Preface

Time series analysis is one of the most flourishing of the fields of present day
statistics. Exciting developments are taking place: in pure theory and in
practice, with broad relevance and with narrow intent, for large samples and
for small samples. The flourishing results in part, from the dramatic increase in
the availability of computing power for both number crunching and for
graphical display and in part from a compounding of knowledge as more and
more researchers involve themselves with the problems of the field.

This volume of the Handbook of Statistics is concerned particularly with the
frequency side, or spectrum, approach to time series analysis. This approach
involves essential use of sinusoids and bands of (angular) frequency, with
Fourier transforms playing an important role. A principal activity is thinking of
systems, their inputs, outputs, and behavior in sinusoidal terms. In many cases,
the frequency side approach turns out to be simpler in each of computational,
mathematical, and statistical respects. In the frequency approach, an assump-
tion of stationarity is commonly made. However, the essential roles played by
the techniques of complex demodulation and seasonal adjustment show that
stationarity is far from a necessary condition. So too are assumptions of
Gaussianity and linearity commonly made. As various of the papers in this
Volume show, nor are these necessary assumptions.

The Volume is meant to represent the frequency approach to time series
analysis as it is today. Readers working their way through the papers and
references included will find themselves abreast of much of contemporary
spectrum analysis.

We wish to express our deep appreciation to Professors E. J. Hannan and M.
B. Priestley for serving as members of the editorial board. Thanks are due to
Professors P. Guttorp, E. J. Hannan, T. Hasan, J. Lillestgl, and M. B. Priestley
for refereeing various chapters in the volume. We are most grateful to the
authors and North-Holland Publishing Company for their excellent coopera-
tion in bringing out this volume.
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Wiener Filtering
(with emphasis on frequency-domain approaches)

R. J. Bhansali and D. Karavellas

1. Introduction

Let {y,x} (t=0,%1,...) be a bivariate process. An important class of
problems considered in time-series analysis may be formulated in terms of the
problem: How can we best predict y, from {x,s<¢? If y,= x,.,, »>0, then
the problem is that of predicting the ‘future’ of x, on the basis of its past. If
x; = &+ £, where {; is ‘noise’ and £ the ‘signal’ and y, = £.,, then for » = 0 the
problem is that of ‘signal extraction’, for » >0 that of predicting the signal and
for » <0 that of interpolating the signal, in the presence of noise. If y, and x,
are arbitrary, then the problem is simply that of predicting one series from
another. This last problem is itself of interest in a number of disciplines: for
example, in Economics, interest is often centred on obtaining a distributed lag
relationship between two economic variables (see, e.g., Dhrymes [11]) such as
level of unemployment and the rate of inflation.

A complete solution to the problem of predicting y, from the past, {x,, s <t},
of x, would consist of giving the conditional probability distribution of the
random variable y, when the observed values of the random variables {x,, s <}
are given. However, this is seldom practicable as finding such a conditional
distribution is usually a formidable problem. A simplifying procedure of taking
the mean value of this conditional distribution as the predictor of y, is also
rarely feasible because this mean value is in general a very complicated
function of the past x’s. Progress may, however, be made if {y, x,} is assumed
to be jointly stationary and attention is restricted to the consideration of the
linear least-squares predictor of y, i.e. the best predictor, ¥, say, of y, is chosen
from the comparatively narrow class of linear functions of {x,, s <1},

¥ = 2h(j)xr-,-, 1.1

the coefficients k() being chosen on the criterion that the mean square error
of prediction
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n?= E(y,— y.) (1.2)

be a minimum.

Formation of §, from the {x,, s <} may be viewed as a filtering operation
applied to the past of x,, and, especially in engineering literature, y, is known as
the Wiener filter.

It should be noted that if {y, x;} is Gaussian, then the linear least-squares
predictor, y, of y, is also the best possible predictor in the sense that it
minimises the mean square error of prediction within the class of all possible
predictors of y,; hence for the Gaussian case the consideration of only linear
predictors is not a restriction.

2. Derivation of the filter transfer function and the filter coefficients

Suppose that {y, x,} (¢t =0, *£1,...) is real-valued jointly stationary with zero
means, i.e. Ex,= Ey,=0. If the means are nonzero, then these may be
subtracted out. Let R, (u) = E(Xn.x,) and R, (u)= E(y..y:) denote the auto-
covariance functions of x, and y, respectively, and let R,,(u) = Ey,...x, denote
their cross-covariance function. Assume that

2 |Ra(u) <=, > IRy () <=, > IRy (u) <o
and let

W)= @m) " S Relur) expl=iud),

u=-—0

fy(A)= Qm)" S Ryy(u) expl(=iuA)

u=-o

denote the power spectral density functions of x, and y, respectively, and

fa)=@m)1 S, R,.(u) exp(—iud)

u=-—c

their cross-spectral density function. Assume also that f,(A) # 0 (- <A <),
Under these conditions x, has the one-sided moving average representation
(see Billinger [9, p. 78])

x= 3 b(e s, bO)=1, @.1)

j=0

and the autoregressive representation
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0

S a(j)x =&, a@)=1. 2.2)

j=0

Here ¢, is a sequence of uncorrelated random variables with 0 mean and finite
variance ¢?, say, and the {b(j)} and {a(j)} are absolutely summable coeflicients,
i.e. they satisfy

%Ib(i)l <w, §|a(j)| <o,

Also, if
B(z)= 2 b))z,  A(z)= %a(i)z", @3)

respectively, denote the characteristic polynomials of the b(j) and the a(j),
then B(z) #0, A(z) #0, |z|<1 and A(z)={B(z)}!. The transfer functions
B(e ™) and A(e ) of the b(j) and a(j) are denoted by B(A) and A(A)
respectively. We have A(A)={B(A)}"! and f,,(A) = o?Qw) [ B(A)P.

If f(1) is known exactly, then the {b(j)} and {a(j)} may be determined, by
the Wiener—Hopf spectral factorization procedure (Wiener [25, p. 78]). The
assumptions made previously on R, (u) and f,(A) ensure that log f..(A) is
integrable and hence has the Fourier series expansion

©

log fu(A)= 2 c(v)exp(—ivA), 24
with o

c(v)=Q2m)? j_ﬂ log f(A) exp(ivA ) dA 2.5)
and

S, le(w) <.
Set o

B)= exp{i c(v) exp(—iu)\)} , (2.6)

AQ)={BQA)}! 2.7
and

o? =27 exp{c(0)}. (2.8)
Then

b(j) = Cm) f’; B(\) exp(ijA) dA, 2.9)

a(j) = @y f: A exp(ijr)da, (2.10)

and the {b(j)} and {a(j)} thus obtained are absolutely summable (Brillinger {9,
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p. 791); see also Doob [12, pp. 160-164] and Grenander and Rosenblatt [16, pp.
67-81] for related work.

Next, consider prediction of y, from the past, {x, s=<t}, of x, and in
particular the determination of the filter coefficients h(j) of the linear least-
squares predictor ¥, of y. The mean square error of prediction 5? is given by

7= Ry(©) =2 3 h(j)Rye(j)+ }: 2 h(Dh(K)Ra(k—J).  (@.11)

j=0

If the h(j) minimise 7% then we must have d7%/0h(j)=0 (j=0,1,...). This
requirement leads to the equations

z h(K)Ru(k - j)= Ry(j) (j=0,1,..)). @.12)

That the h(k) satisfying (2.12) also minimise %> may be established by using an
argument analogous to that given, for example, by Jenkins and Watts [18, pp.
204-205].

Equations (2.12) provide discrete analogues of the Wiener—Hopf integral
equations (Wiener [25, p. 84]). As their left-hand side is of the form of a
convolution, the use of Fourier series techniques is a natural approach to adopt for
solving them. However, as discussed by N. Levinson (see [25, p. 153]) a direct use
of the Fourier series techniques for obtaining the h(j) is not feasible as well,
because (2.12) is valid only for j = 0. Therefore, a somewhat indirect approach is
adopted for expressing h(j) in terms of f(A) and f,(A).

The representation (2.1) implies that

Ra(w) =023 b(s)b(s+u) =0,1,...). 2.13)
Put =

D() = fuW VAR = 3 dw)e™, (2.14)
and

DW= S d(u) exp(-iud), 2.15)
where v

d(u) = Q) j " £ (AYAQ) exp(ih) dA (2.16)
and

S, ldw) <=

Note that 2#wd(u)= E(yes,.-,) and D(A) gives the cross-spectral density
function of y, and &,
From (2.14), we get
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R,(j)=2m 20 b(s)d(j +s). @.17)
Hence, (2.12) may be rewritten as
3. bis)d(j + )= %20:20 YD+ —K) (=0,1,...),

or, as
d(v)= % S h()bo-k) (v=0,1,..). 2.18)

Since, b(v) = 0, v <0, (2.18) may be solved by the Fourier series techniques. On
multiplying both the sides of (2.18) by e and summing for all v =0, we get

HQ)= 3 h(k)exp(—ikA)
k=0

- 22 BOY DO = 23 A WAD, 219)
and

h(j)= @m)t j: H(\) exp(ijA) dA . @2.20)

Since the d(u) given by (2.16) and the a(j) given by (2.9) are absolutely
summable, so are the h(j) (see, e.g., Fuller [14, p. 120]). Thus, the h(j)’s satisfy

2|h(i)|<°°.

The mean square error of prediction 72 is
n*= E{(y:— 3.Y} = R,,(0) - 2 h(Ryx(j)
j=0

- [ [~ {ZE e} ar = R, -5 5. #0).
@.21)

Equations (2.19) and (2.21) are consistent with the results of Whittle [24, pp.
66-68], but note that a dividing factor of o2 is missing in equation (3.7.2) of
Whittle [24, p. 42]; see also Bhansali [3].

It is instructive to compare the.‘one-sided’ predictor (2.10) with the cor-
responding ‘two-sided’ predictor of y, obtained by assuming that the complete
past, present and the complete future of x, is known. Let
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5= > gy 2.22)

]'=-—uo

be the ‘two-sided’ linear least-squares predictor of y. Then, as in (2.12), the
g(j) are the solutions of the equations

Ru@)= 3 g()Ru(u—j) (u=0,%1,..). @23)

j==

Since these equations are two-sided and are valid for all integral values of u,
they may be solved by the Fourier series techniques. On multiplying both the
sides of (2.23) by (27)! ¢ and summing over u, we have

FQ)= 3 g() exp(-ij) = fxM V1) 224)
and a
8V =35 | T explin). @25)

Let 72 = E{(y: — )’} be the corresponding mean square error of prediction.
We have

2= L {fyy()\)—'—f}%))f} A = j: {1- CLAR M) dA,  (226)

where C,(A) = |fx (M f,y(A)fe(A)}? is called the coherence between y, and
x.. Note that 0=< C,(A)=1, all A. Expression (2.26) therefore shows that if
C,x(A) is close to 1 at all frequencies, then 7> is close to 0, and one would
expect to obtain a close linear fit between y, and x,. In this sense, C,,(A) may be
interpreted as a correlation coefficient ‘in the frequency domain’ (see, e.g.,
Priestley [22] and Granger and Hatanaka (15]).

On using (2.14)-(2.16), (2.21) may be rewritten as (see Whittle [24, p. 69])

2 -1
n2= 72+% 2 d2(]) (227)

j=—oo

The second term to the right of this expression gives the increase in mean
square error due to the restriction that only the ‘past’ of x, may be used for
predicting y,. In general, therefore, %= 12,

There is, however, one important situation in which n? = 72. This occurs when x,
is the input to, and y, the output of, a physically realizable linear time-invariant

filter with uncorrelated noise, i.e. when,

ye= 2 U(xes + 21, (2.28)

j=0

{z.} is a stationary process uncorrelated with x, and = |I(j)| < .
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We have
L) = 3 1) exp(-iA) = @)} = TA)..

D)= f(MAQ) = L) fu(AD)AQ)
= 0?2 'LA)AQR) = [DW)];,

Thus,

the last equality following from the fact that the Fourier coefficients, I(j) and
a(J), respectively, of L(A) and A(A) vanish for j <0. We, therefore, have

H(\)=LW)=TQ), n*=1. (2.29)

Let £,,(A) denote the power spectral density function of the ‘residual’ process
z, of (2.28). We have

{5 oy QP
£ = {0~ 557 230)

3. Realization of the Wiener filter in some special cases

First consider the case of pure prediction, and, thus suppose that y, = x.,,,
v=1. We have

R,,(u)= R, (u+v), fx(A) = £ (A).
Hence

HQO) =AW BO)}. = (B} S, b(j + v) exp(—ijA) (3.1)

j=0

gives the transfer function of the prediction constants, and
2 v=1 .
n* =0 3, b(j)
j=0

gives the mean square error of v-step prediction. Note that if » =1, then
1% = o?, which may be determined using (2.8).

Let £(v) be the linear least-squares predictor of x,, (¥ = 1) when {x,, s <1t}
is known. Then, an explicit expression for £(») in terms of £(rv—1),..., £(1)
and {x,, s < t} may also be written down. We have

v=1 ®
w)=-2 a(Pxw—j)—- > a(Dxr-, 32).

j=1 j=v

where the first sum to the right is 0 if » = 1.
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That (3.1) and (3.2) are mutually consistent is easily verified. Thus, for v =1,
(3.1) gives

8

J

. h(j)e™ = HQA)=e*{1- A(\)}

= =S a(j+1)e . (3.3)

j=0

Hence on comparing the coefficient of e* on the right- and the left-hand sides
of (3.3) we get

h())=-a(j+1),

which is immediately seen to be consistent with (3.2), see also Whittle [24, p.
33]. The argument may similarly be generalised for an arbitrary », though the
algebra now is more complicated.

A comparison of (3.2) with (2.2) shows that the linear least-squares predictor
of x,., when the past {x, x,_;, ...} is known is obtained by (i) setting &, =0;
and (ii) for j <wv replacing the unknown x,,-; by their linear least-squares
predictor £,(v — j). A related reference is Box and Jenkins [8, pp. 130-131].

An alternative expression for £,(v) is given by Bhansali [7].

We note from (3.3) that if x, is a finite autoregressive process of order m, i.c.
if in (2.2) for some finite m =1, a(u) =0, u > m, then %,(v) depends only on
Xi-1, - - - » X—m. Similarly, if x, is a finite moving average process of order p, i.e. if
in (2.1), for some finite p =1, b(u)=0, u > p, then (3.1) shows that £,(v) =0 if
v > p; and for this particular class of processes, the knowledge of the complete
history of the process does not help, in the linear least-squares sense, for
prediction more than p steps ahead. Related reference is Akaike [2], who
studies some of the properties of the ‘predictor space’ spanned by {£,(v), v = 1},
when x, is a mixed autoregressive-moving average process.

Second, consider the case of prediction in the presence of noise. Suppose
that

x=&+4, Vi = €y
and E(£4,)=0 (all s and #). Then
R,(u)=Ry(u+v),  fud)=e"fz(r),

where Rg(u) and fg(A), respectively, denote the autocovariance function and
the power spectral density functions of ¢ process. Hence

HO) =27 AQ)[f (1) AR}, , (.4)

o

where A(A) and o? are obtained by factorising the spectral density function,
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faA), of x, fu(A)=frz(A)+ fee(A) and fy(A) denotes the spectral density
function of the ¢, process.
Also

I(A) = {e"* fe AN fee V) + fr (M)}, ‘ (3.5

which reduces to the expression given by Whittle [24, p. 58], if » = 0.

Third, consider the system (2.28), but now assume that the processes X, and z,
are correlated and let R,,(u)= E(z.+.X:) be the cross-covariance \functlon of
{z,, x;} and

f=@A) = LA) faA) + fux(A)

be their cross-spectral density function. Then

H@)= L(A)+ Z AMAX )],
r()=LA)+{faA)/fu(V)} .

Thus, in this case, H(A) # L(A) includes the contribution from the nonzero
f=(A) and could be different from I'(A). Related references are Akaike [1] and
Priestley [21].

4. Estimation of the Wiener filter

So far, we have assumed that the spectra f,,(A), f,;(A) and f,;(A) of the
process {y, x;} are known exactly. In practice, these are invariably unknown a
priori, and have to be estimated from data. Suppose that we are given T
observations, {Xi,..., X7}, {Yy, ..., Yr} from each series. We consider esti-

mation of the filter coefficients from the ‘window’ estimates of f,,(A) and f,,(A).
Let

PN == Z Ky (A - 2—%’3—)1;’0?) , (4.1a)
fEN) == 2 Kr (A - 2—’T’§)I Q@T’ﬁ) , (4.1b)

be the ‘window’ estimates of f,.(A) and f.(A), respectively, considered by
Brillinger [9]. Here

IDO) = @rTY' S S, YX, exp{-iA(t-s)}, (4.22)

t=1 s=1

100 = @aT)Y| S X, expi-irg}| ", (4.2b)
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are, respectively, the cross-periodogram and (auto) periodogram functions,

Kr(ae)= > B7K{Bi(a+2m)} (o< <x), 4.3)
j=-—»
{Br} (T=1,2,...) is a sequence of constants, such that Br >0, TBy -« as
T« and K(a) is a fixed weight function satisfying Assumption I stated
below.

AssumptioN 1. Let K(a), —»<a <, be a real-valued, even function of
bounded variation and suppose that

fw K(@)da=1, fw |a|K ()| da <, J K*(a)da <.

Note that the estimates (4.1) are obtained by assuming that the observed
time series have been mean corrected. In practice, the means Ex, and Ey, of
the processes {x,} and {y,} are unknown. Hence this is not an unrealistic
assumption.

The estimates (4.1) are obtained by directly smoothing the cross-, and auto-,
periodogram functions. A closely related class of ‘window’ estimates are of the
form (see, e€.g., Hannan [17])

T-1

FEOQ) = -2_1— > kr(u)RD(u) exp(—iur), (4.32)
T ="T+1
T-1
fEPM)=@m)" X kr(u)RE(u) exp(-iud), (4.3b)
where o

T—|u T|ul
RO@W) =T }E Y...X,, ROW)=T"1 i XiuXi, 4.4

=1 -1

kr(u) = k(Bgu) and k(x) is a fixed weight function. If we define
k(x) = J " K(a) explixa) da, @.5)

where K(a), as before, satisfies Assumption I, then a uniform bound on the
difference between f{D(A) and fA™(A) is given by Brillinger [9, p. 265].

The estimation of the coefficients h(j) and the transfer functions H(A) and
A(A) involves estimation of the Fourier integrals, (2.5), (2.16) and (2.20), and
infinite Fourier series, (2.7) and (2.15). Since, with a finite record f,.(A) and
fu(A) can only be estimated at a finite number of points, we estimate h(j) by
approximating the Fourier integrals by the Trapezoidal rule, and the infinite
Fourier series by a finite Fourier series,
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Suppose that f{D(A) and f(A) are calculated at Ny + 1 points, A; = jaw/Nr
(j=0,1,..., Nr) equally spaced in [0, 7], and let Pr =2Nr. Here Nr=1is a
sequence of constants tending to infinity simultaneously with T, but at a slower
rate than By approaches 0. The estimate of h(u) is given by

Nr-1
h®w)=P7 > HP@\)expiur) (u=0,1,...,Ng), (4.6)
j=-Nr
where
27T Nr-1 .
HOW) =22 A0S a0 expl-iu)], @.7)
u=0
Nr-1
dDw)=P7 Y, fPA)ADQ)exp(iu)), 4.8)
j=-Nt
Np-1 6’2 12
ADA) = exp{i > cM(v)sin v/\j}(2—;> {FfPMn)Hr2, 4.9)
v=1
62 =21 explc™(O)} (4.10)
Nr-1
cD(v)=P7 >, log fP()expliv)). 4.11)
j=-Nr

Let hy(u) be the corresponding quantity obtained from (4.6) to (4.11) when
f(X;) and f,,(A;) are known exactly. Then, for each finite Ny, A™(u) may be
viewed as estimating hy(u), rather than the true parameter h{u). A bound on
the difference between hy(u) and h(u) may be given by using the results of
Davis and Rabinowitz [10, p. 109]. Suppose that, for an integer /o= 1, R, (u)
and R, (u) satisfy an additional regularity condition of the form

S PR <, S uPo R <. @12)

u=—w

When this condition is satisfied, up to 2l,+ 1 derivatives of f,,(A) and f,,(A)
with respect to A exist. Then, as Ny — o, for all u,

Ihn () — h(u)] = O(N7*"") (4.13)

and, hy(u)—> h(u) as Ny > o,

The estimation of the two-sided filter coefficients (2.25) and the transfer
function (2.22) has also received considerable attention in the literature; see,
e.g., Hannan [17, Chapter VII], Brillinger [9, Chapter 8] and Wahba [23],
amongst others. The corresponding estimate of I'(1) is given by

Q) = FPAFPO) @.14)
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and that of g(u) by

Np—1
gPw)=P7 3 I'D(\)expud;). (4.15)

j=-Nr

The above ‘frequency-domain’ approach to estimating the filter coefficients
should be contrasted with its ‘time-domain’ alternatives. Notable amongst
these is the ‘transfer function’ model suggested by Box and Jenkins [8], which
expresses the filter coefficients h(u) as functions of a finite number of
parameters. Dhrymes [11] gives a survey of the ‘econometric’ techniques cur-
rently in use for estimating the filter coefficients.

5. Asymptotic properties of the estimated filter coefficients

Bhansali [5] studied the large sample behaviour of the estimates c¢™(v),
AD();) and g2 Karavellas [19] has studied the corresponding large sample
behaviour of the statistics dP(u), h™(u) and g™(u). His proofs are too
lengthy to be given here. Only a summary of his main results is given below.

Suppose that the process {y, x,} satisfies Assumption 2.6.1 stated by
Brillinger [9, pp. 25-26], the spectral density function, f,,(A), of the process x; is
bounded away from 0 and that (4.12) holds with I; = 3. Further, suppose that
the estimates f{P(A) and f{P(A) of f.(A) and f,.(A) are obtained in accordance
with the formula (4.1), where K(a) satisfies Assumption I, and that By =
O(T~*), Nr = O(T*) where b and c lie in the shaded region shown in Fig. 1. Set
Q(T) = TBPr{2m [ K* (@) da} ™. Then, for given u and v, the random vari-

N

3b+c-1=0 1-5b+c=0 b=2c

Or— ol

1-b-8c¢c=0

1-b-9¢c=0

0 : ! ! T b

Fig. 1. Constraints on By and Nr when By = O(T™?), Ny = O(T*). The shaded area shows the
region where the constraints are satisfied.
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ables Q(T)"{d®(u)— d(u)} and Q(T){d™(v)—d(v)} are, as T—>x, ap-

proximately normally distributed with zero means and covariance structare

T Ry (= 0)+ d@d(©)~ 3 d(u+ A+ ). (5.1)

Also, for given u and v, the random variables Q(T)"*{h™(u)— h(u)} and
Q(T)"{h™M(v)— h(v)} are, as_T — o, approximately normally distributed with
zero means and covariance structure

1
o’

4; LMB

i a(u— Da(v - m)R,, (I — m)

——4;20 3. 3, atu=Dato - m)d(m + )0 +p)
+ S hu-Dh-D-5 3 S h(w-m)a( - Dd(d—m)
1=0 1=0 m=0
—i—” S h(u- Da(o - myd(m - 1). 52)

1=0 m=0

Hannan [17, p. 480], Wahba [23] and Brillinger {9, p. 286] investigate the
asymptotic distribution of the ‘two-sided’ estimates, g™(u), by assuming that
the relationship between y, and x, is linear, time-invariant and open loop. If y,
and x, are arbitrary stationary processes and the regularity conditions stated
above hold, then, for given u and v, as T-—>, the random variables
QT g™(u)— g(u)} and Q(T)"*{g™(v)— g(v)} are approximately normally
distributed with zero means and covariance structure

5177 fﬂ, i-c 5::(*)}% expfi(u — v)A}dA, (5.3)

which is consistent with the result of Brillinger [9, p. 318].

For comparing the behaviour of the h™(u) with that of g™ (u), first suppose
that C,,(A)=0, all A, i.e. there is no linear relationship between y, and x,.
Then, h(u)=0 (u=0,1,...) and expressions (5.2) and (5.3) reduce to

o J ( )¢) exp{l(u —v)Atda, (5.4)

so that the h™(u) and the g™(u) are asymptotically equivalent.
Next, suppose that the relationship between y, and x, is given by (2.28).
Expression (5.2) then simplifies to

27 1)ATWATR) expliu - 0] b,
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where A%(A) = 2%, a(j) exp(—ijA) anf f,,(A) is given by (2.30). In particular, if
u = v, then the asymptotic variance of h™(u) is given by

A

TR0 ¢3)
where fi(A) = a?Q@) |A%(A)|™, while that of g™(u) is given by
:]—fx% da. (5.6)
Hence, the difference between their asymptotic variance is
27 (™ ,
2" £ OXAIOR - [AQB . 57)

Note that if x, is a finite autoregressive process of order m, then for u =m,
(5.7) is zero and the two estimates are asymptotically equivalent. In other cases,
the behaviour of these two estimates will depend upon that of f,.(A). If
f(A)= P, a constant, for all A, then it is clear that (5.7) is negative for all A,
i.e. the asymptotic variance of hP(u) is smaller than that of g¥(u).

On the other hand, suppose that

Mzc*

Fuld) , a constant, all A, (5.8

i.e. the ‘signal-to-noise’ ratio is constant (e.g. Fishman [13]). Then, by using a
result of Parzen [20], (5.7) may be shown to be nonnegative for all u, and thus,
for this case, the asymptotic variance of h™(u) is greater than that of g™(u).
Note, however, that when (5.8) holds and I(u) = 0 for u sufficiently large, the
gP(u) provide asymptotically efficient estimates of the (nonzero) I(u), relative
to the maximum likelihood in the Gaussian case, see Hannan [17, Chapter
VII).

It is interesting to note that for prediction one step ahead, i.e. when y; = x,.4,
expression (5.2) simplifies to

©

2 a(—ra(w-r), (5.9)

r=0

which is consistent with the result of Bhansali [5], since, from (3.3), for this
case, h(j)=—a(j+1)(§j=0,1,...).
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6. A simulation study

The finite sample behaviour of the statistics #‘P(u) and gP(u) is extremely
difficult to derive analytically. The usual practice is to use the asymptotic
results obtained by letting T— >, as approximations for the finite sample
behaviour of these statistics. To examine the usefulness of this procedure,
several different systems of known structure were generated on a computer and
these estimates were computed. The detailed results are given by Karavellas
[19]. To save space, in this paper, we only consider the following two systems,
in which {i} and {v,} are sequences of independent normal deviates with zero
mean and variance 1:

System 1
vy, = 0.5x,_;+ 0.15x,_, + 0.05x,-3+ 0.5z,
x, =0.75x,_1—0.5%,.+ u,,
2=0752,_,—05z,,+ v ;

System I

y: = 0.5x,_1+ 0.54,,
x, = 0.55x,_1+0.05x,_,+ v,.

The {u,} and {v;} were generated using the two-sequence method, described by
Bhansali [6]. A stretch of T + 100 observations on {y,} and {x,} was generated
from these systems, but the first 100 observations were discarded to avoid the
transients. The modified Daniell window, which takes a weighted average of
2m + 1 periodogram and cross-periodogram ordinates, was used to estimate
fu(A) and f,,(A) at"Nr +1 equally spaced points in [0, ]. Several different
values of T, and, for each T, several values of m and N; were considered.
However, to save space, only the results for T=960, m =5 and Ny =48 are
presented here. Note that the choice of Ny is in accordance with the results of
Bhansali [4]. The estimates, hP(u) and g™(u), of the filter coefficients were
computed by using formulae (4.6) and (4.15), respectively. These calculations
were repeated 100 times, with a different set of observations each time, and the
observed means and variances of the estimated filter coefficients were cal-
culated. The computing was done on the 1906A/7600 computer of the Uni-
versity of Manchester.

The observed means of h™(u) and gP(u) (u=0,1,...,5) are presented in
Table 1 for System I, and in Table 2 for System II.

The h™(u) and the g™(u) are seen to provide biased estimates of the filter
coefficients. Moreover, the bias in estimating the nonzero coefficients is greater
than that for the zero coefficients. The actual magnitude of the bias is about the
same for both these estimators, since their means differ from each other only in
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Table 1 Table 2
Means of #D(u) and g™M(u) for System Means of h™(u) and g (u) for System
1 1I

Mean of Mean of Mean of Mean of

&
&

R (u) gPw) h(w) h T (u) gPw) k)

0.00315 0.00263 0.0
0.47348 0.47303 0.5
0.14149 0.14106 0.15
0.04531 0.04527 0.05
0.00083 0.00043 0.0
0.00160 0.00215 0.0

0.00357 0.00298 0.0
0.47172 0.47167 0.5
-0.00067 —0.00087 0.0
—0.00181 —-0.0016 0.0
0.00147 0.00115 0.0
0.00147 0.00222 0.0

N oAb WN =
MhWNRO

the fourth decimal place. Both the systems generated here are linear, time-
invariant, open loop and physically realizable. Hence the last finding is in
accordance with the results of Section 2. The 2™(u) and the g™(u) are based
on the ‘window’ estimators f{P(A) and f{(A). The latter are known to be
biased for f,(A) and f,(A), and their bias may partly account for the bias of
h™(u) and g™(u) in estimating the filter coefficients. A relevant reference is
Hannan [17, p. 479].

000060

3 00004
E‘: 000045 Observed
< ———Expected
(<]
bt 0-00030 ————-1% Critical
§ limits

'§ 000015

0

Fig. 2A. Plot of the variance of h‘")(u) for System I [T =960, m = 5, Nr = 48].

00001‘0 T T T T T T T T
000034 N
3
%
S 000028 Observed
8 000022} ——~Expected
8 A ) B B B E 1% Critical
£ oo0016F " === values
000010L P

020 0 &0
Fig. 2B. Plot of the variance of gT)(u) for System I [T = 960, m = 5, Nr = 48].
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The observed variances of h™(u) and g™(u) are plotted in Figs. 2A and 2B,
for System I and Figs. 3A and 3B for System II, along with the corresponding
‘expected’ variances, which were calculated by using expressions (5.5) and (5.6),
respectively. For checking whether the observed variances differ significantly
from the ‘expected’, the 1% critical limits are also shown. These enable the
x? test for variances to be applied graphically.

For System I, the signal-to-noise ratio, (5.8), is constant for all A, while, for
System II, the residual process u, is serially uncorrelated. Hence, as discussed
zarlier in Section 5, for System I, the g™(u) are expected to be asymptotically

Observed variance
—~—- —..— Expected variance

T _______ 1% critical limits
0.0005

0.0004

0.0003{./

Variance of h{T)(u)

[=]
g
N
T
)
|
|
|
/1
gt
[*]
s |
e |
[
- |
®
o |
30
=3
5 |
[T
= 1
3 |
E 2
|
|
|
|
1
]
|
|
I
I
!
1
|
|
I
1

0.0001 -

cw

5 10 15 20 25 30 35 40 45

Fig. 3A. Plot of the variance of h™(u) for System Il [T = 960, m = 5, Ny = 48].

Observed variance
N ——wmn.—-  Expected variance

——————=- 1% critical limits
0.0005 Upper 1% critical limit

Variance of 9{T(u)
o o o
=) = =

S
8 8 g

0.0001

1 1 1 L | 1 1 —
u

-15 -10 -5 0 5 10 15
Fig. 3B. Plot of the variance of g™(u) for System I [T =960, M = 192, N = 48].
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more efficient than the h™(u), but conversely for System II. This asymptotic
comparison is seen to hold also with a finite T, since the observed variances are
closely approximated by the asymptotic variances.
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The Finite Fourier Transform of a Stationary
Process

David R. Brillinger*

1. Introduction

The Fourier transform has proved of substantial use in most fields of science.
It has proved of special use to statisticians concerned with stationary process
data or concerned with the analysis of linear time-invariant systems. The
intention of this paper is to survey some of the uses and properties of Fourier
transforms of stochastic processes.

In the case of an observed function X(f), 0<t<T, the finite Fourier
transform is defined as

d™(A) = fo ' X (t) exp{—irs} dt (1.1)

—oo < A <o, The computation of the quantity (1.1) was suggested, for example,
by Stokes (1879) to test the observed function for the period 27/A. In the case
of discrete data X(¢), t=0,...,T—1, Schuster (1898) proposed the com-
putation of

dT(A) = TZ—I X (1) exp{—iAt} 1.2)

whose real and imaginary parts appear in the sample correlation of the values
X () with the values cos At and sin A¢, respectively. Schuster further suggested
the computation of the periodogram

I"A) = @aT)Hd™ )P 13)

in a search for hidden periodicities in the series X (-).
In the case that the quantity (1.2) is computed for the particular frequencies
A=27s/T, s=0,..., T—1, the corresponding operation is referred to as the

*This work was supported by NSF Grant PFR-790642.
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discrete Fourier transform. It turns out that for various values of T in this case,
the transform may be computed much more rapidly than might have been
expected. If such a computation is employed, one speaks of the fast Fourier
transform.

The Fourier transform turns up in problems of functional approximation and
interpolation. The particular value T-'d"(0) corresponds to the sample average
value, so often used as a summary statistic for a set of data. The value T 1dT(A)
occurs as the maximum likelihood estimate of the parameter 3p exp{i$} in the
model

X(t)=pcos(At+ )+ e(r), 1.4

t=0,..., T—1, with the £(¢) a sample from a zero mean normal distribution
and A of the form 27rs/T, s an integer. In the case that X (-) is a stationary time
series with mean 0 and power spectral density f(A), the expected value of the
periodogram, (1.3), is close to f(A) suggesting that estimates of f(A) be based
on the values (1.2). In seismic engineering the Fourier transforms of observed
strong motion records are taken as design inputs and corresponding responses
of structures evaluated prior to construction (see, for example, Vanmarcke,
1976). On other occasions responses of systems to sinusoidal input, at
frequency A, are recorded and the Fourier transform (1.2), (or (1.1)), computed
in system identification. For example, Regan (1977) proposes the examination
of an individual’s visual system by having him view a sinusoidally oscillating
light as his EEG is recorded. The EEG is subjected to Fourier analysis at the
frequency of oscillation (and some of its harmonics).

The transforms (1.1) and (1.2) refer to the cases of continuous and discrete
equispaced time, respectively. The Fourier transform

40) = S X(o;) expl-ia}, (15)

i=1

with the o; irregularly spaced, is also of important practical use (especially in
the case that X(-)=1, when one speaks of point process data). So too is the
transform

T T
dT(Al,...,A,)=IO L Xty ...\ 5)
X exp{—i(Aiti+ - - -+ Aptp)b dtg - - - dy, 1.6)

of spatial data. (The domain of X (-) may even be an abstract group.)

In another form of extension, the Fourier transform may be best viewed as a
functional defined on a convenient function space. The entity, X, of concern
may be described by a differential equation and the equation may have
solutions only- in a generalized function (Schwartz distribution) sense. In a
related procedure, one sets
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d"(V) = 2 #T(1)X (2) exp{-irs} 1.7

with ¢T vanishing if 1 <0 or t= T. The function ¢T is usually called a data
window or taper here. This form of extension makes the Fourier transform
more useful and a more powerful tool. Details will be provided later in the
paper.

There are various classes of functions that may be viewed as subject to a
harmonic analysis. These include the functions belonging to some I, space, that
is satisfying

> X <e (1.8)

t=—0

from some p=1. Examples include X()=rexp{~Bt} and X()=
. ay exp{—pBut} cos(yit + 8). Such functions provide models for transients.
They have Fourier representations

X(£)~ f " expliAiz(A)dA . (1.9)
From (1.2), for such functions

sin aT/2
sin /2

dT(A) ~ j: expl—ia(T - 1)/2} 20 - a)da. (1.10)

The function Dr(a)= (sin aT/2)/(sin a/2) is called the Dirichlét kernel. It
integrates to 1 and has most of its mass in the interval (-2#/T, 2#/T). The
finite Fourier transform might be expected to be near z(A) in this case.
Classical Fourier analysis (see, for example, Timan (1963) or Lorentz (1966)) is
concerned with just how near it is. It is further concerned with how the
nearness may be increased by the insertion of convergence factors, ¢7, as in
(1.7). In this case

dT(0) ~ f: ®(a)z(A — ) da (1.11)

with @T(a) = =, ¢™(¢) exp{—iat}. The particular data window employed is seen to
affect the result directly.

Quite a different class of functions is provided by the realizations of
stationary stochastic processes. Suppose that one has functions X (¢, w) indexed
by the values of a random variable w. If E|X(f, w)? <, and cov{X (¢ + u, w),
X(t, w)} does not depend on ¢, then one has the spectral (or Cramér) represen-
tation
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X(t, )~ f " explin}Z(da, w) 1.12)

‘with Z a stochastic measure satisfying
coviZ(l, w), ZJ, o)t = FINJ) 1.13)

for intervals I and J. F is a nonnegative measure on the interval (—, 7]. If
this measure is absolutely continuous, its density f(A) is called the power
spectrum of the process X. (The covariance in (1.13) is defined via cov{U, V} =
E(U-EU)V-EV))

Suppressing the dependence on w, one can write

cov{Z(dA), Z(du)} = (A — w)f(A) dA di (1.14)

in the absolutely continuous case with 5(-) the Dirac delta function. In an
important class of situations, all the moments of Z exist and are given by

Cum{Z(dAI)s Tty Z(dAk+1)}
= 8(A1+ AR o Ak+1)f(A1, ey Ak)ﬂd)h : * d)(l,+1 (115)

for k=1,2,.... (Here cum denotes the joint cumulant of the variates involved.
It is defined and discussed in Brillinger (1975a,b), for example.) An effective
way of ensuring that values of the process well separated in time are only
weakly dependent (the process is mixing) is to require that the f(A4, ..., A;) be
absolutely integrable. For then, one has the representation

cum{X (¢ + uy), ..., X+ w), X(t)}

= j s J’ exp{i(uy\l +---+ uk)tk)}f(/\l, rees /\k) dA;--- dA, (1.16)

and the cumulant is seen to tend to 0 as any |y;| >, by the Riemann-Lebesgue
lemma.

The spectral representation (1.12) is useful for indicating the result of linear
filtering the series X. Specifically if A(A), the transfer function of the filter,
satisfies /7, |A(a)*F(da) <=, then the filtered series given by

f " explin}A()Z(dA). 1.17)

Similarly, the finite Fourier transform (1.7) may be written

f_ " &7\ ~ a)Z(da) (1.18)
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showing that, when @7 is a weight function with mass concentrated near the

origin, the value of (1.7) is proportional to the value of Z for a neighborhood
of A. Further, from (1.14),

var dT(\) ~ j |6T(A — a)Pf(a) der
~ ) [ 197(@)P da (1.19)

if f is continuous at A. Similarly, from (1.15),
cum{d™(A1), . . ., dT(Ar+1)}
~ [ j BT — ) - DTk — )P Ny + @y + -+ + )
X fa, - . ., o) day + + - dog. (1.20)

The results (1.19) and (1.20) are useful in practice because the moments of a
random quantity provide essential information concerning its statistical dis-
tribution.

The just-indicated results refer to the case of a univariate series and discrete
time. In the case of an r vector-valued series, the spectral representation (1.12)
becomes

X(1)~ j: explifA}Z(dA) (1.21)
with Z r vector-valued and such that

cov{Z(dAr), Z(dp)}= 8(A — p)F(dA) du, (1.22)
F being an r X r Hermitian matrix having nonnegative definite increments. In
many cases F(dA) will be of the form f(A) dA. The matrix f is called the spectral

density matrix of the series. In the case that time is continuous, the represen-
tation (1.12) becomes

X(6)~ K expfiA}Z(dA). ' (1.23)

In the case of a spatial process, X(fy, ..., %), with —o<ty, ..., t, <, one
has

X(ty ..oy )~ f o f " expli(tAit -+ LALNZ Ay, . .., dAy)

i (1.24)
with
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coviZ(dAy, ..., dA,), Z(duy, ..., du,)}
=8A1—p) 8, — up)F(dAy, ..., dAy)dpy - - - dp,. (1.25)

All that is changed is the domain of the functions involved.

As a final example to illustrate just how unifying the concept of the spectral
representation is, consider the case of a nonstationary process with stationary
increments. The spectral representation now takes the form

X (1)~ jw e—xl’{—ii’fi—_—l-zmn (1.26)
with
cov{Z(dA), Z(dp)} = 5(r — w)F(dA) du 1.27)

as betore (see Yaglom, 1958 or Brillinger, 1972). However, suppose one defines
the finite Fourier transform, including a data window, as

d"0) = [ $7() exp{-irt} X (1), (1.28)
then, using (1.26), one sees that
dT0) ~ f ST — a)Z(der) (1.29)

as in (1.18), with @T(a) = [ expfiat}d™(a) dt. By considering frequency rather
than time-domain statistics, one finds oneself working with expressions of
identical form. This phenomenon holds as well for generalized processes
(random distributions) defined only by the values of certain linear functionals
based on them. The expression (1.29) continues to describe an appropriate
statistic (see Brillinger, 1974, 1981).

This paper will consider, in particular: the large sample distribution of the
finite Fourier transform dT for a broad variety of stationary processes, the use
of dT in linear models, the use of 4" in estimating finite-dimensional parameters
and finally, some interesting related results.

2. Central limit theorems

In the case that the time series X (), —o <t <o is stationary with power
spectrum f(A) and mixing (see Appendix), one has the following large sample
results concerning the finite Fourier transform (1.1).

(i) For A#0, d™(A) is asymptotically complex normal with mean 0 and
variance 27 Tf(A). (The complex normal is defined in the Appendix.)

@ii) For0< A, <---<Ag, dT(Ay), ..., d"(Ag) are asymptotically independent.
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(iii) For AJ=2ms]/T>A, with the s} distinct nonzero integers,
dT(AT), ..., d*(Ak) are asymptotically independent complex normals with mean
0 and variance 27Tf(A).

(iv) For A#0, V= T/K and

d*(\, k) = L :.an X (1) exp{-irs} dt, .1

k=1,2,...,K, d"(\1),...,d"(A K) are asymptotically independent complex
normals with mean 0 and variance 27 Vf(A).
(v) For A#0, ¢%(t) = ¢ (4 T), ¢ bounded and integrable, and

4T\, k) = f STOX(E) exp{—irs dt, 2.2)

{d™(A, 1), ..., dT(A, K)} is asymptotically N&(0, 37f(1)) with the entry in row j§
and column k of 3" being 27 [ ¢T(t)¢%(2) dr. (The variate (2.1) is a particular
case.)

(vi) For Ay~ A with TAT, T(AT— AT)—>, with &(A) the Fourier transform
of ¢ bounded by L(1 +|A|y*, @ >2 and

dT\) = J ST()X(¢) expl-irs} dt, 2.3)

dT(AT), ..., d"(\%) are asymptotically independent complex normals with mean
0 and variance 27 | ¢T(¢)> def(A).

In the case that the mixing condition assumed is one based on joint
cumulants of the process, these results are proved directly and simply by
demonstrating that the standardized joint cumulants of order greater than 2
tend to 0, i.e. to the cumulants of a normal variate. Details may be found in
Brillinger (1970, 1975a,b, 1981). References to central limit theorems for finite
Fourier transforms, or equivalently for narrow band-pass filtered series include:
Leonov and Shiryaev (1960), Picinbono (1960), Rosenblatt (1961), Hannan
(1970) and Brillinger (1974).

The results (i) to (vi) suggest that in practice it may be reasonable to
approximate the distribution of the Fourier transform of a long data stretch (or
a series such that well-separated values are approximately independent) by a
normal distribution. Further, Fourier transforms at distinct frequencies and
based on nonintersecting data stretches may be approximated by independent
normals. The variance of the approximating normal is proportional to the
power spectrum of the series. This suggests how a direct estimate of the power
spectrum may be constructed from the Fourier transform. (Details will be given
in the next section.)

For result (i) to make sense, it is necessary that f(A)# 0. In the case that
f(A) =10, it is sometimes possible to demonstrate asymptotic normality, with
the asymptotic variance of an order different than O(T). Specifically, suppose
that f(a)= (e — A)°g(a) with g continuous and nonzero at A. Then the large
sample variance of dT(A) may be shown to be of order T*#, and provided that
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the large sample cumulants are of corresponding lower orders, asymptotic
normality will follow.

In the case that the series is not mixing, asymptotic normality need not
occur. Rosenblatt (1981) derives a non-Gaussian limit for the transform of a
process with long-range dependence.

Results (i) to (vi) were set down for the case of a scalar-valued series.
Corresponding results hold in the r vector-valued case. Suppose, for example,
that X (£) = {X1(2), . . . , X,.(¢)} and that

a5 = [ H X0 expl-indr, ¢4

then d™(A) ={dT(»), ..., dT(x)} may be shown to be asymptotically N, XT)
with the entry in row j and column k of 37 being fr(A27 [ ¢T(t)¢pk(r)de. In
the case that ¢;= ¢ for all j, the covariance matrix of the large sample
distribution is seen to be proportional to f(A), the spectral density matrix of the
series.

The above results continue to hold for other types of stationary processes
and their corresponding finite Fourier transforms, such as (1.2), (1.5), (1.6) and
(1.7). A distinct advantage of working with the Fourier transform is that the
large sample results are the same for the frequency-domain statistics, whereas
time-domain statistics have drastically differing appearances and properties.

Hannan and Thomson (1971) develop asymptotic normality under a different
form of limit procedure. The hope is to obtain a better approximation to the
joint distribution in a case like (iii) above when the values f(Af), k=1,..., K
vary noticeably. The variates d"(AT) are found to be asymptotically dependent
with the limiting procedure adopted.

3. Direct estimation of second-order spectra

The results indicated in the previous section may be used to construct
spectral estimates and to suggest approximate distributions for the estimates
constructed. Specifically, result (iii) suggests taking

FI(A)= K 2 Q@nT)! dTw<%s>‘2 3.1)

with the summation over K distinct integers with 24rs/T near A, as an estimate
of f(A). Further, it suggests approximating the distribution of f7(A) by that of
FA)K 1 Z, |z,|* where the z; are independent complex normals having mean 0
and variance 1. (This distribution is the same as that of f(A)x%/2K, see
Brillinger, 1975.)

Results (iv) suggests the estimate
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K

FTA) =K1 > uvy Y dT(, k)P 3.2)
k=1

and the approximating distribution f(A)x3x/2K once again.

The estimate (3.2) involves averaging periodograms based on disjoint stret-
ches of data. Of course, periodograms based on overlapping stretches might be
averaged to form an estimate (the shingled estimate). Result (v), taking

¢J(f) =1 for the jth stretch and =0 otherwise, indicates that the large sample
dlstrlbutlon of the estimate may be approximated by f(A)K™'Z; |z;|> where the
z; are 0 mean, variance 1, complex normals as before; however, now the z; are
correlated in a manner depending on the overlapping employed.

Result (vi) suggests the estimate

1) = K-lz (27 [ 97ap ar) larapp (33)

in the case that tapering has been employed, with the approximating
distribution f(A)x3x/2K if the A are sufficiently far apart. Groves and Hannan
(1968) discuss the above estimates in a comparative fashion.

The above estimates are for the scalar case. For a vector-valued process, the
only change necessary is for the term |d"? to be replaced by the matrix
d*(A)Yd™(A), with dT the (row) vector of finite Fourier transforms of the
component processes. The large sample approximating distributions will now
be complex Wisharts rather than chi-squares (see Brillinger, 1975).

Direct estimates of higher-order spectra may also be formed from the finite
Fourier transform. Such estimates are considered in Brillinger and Rosenblatt
(1967) and Rosenblatt (1983, this volume) for example.

4. Linear models

The finite Fourier transform is of substantial use in the analysis of random
process data assumed to satisfy a linear (time-invariant) model. Suppose that
the data {X(¢), Y(¢)}, 0 <t < T is available and satisfies the model,

Y()=u+ f a(t— W)X (u) du + (), @.1)

where p and a(-) are-unknown parameters, £ is a zero mean stationary mixing
process with power spectrum f,.(A) and X is fixed. Set AA)=
J a(u) exp{—iAu} du. Taking Fourier transforms of the relationship (4.1) leads
to

dy<2;s> A(A)dT(zm) + dT(z’T’S) “4.2)
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for 2ms/T near A. From the results in Section 2, in many situations it is
reasonable to approximate the distribution of several dIQws/T) with 27s/T
near A by independent complex normals with mean 0 and variance 27 Tf, . (A).
Rewriting expression (4.2) as

Yk = ax, + & (43)

with k indexing K distinct frequencies near A, shows (4.2) to be (ap-
proximately) the standard linear model. The estimate

4= 2 Vi /2 |2 44
k k

of a=A(A) is the Gauss-Markov estimate. Its distribution may be ap-
proximated by a complex normal with mean A(A) and variance
27Tf..(A)/Z¢ |x|%. The error spectrum may be estimated by the residual sum of
squares

% ka - ankP/(ZWT(K - 1)) (45)

and the strength of the linear relationship may be estimated by (the coherence)

‘ 2 Vi

/ Z kaiz)(Z |yl ) (4.6)

These results are developed in detail in Brillinger (1975) for discrete time and
for both the scalar and vector cases. Asymptotic distributions are derived and
approximate confidence regions are constructed. The results for the (con-
tinuous time) model (4.1) are the same.

The approximate relationship (4.2) also occurs for other sorts of processes.
Suppose that {X(¢), Y(¢)} denotes a bivariate peint process with X (¢) counting
the number of points of one type in the interval (0, f] and Y(¢) counting the
number of points of a second type. Then the relationship

Prob{d Y(f)=1| X} = [M + f at - ) dX(u)] dt @.7)

may be shown to yield (4.2) in the case that the process is stationary and
mixing. The models (4.7) and (4.1) look very different in the time domain;
however, in the frequency domain they have similar forms and analyses.

The extension of these results to the case of vector X is immediate and
analogous to multiple regression. The extension to vector Y is also immediate.
Details may be found in Brillinger (1980) where various extensions and tests of
hypotheses are also given.
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The finite Fourier transform is also of use in examining the traditional model
of multiple regression, but with the errors stationary rather than uncorrelated.
Specifically, consider the model

Y()=0X()+ e(r), 4.8)

t=0,...,T—1, with 8 an r (row) vector, with X(¢) an r (column) vector
and with ¢ a stationary series having power spectrum fee(A). Taking the finite
Fourier transform leads to

2ms 27s 27s

T (278N _ a1 (TS T(£TS
dy< z ) de< z )+d:( T ) 4.9)
s=0,..., T—1. Treating the dT(2ms/T) as uncorrelated zero mean, variance

27 Tf..(27rs/ T) normal variates leads to

o~ (3 wCE)
(3o Cp)alE)-(F)

with w(A)=f,(A)! as the best linear unbiased estimate of 0. Further, the
distribution of (4.10) may be approximated by a normal with mean 6 and
covariance matrix

207 W) dBo ) ([ WO PR dEe 1))
X ( f w(A)dFXX(A)>_1 (4.11)

assuming that the sequence X is subject to a generalized harmonic analysis and
has spectral measure Fxx. Specific assumptions leading to this approximation as
the asymptotic distribution of # may be found in Hannan (1973) and Brillinger
(1975). The minimum of (4.11) occurs for w(A) = f..(A)™ and is

27rT‘1( f fo(A)! dI«"XX(/\))_1 (4.12)

This last expression is of use in questions of experimental design, i.e. choice
of the regressor series X. It shows that it is advantageous to concentrate the
power of the components of X at frequencies at which the noise spectrum is
smallest. It will be further advantageous to take the components of X ortho-
gonal to each other.
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5. Parametric models

The linear model (4.8) is a particular case of the following model of
considerable practical importance,

Y()=S( 0)+ e(r) 5.1)

with @ a finite-dimensional parameter, with $ a function of known form and
with ¢ a stationary series having power spectrum f,.(A) as before. The problem
is to estimate 0 given the data Y (¢), 1 =0,..., T — 1 say. For example, Whittle
(1952) considered the case of

S(t, 6) = 2 ; COS('}’,‘t + 6}) (5-2)

with 6 = (a1, y1, 81, . . ., as, y5 6;) while Bolt and Brillinger (1979) considered
the case

S(t, 0) = z Qa; exp{—Bjt} COS(‘)’]‘t + 6]) (53)

with 8 = (a;, B1, v1, 81, . . ., a5, By, v5 87). The problem is that of nonlinear time
series regression. In many cases it is convenient to address the problem by
means of finite Fourier transforms.

Taking the finite Fourier transform of the relationship (5.1) leads to

27s 27s 27s

T (278N _ g1(<7S T(£TS
dy<T> ay(=7 ,o>+d5( T) (5.4)
s=0,..., T—1. Taking the dT(2ws/T) to be independent zero mean, variance

2#Tf..2ws/T) normal variates gives (5.4) the form of the usual nonlinear
regression model, considered for example in Jennrich (1969). The least-squares
estimate of 8 is the value minimizing

T2; 1Y (1)~ S, 0)F = TZZ dTy(z—;s-) - d?(gl;ﬁ, o)| ? (5.5)

It is also convenient to consider the weighted least-squares estimate minimizing

S () i)W 2

s=0

with w(A)=f..(A) " for example. The asymptotic properties of this estimate
may be derived and, for example, approximate confidence regions constructed
for 6, by linearization. That is by reducing the model (5.4) to the model (4.9) by
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making a Taylor series expansion of d¥ as a function of 8 in the neighborhood
of its true value 6. Details for the cases (5.2) and (5.3) may be found in Whittle
(1952), Bolt and Brillinger (1979) and Hasan (1983, this volume). The general
case is discussed in Hannan (1971) and Robinson (1972) for example. In the
case of models (5.2) and (5.3), it is convenient to minimize separately the terms
in the sum (5.5) that are believed to be in the neighborhood of an individual v;.
This reduces the computations involved and allows one to treat the weights
wQms/T) of (5.6) as constant. One can alternatively consider a stepwise
procedure involving the estimation of f,. using the estimate of # at the previous
step and then minimizing (5.6) with w = f1.

The asymptotic properties of the finite Fourier transform, indicated in
Section 2, suggest a means of estimating the value of an unknown finite-
dimensional parameter in a circumstance of quite different form. Suppose that
X is a stationary process with power spectrum f(A, 8) of the known function
form, but with the value of 6 needing to be estimated. Were the values
d™"Qms/T), s=1, 2,...,(T—1)/2 independent complex normals with mean 0
and variance 27 Tf(2ws/ T, 8), one could set down the likelihood function

o) ol | () /() 6

and consider as an estimate of 6 the value maximizing (5.7). Once the
expression (5.7) has been set down, one can consider the properties of the
value maximizing it, quite separately from whatever motivated one to set the
expression down. This has been done. See, for example, Whittle (1954, 1961),
Hannan (1970) and Dzhaparidze and Yaglom (1974). It turns out that this
estimate is consistent and asymptotically normal, under regularity conditions. It
proves of special use in fitting ARMA and ARMAX models (see Hannan,
1976) and in dealing with data that has been modeled in continuous time, but
observed in discrete time (see Brillinger, 1973). Asymptotic properties of the
estimate are discussed for the case of point process data in Brillinger (1975b).

The results of this section provide another example of situations that have
substantially different appea'rances in the time domain, yet essentially the
same form in the frequency domain.

6. Other topics

This section presents an indication of some other results that have been
derived concerning finite Fourier transforms.

Results (i) to (vi) of Section 2 all relate to finite collections of Fourier
transform values. There are situations in which one is interested in a collection
whose number goes to « with the sample size, for example, the collection
d*Qas/T), s=0,..., T—1. Freedman and Lane (1980) demonstrate that the
empirical distribution of these values tends to the complex normal distribution
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function, in the case that X(¢), 1 =0, ... is a sequence of independent identic-
ally distributed random variables with finite variance. In related work, Chen
and Hannan (1980) prove that the empirical distribution of the standardized
values |dTQRas/ T)HQR#aTfQns/T)), s =1, ..., (T —1)/2 tends to the distribution
of x%/2 (i.e. the exponential). There are situations in which one is interested in

dT(Z—;Tf)y . ©.1)

sup|/d™(A)| or sup
A s

In probability and almost sure bounds are given in Whittle (1959) and Bril-
linger (1975a) for example. The asymptotic distribution of the second statistic
of (6.1) is considered in Fisher (1929) and Whittle (1954).

The results of Section 2 lead to approximating the distribution of |d7? by a
multiple of y3. Wittwer (1978) derives an improved approximation in the case
that X is Gaussian.

Physical models involving echoes have led to the computation of log dT(A) in
quite a number of situations (see Childers et al., 1977). This statistic is known as
the complex cepstrum or kepstrum. There are, further, quite a large number
of situations in which essential information is provided by the computation of
the finite Fourier transform for (possibly overlapping) segments of the series
and displaying it as a function of frequency and time. See, for example, Levshin
et al. (1972). Complex demodulation is an effective means of carrying through
these computations (see Bingham et al., 1967 and Bolt and Brillinger, 1979).

The Fourier analysis considered in this paper has been that of sine and
cosine transformations. There are situations in which the symmetries of the
problem are such that other transformations are relevant. Hannan (1969)
indicates a number of these. Morettin (1974) and Kohn (1980) consider the case
of the Walsh transform.

The computation of the Fourier transform of a data stretch is essential to its
use in statistics. One general reference to problems of computation is Digital
Signal Processing (1972). Computer programs became available in the 1960s
allowing the computation of the discrete Fourier transform of T data points
with number of multiplications proportional to T log T. The Winograd-Fourier
transform algorithm (see Winograd, 1978) reduces this to a number proportional
to T.

In summary, the Fourier transform proves an effective tool mathematically,
statistically and computationally. It is of great use in mathematics because
convolution occurs so often and is greatly simplified by the Fourier transform.
It is of use in statistics, in part, because its (large sample) properties are much
simpler than those of corresponding time-domain quantities. It is of use in
computations because fast Fourier algorithms allow the evaluation of quantities
of interest more rapidly and with smaller round-off error, than proceeding by
direct evaluation.
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Appendix

1. The complex normal distribution

An r vector-valued variate U, with complex components, is said to have the
complex normal distribution with mean p and covariance matrix 3, (denoted
N€(u, X)), if the variate

[Re U ]
ImU
is distributed as

No([imp) [z =x)

N,, denoting the usual multivariate normal. In the case that g = 0 and that ¥ is
nonsingular, the probability element of U is

7"(Det 3) ' exp{U3'U} ] (dRe U;)(d Im Uj)).
j=1
2. Mixing

A random process is said to be mixing if well-separated (in time) values are
only weakly dependent (statistically). The property has been formalized in a
number of ways. In the case of a continuous time series these include:

(a) With F: denoting the o algebra of events generated by the random
variables X(u), ssu<t

sup  |Prob{A N B}— Prob{A} Prob{B}| < a(u)

A€EF!4, BEFG Ly,

with a(u) | 0 as u— = (see Rosenblatt, 1956).
() With c(uy, ..., w)=cum{X(t+ uy),..., X+ w), X ()}

j..'JIC(ula'--7uk)|du1"’duk<0°

for k=1, 2,... (see Leonov, 1960 and Brillinger, 1970).
(c) With f(A4, ..., Ax) the cumulant spectrum defined by (1.15)

vrai suplf(Ay, . .., ) <o

for k =1, 2,... (see Shiryaev, 1960 and Brillinger, 1981).
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Seasonal and Calendar Adjustment

William S. Cleveland

1. Introduction

1.1. Seasonal and calendar adjustment

The results of seasonal and calendar adjustment procedures are directly
consumed by millions of people via radio, television, magazines, newspapers,
government reports, company business reports, and scientific journals. For
example, each month thousands of economic and business series are adjusted,
including the important and widely reported national economic series such as
unemployment, housing starts, industrial production, money supply, and price
indices. Surely this makes seasonal and calendar adjustment one of our most
important statistical tools.

What does adjustment mean? Many time series, particularly economic and
business time series, contain variation due to the time of the year or the
arrangement of the calendar. Calendar and seasonal adjustment refers to the
removal of this variation so that other variation can be revealed. (Calendar
adjustment frequently is called ‘trading-day adjustment’.)

As an example of a series with seasonal and calendar effects, consider the
number of first-class postage stamps sold at a post office window. The series
might vary, in part, due to the following factors:

Month-length effects: On the average more stamps will be sold in March than
in February since March has more days.

Day-of-the-week and holiday calendar effects: Sales for Sunday and national
holidays are zero, and sales for other days will depend on the day of the
week. The changing proportion of holidays and Sundays in a month and the
changing proportion of each day of the week in a month cause calendar
variation in the series.

Seasonal effects: Each month will tend to have a different value due to the
time of the year. For example, more stamps are sold in December than in
other months due to Christmas mailing.

If the goal in compiling the postage series is to assess changes in the demand
for stamps due to business factors such as quality of service, price, the general
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level of the economy, and availability of competitive services then we would
want to remove the variation due to month-length, calendar, and seasonal
effects to enable us to better assess the business factors variation. As we shall
see, adjusting for month length is easy; we just divide an aggregated monthly
series (a flow) by month length. But describing and removing seasonal and
calendar variation requires much more methodology.

1.2. Seasonal variation

Many time series contain seasonal variation: a periodic or nearly periodic
component. One example, shown in the top panel of Fig. 1, is monthly
concentrations of atmospheric CO; in Mauna Loa, Hawaii from January 1960
to December 1978. The acquisition, calibration, and selected properties of the
data are described by Keeling et al. (1976a,b). The yearly seasonal component
is caused by vegetation in the Northern Hemisphere; plants take in CO, during
the growing season and then release it in the late summer and fall.

A second example of a seasonal series, shown in the top panel of Fig. 2, is
the number of telephones installed by the Bell System each month from
January 1962 to December 1978. The seasonal variation in the installations
series is in large part a result of the seasonal variation in household moves. The
values plotted are the logarithms of the aggregated series corrected for month
length:

Value for month m = loge(30.4375 aggregated series for month m)

number of days in month m

where 30.4375 = 365.25/12 is the average month length.

The term seasonal is used since in most applications of seasonal adjustment
the fundamental frequency of the component is one cycle/year, but the
methodology does not in principle depend on the frequency; thus we could
equally well deal with a daily series with a weekly periodic component. But we
will suppose in this account that the series is monthly and has a yearly seasonal
component, partly because it will make terminology simpler and partly because
many computer implementations of seasonal adjustment procedures are prin-
cipally for this case.

1.3. Describing or removing seasonal variation: Decomposition
into trend, seasonal, and irregular

With a seasonal series there is often one of two goals:
@ Describe the seasonal component in order to understand its behavior
® Remove the seasonal component since its variation obscures other im-
portant variation.
(Of course, in some applications we want to ao both; that is, describe the
seasonal component for understanding and then remove it to see the behavior
of other components.) For example, we want to study the seasonal component
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Fig. 1. MAUNA LOA CO,;: DATA AND COMPONENTS. The average monthly concentrations
of atmospheric CO; in Mauna Loa, Hawaii are plotted in the top panel, and the three components
are plotted in the other panels. The components are from a SABL decomposition with the length
of the trend smoother equal to 75 and the length of the seasonal smoother equal to 11. The scales
of the panels are not the same. The bars at the right portray the relative scaling by representing the
same amount of change in each panel. The upward trend in the concentrations is the result of
emissions from the burning of fossil fuels. The seasonal component is the result of photosynthetic
activity .of the Earth’s vegetation.



42 William S. Cleveland

TELEPHONE INSTALLATIONS
TRANSFORMATION POWER 0

COR. DATA
. 14.2

13.8
oy

13.4

b2 63 | 6¢ | 65 66 67 68 69 70 71 72 73 74 75 76 77 78

TREND
3
~

CALENDAR X TO*!Z

]u Il HmMm\mw I unrl\mm

e

62 | 63 64 | 65 66 67 68 69 70 71 72 73 74 75 76 77 7%

*WM fwt} “M |\H IHHM rle !W | zw 1“ - ;I'“H lwlllwll iw); ‘|

POV T e I'Hll |||| T Y I OO TR SR R AV |

BB LA [ A | PI ’ 7 ] ’| ||| l T “i ‘”11 ] T “lll‘r

-2

-4

?

SEASONAL X 10

-1.0 0.0

{RREGULAR X 10

2.0

62 | 63 | 65 65 66 | 67 68 69 70 71 72 73 74 75 76 77 78

Fig. 2. TELEPHONE INSTALIL ATIONS: DATA AND COMPONENTS. The natural logarithms
of month-length corrected Bell System telephone installations are plotted in the top panel, and the
four components are plotted in the other panels. For this example the SABL decomposition was
run with the length of the trend smoother equal to 15 and the length of the seasonal smoother
equal to 11. The seasonal and calendar components account for a substantial amount of variation in
the series. The irregular component reveals two outliers, one in 1968 and one in 1971, both of
which are the result of strikes.



Seasonal and calendar adjustment 43

of CO, in order to make inferences about the mechanism causing the seasonal-
ity. However, for the telephone installations series the main goal is to remove
the seasonal variation in order to get a sense of the overall growth in installations.
The second of the two goals, removing the seasonal component, is referred
to as seasonal adjustment. But the methodology for removing the seasonal
component involves first describing it, so the methodologies for the two goals
are identical. In both cases the series is decomposed intcytomponents:
® Trend component—describes™ the long-term change in the level of the
series
@ Seasonal component—describes the variation in the data that repeats itself
or nearly repeats itself every 12 months; this pattern can be exactly
periodic, that is, exactly repeat itself, or it can slowly evolve through time
® Irregular component—describes the remaining variation.
As we shall see shortly, a calendar component is added to the decomposition
when calendar effects are present.

1.47 Decomposition of the CO, series

The lower three panels of Fig. 1 show a decomposition of the CO, series into
trend, seasonal, and irregular that is additive. If x(m) is the CO, concentration
for month m, then

x(m)=t(m)+ s(m)+i(m). (1.1)

The procedure used to carry out the decomposition is SABL (W. S. Cleveland,
Devlin and Terpenning, 1982. N.B. There are references to W. S. Clevelagnd
and W. P. Cleveland; initials will be used in all cases in order to differentiate).
SABL will be described, together with other procedures, in Section 2. The
increase in the level of the CO, series, which is described by the trend
component, has received great publicity because of predictions that further
increases in CO, may have the potential to produce changes in global climate
(Hansen et al., 1981; Kukla and Gavin, 1981).

A careful look also shows that the seasonal component of the CO, series
reveals a consistent pattern through time (W. S. Cleveland, Freeny and
Graedel, 1982). Fig. 3 is a monthly subseries plot of the seasonal component.
First the January values of the seasonal are plotted for successive years, then
the February values, and so forth. For each monthly subseries the midmean of
the values (the average of all values between the quartiles) is portrayed by a
horizontal line. The individual values of the subseries are portrayed by vertical
lines emanating from the midmean line. The seasonal subseries plot allows an
assessment of the overall pattern of the seasonal component (as portrayed by
the horizontal midmean lines) and also of the behavior of each monthly
subseries. Since all of the values are on the plot we can see whether the change
in any subseries is large or small compared with the overall pattern of the
seasonal component.
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The seasonal subseries plot for Mauna Loa contains two features of sub-
stantial interest. The first is the overall seasonal pattern, with a May maximum
and an October minimum. This pattern has long been recognized (e.g. Keeling
et al.,, 1976a), and is attributed mainly to photosynthesis by the Earth’s
vegetation, particularly the forests (e.g. Lieth, 1963; Woodwell, 1978).
However, ocean and altitude effects are also present (Fraser, Hyson and
Pearman, 1981). The second feature is the patterns in the monthly subseries.
The values for the months November to May—the time of year when the CO,
yearly cycle is rising—are stable or increasing from year to year. The biggest
year-to-year decreases occur during the months September and October.

A seasonal subseries plot for CO, measurements at the South Pole shows a
very similar pattern except that, since the South Pole is within the Southern
Hemisphere, the effects are shifted by about six months. The changes in the
monthly series through time at Mauna Loa and the South Pole are most likely
due to changes in global photosynthetic activity due to the increasing level of
CO, concentrations, but changes in the pattern of fossil fuel use or changes in
ocean temperatures cannot be ruled out, at this time, as causes (W. S.
Cleveland, Freeny and Graedel, 1982).

1.5. Calendar variation

Many monthly time series that represent a total of some variable for each
month contain variation as a result of a weekly cycle in the daily data. One
example is the installations series. The number of installations on a particular
day depends on the day of the week and whether the day is a holiday; on
Sundays and many holidays, for example, there are no installations. Thus the
monthly installations series will have variation due to the changing fraction of
each day of the week in the months and variation due to the changing fraction
of holidays. This is referred to as calendar variation.

As with seasonal variation we are often not interested in the calendar
variation since it obscures the important movement in the series; for example,
for the installations series we would not want to misinterpret a decrease due to
a larger than average number of Sundays and holidays in a particular month as
a decrease in the demand for telephones. Removal of the calendar variation
from the series is referred to as calendar adjustment. And as with seasonal
adjustment, calendar adjustment is carried out by first describing the calendar
component and then subtracting it from the series.

1.6. Decomposition of the telephone installations series

Fig. 2 shows a decomposition of the telephone installations series into trend,
seasonal, calendar, and irregular components, and Fig. 4 is a monthly subseries
plot of the seasonal component. If x(m) is the natural logarithm of the monthly
installations divided by month length and multiplied by 30.4375, then

x(m)=tm)+s(m)+c(m)+i(m).
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midmeans.



Seasonal and calendar adjustment 47

The decomposition procedure in this case is SABL (W. S. Cleveland, Devlin
and Terpenning, 1982), which will be described in the next section. It is clear
that the seasonal and calendar components account for a large fraction of the
variation in the series.

1.7. Decomposition magnifies subtle effects

If we look very carefully at the top panel of the telephone installations series
we can see two somewhat unusual points. One, toward the beginning of 1968, is
a somewhat unusually low value compared with installations at the same time
of year in other years. A second, in the middle of 1971, is a trough between the
double peaks, lower than in other years. Both of these effects do not stand out
in an obtrusive way because their magnitude is not large compared with the
total variation in the series. But in the irregular component, the variation after
the trend and seasonal variation are removed, the two effects appear as two
very prominently low values; they were both caused by strikes, which sub-
stantially reduced the number of installations during the months in which they
occurred.

For the CO, series, after decomposing and plotting we found a subtle effect
in the seasonal—an increasing amplitude. The plot of the data in the top panel
of Fig. 1 does not provide any suggestion of this effect. In fact, even knowing
that the effect occurs, it would be quite difficult to measure it just from the data
itself without a decomposition. Again, the reason why the decompdsition has
helped is that the effect is subtle compared with the overall variation in the
data.

2. Methods for seasonal adjustment

2.1. X-11

The traditional seasonal adjustment package is X-11, which is widely used
throughout the world. The initial development of the X-11 procedures began in
the 1950s (Shiskin, 1955); they evolved through time and culminated in the
current version (Shiskin, Young and Musgrave, 1967). The computer im-
plementation of the first versions of X-11 was one of the first uses of the
electronic computer to carry out complex statistical procedures. While it will be
argued shortly that substantial improvements in X-11 methodology are not
possible, one cannot argue that X-11 has not been a reliable performer over the
years. Criticisms of X-11 have come (Nerlove, 1965) and gone (Grether and
Nerlove, 1970).

Part of the X-11 reliability undoubtedly stems from the fact that the
designers started with the data, knew the intricacies of the data, and built the
procedures to realistically face the data. Robust estimation is one example. The
X-11 designers were aware that real time series in need of adjustment contain
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outliers and that, unless special procedures are used to deal with these outliers,
they will frequently distort seasonal adjustments. Robust estimation is now a
popular topic after nearly two decades of research (e.g. Huber, 1964; Andrews
et al., 1972; Hampel, 1974; Mosteller and Tukey, 1977; Mallows, 1980). Today
we can substantially improve on the X-11 robustness procedures, but we should
remember that the X-11 designers developed and implemented automated
methods of robust estimation long before the subject became popular.

X-11 carries out the decomposition into trend, seasonal, and irregular by
applying a series of weighted moving averages, which we shall refer to as
smoothers or filters. The smoothers are designed to accommodate series that
have persistent trends such as those in the CO, and installations series. The
characteristics of the smoothers can be varied somewhat in order to vary the
smoothness of the trend and seasonal components. Young (1968) describes
linear approximations to these filters.

X-11 has an additive version and a multiplicative version. In the first, the
decomposition is additive as in (1.1) and the seasonal and irregular components
both vary around 0. In the second, the decomposition is

x(m) = t(m)s(m)i(m)

and the seasonal and irregular components vary around 1 (or 100 depending on
how the output is scaled).

The basic design of the X-11 procedures in the multiplicative version goes
back to Macaulay (1931, Appendix I). The procedure suggested by Macaulay
for a monthly series of call money rates is the following:

(1) Apply a 43-term weighted moving average to the data to get an estimate
of the trend.

(2) Divide the result of (1) into the data.

(3) Smooth each monthly subseries of (2) by a moving trimmed mean of
length 9; each trimmed mean is computed by dropping the smallest and largest
values and averaging the remaining.

It is quite interesting that the result of (3), which is the seasonal component,
utilizes a robust smoother—a moving trimmed mean. But it was not until the
book of Tukey (1977), where moving medians are used, that robust smoothing
became a widely used tool for data analysis.

The X-11 procedures achieve a degree of robustness by iteration:

(1) Initial trend and seasonal components are computed.

(2) An irregular component is computed by subtracting (in the additive
version) the trend and seasonal components from the data.

(3) The data are altered on the basis of the irregular; if the irregular is very
large at a particular time point, the observation at that time is replaced by a
linear combination of other observations.

(4) Step (1) is repeated with the altered data.

(5) Steps (2) to (4) are repeated several times.
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2.2. DeForest extension

Filtering methods for seasonal adjustment, such as X-11, apply a series of
symmetric weighted moving averages, or symmetric filters. If the filter length is
2k + 1 and the values being smoothed are v(1), ..., v(n), then the smoothed
valuesform=k+1,...,n—k are

3 ap(m +j)

=k

where the filter coefficients are symmetric: «; = a_;. The problem is to extend
the smoothed values to the ends, that is, to compute smoothed values for
m=1,...,kandm=n-k+1,...,n

DeForest (1877) suggested a method for extending a symmetric filter to the
ends of a series: forecast the series both forward and backward and apply the
filter to a new series consisting of the old series together with the forecasts
appended fore and aft. The forecasts need to extend k time units beyond the
ends of a filter of length 2k + 1. Greville (1979) gives a thorough discussion of
DeForest’s method and other methods for taking a filter to the ends. For
seasonal adjustment this idea has been utilized by Dagum (1978) and by
Kenney and Durbin (1982). In the first reference, forecasting is carried out by
fitting ARIMA (autoregressive integrated moving average) time-series models
to the data; in the second reference, autoregressive models are fit with the lags
selected by stepwise autoregression. The X-11 trend and seasonal filters are
symmetric at time points sufficiently far from the ends and become more and
more asymmetric near the ends (as they must, of course). The reason for
appending forecasts and then applying X-11 is to improve the performance of
the seasonal adjustments at the ends of the series. This idea is discussed further
in Section 2.5.

2.3. ARIMA modeling of data and seasonal components

One approach to decomposition that recently has received much attention is
to model the data and each of the three components by time-series models and
then use signal extraction techniques to estimate the trend and the seasonal
components. The first papers using this approach appear to have been (Couts,
Grether and Nerlove, 1966) and (Grether and Nerlove, 1970), in which ARIMA
models are used; this work culminated in a book (Nerlove, Grether and
Carvalho, 1979), several chapters of which are devoted to such modeling. The
ARIMA approach has been investigated and further developed in a more
recent series of papers: (Brewer, Kagan and Perazzeli, 1975), (Box, Hillmer
and Tiao, 1978), (Pierce, 1978), (Burman, 1980), (Hillmer and Tiao, 1982), and
(Hillmer, Bell and Tiao, 1982). A similar approach has been taken by Abra-
hams and Dempster (1979) who fit FRIMA (fractional integrated moving
average) models to the data.

To illustrate the methodology we will consider the work of Hillmer and Tiao
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(1982). Here the data x(m) are assumed to be an additive decomposition into
trend, seasonal, and irregular:

x(m)=t(m)+ s(m)+i(m)

where the data and all components follow Gaussian ARIMA models, but with
certain constraints. For example, the seasonal component is assumed to obey
an ARIMA model of the form

1+ B+---+ BYs(m) = 6(B)b(m)

where B is the backward shift operator defined by Bs(m)=s(m —1), 6(B) is a
polynomial of degree no more than 11, and b(m ) is white noise. These constraints
on s(m)imply certain constraints on x(m); if the identified model for x(m) did not
sausfy these constraints, the seasonal component could not then be specified in
this way, but in fact the constraints on x(m) are very reasonable for the data to
which seasonal adjustment methods are usually applied. Having identified a
model for x(m) that is consistent with the seasonal model, 8(B) is derived, and
s(m)is estimated by using signal extraction techniques. Thus these models lead to
filters for the trend and seasonal components and to sampling distributions for the
components, conditional on the model being correct, of course.

2.4. SABL: Another filtering approach

The starting point in the development of the SABL seasonal adjustment
procedures (W. S. Cleveland, Devlin and Terpenning, 1982) was methodology
that already existed in statistics—methodology that was a part of the seasonal
adjustment domain and methodology that was brought to this domain from
other areas of statistics. The chief sources were the following:

@ The X-11 seasonal adjustment procedures

® Methods of robust estimation developed during the past 15 years for

domains other than seasonal adjustment

® The work of John W. Tukey on nonadditivity in two-way tables, power

transformations, and smoothing

® New d\evelopments in statistical graphics.

The SABL decomposition procedure has employed many of the smoothing
ideas in X-11:

® Forming successive estimates of trend and seasonal components by esti-

mating one, subtracting it out, and then estimating the other

® Smoothing each monthly subseries separately to estimate the seasonal

component ‘

@ Applying a trend component smoother to the seasonal component and

subtracting the result to center the seasonal component at zero.
But the actual smoothers used in SABL are quite different from those in X-11.
For example, the SABL smoothers reproduce linear effects, either in the trend
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component or in a monthly subseries of the seasonal component. X-11, on the
other hand, underestimates the magnitude of the slope of a linear effect at the
beginning and end.

SABL takes advantage of the recent revolution in computer graphics to
produce eight graphical displays that are powerful tools for judging the
adequacy of the adjustment of a series and for understanding the behavior of
the trend, seasonal, calendar, and irregular components (W. S. Cleveland and
Devlin, 1980; W. S. Cleveland and Terpenning, 1982). The importance of
graphics for seasonal and calendar adjustment will be discussed in more detail
in Section 4. All of the displays in this chapter were generated by the SABL
package.

In X-11 there is a set of procedures that carries out a purely additive
decomposition and another set of procedures that carries out a purely multi-
plicative decomposition. In SABL these possibilities are expanded by using
power transformations just as they are used in other areas of statistics (Box and
Cox, 1974; Tukey, 1957). The class of power transformations is defined by

e it p>0,
x"’)={logex ifp=0,
—xP if p<0.

In SABL a value of p is selected and x®(m) is additively decomposed. If p = 1
the decomposition of the original series, x(m), is purely additive and if p =0
the decomposition of x(rm) is purely multiplicative. In effect, the use of a power
transformation makes the decomposition on the transformed scale additive and
thereby removes the interaction between the trend and seasonal components.
The motivation for using a power transformation to remove a trend-seasonal
interaction came from work on removable nonadditivity in two-way tables
(Tukey, 1949).

The idea that outliers can have disastrous effects on statistical procedures
unless care is taken seems to have been clearly articulated throughout the
history of the development of statistical methodology. One striking statement
of this for economics can be found in Kuznets (1933). Robust methods of
estimation have undergone substantial development during the past 15 years
through the use of statistical theory (e.g. Huber, 1964; Hampel, 1974), through
extensive Monte Carlo experimentation (e.g. Andrews et al., 1972), and
through applications (e.g. Mallows, 1980) to attain procedures which are nearly
efficient over a wide range of conditions and which are not distorted by
outliers. One high performance procedure is M-estimation (Huber, 1964). In
SABL, M-estimation is tailored to the trend-seasonal-irregular decomposition
and to the power transformation selection. In the decomposition, preliminary
estimates are computed and then iterations are carried out in which the
irregular is used to determine weights for the next step. This is analogous to the
use of iterated weighted least squares (Andrews, 1971) in location estimation
and regression.
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2.5. Filtering with DeForest extension and ARIMA methods
are much more similar than it might seem

ARIMA and filtering methods, provided the filter is applied to the series
extended fore and aft by forecasts based on a model for the series, are not
substantially different.

To see why this is so we first need to describe a fact about optimal
forecasting and signal extraction, which we shall refer to collectively as pro-
jection. Suppose that

x(m)=t(m)+s(m)+i(m),

where the probabilistic mechanism for the stochastic behavior of the com-
ponents is known, and that all series are Gaussian with finite variances so that
mean square error projection is optimal projection. Let x(1),...,x(n) be a
finite stretch of the data. Let x*(m), —oo <m <, be a series that is x(m) for
m=1,...,n, and for m not in this set, is equal to the optimal projection of
x(m) on x(1),...,x(n). Now suppose the optimal projection (extraction) of
s(v) on all x(m), —e<m <, is

o

S wul)= 2, ax(v+])

j=—=

then the optimal extraction of s(v) from x(l), .o, x(n)is
. . ES

@)= S, ax*(+]). @.1)

j:—m

. - Equation (2.1) is often attributed to W. P. Cleveland (1972) but it is actually
a special case of a simple fact about geometry. If §; and 8, are two subspaces
with §; C S, and P, and P, are projection operators onto §; and S, then

Py = P,Pyy.

That is, to project on §; we can project onto 8, first and then project the result
onto S;. To see this note that

y=P2y+02

where o0, is in the orthogonal complement of S, and therefore in the orthogonal
complement of §;. Then

PP,y = P(y — 02) = P1y — P10, = Py

Equation (2.1) is now élearly true if we take §) to be the space spanned by
x(1),...,x(n) and 8, to be the space spanned by x(m), ~o<m <o,
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This fact about signal extraction and forecasting is helpful for several
reasons. First, it gives a convenient method for computing extractions based on
a finite amount of data since formulas for forward and backward prediction and
extraction from the infinite x(m) series are typically simple. (We cannot, of
course, actually use all of the a; but rather just a very large finite number.)
Second, we can easily see that in principle (practical considerations aside)
seasonal adjustment by ARIMA modeling and signal extraction is the same as
seasonal adjustment by filtering and DeForest extension. (For simplicity we
shall assume x(m) is stationary, but the argument does not depend on this.)
The seasonal filters of X-11 and SABL for values of the series not too close to
the ends are symmetric in x(m); let us write any such seasonal filter as

S Bx(m +)) @2)

j=-v

where B; = B_;. Now suppose the spectrum of x(m) is S, (f). Then the spectrum
of the estimated seasonal is

| S ge| s

j=-v

The spectrum of an optimally extracted s(m) (based on x(m) for —o<m <)
is

()
S=(f)’

where S,(f) is the spectrum of s(m). Thus if seasonal adjustment is carried out
using DeForest extension and applying the seasonal filter (2.2), the procedure
can be thought of as optimal extraction when the seasonal is taken to be a
process whose spectrum is of the form

S B e

j=-v

Sa(f) .

All of this provides a powerful argument for adding DeForest extension to
current filtering methods such as X-11 (Dagum, 1978; Kenney and Durbin,
1982) and SABL. It also shows that choosing between filtering and component
ARIMA modeling methods is largely one of practicality. Is it easier to specify
the extraction filter directly and thereby specify a model for the component, or
is it easier to specify the component and derive the filter? This is likely to be a
personal choice based on-the user’s background and experience. It should be
appreciated that in neither case will one be led to a unique answer. Without
more criteria, the choice of the seasonal must in part be subjective; and an
arbitrary fixed choice does not remove the subjectivity. In Section 4 we shall
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discuss graphs and a soft criterion that give some assistance in judging the
adequacy of the estimated seasonal component.

~ The author’s preference is to choose the filter directly and thereby not go
through the trouble of specifying a model for the seasonal and deriving the
filter. This allows direct control of the amount of smoothness in the monthly
subseries of the seasonal component, which can then be judged by the
graphical displays described in Section 4. No implementation of the ARIMA
component modeling approach yet allows such a direct control over smooth-
ness, although that does not mean such an approach does not exist.

2.6. In the footsteps of Whittaker and Henderson: Seasonal
adjustment by criterion optimization

In the 1920s Whittaker (1923) and Henderson (1924) independently sug-
gested a method for smoothing a time series (or any sequence of numbers),
x(m). The method is to take the smoothed values to be the numbers, ¢(m), that
minimize the expression

a 2 A%(m)Y+ 3 (x(m) = t(m)y 2.3)

where a is a positive parameter and A is the difference operator
At(m)=t(m)—t(m —1).

The sum of squares of the third differences of #(m) in (2.3) is a measure of the
smoothness of t(m); a smaller sum means a smoother function. The sum of
squares of deviations of #(m) from x(m) measures how well the smoothed
values fit the data. As a increases, t(m) becomes smoother, so a serves, in
effect, as a smoothness parameter.

This idea was first generalized to trend-seasonal-irregular decompositions by
Leser (1963), simply by adding a stable seasonal component in the minimiza-
tion. That is, we now find the #(1),...,#(n) and the s(1),...,s(n) that
minimize

a 2 (A(m)y + 3 (x(m) — t(m) = s(m)y,

where s(m) is exactly periodic with period 12. Note that second differences are
used rather than third differences to measure smoothness.

A method by which the Whittaker-Henderson criterion can be generalized
to trend-seasonal-irregular decomposition and allow for an evolving seasonal is
the following: choose s(m) and t(m) to minimize

a DA m)P+ B D, (s(m)—s(m — 12)y
+y > (s(m)+s(m—1)+---+s(m—11)¢

+ 2, (x(m)— t(m)— s(m)y’ 24
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where a, B and y are positive parameters. The first term, as before, is a
measure of smoothness of the trend. The second term is a measure of
smoothness of each monthly subseries of the seasonal and is therefore a
measure of stability of the seasonal; as the measure decreases the subseries
becomes smoother so that the seasonal becomes more nearly stable. The third
term, which tends to keep the overall level of the seasonal from wandering too
far from zero, is the sum of squares of a moving average of s(m) of length 12.

Interestingly, the generalization in (2.4) of the Whittaker~Henderson method
appears to have arisen independently in both Akaike (1980) and Schlicht

o

(1981). The minimization in (2.4) can in fact be carried out relatively quickly,

since it involves inverting matrices with simple structure. Akaike adds to this
approach an assumption of Gaussian processes and, using what he calls a
Bayesian information criterion, is able to specify values for «, 8 and y. The
Akaike procedure has been further developed by Kitagawa and Gersch (1982).

2.7. Other methods

Quite a few other methods of seasonal adjustment have been suggested,
investigated, and put into use in certain areas (Joy and Thomas, 1928; Kuznets,
1932; Wald, 1936, Menderhausen, 1937; Lovell, 1963; Burman, 1965; Nullau et
al.,, 1969; Hannan, Terrell and Tuckwell, 1970; Stephenson and Farr, 1972,
Haan, 1974; Durbin and Murphy, 1975; Havenner and Swamy, 1981; Raveh,
1982). This is not the place for a full discussion of all of them but the interested
reader can consult Kuiper (1978) for a discussion and comparison of methods in
use by statistical agencies in countries in North America and Europe.

3. Calendar adjustment

Recall that calendar adjustment is appropriate for aggregated monthly data
when there is a weekly cycle in the aggregated daily data, as there often is. Let
X (D) be the aggregated daily series for the Dth day. Then the aggregated
monthly series for the mth month is

> X(D),

where X,, means the sum over all days in month m. In this section we shall
hypothesize a model for X (D) and then derive the properties of the aggregated
monthly series. The approach is that of W. S. Cleveland and Devlin (1982).

2.1. The daily model

We shall suppose that the aggregated daily data has four additive com-
ponents,
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X(D)=T(D)+ SD)+ C(D)+ I(D). 3.1
T(D) is the trend component in the daily series; S(D) is the seasonal
component with a period of one year; I(D) is the irregular component; and
C(D) accounts for a day-of-the-week effect (i.e. a weekly cycle) in the series:

C(D)= o,

if D is the kth day of the week, where

7
Eak=0.
k=1

Modifications of this model to account for the effect of holidays will be given
later.

3.2. The monthly model

A lower case letter will be used to denote a month-length corrected value of
an aggregated monthly series. Thus

<) = 0437520 X (D)
)= humber of days in month m ’

and t(m), s(m), c(m), and i(m) are similarly defined. Finally we will let d(m)
be the fraction of times the kth day of the week occurs in month m multiplied
by 30.4375.

Summing both sides of (3.1), dividing each side by the number of days in
month m, and multiplying by 30.4375 gives

x(m)=t(m)+s(m)+c(m)+i(m),
where

c(m)= é: adi (m). (3.2)

3.3. Holidays

To take account of holidays we need to modify the model in (3.1) in the
following way:

X(D)= T(D)+ S(D)+ C(D)+ I(D)+ H(D) (3.3)

where C(D) is now modified to be 0 if D is a holiday, where H(D) is 8; when
D is the day of the jth holiday of the year, and where H(D) is 0 otherwise.
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Model (3.3) assumes that the holiday effects are additive and that the effect
of each holiday is the same from year to year and does not change, for
example, if there is a changing day of the week on which the holiday occurs.

Suppose the jth holiday always occurs within the same month, then it is clear
that the holiday’s effect is a purely seasonal one and can therefore be included
as part of the seasonal component. In the U.S. the only holiday of any
consequence that changes months is Easter. Thus we will redefine the S(D)
and H(D) components so that S(D) includes all holiday effects except Easter
and H(D) describes Easter.

Suppose the jth holiday always occurs on the same day of the week and
within the same month. Let D be a day on which the jth holiday occurs and
suppose it is the kth day of the week. Then we can alter C(D) by changing it
from 0 to ay, and we can alter S(D) by changing it from S(D) to S(D)— o4; eq.
(3.3) still holds and our new S(D) is still legitimately a seasonal component
since the value of «; subtracted is the same each year. Of course, this same
change cannot be done for a holiday that occurs on different days of the week
from one year to the next (such as Christmas and January 1), since then the a;
subtracted would be different from one year to the next.

When we aggregate (3.3) over months and divide by month-length we now
get

x(m)=t(m)+ s(m)+ c(m)+ i(m)+ h(m) 34)

where c(m) is defined as in (3.2), but d,(m)/30.4375 now equals the fraction of
times the kth day of the week occurs in the mth month minus the fraction of
days on which the kth day of the week is a holiday that does not occur within
the same month and on the same day of the week. Let y be the Easter effect,
then h(m) is y if Easter occurs in the mth month and is 0 otherwise; thus if
Easter is likely to have an effect very different from that of other Sundays, its
effect can be included in the calendar model as a dummy variable with vy as its
coefficient, and Easter should not be counted in d;(m) for Sunday.

In the remainder of the chapter we shall suppose that the occurrence of
Easter has a negligible effect on the series and will not consider it in our
modeling. The moving holidays used in computing d,(m) will be New Year’s
Day, Memorial Day, July 4, and Christmas.

3.4. Calendar adjustment with SABL

The model just derived for the calendar component can be fit to the
"data by regression techniques and trend-seasonal-irregular decomposition
methodology. In this section we will use the SABL decomposition procedures
and illustrate the fitting with the installations series, which has a substantial
calendar effect. First, we have chosen to work with the logarithms of the
month-length corrected aggregated series since the logs stabilize the seasonal
oscillations; it turns out that if x(m) has been transformed by a power
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transformation, then it is still appropriate to use the model in (3.4) for the
calendar effects (W. S. Cleveland and Devlin, 1982).

In SABL the first step in fitting the calendar effects is to decompose the
transformed series into trend plus seasonal plus irregular. The calendar varia-
tion is in the irregular, so the @, can be estimated by robustly regressing the
irregular on the seven calendar explanatory variables, d;(m), but not before
the calendar variables are altered somewhat by a procedure called matched
processing that takes account of the fact that it is processed data and not x(m)
that is used in the regression.

When this procedure is applied to the telephone installations data the
estimates of the coeflicients are

Mon & =0.04,
Tue &, =0.14,
Wed 43=0.13,

Thur d4=10.04,
Fri és=0.04,
Sat ag=—0.17,
Sun &7 =-0.22.

The coeflicients are low on Saturdays and Sundays, reflecting a small number
of installations on these days; in addition, the numbers are greater on the
midweek days Tuesday and Wednesday than on the other weekdays. When the
calendar coefficients have been estimated, the calendar component can be
estimated by

c(m)= i ardi(m).
k=1

Now the decomposition procedure is again run, but this time on x(m)— c(m),
to yield final trend, seasonal, and irregular components.

Fig. 2 shows the decomposition of the installations series. Note that the x(m)
in the top panel, which is the series that is decomposed, is the logarithms of the
month-length corrected data:

_ 30.4375 (installations for month m)
x(m) = log, ] .

number of days in month m

3.5. Calendar adjustment with X-11

The X-11 calendar adjustment procedure is similar to the procedure just
described for SABL. The irregular from an initial decomposition is regressed
on seven calendar variables similar to those in Section 3.4; in X-11 there is no
division by month length in the additive version, no correction of the calendar
variables for holidays, and no matched processing. The methodology in X-11 is
based on the work of Young (1965).
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3.6. Calendar adjustment with ARIMA modeling

Calendar adjustment can be introduced into ARIMA modeling procedures
by taking x(m)—2}-; &di(m) to be an ARIMA model and using the tech-
niques of Section 2.3. This approach has been followed by Bell and Hillmer
(1982); Hillmer, Bell and Tiao (1982); and W. P. Cleveland and Grupe (1982).

As an example let us consider the analysis of U.S. hardware sales data from
January 1967 to November 1979 carried out by Hillmer, Bell and Tiao (1982).
The log series, x(m), is modeled by

(1-B)(1-B®)x(m)~ c(m)) = (1- 6:B)(1 - 6.B")a,.

The definition of c(m) is similar to that in (3.2) but there is no correction for
holidays and no division by month length, just as in X-11. The estimates of the
model parameters are

6,=0.22,

012 = 075,
Mon é;=0.001,
Tue é,=0.013,
Wed a; = 0.004,
Thur d,=0.011,
Fri as=0.001,
Sat &6 = —0015,
Sun ;= —0.015.

Then the ARIMA decomposition procedure of Section 2.3 is applied to the
data minus the estimated calendar component. The data and the four com-
ponents from this decomposition are shown in Fig. 5.

3.7. Calendar adjustment with criterion optimization
A calendar component can be added in a straightforward way to the
generalization of the Whittaker~Henderson method described in Section 2.6.
Thus the changed optimization would be to find ¢t(m), s(m), and a,, . . . , a that
minimize
o SA2(m)P+B S (s(m)— s(m — 12)p
+y > (s(m)+s(m—1)+---+s(m—11)y
+ 2 (x(m)— t(m) — s(m)— c(m)y

where c(m) is defined as in (3.2). A similar approach has been investigated by
Ishiguro and Akaike (1981).
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Fig. 5. HARDWARE SALES: DATA AND COMPONENTS. The top panel is the natural
logarithms of monthly U.S. hardware sales (with no month-length correction). The other panels
show the four components resulting from the Hillmer-Bell-Tiao ARIMA modeling.

4. Graphics for seasonal and calendar adjustment

Whatever method of decomposition and calendar estimation is used we need
methods for assessing the performance of the procedures. Graphs can provide
powerful tools for doing this. A full discussion of graphical methodology for
calendar and seasonal adjustment is given by W. S. Cleveland and Devlin
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(1980) and W. S. Cleveland and Terpenning (1982). Here we will be content to
show a few examples.

We have already seen two kinds of displays: the data and components plot
(Figs. 1, 2 and 5) and the seasonal subseries plot (Figs. 3 and 4). The first
provides a useful first look at the decomposition. The panels have been
arranged in a vertical array so that time is a common horizontal axis, which
allows the viewer to easily study the variation of all components over the same
intervals of time. The seasonal subseries plot allows an assessment of the
overall pattern of the seasonal as portrayed by the horizontal midmean lines
and also of the behavior of each monthly subseries.

Another type of graph, the seasonal-irregular plot, provides an assessment of
the adequacy of the seasonal component. It is important to keep clearly in
mind what variation in the series is to be described by the trend component and
by the seasonal component. The trend component is a portrayal of the
long-term variation in the series. Thus it should appear like a smooth curve
drawn through the entire series. The seasonal component portrays the periodic
variation with a period of 12 time units. Each monthly subseries of s(m)—for
example, the January values—should describe the long-term variation in the
corresponding monthly subseries of

x(m)—t(m)—c(m)=s(m)+i(m)
if there is a calendar component, or of
x(m)—t(m)=s(m)+i(m)

if there is not a calendar component. Thus each monthly subseries of s(m)
should appear like a smooth curve drawn through the corresponding monthly
subseries of s(m)+ i(m).

The seasonal smoothers in SABL and X-11 have window lengths; increasing
the window length of a seasonal smoother increases the smoothness of each
monthly subseries of the seasonal. For decompositions using ARIMA modeling
the smoothness is controlled by the form of the model chosen for the seasonal
component. For decompositions using the Whittaker—-Henderson generalization
the smoothness is controlled by the choices of «, 8 and y or by the form of
prior distributions on the parameters. The critical point to appreciate in all of
these methods is that the amount of smoothness is either explicitly chosen by the
user. We need methods for assessing the adequacy of seasonal smoothing; the
seasonal-irregular plot can help us do this.

The seasonal subseries should be as smooth as possible subject to the
constraint of reproducing the overall long-term pattern in the seasonal-plus-
irregular component. This is the soft criterion referred to in Section 2.5. One
way to judge the adequacy of the smoothing is to plot, for each month, the
monthly subseries of the seasonal component and of the seasonal-plus-irregular
component. This has been done in Figs. 6 to 8. The seasonal-plus-irregular
component is plotted using the symbol ‘0’ at the plotting locations; the seasonal
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Fig. 6. U.S. AGRICULTURALLY EMPLOYED MALES OVER 19: SEASONAL-IRRE-
GULAR. The monthly subseries of the seasonal component and the seasonal component plus the
irregular component for the cube roots of the number of agriculturally employed males over 19 in
the U.S. are plotted. The scales on all panels are the same. The cube roots were decomposed
using SABL with the length of the trend smoother equal to 15 and the length of the seasonal
smoother equal to 7. Each monthly subseries of the seasonal should represent as smoothly as
possible the long-term change in the monthly subseries of the seasonal plus-irregular component. But
in this example the seasonal values follow too closely the values of the seasonal-plus-irregular and
thus are not sufficiently smooth.
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Fig. 7. US. AGRICULTURALLY EMPLOYED MALES OVER 19: SEASONAL-IRRE-
GULAR. The details of this figure are the same as those for Fig. 6 except that in the
decomposition the length of the seasonal smoother has been increased to 15. Now the unwanted
variation in the seasonal subseries has been removed.

component is plotted using a connected plot in which successive plotting
locations are connected by straight lines; the values of the seasonal component
predicted 12 time units beyond the end of the data are plotted by the symbol
‘+’. Sometimes, as in the July panel of Fig. 8, an ¢’ is used as a plotting
character instead of ‘0’; we will explain this later.
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Fig. 8. TELEPHONE INSTALLATIONS: SEASONAL-IRREGULAR. The monthly subseries
of the seasonal component and the seasonal component plus the irregular component for the
natural logarithms of telephone installations are plotted. The components are from the SABL
decomposition shown in Fig. 2. For June and September the seasonal does not adequately describe
the effect in the seasonal-plus-irregular component.

T T T T T T

To assess the appropriateness of the smoothing we do not need any in-
formation about the overall level of the values in each panel of a seasonal-
irregular plot. Thus the maxima of the vertical scales are not the same for all
panels nor are the minima. However, we do need to compare the variation of
the values in one panel with the variation in another if we are to compare the
smoothness of the seasonal component for different months. To allow this
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comparison the scales on the panels are the same in the sense that one cm
represents the same number of units on each panel.

The values plotted in Fig. 6 are from the decomposition of the cube roots of
agriculturally employed males over 19 in the U.S. from January 1950 to
December 1976. The SABL procedure has been used with the length,
NSEASONAL, of the seasonal smoother equal to 7. The overall impression
from this figure is that the seasonal is not sufficiently smooth. The seasonal
component values for many of the months follow too closely the values of the
seasonal-plus-irregular component. To increase the smoothness of the seasonal
component the decomposition was run again with NSEASONAL = 15. The
results are shown in Fig. 7; the unwanted variation in the seasonal component
has now been removed without distorting what appear to be important patterns
in the seasonal-plus-irregular values.

Such distortion of patterns does occur in Fig. 8 for the telephone installations
series. For example, for the month of June the peak in the seasonal-plus-
irregular values is not described well by the seasonal component. One solution
might be to reduce NSEASONAL, which is 11, but a better solution is to carry
out the decomposition for just the last 11 years of data, 1968-1978, rather than
the entire 17 years of data. This assumes, of course, that seasonally adjusted
values are not needed for the years prior to 1968.

5. Spectrum analysis

5.1. Seasonal component

The spectrum of the seasonal component is, of course, concentrated at and
near the seasonal frequencies

176°3°3°' 13 % cycles/month .
If the seasonal component were perfectly stable (i.e. periodic) the spectrum
would have point masses (i.e. lines) at these frequencies. But such lines are
asking too much of real-world phenomena, which cannot be expected to
behave like perfect clocks; this is particularly true of the kinds of series—many
of them economic series—to which seasonal adjustment techniques are applied.

A realistic expectation for the seasonal component is that its spectrum will
be concentrated in narrow bands around the seasonal frequencies. The more
nearly stable the seasonal component is, the narrower the bands will be.

An estimate of the spectrum of the irregular provides another diagnostic tool
for assessing the adequacy of the seasonal component. Since the seasonal
behavior should be in the seasonal component, there should not be peaks in an
estimate of the spectrum of the irregular at the seasonal frequencies; if there
are peaks, seasonal behavior has leaked into the irregular component. (A check
of the spectrum of the trend might also be reasonable.)
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We can, however, expect troughs in the spectrum of the irregular. This has,
unfortunately, led to some confusion. Nerlove (1965) criticized X-11 adjustment
procedures on the basis of ‘overadjustment’ since there were troughs in the
estimated spectra of seasonally adjusted values; but later, Grether and Nerlove
(1970) pointed out that troughs were a natural consequence of any sensible
adjustment procedure. All of this was reenacted in (Zellner, 1978); Granger
(1978) states that the spectrum of the adjusted series should ‘not have dips at
seasonal frequencies’ and both Sims and Tukey, who discuss Granger’s paper,
rebut.

One way to see why troughs are inevitable is to think about signal extraction.
Suppose x(m) is made up of stationary Gaussian seasonal and irregular
components (for simplicity we will ignore the trend component),

x(m)=s(m)+i(m),

where s and i are independent series. Let S,(f) and S;(f) be the spectrum
densities of the seasonal and irregular components. Consider the estimation
(extraction) of s(m) from x(v) for —e<v <o x(m)—§(m), the error of
extraction, which is also equal to {(m), the estimated irregular, has spectrum
density

Si()
Su(f) + S (f)

Clearly, the optimally extracted irregular will tend to have troughs in its
spectrum since S, (f) has peaks in its spectrum.

5.2. Calendar component

The situation for the calendar component is not quite so simple as for the
seasonal component. To make any headway we shall adopt the unrealistic
assumption that the «; in (3.2) are perfectly constant through time, which will
lead us to the unrealistic result that the spectrum of c(m) has lines at certain
calendar frequencies; but if we keep in mind that there are likely to be changes
in a; through time, perhaps even small ones, which will lead to power in bands
about the calendar frequencies, we will still be well served by the following
derivations, which are from (W. S. Cleveland and Devlin, 1980), despite the
unrealistic assumption.

We shall think of the unaggregated series as a continuous parameter time
series X(T), where the units of the parameter T are days. Let T, be the
beginning of the first month and let 7,, be the time at the end of the mth
month. Then the aggregated monthly series is

ax(m) = LT'" X(T)dT,
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for m=1, 2,.... Let C(T) be a weekly periodicity in X(T) (i.e. C(T +7)=
C(T)) whose integral over a period of 7 days is 0, and suppose X(T)=
C(T)+ R(T). Then ax(m)= ac(m)+ ar(m) where ac and ar are the aggre-
gates of C and R, respectively. (Note that ac(m) differs from ¢(m) in (3.2) in
that ac(m) does not take account of holidays and is not divided by month
length.)

Since C(T) is a periodic function with period equal to 7 days, we can write

© kT
C(T)=> % cos<21r—7——+ ¢k) ,
k=1

where vy, is the amplitude of the cosine at frequency k/7 cycles/day and ¢ is
the phase. Thus for the aggregated calendar effects

ac(m)='3, yehi(m) (5.1)
where !
he(m)= - cos<27r kTT+ ¢k> daT. 5.2)
Tn-1

For two reasons the contributions in (5.1) for small k are the most important
ones and those for larger k have a negligible effect. The first is that the
spectrum of hi(m) becomes small for large k. Table 1 shows the important
calendar frequencies for ac(m), which are defined to be frequencies at which
the spectrum of some h,(m) is greater than 0.1. Only values of k equal to 1 or
2 appear. The second reason is an empirical result; for most weekly patterns,
v, Which depends on the shape of the weekly pattern, will tend to be small
except for small values of k.

A heuristic explanation can be given for the importance of the calendar
frequency 0.348 cycles/month, which has the largest spectrum value in Table 1.
Suppose the lengths of all months were equal to the average,

365.25

T days = 30.4375 days .
Table 1

Values of spectrum of h(m) greater
than 0.1

Frequency Spectrum k
0.220 0.151 2
0.304 0.157 2
0.348 2.649 1
0.402 0.119 1
0.432 0.473 1
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Suppose a cosine with a period of 7 days is sampled every month. Then the
sampled series has a frequency of

cycles _ 30.4375/7 cycles
7 days month

= 4.348 cycles/month

and the alias of this frequency is 0.348 cycles/month.

In practice the two important calendar frequencies are 0.348 cycles/month
and 0.432 cycles/month. These are the frequencies with the two largest values
in Table 1.

There are two stages in the overall analysis of calendar effects in which
spectrum estimates can be used. The first stage is one in which the techniques
would be used to decide if calendar effects are present and are sufficiently
important to warrant modeling and adjustment. The second stage occurs after
an adjustment ltas been carried out. Here the techniques can be applied to
check the adequacy of the adjustment by checking for the presence of remain-
ing calendar effects in the adjusted series. Thus the use of the detection
procedures is analogous to the use of the usual summed, lagged product
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estimates of autocorrelation in time-series modeling (Box and Jenkins, 1970).
The autocorrelation function, which is relatively simple to estimate, is used
initially to determine if autocorrelation is present. If so, a model is used to
account for it, an adjusted series (residuals) is computed, and the autocor-
relation function of the adjusted series is studied to determine if there is any
residual autocorrelation.

The place to look for calendar effects is in the irregular component. This can
be seen from Table 1; variation at the main calendar frequencies is not likely to
be captured by reasonable estimates of the trend and seasonal. Fig. 9 shows an
estimate of the spectrum of the irregular component (with outliers clipped) of
telephone installations with no calendar component included in the decom-
position; it is quite clear that a substantial calendar component is present. Fig.
10 shows an estimate of the spectrum of the irregular after a calendar
component has been estimated and removed. The spectrum has been sub-
stantially reduced; the maximum value of the spectrum in Fig. 9 is about 0.04
and in Fig. 10 is about 0.001. Furthermore, it is clear that the calendar variation
has been satisfactorily removed since no peaks remain at the calendar
frequencies.

TELEPHONE INSTALLATIONS

TRANSFORMATION POWER 0

1 L 1 L

10

SPECTRUM OF CLIPPED IRREGULAR X 10xx4

] | | -
L .2 .3 4
FREQUEYLY (CYCLES PER MONTH)

.Fig. 10. TELEPHONE INSTALLATIONS: SPECTRUM OF THE CLIPPED IRREGULAR.
The details of this figure are the same as those for Fig. 9 except that a calendar component was
included in the decomposition. The values of the spectrum are now much smaller and the peaks at
the calendar frequencies are gone, which means the estimated calendar component has adequately
accounted for the calendar effects.
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Optimal Inference in the Frequency Domain

Robert B. Davies

1. Introduction

We observe n consecutive observations Xo, ..., X,-; from a stationary r-
dimensional Gaussian time-series. Suppose we have a model for the covariance
structure of the process depending on a finite number of parameters 6y, ..., 8,
denoted collectively by 6. For example, our series might be just a one-
dimensional, first-order autoregressive process with unknown autoregressive
parameter ¢; and unknown residual variance 6,. Or we might have a model
especially developed for a time-series we are investigating, involving quite a
number of unknown parameters. We might want to estimate 6 or we might
wish to carry out test to see, for example, if some of its components could be zero.

For any given values of 0 the ‘likelihood’ of our observations can be
approximately expressed in terms of the periodogram (or Fourier transform) of
the observations together with the theoretical spectrum corresponding to 6.
Tests and estimates can be based on this approximate likelihood. Such tests
and estimates have the advantage of often requiring less computation than
those based directly on the exact likelihood. In addition, they can be based on
only part of the periodogram to reduce the influence of, for example, seasonal
cycles or slow fluctuations that are not catered for in the model we are trying to
fit. On the other hand, the periodgram/spectrum representation gives only an
approximation to the likelihood and so is applicable only when n is quite large.

The purpose of this article is to review the asymptotic optimality of various
tests and estimators which are based on the approximate likelihood. In Section
2 we summarize some general theory on asymptotic inference in order to put
the various techniques into context. In particular, we look at some work of
LeCam and see how this fits in with the more traditional likelihood theory. In
Section 3 we apply this theory to the time-series problem. This section is based
largely on the work of Whittle (1953), Davies (1973), and Dunsmuir and
Hannan (1976). Finally, in Section 4 we give a brief summary and example.

Related topics not considered in this paper include regression analysis with
the residual error being from a stationary time-series—see Brillinger (1980) and
Hannan, Dunsmuir and Deistler (1980), and the handling of missing obser-
vations—see Dunsmuir and Robinson (1981).

73
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We reiterate that we will be assuming that our observations come from a
Gaussian (normal) process. Most studies in this area show that the derivation of
the asymptotic distributions of the estimators does not require the full Gaus-
sian condition. However, in the non-Gaussian case there may be more in-
formation in the higher-order cumulants or periodograms and so the methods
described here may not be optimal. At the present time, discussion of optimal
inference must be limited to the Gaussian case.

2. Theory of asymptotic inference

In this section we go over some of the standard theory of asymptotic
inference theory to put into context the various procedures discussed in the
next section. In particular, we describe some of traditional theory usually
applied to the independent, identically distributed (i.i.d.), random sample
situation and indicate how this relates to the more general work of LeCam.

2.1. Traditional likelihood theory

We suppose in the tradition of asymptotic theory that we have a sequence of
hypothetical inference problems, the nth one, for example, corresponding to
the situation where we observe a sequence of n random variables which we
represent by the symbol X,,. That is, X, represents the complete sequence of n
random variables. In each of these hypothetical problems we suppose that
there is the same set of unknown parameters 8 = (6, . . ., 6;), which determines
the distribution of the X,.

Asymptotic theory, in the sense used in statistics, is concerned with the limits
of distributions of functions of the X, as n tends to infinity. One hopes that the
results obtained will hold reasonably accurately for finite values of n cor-
responding to real practical experiments. Ideally, such ‘hopes’ should be
confirmed by simulation or by a more precise theory. In fact, experience
suggests that in many cases asymptotic theory is sufficiently accurate to be
relevant to real situations with moderate sample sizes.

Let L,(8, X,) denote the likelihood function (or, more precisely, a represen-
tation of it) and Z,(6, X,) the log-likelihood:

L6, X,)=1log L,(6, X,).

The maximum likelihood estimator of @ is the value é,,(X,,) that maximizes
L,(8,, X,) or equivalently maximizes the log-likelihood (assuming there exists
such a value). Various results have been proved for the maximum likelihood
estimator when X, represents a sequence of independent identically dis-
tributed random variables and where certain regularity conditions have been
satisfied. These results have been extended to a variety of other situations, for
example, Markov chains and processes (Billingsley, 1961).
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We denote the probability measure defining the distribution of X, when 8 is
the ‘true’ value of the unknown parameter by P, and the expectations and
variances under P, by E, and Var,. Distributions are denoted by Z,.

Letting I, denote the log-likelihood and regarding 8l,/36 as a column vector
when 6 is a vector and 4%1,/36? as the matrix of second derivatives, again under
regularity conditions we have

E,(31,/00)=0, @.1)
E{a1,/30 - (31,/30)*}Yn = —Ey(3%1,/ 36%)/n 2.2)
=T,(8), 2.3)

say, where * denotes transpose of a vector.
Suppose for all 6

lim I',(6) = I'(6).

n-»

(In the i.i.d. case I,(8)=I'(6) for all n.) Then the standard property of the
maximum likelihood estimator 6, in ‘regular’ situations is that the distribution
of

n'2(6, - 9)

tends, as n tends to infinity, to the multivariate normal distribution with mean
0 and variance/covariance matrix I'"'(8). That is, for large n, 6, is ap-
proximately normally distributed with mean 6 and variance/covariance matrix
r;}(e)/n.

An indication that the estimate is, in some sense, asymptotically optimal, can
be obtained by noting that the Cramer-Rao inequality gives I',X(6)/n as a
lower bound on the variance/covariance matrix for unbiased estimators. That
is,

V,(8)—- ;Y (0)/n

is positive semidefinite if V,,(0) is the variance/covariance matrix of an un-.
biased estimator of 6 for the nth hypothetical problem. A more precise
statement for the i.i.d. case is given by Bahadur (1960).

Now consider the problem of actually calculating §,. One approach would be
to solve the equations

31,00 = 0 2.4)

for 6. In the situations we will encounter there will be no exact analytic solution

for (2.4) and numerical methods will have to be used. Suppose 6, is an
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approximate solution for (2.4). Then one iteration of Newton—Raphson would
give the improved solution

0, = 6, — (3%1,/06%)10l,/ 50 2.5)

.with the derivatives being evaluated at 8= 6,. In view of (2.2) one might
replace the matrix of second derivatives in (2.5) by nl,(8) or nl'(6). To solve
(2.4), of course, one might keep iterating (2.5), possibly with the second
derivative matrix replaced by nl’,(8) or nI'(#), until each iteration made little
difference to ,. In practice, it seems necessary to be a little cleverer than this
and use, for example, methods incorporating line searches (see Fletcher, 1980),
in order to be reasonably sure that the method will converge. However, the
result we want is that if 8, satisfies

lim lim sup P,{|n"*(8, — 6)]>c} =0, (2.6)

fand n—w

that is, the error in 8, is of order n~2 for example, 8, might be a method of
moments estimator, then 6, has the same asymptotic distribution as the
maximum likelihood estimator. Thus, asymptotically, one iteration of (2.5) is
enough. In the ii.d. situation, this is Fisher’s optimum scoring method (see
Rao, 1965, p. 302). In practice, it seems more satisfying to continue iterating
until (hopefully) the maximum likelihood estimator is obtained but we will see
that there are good reasons for studying 6,.

The preceding theory was originally worked out and made rigorous for the
independently identically distributed random sample case and various parts
have been proved for other situations. One would like to show that at least
some of these results hold for our time-series situation and this was the
approach of, for example, Dunsmuir and Hannan (1976). On the other hand,
LeCam (1960, 1969, 1974) has derived a set of conditions under which results
similar to the preceding ones can be derived. A closely related method has also
been developed by Hijek (1972). LeCam’s results, in particular, give a rather
more satisfactory statement of the optimality of the techniques than was
traditionally available. To apply them to the time-series problem, one need
show only that LeCam’s conditions are satisfied. This was the approach of
Davies (1973).

2.2. LeCam’s asymptotic theory

- We now very briefly summarize some of LeCam’s work, particularly that in
his (1969) lecture notes (pp. 57-87), but in a slightly more restricted form. Our
notation is as before. The conditions are:

(A0) 0, the set of possible values of # is an open set in R°.
(A1) The sequence of probability measures defined by X, under 8 is con-
tiguous to the sequence defined by X, under 8+ n~?¢ for each 6 € @ and
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s-dimensional vector ¢. See LeCam (1960, 1969) or Davies (1973) for definitions
of contiguity.

(A2) For each 8 € O there exists a sequence of s-dimensional random vectors
A,(8) and an s X s matrix I'(8) such that

L(0 + n2t)— 1,(0) — t*4,(0) + 5t*'(8)t -0
in P, probability for each s-dimensional vector ¢.
(A3) L@+ n2t)—-L(6+n)>0

in P, probability when ¢, - t.

(A4) [I'(6) is nonsingular for each 8 € 6.

(AS) There exists a ‘preliminary’ estimator 8, such that for each 8 € © (2.6) is
satisfied. We will suppose that 6, is chosen to take values only on a lattice of
points with spacing n~12.

LeCam’s estimator is
T, = 0, + n"12I'"Y(0,)4,(6,) . 2.7

If 4, is chosen to be n™'?2 times the derivative of the log-likelihood, then this is
essentially Fisher’s scoring estimator.

LeCam shows when these conditions are satisfied that T, is asymptotically
normally distributed with mean 6 and variance I'"}(8)/n. More precisely

Fo{n"™(T,, — 0)y > ¥{0, "1 (6)} . 2.8)

Various optimality properties can be proved for T,. LeCam shows that T, is
‘asymptotically sufficient’, that is, for n large enough, T, contains most of the
information in X,, concerning the value of 6. One quite simple result that can
be deduced from the results of LeCam (1969) is the following:

THEOREM. Suppose the conditions (A0)-(A5) are satisfied and S,(X,) is such
that
lim lim sup Py{|S,(X,)| > ¢} =0,

> -

that is, S.(X,)= Op(1) under P,. Suppose also T is an s-dimensional normal
random variable with expected value t and variance/covariance matrix I'"(0).
Then there is a subsequence and a possibly randomized function, Sy(T), of T
such that for each K

Lorn12{Sn (X0 )} = =-(gt{sél(T)}

along the subsequence, uniformly for ||t| < K.
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Conversely, if S(T) is a function of T there exists a sequence of random
variables S, 4(X,) such that

Lorn12{Sn6(X, )} > LAS(T)} .
If S is continuous almost everywhere we can take
S (X)) = S{nY(T,, — 6)}.

In effect, this means that for each 6,, making inferences about values of 6 in
a neighbourhood of 6, of size O(n~'?) is asymptotically equivalent to making
inferences about the expected values of a multivariate normal distribution with
known variance/covariance matrix I'"1(6,), given one observation. The first part
of the theorem shows that a function of X,, after suitable normalization, can be
mapped to the multivariate normal situation and the converse shows how to
transfer a technique appropriate for the normal situation back to the X,.

For example, suppose an estimator 6, satisfies (6, — 8) = Op(n~2) under P,
Let

Sn = n'%(6, - 6)

and work along any subsequence along which %(S,) converges. Suppose 8, is
asymptotically unbiased in the sense that
lim lim Eg. -2 {nV%(6, — 6)} = t (2.9)

c—>® p-o

for all ¢, where 7.(x) = x if |x| <c, 0if |x| = ¢, that is J, truncates its argument at
+¢. This truncation function is necessary to avoid dealing with L; convergence.
Then, according to the theorem, there exists S(T") with S, tending in distribution
to S(T). Hence, from (2.9)

ES(T)=1¢

all ¢ and also

lim lim [Var, 7.{n"2(6, — 0)}] = Var,S(T). (2.10)

From unbiased estimator theory we have
Var, S(T)=T"18)

with equality if S(T)= T. In view of the second part of the theorem, putting
S(T)= T, or using (2.8) directly we can say that the estimator, T,, minimizes
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the asymptotic variance (2.10) amongst estimators which are asymptotically
unbiased, that is, satisfy (2.9).

See Hajek (1972) for other optimality properties. However, perhaps a better
approach is to say that if one is happy to use T to estimate ¢ when T has a
N(t, I1(6)) distribution, then one should be satisfied with T, for estimating 6
(at least when n is large enough). On the other hand, if one believes one should
use, for example, James-Stein estimators, then the preceding theory would
enable one at least to begin to set up the corresponding asymptotic estimators.

The preceding results, of course, apply to LeCam’s estimator, T,, defined by
(2.7). In fact we would like to avoid discretizing the preliminary estimator and
in fact one can show that this is unnecessary if

sup  [|4,(0 + n7?) — A, (8 + n7 )| >0 2.11)
let<a le=nl<e

in P, probability, uniformly in n as ¢ >0 for each 6 € @ and 6 >0.

LeCam (1969) does not deal with the maximum likelihood estimator. It is
probably not possible to find reasonable general conditions for it to satisfy (2.8)
since it is possible, even in apparently regular situations for the likelihood
function to have ‘spurious’ maxima which bear no relation to the true value of
6. However, we can say that if 6, is the maximum likelihood estimator or
alternatively a root of the likelihood equation (2.4) which has been ap-
propriately selected and if 8, satisfies (2.6), 4,(6) = n""251,/39, (AO)—(A4) and
(2.11) are satisfied, then §, = T, and so 8, does have the asymptotic optimality
properties we have discussed above.

2.3. Hypothesis testing

Now consider the hypothesis testing problem. Suppose the vector of un-
known parameters is partitioned into two components, say 8 = (8©, 69) where
09 =(01,...,6,), 6P=(041,...,0,) and we are writing column vectors as
rows to simphfy printing. We might want to test the hypothesis

V=0 2.12)

against the alternative that at least one component of 6% is nonzero. The
generalized likelihood ratio test is a commonly used asymptotic method for this
problem. However, a-simpler approach is the C(a) test developed by Neyman
(1959), see also Biihler and Puri (1966), Bartlett (1955) and Moran (1970),
which has similar asymptotic properties for 6® = O(n~"?). Let

8, = (0, 69)

be an estimator of 6 satisfying (2.6) when the hypothesis (2.12) holds; for
example, 6, might be the maximum likelihood estimator under the hypothesis.
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Then calculate the first component of 8, that is §9 according to (2.5) using the
expected second derivatives

6D = [I';1(6,)1,/90)%/n (2.13)

with the derivative being evaluated at 6,. Let V, be the pXp principal
submatrix of I';%(6,). Then in the i.i.d. situation, under the hypothesis 8® =0

R{OO} V510 (2.14)

is asymptotically chi-squared distributed with p degrees of freedom and will
tend to be large when 60 # 0. When p=1,

R 212G (2.15)

is asymptotically #'(0, 1) under the hypothesis and can be used for one-sided
tests.

Application of the formulae for the inverses of partitioned matrices leads to
the formulae given by Neyman (1959) and Biihler and Puri (1966). The
particular advantage of tests based on (2.8) and (2.9) is that once 6, has been
calculated, they are noniterative and the calculation of 6, and the expected
values required for I',(f,) are worked out under the hypothesis, often leading
to quite simple formulae. When 8, is the maximum likelihood estimator (under
the hypothesis) [3],/30]® vanishes when 8 is replaced by 6, and the C(a) test
reduces to the Lagrange-multiplier test of Aitchison and Silvey (1958—see
Hosking, 1980, for additional references).

Of course, C(a) tests were developed for the i.i.d. random sample case. To
apply LeCam’s work, first note that under conditions (A1)}~(AS5) the testing
problem is asymptotically equivalent to testing the hypothesis ¥ =0 given a
multivariate normal random variable T with variance/covariance matrix I'1(8)
and E(T) = (tV, 19).

The obvious test statistics for the normal situation are [T®]*V'T® and
VI2T® for multivariate and univariate #®, where V is the p X p principal
submatrix of I'"'(9). Applying the converse part of the theorem of Section 2.2,
noting that T may be replaced by 89 and V by V, leads to (2.14) and (2.15).

More precisely, the univariate case, one uses an argument analogous to that
used in Section 2.2 and the theory of similar tests to show that, with an
appropriate critical point, the test based on (2.15) maximizes the asymptotic
power

lim inf P g,,-12,(reject hypothesis)

n-

when 6; =0 and t; >0 amongst tests which satisfy
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lim P, ,-12(reject hypothesis) = a

n—>o

for all 1@ when 6,=0 and ¢, =0.
Similarly, tests based on (2.14) are asymptotically most stringent when 6® is
multivariate.

2.4. Inference using approximations to the likelihood

In Section 3 of this paper we will want to base our tests and estimators on a
function w, = w, (6, X,) that only approximates the log-likelihood. Naturally, if
conditions (A0)-(AS5) are satisfied when

A,(6)= n""Paw,] 88,

then one can base estimators similar to Fisher’s scoring estimator and tests
similar to C(a) tests on w, rather than on /,. Similarly, if condition (2.11) is
satisfied and the estimator obtained by maximizing w, satisfies (2.6), then it too
is a version of T, and so has the asymptotic optimality properties we have
considered.

2.5. Inference using only part of the data

It will sometimes be convenient to base one’s estimates on only part of the
data, for example, only the high-frequency part of a periodogram when there
are low-frequency trends in the data that are not of interest. Suppose X,
represents the part of X, on which we do want to base our estimates. An
obvious question is, if the conditions (A0)-(A4) are satisfied for X,, are they
also satisfied for X,? In fact, one can show that if A',,(G) is a function of X,,
I(8) is a nonrandom-nonsingular matrix and

Lol 4,(0) X} > N{4,(6), [(8)- T (8)}

in the sense of convergence of c.d.fs. in Py probability, then (A0)-(A4) are
satisfied for the probabilities generated by X, if 4,(0) and I'(9) are replaced by
4A,(6) and I'(6).

Tests and estimators which are asymptotically optimal amongst those that
depend only on X, can then be found, provided that (A5) is also satisfied. If

4,(8) = n"20w,(0)/00
where ,(6) is a function of X,, then one may be able to define an estimator by

maximizing w,(8). Provided that (2.6) and the analogue of (2.11) were satisfied,
this would provide an asymptotically optimal estimator.
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3. Inference in the frequency domain

This section is based primarily on the papers of Davies (1973) and Dunsmuir
and Hannan (1976). However, many of the main ideas have their basis in the
pioneering work of Whittle (1953). Other relevant early references are Whittle
(1962) and Walker (1964).

3.1. Specification of the problem

Returning to the time-series problem: we observe X, = (Xp, ..., X.-1), a
series of n r-dimensional observations from a stationary normal time-series. We
suppose that the covariance structure is determined by the set of unknown
parameters 6 = (6, . . ., 6;). We also suppose that the expectation of the process
does not depend on # and it is convenient to suppose that it is zero. In fact all
the asymptotic results continue to hold when each x; is replaced by x, — %,
where % is the sample average so this is no real restriction. Regarding the x, as
r-dimensional column vectors, and X, as an nr-dimensional column vector, and
letting A* denote the (conjugate) transpose of a (complex) matrix or vector A,
define

cm(0) = cove(Xi, Xism) = Eo(Xi * Xim) (3.1)
since we are supposing E(x;) =0, and

C.(0) = cove(X,, X,) = Ep(X, - X3)

Co, C, ceey Cp-1
_ C-1, Co, U Cn-2 (3 2)
Con+l, C_n+2, 5 Co

The log-likelihood is given (apart from an additive constant) by
1,(8) = —{log det C,(8)+ X :C;1(0)X,} . (33)
Our parametrization is a little different from that used by some others, for

example, Dunsmuir and Hannan (1976). They use the moving average
representation of the process

X = g+ z a,-(ﬂ)ek_j, (34)
1

where {e,; k =0,=1, £2,...} is a sequence of independent Gaussian (for the
Gaussian case) r-dimensional random variables with the & having the same
variance/covariance matrix, o(8), and {a;(0)} is a sequence of r X r matrices. In
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this case,

cn(6) = éa,-w)a(e)a;:m(o), (3.5)

where ay(9) = I, the identity matrix. When {q;(6)} and o(6) depend on disjoint
subsets of (6,..., 6;), the particular advantage of this parametrization is that
the asymptotic distribution of the maximum likelihood and related estimators
of the components of 6 on which only the a; depend does not depend on the
distribution of the g, That is, they need not be Gaussian although in-
dependence or the weaker condition of Dunsmuir and Hannan (1976) is still
required. However, the representation (3.4) can be unnatural and difficult to
find, particularly in the multivariate situation, and the independence assump-
tion very difficult to verify. Since this paper is primarily concerned with the
Gaussian case, we do not use (3.4).
Following from (3.3), we have

al,
a0,

= ] C3(6) 75~ GOICHOXX - G(6). (3.6)

In fact, it might be possible to develop numerical techniques to handle (3.6) for
n up to a few hundred using Toeplitz matrix techniques (see Cybenko, 1980,
for references) and one would expect this to be a good approach for n less
than, say, 100. For autoregressive/moving average processes, various exact and
approximate formulae have been developed for the likelihood and so when one
does want to fit such processes they are the appropriate formulae to use. See,
for example, Gardener, Harvey and Phillips (1980). However, for larger values
of n, computations with (3.3) and (3.6) become impossible and frequency-
domain methods are appropriate. We should note though that recent work by
Brent (1979) shows that it is possible to evaluate expressions such as (3.6) with
O(n log® n) operations and so the computational reasons for using frequency-
domain methods may disappear.

3.2. Frequency-domain approximation

Define the spectrum of the process

F, 8) =S, 6,(8) e2mim 37)
and -
F,(6) = diag{f(0, 8), f(1/n, 8), . .., f((n — 1)/N, 6)} . (3.8)

Let 2, be an nrX nr unitary matrix composed of nXn blocks of rXxr
submatrices; the (j, k)th block (0 <j, k < n — 1) being the unit matrix multiplied
by
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n—1/2 eZ‘rriik/n .

In effect, multiplication by (2, is the taking of a discrete Fourier transform. If

‘ zn,O
l Zn1
Zn =] :‘ = 'Qan 5 (39)
Zn,n—li
then
n—1
Zo = n2S x; e2mikin, (3.10)
j=0

Hence multiplication by (2, can be carried out very efficiently using a fast
Fourier transform program (the number of operations required is of order
nlogn as opposed to n® for ordinary matrix multiplication). Davies (1973)
shows that

G,(0)= 0,C,(0)Q2% - F,(0)
is, in a certain sense, small for large n. Thus the £, transformation, ap-
proximately, simultaneously transforms the C,(8) into block diagonal matrices
and the X, into n approximately uncorrelated complex r-dimensional vectors.
This suggests replacing the log-likelihood (3.3) by

wy(6) = —3flog det F,(0) + Z3F,1(0)Z,}

= 35 llog det fGim, 6) + 22AFGim, O 1z,,] (3.11)

and its derivatives (3.6) by

ow,
20,

- u| F0) 5 FOF? 042,23~ R0}

= S ultm. 0 55 fim. 0)5Gim. o)

{znz %, — f(iln, o)}] .
(3.12)

Note that only half the terms in (3.11) and (3.12) need be calculated in practice
since the (n — j)th terms of f(j/n, ) and z,; are just the complex conjugates of
the jth terms. These expressions are vastly more workable than (3.3) and (3.6)
being usable for sample sizes of many thousand. Several variants of (3.11) and
(3.12) have been proposed. Whittle (1953) used integrals in the place of the
sums in (3.11) and (3.12); Dunsmuir and Hannan (1976) introduce a
modification of (3.11) where the Fourier transform of the data and the
spectrum are sampled at intervals smaller than the 1/n used by (3.11). Whittle’s,
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version was suggested before fast Fourier transform programs became available
and is now mainly of theoretical interest. Dunsmuir and Hannan’s version is
particularly convenient when the sample size, n, is not a suitable number for
the fast Fourier transform program. Davies (1973) suggests replacing f(A, 6) by

S (1~ Imlin)en(6) e2mm (3.13)
—-n+1

to reduce the bias for finite 7.

3.3. Conditions for LeCam’s results to hold
The conditions given by Davies (1973) for (A0)-(A4) to hold with

A,(0) = n"21,(0)/30 (.14)

and I'(0) defined by

MO =3 [ {0, 0075/ O 4 )5 F0, O} dd - (315)

are:

(B0) The set of possible values of # is an open set @ in s-dimensional
Euclidean space.
(B1.1) The c,(0) are differentiable functions of 6.

BL2) 3 (@<,

m=—w

im S fen(8+)—ca(@)=0 forall 6€ 0.

£-0 m=—ow

©

(B1.3) >

m=—ow

J 2
—_— 00

@© 2
lim 3 l%cm(0+s)—%cm(0)“ —0 forallk;1<ks<s
&0 m=—o 1l T0k k and € 6.

(B14) detf(A,8)>0forallA;0<A<1and 6€6.
S a

B —f(r 0

(2) ]Z:ltkaekf(’O);é

for some nonnull set of A for each r-dimensional vector t# 0 and 6 € 6.
In order to use the version of 4, (6) based on (3.12),
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A (0) = n""ow,(8)/80, (3.16)
one requires in addition

(B3.1) $ M2 ey (O)] <o .

(83.2) 2 HE%IZ cm(G)” <o,

Davies (1973) also shows that the discretization of the preliminary estimate
can be avoided if (B3.2) and

B33)  sup S
s

5 Cm (6 + f)———cm(0+ n)H/”g n||<e for some & and
‘90" 96 each k and 6

are satisfied.

If f(A, 0) is defined by (3.13) in the expression w,(6), condition (B3.1) is not
required. On the other hand, to ensure reasonable rates of convergence,
Davies (1973) suggests

(B4.1) 2 m'? | —

cm(O)“ <o
should also be satisfied for estimators based on [,(6);

(B4.2) 2 m?| 2

cm (B)H <o

should be satisfied for estimators based on w,(8) with f(A, 8) as in (3.13) and in
addition

®B43) S mlea(O) <=

1

should be satisfied when the usual version of w,(0) is used.

Similar results to those of Davies (1973) have also been obtained by
Dzhaparidze (1977). These results are for the one-dimensional case with the
integral version of (3.11). However, they have been extended to include the
situation where the spectrum is of the form

f()\’ 9) = ﬁ |(621riA - eZwi/\j)lZfO()\’ 0) ,
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where Ay, ..., A, are real constants which do not depend on 6. Our condition
(B2) is then weakened to requiring only that fy(A, 6) has no zeros. This is the
situation that arises when a time-series has been filtered to remove specific
discrete known frequencies, either by the process generating the data or
analytically after the raw data has been collected. Note that the problem
becomes rather more complicated if the A; are allowed to depend on 8 and will
probably not fall within the present framework.

The preceding conditions imply that the estimators of the Fisher scoring type
(2.7) based on either of the various versions of 4,(8) we have considered have
the optimality and distributional properties discussed in Section 2, provided
that a preliminary estimator 8, is available. In particular,

LAnY(T, — 0)} > N (0, [7(9)), 3.17)

where I'(0) is given by (3.15) and I''(8) is the ‘smallest’ possible vari-
ance/covariance matrix for estimators obeying (2.9).

Note that estimators of the Fisher scoring type have also been considered by
Hannan (1970), Parzen (1971) and Nicholls (1977).

Our results also establish the asymptotic optimality of C(a) tests based on
either the likelihood function or its frequency-domain approximation. In parti-
cular, the optimality of Hosking’s (1980, 1981) Lagrange-multiplier tests is
established and one can see how to find corresponding tests based on the
periodogram.

3.4. Maximum likelihood estimation

To extend our results to include the maximum likelihood estimator or the
estimator based on maximizing the approximate likelihood (3.11) one must
show that these estimators are ‘root m consistent’, that is, (2.6) must be
satisfied. As we have already indicated, we would not expect to be able to find
usable general conditions for this to be so. However, if @ is compact (i.e.
closed and bounded) with the true value 6 belonging to the interior of 6, then
the situation is much more satisfactory. The relevant results are given by
Dunsmuir and Hannan (1976), Deistler, Dunsmuir and Hannan (1978). They
assume the representation (3.4) and a restricted version of their conditions is as
follows.

(D0) @ is a compact subset of %* and 8 belongs to the interior of @.
(D1) > flla ()P <<
j=0

(D2) If 6, # 6,, then ¢, (0)) # ¢n(0,) for some m.
(D3) The elements of

k(z,0)= i a;(0)z’
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are analytic within the unit circle, are continuous functions of 6 and det k(z, 8)
has no zeros within or on the unit circle.

(D4) k(e®, 6) and a(0) have second derivatives with respect to 8 which are
continuous in 6 and A.

(D5) Condition (B2) holds.

Dunsmuir and Hannan (1976) allow these conditions to be weakened on the
boundary of @ so that, for example, their results can be applied to autoregres-
sive/moving average models with @ as the natural parameter space. They
show that the estimators obtained by maximizing (3.3), (3.11) or its integral
version are root n consistent and (in the case of the components of 6 on which
only the g; depend), in fact, have the limiting distribution given by (3.17). We
do not try to find the relation between conditions (B1)-(B3) and (D1)~(D5) but
in practice one would not expect to find many time-series that fulfil one set and
not the other. The results of Dunsmuir and Hannan (1976) establish the
consistency and limiting distributions of the various estimators that rely on
maximizing the exact or approximate likelihood, the results of Davies establish
their asymptotic optimality and sufficiency and also that of the related Fisher
scoring type of estimator.

The condition (DO0), in reality, is not a serious problem since one will usually
have some idea of what values of @ are appropriate and so, in effect, the range
of values of # to be considered is limited to a bounded subset of those for
which the model is defined.

3.5. Inference based on only part of the periodogram

We now consider frequency-domain inference based on only part of the
periodogram. This is appropriate when one is fitting a model which is intended
to model short-term effects, but where there are also long-term fluctuations
which one wishes to ignore or where there is a varying seasonal effect that
affects a band of frequencies which one similarly wishes to ignore.

Suppose A represents the union of a finite set of disjoint intervals from [0, 1]
such that AEAS1—AEA, and we wish to base our estimator on {z;,:
j/n € A}. Using the kind of arguments in Davies (1973), if conditions (B0)-(B3)
hold and

(4@ = 3 tr | {f(im, 00 5= 1Gilm, O Gin, )}

X {22y~ i, O} | (3.18)
where the sum is over values of j which satisfy
jilneA, O0=sj=<n,

one can show
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LA,(0)— 4,(0)| 22 jin € A} > N{0, T(0)— T'(6)}
where

FOw= [ ulfioogfa, 00,0} a.

In view of the discussion in Section 2.5, tests and estimators which are
optimal amongst those based only on {z,;: j/n € A} can be derived from 4,(6)
and I°(#) provided a preliminary estimator is available. Formula (3.18) can be
obtained by differentiating

-3 >, [log det f(j/n, 8)+ z:f(i/n, 8)} 'z, (3.19)

with the sum as in (3.18). Thus we can consider estimates obtained by
maximizing (3.19). We presume theorems similar to those obtained by
Dunsmuir and Hannan (1976) can be obtained but have not proved this.

4. Summary and example

We have considered statistical methods based on the likelihood function
(3.3), its frequency-domain approximation (3.11) and a likelihood-like function
based on only part of the frequency domain (3.19). We have seen how to derive
analogues of Fisher’s scoring estimator, the maximum likelihood estimator and
C(a) tests from these functions.

Asymptotic optimality of these techniques has been established by using
some of LeCam’s results to show the asymptotic equivalence between the
actual problem and an inference problem involving a single observation from a
multivariate normal distribution.

4.1. Example

As an example we look at Brillinger’s (1973, section 2) analysis of measure-
ment of the ‘Chandler wobble’ of the Earth’s axis of rotation. The data are
derived from monthly measurements of the shift of the location of the North
Pole over the period 1902-1969. It consists of two series, &, ..., & and
Nos - - - » Nu—1 corresponding to shifts along and perpendicular to the Greenwich
meridian. The model proposed by Brillinger leads to the lagged covariance
matrix:

= (g ar): @

A
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where
ay = o e P cosQRmym)/(48) + Y,

by = —a2 e A"l sinRarym)/(48)

U =20 ifm=0,
=—y? ifm=1,
=0 otherwise .

The parameters to be estimated are 8, v, o and ¢ with B, o, ¢ >0. The
parameter y is best regarded as taking values in [0, 1] with the points 0 and 1
being identified with each other; that is, 27y is a point on the unit circle. The
exact likelihood and its derivatives could, in principle, be calculated using (3.3)

and (3.6).
The spectrum defined by (3.7) is
_(f)iAQ)
=y ra) “2)
where

fod)=g(A + )+ g(A — y)+ 4y sin2mA),
fid)=gA+vy)-ga—v),
g(w) = d*(1 — e #)/[28{1 - 2¢? cosCnw) + e #}].

Putting

n—1
Zyy =02 <§k_) o 2mijkin 43)

k=0 \Tk

and substituting into (3.11) and (3.12) enables the approximate likelihood and
its derivatives to be calculated. The conditions (B0)}-(B4) are satisfied provided
we extend (B0) to allow 27y to take values on the unit circle. This extension
does not pose any problems to the theory outlined in Section 2. Thus, provided
a preliminary estimator is available, LeCam’s conditions are satisfied with
A,(0) based on either the exact or approximate likelihood (3.14, 3.16) and with
I'(8) as in (3.15). Hence the estimator (2.7) has the asymptotic optimality
properties we have discussed.

In fact, the computational procedure can be simplified slightly since the
matrices (4.2) can be simultaneously diagonalized.

ol i wf 11
2() Syoze( )
=2 diag{g(A + v) + 4¢*sin’(2mA), g(A — y)+4y?sin’(2mr)}. (4.4)

Thus f(A) may be replaced by the right-hand side of (4.4) if & and . are
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replaced by 27V4(&, +in,) and 27V4(& —iny) in (4.3). The resulting expression
can then be manoeuvred into the form given by Brillinger. Thus Brillinger’s
method of regarding the data as a single complex-valued series does lead to
optimal estimates. In general, however, this will be true only when the
covariances are of the form (4.1) corresponding to a model which is invariant
under rotation of the £ 5 axes.

Brillinger used a method of moments estimator as a preliminary estimator
and then applied repeated iterations of (2.7) using the version of 4, based on
the approximate likelihood and I'(#) replaced by the approximation, I,(8),
defined by

1Ol = 57 S ] i, O 557 £, )G, 00557, )]

Only two iterations were required for the process to converge and presumably
the approximate maximum likelihood estimate was obtained. He also used the
inverse of nl',(6) for estimating the variances of the estimates.

The raw data were heavily contaminated by a yearly cycle. Brillinger
compensated for this by subtracting the cyclic term derived from the monthly
averages. An alternative approach would have been to exclude narrow bands
of frequencies around the peaks corresponding to the yearly cycle and its
harmonics as in Section 3.5 and hence allow for slow fluctuations in the yearly
cycle as well as the cycle itself.
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Applications of Spectral Analysis in Econometrics

C. W. J. Granger and Robert Engle

1. Beginnings

The forerunners of modern spectral analysis were Fourier series fitting
techniques, which assumed a series contained important deterministic cycles of
known period, and the periodograms, which assumed the same model but the
components had periods that needed to be determined. These models were
used by economists, despite the considerable computing costs, the best exam-
ples being the works by Moore (1914) and Beveridge (1921, 1922). An account
of these and other early applications can be found in Cargill (1974). The main
objective of this work was to search for cycles in data with the hope that cycles
of similar periods in pairs of series would indicate relationships between these
series, an example being sunspots and rainfall and hence wheat prices. In a
sense the search for cycles was too successful, for instance Beveridge found
evidence of over twenty in his long English wheat price series. This unlikely
multiplicity of cycles brought the basic model into some disrepute and un-
doubtedly this was partly responsible for G. Udny Yule developing the
alternative autoregressive and moving average models in the late 1920s and
early 1930s. The resulting tension between the time-domain and frequency-
domain approaches lasted until quite recently. The reason for the periodogram
giving evidence of too many apparent cycles is explained by the low correlation
between estimates at adjacent frequencies and the fact that it is an inconsistent
estimator of the theoretical spectrum. Smoothing procedures used now to
estimate spectra circumvent these problems.

The link between Fourier series, the periodogram and modern spectral
methods was pointed out by Davis (1941) in a book well advanced of its time
and which received remarkably little attention. By 1959 spectral methods still
had not been applied to economic data. However, in that year Oskar
Morgenstern, following up a strong suggestion by John von Neumann, initiated
a project at Princeton to investigate the usefulness of spectral methods in
economics. The project was supervised by John Tukey, who had recently
developed the interpretation of cross-spectral techniques, and was staffed by
Herman Karreman, Michio Hatanaka and Clive Granger, with Thomas Won-
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nacott and Michael Godfrey also being involved later. The first report of this
project was published in 1961 (Granger, 1961) and the complete report resulted
in the book by Granger and Hatanaka (1964). At the same time Marc Nerlove
was using these techniques at Stanford to study seasonal adjustment problems
(Nerlove, 1964, discussed below); and Hannan (1960) had previously worked on
the same problem. Other early writers in this field were Fand (1966), Morgen-
stern (1961) and Cunnyngham (1983).

Empirical studies in econometrics appear to go through phases where
different techniques become particularly popular. Initially single-equation
regressions were dominant but were then replaced by the more appropriate,
but difficult, simultaneous equation models. In the late 1960s and very early
1970s spectra methods became popular and probably more papers were
published using these techniques than using the more classical simultaneous
models. By the mid 1970s time-domain time-series techniques came into vogue,
due to the appearance of the influential book by Box and Jenkins (1970). Nold
(1972) produced a bibliography of applications of spectral methods in
economics covering much of the most active period, listing 101 papers by 68
different authors, although some of the references given are only marginally
relevant. Recently, spectral techniques have largely been out of favor by
applied econometricians although they are still used as one of the bundle of
empirical techniques available for analysis of time-series data. The theoretical
aspects of the frequency-domain representations remain important when the
properties of these various techniques are considered.

2. Applications of the power spectrum

The obvious features of a univariate, power spectrum that can be easily
noted are any peaks, such as at the seasonal frequencies, 2wk/12, k =
1,2,...,6, for monthly data, and any shape that is complicated compared to
the simple shapes that arise from a white noise or first-order autoregressive and
moving average models. The seasonality question will be considered in Section
4. Economies have been seen to follow swings with alternating periods of
prosperity and depression, known as the business cycle. An early and obvious
application of spectral techniques was to investigate these swings. It should be
emphasized that the business cycle has never been at all regular, or deter-
ministic, and so corresponds to one, or several, frequency bands rather than to
particular frequency points. The obvious problem with this topic is that the
business cycle corresponds to rather low frequencies and so estimation of this
component is difficult, even with monthly or quarterly data, unless very long
series are available. The situation is little improved by considering a number of
different series from the same economy, as this provides little extra in-
formation; most parts of the economy are inclined to move together at low
frequencies. Although some evidence was found for certain low-frequency
components being especially important (see, for instance, Howrey, 1968 and
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Harkness, 1968), in general all low frequencies were usually observed to be
important for the levels of major economic variables, and so the business cycle
component did not prove to be special or outstanding. The relative importance
of low-frequency components compared to all higher-frequency components
was found so frequently that a spectrum that steadily declined from low to
higher frequencies, except possibly at seasonal frequencies, was called the
‘typical spectral shape’ in Granger (1966). Unfortunately there are a number
of different time-domain models-that produce such a spectral shape, including
AR(1) with a parameter near one and integrated models of order d, where d
can be a fraction,! and which includes the random walk model.

Fig. 1 shows a typical spectral shape, that of a composite stock price index
(taken from Granger and Morgenstern (1970, p. 142)). The estimated spectrum,
after linear trend was removed from the series, is shown with 95% confidence
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Fig. 1. Power spectrum of the composite weekly SEC stock price index.

'Such models can arise from aggregation of simple dynamic models, as shown for instance in
Granger (1980).
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intervals, with extra detail for low frequencies shown in the insert. A monthly
cycle is evident but few other features of clear significance.

Because it is difficult to estimate the spectrum at very low frequencies it is
also difficult to distinguish between these models using the estimated power
spectrum of the original series. Sometimes it is easier to distinguish between
some of these models by looking at the spectrum of the first differenced series.
The typical spectral shape was found so frequently that it was used as a method
of evaluating a large-scale econometric model by Howrey (1971, 1972). The
Klein—Goldberger and Wharton econometric models were used to produce
simulated data and the spectra of these data compared to the typical shape. In
general, the models passed this not particularly stringent test. The ‘typical
spectral shape’ is of course an oversimplification and actual spectra may have
other discernable properties, as Nerlove (1971) found in a study of U.S. price
series. He also found difficulty in interpreting these extra properties.

The other obvious use of the power spectrum is to investigate the relevance
of a particular model suggested by a theory. For example, a number of
economic theories suggests that the change in particular series should be white
noises, so that the spectra of these changes will be flat over all frequencies if
the theory is correct. This procedure was used by Sargent (1972) to test rational
expectations for forward interest rates, by Granger and Morgenstern (1963,
1970) to test the random walk theory for stock market prices and by Labys and
Granger (1970) to test the same theory for commodity prices. The method was
found useful and occasionally some slight deviations from the predicted spec-
tral shape were found. It would be possible to use a similar method to test
other specific time-domain models, but this has not been done, as economic
theory does not usually provide sufficiently specific models.

3. Application of the cross spectrum

Potentially the most important technique available in the early period was
the cross spectrum and the functions derived from it, the coherence, and the
phase and gain diagrams. If x, and y, are a pair of jointly stationary series, with
spectra f.(w), f,(w) respectively, and cross spectrum f,,(w), the derived func-
tions are

Coherence: Ry (w)= | fur (@)

 flo)fy (@)’
Phase: d(w) = arc tan‘[%?’l(%%] )
Gain: Golw)= L f(“’)l ().

The coherence measures the strength of relationships (squared correlation
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coefficient) between corresponding frequency components in the two series. As
components with different frequencies are necessarily uncorrelated for jointly
‘stationary series, the coherence thus totally measures the (second-order)
strength of relationships between the series and has the added advantage that,
in theory, its value is not. altered by application of the same filters to the
individual series. The gain essentially measures the regression coefficient of the
w-frequency component of x, on the corresponding component of y,. In the
case where one series is leading the other, the phase diagram can be used to
measure this lead. Thus, for instance, if y, = ax;—, + e, where ¢, is independent of
x, for all ¢, s, the phase diagram for (v, x;) Will be a straight line of slope k, even
when k is not an integer. These functions have likely useful interpretation for
economic variables, particularly if these variables are decomposed into low-
frequency parts (‘business cycle’, ‘permanent income’), seasonal components
and high frequencies (‘transitory income’). Because economic theory predicts
that different relationships may hold for different frequencies, spectral tech-
niques may be uniquely suited to uncover these relationships. An extension of
this idea discussed below is Band Spectrum Regression.

As an illustration of cross-spectral diagrams, Fig. 2 shows coherence and
phase diagrams for wheat spot and medium-future commodity price changes.
Coherence is seen to be higher at low frequencies and to decline at middle and
higher frequencies. The phase diagram indicates little or no lag between the
series and is seen to be highly variable when estimated coherence is very low.

The cross spectrum may also be used to identify or select time-domain
models. Because the cross spectrum between two jointly stationary series is a
fully general representation of the relation between two series it includes all
time-domain transfer function or distributed lag models as special cases. By
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Fig. 2. Cross-spectrum between differences in wheat spot and medium-future price series.
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estimating the cross spectrum first, it may be possible to choose a time-domain
representation ‘which is supported by the data. Engle (1976) has used this
approach to specify the relationship between housing investment and interest
rates. He found that the distributed lag weights change sign as would be
predicted by an accelerator type of model. Thus spectral methods may be
useful in a first exploratory look at economic data to pick acceptable models
for further study.

Many studies have applied spectral techniques to economic data as the
primary method of analysis and no attempt will be made to summarize them
all. Instead, a brief account will be given of results in two fields, the term
structure of interest rates and evaluation of leading indicators.

The rates of interest charged on loans depend partly on the length of time
the loan will be outstanding and various theories attempt to explain this ‘term
structure’. Sargent (1968) found that coherences were generally high, parti-
cularly between rates of similar term, and that in general the longer (Govern-
ment) rate leads the shorter rates with the lead longest as the differences in
term increase. Granger and Rees (1968) using British data found similar
coherence results but with the lags reversed; however, it seems very likely that
the data they used were unsatisfactory in quality. Cargill and Meyer (1972)
used a different approach; they estimated distributed lag relationships from the
observed cross spectrum and found that long rates could not explain short rates
but there was “a close relationship between short- and long-term rates and a
fast response of the long rate to changes in the short rate”. Thus the studies do
not agree, as so often seems to happen with empirical work in economics using
different data sets and statistical methods. The first two studies have the
difficulty that lags are inferred from the phase diagram; this interpretation is
only correct if no feedback occurs between the series.

The timing of the long swings in the macroeconomy is very irregular and
prediction of turning points, the upturns and downturns, is of considerable
interest to governments and companies. One method of prediction is to find
_series that consistently lead at the turns and the National Bureau of Economic
Research has suggested many such leading indicators and also an index of these
indicators. A possible way of evaluating the claims made for these indicators, in
terms of their consistency and the extent of leads, is by looking at the
coherence and phase diagrams at low frequencies from the cross spectrum
between the indicator series and a measure of the state of the economy such as
the index of industrial production. This has been done by Hatanaka (Chapter
12 of Granger and Hatanaka, 1964) and by Hymans (1973). They found that the
indicators did lead, in that the phase diagrams indicate such a lead, but the
coherences are often lower than might be hoped for and the leads are less than
those suggested by the National Bureau. The best individual indicator seemed
to be the layoff rate. Hymans found that the National Bureau’s index of leading
indicators could be improved by a better choice of weights, with some of the
present components given zero weight. Rather similar results have been found
recently by Neftci (1979) using time-domain methods. The main criticism of
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these pieces of work is that the National Bureau choses series that lead a
turning points and these series do not necessarily lead at other parts of the
cycle, whereas the studies just mentioned assume a constant lead throughout
the cycle.

The potentially important partial cross-spectral techniques, in which the
relationships between a pair of series is considered in the frequency domain
after removal of the effects of one or more other series, have been little used in
economics. One application is by Hatanaka (in Granger and Hatanaka, 1964)
who considered inventory cycles and the acceleration principle. Using depart-
ment store data he tried to distinguish between the acceleration principle and
two alternative hypotheses but was unable to reach a decisive conclusion.
However, he states “the reason for this failure is not in the partial cross-
spectral analysis but in the lack of adequate data”. A further application is in
the Brillinger and Hatanaka (1970) study reported in Section 6.

4. Evaluation of seasonal adjustment procedures

Many economic series contain important seasonal components, as shown by
the clear peaks observable in estimated power spectra at the seasonal frequen-
cies. As these peaks usually appear to have finite width, the seasonal com-
ponent appears not to consist only of deterministic terms. The presence of a
strong seasonal in a series is thought by many econometricians to be rather
troublesome as it obscures the more economically important business cycle and
low frequencies. Thus attempts are made to remove, or reduce, the seasonal
component and many techniques for seasonal adjustment have been suggested.
Some of these techniques use one- or two-sided linear filters, and so their
effects on the power spectrum are easily determined, but other techniques,
including the X-11 method used for all U.S. series and many international
statistics, are nonlinear and so their effects cannot be completely determined
from available theory. The natural method for evaluating seasonal adjustment
techniques is spectral analysis of the unadjusted and adjusted series as seasonal
questions are easily phrased in the frequency domain. The first use of spectral
techniques to investigate the seasonal appears to have been by Hannan (1960),
but a more influential paper is that by Nerlove (1964) who considered the
effects of the Bureau of Labor Statistics method of seasonal adjustment on
seventy-five U.S. employment, unemployment and labor force series. The
spectra of the unadjusted series showed, of course, strong peaks at the seasonal
frequencies, but, more surprisingly, the adjusted series often had spectra with
dips at seasonal frequencies, suggesting in a sense that the adjustment procedure
had removed ‘too much’. It is certainly true that if a series containing no seasonal
is run through many adjustment procedures, something will be taken out. Nerlove
also ran the cross spectrum between the adjusted and unadjusted series and found
the gain at nonseasonal frequencies was usually substantially lower than the value
one, particularly at the higher frequencies. This suggests that the higher-
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frequency components could have been badly disrupted. The phase diagrams
indicated no further problems.

A difficulty with the Nerlove approach is that the gain estimates can be badly
affected by ‘leakage’ from the strong seasonal peaks for the unadjusted data.
To circumvent this problem Godfrey and Karreman (1967) constructed non-
seasonal data from autoregressive models, added a variety of seasonal com-
ponents, adjusted the resulting series using a number of different techniques
and finally compared the spectra of the adjusted and the original, nonseasonal
input series. They also looked at the cross spectra between these series. Ideally,
one might suppose that a perfect adjustment technique would remove the
added seasonal component, leaving the adjusted series virtually identical to the
original nonseasonal component. They also found that the adjusted series had
spectra with dips at the seasonal frequency and the coherence between the
adjusted and the nonseasonal series was high at frequencies lower than the first
seasonal frequency (277/12) but was low at all higher frequencies, especially at
the seasonal frequencies. Thus, the important low frequencies appeared to be
unaffected by the adjustment processes, but all higher frequencies were badly
disturbed. The results are potentially very serious when modeling relationships
between series and the use of nonlinear adjustment methods has to be justified
with some care. However, the dips in the spectrum and the coherence in
adjusted series at seasonal frequencies are to be expected whenever the
seasonal component is estimated by a regression procedure using a least-
squares criterion. A similar feature occurs if a mean or a linear trend is
estimated by least squares and subtracted from a series, the resulting series will
have a dip at zero frequency. It is seen that an appropriate criterion in spectral
terms is less obvious than was originally supposed. This question of what
criterion to use and further examples of the use of spectral techniques to
evaluate seasonal adjustment techniques can be found in the book edited by
Zellner (1979), see particularly the papers by Baron, Wecker, Kuiper, Granger
and by Cleveland, Dunn, and Terpenning and in Grether and Nerlove (1970)
and Nerlove, Grether and Carvalho (1979).

5. Spectral regression

Because regression methods are the main statistical tool in economics it was
natural that spectral methods would be adapted to the specification and
estimation of linear regressions. The first analyses examined the estimation of
regressions where the disturbances were assumed only to follow some sta-
tionary stochastic process. Watson and Hannan (1956) developed bounds for
the efficiency of ordinary least squares and Hannan (1963) proposed an
estimator for this setup later, called the Hannan Efficient estimator. This is
simply generalized least squares and is easily illustrated.

"Suppose y and x are T X[ vectors of random variables with the following
conditional distributions:
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E(y|x)=xB,
Var(y | x) = o202.

Letting € = y — x8, then Var(e) = o2(2.
The generalized least-squares estimator is

s x'Qly
B=yax

If 0 is the covariance matrix of a stationary process, then it can always be
approximately diagonalized by the matrix of Fourier coefficients as shown by
Grenander and Szegd (1958). In this case the GLS estimator can be written
approximately as

g~ 2 fo (@) fe ()
2 fuw) M ey)

This is Hannan’s Efficient estimator which is made feasible by replacing spectra
by their estimates.

If 2 can be exactly diagonalized, which could be the case for a process which
is a circulant or when the sample size is large, then an exact expression for S
can be obtained which shows that the particular estimates of f,, and f, required
are the periodograms. In fact, a simple way to calculate this estimate is to
regress the Fourier transform of y on the Fourier transform of x weighting
each observation by f.(w;)"V2. This is simply a weighted least-squares problem
with complex data.

When 2 and f. are unknown, these quantities must be estimated from the
data. Standard methods of estimation of power spectra can be applied to the
residuals from a consistent estimation method to obtain asymptotically efficient
estimators which do not require specifying the process of the disturbances.
Such procedures can also be iterated to obtain maximum likelihood estimates
of B and f.. The ability to find fully efficient estimators assuming simply that
the disturbances are stationary is very attractive as misspecification of the
nature of this process may lead to substantial inefficiencies, indeed even worse
estimates than ordinary least squares for some cases as shown by Engle (1974).
Against this must be set the problems of window design for estimates of f, and
the probable deviation of finite sample performance from asymptotic opti-
mality. Engle and Gardner (1976), using Monte Carlo evidence, established
that the finite sample results are quite acceptable except where f. has a very
strong low-frequency peak which is therefore hard to estimate.

The extension of this argument to dynamic regressions where there may be
lagged dependent variables was initially considered by Hannan (1965), Ame-
miya and Fuller (1967), and more recently Espassa (1977) and Engle (1980). In
this case the problem becomes nonlinear so that iterative methods must be
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used although there are several ways to formulate the iterations. Under
Gaussian assumptions, an estimator is found by Engle (1980) to be exact
maximum likelihood. Spectral simultaneous equations estimation was initially
discussed in the static case by Hannan and Terrell (1973) and for dynamic
models by Espassa and Sargan (1977).

A variety of econometric studies have used these and closely related
methods. For example, a computationally simpler estimation method, the
Hannan Inefficient estimator, was used by Sims (1972a,b) and Cargill and
Meyer (1972). An approximation to Hannan’s Efficient estimator was employed
by Sims (1972a), Cargill and Meyer (1972) and more recently by Geweke (1977)
and Engle (1979). It would seem that there are substantial opportunities for
application of such simple mechanical approaches to dealing with serial cor-
relation in regression.

A direct extension of this approach is to consider estimating models on only
a subset of the frequencies. A variety of economic and statistical reasons might
be offered for such a choice. For example, there may be measurement errors
which are concentrated in some frequencies (Engle and Foley, 1975), or there
may be different models which explain short- and long-run behavior, or
perhaps seasonality should be excluded for either of these reasons. The first
formal statement and application of this approach was called Band Spectrum
Regression by Engle (1974). He looked at the consumption function to deter-
mine whether the marginal propensity to consume an additional dollar of
income appeared to be different for high frequencies (transitory) and low
frequencies (permanent). The permanent income hypothesis would suggest a
substantial difference but none was observed.

A further justification for running regressions on separate spectral bands is
as a specification test. If a model is well specified, the estimates should not be
significantly different. Engle (1978) performed such a test on a set of price
equations and found some rather significant differences.

Hylleberg (1977) performed a Monte Carlo experiment of the method for
eliminating seasonality from a regression. The Band Spectrum Regression
performed quite well in this application for most of the situations. This is a
particularly important application in the light of the results of Wallis (1974) and
Sims (1974) who show that seasonal adjustment can seriously distort parameter
estimates in linear regression. This may occur either because there is a different
model at the seasonal frequencies or because the independent and dependent
variables are separately adjusted.

The extension of BSR to models with lagged dependent variables and
simultaneous equations is discussed by Engle (1980) and Espassa and Sargan
(1977) although there is a difficulty with the empirical results in the latter as
pointed out in the former. The instrumental variables method formulated in
Engle (1980) is examined in a simulation experiment by Bunzel and Hylleberg
(1980) with again satisfactory results although in several of their situations
other approaches perform equally well.
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6. Frequency-domain factor analysis

Spectral methods are generally applied to one or two series at a time but
there is no reason not to apply them in a multivariate context as well. When
there are many series, the calculation and interpretation of the gain, phase and
coherence between each pair at each frequency become formidable. Efforts to
restrict the generality of the interactions allowed have focused upon principal
component or factor analytic models. Both of these methods in their traditional
form deal only with contemporaneous correlations among the variables, and
similarly the frequency-domain versions depend upon only the cross spectra at
each frequency.

The principal component setup was initially proposed by Brillinger (1975)
and the factor analytic model appears first in Geweke (1975, 1977) and in
collaborative work with Sargent and Sims (1977). A variety of economic
applications of the frequency-domain factor model have been published in-
cluding the Sargent—Sims (1977) model of the macroeconomy, Geweke’s (1977)
model of production and Singleton’s (1980) model of the term structure of
interest rates. In each case, both the economic questions asked and the
estimation methods are novel, We will develop a simplified version of the
Singleton model below.

Consider an M X 1 vector of economic variables y, which will be the yield to
maturity of different length bonds. In the Singleton case these included
Government bonds from 3 months to 10 years. These are assumed to be driven
by k white noise independent unit variance factors given by the vector Z, and
possibly serially correlated but independent disturbances specific to each
maturity given by €. The model is simply

W= 2 AZ,  + e,
s=0
where Z, and ¢ have spectral density matrices ! and F.(w) respectively. The
spectral density of y is immediately derived to be

F(w)= A(@A(w) + F(o),

where A(w) is the Fourier transform of the series A, given by

A@)=3 A e
s=0
‘The estimation problem is to find F, and A at each frequency based upon data
F, at that frequency.
The model described above is however simply the familiar factor analytic
model used in cross-sectional studies but with complex covariances.? Standard

) ’In fact, all methods of real multivariate analysis have their complex counterpart which may be
of potential use in time-series analysis.
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estimation techniques adapted for complex arithmetic can therefore be applied
for each frequency separately because the frequency bands are independent. If
however there are some constraints on the A, or on F, implied by the original
time-domain formulation, then the analysis may not decompose so easily. In
the models discussed here, there are no such constraints; however, in the works
of Engle and Watson (1981), these constraints essentially argue for reversion to
time-domain methods.

The economic question asked by both Sargent and Sims and by Singleton is,
what is the dimension of Z? How many independent noise sources are there in
the economy being studied? This question is of interest because the finding of
several sources of noise could explain how different economic agents could
have different expectations and information sets. The test is based upon
sequentially testing increasing values of k as null hypotheses against the
unrestricted model and stopping when an acceptable level is achieved.

Singleton finds k =2 for his term structure model. Thus there are two
independent information series involved in the formulation of expectations
about the yields on different maturity securities. This is consistent with earlier
studies which use the short-term rate and inflation as the key determinants of
the structure but is also consistent with many other interpretations. As usual,
factor analytic methods face difficulties precisely labeling the factors. Never-
theless, the notion that k =2 suggests that a parsimonious model of the
multivariate time-series relationship among interest rates is consistent with the
data. Such a relationship might be particularly useful for forecasting in the
general multivariate problem.

7. Advanced techniques

The traditional spectral techniques deal just with stationary series, linear
relationships and second moments, but various extensions removing these
assumptions have been proposed and occasionally applied to economic data.
For example, Brillinger and Rosenblatt (1967a,b) have provided theory for
Fourier transforms of sets of higher lagged moments, expressed most con-
veniently in terms of lagged cumulants, although interpretation of the resulting
functions is not always clear or simple. Godfrey (1965) has estimated the
bispectrum being the Fourier transform of their lagged moments, such as
E[X.X,-,X,-,] when X, has zero mean, for two economic series—a stock price
series for a single company (International Telephone and Telegraph) and the
‘Federal Float’ which is a quantity of cash held within the Federal Reserve
System and is used to measure the level of activity of the member banks in the
System. He found that a transformation of the stock prices P, to log(P, + a),
where a is near zero produces a series that more nearly obeyed a linear model.
The Federal Float series, which is strongly seasonal, produced a bispectrum
which rejected “the hypothesis that the entire process including the seasonal
frequencies is well represented as a linear process”. Thus the bispectral results
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were found useful for detecting nonlinearity but the actual generating
mechanism is not always readily discerned from the results.

There are various methods of investigating possible nonstationarity in series.
The most obvious procedure is to calculate spectra or other functions for a
variety of overlapping time-periods to see if there is an obvious tendency for
change. Brillinger and Hatanaka (1970) investigated the permanent income
hypothesis by estimating moving spectra, cross spectra and partial cross spec-
tra. They found that a permanent income hypothesis with time-changing
horizon was consistent with the data. A more sophisticated approach to
nonstationarity is to estimate the harmonizable spectrum. A harmonizable
process x, has Cramer’s representation

X = j " e dZ(w)

but now the terms dZ(w) are not orthogonal, having
EldZ(w)dZ(A)] = ddF(w, A),

where F(w, A) is a bivariate distribution function, so that covariances are given
by

Elxfii] = [ [ et 6t ddF(w, 1)

and are thus dependent on ¢ and so the series will be nonstationary. In fact,
harmonizable processes are a very general class and include most nonstationary
processes as special cases, including random walks and models with time-
varying parameters. Thus, for example, a seasonal frequency component can be
correlated with the business cycle component in some process, so that the
amplitude of the seasonal could be larger during times of prosperity than
during depressions. This cannot occur with a strictly stationary series. Joyeux
(1979) has discussed estimation and interpretation of the harmonizable spec-
trum, and applied the technique to two individual economic series. With new
housing starts, it was found that the high- and low-frequency components were
intercorrelated, and thus the series is nonstationary. When the method was
applied to a personal income series, the high- and low-frequency components
were found to be uncorrelated, which agrees with the economic theory that
permanent and transitory components of income are independent. Harmoniz-
able processes are a very general class of nonstationary processes with easy
interpretations, but they do appear to require rather long series for successful
analysis.
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8. Conclusions

Spectral methods today find an important place in both theoretical and
applied economic research, but in general it is as a companion to time-domain
and conventional regression methods rather than as alternatives. Thus time-
domain and frequency-domain procedures are not competitors but can help
each other. The development of estimators for most time-series problems
based on frequency-domain statistics has generally been completed. Ap-
plications of these techniques, particularly the more complex, are, however,
rather scarce. In part this is due to unfamiliarity, but more important in our
opinion is the superiority of time-domain parameterizations for many problems.
The frequency domain provides simple ways of estimating models with large
numbers of free parameters (which increase with sample size in most cases)
while the time domain generally imposes tighter parameterizations. Empirically
for the type of data and quantity of data generally available to economists, the
time-domain formulations are more satisfactory.

Frequency-domain methods thus are particularly useful in exploratory tech-
niques and in theoretical research into the properties of statistical procedures
for stationary data series. There is a broad body of literature on which these
research directions can build and it is likely that this basis will continue to
develop.
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Signal Estimation

E. J. Hannan

1. Introduction

The problem we here consider is that where r sensors (antennae, receivers)
record a signal transmitted to all sensors, each of which also receives noise.
Examples are tide gauges or pressure recorders which record sea level or
seismometers which record the direction of motion of the earth. Sometimes
there might be no such easily identified apparatus as in the case of economic
measurements, each being affected by a common economic force.

The noise could consist partly of noise internal to the system in which case it
would be regarded as independent of the signal, or at least incoherent with it.
(See other chapters for definitions of terms used herein.) It could also be
regarded as incoherent as between sensors. Noise external to the apparatus
need not be incoherent as between sensors, for example because this noise is
constituted by a second signal. The noise might even be coherent with the main
signal if, for example, this second signal was a refracted form of the main
signal.

All techniques below are based on the assumption that the records y;(t) of
the sensors are additively composed of signal and noise and that the records
are sampled at a discrete sequence t =1, 2, ..., T of time points, choosing the
time unit as the sampling interval, for convenience. It is always assumed that
this sampling does not eliminate our ability to measure appropriate charac-
teristics of the signal. Of course, this need not be so. For example, if
yi(t) = x(#)+ n1(t) and y»(¢) = x(t — 1)+ n2(t) and we wish to measure 7 but
only the y;(t) are observed, then if these are Gaussian all that can be known
that is relevant is the cross spectrum fp(w)=expit® - fi(w), —®<w <o,
(Throughout we assume spectra to be absolutely continuous with, at least,
continuous densities.) However, if only the discrete-time points are used, then
frequencies are aliased. (See Section 1.3(iv) of Chapter 16, “Review of Various
Approaches to Power Spectrum Estimation”.) Thus all that can be known
about the spectrum from the data is

> et (0 +27)), —T<wsmw, (L1

Jj=—
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and if 7 is not an integer we cannot determine it without further assumptions.
In future we implicitly assume that such problems do not arise. In the major
applications we have in view this is not a costly assumption since observations
may be made as frequently as is desired and will be made sufficiently frequently
to ensure that f,(w) is effectively zero outside (-, 7r), in which case (1.1)
reduces to exp iTw - f;(w). Though x(¢) is not observed and hence f,(w) cannot
be directly obtained, the cross spectrum fi(w) can be estimated, of course, and
hence 7 can be estimated since 7w is just the argument of the complex number
folw).

In Chapter 1 on ‘“Wiener Filtering”, problems of signal estimation are
considered based only on the spectra and cross spectra (assumed known or
estimated). This apparatus of Wiener filtering has largely been replaced in
recent years by Kalman filtering methods, based on, in some ways, more
special models, namely

y(©)= Hx()+ Du(t)+ n(t), x(t + 1) = Fx(t) + Gu()+ {(t+1), (1.2)
E{n(s)n(t)} = 8.Q, E{{(s){ (1)} = &R, E{n(s)}{ (1)} =8.S.  (1.3)

Here y(f) is a vector of r components, x(t) is not observed and has n
components and u(¢) is observed and has s components. The unobserved signal
is x(¢). There is a large and important theory concerning (1.2), its detailed
structure and estimation. We have introduced (1.2) and (1.3) partly as a basis
from which to begin to discuss more special models below. We introduce them
also because it should be understood that they may provide a good basis from
which to construct statistical procedures of the kind dealt with in this chapter.
However, as such methods are not usually frequency-domain methods we shall
not deal with them here, in any detail. The first part of (1.2) is very general and
merely expresses y(t) as composed of a signal component, Hx(f), not directly
observed, and noise. Thus for r = 2 and the example first given H could be the
unit matrix and x(t) could have the two components x(¢) and x(¢ — 7). It is the
second part of (1.2) that is special. Because of that the relations (1.2) cor-
respond to a rational transfer function model. Indeed they can be rewritten as

y(®) = Hx(t|t— 1)+ Du(s) + (1),
‘x(t+1|t)=Fx(t|t— 1)+ Gu(t)+ Ke(1),

1.4)

wherein £(¢) is the linear innovation sequence for y(¢) and x(¢[ ¢ — 1) is the best
linear predictor of x(¢) from the past of the y(¢), u(¢f) sequences. The rational
transfer functions are D+ H{zIl, — F}'G, I, + H{zI, — F} 'K, which describe
the influence, respectively, of the u(f), () sequences on y(¢). Thus (1.2) and
(1.3) lead to finite parameter models which in turn may lead to economical
statistical methods. For the reason stated above, we now leave these models
and return to the main purposes of the chapter.

In accordance with the purpose of this volume we shall deal with methods
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based on the Fourier coefficients,
wiw,)= T2 y(t) e, w,=2m0/T, 5T <v<iT. (1.5)

As is well known, some computatlonal advantages can arise from replacing o,
by w,=2m/T’, T'> T, —5T' <v<3T’, where T is highly composite. (See
Chapter 19 on “Computer Programming of Spectrum Estimation”.) It is also
sometimes recommended that y;(f), on the right in (1.5), be multiplied by a
‘taper’. We omit such details here. Of course, modulo rounding errors, com-
puter errors, the transformation (1.5) neither gains nor loses information. Its
use is mainly related to stationarity assumptions. Thus if y(f) is a stationary
random vector (and some other ‘regularity’ conditions are satisfied) and w is a
fixed frequency, then the m vectors w,(w,), composed of the w;(w,), for m
values of o, nearest to w, m fixed, become, as T — o, distributed independently
and identically, with the probability density function,

(7" det2f (@)} exp(—wy (@, )* 2arf(0)} ' wy (@,)) - ) (1.6)

More is known than this. For example, when r = 1 we consider the quantities
tw, (w0, ){27f(w,)} = z,, let us say, and consider the empirical distribution
function of these, using 0 < v <37, i.e. the function Fr(x) which is the propor-
tion of the z, that are less than or equal to x, 0 < x <. It can be shown, under
appropriate conditions, that this function converges uniformly and almost
surely to 1— e™*, which is what would be expected if (1.6) held for all 0 < v <iT
(Wthh itself w111 not be true unless y(¢) is Gaussian and the matrix function f(w)
is a constant matrix). In any case, most of the methods of this chapter can be
obtained, via a certain amount of ‘sleight of hand’, by maximum likelihood
(ML) acting as if (1.6) did hold for all w,. It may then be shown that the
methods are asymptotically valid in the following sense. Even if y(f) is not
Gaussian, but is reasonably regular, then the asymptotic distribution of the
estimates is that which would obtain were the data Gaussian and the true ML
estimators were constructed.

2. Regression problems
In (1.2) if G =0 we have

y() = Du(t)+ e(t), -2.1)
x@+1]0) =Fx(t [t— 1)+ Ke(), e()=Hx(t|t—D+e(®). (22)

Then (2.2) is of the same form as (1.4) with G, D = 0 and with y(¢) now called
e(f). Thus e(?) is generated by a rational transfer function model and methods
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based on (2.1) and (2.2) can be very successful. However, there are also cases
where methods based on the Fourier coefficients can be useful. One reason is
that (2.1) may hold only over certain frequencies, as we now explain. Let us
transform (2.1) using (1.5). Then

wy(,) = Dw,(@,) + We(w,), —3T <v<3T. (2.3)

There may be noise effects so that u(z) is not observed but these noise effects
may predominate at certain frequencies so that (2.3) holds, to an adequate
approximation, at other frequencies. Again the apparatus through which y(¢) is
measured may respond effectively to the signal only at certain frequencies. For
that matter the model (2.1) might itself be valid only if the sequences involved
are composed only of certain frequencies, being nonlinear, for example,
outside of this set of frequencies. Thus we now assume that (2.3) holds only for
@ € B C(—m, ). It will be convenient to put B = B_U B, where B, C (0, m)
and %_ is the reflection of %, in the origin.

Returning to (2.3) it is suggested that we use these equations, for @, € %, by
means of a regression procedure. This is made simpler by the assumption
discussed below (1.6) whereby the w,(w,) may be treated as independent with
E{w.w,)w.(®,)*} = 27f.(w,). If this function were known, then the ML esti-
mator using w, € B would be, for the case where r =1,

D= [% Wy(wv)wu(wv)*fe(wu)_l][§ Wu(wv)Wu(wu)*fe(wv)_l]-l . (24

(For the case r > 1, the reader may consult the references in the Bibiliographic
Notes.) The row vector D may be treated, asymptotically, as normal with
mean vector D and covariance matrix estimated by (27)! by the second factor
in (2.4). The quantity w,(w,)w.(w,)*f.(w,)"* may be considered as (27)! by the
signal-to-noise ratio so that (2.4) would be an excellent formula to use. The
main problem arises from the need to estimate that function. Unless care is
exercised the inaccuracy in D will be dominated by the inaccuracy in the
estimate of f., which should not be so. One procedure would be first to estimate
by replacing f.(w,) by unity in (2.4). Let D be the resulting estimate. Then we
may form

1

277}:("’) = m Zw |wy(wv) - D"Wu(‘i"v)l2 (2.5)

where here and below X, is a sum over a band of m frequences, w,, centered at
w. Of course, (2.5) will be computed for w = 2#j/T for such j as make 27j/ T lie
in 4. Then ﬁ(w) is used in (2.4) in place of f.(w). The process should now be
iterated, using D in place of D, until (say) the trace of the matrix in the second
factor stabilises. However, m must not be taken too small or else errors in ﬁ
will be important. Of course, if m is taken too large, then f, (@) will constitute a
smoothed estimate of f.(w) and efficiency in estimation will be lost.
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An alternative procedure would be to construct an estimate of f,(w) based
on a parametric model, such as (2.2). However, it may be difficult to do this if
only a band % that is less than [—, 7] is to be used. Used with care and in
situations where T is not very small, these methods based on (2.4) seem useful.

A particular case is that where u(f) is composed of lagged values of a
variable z(¢) so that (2.1) may be rewritten as

b
Y@ =2 BGz(t—))+e(t). 2.6)
Now s = b+ a + 1. We may choose to replace w,(w,)}w,(@,)* by

lwz (wv)‘l[eXp l(k - l)wv]—ask,lsb
and wy(w,)w,(@,)* by

w, (@,)W, (w, exp(—1w,)}-s<i<p -

One context in which (2.6) has been used (but not via (2.4)) is that where

yO=x(t=7)+n),  z()= +m00). @7

Now by expanding expirw in a Fourier series it is easy to check. that, for
stationary x(2),

x(t-1)= _zws“‘ g(’ )T)x(t~ M, 2.8)

the series converging in mean square. If we estimate (2.6), say, by least-squares
regression of y(t) on the z(t—j), say for a=b <o, where we choose a
reasonably large, then the vector of estimated coeﬂ‘ments B(j) will be such that

(580) e )= fi@)e™ = i) S BT e,
since both sides represent the cross spectrum between y(¢) and z(¢z). Thus if
fo(w)/f-(w) is near to constant over (say) a narrow band where f,(w) is
concentrated, then we can hope that 3(j) will be approximately proportional to
sin 7(j ~ 7){m(j — 7)}, which is maximised at j = 7. Thus a first estimate of 7
may be given by the j for which B(j) is greatest in amplitude. Since

& AN - — 2 aike | gy SDT(R—j+
S ppyer =S e (S A0 g,

which should be near to a constant over the band, a better approximation
might be got by choosing 7 so as to maximise, with respect to 7,
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S Aen SN T( = 7)
L= G= |

This argument is all rather loose and no precise justification has been given so
far but the method seems to work well in simulations. Since the method is
suitable only for narrow band signals, least squares may perform as well as (2.4)
for such cases as are relevant since 8 may now be narrow and f.(w) near to
constant over this band. This means that we are weighting according tothe
power in z(t) over this band which is equivalent to using least squares if the
power in z(#) is negliggable outside of the hand. Losses (biases) due to the
approximations introduced may be outweighted by the gain due to estimating
only a few B(j) (for small a) compared to more elaborate procedures. The use
of a finite parameter model in this case leads to the consideration of (1.2), once
again, as a basis for delay estimation. We shall discuss this topic in the next
section.

Of course, the whole apparatus associated with what is often called the linear
model may be applied to the wy(w,), w,(w,), the problems becoming those in
complex multivariate analysis. (See Chapter 20 on “Likelihood Ratio Tests on
Covariance Matrices and Mean Vectors of Complex Multivariate Normal
Populations and Their Applications in Time Series” and Chapter 15 on
“Frequency-Domain Analysis of Multidimensional Time-Series Data”.)

3. Delay. estimation

We now consider a spatially arranged array of semsors. For brevity we
discuss only the case of two-dimensional space and the case where only one
measurement is taken at each sensor, though the other cases are important.
The array may be passive (i.e. merely recording the signals it receives) or active
(i.e. that signal may be a reflected form of a signal transmitted from the array).
We consider here only the former case. If the source is not far away, in terms
of the diameter of the array, the wave fronts will be circular but we consider
only the case where the fronts are linear. We ignore frequency shifts, due to
receiver tuning errors or differential Doppler shifts. We consider the case only
of a stationary source. Again we consider only ‘off-line’ estimation situations
and do not discuss ‘on-line’, real-time, calculations. All of the other cases can
be treated (though the treatment becomes very complex-in general) and we
mention them here so as to. indicate the richness of the range of phenomena
under the heading of this paragraph. We have, at the beginning of the chapter,
already referred to assumptions relating to coherence between the noises or of
the noises with the signals. One way of handling the former is to model this
coherence as due to a second signal (or to more than one other signal). The
problem of many signal sources does not seem to have received any proper
treatment. It seems to be more difficult than others mentioned here.

Let the signal be propagated in the direction given by the vector ¢ of unit
length. Let, now, p(k) be the vector giving the position, relative to a fixed
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coordinate system, of the kth sensor. If the speed of propagation is ¢, then the
lag in the arrival of the signal at the kth sensor, as compared to the origin of
coordinates, is seen to be

(p(k), d)c (3.1)

where we now write (p(k), ¢) for the inner product between the two vectors. In
general, ¢ will depend on w. The quantity (3.1), as a function of w, is known as
the phase delay. If f,(w) is the spectrum of the signal at the origin of
coordinates, then the matrix of spectra and cross spectra of the outputs of the
sensors is

fi(@)explio(p(j) — p(k), #)/c(@Mjk=1....r + fu(®) (.2)

where f,(w) is diagonal with the jth noise spectrum in that place in the
diagonal. The quantity A(w)= c(w)/{w/27} is the wavelength at frequency w
and wdc(w)! could be called the wave-number vector or k(@)= w/c(w) the
wave number. Thus wA(w)/27 = ¢c(w) and @ = k(w)c(w). Of course, wave
number has the same interpretation in terms of oscillation along the direction
of propagation at a fixed time as does angular frequency @ at a fixed point in
space, as time varies. The situation may be understood by relating it to a more
general model, namely (using p for a point in the plane)

x(p, )= J:w J: J: [cos{r« cos(8 — ¢) — tw} dé(x, w, )
+ sin{rk cos(8 — ) — tw} dZ(x, w, )] .

Here p has been represented in polar form, (r, 8). This formula composes
x(p, t) linearly from plane waves, in each direction ¢, at each wave number «
and with each frequency w. The functions ¢ and { determine the amplitude and
phase of the oscillation. To see this, keep «, @ and ¢ fixed. Then when ¢ is
fixed also, the integrand is constant along lines orthogonal to the ray in the
direction ¢ and in that direction is a sinusoidal oscillation with (angular)
frequency «. For (r, ) fixed and ¢ varying, the integrand represents a temporal -
oscillation with frequency w. The cases we treat in the remainder of this
chapter are the simple ones where the functions ¢ and { are concentrated at a
particular value of ¢ and where also their mass is concentrated along a curve
k = w/c(w) in the k, o plane. If c¢(w)=c, then x(p, ) is a wave form with linear
wave fronts orthogonal to the direction ¢ and the wave form propagates
without changing its shape. If c(@) is not constant, then each constituent
frequency component is of this kind but they are propagating with different
velocities so that the wave form does change shape as different frequency
components move through one another. The general case is one without a
predominant direction of motion and consequently without any linear wave
fronts.
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We now return to the special case where there is only one direction of

propagation and « = w/c(w). In fact, there may also be attenuation of the
signal so that the spectrum of what is observed is

fi(@)a(w)a(w)* + fi(w), (3.3)
a(@)* = (aj(w) exp{=iw{p(), ) c(@-1,....n aj(@)>0.

where

The a;(w) describes the relative attenuation at the jth sensor. What we seek to
measure is c(w) ¢, though sometimes attenuation may also be of interest.

The phase 6;(w) between the output of the jth and kth sensors, i.e. the
argument of their cross spectrum, is (from (3.2) or (3.3))

i () = o(p()) — p(k), $)/c(@), 34

which is @ by the relative phase delay. This quantity is estimated by means of
W@ )W) _ oyid (), i k=1,...,r. (3.5)
| Wi (wu)wk (0),,)'

It is these quantities that we shall use to estimate c(w) '¢. We call gz (w) the
coherence between the output of the jth and kth sensors. We shall
parameterise ¢(w) !¢ by means of a vector 7. Examples are as follows:

(@) r=2, c(w)=c. Then 7= (p(1)— p(2), d)/c. Of course, c"'¢ cannot itself
be determined for r = 2 but only the delay, +. If ¢ is known this determines c
and if ¢ is known the cosine of the angle between ¢ and the line joining p(1)
and p(2) is known.

(b) r=2, c(w)=(a+ bw)!. Then 7 has two components a{p(1)—p2), ¢),
b{p(1)— p(2), ¢).

(©) r=3, c(w)=c¢, 7= c ¢, provided the p(j) are not on the same line.

(d) r=3, c(w)!is represented by a cubic spline with prescribed knots. Then
7 describes the vector ¢ together with the parameters of the spline, again
assuming the p(j) not to be on the same line.

Of course, if the p(j) lie on the same line, then ¢~'¢ cannot be determined
since, in the Gaussian case, all that we may know is contained in the knowledge
of the (p(j)— p(k), ¢)/c; while if the p(j) lie along a line the (5) row by 2
column matrix with typical row p(j)— p(k) is singular and conversely. If we
knew the o(w), we would choose 7, the estimate of 7, so as to maximise

Q)=- 3 3 o*(w,)ou(w,) cos{b(w,)— b (,)} . (3.6)

w,€B, j<k

This is again ML, after a certain amount of reorganisation of the formula. Of
course, (3.6) is a function of 7 through the 6;(w,) (see (3.6)). Here o/ (w) is the
typical entry in the matrix that is the reciprocal of the matrix with entries
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ox(w). If r =2, then (3.6) becomes

S {2} costio) - 6o, 67

wyEB,

where the subscripts 1 and 2 have now been eliminated since there are only two
records. The minus sign is inserted in (3.6) so that no minus sign appears in
(3.7). The physical meaning of these formulae is rather direct. Imagine that, in
the two-sensor case, we can steer the array by rotating it about its centre. We
do this so that the received signal is strongest, in sum, by rotating the array so
that it is (nearly) at right angles to the direction of propagation. This estimates
that direction for us. If we cannot steer the array, almost the same effect is
achieved by rephasing the outputs of the different sensors. Thus if 6(w,) is the
relative rephasing at frequency w,, then the summed output is

Wl(w,_,) + wz(w,,) e“’("’”) s (38)
whose squared modulus is
le(wv)lz + |w2(w,, )|2 + 2%{W1((00)W2((1)U) e_io(%)} .

Since |wi(w,)wa(w,)| can be viewed as estimating o (w, {fi(w,)f2(w, )} where f;
and f, are the spectra of the ouptuts (see Chapter 15 on “Frequency-Domain
Anqusis of Multidimensional Time-Series Data”), we are led to replace this by
o (@, {fi(@, )f (@, )} cos{f(w,) — 8(w, )}, omitting the terms that do not depend
on f(w,) and a factor 2. When an appropriate weighting by frequencies is
introduced, this leads to (3.7). Clearly this is maximised by taking 6(w,), on
_average, as near to the 6(w,) as possible remembering that it, 8(w,), can be
varied only by varying 7. Since {1 - 0*(w,)}/0*(w,) is (essentially) proportional
to the variance of 6(w,), the weighting is clearly the appropriate one. The
numerical approximation to the steering of an array described above is called
‘delay and sum beamforming’ and the additional detail in (3.6) and (3.7) is due
to the appropriate weighting of frequencies and a certain amount of re-
arrangement. The word ‘beamforming’ occurs because of the duality that exists
between the problems of arranging an array to optimally receive and to
optimally transmit a signal in a given direction.

Under rather general conditions the ¥ may, asymptotically, be treated as
normal with mean 7 and variance covariance matrix T7'V~1, where V may be
estimated as

1 ; 30, (0,) 36 (w,)
Jk : Lk A®y ) 0T\ Wy )
[T 09€2Q+ }%a’ (0,)o(w,) ar, oy ]a,b=1,2,._.' 3.9

Here 7, is the ath component of 7. Thus in case 7= ¢ '¢, then (3.8) becomes
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(53 03 3, o™ @ Jow(@nXp)— PR () ~ PoCi

B4 i<k

(3.10)
and in case r =2 and 7 = (p(1) — p(2), ¢)/c, this becomes
l 2 0'2(‘%)
T3l {1_02(%)}. (3.11)

There is no doubt that these procedures would be very effective and that
under most circumstances met in practice the asymptotic theory would apply
well but ¢%(w) will not be known and care must be exercised in its estimation.
The most obvious procedure is the use of

4 w) = 12, wi(@p)Wi(w,)]
(@) =I5 T (o) S Wi, )2

(.12)

where the same notation is used as in (2.5), and (3.12) is computed for
o = 2mj/T and such j as make this value lie in %3.. A main problem is again the
possibility that errors in the estimation of o (w) will dominate. It should be
observed that (m — 1)6%/{1 — 6%} is approximately distributed as F with 2 and
2m — 2 degrees of freedom. Hence for values of m likely to be used in practice
Gi(w) does not differ from zero at any reasonable significance level unless it is
above 0.30 (i.e. 6% >0.09). It is likely that low values of G (w) will occur at
higher frequencies. It is then dangerous to include these frequencies because,
as (3.11) shows, they have high weight in the formulae and if a spuriously high
value of o%(w,) leads to overweighting, then an inaccurate estimate of 7 may
be obtained. Of course, in practice, the range of frequencies that should be
used may be known because the range over which the signal is present and the
range over which the apparatus responds to the signal may be known. It is also
known that (3.12) will be biased down if 6;(w) is not zero and the delay
(p())— p(k), d)/c(w), relatively large. Usually the value of this delay is ap-
proximately known, in which case the y;(¢) can be rephased so that this is small.
This should always be done. If no such information is available, then a first
estimate of 7 could be used to obtain estimates of the delays and the rephasing
could be done on this basis.

The calculation of # may be aided by the use of a fast Fourier transform
algorithm. Consider (3.7), for example, for 7= (p(1) — p(2), ¢)/c. Let M be the
period of Q(7), i.e. M = T/b where b is the largest v for which w, € B,. Then
for r=142,t=0, =1,..., =M, Q(7) becomes the real part of

2T
2—1,1: > C, exp(i2mvy2T), (3.13)
1

where C, is 2ToXw,)/{1 - 0X(w,)} exp{—if(w,)} for w, € B and is otherwise
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zero. We may evaluate Q(7) for 7= #/2 by fast Fourier transformation of the
C,, choose the value of #2 maximising Q(#2) and then locate the actual
maximum by a standard function optimisation routine. In more elaborate cases
a similar procedure may be used. For example, when r =2 and c¢(0)= co™,
® >0, then 7= ¢ Y{p(1)— p(2), ¢) as before and we must break the range of w
into subranges over which w? is nearly linear and proceed as above to evaluate
Q(r) at a discrete set of points in each subrange.

Finite parameter models such as (1.2) could be used for the present situation
and one use is given in Section 2. Such methods are more easily put into a
recursive form suitable for real-time calculation but we do not discuss that
here.

Often the signal will not be stationary, though it is usually relevant to treat
the noise as stationary. The essential point concerning transient signals is that
the w,(w) will now vary smoothly with  and not in the chaotic fashion that the
discussion below (1.6) indicates.

Thus if we call w,(w) the Fourier coefficient of x(¢), the signal recorded at
the origin and w(w), w,(w) the vectors of y;(f) and noise Fourier coefficients,
then, approximately

w(w,) = wx(@,){(@,) + wa(@,), (3.14)

4(@,) = a(w,) exp H{wu(p(f), ¢)cl@,)} -

where

We shall, however, here discuss only the case where there is no attenuation. Now
put

W)= S, W), 6.15)

using the same notation as in (2.5) and (3.12). Then, provided the transient
signal is phased so that it is concentrated near t = 0, approximately

(WH@,) = W) (@,) + (Wa )(w,) (3.16)

since w, and { are smooth features of w. The requirement that x(¢) not be
rephased is forced by the fact that a substantial rephasing, by T/2 for example,
would introduce a factor exp(iw7/2) into w,(w) which oscillates at such a high
frequency that averaging over a band of m frequencies would reduce (w,)(w,)
well below w,(w,) in magnitude. Of course, for m =1 this would not be so. We
are averaging in (3.15) so as to enhance the signal-to-noise ratio since each
component of (w,)(@) will have a mean square near m~! by the mean square of
that component of w,(w). This will be vitiated if (w,)(@) is much less than
w,(w) in magnitude.
We may choose 7 by minimising
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QIZ [{< w )(wv ) — wy(w, ){(wv )} *fa (wu )_ 1{< w >((1),, ) — wr(o, )g(wu )}]

with respect to 7 and the w;(w,). This is the same as maximising with respect to 7
the function

Q(r) = QZ |£* (@0 ) (@0, ) W) @0)PHAE* (@0 ) (@) 'L (@0)} - (G.17)

The quantities

ﬁ 2 {wl@.) = (W) Hw (@) — (wi@o)}* = fulw) (3.18)

may be used to estimate f,(w,), where now X, is a sum over a band of m;
frequencies centred at w. Here m; is chosen having in mind the smoothness of
fa(@) while m in (3.15) reflects the smoothness in w,(w) and {(w). Note that in
this treatment no assumption of incoherence between the noise series is required.
An asymptotic theory can be constructed for such methods but we do not go
into that here. Of course, the weighting by f,(w,)™" in (3.17), or for that matter
the weighting in (2.4) and (3.6), could be replaced by a priori chosen weight
function, for example f,(w)=1I. If m = 1 this would have to be done in (3.17),
the formula then becoming

0= 3 I @ ww)f (319)

since {*(@,){(w,) = r. For that matter if f,(w) is diagonal, {*(w,)f,(w,) ¢ (w,) is
again independent of 7. In (3.19) or when f,(w,) is diagonal the calculation of
Q(7) may again by simplified by using a fast Fourier transform algorithm as in
(3.13). Of course, (3.19) may be used in the stationary case also.

We conclude by mentioning that the virtue of methods such as those based
on (3.17) or (3.19) is that they lend themselves to the multiple signal case. Thus
since (3.19) is valid whether or not the signal is stationary, it could be used to
obtain initial estimates for the multiple signal case.

Bibliographic Notes

Section 1

A general reference on time-series methods is Hannan (1970). The chapters
on “Wiener Filtering” (Chapter 1), “Likelihood Ratio Tests on Covariance
Matrices and Mean Vectors of Complex Multivariate Normal Populations in Time
Series” (Chapter 20), “Frequency-Domain Analysis of Multidimensional Time-
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Series Data” (Chapter 15), “‘Review of Various Approaches to Power Spectrum
Estimation” (Chapter 16) and “Computer Programming of Spectrum Estima-
tion”” (Chapter 19), in this volume, also contain basic information for this
chapter. The model (1.2) has an enormous literature surrounding it commenc-
ing from Kalman (1960). A special issue of IEEE, Automatic Control AC-19,
No. 6, December 1974 dealt with this model. For results of the type of (1.6) see,
for example, Hannan (1970). The result concerning Fr(x), and related results,
is given in Chen and Hannan (1980).

Section 2

Techniques of the kind in (2.4) were introduced in Hamon and Hannan
(1963). There is quite a large subsequent literature concerning them. See, for
example, Engle (1974) and Doran (1976). The method based on (2.7) and (2.8)
is introduced in Chan, Riley and Plant (1980).

Section 3

A special issue of IEEE, Acoustics, Speech and Signal Processing ASSP-29,
No. 3, June 1981 is devoted to delay estimation and this volume contains a
great deal of information about the subject of Section 3. Formula (3.6) was
introduced in Hamon and Hannan (1974). See also Hannan and Thomson
(1973). The techniques based on (3.16) were introduced in Cameron and
Hannan (1979). The techniques based on (3.6) have also been used. by other
people. See Carter (1981) for references. We emphasise again the wide range of
problems in this area and the narrow range covered in this survey and again
refer the reader to the special issue of IEEE, ASSP-29 mentioned above.
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Complex Demodulation: Some Theory and
Applications*

T. Hasan

1. Introduction

Complex demodulation may be viewed in part as a narrow-band filtering
technique which lets one look at the components of a time series, within a small
frequency band of interest, as a function of time. Operationally, it is much like
heterodyning which is used, for example, in AM radio to process information
carried through the amplitude and phase modulations. The theory of modula-
tion/demodulation is therefore a well-established and often-used technique in
communications (e.g. see Brown and Palermo, 1969).

The original motivation for the use of this technique in time-series analysis
was provided by Tukey (1961) who pointed out its usefulness for viewing the
components generating either a peak in the spectrum of a series, or, a
frequency of interest, as a narrow-band signal. Since the method of complex
demodulation shifts each frequency of interest to zero and then applies a
low-pass filter, the author observed that it made sense to look at the resulting
low-frequency images of the more or less gross-frequency components of the
time series as they would be more evident to the eyes.

This technique has the further advantage of producing statistics which can be
used in many data analytic and formal statistical procedures. For example, it
may be used to detect the presence of narrow frequency band signals, to
examine a stretch of series for stationarity or to estimate the arrival time of a
transient signal (Childers and Pao, 1972). Alternatively, one can construct tests
based on the complex demodulates in order to formalize the above procedures.
The technique may be used to estimate time-dependent spectra (Priestley,
1965) and has proven invaluable in situations requiring estimation of higher-
order spectra (e.g. Godfrey, 1965a; Huber et al., 1971). Complex demodulation
has also proved useful in pitch detection by use of a modified procedure called
‘saphe cracking’ (Bogert, Healy and Tukey, 1963). It has been used in the

*This manuscript is part of the author’s doctoral dissertation, written at the University of
California at Berkeley. The research was supported in part by US Public Health Service Grant
USPHS ES01299-14 and National Science Foundation Grant MCS 7801422,
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search for a series X (¢), driving an observed series Y(¢) (Brillinger, 1973). In
cases of frequency modulation where the frequency of the dominant spectral
peak increases linearly (and slowly) with time, e.g. @, = a + Bt, demodulation
with a time-varying frequency has been successful in estimating the slope 8
(Munk et al., 1963). By ‘remodulating’ the demodulates we essentially obtain a
narrow band-pass filtered version of our original series, denoted X (¢, w), which
can then be used in principal components and canonical analyses of time series
(Brillinger, 1975). Finally, the method of complex demodulation has proven to
be very useful in estimating the parameters in certain models in earthquake
analysis (Bolt and Brillinger, 1979).

In Section 2, we introduce the basics of complex demodulation and present
some known results. Section 3 is concerned with formalizing the statistical
properties of the demodulates and some statistics based on them. Of special
interest are the subsections on spectrum estimation and the setting of ap-
proximate confidence intervals. The applications are presented in Section 4,
along with a large sample result for estimating the parameters in a class of
models of the form

X(t) = i R{(t, 0k) cos(wkt + 6k)+ E(t) . (11)
k=1

where () is a stationary, mixing time series, {6, wy, 5;} are the parameters to
be estimated, and where the superscript T denotes the dependence of the
amplitude function upon the length of the series.

2. Basics of complex demodulation

In this section we introduce complex demodulation: the methodology, com-
putational procedures, some general results and a discussion on filters.

2.1. Methodology

Let X(), t=1,...,T, be a realization of the time series of interest.
Operationally, complex demodulation requires that we first form a frequency-
shifted series

Y (1) = X () exp{—iwot} ,

where w is the center frequency of the band in which we want to view the time
series. We note that complex multiplication is necessary to discriminate be-
tween the frequencies wo+ & and wp— 8, where 8 is typically small, after the
frequency shift. Next, we smooth the series Y (¢) by low-pass filtering, that is,
by forming
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WLt w) = i a(u)Y (t+ u), 2.1

u=-L

where {a(u)}, w=-L,...,0,...,L, are the nonzero low-pass filter
coefficients. We shall assume that a(u) is of the form h(u/L)/H*(0), where
h(v), —» < v <, is bounded, is of bounded variation and vanishes for |v|>1,
and

HM:A)= i h(u/L)expliru} . 2.2

u=-L

If the following condition is satisfied,

S [+ uPlla(w)] <=

u=-—

for some A >0, then we can define the transfer function of the coefficients
{a(u)}, AA), as

A= i a(u) expliru) . 2.3)

We note that A(A) takes on the value 1 at zero frequency which is why we have
defined a(u) as above. The functions h(u/L) are usually called data windows or
tapers.

WL(t, wy) appearing in (2.1) is called the complex demodulate at time t and
frequency w,. We shall usually suppress the use of wp in the argument in
WL(t, we) which we shall then denote simply as Wx(¢).

Let us denote the real and imaginary parts of WZX(¢) by Wi(r) and W(z),
respectively. Furthermore, we note that since W(¢) is complex-valued, we can
also write it as

W) = |[Wi(®)| exp{-id(1)} , 2.4)

where |WL(t)| is the instantaneous amplitude and ¢%(t) is the instantaneous
phase.

As pointed out by Tukey (see Ref. [28]), the term ‘instantaneous’ statistically
implies a stretch of time long enough to provide many degrees of freedom on
the frequency band that leads to an (averaged) estimate at time ¢ It should be
clear then that |WL(¢)| and ¢%(¢f) represent, respectively, estimates of the
‘average’ amplitude and ‘average’ phase in the frequency band (w, = 8), evalu-
ated in the neighborhood of each time instant ¢. Similarly, Co| WL(¢)]?, where C,
is some constant proportional to the bandwidth of the filter used in demodulat-
ing, can be thought of as the estimate of the ‘average’ power evaluated in the
neighborhood of the time-instant time ¢ (see Priestley, 1965).
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It is well known that if the series X(¢) is wide-sense stationary, that is

EX(t)=c,, ¢, constant, and cov{X(t+ u), X(¢)} = c..(u), then there exists a
random measure dZ,(w) such that

X(t) = f: expliof} dZ.(0). 2.5)

By use of representation (2.5), the complex demodulate at frequency w, can be
written as

Wi(t)=> a(u) f_: expli(w — wo)(t + u)} dZ ()
= J:r A(w — wo) expli(e — wo)t} dZ, (w) . (2.6)

In order to make certain approximations to the integral in (2.6), we shall
assume that A(w) corresponds to the transfer function of an ideal low-pass filter
centered at wo with bandwidth 24, that is,

A(w)=1 for|wxw)<A4,
=0 otherwise, 2.7
for —m<w<m and A small. In this case, A(w) does not satisfy (2.3).

However, it is still possible to define the output of such a filter as a limit in
mean square, so that

WL() = f "’"_:A expli(e — o)t} dZ, (@) . 2.8)

We shall make further use of this representation in illustrating some statistical
properties of the demodulates.

2.2. Examples

Let us now consider complex demodulation of the following series:
X(@)=R(t)cos(wt +8), t=1,...,T, (2.9)
where R(?) is a known amplitude function. Frequency shifting by w,, we obtain

Y () = X (¢) exp{—iwot}
= 3R (H)}expli[(® — wo)t + 8]} + exp{—i[(w + wo)t + 8]}} .
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If R(¢r) is slowly varying' and if @ is close to wo, then the result of low-pass
filtering the series Y (#) using coefficients with the transfer function given by
@27 is

WL()=3A0)R(¢) expli[(w — wo)t + 8]} . (2.10)

Since, by definition, A(0) = 1, we obtain the following approximate expressions
for the instantaneous amplitude and the instantaneous phase:

| W) =3R(r) 2.11)
and

arg Wi(t)= (0 —wo)t + 6. 2.12)

Usually we will want to plot either |W(¢)| or log| WL(¢)| and arg Wi(t) against
time.

We now present a few examples of complex demodulating the series (2.9) for
different forms of R(r).

ExampLE 1 (Constant). Suppose R(t)=R, t=1,..., T, then (2.11) becomes
|Wi(r) =3R. 2.13)

Expression (2.13) indicates that if we plot the instantaneous amplitude against
time, we can expect a near constant plot near R. The instantaneous phase
(modulo 27) will give segments of straight lines with slope (w — @) as indicated
by (2.12). Such an appearance of the phase plot, called spiralling, suggests the
presence of a periodic component with period near 27/ w,.

ExaMPLE 2 (Beating Waves). Suppose R(t)= R cos nt with 7 very small and
1 < wy, then expression (2.11) becomes

|[WL(t)| = R|cos nt] . (2.14)

Now the plot of the instantaneous amplitude will have the appearance of
fluctuating slowly as |cos 7¢|.

ExamprLe 3 (Exponential Decay). Suppose R(f)= a exp{—pt}, then (2.11)
becomes

|Wi(t) = a exp{-Bt} . (2.15)

priestley (1965) provides a more formal discussion of ‘slowly-varying’ (or ‘evolutionary’ as he
calls it) processes. Heuristically speaking, for (2.10) to hold even in an approximate sense, it is
necessary that the length of the filter be much smaller than the maximum interval over which the
underlying process may be treated as approximately stationary. In this case, we can use standard
linear filter theory despite the nonstationary character of the input.
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Suppose we take the log of the instantaneous amplitude, (2.15) then becomes
log| Wi(t)|=—-Bt+log @. (2.16)

When plotted against time, (2.16) will give us an approximately straight line.

2.3. Ramifications

(1) As we saw above in Example 3, the log instantaneous amplitude function
is approximately linear in t when X(¢) is an exponentially decaying cosinusoid.
Therefore, it seems reasonable to fit a least-squares regression line and obtain
estimates for a, 8. For other forms of R (¢) we could also consider some type of
curve fitting.

(2) We could also consider fitting a line to a linear segment of the phase plot
and thus obtain an estimate of the slope (@ — wy), call it A, appearing in (2.12).
We could then complex demodulate the original data again at frequency wy+ 4
and the procedure could be iterated until the phase plot was approximately
constant over time (at least in stretches of interest). Once the phase was near
horizontal, we would be essentially getting at an estimate of the phase angle 8.

(3) For the instantaneous phase, ¢X(¢), it also makes sense to look at the
derivative, dgpL(#)/dt, to see how the phase angle is changing with time. This might
be useful for estimating arrival times for transient signals.

2.4. Some computational considerations

There are a variety of computational considerations suggested in Bingham,
Godfrey and Tukey (1967). For example, the paper points out that we need
approximately 6+ 4L computations per data point. To reduce the number of
computations, the authors suggest that

(1) We use decimation. That is, since we have low-pass filtered the shifted
series, we do not lose much information by computing the complex demodu-
lates at every Dth point, where D = L/e; i.e. some fraction of L, instead of at

every value of f, t=1,..., T. In this case we will need approximately 6+ 4«
computations per original data point and we of course expect
6+ 40 <6+4L.

(2) We do the computations via a fast Fourier transform (FFT) algorithm.
That is, first compute the FFT of the entire time series

d{@ﬂ) =S X() exp{— ‘2’”’} for s.=0,1,...,T—1. (217
T purd T
Next, we multiply by a suitable transfer function, AT(A), which is centered at
2mrso/ T = Ay, the frequency of interest, and is zero except over a relatively short
band of frequencies. Finally, let us shift the result by 2ms/T and take the
inverse Fourier transform. This will yield

R e e T

T N

s*—s50=0
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where N = #{s* € S}. We recognize this as the complex demodulate at time ¢
(e.g. compare with (2.6)).

The authors point out that a possible disadvantage of this method is that we
have replaced a transverse filter of limited length by a circular filter extending
over the entire time series. So we now have to worry about leakage across time
rather than frequency.

2.5. Use of complex demodulation to obtain a band-pass filter and the
corresponding Hilbert transform

We now give a result, well known in the communications theory literature,
which indicates how complex demodulation may be used to obtain a band-pass
filtered version of a series, X(¢), and its corresponding Hilbert transform,
XH(1). Let

Vi(t) = Wi(t) cos wet + Wi(f) sin wot,

Vg(t) = Wl(t) sin wol — Wz(t) CcOS wol, (219)
where Wi(t) and W,(t) are the real and complex parts of the complex
demodulate, WZ(t), and w, is the frequency of demodulation. We now have

LemMa 2.1.  Let {a(u)} be a filter with transfer function A(w), —* <w <, then
the operation carrying the series X (t), —» < t <o, into the series Vi(t) of (2.19) is
linear and time invariant with transfer function

Alw — wp)+ Alw + wy)
5 .

B(w)= (2.20)

The operation carrying the series X (t) into Vy(t) of (2.19) is also linear and time
invariant with transfer function

C(w)=A(w—w0)2—iA(a)+wo)_ @.21)

O

We note that if

1 for|lw|<A4, A small, —7<w <,

Alw)= {0 otherwise , (222
then expression (2.20) becomes
1
{3 for|lwtwd<A, -7T<w 0<mw,
B(w)= {0 otherwise , (2.23)

which is the form of the transfer function for a band-pass filter, centered at w,,
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and (2.21) becomes
}—%i for jw —wg| <4,

Clw) = i for|lw+twl|<A —7<o, wo<mw, (2.24)

0 otherwise ,

which is the form of the transfer function for the Hilbert transform.

2.6. Filters

There is a vast amount of time-series literature written on the subject of
filters. The usual considerations that are taken into account to make a choice in
this matter will of course also apply when using complex demodulation. We
shall, therefore, only briefly discuss some of the filters that have been used in
conjunction with complex demodulation.

Bingham, Godfrey and Tukey (1967) discuss filters made up of k successive
equal-weight moving averages of length 2L/k + 1. For k = 1 we have what is
known as the simple moving average. Granger and Hatanaka (1964) point out
that a second application of the simple moving average of length 2M +1,
where M <1, leaves the first zero of the transfer function unchanged; and if
.M = L the effect on the transfer function is that the ratio of the side peak to the
main peak becomes approximately 4.5% (compared to 21% for a single
application of the moving average). The following rule of thumb is proposed by
the authors in using the above procedure: if we wish to demodulate the
frequency band (e = 8), the length of the first moving average should be such
that [27/(2L + 1) — 8] is small. Since shifting the frequency of interest wo down
to zero has caused what was at the zero-frequency point to be shifted to w,, the
authors also suggest that the second moving average (of length 2M + 1) be
chosen such that [wy— 27/(2M + 1)] is as small as possible.

Filters for complex demodulation, other than those based on combinations of
moving averages, are discussed, for example, in Bloomfield (1976) and Childers
and Pao (1972). In analyzing earthquake data where the phenomenon of split
peaks often occurs, the use of a raised cosine taper had been suggested by Bolt
and Brillinger (1979).

Filtering can also be carried out in the frequency domain, specifically, via the
fast Fourier transform (FFT) algorithm discussed earlier. Besides com-
putational efficiency, such a procedure would also allow us to compute the
derivative of the instantaneous phase with (see Anderssen and Bloomfield, 1974).

3. Statistical properties
In this section we shall be concerned with certain statistical properties of the

complex demodulates and the spectral estimates obtained through them. Un-
less otherwise specified we assume throughout that X(¢), t=0,%1,..., the
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time series of interest, is wide-sense stationary. This will enable us to use
representation (2.5) to illustrate the properties. We also assume that the
well-separated values of the time series are only weakly dependent. This last
property, known as mixing, may be written as

> 2> lcumulant{X (¢ + wy), ..., X(t + ), X (1)} <. (3.1)

uy U,
Brillinger (1975) discusses in detail the ideas underlying condition (3.1).

3.1. First- and second-order moments of demodulates

Using (2.1) it can be shown that
EWL(r) = A(wy) exp{—iwotc, (3.2)

where EX(t) = c,.

So, for example, if A(w,) corresponds to the transfer function of a simple
moving average, with filter coefficients a(u)=1/QL+ 1), u=-L,...,0,...,L,
then

. 2L+1
sin wg

EWH(t) = — 2 expl—imotlc,. (3.3)
L+ 1) sin %

Expression (3.3) tells us that for wy # 0 mod 27, EWZ(t) will be approximately
zero for large L (as T - ), even when EX(¢) = ¢, # 0. This is not surprising in
view of the fact that the complex demodulate, when suitably normalized,
behaves like a finite Fourier transform (which also shares this property),
computed in the neighborhood of t. We shall explore this relationship further
later in this section.

The result discussed above will of course hold for any filter whose transfer
function satisfies (2.3).

To find the covariance between the demodulates we note that

Wit+u)= I_: Alw — wg) expli(w — w)t} expli(w — wo)u} dZ,(w).

3.9
Thus
Cow () = cOV{ WL(t+ 1), WL(?)}

= J: AL — wo)l? expli(A — wo)u} fix(A) dA , (3.5)

where f,.(A) is the power spectrum of the series X(¢) at frequency A.
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Since |A(X — wo)|? is bounded by definition and f,,(A) is bounded under the
mixing condition (3.1), we can see immediately by the Riemann-Lebesgue
lemma that c,.,(u) will tend to zero as u-». For example, if A(A — wo)
corresponds to an ideal low-pass filter, then

o) = [ expfih - wouHfuc() 1. (.6)

For small A, we can approximate this by

fueoo) [ XN~ e} dh = fo(eo) IR, 3.7)

We see that as u — o, ¢, (1) tends to zero, although the rate of convergence is
quite slow. It should be clear that if X(¢) corresponds to white noise, then
demodulates farther apart than the length of the filter will be independent.

Furthermore, if we take the Fourier transform on both sides of (3.6), we
obtain

fww(A) = zfx(wO)A(A) (38)
where
(1 if|Als=sA,
AQ)= {0 otherwise .

This shows that the power spectrum of the complex demodulate is box-car
shaped at zero frequency, as we would expect, with magnitude proportional to
the power spectrum of the original series, X (), at frequency w.

The covariance between demodulates at different frequencies is also of
interest. Once again, using (2.6) we see that this covariance is given as

cov{WL(t, w), Wi(t, wo)}

= J‘_ﬂ fr A\ — 01)A(A2— 0,) expli(di~ 1)1} exp{—i(A,— w)t}

mJ—7T

XI8(AL— A2) fix (A1) dA4 di, (3.9)

where 6(A) is the Dirac delta function (e.g. see Papoulis, 1962). Again we note
that for an ideal low-pass filter, the transfer function is given by

1l fo—AsMsw+A —as\s7,

A~ @)= {0 otherwise

for i =1, 2. So for |, — wJ| > 4,

co{ Wi(t, w1), WE(t, )} = 0.
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We can also show that if X (¢) is wide-sense stationary and Gaussian, then

E log| WL(1)| = log] EWL(r)| + O(L7) (3.10)
and
E&f’{logld WL(I + u)l logm| WL(t)l}

1 U" [A@ = w0)l® o) () deo

T 2c2 [A(wo)?
Re [ AE=ELL=0) expliond (o) do |
= oum). (3.11)

where E and cov denote the expected value and the covariance derived in a
term by term manner from a Taylor expansion. We have subscripted L by T in
(3.11) to emphasize that we mean L > as T -,

3.2. First- and second-order moments of instantaneous power ordinates
As we mentioned in Section 3.1, we can think of |WZX(¢)]? as being propor-
tional to the instantaneous power at time f. We shall develop this concept more
fully in the next subsection. In the meantime we note that
cov{| Wit + w)?, W)}
= f f f " AG - MAN - A)AG- A)AE A

xexp{if(A —A) + (u — u")]#} expli(A — A")u}
xcov{dZ,(A) dZ,(A"), dZ.(1) AZ,(u")} - (3.12)

If we assume further that X (¢) is Gaussian, we can show that

cov{| Wi(t + w)P, |WE(HOPB

= J_" f AM = 2)A(=A = )AL = A)A(=A" = Ag)

xexpli~ Mt fa) @) dh dr+ [ 7140 - 2

X|AA —Ag)P expli(h — AV} fx (M) fx(A) dA dA’ . (3.13)

So assuming that the spectrum is reasonably smooth over the bandwidth of
the spectral window A(A), we obtain approximately,

v Wt + ), W, (0 = afu (Ao S 2% (3.14)
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Expression (3.13) may also be used to show that
var| WL(t)? = 4%, (Ao ) (3.15)

and, thus,

in2
cortl| W(t + )P, WO =153 (3.16)

3.3. Spectrum estimation

Perhaps one of the most important applications of complex demodulation is
spectrum estimation. This approach is most fruitful when dealing with ‘slowly-
evolving’ or ‘evolutionary’ (nonstationary) time series because it gives us a
spectrum estimate which represents the average power of the process in the
neighborhood of each time instant ¢ for each frequency (band) of interest. It
also preserves the phase information of the series (at each frequency) which
ordinary spectrum estimation suppresses.

The theoretical foundation for carrying out spectral analysis of such proces-
ses was developed by Priestley (1965) in his work on ‘evolutionary spectra’.
Priestley assumes that the spectrum is changing slowly over time (a measure of
which he defines) and then by using estimates involving only local functions of
the time series, he defines some form of ‘average’ spectrum which essentially
has the same type of physical interpretation as the spectrum of a stationary
process. His technique for estimating the evolutionary spectrum for discrete-
parameter nonsfationary processes is essentially identical to the spectrum
estimate proposed below using complex demodulates.

We define the running periodogram as

1L{s )= BIY Wi, 0)?, (3.17)
where

B, =27 i a(u) (3.18)

u=—L

is the bandwidth parameter and {a(u)} are the low-pass filter coefficients.
It can be easily shown that if X (¢) is wide-sense stationary,? then

O  Eh(o)=Bi [ |A@- woffe()do. (319)

2Priestley (1965) gives similar results for the evolutionary spectrum for the case where X(t) is an
evolutionary process.
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If we also assume that X(¢) is Gaussian, then

(ii) cov{IL(t, wo), I5(t + u, wo)}

= B7? f_: j_: A(w ~ 0)A(—® — w))A(w’' — W) A(—w’ — wy)
x expli(w — 0")u} fx (@) frr(@’) do dw + B7? J_: J:: |A(w — @)
x| A (@' — wo)l? expli(® — ©")u} fu(@) fule') do do’ . (3.20)

Furthermore, if X (¢) is strictly stationary and mixing, then
(iii) I%(t, wo) is approximately distributed as

((3/2) fi(wo) for wy # 0 mod 27
and as
Xifu(w) for wo=*m, +3m, .. ..
Expression (3.19) is seen to be a weighted average of the power spectrum of
the original series, X (), with weight concentrated in the neighborhood of w,

the frequency of demodulation, and relative weight determined by the filter
coefficients. If we let the {a(u)} correspond to a simple moving average, then

sin [2L2+ 1 (w— wo)]

@L+1) sin[w ‘2“"’] ¢2D

Alw ~ wy) =

and in this case

[2

2L+1 (= | SP [HT+1 (@ “’0)]
ET%(t, @) = =5~ L, oL+ 1) [w — wo] fol@)do. (3.22)
2

So, IL(t,we) will be an approximately unbiased estimate of f, (w,) if
wo # 0 (mod 27) for large L (as T —» ).
Turning to the covariance term (3.20), we see that it may be reexpressed as
cov{IL(t, wo), TE(t + u, wo)}

= ’ Bi! j:; A(w — w)A(—w — o) expliou} f, (0) dw ‘ ’

+ ‘ By j_" A - 0o expfiou} fu(w) do ‘ ’ (3.23)
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The first term appears to be a contribution from near the origin, while the
second term is a convolution form over all frequencies except those near the
origin.

We are, of course, interested in finding out how far apart the running
periodogram ordinates must be in order for them to be approximately in-
dependent. This, in general, will depend on both the behavior of the true
spectrum, f,,(w), near w, and the particular data window employed. Of course
for white noise, I (¢, wo) and IL,(¢ + u, w,) will be independent for |u|=2L + 1.

To see why (iii) holds, assume for now that the low-pass filter used in
demodulating the series corresponds to a simple moving average. Then

1

WHE) =575 iL X (¢ + u) expl-io(t+ u)}.

Now let us make the following change of variables
T'=2L+1 and u=wv-1L.
Then
T-1
WL(t) = % S X(t+ v~ L) expl—iw(t + v - L)} (3.24)
=0
and

Qmy ' T|Wi () = @nT')"

T-1 2

> X(t+v-L)exp{—iwv} . (325
v=0

Recall that the periodogram of the values X (0), ..., X(T — 1) is defined as

IT(0)= Q=T)!

TZ_I X(1) CXP{—iwt}{ g (3.26)

We can thus interpret (3.25) to mean that the running periodogram at time ¢
behaves like a periodogram ordinate computed in the neighborhood of & It is
well known (e.g. see Brillinger, 1975) that the distribution of a periodogram
ordinate can be approximated by 3.

The extension of the above argument to the case where the filter coefficients
{a(u)} correspond to an arbitrary low-pass filter is quite straightforward.
Brillinger (1975) defines a weighted periodogram as

L(w) = [277 D h(t/T)z]_l\ S h(HT)X (1) expl—iwt)|, (3.27)

where h(v) is the data window whose transform is given by (2.2). If we assume
that a(u) = h(u/L)/H*(0), then

WL() = (HX0)™ i h(u/L)X(t + u) exp{—iwo(t + u)} . (3.28)

u=-L
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Following the same steps as before we see that

Iitt on) = [HOF[27 3

u=-L

h@Ly| HOT?

2H(H)

2

><’X (t+ v~ L) exp{—iwyv}

[om & roar ]| $a(e2H

u=-L
2

x‘X (t+ v— L) exp{—iwyv} (3.29)

Estimate of f..(w)
We now turn to the problem of obtaining an estimate of the power spectrum
at the frequency of demodulation. Let us define

)= S T4 o) (3.30)

t=L+1

where N = T —2L. Then, if X(¢) is wide-sense stationary with zero mean,
() Eftion) = B [ 1A~ apPfu(w) do. (331)
Further, under the Gaussian assumption,

(i) var f¥(wy) = N-2B72 f_ﬂ f_ﬂ Ao — 0)A(-o— wy)

sin® N{(e — 0")/2)

X A(w’ - wO)A(—w' - (Do) Sil’lz(a) — wl)/z

0l do do + N 7B [ [T |40 - wl?

e
x A~ wo SESHO =) 1 (0) () do dor

(3.32)

It can also be shown that

Fh(wo) = j_: HY(wy— )Y (a) dea, (3.33)

where
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HL(a) — 23150 2{4‘=r—L gé’:}fgu(;);) e&p{_iar} . (334)

The estimate of f%(w,) is seen to be a weighted average of periodogram values
over frequencies that range over the bandwidth of the spectral window H.(a).
If we assume that the spectrum is flat over the bandwidth of HX(a), then

Effio)=fu(w) [ HHa)da (3:35)

and

var fi(o0) = fiwo) | HH(@)P da. (3.36)

Turning to the distribution of f%(w), a common statistical procedure is to
approximate the distribution of such a variate by a multiple of a chi-squared
variate, Ax2, where

, = UEFM@)F (337)
var fY(w)
and
A=1/v (3.38)

(e.g. see Brillinger, 1975).
From the approximations (3.35) and (3.36), we see that », called the
equivalent degrees of freedom is approximately

2[({*y H (a) da’
7. HY (a¥da

(3.39)

3.4. Cross-spectral estimates

Suppose we are given a bivariate time series {X(2), Y(¢), t =0, =1, .. .}; then,
as we shall see in this section, it is quite straightforward to extend the results of
the previous subsection to cross-spectral estimates. First we define the follow-
ing instantaneous cross-spectral estimates.?

Instantaneous cross periodogram

I5(t, wo) = BL' W3(t, wo) Wi(t, wo) (3.40)

3See Priestley and Tong (1973) for the theory of ‘evolutionary’ cross spectra.
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Instantaneous cross spectrum

1 M
M —— L
fifle w0 = g7 2 Talt+ ko wo). (3.41)

Note that we have smoothed over 2M + 1 adjacent complex demodulates to
obtain the point estimate at time ¢. Furthermore, we can write (3.41) as

1 M .
F o) =5t S [Whe+ k) [ W+ k)| expli(e(n) - 450}
k=M
(3.42)
where ¢%4(¢) and ¢%(¢) are the instantaneous phases. The quantity
ng(t, wo) = ()bf;(t, wO) - ¢£(t7 wO) (3'43)

which represents the instantaneous phase difference of the demodulates is also
of interest (see Burley, 1969, for example).

Instantaneous cross phase

(5, ) = tan{~Im{ (1, wo)l/Re[ F4(t, wo)]}
+ - sgn{~Im[ f3(z, wp)]} (3.44)

for Re[fY(t, wo)] # 0. Burley (1969) points out that a crude preliminary esti-
mate of ¢,,(t, w;) may be obtained as

1 M

L
T2, PRk e, (3.45)

which would be reasonable provided 6,,(, wq) is fairly constant.
Instantaneous gain
Gt wo) = | F2(t, wo)l/f3(t; o) (3.46)

for f4(t, wy) # 0, where

1 M
M - 2 L
fxx(t’ 0)0) 2M+1k=_M Ixx(t+k, wO)-
Instantaneous coherence squared

IRY(t, @0l = | (2, o)/ F(t o)yt o) - (3.47)
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If we write (3.47) as
{3 Siwhe+ Wi+ W+ 0l W+ k)
k K

X COS[ By (1 + k, 0g) — Oyt + k', wo)]}

S IWHe+ P S Wi+ kP (3.48)

then we can see that |[R}(t, w)? has a minimum <1 if 6,,(t+ k, o) equals
0, (t + k', wo) for all k, k', and the equality holds when |[W(¢t + k)|/|WL(t + k)|
is constant over time (see Burley, 1969). Finally, we define the

Instantaneous residual spectrum
fe(t, wo) = [1— |R3(E wo) 1 f5(t, wo) - (3.49)

Statistical properties of f¥%(t, wo)
If {X(1), Y(#),t=0,%1,...} is a bivariate time series with EX(¢t)= EY(¢) =
0, cov{X (t + u), X(£)} = cx(u), cov{Y(t+ u), Y(£)} = c,,(u), and cov{Y (¢ + u),

X = ce(u) and if 3, ()| <», Z,|cy(u)<x and =, |c,(u)| <o, then
it can be shown that

) EF( 00 = B | 1A - woffe(w) do (3.50)
Further, under the Gaussian assumption,

(i) var fY%(t, wg) = Bi2N 2 I_" J_ﬂ |A(w — @) A(w’ — wp)?

* Sir:irll;,([cgci_w?;;)z/zl fix(@)fy(@") do do’

+ Bi?2N2 ’ ”A(w—wo)

- J—r

x Ao’ —AwO)A(—w' — w)A(—w — wy)

o sin® N[(@ — @')/2]
sin(w — @')/2

fre(@) foy(@) do do’, (3.51)

where N =2M + 1.

Expression (3.50) shows that the expected value of the proposed estimate of
the instantaneous cross spectrum is a weighted average of f,,(w), with weight
concentrated around w.
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3.5. Bispectrum estimation

For linear systems, it is well known that an input with frequency w, emerges
at the output with the same frequency wo. However, for nonlinear systems, the
output contains the harmonic frequencies, 2w, 3wy, . .. as well. The bispec-
itrum, which is defined as

fxxx ((1)1, wz) - (277)-2 2 2 cm(wl, 0)2) exp{——i(wlu + wzv)} N (352)

where ¢y (w1, @;) is the third-order cumulant, is often used to study the
nonlinear properties of such systems.

Several papers discuss the use of complex demodulation to estimate the
bispectrum. An early reference is Godfrey (1965a) who uses this procedure to
study nonlinear properties of an economic time series. Since then, Huber,
Kleiner and Gasser (1971), for example, have used it to investigate phase
relations in an EEG signal.

Let Wi(t, ), Wk(t, ;) and WL(t, ws) be complex demodulates of the series
X (¢) at frequencies w1, w; and ws, respectively, where w; + w,+ w3 = 0, then

. T-L
fix(w, @) =N ‘_%1 Wit o) Wit, o) Wi(t, ) (3.53)

is an estimate of the bispectrum, where N = T — 2L and the principal domain is
given by
Oswi=mw,
0= Wy = T / 2
0w+ 2w,<7r.
Note that the bispectrum of a real-valued series is complex valued.
We shall now investigate the relationship between estimation of the bispec-
trum via complex demodulation and via the third-order cumulant (assuming

EX(t)=0).
The use of (3.53) yields

flalon 03 = £ 2 3 awa@a(+ v - N[ X+ WX +v)
X X@t+u+tv- r)]exp{—i[wl(r - v)+ wy(r— wl}

= 2 2 2 a(w)a@)a(+v—r)yck.(r—ov,r—u)
X exp{—1[w1(r —0)+ o(r— ul}, (3.54)



144 T. Hasan

where
cN(r—vr— u)=—]%]—gX(t+ WXit+o)Xt+u+v-r)
is the sample third-order cumulant. It can then be shown that
faton )= N [ |7 H@1— 0, 0= O)Tale B)dar dB,  (355)

where IY.(a, B) is the third-order periodogram and
HYor1— a0~ B)= 2 3 X a(w)a(v)am+v—r)
rou v !
xexp{—i[(w1— a)(r — v) + (w2 — B)(r— W)} .

We can see from (3.55) that the bispectrum estimate, fY.(w;, @,), is essen-
tially a weighted average of the third-order periodogram.

3.6. Approximate confidence intervals for ihe running periodogram

For a stationary series, the estimated amplitude, or equivalently, power,
should be constant within sampling fluctuations. So if we have a series which
is (slowly) evolving in time, then complex demodulation not only lets us
handle the spectrum of such a series but also lets us inquire into the nature of
the nonstationarity. Essentially, this technique is designed to bring out depar-
tures from stationarity in a graphical way, instead of parametrizing particular
types of departures in advance and then developing formal significance tests
intended to have high power against these particular alternatives.

We now suggest a way of setting approximate 100(1-— a)% confidence
intervals around the estimate of the running periodogram.

We have shown that

%If:f(t’—af')’) ~x32. (3.56)

Thus, we have, approximately,

a

Pr[—ln(l - %) <TL(, ©)/ful(w) < —1n(5)] —1-a. (3.57)

Now suppose that fY(w), defined by expression (3.30), is based on enough
degrees of freedom so that f,.(w) is well approximated by f¥(w). In this case
we have, approximately,
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[4

Pr[~ln(1 - %) < IL(, 0)/f ) < —1n(5)] “1-a. (3.58)

It is important to note that the confidence intervals (3.57) and (3.58) hold only
for a given single value of t and for a given single value of w.

More often than not we will be concerned with logy I%,(¢, w). In this case the
approximate confidence interval becomes

Pr(logyo v1 + logyo f Mw) <logi IL(t, @) <logi y2+10g fu ()]
=1l-a,
where

yi=—In(1-a;) and y,=—In (%) . (3.59)

We interpret this confidence interval as follows: under stationarity, we expect
EIL(t, w) to be in the confidence region for (1— @)100% of the values between
t=L+1andt=T-L.

Fig. 1 is an illustration of the use of this procedure. The error series
corresponds to Gaussian white noise. We have demodulated here at the known
underlying frequency. We also note that the background noise level has been
reached at about ¢ = 600.

3.7. Statistical properties of the instantaneous phase

So far we have not made any explicit use of the instantaneous phase ¢%(z),
which is an important byproduct of complex demodulation. We first of all
present some statistical properties of the instantaneous phase.

Under assumptions similar to the ones presented for the instantaneous

X(t)=50EXP(-0.011)COS(27/ 10 1)+ €(1)
08 LOG INSTANTANEOUS POWER AT FREQUENCY .I0

277k . log f)?x(w)
1.47 |-
0.16 -
-LIS|-
-2.45 | i | 1 1
i 200 400 600 800 1000

Fig. 1.
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amplitude, it can be shown that

E[¢4(t)] = arg EWL() + O(L7) (3.60)
and

SRk ), 940} = o | [ AL =L o5 () o

™ A(w ~ wg)A(—w — wg)

~Re - A(wﬂ)z

Kexpliou} fu(w) dw]‘+ O(L7). (3.61)

1t is also instructive to know how the log amplitude and phase vary together
instantaneously and for this purpose it can be shown that

covilog| WL(r), dL(1) = O(L7F) . (3.62)

When X (1) is Gaussian white noise, the plot of the instantaneous phase will
be quite irregular in appearance if L is sufficiently small (compared to the total
number of data points). As a matter of fact, if X (f) is stationary and mixing,
then ¢L(r) will be distributed approximately as a uniform variate on the
interval (0, 27) [for A # 0 (mod =)]. In order to see this, recall from (3.28) that

WD) = [HEOT S b ()X + w) expliantt + w)

u=-L

— O Sk (” £L>X(t + v — L) exp{—iwov} (3.63)

for v=u— L, which as we saw earlier is essentially a weighted finite Fourier
transform (except for a normalizing factor). From Brillinger (1975) we know
that this transform will be distributed approximately as

N (o, 27TN'1[ Ll h(y do Ll h(v) dv)Z] fx,,(/\)>

(for wo # 0mod 7) where N° denotes the complex normal -distribution and
where N = 2L + 1. In this case, Wy(t) and W,(¢), the real and complex parts of
WL(r), will be approximately independent

Normal 0, WN-IUO1 (o) dvl( Ll hv) dv)z] fuld))

variates and thus
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#4(0)= tan! [ 2]

will be approximately uniform.

This result is of some interest because it tells us that for a stationary noise
series (that is EX(¢) = 0), the phase plot obtained through complex demodula-
tion will look random. On the other hand, when there is a periodic component
present in the data, say,

X ()= p cos(wt + )+ €(1), (3.64)

where €(t) is a stationary noise series, X (¢) will be nonstationary in the mean
and in this case we would not expect the phase plot to appear random. In fact,
if we complex demodulate the series X(¢) given by (3.64) using (for the sake of
simplicity) a simple moving average, then

. 2L+1
1 sin == (wo— w)
L —_— 3
Wx (t, wO) 2L+12 exp{1¢} in wo— @
2
sin 2L2+ ! (wo— )
+ exp{—i¢} ot (3.65)
sin
2
So for w, close to w, we have
WG, w0) =2 explic} (3.66)
and we can see immediately that
arg Wi(t, wo) = ¢, (3.67)

as expected. Priestley (1981) gives further results on the distribution of the
phase estimate for the nonnull case.
In Fig. 2 we have used

X (t) = cosQn/106)] ysi<iassy + U(2)

for t=1,...,1000, where I is an indicator function and where U(r) is
uniform white noise. In this example we used a filter corresponding to a simpie
moving average with L, the number of lags, equal to 50. The phase plot is seen
to be nearly horizontal for ¢ = 400 to 600 as expected.
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X(t)=cosw/I0 1)1{45'$t5550}+u(t )
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Fig. 2.

The above discussion would seem to suggest that the phase plot might be
useful for estimating arrival times of transient signals. We shall see later,
however, that the amplitude plot in fact is more sensitive for this particular
application. The usefulness of the phase, in the context of the above discussion,
is primarily in confirming the presence of a harmonic component in the data.

4. A class of amplitude modulated cosinusoids
In this section we shall be concerned with a general class of time-series

models for which complex demodulation seems especially suited. We shall
consider models of the form

X()= i RI(t; 6) cos(wt + 8,.) + €(t), 4.1)
k=1

where €(t) is a stationary, mixing time series, Rf(t, -) # 0 is a fixed function for
k=1,...,K {07 w, &;k=1,...,K} are the parameters to be estimated,
and where T is the length of the series.

Some examples of R7(¢; 8) are

(i) the exponential decay model
R7(t;,0)=«a exp(—%) for t>0, 4.2)

where 0 ={a, ¢},
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(ii) the Childers~Pao transient model

RTt;0)=a (%)A exp(— 5;—5) fort>vy, 4.3)

where 0={a, ¢, ¥y} A=0,1,...,

(iii) the linear decay model
R7(t;6)= 0,— 6, for0<t<T, (4.4)

where 8 = (6, 6,),
(iv) a slowly-varying cosine wave

RT(t; @)= cos(8)t fort>0 4.5)
with & small, and finally

(v) constant amplitude
R7(t;0)=6 fort=0. 4.6)

In practice, once an initial estimate of wy, call it @, has been obtained, we
would complex demodulate at this frequency to:

(a) Check for visual confirmation for the presence of a harmonic component
and, if present, get an estimate for the duration.

(b) Obtain initial estimates for the unknown parameters through some kind

of curve fitting since the log amplitude in complex demodulation is essentially
log RI(t; 8,).
The final estimates could then be obtained through nonlinear least squares in
the frequency domain (to obtain a more tractable solution since our errors are
not uncorrelated) with minimization taking place in some interval, I, around
&f (suggested, for example, by the periodogram). For this reason we can
choose to estimate each set of parameters {6, wi, &), for k=1,..., K,
separately; that is, with minimization taking place in disjoint I.’s for each k.

4.1. Asymptotic normality of estimates

Let us assume that there exists a continuous function R(x; @) such that for
all 8 € 0, ® compact and where @ is an interior point of @,

RI(56.)=Ri(50:), k=1,...,K. @)
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Such a choice seems reasonable in discussing asymptotic theory, at least for the
exponential decay model, since otherwise our signal would disappear for large
t. Note that if we set ¢/ T = s, then

R;{(ST; Ok) = Rk(S; Ok), O0=ss=1. (48)

Assuming the dependence upon the length of the series, 7T, as characterized by
expression (4.7), and under further regularity conditions, Hasan (1979, 1982)
showed that the vector

T'(0F ~ Oo)
T(5T ~ 8y0) :
(p+2x1

& ~ wu)
, ‘

@.9)

where (87,87, ®]) are nonlinear least-squares estimates, is asymptotically
normal with mean zero and covariance matrix given by

27fc(010)A (o)™, 4.10)

where f.(w) is the power spectrum of the error series,

[ilm (0k0)]p><p [0]p><2
A (0k0) = [‘Y(oko) ‘)’u(oko) (4-11)
O]ZXP 'YU(akO) You (oko) 2%2 (p+2)x(p+2)
and where
1
¥(0i, 00 = | Ru@; 8Ru(0; 0o, @12)
= (ar o= V(0% 60
YIm(0k9 ok) - 80;:18 ,I:m » (4.].3)
1
Yoo(0}, 0)) = ] 02Ry (v; O)R, (v; 07) o, (4.14)
0
1
7o(8i, 60 = [ oRe(; 0DRy (3 07 dv. @.15)

For 6;= 67 = 0, the notation is simplified, for example, to v(6;).

ExamrLE 4.1. Let
X(t)=0cos(wt+ 8)+e(t), 6+0,

where {6, 8, } are unknown parameters. Trivially, the covariance matrix is
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given by

1 0 0 -
2nfu(wo)| O 63 632
0 62 633

Related references aré\‘ Whittle (1952), Walker (1971) and Hannan (1971).
ExampLE 4.2. Let
X() = (6:— 0,4/ T) cos(wt + 8) + €(r), 6y, 6,#0.

where {6y, 05, 5, w} are the unknown parameters. In this case the covariance
matrix is given by

-1

1 -3 0 0
1 1
-3 3 0 0
27f@)| 0 0 gr-0,6,+ 633  63/2-26,0,+ 0¥4
0 0 6%2-36010,+6%4 633—60.0,/2+6%/5

Finally, we have
ExampLE 4.3. Let
X(t)= a exp{—ot/ T} cos(wt + 8) + €(t), a#0,

where {a, ¢, 8, w} are the unknown parameters. The covariance matrix is given
by

Io(¢(o)) —c;orz(@))) 0 o "
—aoly o atl(o 0 0
2fee(wo) 0 6 o2I(¢o) *Ii(¢po
0 0 agli(do) adl(do
_dﬁlz(ﬁbo) 0‘011(4’0) 0 | 0 D
_ -2 s | aoli(do)  Ti(¢po) 0 0
= 27Tf55(w0)a0 ](4)0) ! 0 0 0 . IZ(d’O) _'Il(d)O)
0 0 —Ii(do) Io(ebo)

where

1
I,‘(c[))=f0 v* exp{—2¢v}dv fora=0,1,2,

](¢)=Io(¢)12(¢)“11(¢)2 .
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We now have

var & =27T " f(wo) ()T (do)

var ¢ =2aT . (wo)a?Lo(do)J (do) !,
var 8 =27T . (wo)as?Lido)] (o),
var & =27T 3f(wo)as?IPo)T (do) !,

etc. We shall discuss this model further in the next subsection.

4.2. Exponential decay model

Bolt and Brillinger (1979) have considered the exponential decay model,
discussed in Example 4.3, in modeling the impulse response of the earth to a
large magnitude earthquake. In their paper the authors present a general
algorithm for simultaneously estimating eigenfrequencies, amplitudes, phases
and damping coefficients for terrestrial eigenspectra measurements. An im-
portant use of complex demodulation in their paper is for obtaining initial
estimates of the parameters in the model, especially the decay parameter ¢, at
each frequency of interest.

We shall discuss here how estimates of @ and ¢ may be obtained directly
from the log amplitude function. It can be shown that

Z4(0) = logl ()| = - 2+ log

+|aexp{~ %} | Relexpt-igtpml+ 0w @1
where
BHO = (= 6 +5,

®@ is the periodogram estimate, and

()= a(t - u)e(u) exp{—idou} .

In a recent paper, Toyooka (1979) discusses the following time-series regression
model

p
Y ()= BXi()+c(HU(®), (4.17)
=1
t=1,2,..., where the B; are the unknown parameters, c(f) is a modulation

function of the form
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q
et =exp| S ()], @.18)
i=1
7:(t) is a bounded function of t for each i=1,...,4, {¢;i=1,...,q} are

additional unknown parameters and, finally, U(¢) is a wide-sense stationary
process. A two-stage procedure for estimating the parameters {8;} and {c;} is
proposed and a result showing the large sample behavior of the estimates is
also presented.

If we rewrite (4.16) as

ZH)= ,il BX(1)+ [exp il c,-dJ,-(t)] UG, 4.19)
where ,

pr=loga, Xin=1,

B2=—¢, X)) =14T,

a=-loga, ¢i(1)=1,

=¢, dA)=1T,

then by applying Toyooka’s result we can show that

var log @ =27T,,(0)as*L(do)J (o) * ,

var ¢ = 27T £, (0)es* Lo(do)T (o) ", (4.20)
where

Li(¢o) = JOI v* exp{—2¢ppv}dv forj=0,1,2,
J (o) = Io(¢o)12(¢o) - 11(4’0)2 .

We note that the expression of the asymptotic variance for ¢ obtained here is
identical to the expression obtained in Example 4.3. This result may be
significant in applications where the ¢’s have to be estimated at a number of
frequencies since fitting lines to the log amplitude obtained through complex
demodulation should be computationally more efficient than the nonlinear
regression method discussed earlier. However, the estimates obtained through
the linear fit would probably have larger standard errors since they would
presumably be based upon fewer points.

4.3. The Childers—Pao transient model for visual-evoked responses

Childers and Pao (1972) consider the transient model

X = é ait exp{— Bt} cos(wit + &) + e(t) 4.21)
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for t > 7, for visual-evoked responses (VER’s) monitored by scalp electrodes
over the occipital region of the brain. The term transient here refers to the time
lag associated with each wavelet before its arrival.

For K =1, the problem is immediately seen to be one of two-phase non-
linear regression where the join point has to be estimated. That is, we can
rewrite (4.21) as

X=p+e@®), t=1,...,71,

X() = at exp{—Bt}cos(wt + 8)+e(®), t=7+1,...,T, 4.22)
where {7, u, a, B, , 8} are parameters to be estimated. We shall find it neces-
sary to reparametrize @ = /T and B = ¢/T so that the asymptotics to be
discussed later will make sense.

There exists a great amount of literature which deals with the problem of
estimating the change point for the mean for linear regression. In most papers
it is assumed that the errors are independent and identically distributed normal
mean zero variates and that the parameters occur linearly. Further it is
assumed in some papers that the join point(s) are smooth, that is, the
regression function is continuous at 7.

Clearly the assumptions mentioned above will not be satisfied for the type of
data for which complex demodulation is best suited. However, complex demodu-
lation can still be used to obtain a satisfactory estimate of 7. The estimation
procedure for the remaining parameters {a, ¢, , 8} is then identical to that of the
exponential decay model considered by Bolt and Brillinger. In the exponential
decay case, a reasonable estimate of the arrival time is provided by the peak in the
graph of the log instantaneous amplitude minus one-half the number of time lags
used for filtering (see Hasan, 1979).

If a noise record preceding the arrval of the transient is available,* an
alternative estimation procedure would be to first set confidence bands in the
manner described in Section 3. We of course have some cutoff point in mind
for the noise record and again complex demodulation can be helpful in this
respect, as long as the onset time is not too close to the beginning of the data.
This suggests that a noise record of fair length be collected preceding the
signal, if at all possible. We can now take as an estimate of 7 the first significant
jump out of our confidence bands (that is, one which remains out for some dur-
ation of the signal). Using simulated data, Hasan (1979) found that this estimate
precedes the (known) arrival time by a random amount, but usually within
one-half the filter length. It seems sensible then to adjust this estimate by adding
one-half the filter length (or possibly more), since it is probably betterto err by
overestimating the arrival time than the other way around. [One reason being the

“Unfortunately such a record is not always available. For example, for the type of earthquake
data considered in the previous section, the seismometer would start clipping (going out of bounds)
at the arrival of the signal and by the time it resets itself the decay phenomenon would already be
in effect.
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anomalous behavior of the estimate of the frequency w, under the null (signal
not present) and alternative (signal present) hypotheses (see Whittle, 1952).
This erratic behavior could lead to unreliable results if, having estimated 7, we
then proceeded to estimate the parameters of the underlying model over a time
period in which the signal was not present.]
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Estimating the Gain of A Linear Filter
from Noisy Data

Melvin J. Hinich*

Introduction

Measuring the gain and phase of a linear relationship between two signals is
an important task in a variety of scientific investigations. In some applications,
one signal called the input is controlled. For example, various test input signals
are used to measure the response of a linear amplifier. In other applications,
the two signals are stochastic and it is arbitrary which signal is called the input.
This is the case for the magnetotelluric application discussed by Bentley (1973)
and Clay and Hinich (1981).

Filter response is estimated using simultaneously observed data from both
signals. If there is noise in the input and output data, standard estimators of the
gain are biased. This bias is a time-series version of errors-in-variables bias in
linear statistical models (Kmenta, Chapter 9, 1971). This chapter presents an
asymptotically unbiased estimator of filter gain for a certain class of filters.

Let us begin with a brief review of the .basics of linear filter theory for
continuous time signals. There are many texts on the market that explain linear
filters. A clear and rigorous exposition is given in Chapter 2 of Kaplan (1962).

1. Linear filters
A time-invariant linear filter is characterized by a function called the impulse

response, which we denote h(z). The output y(t) of the filter for an input x(¢) is
given by the convolution

() = f h(#)x(t— ) dr . .1)
A filter is called stable if |h(t)| is integrable. A filter is called causal if h(t)=0

*This work was supported by the Office of Naval Research (Statistics and Probability Program)
under contract.
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for t <0, and thus y(f) depends only on x(t") for ¢'<¢ If h(t) is stable and
causal, then it can be shown using Laplace transform mathematics that H(s) =
J% h(¢) exp(—st) dt has no singularities in the half-plane Re s =0, i.e. H(s) has
no poles in the right-hand part of the complex plane.

It is often convenient to express a filter’s response in the frequency domain.
The transfer function

H(f) = f: h(¢) exp(~i2mfr) dt (1.2)

is the Fourier transform of the impulse response. If k(¢) is real, then H(-f) =
H*(f) where star denotes complex conjugate.

The gain of the filter is |H(f)|, its absolute value as a function of frequency.
The phase response is

& (f) = arc tan %(% 1.3)

for —m < ¢ < 7. The output due to a complex sinusoidal input exp(i2#ft) is

\H ()| expli@7ft + ()] = [H(f)| expli2arf (¢ + o (f)27f)] . (1.4)

For a causal filter, the time shift —¢(f)/2nf is positive (a delay), and —¢(f) is
called the phase lag. Since H(0) is real, ¢(0)=0.

A stable causal filter is called minimum phase lag' it H(s) has no zeros in the
half-plane Re s = 0. The term minimum phase is used for such a filter since its
phase lag is less than any other filter with the same gain, provided that H(s)
has a finite number of zeros (for Re s <0) (Zadeh and Desoer, Section 9.7,
1963). The property of minimum phase filters that is exploited in the estimation
method featured in this work is that ¢(f) can be uniquely determined from
In]H (f)| by means of the Hilbert transform. We will discuss this relationship in
some detail after the following discussion about estimating the phase and gain
from observations of stochastic input and output signals.

2. Estimating the phase and gain of the transfer function

For many applications, including the magnetotelluric problem that motivated
this work, the input signal is stochastic. If x(¢) is a stationary stochastic process,
then the output y(¢) is a stationary stochastic process. Suppose that the

'For discrete-time systems, the output of a linear filter whose impulse is {h(%)} is y(5)=
3h=—o h(tn)x(tn — tw). The filter is stable if 5~ _« |h(tn)| <<, and is causal if h(z,) = 0 for all ¢, <O.
Setting the origin so that £ =0, a stable causal discrete-time filter is minimum phase lag if its z
transform 2 _o h(,)z™ has no zeros on or inside the unit circle |z| = 1 in the complex plane.
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autocovariance of x(¢) is absolutely integrable. Then the spectrum S, (f) of x(¢)
exists, and the cross spectrum of {x(¢), y(¢)} is

Sxy(f) = H(f)S.(f) 2.1

(Jenkins and Watts, Section 8.4.2, 1968).

The phase of the cross spectrum is defined to be ¢,(f)=
arc tan[Im S,, (f)/Re S, (f)]. If S,(f).> 0, it follows from (2.1) that ¢,,(f) = &(f),
and the gain is |H(f)| = |Sy (H)|/S:(f). Thus the phase and gain can be con-
sistently estimated from consistent estimates of S,,(f) and S.(f).

Nowadays spectra are estimated from digital data. Suppose that x(¢) and y(¢)
are sampled after they are filtered using a low-pass filter with cutoff frequency
1/27, where 7 is the length of the sampling interval. The frequency components
for f>1/27 must be removed to avoid aliasing of data sampled at frequency
T

Several methods exist for obtaining consistent estimators of S,(f) and S,,(f) in
the principal band 0<f<1/27 from a sample {x(n7), y(nr): n=1,..., N}
where N - . Jenkins and Watts (Chapter 7, 1968) advocate the approach that
begins with the computation of sample covariances. Estimates based on the
discrete Fourier transforms of {x(n7)} and {y(n7)} are outlined by Hinich and
Clay (1968). An example of a simple estimator for S,,(f) is given in Section 5.
Rigorous coverage of spectrum estimation is given by Anderson (Chapter 9,
1971), Koopmans (Chapter 8, 1974), Brillinger (Chapter 5, 1975), and Fuller
(Chapter 7, 1976).

There is always some noise in measurements of signals. Suppose we observe

j(nr)=y(n7)+ e(nr)
and 2.2)
i(nt)=x(n7)+ u(nr),

where {e(n7)} and {u(nt)} are stationary noise processes that are uncorrelated
with each other and with the true signals. This is the errors-in-variables problem
that was previously mentioned.

Setting Ex(n7) = Eu(nv) =0 to simplify notation with no loss of generality,
the autocovariance of X is

cz(m)= Ex(n7m)Z((n + m)7)
= Ex(n7)x((n + m)7)+ Eu(nm)u((n + m)7)
= ¢ (m)+c,(m). 23)
Thus the spectrum of the true input signal plus noise is

S:(f) = S:(N)+ Su(f) 24
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where S, (f) denotes the spectrum of the noise in £. Similarly,

Sf(f) = Sy(f) + Se (f) s (25)

where S,(f) denotes the spectrum of the noise in y. These expressions imply
that consistent estimators of Sz(f) and S;(f) are inconsistent estimators of S, (f)
and S,(f), respectively.

The cross covariance between £ and ¥ is

czy(m) = Ex(n7)y((n + m)r)
= Ex(nt)y((n + m)7) = ¢,y(m) (2.6)

since the noise processes are assumed to be uncorrelated (with each other) and
are uncorrelated with the true signals. It then follows from (2.6) that the cross
spectrum of {Z(n7), y(n7)} is equal to the cross spectrum of {x(n7), y(y7)}, i.e.
S (f) = S,y (f). This implies that the phase of Sg(f) is ¢ (f), and thus ¢ (f) can be
consistently estimated from a consistent estimate of Sg(f). In other words,

H(f) = arc tan[Im S‘xy(f)/Re §xy(f)] 2.7

is a consistent estimator of the phase ¢(f) if §xy ) is a consistent estimator of
the cross spectrum of the observed signals.

The gain for the observed signals, on the other hand, is not equal to |H(f)|
since

SNl _ _1Sal_ _|Sa(dl _
SO " SO+5.0° S0 = [H@)- (2.8)

Thus a direct estimator of the gain based upon consistent estimators of S,,(f)
and S;(f) will be inconsistent. The asymptotic proportional bias of a direct
estimator is —[1+ S,(f)/S.(f)]"!, and is thus frequency dependent unless the
signal and its noise are white. In other words, a direct estimate of the gain will
not even have the correct shape when the noise in the input signal is serially
correlated. This inconsistency cannot be eliminated by reversing the labels of
the observed signals since there is noise in both signals.

If the filter is minimum phase and ¢ (f) satisfies some mild restrictions, it is
possible to construct a consistent estimator of the natural log of the gain, up to
an additive constant. The estimator is derived using Hilbert transform mathe-
matics. Let us now outline the mathematical relationships between In|H (f)| and
¢(f) that enable us to derive the estimator and show its consistency. This
chapter concludes with a discussion of the problem of estimating the additive
constant.
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3. Use of the Hilbert transform

If the filter is minimum phase,
1 (" ¢@)
In|H(f)| = I d 3.1
nlH(f) = — f-g% 3.1)

(Papoulis, Chapter 10, 1962). A finite sum approximation of this integral using
estimated phases at discrete frequencies yields a noisy estimate of the log gain
for modest sample sizes. A statistically more convenient relationship can be
derived from the following expression (Solodovnikov, 48-51, 1960): For f >0,

()= 7 | - UnlH( e Infooth(ul/2)] du (32)
Writing y’ = In(7f) + u, (3.2) becomes
1 d . ,
$()=7 | gy InlH G )l nfeothly’ ~ In(af/2] dy',

and writing further y = In(7f), we obtain

b)) = %diy,[lmH(q-‘1 €”)|] In(coth|y’ — y|/2) dy’ . 3.3)
Now define

s(y)= % In|H(r'e)|, (3.4)

S(a)= J: s(y) exp(—i2way) dy, (3.5)

(@)= [~ ¢ expt-izmay) dy, (3.6)
and

Q(a)= f: In[coth(|y|/2)] exp(—i2mray) dy . 3.7

Since (3.5)~(3.7) are Fourier transforms, it follows from the convolution (3.3)
that ®(a) = 7 'S(a)Q(a), and thus

S(a)= O Y(a)P(a). (3.8)

From 612.1 in Campbell and Foster (1948),
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Q(a) = (2a)" tanh(n%a), (3.9)

so that Q(0) = #w%/2. Thus from (3.8) and (3.9), we obtain the key relationship

s(yv)= J_w S(a) exp(i2may) da
=27 I_w a®(a) coth(m?a) exp(ilway) da . (3.10)

Note that a is dimensionless since y is dimensionless.

4. Numerical approximations

In order to estimate s(y) from a finite sample of discrete-time observations
of £ and §, the integrals in (3.6) and (3.10) must be approximated.

Define L to be the integer closest to ¢cN*, where 0 <c¢ <1 and 0<a <1. The
parameter « plays a vital role in the proof of the consistency of the estimator.
Let us approximate the integral in (3.11) by a finite sum using the logarithmically
spaced grid {y; = In(j/N): j =L, ..., N/2}, which is the transform of the equally
spaced frequency grid {f; = j/N7}. The grid width at j is

Ay = yj1—y; = In(l + 1/j), @“.1)

and thus Ay. > Ayp.; > Aype, > - -. The largest width is then Ay, = In(1+ 1/L),
which is approximately 1/L for large L. Since L ~¢N® for0<c, « <1, 1/L—>0
as N — and thus all the grid widths to zero as N —» . It then follows from
(3.11) that

D(a)= 3 $(f) exp(-i2way,) Ay, + ON-). 42)

j=L

The sum is not periodic in a since the spacing is logarithmic (Hinich and
Weber, 1980). Another approximation, using equally spaced y; is given by Clay
and Hinich (1981).

In many applications the observed signals are high-pass filtered to remove
frequency components below some cutoff f;. If so, define ¢(f)=0for 0<f<f;
and set « =1 and ¢ = fir. Thus L= fiNr. The gain is estimated only in the
band f; <f<1/27.

Now let us approximate the integral in (3.10) by a finite sum using the equally
spaced grid {a,, = m/M: m =0, 1, ..., =N}, where M depends on N. In order
for the approximation to converge to the integral, the grid width a,..,— a, =
1/M must go to zero as N -, and N/M must go to infinity so that the grid
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will span the line in the limit. Setting M = N' ? for 0< B <1, it follows that
1/M -0 and N/M - as N -, Then

s(y)= zﬁﬂ i anP(a,) coth(w?a,) exp(i2ma,y)+ OM™) 4.3)

m=-N

since the integrand in (3.10) is well behaved. Applying (4.2) to (4.3) for
I=L,...,N/2, we have

s =S dy(N)B(f) Ay, + ON7), (4.9)
j=L

where y = min(e, 8) and

N
dj(N)=>F Z an coth(w?ay, ) expli2ma, (y; — y;)]
m——N
_4n h 5 i l) i]
= [mzl a,, coth(m? a,,,)cos( Tay, In 77| 4.5)

The bias in this approximation goes to zero as N - o since 0 <y <1.
Recalling that s(y) = (d/dy) In|H(f)|, where y = In(f),

ntH()|= [ sv) dy +WlHO). @6)

Thus from (4.4) and (4.6)

n|H ()| = 2 s(2) Ay + C+ O(N-7)
- z _Zidu(N)rb(f,) Ay Ay, + C+O(N™7) @7
N/Z wi (NYO(f) Ay, + C+O(N™),
where =
wi(N) = 2, dij(N) Ay (4.8)
I=L

and C=In|H(0). When a =1 and ¢ = fi7, however, C =In|H(f;)| since the
lower limit of integration in (4.6) is In 7f;. Once again the approximation bias
goes to zero as N — o,
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5. Estimating the log gain

Suppose that we have P disjoint sets of measurements of the input and

output signals, {X,(t, + n7), 5,(t, + n7): n=0,..., N — 1}, where 1, is the start-
ing time of the pth set (p=1,..., P). The discrete Fourier transforms of the
pth set are
~ N-1
X,(fi) =D (8, + n7) exp(—i2mnk/N)
n=0
and (5.1

- N-1
Y,(f) = >, 7,(t,+ n7) exp(—i2mwnk/N),
n=0

where f, = k/Nt for k=0,..., N/2. The following property of a discrete
Fourier transform of a stationary time series with well-behaved cumu-
lants (Brillinger, Section 4.4, 1975) is used in the consistency proof below:
{X,(f2), X,(f), ..., X,(fyn)} are asymptotically independent as N -, and

similarly for {Y,(fc): k = 0, .. ., N/2}. Thus the phase estimators (k = 0, . .., N/2)

é(f) = arc tan[Im S, (f,)/Re S, (f)] , (5.2)
where
$a00=xp = XT3 63

are asymptotically independent as N —»>x. When N is large, the mean and
variance of ¢ (fi) are approximated as follows (Hinich and Clay, 1968):

Ed(f) = ¢(f)+ OP™) (5.4)

and

var () =55 [72() - 11+ O(P), 55)
where

___185()
O EOs T 9

is the coherence of the observed signals. Applying (2.4) and (2.5) to (5.6),

() =0+ rA+ RN, G.7)

where r,(f) = S.(f)/S.(f) and r,(f) = S.(f)/S,(f) are the noise-to-signal ratios for
the % and y signals, respectively. When y(fi) is small or is near one, then ¢(f;)
is approximately unbiased for small values of P, i.e. for 1 <P <4,
Approximately unbiased and independent estimators of the phases can also
be obtained using a smoothed sample cross spectrum computed from a single
sample of size N;> N. In other words, we can use a standard smoothing
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procedure for obtaining an estimate of S, (fi) to use in expression (5.2),
provided the sample size is sufficiently large so that the estimates are ap-
proximately uncorrelated across the grid {fi = k/N+}. The asymptotic variance
of é(f,) for any of the standard smoothing methods will also be proportional to

y2f)— 1= r(f) + r,(f) + l(fdry (i) . (5.8)

To estimate In|H(f,)|, replace ¢(f}) in expression (4.7) by &(f) for j=
L, ..., N/2. The estimator is thus

estIHf)| = > wa(N)$(5) Ay, + C. (59)

Since the approximation converges to InjH(fo)| as N > and fieyy— fo for a
properly chosen sequence {k(N)}, and (f,) is asymptotically unbiased as
P >, the estimator (5.9) is asymptotically unbiased as P, N — o,

It will now be shown that this estimator is asymptotically unbiased for finite
values of P if (1) 3a +48 > 6 and (2) for some & >0, var ¢(f)<f° for f=0. It
follows from (5.5) and (5.8) that for sufficiently large P, condition (2) holds if
the input and output signal-to-noise ratios (r;' and r;") go to infinity at least as
fast as f~¢ as f—>0. Condition (2) is obviated if ¢(f) =0 for f < f;.

Given a frequency f,, suppose that limy.. feay= fo- As is proven in the
Appendix,

1727 ”
lim N3*%-6yvar[est In|H(f,)|] < 64m2c >3 j flvar ¢(f)df. (5.10)
0

N-ow

The integral in (5.10) is finite if condition (2) holds. If condition (1) holds, then
the variance of the estimator of In|H(f,)| goes to zero as N - «, Note that the
set {a, B:3a +4B > 6, a <1, B <1} is nonempty.

The method has been tested using artificial data. Clay and Hinich (1981)
present some results using an equally spaced approximation of @(a). Boehl,
Bostick and Smith (1977) used a more primitive version of Hilbert transform
smoothing (which they invented) on magnetotelluric data. I have tested the
logarithmically spaced approach presented above. For the filters tested, the
method gave good fits of the log gain (up to an additive constant) for medium
sample sizes, such as P = 100 and N = 40. ‘

Let us now return to the problem of estimating the constant C in (4.7), which
is a multiplicative constant in the gain estimator

G(fi) = explest m|H(f.)[] . (5.11)

Suppose that there are frequencies {f,} for which the coherence is high (near
one). If condition (2) holds, then fi,...,f; will be in this set. Sir}ce the
coherence is high, r.(f,) is small, and thus the direct estimator S,,(f,)/S:(f) of
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the gain is almost unbiased if S; is a consistent estimator. One simple method
for estimating C is to regress the direct estimates against the G(f,). The slope
of the fit is the estimate of C.

In some applications, it is known that S,(f)=0 in some band. The direct
estimates are then unbiased for frequencies in this band, and can be used to
calibrate G(f).

If there are no bands where the coherence is high or S,(f)=0, then the
phase smoothing method only estimates the shape of the gain.

Appendix

Given an fy in (0, 1/27), let {k(N)} be a sequence such that f, = k/IN - f, as
N >, Then

1727 -
lim N3**%-¢var[est In| H(f;)|]] < 6472c>f3 J' fivar ¢(f)df.
0

N

Proor. Let « =2a+4B—6. Since the phases in (5.9) are asymptotically
uncorrelated,

NP2 .
lim N* var[est In|H(f,)|] = lim N* > wk(Ay;}* var ¢(f;) . (A1)
Nox Now j=L

Recall that Ay; = L'+ O(NY), L=cN®, and M = N, Applying the Schwarz
inequality to (4.8), we have

k

di; 2 (Ay:y . (A2)

k
2
Wik =
=L I=L

To bound d;_j, note that a coth(n?a) <2ay for 0=<a <ay when ay = N/M is
large. Then from (4.5),

87 N2
]dl_j'<—M—M—. (A3)
Applying (A3) to (A2),
wh <64mkY(N/M)Y'L2+ O(NY). (A4)

Thus the right-hand side of (A1) is bounded by

N2 . -m2
647%c™? lim f >, var ¢ (f;) Ay; = 6472c3f} J var ¢ (f) dy

N j=L

1
0

= 64m2cf} J i ftvar $(f) df .
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A Spectral Analysis Primer

L. H. Koopmans

1. Introduction

This introductory chapter is intended for readers who are new to the subject
of time-series spectral analysis. In it the more important spectral parameters
and their interpretations will be introduced and some of the applications of
these parameters will be indicated. Methods of estimation and other ap-
plications will be given elsewhere in this book. This discussion will summarize
material presented in [11] and the reader is referred to this source for more
complete treatments of the various topics. This material is also available in
various forms and from a variety of viewpoints in [2, 3, 6, 7, 8, 9, 10].

2. A historical perspective

Historically, the above references were all written during what might be
called the second blooming of spectral analysis. As we will see below, there are
two major methodologies for viewing, analyzing and interpreting time series:
the time-domain and spectral-domain methodologies. Theoretical develop-
ments of time-series methods have followed a rather cyclical pattern first
emphasizing one domain, then the other. These cycles have, in part, followed
what were perceived to be the needs of practitioners in the dominant scientific
fields of the time. Thus, in the flowering of the hard sciences of physics and
astronomy in the late 1800s, time-series analysis was born as a spectral-domain
subject because of the central role spectral methods play in these fields.

Time-series spectral analysis is the mathematical equivalent of the decom-
position of light into “its color components by a prism. The idea that other
physical phenomena could be similarly broken down into spectral components
and analyzed using the concepts developed from the study of light was (and still
is) immensely appealing.

The edge was taken off of the original enthusiasm for spectral-domain
methods by the horrendous computational effort required to calculate numeri-
cal spectra. At that time, calculations had to be done by hand and, although a

169
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number of simplified methods were developed, it was still a major undertaking
to analyze time series of the magnitudes usually encountered in the physical
sciences.

It was, perhaps, with some relief that interest shifted in the 1920s to the
shorter and more manageable series seen in economics and the business world.
The first flowering of time-domain methods began at this time. One of the
dominant interests of economists and business people is the extrapolation of
time series into the future—the important problem of prediction. The statistical
methods of linear regression developed at that time, with their concomitant
dimension of prediction, appeared to be a natural and logical methodology to
apply to time series. One simply fits a regression equation to the time series for
a block of consecutive times (e.g. days). Replication is achieved by moving the
block along the time series, thus picking up consecutive blocks of observations.
Once the fitting has been accomplished, one predicts into the future simply by
moving the block to the leading edge of the series making the independent or
explanatory variables the present and immediate past and putting the depen-
dent or response variable one step into the future. In this way, the usual
regression predictor of the response variable becomes the predictor of the next
value of the time series. However, the usual assumptions of classical regression
are badly violated in this application and the need for mathematical shoring up
sparked a large and fruitful development of time-domain methodology. This as
well as some more recent developments is detailed in [1].

The seed of spectral-domain methodology was not dead during this period,
but only dormant. In fact, as the time-domain methods were probed more
deeply, it became increasingly apparent that many of the mathematical pro-
perties of these series, even those important to time-domain methods, were
more usefully and elegantly expressed in terms of spectral parameters. At the
same time (during the period of World War II), the digital computer was under
development. The reawakened theoretical interest combined with the realiza-
tion that many practical problems in engineering as well as in the physical
sciences could now be attacked by analyzing spectra on computers sparked the
second flowering of spectral analysis. Much of the key work was accomplished
in the 1940s and 1950s and was first published in book form in the late 1950s.
The key work on the theoretical development of spectral methods was reported
by Grenander and Rosenblatt'[8] while the computational and engineering
applications of spectra were detailed by Blackman and Tukey [2]. John Tukey
is widely credited with almost single-handedly sparking the renaissance in the
applications of spectral methods.

The other books on spectral analysis mentioned above report subsequent
details of explosively expanding theoretical developments and applications
from the 1960s and beyond. Important applications of spectral analysis now
occur not only in the physical and engineering sciences, but in the natural and
social sciences and in medicine. Granger and Hatanaka [7] and others have shown
spectral methods to be of use in economics and the business world, the original
province of time-domain methods.
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The most recent swing of the time domain—frequency domain pendulum to
time-domain methods was sparked in 1970 by the important book of Box and
Jenkins [5]. By expanding the time-domain methodology and adapting it to the
computer, these authors and others have evolved a useful and flexible
methodology for carrying out such important functions as prediction (or
forecasting). This methodology is currently being rapidly expanded and
developed in both its theoretical aspects and its applications. Although the
energy of this development fends to make those who think exclusively in the
frequency domain feel a little out-of-date and a bit lonely at time-series
meetings, the data analyst who must actually work with and try to understand
real time series benefits greatly from it. Such individuals, and there is an
ever-increasing number of them, must evaluate and learn to use every possible
tool available. At this time in history, the choice of tools for »nalyzing time
series is large (but by no means complete!). This volume is intended to bring
up to date the catalog of spectral-analysis tools. Since, at first exposure, spectra
seem somewhat strange and unnatural, especially when compared to time-
domain parameters, there is a tendency to overlook or even avoid the use of
spectral methods. In doing so, an important dimension of time-series analysis is
lost. It is the goal of this chapter to try to convince you that, if you are familiar
with the regression and correlation methods of elementary statistics, spectral
analysis will provide a framework for thinking about the structure of one- and
two-dimensional time series in precisely these familiar terms. Moreover, the
ideas of partial correlation and the methods of multivariate analysis have
spectral analogs which make it possible to think constructively about time
series of dimension greater than two.

3. The time-series model

The model we cover here describes phenomena for which the generating
mechanism can be considered, at least for relatively long stretches of time, to
be unchanging with the passage of time. The model itself has this unchanging
or stationary property beginning with the infinite past and extending into the
infinite future. Moreover, it is assumed that the interesting measurable charac-
teristics of the mechanism behave in a manner that can be well described
probabilistically. If X (¢) represents a numerical characteristic measured at time
t, in the model X(¢) is viewed as a random variable whose value in the given
observed realization has been selected according to a probability distribution.
The collection of these random variables for all times —o <t <, along with
their joint probability distributions, is a stochastic process. By imposing the
physical conception of unchangingness or stationarity on the probability dis-
tributions of the stochastic process, this model becomes a stationary stochastic
process. However, the spectral theory, at least as we will deal with it, involves
only the first two moments, the mean and covariance, of the model. Con-
sequently, it is really only necessary to impose the stationarity conditions on
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these moments. When this is done, the stochastic process is called weakly (or
second-order) stationary.

The stationarity assumption implies that the process means EX(¢), (where E
denotes the expectation operator), are unchanging in time; EX(f)=,m. Only
the behavior of the residuals of the process from this constant mean value are
of theoretical interest. We can shift to the residuals without changing notation
simply by assuming m = 0. This will be taken as the value of the mean
hereafter. The only process parameter of interest is then the covariance
function R(#, ) = EX(t))X(;) which describes the stochastic relationship
between measured values of the physical phenomena at pairs of time points #
and .

The condition of stationarity implies that the physical phenomenon has no
relevant time origin; its behavior during one time epoch is the same as it would
be for any other. If this condition is imposed on the model, it would imply that
the joint behavior of the process at times #; and ¢, is precisely the same as it
would be for any time translation of these points, ¢+ t; and ¢+ t,. That is, for
all ¢, t; and 5,

R, )= R(@+1t,t+ ).

This being true, by taking ¢t = —#;, we see that R{t;, ;)= R(0, t,— t;). That is,
the covariance depends on f, and £, only through the time difference #,— ;. The
covariance is then completely characterized by the function

C(r)=R(0,7), —o<rt<o,

called the autocovariance function of the process.

The implication of accepting this model for the physical process under study
is that all of the interesting and relevant information about the process is then
contained in the values of C(7). One such value is C(0) = EX?(t), the process
variance. (Because of the stationarity property, this quantity actually does not
depend on t) The variance represents the average ‘energy’ or power of the
process. It has the physical interpretation of a time average of energy because
of the property

T

A 2 -
lTlfizT _TX(t)dt—C(O).

The precise meaning of this expression in the stochastic setting and its proof
can be found in several of the references given in the introduction.

Without the factor of 1/2T in the last displayed expression, power resembles
a sum of squares similar to the usual measure of variability seen in the ‘analysis
of variance’. The representation of the response vector as a linear combination
of subcollections of mutually orthogonal vectors makes possible the decom-
position of the total sum of squares into a sum of component sums of squares
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each of which represents the contribution of a different factor in the model.
The term ‘analysis of variance’ actually refers to this decomposition.

Spectral analysis performs precisely this same operation on time series. In
the time-series context, the orthogonal vectors of the decomposition are the
cosine functions

A(A)cos(At+ 8(A)), —o<p<oo,

where, for given frequency A (in radians per unit time), A(A) represents the
amplitude and 6()) the phase of the cosine function. The functions are viewed
as being indexed by A and functions with different values of this index are
orthogonal. The fact that these same functions crop up in so many different
mathematical contexts is what makes Fourier analysis such a rich field of study.
Their appearance in the context of weakly stationary stochastic processes
provides the mathematical foundation for the spectral analysis of time series.

4. Spectral representations

The spectral representations we will deal with involve writing the cosine
functions in a different form. We first rely on the law of cosines to write
cos(At + @) = cos 0 cos At —sin 6 sin At. We then use the representation e =
cos ¢ +isin ¢ to write A cos(Ai+ 0)=c e+ ¢e ™ where ¢ is the complex
number such that 0 = arg(c) and A = 2|c|. It follows that if we let c¢(A)= ¢ and
c(—=A)=¢, then a sum of the form

> A(A)cos(Ar+ (1))

A=0

can equally well be represented as

> c(A)e,

A

where both positive and negative frequencies are involved in this second form.
The functions e inherit the orthogonality of the cosine function for different
values of A.

For weakly stationary processes, the ‘sum’ is actually an integral and the time
series has the spectral representation (or decomposition)

X(t) = f e Z(d)).

The complex-valued amplitude function Z(A) is a stochastic process and some
care is required to properly define this integral. However, intuition is best
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served by ignoring both mathematical precision and theoretical details. Simply
view this expression as representing X(f) as a linear combination of the
orthgonal functions e*. The complex amplitude Z(dA) contains both the
amplitude and phase of the cosine in the alternative ‘sum’ representation given
earlier. Consequently, amplitude and phase are random quantities. Thus X (¢)
can be viewed as being made up of a ‘sum’ of an infinite number of cosine
terms, each of a different color or frequency and with randomly selected
amplitude and phase.

The analog of the analysis of variance is now obtained from a similar spectral
representation (decomposition) of the autocovariance function:

C(r) = f eMF(d)).

The function F(A) is called the spectral distribution function or, more simply,
the power spectrum of the process. It represents the total power in frequencies
to the left of A. In intuitive terms, the quantity F(dA)= F(A +dA)—F(A)
represents the amount of power in the time series at frequency A. The analysis
of variance would correspond to having the total power C(0) equal to the ‘sum’
of the power contributions at each frequency. This interpretation follows from
the spectral representation of the autocovariance function by setting 7 = 0:

C)= f F(d)).

However, the spectral representation of the autocovariance function has an
importance beyond this. It tells us how to obtain C(7) for all 7 if the function
F(\) were known. It can be shown (with some difficulty) that F(A) could be
recovered if C(7) were known completely. That is, these two functions are
equivalent parameterizations of the time series. In a sense, they contain the
same information about the process. This statement is quite misleading,
however, and lies at the root of the unfortunate dichotomization of time-series
analysis into separate time-domain and frequency-domain methodologies. One
can argue that, since both parameters contain the same information, it is
sufficient to study one of them. The time-domain devotees concentrate on the
study of C(7), while spectrum analysts confine their attention to F(A). The
problem with this dichotomized effort is that each parameter displays the
time-series information in different ways. Some features of the series are easily
detected by looking at C(7) but nearly impossible to detect from F(A). The
converse is equally true. This is why the practicing time-series analyst must be
able to operate effectively in both domains. The time-domain tools have the
advantage of retaining the time dimension, thus the intuition associated with
time-varying phenomena.

Spectral-domain methods, on the other hand, exchange time for frequency
and it is necessary to develop new intuition and thought processes in order to
interpret the results of spectral analyses for which the goal is the study of F(A).
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5. The different types of spectra

Before going on, it is appropriate to look more closely at the kinds of
physically relevant spectra the mathematical model is capable of representing.
A physical phenomenon that exhibits all of the relevant forms of spectra is
light. For example, the spectra of starlight are known to be composed of both
lines at distinct frequencies (colors) and a more amorphous blend of energy in
bands of frequencies. These are physical realizations of what are called discrete
or line spectra and continuous spectra, both of which are representable in the
mathematical model.

The power spectrum can be represented as the sum

F@dA)=p@)+f@d)da,

where p(A), called the spectral function, represents the power in the discrete
spectrum at frequency A and f(A), the spectral density function, represents the
intensity of the continuous spectrum at A. There are at most a countable
number of points Ag=0, *A;, *A, ... at which p(A) can be positive. The
discrete power in any interval of frequencies I is then =,er p(A;). The con-
tinuous power in I is f; f(A) dA. The representation of F(dA), above, admits the
possibility of a mixed spectrum in which both continuous and discrete power
are present together, as in the starlight example. Pure spectral types would be
represented mathematically by taking the function representing the other type
to be identically zero. By far the more commonly occurring case in practice,
and the one considered almost exclusively in the statistical estimation of
spectra, is that of pure continuous spectra. Mixed spectra can be easily reduced
to this case by first identifying, estimating and removing the discrete com-
ponents. Since we will not be concerned with spectral estimation in this
chapter, details of this procedure are omitted. However, in the subsequent
discussion, we will be concerned primarily with pure continuous spectra. Where
the theory does not depend on spectral type, the F(dA) notation will be
retained. Where it does, we will use the spectral density notation.

6. Spectra and linear filters

The relationship between the random amplitude Z(dA) and the spectrum
F(dA) is important and can be expressed as follows:

S _ [F(A) ifp=A,
EZ(dA)Z(d“)_{O A
This expression tells us that the variance of Z(dA) at frequency A is F(dA). (We
ignore the measure theoretic niceties and think of Z(dA) as a complex-valued
random variable with zero mean attached to the frequency A. The variance is
then E|Z(dA)P.) Moreover, the covariance EZ(dA)Z(du) is zero if u+# A,
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indicating that the amplitude functions at different frequencies are uncor-
related. Thus problems of describing and dealing with the possibily complicated
interrelations of the variables X (¢) through the autocovariance function C(7)—
problems, in theory, involving simultaneously the infinity of time dimensions—
reduce to an infinite number of uncorrelated and identical finite-dimensional
problems—one associated with each frequency. Moreover, except for the
minor complication that complex quantities are involved, these finite-dimen-
sional problems will closely resemble familiar problems of statistics.

Perhaps one of the most important applications of the spectral theory, and of
these intuitive ideas, is to linear filters. The uses of linear filters are woven
throughout the entire fabric of time-series analysis. They are used to model
physical mechanisms that convert one time series into another. Thus the earth
converts the impulse of an earthquake into the complex pattern of waves seen
on seismographs in a manner that can be, to a good first approximation,
described by a linear filter. Many other physical ‘filters’ are also well described
by linear filters. In other uses, linear filters are designed to perform purposeful
transformations of time series. Time-series models, such as the autoregressive
and moving average models, familiar in many applications, are defined in terms
of linear filters. The construction of a linear predictor of future time-series
values is the construction of a special linear filter. The list of applications goes
on and on.

Granting their importance, just what are linear filters? A general description
of their properties is as follows. (See [11] Chapter 4 for a more careful
discussion.} A linear filter L transforms an input time series X(¢) into an
output time series Y(¢), written Y (¢) = L(X(#)), in such a way that L{a; X () +
ar Xo(1) = oy L(X1(t) + a,L(X,(t)). Here @, and a, are real constants which
change the scales of the two time series X;(¢) and X,(¢), and the sum indicates
addition of the series at each time z This property accounts for the term
‘linear’ in the name of these filters. The separate properties L(aX(#))=
aL(X (1)) and L{X1(t) + X3(2)) = L(X1(2)) + L(X,(t)) are called scale preservation
and the superposition principle, respectively. The last property of a linear filter is
time invariance, which specifies that if L(X ()= Y (), then L(X(¢t+ h))=
Y (¢t + h) for any h. Intuitively, this simply means that the filter operates in the
same fashion no matter what the time origin is—its behavior does not change
with time. :

The importance of linear filters in the mathematical theory of weakly
stationary stochastic processes is connected with the fact that they preserve
weak stationarity. That is, if X (¢) is a weakly stationary process, then so is
Y () = L(X(r)). Consequently, the behavior of L on X (¢) must be observable
from the relationships between the parameters of the input and output proces-
ses. The relationship between the autocovariance functions of X(¢) and Y (¢)
can be either complicated or simple depending on the specific form of the filter.
On the other hand, the relationship between input and output spectra is always
simple, regardless of the form of the filter. This is one of the key advantages of
the spectral theory.
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Without going into details, if the input process has spectral representation
X()= [ enzx(@n),
the output process Y (¢) = L(X(¢)) has representation
Y(r) = f EMD(A)Zx (dA),

where D(A) is called the mransfer function of L. This function is complex-
valued, in general, and can be obtained by applying the filter to the sinusoids
e for each A:

LEe*)=D(A) e,
For example, an important special linear filter is the derivative

- 4X(@)
L(X (t)) - dr
Applying L to e, we see that

d ei/\t
dt

=i\ ei¥

Thus the transfer function of the derivative is D(A) = iA.
To see how input and output spectra are related, we note from the expres-
sions above that the amplitude functions are related by the equation

Forming variances,

E|Zy(dA)P = |DQ)PE|Zx (dA)P
or
Fy(dA) =|D(A)PFx(dA).
Thus the spectra of input and output differ simply by the factor |[D(A)P. In

particular, the spectrum of the derivative of X (¢) would by |A2Fx(dA).
The condition that the output series have finite power or variance is

[ 1D @r) <co.
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When this condition is satisfied, the filter and input series are said to be
matched. For example, in order for an input series with pure continuous
spectrum and spectral density fx(A) to match the derivative, we must have

[ nps)ar <.

This clearly imposes a restriction on how much power X(¢) can have at high
frequencies. If we agree that matching is a necessary constraint, it follows that
not all time series can be differentiated.

An intuitive idea of how linear filters operate can be gained by using the
polar representations of the complex quantities D(A) and Zx(dA). Write

Zx(dA) = |Zx(dA)]e*®.

Then | Zx(dA)| represents the random amplitude of the periodic contribution to
X(t) at frequency A and 6(A) is the random phase, as described in Section 4.
Now, writing D(A) = |D())| €*®, we see that

Zy(dA) = |D(A)] | Zx (dA)] e@rrsa)

That is, the effect of the filter is to multiply the amplitude at frequency A by the
factor |D(A)| and to shift the phase by ¢(A). These separate components of
the transfer function are called the gain function and phase (shift) function,
respectively. The gain and phase-shift functions of the derivative are

D)= Al
and
ZZT_ fora >0,
s)=1 %
> fora <0.

Note that if a linear filter with transfer function D(A) is viewed as modeling a
‘black box’, whose properties are to be determined from the input and output
time series, it is not sufficient to compute the power spectra of input and
output. The reason for this is that only the gain function of the filter can be
determined from the spectra:

Fy(dA)
Fx(dA)”

ID@) =

In order to capture the phase shift of the filter as well, we need additional
spectral parameters for defining relationships between the two time series.
These parameters are discussed next.
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7. Spectral parameters for bivariate time series

Two weakly stationary processes X(¢) and Y(¢) are said to be stationarily
correlated if the covariance Rxy(t;, &) = EX ()Y (t;) depends only on t ~ t,.
The cross-covariance function Cxy(7) is then defined to be

Cxy(r)=EX(+1)Y(1).

A pair of stationarily correlated weakly stationary processes constitutes a
bivariate weakly stationary process. The cross-covariance function is the new
time-domain parameter which, along with the autocovariance functions Cx(7)
and Cy(7), completely describes the relevant properties of the bivariate
process. The corresponding spectral parameter Fxy(dA), called the cross-
spectral distribution or, more simply, the cross spectrum, satisfies the relation

Ciy (7) = f €M Figy (dA)

The cross spectrum has discrete and continuous components pxy(A) and fxy(A),
called the cross-spectral function and cross-spectral density, for which

Fxy(dA) = pxy(A) + fxy(A) dA .
These functions will be nonzero only where the corresponding spectral func-
tions or spectral densities are nonzero for both component processes.

The input and output of a linear filter will always be stationarily correlated.
Consequently, we can compute the cross spectrum of such series. It is con-
venient to use the fact that Fxy(dA) is the (complex) covariance of Zx(dA) and
Zy (dA ):

If Y(£)= L(X(¢)) and L has transfer function D(A), then
Fxy(dA) = EZx(dA)[D(A)Zx(d))]
= D(A)EZx(dA)Zx(dA)

Thus the transfer function, complete with both gain and phase information, can
be computed as
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This, of course, is only one possible use of the cross spectrum. In general, the
cross spectrum contains information about the interrelationship between the
components of a bivariate time series in much the same way that a covariance
measures the linear relationship between two random variables. In fact, this
analogy is much closer than one might imagine. In each frequency dimension A,
the cross spectrum is essentially the covariance of the two ‘random variables’
Zx(dA) and Zy(dA). The chief difference is that these variables are complex-
valued, which makes the covariance complex-valued as well.

Two different real-valued representations of the cross spectrum are in
common use, each depending on a particular expression for complex numbers.
In order for our notation to agree with that seen in practice, we will take the
spectrum to be of continuous type. The cross spectrum is then determined by
the cross-spectral density fxy(A). Representing fxy(A) in Cartesian form (with a
negative sign) leads to the equation

fryr(A)=c(A)-ig(A),

where ¢(A) and g(A) are the cospectral density (or cospectrum) and quadrature
spectral density (or quadspectrum), respectively. Thus one complete list of
real-valued spectral parameters for the bivariate process would be c(A), g(A),
fx(A) and fy(1).

A second set of parameters is obtained from applying the polar represen-
tation z = r €' to fxy(A), where r =|z| and 6 = arg z. Here, we let

__ ) -
p(A) \/m and §(A) = arg fxy(A).

These parameters are called the coherence and phase, respectively. Along with
fx(A) and fy(A) they represent an alternate real-valued parameterization of the
bivariate process. In the author’s view, this parameterization is the more useful
one because of its interpretability.

Writing Zx(dA) and Zy(dA) in polar form, we have

fxr(X) = EZx(dA)Zy(d2)
= E|Zx(dM)] | Zy(d1)] eiexr-ov0)

If the phases 0x(A) and 6y(A) were constant, the exponential would factor out
of the expectation giving

PA)=0x(A)— 6,y(1).

In this case, (1) would represent the phase lead of the X(¢) time series over
that of the Y(r) series at frequency A. Since, in general, the phases will be
random, this interpretation will not be precisely correct. However, (1) will
still represent a weighted stochastic average of the phase differences and it is
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useful to think of this parameter as the (or an) average phase lead of X(¢) over
Y ().

The coherence behaves almost exactly like the absolute value of a cor-
relation coefficient. For example, 0 < p(A)=<1, with values near 0 indicating a
weak linear relationship at frequency A and values near 1 a strong relationship.
In the time-series context, ‘linear’ refers to linear filters. That is, p(A) measures
the degree to which Y (¢) can be represented as the output of a linear filter with
input X(#). In fact, p*(A) has precisely the interpretation of the coefficient of
determination. It is the proportion of the variation (power) of Y () at A that is
attributable to its linear relationship with X(¢) in the following sense: If L is
the linear filter that minimizes the power, E(Y (¢)— L(X(?)))* in the ‘residual
process’ among all filters L, then p?(A) is the ratio of the spectral density fy(A) to
fr(A), where Y (£) = L(X (¢)). The process Y (f) represents the best approximation
to Y (¢) as a ‘linear function’ of X (¢) and p%(A) then represents the proportion of
the power in Y (¢) at frequency A attributable to Y (¢). Thus, for example, if Y (¢)is
exactly a linear function of X(t), Y(f)= L(X(?)), and if D(A) is the transfer
function of L, then we see from earlier calculations that

v L QP
PR = E V)

__ IDAfO)?
DM ()

=1.

Another important property of the absolute value of a correlation coefficient
is its invariance under linear transformation. This property also holds for
coherence. Thus, if X(¢f) and Y(¢) have coherence function p(A) and if
U@)= Li(X(r)) and V()= Ly(Y(t)), where L, and L, are arbitrary linear
filters, then p(A)-will also be the coherence of U(f) and V(¢) at all frequencies
for which the spectral densities fy(A) and fy(A) are both positive. These
properties make it possible to translate one’s intuition about correlation and
simple linear regression directly to coherence for a frequency by frequency
assessment of the association between two time series.

8. Spectra of multidimensional processes

The discussion of the last section implies that at each frequency the matrix of
spectral densities for a bivariate time series,

RO fr)
ﬂ“‘bmu)ha)]

(where fyx(A)= fxy(A)), behaves like the covariance matrix of two random
variables.
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Linear filters in two or more dimensions also have a familiar matrix
representation in the frequency domain. For example, if a ‘black box’ with two
inputs and two outputs is a linear filter, each input would contribute linearly to
each output. If B;(A) represents the transfer function of the contribution of the
ith input to the jth output, the behavior of the filter is completely described by
the matrix of transfer functions

_ [Bu(A) Bn(r)
B@)= [321(/\) Bzz()‘)] '

In particular, if Z(dA)= (Zx(dA), Zy(dA))T is the vector of complex amplitudes
of a weakly stationary bivariate input process, the vector output process can be
represented as

W)= f MB(\)Z())

where matrix multiplication has been used inside the integral and the in-
tegration has then been carried out coordinatewise. In the same sense, the
spectral density matrix of the output process is

B(A)f(A)B*(A),

where * denotes the transpose of the coordinatewise complex conjugate of
B(A).
Thus writing the amplitude vector of the output process W(¢) in the form

Zout(dA) = B()‘ )erl(dA ) ’

we see that the linear filter behaves exactly like a two-dimensional linear
transformation in the frequency domain. Moreover, the spectral density matrix
is transformed by a linear filter in exactly the same way that a covariance
matrix is by a linear transformation. Again, the only added complication is that
the matrix elements are complex-valued.

These ideas and formulas generalize immediately to p-dimensional time
series for any finite value of p. Then, the parameters and methods of analyzing
the covariance structure of a vector random variable can be applied to the
frequency-domain representation of the vector weakly stationary stochastic
process. Partial and multiple coherences can be used for the same purposes as
are partial and multiple correlation coefficients. However, in the time-series
context, phase information is also available in the polar representations of
these parameters. Partial and multiple coherences are important parameters in
time-series versions of multiple regression.

Methods of multivariate analysis such as canonical correlation analysis and
principal component analysis also have time-series analogs which use these and
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other spectral parameters defined in analogy with the appropriate multivariate
parameters. Examples of these methods are given in [4, 6, 11]. The possibilities
have by no means been exhausted. It is expected that many fruitful applications
of spectral methods to multidimension processes will be made in the future.
The third flowering of spectral analysis may well lie in this direction.
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Robust—Resistant Spectral Analysis

R. Douglas Martin*

1. Introduction

Resistance and robustness

This tutorial paper describes some methodologies for obtaining resistant
estimates of spectral densities. Resistance is a term coined by Mosteller and
Tukey (1977); roughly speaking it means insensitivity to changes in the data. More
specifically, a resistant estimate is one which is not affected very much by (i)
changing a small fraction of the observed data by possibly large amounts, or (ii)
changing all the data by small amounts. Large changes in a small fraction of the
data occur either when gross errors are made in recording the data, or when
the data by its very nature makes occasional large excursions. All the data may
be changed by small amounts, for example, when grouping, rounding or
quantization effects are present.

The term resistant is a purely data-oriented word, which has as both an
advantage and a disadvantage the fact that technical probability and mathema-
tical statistics issues are not involved. The quality of resistance is to be judged
solely in terms of the functional or algori