  The  h th  m o m e n t  of A2 is 

rcqr(n+h-j+a)][~ I r(n-~+l) ] 
E(;~h)= L~=I_ r(n-j+l) A o ~=lr(n+h--d¥1)~' (4.3) 

where  n = N -  1 and  F(-)  is the  comple te  g a m m a  funct ion.  The  d is t r ibut ion  of 

1~1/4 is approx imated  by Pea r son ' s  type I d is t r ibut ion  with densi ty  

g ( x )  = {/3(a + 1, e + 1 ) ( o q -  o'0)'~+'+1}-1(x - O"o)a (or1- X) e , (4.4) 

where  o'0 < x < o-1 and  a and  e are some real  numbers .  
A p p r o x i m a t e  percen tage  points  of the d is t r ibut ion  of /f2 = - 2 1 o g A 2  are 

cons t ruc ted  by Krishnaiah ,  Lee and  Chang  (1975, 1976) for Pi = P  = 1, 2, 3; 
q = 3, 4, 5; a = 0.01, 0.05, 0.10; M = 1(1)20(2)30, where  M = n - s - 3 ,  and  
Pr[d2~<c2lH2] = ( 1 - a ) .  These  pe rcen tage  points  are r ep roduced  in Tab le  8 

(see Appendix) .  Percen tage  poin ts  for q = 2 can be  ob ta ined  f rom Tab le  7. 
Now, consider  a class of statistics W(0 < W <~ 1) whose m o m e n t s  are of the 

form 

a E{Wh}=Kf.~ly~i ~x~k rlg=lF[xk(l+h)+~k] h = 0 , 1 ,  (4.5) 
IIy=lF[yj(1 + h ) +  yj] ' " ' "  

where  K is a normal iz ing  cons tan t  such that  E { W  °} = 1 and  Z~=I Xg = EY=l Yj. 

Table 2 
Comparison of the Pearson type approximation with the asymptotic expansion for the 
distribution of ,~2 

n q = 3  p = l  q = 4  p = 2  q = 5  p = l  

C2 ~1 ~2 C2 ~1 ~2 C2 ~1 ~2 

10 1.459 0 .05 0.0499 - -  - -  - -  4.011 0 .05 0.0487 
10 1.949 0.01 0.0100 - -  - -  - -  4.811 0.01 0.0095 
15 0.923 0 .05 0.0500 5.733 0 .05 0.0479 2.435 0 .05 0.0497 
15 1.233 0.01 0.0100 6.496 0.01 0.0093 2.914 0 .01 0.0099 
20 0.675 0 .05  0.0500 3.958 0 .05 0.0493 1.752 0 .05  0.0499 
20 0 .902  0 .01 0.0100 4.479 0.01 0.0098 2.096 0.01 0.0100 
30 0 .439 0 .05  0.0501 2.455 0 .05  0.0498 1.124 0 .05 0.0500 
30 0 .587 0.01 0.0100 2.777 0.01 0.0099 1.344 0.01 0.0100 

11 is the value of a if we use the Pearson type approximation and c~2 is the value of t~ 
if we use the asymptotic expression of order n -13. From the table, we observe that the 
accuracy of the Pearson type approximation is sufficient for practical purposes. 
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The likelihood ratio test statistics considered in this chapter are special cases 
of the above class of statistics. Box (1949) gave explicitly the first few terms of 
an asymptotic expression for the distribution of a class of statistics whose 
moments are of the form (4.5). But the first few terms alone are not sufficient 
to get the desired degree of accuracy in a number of practical situations. So, 
Lee, Krishnaiah and Chang (1976) gave terms up to order n -15 explicitly. In 
Table 2 a comparison of the values obtained by using Pearson type ap- 
proximation is made with the corresponding values obtained by the asymptotic 
expression of order n -13. 

5. Test for sphericity 

The likelihood ratio statistic for testing/-/3: .~ = o'2~0 is given by 

IA'V ll (5.1) 
ha = (tr A ~ l / s )  ~' 

where -~0 is known, A was defined in Section 4 and tr A denotes the trace of A. 
The hth moment of A3 is known to be 

sh'r(sn) h F ( n  + h - j + 1) (5.2) 
E(X ) = r(sn + r(n - j  + 1) 

Mauchly (1940) derived the likelihood ratio statistic for testing the hypothesis 
of sphericity when the underlying distribution is real multivariate normal. 

Table 3 
Compar ison of the  Pearson type approximation with the  
asymptotic expression for the  distribution of A3 

s = 5  s = 8  

n c3 o~1 62 c3 Otl 012 

15 2.763 0.05 0.0496 - -  - -  - -  
15 3.265 0.01 0.0099 - -  - -  - -  
21 1.895 0.05 0.0498 4.565 0.05 0.0490 
21 2.238 0.01 0.0100 5.093 0.01 0.0097 
41 0.928 0.05 0.0500 2.160 0.05 0.0499 
41 1.095 0.01 0.0100 2.409 0.01 0.0100 
51 0.739 0.05 0.0500 1.711 0.05 0.0499 
51 0.873 0.01 0.0100 1.908 0.01 0.0100 

a l  is the  value of a obtained by using the  Pearson type 
approximation,  whereas  a2 is the  value of a obtained by 
using Box 's  asymptotic expansion of order n -t3. This  table 
indicates that  the  accuracy of Pearson type approximation is 
sufficient for practical purposes.  
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The distribution of A lib is approximated by a Pearson type I distribution, 
where b is a suitably chosen integer. For M 1> 22, we took b = 2 and for 
M < 22, b = 4. Using the approximation described above, approximate upper 
percentage points of distribution of A3 = - 2  log )t3 were constructed by Krish- 
naiah, Lee and Chang (1975, 1976) for s=2(1)10,  a =0.01, 0.05, M =  
1(1)20(2)30(5)50, 60, where M = n - s - 3 a n d  P[A3 ~< C3[/-/3] = (1 - a). These 
values are reproduced in Table 9 (see Appendix). 

In Table 3 we compare the values obtained by the Pearson type ap- 
proximation with the corresponding values obtained by using Box's asymptotic 
expression of order n -13. Upper percentage points of the distribution of ,(3 for 
ot = 0.01, 0.05 and s = 3(1)6 are also given by Nagarsenker and Das (1975). 

6. Test specifying the covariance matrix 

The modified likelihood ratio statistic for testing the hypothesis H4: ~ = -~0 is 
given by 

t~ 4 = (e/n)~lA~l[" e t r ( - A 2 ~ l ) .  (6.1) 

The modified likelihood ratio test statistic is obtained from the likelihood ratio 
test statistic by changing N to n. The moments of A4 are seen to be 

E(,~ h ) = (e/n)~h" [-~0l"h II + h2~o] -"0+h) 

s 
x ]-[ { F ( n  + nh + 1 - i ) / F ( n  + 1 - i)}. (6.2) 

i=1 

Anderson (1958) derived the likelihood ratio statistic for testing the hypothesis 
that the covariance matrix is equal to a specified matrix when the underlying 
distribution is real"multivariate normal. The distribution of ,~/b can be ap- 
proximated with a Pearson type I distribution using the first four moments, 
where b is a suitably chosen integer. Using the above approximation, Krish- 
naiah, Lee and Chang (1975, 1976) computed the percentage points of the 
distribution of /~4 "~--2  log A4 for s = 2(1)10, ot = 0.01, 0.05, M = 1(1)20(2)30, 
where M = n - s - 1 a n d  P[,(4 ~ c4lH4] = ( 1 -  or). These percentage points are 
reproduced in Table 10 (see Appendix). 

7. Test for multiple homogeneity of the covariance matrices 

Let Zl, . . . , •q be independently distributed as complex p-variate normal with 
mean vectors g l  . . . . .  #q and covariance matrices -~n . . . . .  2qq, respectively. 
Also, let z0 (j = 1 , . . . ,  ~ )  be the j th  independent observation on zi. In this 
section we study the Pearson type approximation to the distribution of the 
likelihood ratio statistic for testing/-/5, where 
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I%: I 
~ 1 1  = " " " = "~'qlql ' 

. ~ . "  . . . . . .  ~ 
qd-l+l ,qd-l+l  ) 

q ~ = 0, q ~ = q, q ~ = q and q ~ = ql + " '"  + q/. The modified likelihood ratio 
statistic (obtained by changing N~ to ni in the likelihood ratio test statistic) for 
testing Hs, is given by 

q IAdnil'J . Hi= 1 

As II 11E A#/n  "7 ' 
q ~  1 + 1  

Eq. 7. . ,n i  and where ni = Ni - 1, n~ = ,=qj_~,. 

Ni 

A ,  = Z (z,j - z,.)(z,; - z , . ) ' .  
j=l 

z,. = Z z g ~ .  
i=1 

(7.1) 

The moments of As are given by 

E(Ash) = | . " : = ' " ' *  " / 
tHq=l (n . )  ph'* J i=1 ~=1 g=q*._,+l r(n, + 1 -  i) 

x F (n*  + 1 - i) 
F (n*  + hn* + 1 -  i)" 

(7.2) 

Using the first four moments of As, the distribution of h~/b can be approximated 
with a Pearson's type I distribution, where b is a suitably chosen integer. This 
approximation was used by Krishnaiah, Lee and Chang (1975, 1976) to com- 
pute approximate percentage points of the distribution of ,fs = - 2  log As for 
ni = no, q = dk (i.e. there are k populations in each of the d groups). These 
Points are reproduced in Table 1] (see Appendix) for d = 1. 

in Tables 4 and 5, we compare the values obtained by the Pearson type 
approximation for the distribution function of J(s with the corresponding values 
obtained by using the Box's asymptotic expansion up to terms of order n -13. In 
these tables, the constant c5 is defined as 

P [ - 2  log A5 ~< c5] H51 = (1 - a ) .  (7.3) 

Also, a l  is the value of a if we use the Pearson type approximation, whereas or2 
is the value of a if we use the asymptotic expression of order n -13. Tables 4 and 
5 indicate that the accuracy of the Pearson type approximation is sufficient for 
practical purposes. 

In the real case, Wilks (1932) derived the likelihood ratio statistic for testing 
the homogeneity of the covariance matrices, whereas Krishnaiah and Lee (1976) 
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Table 4 
Comparison of the Pearson type approximation with the asymptotic 
expansion for the distribution of A5 when d = 1 

p = 3  p = 4  

no q c5 ~1 a2 cs al a2 

10 2 19.82 0.05 0.0501 33.00 0.05 0.0502 
10 2 25.40 0.01 0.0100 40.21 0.01 0.0101 
10 6 69.68 0.05 0.0500 12.14 0.05 0.0492 
10 6 79.11 0.01 0.0100 13.39 0.01 0.0098 
15 2 18.72 0.05 0.0501 30.33 0.05 0.0500 
15 2 23.99 0.01 0.0100 36.93 0.01 0.0100 
15 6 66.70 0.05 0.0500 113 .77  0.05 0.0498 
15 6 75.69 0.01 0.0100 125 .48  0.01 0.0099 
20 2 18.23 0.05 0.0500 29.18 0.05 0.0500 
20 2 23.35 0.01 0.0100 35.52 0.01 0.0100 
20 6 65.34 0.05 0.0499 110'.45 0.05 0.0499 
20 6 74.13 0.01 0.0100 121 .78  0.01 0.0100 
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discussed how certain tests of hypotheses on linear structure of the covariance 
matrices can be reduced to the problem of testing for the multiple homogeneity 
of the covariance matrices. 

8. S imultaneous  tests  for the homogene i ty  of populat ions  

In this section we discuss the likelihood ratio test for the homogeneity of 
complex multivariate normal populations. The hypothesis of the homogeneity 
of the q complex multivariate distributions defined in Section 7 is equivalent to 
the hypothesis Hr, where 

//6: {In . . . . .  iqq, 
{ I.,gl . . . . .  1,Lq. 

The modified likelihood ratio statistic for testing/-/6 is given by 

A6 = r t q  ptlil q 
~i=l  ni=lni IG+ Ni(zi-z..)(zi.-z..)ll"" 

vhere 
q 

n ~ E n i ~  ni = N i -  1 ,  
i=1 

q 1 1 Ni 

Ni q 
G, = Z (z,; - z,.l(z,; - z O ' ,  = 6 , .  

j=l i=x 

(8.1) 

(8.2) 
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T h e  m o m e n t s  of  ~t6 a r e  given by  

E(hh6) = [nPh"/fl nPh"i] f i  (-I F(nj + hnj + 1 - i )  F(n + q - i )  
~=~ ~ ~=~ j~  F(n~ + 1 - i) F(n  + hn + q - i) " 

(8.~) 

T h e  d i s t r ibu t ion  of  A~/b is a p p r o x i m a t e d  with  a P e a r s o n  type  I d i s t r ibu t ion ,  
w h e r e  b is a su i tab ly  chosen  in teger .  Us ing  this  a p p r o x i m a t i o n ,  p e r c e n t a g e  
po in t s  of  the  d i s t r ibu t ion  of ~6 = --2 log A6 are  c o m p u t e d  by  Chang ,  K r i shna i a h  
and  L e e  (1975) for  a = 0.01, 0.025, 0.05, 0.10; ni = no; q = 2, 3, 4, 5; p = 1, 2, 3, 

4 and  M = n 0 - p  = 1(1)20, 25, 30, T a b l e  12 (see A p p e n d i x )  gives the  va lue  of  
c6 for  a = 0.05, 0.01, w h e r e  c6 is given by  

P[/~6 ~ c 6 l n 6 ]  ~-- ( 1 -  0~). (8.4) 

T o  check  for  the  accuracy  of the  en t r ies  in T a b l e  12, we c o m p a r e d  some  of  
these  va lues  wi th  the  c o r r e s p o n d i n g  va lues  o b t a i n e d  by  using B o x ' s  a sympto t i c  
ser ies  of  o r d e r  n -13, These  c o m p a r i s o n s  are  given in T a b l e  6. 

Table 6 
Comparison of the Pearson type approximation with the asymp- 
totic expansion 

. p = 2  p = 3  

no q c6 0/1 O/2 C6 0/1 O/2 

7 3 28.03 0.05 0.0499 50.49 0 .05  0.0497 
7 3 34.15 0.01 0.0100 58.80 0 .01  0.0098 

10 3 27.45 0.05 0.0500 48.06 0 .05  0.0498 
10 3 33.42 0.01 0.0100 55.92 0 .01  0.0099 
15 3 27.04 0.05 0.0500 46.46 0 .05  0.0499 
15 3 32.90 0.01 0.0100 54.04 0 .01  0.0100 
20 3 26.84 0.05 0.0500 45.73 0 .05  0.0500 
20 3 32.67 0.01 0.0100 53.18 0 .01  0.0100 

0/1 is the value of a obtained by approximating A~/b with 
Pearson's type I distribution, whereas 0/2 is the value of 0/obtained 
by using Box's asymptotic series. This table indicates that the 
accuracy of the values of 0/1 is good. 

9. Test specifying the values of the covariance matrix and mean vector 

In this  sec t ion  we cons ide r  the  d i s t r ibu t ion  of  the  l i ke l i hood  ra t io  s tat is t ic  for  
tes t ing the  hypo thes i s  H7, w h e r e  

~1~ = ~o, H7: i 
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and -~0 arrd Po are known. The likelihood ratio statistic for testing/-/7 is given 
by 

x7 = (e/N1)PNIlGIN~IIN1 etr[-X~l{G1 + Nl(zl.- ~0)(zl.- p0)'}] • (9.1) 

The moments of A7 are given by 

E(Ah ) = (e__~ ph~'l 1 f i  F(NI -  i + N~h) 
\N~] (1 + h) pNI(~÷h) i = l  F (N~-  i) (9.2) 

Using the first four moments, Chang, Krishnaiah and Lee (1975, 1977) ap- 
proximated the distribution of h~ b with Pearson type I distribution, where b is 
a suitably chosen integer. This approximation is used to compute the values of 
c7 for M = n~ - p - 1 = 1(1)20(2)30, n~ = NI - 1 and p = 2, 3, 4, 5, 6, where 

P[ '~7 ~< c7 I/-/7] = (1 - a ) .  

and A7 = - 2 l o g  A7. These values are given in Table 13 (see Appendix) for 
a = 0.05, 0.01, 0.025, 0.10. 

I0. Applications in time series in the frequency domain 

In this section we discuss as to how the likelihood ratio test procedures on 
t h e  covariance matrices of the complex multivariate normal populations can be 
used in the area of inference on multiple time series. 

Let X ' ( t )=  (X~(t) . . . .  ,X'q(t)) (t = 1 . . . . .  T) form a Gaussian, stationary, 
multiple time series with zero means and covariance matrix R ( s ) =  (Rjk(s)), 
where Rjk(S)=E{Xi(t)X;,(t+s )} and ~ ( t )  is of order p jx  1. The spectral 
density matrix of the above time series is given by F(o~)= (Ftj(~o)), where 

1 ~ e_i=Rzj(s) (10.1) F , j ( , o )  = . . . .  

A well-known estimate (e.g. see Brillinger (1974)) of F(to) is P(oJ)= (~j(eo)), 
where 

1 ~ ( _ ~ )  
Po(~°) = (2m + 1)r=-m Itj to + 

and m is a suitably chosen integer. In (10.2) 

(10.2) 

and 

1 T 
Zl(a ) = ~/-~-~ ~ Xt(t) exp(-itA), 
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/ , j ( x )  = 

Goodman (1963b) and Wahba (1968) showed that A(0))= (2m + 1)F(0)) is 
approximately distributed as complex Wishart distribution with (2m + 1) 
degrees of freedom and E(/5(0))) = F(0)). 

Now, let H2(0)), H3(0)) and H4(0)) denote the following hypotheses: 

H2(0)): F0(0))=0 ( l # j = l  . . . .  , q ) ,  

H3(0)): F(0)) = 0-2Fo(0)), 

H4(eo): F(0)) = F0(0)), 

(10.3) 

where 0 -2 is unknown and Fo(0)) is known. Let the statistics L2(0)), L3(0)), and 
L4(0)) be defined as follows: 

lA(o)[ (10.4) L2(0)) = ilq=l IA,,(0))[ ' 

IA(O))F~I(O))I (10.5) 
L3(0)) = {tr A ( 0 ) ) F g l ( 0 ) ) / s }  s '  

L , ( 0 ) )  = ( e / ( 2 m  + 1))sam+1)lA(0))F~(0))l(2"+~)etr(-A(0))F~l(0))),  
(10.6) 

where (2m + 1)Aij(0)) = ~j(oJ). Also, let/-]i(0)) = - 2  log Li(0)) for i = 2, 3, 4. The 
hypothesis H2(0)) is accepted or rejected according as 

where 
/52(0)) ~ d2, 

P[/-~:(0)) ~< d2l H2(0))1 = (1 - a ) .  (10.7) 

We accept or reject H3(0)) according as 

where 
/-]3(0)) X d3, 

P[/--,3(0)) ~< d3 I/-/3(,o)1 = (1 - a ) .  

(10.8) 

(10.9) 

Similarly, the hypothesis H4(0)) is accepted or rejected according as 

where 
£4(0)) ~ d4, 

P [/-]4(0)) ~< d41 H4(0))] = (1 - a ) .  (10.10) 

Since A(0)) is approximately distributed as the complex Wishart matrix, 
approximate values of d2, d3, and d4 can be obtained from Table 8, Table 9, 
and Table 10, respectively (see Appendix). 

Next, let /-/2 = Ak=IH2(0)i), H3=I"~k=lH3(0)j) and /-/4 = Nk=IH4(0)j), where 
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0.) 1 . . . . .  (,O k ate widely separated. Then, we accept or reject/-/2 according as 

where 
T2-~ ds, (10.11) 

P[T2 <~ dsI HE] - (1 - a )  (10.12) 

and T2 = max(L2(t01),...,/]2(t0k)). An alternative procedure is to accept or 
reject HE according as 

T~ <> d6,  (10.13) 
where 

P[T~ <~ d6[ HE] = ( 1 -  a )  (10.14) 
and 

k 
T~ = l-I £2(,o3. 

]=1 

Since to1, . . . ,  O k are widely separated, L2(oJ1) . . . .  , L2(0)k) are distributed in- 
dependently. So the critical values d5 and d6 can  be computed by using the 
methods discussed in this chapter. We can propose similar procedures to test 
/-/3 and H4. 

Let /-/5: F(tol) . . . . .  F(tOk), where the frequencies to1 , . . . ,  tok are 'suffi- 
ciently' wide apart. Also, let Ls(w)= - 2  log Ls(to), where 

Then, we accept or reject/-/5 accordingly as I55 N d~, where 

P[/Z5 ~< d~ I/-/5] = (1 - a ) .  

Since to1 . . . . .  ~Ok are 'sufficiently' wide apart, F( tOl ) , . . . ,  F(tOk) are distributed 
independently. Also, (2m + 1)F(toi) is distributed approximately as the complex 
Wishart matrix with (2m + 1) degrees of freedom for i = 1 . . . . .  k. Hence, the 
values of d~ can be obtained from Table 11 (see Appendix). 

Next, let X~(t)= (X~l(t) . . . . .  X~q(t)), ( t - - 1 , . . . ,  Ti) be  a Gaussian, sta- 
tionary, multiple time series with zero means and covariance matrix Ri(s) and 
spectral density matrix Fi(to), where Ri(s)=(Riuv(s)) and Ri,~(s) = 
E{Xi,(t)X~v(t + s)}. Also, let Xl( t ) , . . . ,  Xk(t) be distributed independently and 
Xi(t) be of order p × I for i = 1, . . . ,  k. Let the estimate/5/(to) of Fi(to) be defined 
in a similar way as/~(to). Here,  (2mi + 1)F/(w) is distributed approximately as the 
complex Wishart matrix with 2m~ + 1 degrees freedom. The hypothesis H6(to): 
Fl(w) . . . . .  Fk(tO) is tested as follows. We accept or reject H6 accordingly 
as 

/56(to) N d ; ,  
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where 
P[/-S,6(to) ~< d~ I/-/6] = (1 - t~), 

L6(to) = - 2  log L6(to), 

II~=l I~(to)[ ¢2'n'+~) 
L 6 ( t o )  = i~k= 1 ( 2 m ,  + 1)~(to)/m01 "° 

and m0 = 2(Ek=l rni) + k. The critical values d~ can be obtained from Table 11 
when the mi's are equal. 

We will now illustrate the usefulness of some of the tables in this paper with 
vibration data on a C-5A transport aircraft. 

Vibration measurements have been taken on the cargo deck of a C-5A 
transport aircraft to provide information about the dynamic environments that 
cargo must survive in transit and to understand better the distribution and 
transmission of vibrational energy throughout the aircraft structure. Measure- 
ments have been taken over certain periods by locating accelerometers at 
different locations on the cargo deck. We will treat each location as a variable. 
Data on the variables shown in Table 14 were taken. 

Table 14 

Longitudinal Lateral Directional 
Variables location location orientation 

1 (FRV) Forward Right Vertical 
2 (FRL) Forward Right Lateral 
3 (FLV) Forward Left  Vertical 
4 (FLL) Forward Left  Lateral 
5 (ARV)  Af t  Right  Vertical 
6 (ARL) Af t  Right Lateral 
7 (ALV) Af t  Left  Vertical 
8 (ALL) Aft  Left  Lateral 

The basic unit of measurement is the acceleration due to gravity ( lg  = 
980 cm/sec2). Let the spectral density of the data on the above 8 variables at 
frequency to be denoted by F(to) and let the corresponding population spectral 
density matrix be denoted by F(to). The sample spectral density matrix at 
frequency toj is f'(toj) = Sj0 + iS#, where to1 = 0.15907 Hz, toa = atol ,  a = 2, 3, 4, 5 
and 

0.311200 0.0027030 0.3204000 0.0033170 0.4229000 -0.0007585 0.4451000 -0.0052180"1 
[ 0.0O27030 0.0O140O0 0.0026990-0.0008533 0.0026720 0.0O27410 0.0015100-0.0O31180| 
[ 0.3204000 0.0026990 0.3316000 0.0036660 0.4340000 -0.01108463 0.4608000 -0.0055720 | 

$10 -~j [ 0.0033170 -0.0008533 0.0036660 0.0008898 0.0047820 -0.0o2082o 0.0073780 0.0021640 | 
0.422~0o0 0.0o26720 o.4340ooo 0.oo47820 0.6178000 -0.0051030 0.6390000 -0.0034100[ ' 

[ -0.0007585 0.0027410 -0.0008463 -0.0020820 -0.0o51030 0,0080290 -0.0098130 -0.00902201 
0.4451000 0.0015100 0.4608000 0.0O73780 0.6390000-0.0098130 0.7003000 0.00O8291| 

[_-0.0052180 -0.0O31180 -0.0055720 0.0021640 -0.0034100 -0.0090220 0.0O08291 0.010480O J 
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F O.O000(K~ -0.0044000 
0.0044000 0.0000000 

l 0.0104100 -0.0049750 
1-oo°°4o39 -0.0003763 

811 = /-0.0915800 -0.0061860 
| 0.0152700 0.0005155 

-0.0657400 -0.0102700 
[__-0.0159700 -0.0001463 

-0.0104100 0.0004039 0.0915800 -0.0152700 
0.0049750 0.0003763 0.0061860 -0.0005155 
0.00(10(300 0.0007700 0.1081000 -0.0172500 

-0.0007700 0.0000000 0.0013310 -0.0007427 
-0.1081000 -0.0013310 0.0000000 -0.0191800 

0.0172500 0.0007427 0.0191800 0.0000000 
-0.0805500 0.0010270 0.0460900 -0.0296300 
-0.0181600 -0.0010250 -0.0216900 0.0011300 

F " 0.0700800 0.0005669 0.0728700 -0.0003783 0.1112000 0.0004678 
| 0.0005689 0.0004357 0.0007168 -0.0003547 -0.0001567 0.0003975 
l 0.0728700 0.0007163 0.0765300 -0.0003989 0.1129000 0.0006873 

- -  1-0"0003783 -0.0003547 -0.0003989 0.0004464 -0.0007892 -0.0003550 
S2° -- l 0.1112000 -0.0001607 0.1129000 -0.0007892 0.2341000 0.0000914 

[ 0.0004678 0.0003975 0.0006873 -0.0003550 0.0000914 0.0013360 
| 0.1069000 -0.0002877 0.1096000 -0.0010090 0.2381000 -0.0014520 
/-0.0016200 -0.0003964 -0.0018970 0.0003924 -0.0020400 -0.0014630 

F 0.000(]000 0.0010550 -0.0024270 
1 - 0 . 0 0 1 0 5 5 0  0 .0000000  - 0 . 0 0 1 1 4 8 0  

l 0.0024270 0.0011480, 0.0000000 
S = /  0.00240"z0 -o.ooooo26 o.~2so4o 

/-004   0.00 0 _00,6,  
1-°.~2366° -o.oom99a -0.0022950 
1-°°4653°° o.oo~5o -o.o5~4ooo 
L 0.0027390 0.0002051 0.007fo480 

-0.0024020 0.0413600 0.0023660 
0.(X)00026 -0.0022600 -0.0061995 

-0.0025040 0.0468300 0.0022950 

0.0000000 0.0041830 -0,0000834 
-0.0041830 0.0000000 0.0042450 

0.0000834 -0.0042450 0.0000000 
-0.0038860 -0.0130200 0.0029430 
-0.0000812 0.0051230 0.0000308 

F 0.0184600 0.0008811 0.0185700 
| 0.0008811 0.000"/630 0.0009133 
| 0.0185700 0.0009133 0.0196800 

¢, [-0.0005107 -0.0006139 -0.0006396 
030 = / 0.0180400 0.0034630 0.0147100 

| 0.0011710 -0.0002562 0.0012600 
| 0.0220500 0.0039880 0.0225900 
1_-0.0015350 0.0003266 -0.0015980 

-0.0005107 0.0180400 0.0011710 
-0.0006139 0.0034630 -0.0002562 
-0.0006396 , 0.0147100 0.0012600 

0.0005513 -0.0028510 0.0001858 
-0.0028510 0.1323000 0.0018900 

0.0001858 0.0018900 0.0015540 
-0.0037240 0.1422000 0.0018380 
-0.0002224 -0.0042980 -0.0017730 

I 0.0000000 -0.0006045 0.0012290 0.0004898 -0.0022730 0.0014420 
0.0006045 0.0000000 0.0002828 0.0000029 0.0021210 0.0006690 

| -0.0012290 -0.00028~_ 0.0000000 0.0001996 0.0021090 0.0013270 
__ [-0.0004898 -0.000029 -0.0001996 0.0000000 -0.0026050 -0.0006137 

S31 --  ] 0.0022730 -0.0021210 -o.oo21o9o 0.oo26o5o o.ooooooo o.oo6.562o 
|-0.0014420 -0.0006690 -0.0013270 0.0006137 -0.0065620 0.0000000 
|-0.0030790 -0.0011520 -0.0077890 0.0019060 0.0284800 0.0075690 
L. 0.0016530 0.0007933 0.0015220 -0.0007250 0.0080510 -0.0001471 

540 = 

I 0.0178100 0.0009329 0.0173700 
0.0009329 0.0010400 0.0011190 

0.0173700 0.0011190 0.0177500 
-0.0009332 -0.0010330 -0.0011380 
-0.0019830 0.0036700 -0.0043440 
-0.0020970 0.0001542 -0.0016860 
-0.0035530 0.0027770 -0.0056940 

0.0023870 -0.0001921 0.0018640 

-0.0009332 -0.0019830 -0.0020970 
-0.0010330 0.0036700 0.0001542 
-0.0011380 -0.0043440 -0.0016860 
0.0011560 -0.0039250 0.0000601 

-0.0039250 0.0891900 0.0027140 
0.0000601 0.0027140 0.0018160 

-0.0026070 0.0974400 0.0031220 
-0.0000872 -0.0030700 -0.0020710 

F 0.0000000 0.0004232 -0.0022300 
[-0.0004232 0.0000000 -0.0004769 
[ 0.0022300 0.0004769 0.0000(~ 

= | 0.0003321 -0.0(~2420 0.0002708 
$41 |-0.tr283700 -o.oolToao -0.0251500 

1-0.0001471 -0.0010000 -0.0000198 
[-0.0295m0 -0.0017070 -0.0257100 
L-o.oooo247 0.0011890 -0.0001436 

-0.0003321 0.0283700 0.0001471 
0.0002420 0.0017030 0.0010000 

-0.0002708 0.0251500 0.0000198 
0.0000000 -0.0029520 -0.0011320 
0.0029520 0.0000000 0.0062310 
0.0011320 -0.0062310 0.00000(~ 
0.0029710 -0.0078030 0.0056680 

-0.0013630 0.0085380 0.0000241 

0.0657400 0.0159700 ~ 
0.0102700 0.0001463 
0.0805500 0.0181600 

-0.0010270 0.0010250 
-0.0460900 0.0216900 , 

0.0296300 -0.0011300 
0.0000000 0.0331300 

-0.0331300 0.0000000 

0.1069000 -0.0016200 q 
-0.1}002877 -0.0003964 [ 

0.1096000 -0.0018970[ 
-0.0010090 0.0003924 [ 

0.2381000 -0.0020400 [ ' 
-0.0014520 -0.0014630 / 

O.275400O -0.0005648 | 
-0.0005648 0.001712013 

0.0465300 -0.0027390" 
-0.0020950 -0.0002051 

0.0524000 -0,0026480 
0.0038860 0.0000812 
0.0130200 -0.0050250 ' 

-0.0029430 -0,0000308 
0.0000000 -0.0038830 
0.0038830 0,0000000 

0.o220500 -o.oo1535o- 
0 .0039880  0,0003266 
0.0225900 -0.0015980 

-0.0037240 -0,0002224 
0.1422000 0.0042980 
0.0018380 -O.O01T/30 
0.1801000 -0.0045580 

-0.0045580 0.0021400 

0.oo3o79o -o.oot653o-I 
0.0011520 -0:0007933 | 
0.0077890 -0.0015220 | 

-0.0019060 0.0007250 [ 
-0.0284800 -0.0080510 ' 

-0.0075690 0.0001471 | 
0.0000000 -0.0095390 | 
o.oo9539o o.ooooooo d 

-0.0035530 0.0023870' ] 
0.0027770 -0.0001921 | 

-0.0056940 0.0018640 | 
-0.0026070 -0.0000872 | 

0.0974400 -0.0030700 | 
0.0031220 -0.0020710 | 
0.1220000 ,0.0037580~| 

-0.0037580 0.0024530_] 

0.0295500 0,0000247" 
0.0017070 -0,0011890 
0.0257100 0,0001436 

-0.0029710 0,0013630 
0.0078030 -0.0085380 

-0.0056680 -0.0000241 
0.0000000 -0.0081600 
0.0081600 O.O0000OO 
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F 0.0177900 -0.0002297 0.0194000 0.0007346 -0.0168300 0.0010770 
| -0.0002297 0.0006892 -0.0003287 -0.0006763 -0.0011050 -0.0004262 
| 0.0194000 -0.0003287 0.0219900 0.0010720 -0.0203800 0 . ~  

= l o.ooo7346 -0.~06763 0.0010720 0.0~7642 -0.0~0531 0.0006507 
& o  ' l  - 0 0 1 ~  -o.oon050 -0.o2o38oo -0.0000531 0.0916600 -0.0017990 

1 0.0010770 -0.0004262 0 . ~  0.0006507 -0.0017990 0.0019100 
1-0.0~r2900 -0.000T/52 -0.0240760 -0.0006490 0.1052000 -0.0011770 
/ -0.0010980 0.0004927 -0.0021080 -0.0007398 0.0009515 -0.0020380 

851 = 

0.0000000 -0.0004046 0.0002579 0.0004528 ) 0.0143100 0.0002641 
0.0004046 0.0000000 0.0003417 -0.0000041 0.0002183 0.0004148 

-0.0002579 -0.0003417 o.ooooooo 0.0003401 0.0162500 -0.0000514 
-0.0004523 0.0000041 -0.0003401 0.0000000 -0.0001052 -0.0004866 
-0.0143100 -0.0002183 -0.0162500 0.0001052 o.ooooooo -0.0024870 
-0.0002641 -0.0004148 0.0000514 0.0004866 0.0024870 o.ooooooo 
-0.0135000 -0.0010520 -0.0160100 0.0009598 0.0100500 -0.0022010 

0.0005494 0.0004537 0.0002829 -0.0005184 -0.0022780 0.0000928 

-0.02029O0 -0.0010980-] 
-0.0007752 0.0004927 l 
-0.0240700 -0.00210801 
-0.0006490 -0.0007398| , 

0.105200O 0.OOO9515 1 
-0.0011770 -0.0020380| 

0.1295ooo 0.o001445 / 
0.0001445 0.0022160_[ 

0.0135000 -0.0005494 1 
0.0010520 -0.0004537 
0.0160100 - 0.0002829 

-0.0009598 0.0005184 . 
-0.0100500 0.0022780 

0.0022010 -0.0000928 
0.0O00000 0.0017320 

-0.0017320 0.0000000 

Let ~'(to) be partitioned as 

i -A1(,o) 6 , ( - ) ]  

. ~ 1 ( O ) )  ~ 2 ( O ) )  ~3 (O . ) )  F 4 4 ( o J ) J  

where ~i(o~) is of order 2 x 2  for i =  1, 2, 3, 4. We computed Lz(coj)= 
- 2  log L2(toi), where 

L2(oJj) = 1(2m + 1)P(o~j)l 
4 II ~=ll(2rn + 1)~(o~j)l 

and (2m + 1)=  19. The values of /~2(~oj) in this case are found to be 47.760, 
31,667, 33.684, 35.646 and 37.738, respectively. The value of the critical value 
d2 for n = 19, s = 8 and q = 4 from Table 8 (see Appendix) is found to be 4.217 
at 5% significance level. Since the computed values of L2(~oj) are greater than 
the value from the table, we conclude that the sets (1, 2), (3, 4), (5, 6), (7, 8) of 
variables are not independent for each of the five frequencies considered. 

Next, we computed the value of/~a(coj) = - 2  log L3(~oj), where 

Ls(oJj) = [(2m + 1)P(o)i) I 
{(2m + 1) tr F(oJj)/s} ~' 

s = 8, (2m + 1) = 19. It is found that the values of/-~3(tOj) in this case are 78.321, 
65.267, 63.226, 59.019 and 61.852 respectively. The critical value d3 for n = 19 
and s = 8 i s  found to be 5.142 at 5% level. So, we reject (individually) the 
hypotheses that F(toj) = o'2Ip for ] = 1, 2, 3, 4, 5. 

For the hypothesis /-/5 we will consider only the first four variables. Let 
spectral density matrix of the data on the first four variables at frequency to~ be 
denoted by -#(o~i) and let the corresponding population spectral density matrix 
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be denoted by F(~oi). The sample spectral density matrices at frequen- 
cies 0 .15907Hz,  0 .47721Hz and 0 .79535Hz are /7 (0 .15907)=$1o+iSu ,  
F(0.47721) = $2o + iS21 and/~(0.79535) = $3o + iS31, respectively, where 

I 0.31120OO 
$10 = 0.0027030 

0.3204000 
0.0033170 

[Oo:  
$11 : l 0.0104100 

L - O . ~ 3 9  

0.0184600 
$20 ~ 0.0008811 

0.0185700 
-0.0005107 

0.0000000 
$21 = 0.0006045 

-0.0012290 
-0.0004898 

0.0177900 
$30 ~ -0.0002297 

0.0194000 
0.0OO7346 

" 1  

0.0027030 0.3204000 0.0033170 | 
/ 

0.0014000 0.0026990 -0.0008533 | , 
0.0026990 0.3316000 0.0036660 | 

-0.0008533 0.0036660 0.0008898 .J 

-0.0044000 -0.0104100 0.0004039 "] 

J 
0.000~00 0.0049750 0.0003763 

-0.0049750 0.0000000 0.0007700 
-0.0003763 -0.0007700 0.0000000 

0.0008811 0.0185700 -0.0005107 "] 

J 
0,0007630 0.0009133 -0.0006139 
0.0009133 0.0196800 -0.0006396 

-0.0006139 -0.0006396 0.0005513 

-0.0006045 0.0012290 0.0004898 "1 

] 0.0000000 0.0002828 0.00OO029 
-0.0002828 0.0000000 0.0001996 ' 
-0.0000029 -0.0001996 02000000 

-0.0002297 0.0194000 0.0007346 "] 
0.0006892 -0.0003287 -0.0006763 J , 

-0.0003287 0.0219900 0.00.10720 
-0.0006763 0.0010720 0.0007642 

-0.0004046 0.0002579 0.0004523 -] 

J 
0 . ~  0.0003417 -0.0000041 

-0.000~417 0.0000000 0.0003401 " 
0.0000041 -0.0003401 0.0000000 

Ls, where 

S31 = 

0.0000000 
0.0004046 

-0.0002579 
-0.0004523 

We computed the value of L5 = - 2  log 

I1,3.=1 [A(a~O/(2m + 1)l(2m+1) 
L5 = IE3=, A(toi)/3(2m + 1)l 3a"+1} ' 

~ol = 0.15907 Hz, aJ2 = 0.47721 I-Iz, to3 = 0.79535 I-Iz, (2m + 1) = 19. The value of 
/~5 is found to be 224.72. The critical value d~ for no = 19, p = 4 and q = 3 from 
Table 11 (see Appendix) is found to be 50.93 at the 5% significance level. Since/~5 
is greater than the value from the table, we conclude that the spectral density 
matrices F(wl),  F(to2), and F(to3) are significantly different from one another. 

Appendix 

Tables 7 through 13 give percentage points of various distributions discussed 
in this chapter. These tables are useful in implementation of the likelihood 
ratio test procedures. A description of these tables is given below. 

Table 7. The entries in this table give the values of cl where 

P[C1 ~< cl1 = (1 - o~), 

C1 = - { (2n  + q - p)  log U}/X2m,,, and U = IAI(A1 + A2)-11. 
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H e r e  A1 and A2 are  d i s t r i bu t ed  i n d e p e n d e n t l y  as cen t ra l  p x p c omple x  
W i s h a r t  ma t r i ces  with n and  q deg rees  of f r e e d o m  respec t ive ly .  T h e s e  en t r ies  
in this  t ab le  a re  r e p r o d u c e d  f rom a t echn ica l  r e p o r t  by  Lee ,  K r i shna i a h  and  
Chang  (1975). 

Tab le  8. T h e  en t r ies  in this  t ab le  give the  va lues  of  c2, w h e r e  

P [A2 ~ c2] = (1 - a ) ,  

A2 = - 2  log A2 and  

tAI A2- q 
Iii=1 [Aii[ 

H e r e ,  A = (Aij): pq  x pq  is the  cen t ra l  c o m p l e x  W i s h a r t  ma t r ix  wi th  n deg rees  
of  f r e e d o m  and  E ( A )  = n,~, and  ,~ = ('~0). Al so ,  Aij and  20 are  of o r d e r  p x p. 
In  add i t ion ,  $ij = 0 for  i ~ j = 1, 2 . . . .  , q, M = n - s - 3 and  s = pq.  

Krishna iah ,  L e e  and  C h a n g  (1976) gave  the  va lues  of c2 for  a = 0.05, 
M = 1(1)4(2)16, 20, 24, 30, p = 1, 2, 3, and  q = 3, 4, 5. T h e s e  en t r i es  a re  
inc luded  in T a b l e  8 wi th  the  k ind  pe rmis s ion  of B i o m e t r i k a  Trus tees .  T h e  
r e m a i n i n g  en t r ies  in the  t ab le  a re  r e p r o d u c e d  f rom a t echn ica l  r e p o r t  by  
Kr i shna iah ,  L e e  and  Chang  (1975). 

Table 8 
Percentage points of the distribution ,(2 for multiple independence 

q ~ 3  

p = l  p = 2  p = 3  

M a 10% 5% 1% 10% 5% 1% 10% 5% 1% 

1 1.895 2 .243  3.002 4.679 5 .143  6.096 7.936 8 .481  9.575 
2 1.607 1 .902  2.543 4.085 4 .488  5.314 7.061 7 .542  8.504 
3 1.395 1 .651 2.207 3.628 3 .984  4.713 6.368 6 .798  7.661 
4 1.233 1 .459  1.949 3.264 3 .584  4.238 5.802 6 .193  6.974 
5 1.104 1 .306  1.746 2.967 3 .258  3.851 5.331 5 .690  6.405 
6 1.001 1 .184  1.581 2.722 2 .987  3.530 4.933 5 .265  5.925 
7 0.914 1 .081 1.445 2.513 2 .759  3.259 4.592 4 .899  5.512 
8 0.842 0 .996  1.330 2.335 2 .562  3.027 4.295 4 .582  5.155 
9 0.780 0 .923  1.233 2.180 2 .393  2.826 4.035 4 .305  4.841 
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q = 3  
f 

p = l  p = 2  p = 3  

M a 10% 5% 1% 10% 5% 1% 10% 5% 1% 

10 0.727 0.859 1.148 2.045 2.244 2.651 
11 0.680 0.805 1.075 1.926 2.113 2.495 
12 0.639 0.756 1.010 1.819 1 . 9 9 7  2.358 
13 0.603 0.713 0.952 1.724 1 . 8 9 2  2.235 
14 0.570 0.675 0.902 1.639 1 . 7 9 9  2.124 
15 0.542 0 . 6 4 1  0.856 1.562 1 . 7 1 4  2.023 
16 0.515 0.610 0.814 1.491 1.636 1.931 
17 0.492 0.582 0.776 1.427 1 . 5 6 6  1.848 
18 0.470 0.556 0.742 1.368 1 . 5 0 1  1.772 
19 0.450 0.532 0.711 1.313 1 . 4 4 1  1.702 
20 0.432 0.511 0.682 1.263 1 . 3 8 6  1.637 
22 0.400 0.473 0.631 1.174 1 . 2 8 8  1.521 
24 0.372 0.439 0.587 1.096 1 . 2 0 2  1.420 
26 0.347 0.410 0.548 1.028 1 . 1 2 8  1.332 
28 0.326 0.386 0.515 0.968 1 . 0 6 2  1.254 
30 0.307 0.364 0.485 0.915 1 . 0 0 4  1.185 

3.805 4.059 4.565 
3.600 3.840 4.318 
3.416 3.644 4.098 
3.251 3.467 3.898 
3.101 3.307 3.718 
2.963 3.161 3.553 
2.838 3.027 3.403 
2.723 2.904 •3.265 
2.618 2 . 7 9 1  3.138 
2.520 2.687 3.020 
2.429 2.590 2.911 
2.265 2.416 2.715 
2.122 2.263 2.544 
1.997 2.129 2.393 
1.886 2.010 2.259 
1.786 1 . 9 0 4  2.140 

q = 4  

1 2.982 3.384 4.234 7.374 7.909 8.983 12 .428  13.049 14.276 
2 2.563 2.908 3.635 6.542 7.012 7.956 1 1 .2 3 7  11.794 12.891 
3 2.248 2.551 3.186 5.886 6.306 7.149 10 .271  10.775 11.768 
4 2.003 2.272 2.837 5.352 5.733 6.496 9.466 9.927 11).836 
5 1.807 2.049 2.558 4.909 5.259 5.955 8.783 9.210 10.049 
6 1.645 1 . 8 6 6  2.328 4.536 4.858 5.500 8.196 8.593 9.373 
7 1.511 1 . 7 1 3  2.138 4.217 4.514 5.111 7.684 8.057 8.785 
8 1.397 1.5.83 1.976 3.939 4.217 4.774 7.236 7.584 8.269 
9 1.298 1.472 1.837 3.697 3.958 4.479 6.837 7.166 7.812 

10 1.213 1.376 1.716 3.483 3.729 4.219 6.480 6.792 7.404 
11 1.139 1 . 2 9 1  1.610 3.293 3 . 5 2 5  3.988 6.161 6.457 7.037 
12 1.073 1.216 1.517 3.122 3.342 3.782 5.872 6.153 6.705 
13 1.014 1.149 1.434 2.969 3.178 3.596 5.608 5.878 6.404 
14 0.961 1 . 0 9 0  1.359 2.830 3.029 3.427 5.369 5.625 6.129 
15 0.914 1.036 1.292 2.704 2.894 3.273 5.148 5.395 5.878 
16 0.871 0.987 1.231 2.588 2.770 3.133 4.946 5.182 5.646 
17 0.831 0.943 1.176 2.482 2.656 3.005 4.758 4.986 5.432 
18 0.796 0.902 1.125 2.384 2.552 2.886 4.585 4.805 5.234 
19 0.763 0.865 1.079 2.294 2.455 2.777 4.424 4.636 5.050" 
20 0.733 0.831 1.036 2.211 2.366 2.676 4.274 4.479 4.878 
22 0.680 0.770 0.960 2.061 2.205 2.493 4.004 4.194 4.568 
24 0.633 0.717 0.894 1.930 2.064 2.335 3.765 3.944 4.297 
26 0.593 0.672 0.838 1.814 1 . 9 4 1  2.195 3.553 3.723 4.054 
28 0.557 0 . 6 3 1  0.787 1.712 1.832 2.071 3.364 3.525 3.839 
30 0.525 0.595 0.742 1.621 1.734 1.961 3.195 3.346 3.645 
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q = 5  

p = l  p = 2  p = 3  

M a 10% 5% 1% 10% 5% 1% 10% 5% 1% 

1 4.169 4 .617  5 . 5 4 3  10.270 10.860 12.030 17.180 17.862 19.194 
2 3.623 4 .011  4.81i 9.222 9.746 10.784 15.717 16.330 17.534 
3 3.206 3 .549  4.253 8.379 8 .852  9 . 7 8 7  14.506 15.072 16.165 
4 2.877 3 .183  3.813 7.683 8 .115 8 . 9 6 8  13.483 14.002 15.012 
5 2.609 2 .886  3.457 7.098 7 .496  8 . 2 8 0  12.603 13.086 14.024 
6 2.388 2 .642  3.163 6.599 6 .967 7 . 6 9 4  11.837 12.289 13.166 
7 2.202 2 .435  2.914 6.167 6 .510 7 . 1 8 8  11.162 11.587 12.412 
8 2.042 2 .259  2.703 5.789 6 .110  6 . 7 4 5  10.563 10.965 11.743 
9 1.904 2 .106  2.521 5.456 5 .758  6 . 3 5 5  10.028 10.407 11.144 

10 1.784 1 .973 2.361 5.159 5 .444  6.009 9.547 9.906 10.606 
11 1.678 1.856 2.221 4.893 5 .164  5.699 9.109 9.452 10.119 
12 1.585 1 .752  2.096 4.654 4 .912  5.420 8.713 9 .041 9.677 
13 1.500 1 .659  1.985 4.438 4 .683 5.167 8.349 8 .663 9.273 
14 1.425 1 .575  1.885 4.241 4 .475  4.938 8.015 8 .316  8.901 
15 1.357 1 .500  1.794 4.061 4 .285 4.727 7.708 7 .997  8.559 
16 1.295 1 .431 1.713 3.895 4 .111 4.534 7.423 7 .702  8.242 
17 1.238 1 .369 1.638 3.743 3 .950 4.357 7.159 7 .428  7.949 
18 1.186 1 .312  1.569 3.602 3 .801 4.192 6.914 7 .173 7.676 
19 1.139 1 .259  1.506 3.472 3 .663 4.041 6.685 6 .935 7.420 
20 1.095 1 .210 1.448 3.350 3 .536  3.900 6.471 6 .713  7.183 
22 1.016 1 .124 1.344 3.132 3 .305  3.645 6.082 6 .309  6.750 
24 0.948 1 .048  1.254 2.940 3 .102  3.421 5.738 5 .952  6.367 
26 0.889 0 .983  1.176 2.771 2 .924  3.224 5.430 5 .633 6.026 
28 0.836 0 .925  1.106 2.620 2 .764  3.048 5.155 5 .347  5.720 
30 0.790 0 .873  1.045 2.485 2 .622  2.891 4.906 5 .089  5.444 

Table 9. The entries in this table are the values of  ca where 

P[A3 ~< ca] = (1 - ~ ) ,  

X3 = - 2  l o g { l A ~ l / ( t r  AJgr'/s)'}, 

and M = n - s - 3. Also ,  A :  s x s is d is t r ibuted as the  cent ra l  com p lex  Wishar t  

mat r ix  with n degrees  of f r e e d o m  and E ( A )  = no.2,~0, whe re  o .2 is u n k n o w n  and 

-~0 is known.  U p p e r  5% points  of  the  dis t r ibut ion of ~3 are g iven in Kr ishnaiah ,  

L e e  and Chang  (1976) for  s = 7(1)10 and M = 1(1)5, 7, 10, 15, 20, 30(5)50, 60. 

These  entr ies  are r e p r o d u c e d  in Tab le  9 with the  k ind  permiss ion  of  

B i o m e t r i k a  Trus tees .  T h e  remain ing  entr ies  in the  table  are  r e p r o d u c e d  f rom a 

technica l  r epor t  by Kr ishnaiah ,  L e e  and Chang  (1975). 
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Table 9 
Percentage points of the likelihood ratio statistic for the sphericity test of complex 
covariance matrix 

a=0 .05  

M s = 2  s = 3  s = 4  s = 5  s = 6 s = 7  s = 8 s = 9 s = l O  

1 1 . 4 9 6  2.648 3.866 5.157 6.512 7.921 9.375 10.870 12.399 
2 1 . 2 5 5  2.257 3.338 4.499 5 . 7 3 1  7.022 8.366 9.755 11.183 
3 1 . 0 8 0  1 . 9 6 8  2.939 3.993 5.122 6.314 7.562 8.860 10.199 
4 0.949 1 . 7 4 5  2.626 3.592 4.633 5.740 6.906 8.122 9.383 
5 0.846 1 . 5 6 8  2.374 3.265 4 . 2 3 1  5.264 6.357 7.502 8.693 
6 0.763 1 . 4 2 3  2.166 2.993 3.895 4.863 5.891 6.973 8.100 
7 0.696 1 . 3 0 3  1 . 9 9 2  2.763 3.608 4.519 5.490 6.514 7.586 
8 0.639 1 . 2 0 1  1.844 2.567 3.362 4.222 5.142 6.115 7.137 
9 0.590 1 . 1 1 5  1 . 7 1 7  2.397 3.147 3.962 4.836 5.762 6.736 

10 0.549 1 . 0 4 0  1.606 2.248 2.959 3.732 4.565 5.448 6.381 
11 0.512 0.975 1 . 5 0 9  2.116 2 . 7 9 1  3.528 4.322 5.168 6.061 
12 0.481 0.916 1 . 4 2 3  1 . 9 9 9  2.642 3.346 4.104 4.915 5.773 
13 0.453 0.866 1 . 3 4 6  1 . 8 9 5  2.508 3 . 1 8 1  3.908 4.686 5.511 
14 0.429 0.820 1 . 2 7 7  1 . 8 0 1  2.387 3.031 3.730 4.478 5.272 
15 0.406 0.779 1 . 2 1 5  1 . 7 1 5  2.277 2.896 3.567 4.287 5.053 
16 0.386 0.741 1 . 1 5 8  1 . 6 3 8  2.177 2.772 3.419 4.113 4.851 
17 0.368 0.707 1 . 1 0 7  1 . 5 6 7  2.086 2.659 3 . 2 8 1  3.952 4.666 
18 0.352 0.676 1 . 0 6 0  1 . 5 0 3  2.001 2.554 3.155 3.803 4.494 
19 0.336 0.648 1.016 1 . 4 4 3  1 . 9 2 4  2.457 3.038 3.665 4.335 
20 0.322 0.622 0.977 1 . 3 8 7  1 . 8 5 2  2.367 2.930 3.537 4.186 
22 0.298 0.576 0.906 1 . 2 8 9  1.724 2.207 2.735 3.306 3.918 
24 0.277 0.536 0.845 1 . 2 0 4  1 . 6 1 2  2.066 2.564 3.103 3.683 
26 0.258 0.501 0.791 1 . 1 2 9  1 . 5 1 3  1 . 9 4 3  2.413 2.925 3.474 
28 0.242 0.471 0.744 1 . 0 6 3  1 . 4 2 7  1 . 8 3 3  2.280 2.765 3.287 
30 0.228 0.444 0.702 1 . 0 0 5  1 . 3 4 9  1 . 7 3 5  2.160 2.622 3.120 
35 0.199 0.388 0.616 0.883 1 . 1 8 8  1 . 5 3 1  1.909 21322 2.769 
40 0.177 0.345 0.548 0.787 1 . 0 6 1  1 . 3 7 0  1 . 7 1 1  2.084 2.488 
45 0.159 0.311 0.494 0.710 0.959 1 . 2 3 9  1 . 5 5 0  1 . 8 9 1  2.259 
50 0.144 0.282 0.450 0.647 0.875 1.132 1.417 1 . 7 3 0  2.069 
60 0.122 0.239 0.381 0.549 0.744 0.964 1 . 2 0 9  1 . 4 7 8  1.771 

a = 0.01 

1 2.174 3.440 4.746 6.112 7 . 5 3 1  8.995 10.501 12.041 13.612 
2 1 . 8 2 3  2.930 4.095 5.326 6.620 7.967 9.361 10.794 12.265 
3 1 . 5 7 0  2.554 3.602 4.724 5.912 7.158 8.455 9.797 11.176 
4 1 . 3 7 8  2.263 3.218 4.247 5.346 6.505 7.716 8.976 10.277 
5 1 . 2 2 9  2.033 2.908 3.859 4.880 5.962 7.101 8.286 9.517 
6 1 . 1 0 9  1 . 8 4 5  2.653 3.537 4.491 5.506 6.579 7.700 8.866 
7 1 . 0 1 0  1 . 6 8 9  2.439 3.265 4.160 5.117 6.129 7.192 8.302 
8 0.927 1 . 5 5 7  2.258 3.032 3.875 4.779 5.739 6.750 7.807 
9 0.857 1 . 4 4 5  2.102 2.831 3.627 4.484 5.397 6.360 7.369 

10 0.797 1 . 3 4 8  1.966 2.655 3.409 4.223 5.093 6.013 6.979 
11 0.745 1 . 2 6 3  1 . 8 4 7  2.499 3.216 3.992 4.823 5.703 6.629 
12 0.699 1 . 1 8 8  1 . 7 4 1  2.361 3.044 3.785 4.579 5.423 6.313 
13 0.658 1 . 1 2 1  1 . 6 4 7  2.238 2.889 3.598 4.360 5.170 6.025 
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a = 0.01 

M s = 2  s = 3  s = 4  s = 5  s = 6  s = 7  s = 8  s = 9  s=10 

14 0 .622  1 .062  1 .563 2 .126  2 .750 3 .429  4 .160  4 .940  5.764 
15 0 .590  1 .009  1 .486 2 .026  2 .624  3 .276  3 .979  4 .730  5.525 
16 0 .560  0 .960  1 .418  1 .934 2 .508  3 .135  3 .813  4 .537  5.304 
17 0 .534  0 .917  1 .355 1 .850 2 .402  3 .007  3 .660  4 .359  5.101 
18 0 .510  0 .877  1 .297 1 .774 2 .305 2 .888  3 .520  4 .195  4.913 
19 0 .488  0 .840  1 .244  1 .703 2 .216  2 .779  3 .389  4 .043 4.738 
20 0 .468  0 .806  1 .195 1 .638 2 .133 2 .677  3 .267  3 .901 4.576 
22 0 .432  0 .746  1 .108  1 .522  1 .985 2 .495  3 .050  3 .646  4.283 
24 0 .402  0 .694  1 .034 1 .421 1 .856 2 .337  2 .860  3 .423  4.025 
26 0 .375  0 .650 0 .968  1 .333 1 .743 2 .197  2 .691  3 .225  3.797 
28 0 .352  0 .610 0 .910  1 .255 1 .643 2 . 0 7 2  2 . 5 4 2  3 .049 3.593 
30 0 .331  0 .575  0 .859  1 .186  1 .554  1 .962  2 .409  2 .892  3.410 
35 0 .289  0 .503  0 .753  1 .042  1 .368 1 .731  2 . 1 2 9  2 .561 3.025 
40 0 .256  0 .447  0 .671 0 .929  1 .222  1.549 1.908 2 .298  2.719 
45 0 .230  0 .402  0 .604  0 .838  1 .104  1 .401  1 .729  2 .085 2.469 
50 0 .209  0 .366  0 .550 0 .764  1 .007 1 .280  1 .580  1 .907 2.261 
60 0 .177  0 .309  0 .466  0 .649  0 .857  1 .090  1 .348  1 .630 1.936 

Table  10. T h e  entr ies  in this table  give the  values  of  c4, whe re  

P [/~4 ~ C4] : (1 -- O~), 

A4 = (e/n)s"lA~61l" e t r ( - A ~  1) and /~4 = - 2  log/~4. 

In the above  equa t ion ,  A :  s × s is d is t r ibuted  as the  cent ra l  complex  Wishar t  

mat r ix  with n degrees  of f r e e d o m  and E ( A ) =  n~o, w h e r e  ~0 is known.  

Krishnaiah,  L e e  and Chang  (1976) gave  uppe r  5% points  of the  dis t r ibut ion of A4 

for s = 2(1)7, M = 1(1)5, 7, 10, 15, 20, 30, whe re  M = n - s - 1. These  pe r cen t age  

points  are r e p r o d u c e d  in Tab le  10 with the  kind permiss ion  of the  B i o m e t r i k a  

Trus tees .  T h e  remain ing  entr ies  in the  table  are  r e p r o d u c e d  f rom a technical  

r epor t  by Krishnaiah,  L e e  and Chang  (1975). 

Table 10 
Percentage points of the likelihood ratio statistic for specifying the covariance matrix 

a=0.05 

M s = 2  s = 3  s = 4  s = 5  s = 6 s = 7 s = 8 s = 9 s = l O  

1 11 .31  21 .68  35 .43  52 .70  73 .55  98.03 126.19 158.02 193.65 
2 10 .86  20 .57  33 .44  49 .60  69 .16  92 .18  118.72 148.79 182.49 
3 10 .58  19 .88  32 .17  47 .60  66 .26  88.25 113.62 142.40 174.68 
4 10 .40  19 .42  31 .29  46 .18  64 .19  85.40 109,87 137.65 168.85 
5 10 .27  19.07 30 .64  45 .12  62 .62  83.22 106.98 134.00 164.28 
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a=0 .05  

M s = 2  s = 3  s = 4  s = 5  s = 6 s = 7 s = S s = 9 s = l O  

6 1 0 . 1 8  1 8 . 8 2  30.14 44.30 61.40 81.50 104.69 131.04 160.60 
7 1 0 . 1 0  1 8 . 6 1  29.75 43.64 60.40 8 0 . 1 1  102.83 128.62 157.57 
8 10.04 1 8 . 4 5  29.43 43.11 59.58 78.96 101.28 126.61 155.01 
9 9.99 1 8 . 3 2  29.16 42.66 58.91 77.98 99.96 124.87 152.84 

10 9.95 1 8 . 2 1  28.94 42.28 58.32 77.15 98.82 123.41 150.97 
11 9.91 1 8 . 1 1  28.74 41.95 57.82 76.43 97.84 122.11 149.30 
12 9.88 1 8 . 0 2  28.58 41.67 57.38 75.80 96.98 120.98 147.87 
13 9.85 1 7 . 9 5  28.44 41.42 57.00 75.24 96.21 119.97 146.57 
14 9.83 1 7 . 8 9  2 8 . 3 1  41.21 56.67 74.75 95.54 119.06 145.44 
15 9.81 1 7 . 8 3  28.20 41.01 56.36 7 4 . 3 1  94192 118.27 144.39 
16 9.79 1 7 . 7 9  28.10 40.84 56.09 7 3 . 9 1  94.38 117.55 143.44 
17 9.78 17.74 28.01 40.68 55.84 73.55 93.88 116.87 142.60 
18 9.77 1 7 . 7 0  27.92 40.54 5 5 . 6 1  73.23 93.43 116.29 141.81 
19 9.75 1 7 . 6 6  27.85 40.41 5 5 . 4 1  72.93 93 .01  115.74 141.11 
20 9.74 1 7 . 6 3  27.78 40.29 55.23 72.66 92.64 115.22 140.44 
22 9.72 1 7 . 5 7  27.66 40.08 54.90 72.17 91.96 114.32 139.27 
24 9.70 1 7 . 5 2  27.56 39.90 5 4 . 6 1  71.76 91.39 113.54 138.25 
26 9.68 1 7 . 4 8  27.47 39.75 54.38 71.40 90.88 112.86 137.36 
28 9.67 1 7 . 4 4  27.40 39.61 54.17 71.09 90.45 112.27 136.61 
30 9.66 1 7 . 4 1  27.33 39.49 53.97 70.81 90.05 111.73 135.91 

= 0 . 0 1  

1 1 5 . 9 0  27.97 43.50 62.62 85.36 111.79 141.94 175.84 213.42 
2 1 5 . 2 3  26.46 40.91 58.73 80.00 104.77 133.08 165.01 200.54 
3 14.84 25.53 39.29 56.25 76.51 100.11 127.13 157.63 191.59 
4 1 4 . 5 8  24.91 38.18 54.51 74.02 96.77 122.81 152.21 184.99 
5 1 4 . 3 9  24.47 37.37 53.23 72.15 94.24 119.52 148.06 179.91 
6 1 4 . 2 5  24.13 36.74 52.24 70.71 92.25 116.89 144.72 175.77 
7 1 4 . 1 4  23.86 36.25 51.44 69.54 90.63 114.77 142.02 172.38 
8 1 4 . 0 5  23.65 35.85 50.80 68.59 89.30 112.99 139.70 169.53 
9 1 3 . 9 8  23.47 35.52 50.26 67.79 88.18 111.48 137.78 167.15 

10 13.92 23.33 35.24 49.80 6 7 . 1 1  87.22 110.20 136.15 165.05 
11 1 3 . 8 8  23.20 35.00 49.41 6 6 . 5 1  86.39 109.09 134.71 163.21 
12 1 3 . 8 3  23.10 34.80 49.08 6 6 . 0 1  85.67 108.12 133.44 161.62 
13 1 3 . 8 0  23.00 34.63 48.78 65.56 85.03 107.25 132.28 160.20 
14 1 3 . 7 6  22.92 34.47 48.52 65.17 84.48 106.50 131.28 158.91 
15 1 3 . 7 3  22.85 34.33 48.29 64.82 83.96 105.82 130.42 157.78 
16 1 3 . 7 1  22.78 34.20 48.08 64.49 83.52 105.20 129.58 156.76 
17 1 3 . 6 8  22.72 34.09 47.89 64.21 8 3 . 1 1  104.64 128.86 155.81 
18 1 3 . 6 7  22.67 33.99 47.73 63.95 82.74 104.13 128.18 154.94 
19 1 3 . 6 5  22.62 33.90 47.57 6 3 . 7 1  82.39 103.66 127.58 154.14 
20 1 3 . 6 3  22.58 3 3 . 8 1  47.43 63.50 82.09 103.24 126.99 153.41 
22 1 3 . 6 0  22.51 33.67 47.18 63.12 81.53 102.48 126.00 152.15 
24 13.58 22.44 33.54 46.97 62.79 81.06 101.83 125.13 151.03 
26 1 3 . 5 5  22.39 33.43 46.79 6 2 . 5 1  80.65 101.27 124.37 150.03 
28 13.54 22.34 33.34 46.63 62.27 80.30 100.77 123.72 149.20 
30 1 3 . 5 2  22.30 33.26 46.49 62.05 79.98 100.33 123.14 148.44 
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T a b l e  11. The  entr ies  in this table are the values of c5 where  

P[A5 ~ cs] = (1 - or), 

A5 = - 2  log A5 and  

q n i 
H i = l  Jeijni] 

q rl As= IEi=l A i i / n  I 

where  A l l  . . . . .  Aqq are d is t r ibuted  i n d e p e n d e n t l y  as centra l  p × p complex 
Wishar t  matr ices  with n l  . . . . .  nq degrees of f r eedom respectively,  E ( A u / n O  = 

. . . .  E ( A q q / n q )  and  n = n l  + • • • + nq. U p p e r  5% points  of the d is t r ibut ion  of 
Jr5 are given in Kr ishnaiah ,  Lee  and  Chang  (1976) for p = 3, 4; q = 2(1)6, 8; 

no = 5(1)20, 25, 30, where  nl  . . . . .  nq = no. These  poin ts  are r ep roduced  in 
Tab le  11 with the k ind  permiss ion  of B iome t r ika  Trustees .  The  r ema in ing  
entr ies  in this table  are r ep roduced  f rom a technical  repor t  by Kr ishnaiah ,  Lee 
and  Chang  (1975). 

Table 11 
Percentage points of likelihood ratio statistic for the homogeneity of the 
covariance matrices 

ot = 0 . 1 0  p = 2 

no q = 2  q = 3  q = 4  q = 5  q = 6  q = 7  q = 8  

4 10.07 16 .80  22.99 28.93 34 .72  40.41 46.01 
5 9.49 15 .94  21 .89  27.60 33.17 38 .63  44.02 
6 9.15 15 .43  21.23 26.80 32 .22  37 .56  42.82 
7 8.92 15 .08  20.78 26.26 31.60 36 .84  42.01 
8 8.76 14 .84  20 .47  25.87 31.15 36.33 41.43 
9 8.63 14 .65  20.23 25.58 30.81 35 .93  41.00 

10 8.54 14 .51  20 .04  25 .36  30 .54  35.63 40.66 
11 8.46 14 .40  19.89 25 .18  30.33 35 .39  40.39 
12 8.40 14 .30  19.77 25 .03  30.16 35 .19  40.17 
13 8.35 14 .23  19.67 24.91 30 .02  35.03 39.98 
14 8.30 14 .16  19.59 24.80 29 .89  34.89 39.82 
15 8.27 14 .10  19.51 24.71 29 .79  34.77 39.69 
16 8.23 14 .05  19.45 24 .64  29 .70  34 .67  39.57 
17 8.21 14 .01  19.39 24.57 29 .62  34 .57  39.47 
18 8.18 13 .97  19.34 24.51 29 .54  34.49 39.38 
19 8.16 13 .94  19.30 24 .46  29 .48  34 .42  39.29 
20 8.14 13 .91  19 .26  24.41 29 .43  34 .36  39.23 
25 8.06 13 .79  19.11 24 .23  29 .22  34 .12  38.96 
30 8.02 13 .72  19.02 24.11 29 .08  33 .96  38.77 
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= 0 . 1 0  p = 3 

no q = 2  q = 3  q = 4  q = 5  q = 6  q = 7  q = 8  

5 21.08 35.76 49.54 62.91 76.03 88.97 101.79 
6 19.56 33.49 46.58 59.30 71.77 84.09 96.30 
7 18.63 32.08 44.75 57.04 69.12 81.04 92.85 
8 18.00 31.12 43.49 55.50 67.31 78.97 90.51 
9 17.54 30.42 42.57 54.3-9 65.98 77.44 88.79 

10 17.20 29.89 41.88 53.54 64.98 76.28 87.48 
11 16.92 29.47 41.33 52.87 64.19 75.37 86.46 
12 16.71 29.14 40.90 52.32 63.56 74.63 85.62 
13 16.52 28.86 40.53 51.88 63.03 74.03 84.93 
14 16.38 28.63 40.23 51.50 62.59 73.52 84.36 
15 16.25 28.43 39.97 51.18 62.20 73.09 83.87 
16 16.14 28.26 39.74 50.91 61.88 72.71 83.44 
17 16.05 28.11 39.55 50.67 61.60 72.38 83.08 
18 15.96 27.98 39.38 50.46 61.34 72.10 82.75 
19 15.89 27.87 39.23 50.27 61.13 71.85 82.46 
20 15.82 27.77 39.09 50.11 60.93 71.62 82.22 
25 15.58 27.39 38.59 49.49 60.20 70.78 81.27 
30 15.42 27.14 38.26 49.09 59.73 70.23 80.64 

a = 0.10 p = 4 

6 
7 
8 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
25 
30 

36.34 62.39 87.08 111.15 134.85 158.32 181.59 
33.48 58.07 81.43 104.21 126.66 148.87 170.92 
31.68 55.33 77.82 99.78 121.41 142.82 164.09 
30.43 53.42 75.31 96.68 117.74 138.61 159.27 
29.52 52.01 73.45 94.39 115.04 135.46 155.73 
28.82 50.93 72.02 92.62 112.94 133.05 153.00 
28.27 50.07 70.89 91.23 111.28 131.13 150.80 
27.82 49.37 69.96 90.08 109.92 129.54 149.05 
27.45 48.80 69.19 89.14 108.78 128.24 147.57 
27.15 48.31 68.54 88.33 107.85 127.16 146.32 
26.88 47.89 67.99 87.65 107.04 126.23 145.26 
26.66 47.53 67.51 87.06 106.33 125.42 144.35 
26.45 47.22 67.09 86.54 105.71 124.69 143.54 
26.28 46.94 66.73 86.09 105.17 124.08 142.83 
26.13 46.70 66.41 85.68 104.70 123.53 142.20 
25.55 45.80 65.21 84.19 102.92 121.47 139.90 
25.19 45.22 64.43 83.24 101.79 120.16 138.41 

a = 0.10 p = 5 

7 56.07 97.04 136.08 174.28 211.94 249.31 286.40 
8 51.49 90;09 126.96 163.03 198.64 233.96 269.00 
9 48.53 85.58 121.00 155.68 189.91 223.87 257.52 

10 46.47 82.38 116.75 150.43 183.69 216.64 249.45 
11 44.93 79.98 113.59 146.52 179.02 211.24 243.26 
12 43.75 78.14 111.12 143.46 175.38 207.09 238.56 
13 42.79 76.66 109.14 141.02 172.47 203.72 234.68 

14 
15 

42.03 75.44 107.53 139.00 170.11 7])0.93 231.59 
41.39 74.43 106.18 137.33 168.11 198.61 228.94 
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a = 0 . 1 0  p = 5 

no q = 2  q = 3  q = 4  q = 5  q = 6  q = 7  q = 8  

16 40.85 73.57 105.04 135.91 166.41 196.68 226.71 
17 40.39 72.83 104.06 134.69 164.96 194.99 224.83 
18 39.98 72.20 103.20 133.62 163.69 193.53 223.18 
19 39.64 71.64 102.46 132.70 162.58 192.22 221.69 
20 39.33 71.14 101.79 131.87 161.61 191.08 220.42 
25 38.20 69.35 99.39 128.89 158.03 186.95 215.70 
30 37.49 68.21 97.87 126.98 i55.77 184.34 212.71 

tx = 0.05 p = 2 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
25 
30 

12.30 19.51 26.08 32.34 38.42 44.36 50.21 
11.59 18.51 24.82 30.84 36.68 42.39 48.02 
11.16 17.91 24.07 29.94 35.64 41.21 46.69 
10.88 17.51 23.56 29.34 34.94 40.42 45.81 
10.68 17.23 23.20 28.90 34.44 39.86 45.18 
10.53 17.01 22.93 28.58 34.07 39.43 44.70 
10.42 16.85 22.72 28.33 33.77 39.10 44.34 
10.32 16.71 22.55 28.13 33.54 38.83 44.04 
10.25 16.60 22.41 27.96 33.38 38.61 43.79 
10.18 16.51 22.30 27.82 33.18 38.43 43.59 
10.13 16.43 22.20 27.71 33.05 38.28 43.42 
10.08 16.37 22.12 27.61 32.93 38.15 43.27 
10.04 16.31 22.05 27.52 32.83 38.03 43.14 
10.01 16.26 21.98 27.44 32.75 37.93 43.03 
9.98 16.22 21.92 27.38 32.67 37.84 42.94 
9.95 16.18 21.88 27.32 32.60 37.76 42.84 
9.93 16.14 21.83 27.26 32.54 37.69 42.77 
9.83 16.01 21.66 27.06 32.30 37.43 42.47 
9.77 15.92 21.55 26.93 32.15 37.26 42.27 

ot = 0.05 p = 3 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
25 
30 

24.35 39.80 54.17 68.05 81.62 94.99 108.18 
22.57 37.24 50.91 64.10 77.02 89.73 102.28 
21.48 35.66 48.88 61.66 74.16 86.46 98.62 
20.75 34.58 47.50 59.99 72.19 84.23 96.11 
20.22 33.80 46.50 58.77 70.78 82.59 94.28 
19.82 33.21 45.74 57.85 69.68 81.35 92.88 
19.51 32.75 45.14 57.12 68.84 80.37 91.79 
19.26 32.37 44.66 56.53 68.15 79.59 90.89 
19.04 32.06 44.26 56.04 67.58 78.93 90.18 
18.87 31.81 43.92 55.64 67.10 78.39 89.55 
18.72 31.59 43.64 55.30 66.70 77.94 89.03 
18.60 31.40 43.40 55.00 66.35 77.54 88.58 
18.49 31.23 43.18 54.74 66.05 77.18 88.18 
18.39 31.09 43.00 54.51 65.78 76.88 87.85 
18.30 30.96 42.83 54.31 65.54 76.61 87.55 
18.23 30.85 42.68 54.13 65.34 76.37 87.28 
17.95 30.43 42.13 53.46 64.56 75.47 86.26 
17.76 30.15 41.78 53.03 64.04 74.89 85.60 
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tx = 0.05 p = 4 

no q = 2  q = 3  q = 4  q = 5  q = 6  q = 7  q---8 

6 40.71 67.84 93.36 118.15 142.48 166.51 190.31 
7 37.47 63.08 87.24 110.70 133.75 156.49 179.04 
8 35.43 60.08 83.34 105.96 128.17 150.09 171.85 
9 34.03 57.99 80.62 102.-65 124.27 145.63 166.81 

10 33.00 56.45 78.63 100.19 121.39 142.31 163.04 
11 32.21 55.26 77.09 98.31 119.16 139.76 160.18 
12 31.59 54.33 75.87 96.82 117.40 137.74 157.89 
13 31.09 53.57 74.88 95.60 115.97 136.11 156.04 
14 30.68 52.94 74.05 94.59 114.77 134.73 154.51 
15 30.33 52.42 73.36 93.74 113.77 133.56 153.18 
16 30.03 51.96 72.77 93.02 112.92 132.58 152.06 
17 29.78 51.57 72.25 92.38 112.18 131.73 151.10 
18 29.56 51.23 71.81 91.84 111.53 130.98 150.25 
19 29.36 50.93 71.41 91.35 110.95 130.32 149.52 
20 29.18 50.67 71.06 90.92 110.45 129.73 148.86 
25 28.54 49.69 69.77 89.34 108.57 127.58 146.43 
30 28.14 49.05 68.94 88.32 107.37 126.20 144.85 

ct = 0.05 p = 5 

7 61.61 103.97 144.09 183.19 221.69 259.84 297.64 
8 56.50 96.44 134.32 171.26 207.67 243.68 279.40 
9 53.23 91.55 127.95 163.48 198.48 233.10 267.46 

10 50.94 88.10 123.45 157.95 191.93 225.56 258.89 
11 49.25 85.53 120.08 153.81 187.05 219.92 252.55 
12 47.94 83.54 117.47 150.58 183.21 215.52 247.58 
13 46.90 81.96 115.37 148.00 180.19 212.01 243.60 
14 46.05 80.65 113.65 145.90 177.68 209.14 240.32 
15 45.34 79.57 112.22 144.12 175.60 206.71 237.59 
16 44.75 78.64 111.01 142.65 173.82 204.64 235.31 
17 44.24 77.86 109.98 141.36 172.28 202.89 233.28 
18 43.80 77.17 109.07 140.24 170.97 201.38 231.56 
19 43.42 76.57 108.27 139.27 169.82 200.07 230.08 
20 43.07 76.04 107.56 138.40 168.80 198.86 228.72 
25 41.84 74.12 105.02 135.25 165.04 194.56 223.82 
30 41.06 72.90 103.41 133.25 162.66 191.82 220.72 
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T a b l e  12. T h e  e n t r i e s  in th is  t a b l e  a r e  t h e  v a l u e s  o f  c6, w h e r e  

P[J(6 ~< c6] H61 = (1 - ,~) ,  

,(6 = - 2  log  A6 a n d  h 6 is t h e  l i k e l i h o o d  r a t i o  s ta t i s t ic  fo r  t e s t i ng  t h e  h y p o t h e s i s  

H6  of  t h e  h o m o g e n e i t y  o f  q c o m p l e x  p - v a r i a t e  n o r m a l  p o p u l a t i o n s .  T h e  s ta t i s t ic  

)t6 is d e f i n e d  in S e c t i o n  8. I n  t h e  t ab l e ,  q d e n o t e s  t h e  n u m b e r  o f  p o p u l a t i o n s  

M -- N 0 - p  a n d  No is t h e  c o m m o n  s ize  o f  v a r i o u s  g roups .  C h a n g ,  K r i s h n a i a h  

a n d  L e e  (1977) g a v e  u p p e r  5 %  p o i n t s  o f  t h e  d i s t r i b u t i o n  of  ~6 fo r  q = 2(1)5 a n d  
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Table 12 
Percentage points of the likelihood ratio test statistic for the homogeneity of 
complex multivariate normal populations 

a = 0.05 p = 1 ot = 0.05 p = 2 

M q = 2  q = 3  q = 4  q = 5  q = 2  q = 3  q = 4  q = 5  

1 8.12 12.47 16.36 20.06 
2 8.03 12.49 16.50 20.30 
3 7.97 12.51 16.59 20.45 
4 7.94 12.52 16.64 20.55 
5 7.92 12.53 16.68 20.62 
6 7.91 12.53 16.71 20.67 
7 7.89 12.54 16.73 20.71 
8 7.89 12.55 16.75 20.74 
9 7.88 12.55 16.77 20.77 

10 7.87 12.56 16.78 20.79 
11 7.87 12.56 16.79 20.81 
12 7.86 12.56 16.80 20.82 
13 7.86 12.56 16.81 20.84 
14 7.86 12.56 16.81 20.85 
15 7.85 12.57 16.82 20.86 
16 7.85 12.56 16.83 20.87 
17 7.85 12.57 16.83 20.88 
18 7.85 12.57 16.84 20.89 
19 7.85 12.57 16.84 20.89 
20 7.85 12.57 16.85 20.90 
25 7.84 12.57 16.86 20.92 
30 7.84 12.58 16.87 20.94 

a = 0.05 p = 3 

1 36.46 59.39 80.89 101.75 
2 32.90 54.56 74.91 94.65 
3 31.04 52.04 71.80 90.97 
4 29.90 50.49 69.88 88.70 
5 29.13 49.42 68.57 87.16 
6 28.56 48.65 67.62 86.05 
7 28.13 48.06 66.90 85.21 
8 27.79 47.61 66.34 84.55 
9 27.52 47.24 65.89 84.02 

10 27.30 46.94 65.52 83.57 
11 27.11 4 6 1 6 8  65.19 83.21 
12 26.96 46A6 64.94 82.90 
13 26.82 46.27 64.71 82.63 
14 26.70 46.11 64.50 82.40 
15 26.60 45.97 64.33 82.20 
16 26.51 45.84 64.17 82.01 
17 26.42 45.73 64.04 81.85 
18 26.35 45.63 63.92 81.71 
19 26.28 45.54 63.80 81.58 
20 26.22 45.45 63.70 81.46 
25 25.99 45.14 63.31 81.01 
30 25.83 44.92 63.05 80.70 

19.87 31.66 42.59 53.10 
18.41 29.83 40.42 50.62 
17.68 28.92 39.37 49.43 
17.25 28.39 38.75 48.74 
16.96 28.03 38.35 48.29 
16.75 27.78 38.06 47.97 
16.60 27.60 37.85 47.74 
16.47 27.45 37.69 47.56 
16.38 27.33 37.55 47.41 
16.30 27.24 37.44 47.30 
16.23 27.16 37.36 47.21 
16.18 27.09 37.28 47.12 
16.13 27.04 37.22 47.05 
16.09 26.99 37.16 47.00 
16.05 26.94 37.12 46.94 
16.02 26.90 37.07 46.90 
15.99 26.87 37.04 46.86 
15.97 26.84 37.01 46.82 
15.94 26.81 36.97 46.79 
15.92 26.79 36.95 46.76 
15.84 26.69 36.85 46.65 
15.79 26.63 36.78 46.57 

ot = 0.05 p = 4 

58.06 95.91 131.68 166.49 
51.79 87.16 120.63 153.23 
48.40 82.37 114.58 145.98 
46.26 79.35 110.73 141.37 
44.77 77.23 108.05 138.13 
43.68 75.67 106.08 135.78 
42.86 74.46 104.57 133.95 
42.17 73.51 103.36 132.51 
41.63 72.74 102.39 131.33 
41.19 72.10 10L57 130.37 
40.81 71.56 100.89 129.54 
40.50 71.09 100.29 128.84 
40.22 70.70 99.80 128.22 
39.97 70.35 99.36 127.70 
39.76 70.03 98.97 127.23 
39.57 69.77 98.62 126.83 
39.41 69.52 98.31 126.45 
39.25 69.30 98.04 126.13 
39.12 69.10 97.79 125.82 
38.99 68.92 97.55 125.54 
38.51 68.22 96.67 124.50 
38.18 67.74 96.07 123.76 
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ot = 0 . 0 1  p = 1 ot = 0 . 0 1  p = 2 

M q = 2 1  q = 3  q = 4  q = 5  q = 2  q = 3  q = 4  q = 5  

1 1 1 . 7 8  16.56 20.99 25.06 
2 1 1 . 6 5  1 6 . 6 9  21.15 25.34 
3 1 1 . 5 7  1 6 . 7 1  21.25 25.52 
4 1 1 . 5 3  16.72 21.32 25.63 
5 1 1 . 5 0  1 6 . 7 3  21.37 25.72 
6 1 1 . 4 8  16.74 21.40 25.78 
7 1 1 . 4 5  1 6 . 7 5  21.43 25.83 
8 1 1 . 4 5  1 6 . 7 5  21.46 25.87 
9 1 1 . 4 4  1 6 . 7 6  21.47 25.90 

10 1 1 . 4 3  1 6 . 7 6  21.49 25.92 
11 1 1 . 4 2  1 6 . 7 7  21.51 25.95 
12 1 1 . 4 2  1 6 . 7 7  21.52 25.96 
13 1 1 . 4 1  1 6 . 7 7  21.52 25.98 
14 1 1 . 4 1  1 6 . 7 7  21.53 26.00 
15 1 1 . 4 0  1 6 . 7 8  21.54 26.01 
16 1 1 . 4 0  1 6 . 7 8  21.55 26.02 
17 1 1 . 4 0  1 6 . 7 8  21.55 26.03 
18 1 1 . 4 0  16.78 21.56 26.04 
19 1 1 . 3 9  1 6 . 7 8  21.57 26.05 
20 1 1 . 3 9  1 6 . 7 8  21.57 26.06 
25 1 1 . 3 8  1 6 . 7 9  21.59 26.09 
30 1 1 . 3 8  1 6 . 7 9  21.60 26.11 

25.93 38.78 5 0 . 5 5  61.80 
23.94 36.42 47.84 58.76 
22.96 35.27 46.55 57.32 
22.38 34.59 45.79 56.49 
21.99 34.15 45.30 55.96 
21.72 33.83 44.95 55.58 
21.51 33.60 44.70 55.30 
21.35 33.42 44.49 55.08 
21.23 33.27 44.34 54.92 
21.12 33.16 44.21 54.78 
21.04 33.05 44.10 54.66 
20.97 32.98 44.02 54.57 
20.90 32.90 43.94 54.49 
20.84 32.84 43.87 54.42 
20.80 32.79 43.82 54.36 
20.76 32.74 43.77 54.31 
20.72 32.70 43.72 54.26 
20.69 32.67 43.68 54.22 
20.66 32.63 43.64 54.18 
20.63 32.60 43.62 54.14 
20.53 32.48 43.49 54.02 
20.45 32.40 43.41 53.93 

a = 0.01 p = 3 ot = 0.01 p = 4 

1 45.07 69.62 92.43 114.42 
2 40.46 63.71 85.31 106.12 
3 38.10 60.66 81.65 101.88 
4 36.66 58.80 79.40 99.26 
5 35.68 57.53 77.88 97.51 
6 34.98 56.62 76.79 96.23 
7 34.45 55.92 75.95 95.27 
8 34.03 55.38 75.31 94.52 
9 33.70 54.95 74.78 93.93 

10 3 3 . 4 1  54.59 74.36 93.44 
11 33.19 54.29 73.99 93.01 
12 32.99 54.04 73.69 92.67 
13 32.82 53.82 73.43 92.37 
14 32.67 53.62 73.20 92.10 
15 32.55 53.46 73.00 91.87 
16 32.43 5 3 . 3 1  72.83 91.67 
17 32.33 53.18 72.68 91.48 
18 32.24 53.05 72.53 91.32 
19 32.16 52.95 72.40 91.18 
20 32.09 52.86 72.29 91.05 
25 31.80 52.48 7• .85  90.55 
30 31.60 52.23 71.54 90.19 

69.34 109.42 146.98 183.36 
61.52 99.01 134.17 168.24 
57.35 93.43 127.28 160.05 
54.75 89.89 122.89 154.88 
52.95 87.44 119.87 151.30 
51.63 85.65 117.65 148.66 
50.62 84.27 115.94 146.65 
49.82 83.18 114.59 145.05 
49.18 82.29 113.48 143.74 
48.64 81.56 112.57 142.68 
48.21 80.94 111.80 141.76 
47.82 8 0 . 4 1  111.16 140.99 
47.49 79.95 110.58 140.31 
47.20 79.56 110.09 139.73 
46.95 79.20 109.66 139.21 
46.7'2 78.90 109.28 138.77 
46.53 78.62 108.94 138.36 
46.34 78.36 108.62 138.00 
46.18 78.15 108.35 137.66 
46.03 77.94 108.09 137.37 
45.46 77.14 107.10 136.20 
45.07 76.60 106.42 135.40 
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M = 1(1)20, 25, 30. These percentage points are reproduced in Table 12 with 
the kind permission of the North-Holland Publishing Company. The remaining 
entries in this table are reproduced from a technical report by Chang, 
Krishnaiah and Lee (1975). 

Table 13. The entries in this table are the values of c7, where 

P[A7 ~< c7 I/-/7] = (1 - ~ ) ,  X7 = - 2  log A7 

and A7, defined in Section 9, is the likelihood ratio statistic for testing the 
hypothesis HT, where 

nT: ,a~ll = ,~0, I-ILl ~--- ~lg0. 

Here /xl and -Y~I are respectively the mean vector and covariance matrix of 

Table 13 
Percentage points of the likelihood ratio test statistic for ~n = -X0 and/~1 =/to 

a = 0.05 a = 0.01 

p 2 3 4 5 6 2 3 4 5 6 

M 

1 20.33 34,19 5 1 . 5 1  72.40 96,91 
2 19.20 32.18 48.40 68.00 91.05 
3 18.51 30.91 46.39 65.10 87.12 
4 18.03 30,02 44.97 63.02 84.25 
5 17.69 29.37 43.91 61.45 82.09 
6 17.43 28.87 43.09 60.22 80.36 
7 17.22 28.47 42.43 59.23 78.96 
8 17.06 28.15 41.89 5 8 . 4 1  77.80 
9 16.92 27.88 41.44 57.73 76.84 

10 16.81 27.65 41.06 57.15 76.00 
11 16.71 27.46 40.73 56.64 75.29 
12 16.63 27.29 40.45 56.20 74.64 
13 16.55 27.15 40.20 55.82 74.09 
14 16.49 27.02 39.98 55.48 73.61 
15 16.44 26.91 39.79 55.17 73.15 
16 16.38 26.81 39.61 54.90 72.76 
17 16.34 26.72 39.45 54.65 72.40 
18 16.30 26.63 39.31 54,43 72.08 
19 16.26 26.56 39.18 54.22 71.78 
20 16.23 26.49 39.06 54.04 71.51 
22 16.17 26.37 38.85 5 3 . 7 1  71,02 
24 16.12 26.27 38.57 5 3 . 4 3  70.60 
26 16.07 26.18 38.52 53.18 70.25 
28 16.04 26.10 38.39 52.98 69.93 
30 16.01 26.03 38.27 52.79 69.65 

26.52 42.19 61.37 84.17 110.61 
24.99 39.58 57.48 78.79 103.56 
24.05 37.94 54.98 75.27 98.92 
23.41 36.82 53.24 72.79 95.57 
22.96 36.00 51.95 70,93 93.03 
22.61 35.37 50.95 69.47 91.02 
22.34 34.87 50.15 68.30 89.41 
22.12 34.47 49.50 67.35 88.07 
21.94 34.14 48.96 66.54 86.96 
21.79 33.85 48.50 65.85 85.99 
21.66 33.62 48.11 65.27 85.17 
21.55 3 3 . 4 1  47.77 64.76 84.44 
21.46 33,23 47.48 64.31 83.81 
21.37 33.07 47.22 63.92 83.26 
21.30 32.93 46.98 63.56 82.74 
21.23 3 2 . 8 1  46.77 6 3 . 2 5  82.29 
21.17 32.69 46.58 62.96 81.89 
21.12 32.59 46.41 62.70 81.51 
21.07 3 2 . 5 0  46.26 62.46 81.16 
21.03 3 2 . 4 1  46.11 62.24 80.86 
20.95 32.26 45.87 61.86 80.31 
20.88 32.14 45.65 61.53 79.83 
20.83 32.03 45.47 61.25 79.42 
20.78 31.94 45.31 61.00 79.07 
20.74 31.85 45.17 60.79 78.74 
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t~ = 0.025 t~ = 0.10 

p 2 3 4 5 6 2 3 4 5 6 

M 

i 23.05 37.74 5 5 . 9 1  77.68 103.07 
2 21.75 35.47 52.47 72.85 96.69 
3 20.95 34.04 50.24 69.68 92.44 
4 20.41 33.06 48.68 67.42 89.37 
5 20.01 32.32 47.51 65.72 87.03 
6 19.72 31.77 46.62 64.39 85.19 
7 19.49 31.33 45.89 63.32 83.69 
8 19.30 30.97 45.30 62.44 82.46 
9 19.14 30.67 44.82 61.70 81.42 

10 19.01 30.42 44.40 61.08 80.52 
11 18.90 3 0 . 2 1  44.05 60.54 79.76 
12 18.80 30.02 43.74 60.06 79.09 
13 18.72 29.86 43.46 5 9 . 6 5  78.49 
14 18.65 29.72 43.23 59.29 77.96 
15 18.58 29.60 43.02 58.96 77.50 
16 18.53 29.48 42.83 58.66 77.08 
17 18.48 29.38 42.65 58.40 76.69 
18 18.43 29.29 42.50 58.16 76.35 
19 18.39 29.21 42.36 57.94 76.02 
20 18.35 29.13 42.23 57.74 75.75 
22 18.28 29.00 42.01 57.39 75.22 
24 18.23 28.89 41.81 57.09 74.78 
26 18,18 28.79 41.64 56.82 74.39 
28 18.14 28.71 41.49 56.60 74.06 
30 18.10 28.63 41.36 56.39 73.77 

17.46 30.39 46.75 66.65 90.15 
16.51 28.65 44.00 62.71 84.84 
15.92 27.53 42.21 60.09 81.25 
15.52 26.76 40.93 58.19 78.62 
15.23 26.18 39.98 56.76 76.61 
15.01 25.74 39.24 55.64 75.02 
14.83 25.39 38.65 54.73 73.73 
14.69 25.11 38.16 53.98 72.66 
14.58 24.87 37.76 53.36 71.76 
14.48 24.67 37.41 52.82 71.00 
14.39 24.50 37.12 52.37 70.33 
14.32 24.35 36.86 51.96 69.74 
14.26 24.22 36.64 51.61 69.22 
14.21 24.11 36.44 51.29 68.76 
14.16 24.01 36.26 51.02 68.35 
14.12 23.92 36.10 50.76 67.98 
14.08 23.84 35.96 50.53 67.64 
14.04 23.76 35.83 50.33 67.34 
14.01 23.70 35.71 50.14 67.07 
13.98 23.64 35.60 49.97 66.81 
13.93 23.53 35.41 49.67 66.36 
13.89 23.44 35.25 49.41 65.98 
13.85 23.36 3 5 . 1 1  49.18 65.65 
13.82 23.29 34.99 48.99 65.35 
13.79 23.23 34.88 48.81 65.09 

p-variate complex normal distribution and/~0 and -~0 are known. Also, M = 
N 1 - p -  2 and Ni is the sample size. Chang, Krishnaiah and Lee (1977) gave 
the values of c7 for a = 0.05, M = 1(1)20(2)30 and p = 2(1)6. These values are 
reproduced in Table 13 with the kind permission of North-Holland Publishing 
Company. The remaining entries are reproduced from the technical report by 
Chang, Krishnaiah and Lee (1975). 

Some of the entries in Tables 2-5 are reproduced from Krishnaiah, Lee and 
Chang (1976) with the kind permission of the Biometrika Trustees, whereas 
some of the entries in Table 6 are reproduced from Chang, Krishnaiah and Lee 
(1977) with the kind permission of North-Holland Publishing Company. 
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