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Resumo

Uma rede estatística é uma cole,cão de nós representando variáveis aleatórias e

u

um conjunto de arestas que ligam os nós. Um modelo estocástico por isso e chamado

m modelo gráfico. Estes modelos, de gráficos e redes, sáo particularmente úteis para

f

examinar as dependéncias estatísticas baseadas em condi,coes do tipo das que ocorrem

requentemente em economia e estatística. Neste artigo as variáveis aleatórias dos nós

-

d

serão séries temporais ou processos pontuais. Os casos de gráfos direcionados e não

irecionados são apresentados.

Abstract

A statistical network is a collection of nodes representing random variables and a

-

c

set of edges that connect the nodes. A probabilistic model for such is called a graphi

al model. These models, graphs and networks are particularly useful for examining

-

t

statistical dependencies based on conditioning as often occurs in economics and statis

ics. In this paper the nodal random variables will be time series or point proceses.

�

The cases of undirected and directed graphs are focussed on.
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1. Introduction.

Graphical models, that is probability models on networks of vertices and edges,

b

are experiencing a surge of research development today. One can point to the books

y Whittaker (1990) and by Edwards (1995) as well as to many papers, for example

e

i

those listed in the References section. The study of graphical models has becom

mportant in the field of statistics and in the social sciences generally. It can be antici-

e

pated that such models will prove useful in addressing basic questions arising in

conomics concerning structural and causal modelling.

d

fi

Given its historical roots in path analysis, simultaneous equations, structural an

nally recursive models, research on graphical models is of importance to economists

f

i

and econometricians. An economy can be viewed as a vast system or network o

nterconnected processes. In various circumstances the connections (or edges) are of

-

t

particular interest and the processes are either time series or point processes. Struc

ural approaches, eg. via time series or econometric models, are well known to

)

a

economists and econometricians, see eg. Granger (1980), Hendry and Richard (1983

nd Harvey (1989). This paper focuses on some of what graphical models have to

offer.

As an example of a conceptual economic network, of some historical interest, one

e

m

can mention the Philips machine, Philips (1950), Swade (1995). Pictures of th

achine may be found in those references. Figure 1 presents a graph of Philips’ Sim-

i

ple Model. The machine was meant to represent the behaviour of the British economy

n the late forties. The arrows indicate the direction of the flow of liquid in the

o

machine. Water is pumped to the top and flows downwards. Savings (S) are siphoned

ff into a separate loop and fall into a tank (M’). Portions of these rejoin the main

n

a

flow as expenditure (E) and investment (I). The net flow at the bottom accumulates i

tank. The level of the tank represents the working balance (M) required for a given

rlevel of economic activity. The liquid is pumped back to the top. The flow of wate
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y

t

represents the movement of money and the accumulation of money is represented b

he water collecting in tanks. Results are read off from scales located at various

h

places. Flow is initiated, for example, by altering expenditure. The series involved

ere are (continuous) time series.

Less often economic data of point process form, {τ }, occur. That is the measure-j

a

c

ments are the times of occurence of certain events, such as the times of change of

ountry’s prime interest rate or the ticker times of stock sales. Economic data may

s

(

also be of marked point process form, consisting of times and associated value

marks), eg. the times of change of the prime rate together with the value of the new

srate, {(τ ,M )}. In this paper time series and point processes are labelled by the nodej j

of a graph and corresponding statistical models discussed. The models may involve the

-

t

processes at vertices u and v being conditionally independent given the remaining ver

ices. Such a question may be formulated as involving the existence or nonexistence of

-

t

an edge connecting vertices u and v . Recognizing such structure allows decomposi

ion of the estimation problem into simpler components, in various cases. The ques-

tion of measuring the strengths of connections present is also addressed in this article.

The use of graphs to represent statistical models dates back at least to Wright

(

(1921) and his work with path models. One can also mention the graphs of Tinbergen

1939), page 138, for causal connections between disturbances and profits and of Wold

e

s

(1956), page 45, for a demand-supply model. Another example is provided by th

chematic diagrams so often employed in systems analysis. Networks are present in

e

r

compartment analyses (see Jacquez (1972)). Here substances flow between and ar

etained in certain compartments. Influence diagrams and Bayseian networks are

s

a

related topics, see Smith (1989), Normand and Tritchler (1992). Pearl (1995) present

framework for causality and the manipulation of probabilities associated with such

n

e

graphical models. Causal analysis is further discussed in Glymour et al. (1987). A

xample of a marked point process is provided by a queuing network. Here there is a
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et of interconnected nodes, each node consisiting of a queue, where customers wait

for service, and there are one or more servers. (See Brémaud (1981), for example.)

This present work consititutes a simple beginning discussion of the time series

f

g

and point process cases of graphical models. It is to be noted that the meanings o

raphical representations differ between authors and applications, and this needs to be

kept in mind when reading the literature.

The layout of the paper is: first some basic concepts of graph theory and graphi-

d

cal models are presented, then consideration turns to the cases of continuous and

iscrete ordinary random variables, finally the time series and point process cases are

2

addressed. The paper ends with a discussion and summary.

. Graphical Models.

A graphical model is a statistical model embodying a set of conditional indepen-

p

dence relationships which may be summarized by means of a graph. This section

resents some general concepts and then moves on to the specific cases of undirected

.

G

and directed graphs. The goal, for inferential purposes, is the likelihood function

eneral references include: Whittaker (1990), Lauritzen et al. (1990), Wermuth and

Lauritzen (1990), Cox and Wermuth (1993), Edwards (1995).

A graph is a pair G = (V ,E ) where V is a finite set of nodes (or vertices) and

2

p

E , the set of edges, is a subset of V × V , the ordered pairs of distinct nodes. Figure

rovides an example with 4 nodes and 2 edges. An edge (α,β) in E is called

a

l

undirected if both (α,β) and (β,α) are in E . An undirected edge is indicated by

ine. A graph is simple if there are no multiple edges or loops. (This will be assumed

f

n

throughout the paper.) This is the case in Figure 2. A clique is a maximal set o

odes, joined to each other. For Figure 2 the cliques are: {1}, {2,4}, {3,4}. An

i

undirected graph is one with only undirected edges. An edge (α,β) is called directed

f (α,β) is in E , but not (β,α). A directed edge is denoted by an arrow →. A
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irected graph is one in which all edges are directed. Figure 3 and 4 provides exam-

4

ples of directed graphs. There are two directed edges in Figure 3 and three in Figure

. An acyclic directed graph has no paths beginning and ending at the same node.

b

The graphs of Figure 3 and 4 are acyclic, while the graph of Figure 1 is cyclic (feed-

ack is present).

.2.1 Undirected Graphs

A set B of vertices separates the sets A and C if all paths from vertices in A to

r

a

C pass through B . An undirected graph possesses the global Markov property if fo

ny triple (A , B , C ) of disjoint subsets of V , such that B separates A from C , the

evariate (Y ) is statistically independent of the variate (Y ) given the variata a in A c c in C

( b b in BY ) . Conditions for this occuring may be found in Lauritzen et al. (1990). In

e

f

broad circumstances it may be shown that the probability density of Y then has th

orm

f (y) = ψ (y) (2.1)

w

Π
γ

γ

here the product is over all the cliques γ of G . For the graph of Figure 2 this means

f (y , y , y , y ) = g (y )h (y , y )i (y , y )1 2 3 4 1 2 4 3 4

4H 2 3ere the variates Y and Y are independent given the variate Y . This type of condi-

-

a

tional independence is typical of undirected graphs. Taking f (.) to be say a multivari

te normal density, the factorization can indicate directly parameter values which need

to be set to 0.

For the case of undirected graphs, Geiger and Pearl (1993) show that every axiom

h

r

for conditional independence is an axiom for graph separation and that every grap

epresents a consistent set of independence and dependence constraints. They con-

clude that graphs provide a safe language for encoding statistical dependencies.

There is also a form of the results for discrete variates, with the densities replaced
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by probability mass functions.
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.2 Directed Graphs.

Consideration next focuses on directed graphs in the acyclic case. In empirical

a

analyses the arrow may represent a direction of influence or of causation or of a vari-

te value at an earlier time point. For a and b vertices, a is a parent of b if there is

a directed edge a → b . The set of parents of the vertex b is denoted pa (b ).

A directed acyclic graph possesses the directed global Markov property if the

density admits a recursive factorization,

f (y) = k (y ,y ) (2.2)
v in V

v v pa (v )Π
v v v pa (v ) l

d

for some functions k . The term k (y ,y ) has the interpretation of the conditiona

ensity of Y given Y . Conditions for this property are given in Lauritzen et al.

(1990).

v pa (v )

For the graph of Figure 3 the factorization is:

)f (y ) f (y ) f (y ) f (y � y ,y1 1 2 2 3 3 4 4 2 3

with pa (4) = {2,3}. For Figure 4 it is

f (y ) f (y � y ,y ) f (y � y )

w
1 1 2 2 1 3 3 3 1

ith pa (2)={1,3} and pa (3) = {1}. One might consider the hypothesis

f (y � y ,y ) = f (y � y )2 2 1 3 2 2 1

e

l

i.e. that there no direction connection of vertex 3 to vertex 2. The expressions abov

ead directly to likelihood functions useful for inferential purposes.

2.3 Strength of connections.

Suppose there is a graphical model. One may wish to describe the strength of

-

s

connection associated with a particular edge. Two (related) measures may be con

idered. The first is the mutual inf ormation , the second is the change in deviance

ewhen an edge is removed from the model. The measures will be seen to be quit
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related.

Consider continuous random variables X and Y with joint density p (x ,y ) and

marginals p (x ) and p (y ). The mutual information between X and Y isX Y

XY
X Y

I ∫∫= p (x ,y ) log
p (x )p (y )

p (x ,y )�����������dxdy

r

s

It is seen to be 0 in the case that X and Y are independent and > 0 otherwise. Fo

ome discussion of this quantity see Granger and Hatanaka (1964), Kanter (1979) and

Parzen (1983).

The mutual information may be related to the differential entropy of a random

variable. For a random variable Y , with density p (y ), the differential entropy isY

Y Y Y∫H = − p (y ) log p (y ) dy

and one sees that

I = H − H X

in particular.
XY Y Y �

The deviance of a stochastic model is minus twice the loglikelihood,

− 2 log p (y ). The change in deviance that results from fitting a submodel proves aY

X Y ,

t

useful quantity. Consider fitting the submodel of independence, p (x ,y ) = p (x )p (y )

hen the change in expected deviance is

−2 p (x )p (y ) log p (x )p (y ) dxdy + 2 p (x ,y ) log p (x ,y ) dxdy∫∫ ∫∫X Y X Y

XY

D

= 2 I

eviance change and mutual information are thus closely related and either may be

considered as a measure of strength of a connection.

In the case of a graphical model one can study the change in deviance when one

a

fits, both including a particular edge and not. The values may be added to a graph in

presentation of the results of the analysis. The edge might be directed or not. Some

fcomputer programs are available for carrying out the computations, eg. MIM o
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3

Edwards (1995).

. The Continuous Case.

Suppose one is dealing with random variables having continuous distributions.

3.1 The Undirected Case.

In the Gaussian case, conditional independence corresponds to zeroes in the

a

inverse of the covariance matrix. Such models were studied in Dempster (1972) and

re referred to as covariance selection. The model on the graph will have the condi-

m

tional independences built in and estimates will need to reflect this. The inverse

atrix corresponds to an undirected graph in the sense that the entry in row u , column

.

M

v being 0 corresponds to no edge (u ,v ) in the graph whose nodes are all the labels

ore specifically let {Y , v ε V } be normal with covariance matrix ΣΣ. Suppose ver-v

u v e

t

tices u and v are unconnected in the independence graph. The variates Y and Y ar

hen statistically independent given the rest and

R(ΣΣ ) = 0 =−1
uv uv � rest

t

o

where R is the matrix of partial correlations. See Whittaker (1990) for a developmen

f this result.

To examine the possibility of 0 partial correlation empirically, one can look for

a

near 0 entries in an estimate R̂̂ of R or examine the change in deviance resulting from

ssuming first R is arbitrary and then that it is 0.uv � rest

.3.2 The Directed Case

One would work with joint densities factorizing as in (2.2) and examine the

r

F

difference in deviance between the models with the edge present and absent, eg. fo

igure 4 the cases

f (y ,y ,y ) = f (y ) f (y � y ,y ) f (y � y )

or
1 2 3 1 1 2 2 1 3 3 3 1
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= f (y ) f (y � y ) f (y � y ) (3.2.1)

4

4. Discrete Case.

1 1 2 2 1 3 3 1

.1 The Undirected Case.

In the case that the random variables, Y , v ε V , are discrete-valued, undirectedv

tgraphical models may be described by loglinear models. With Y such tha

Prob {Y = y} = π(y)

one may write

log π(y) = g (y )Σ
a

a a

vu s

e

where a ranges over the subsets of V . Then Y is independent of Y given the rest i

quivalent to g = 0 if {u ,v } is in a , see Whittaker (1990), Edwards (1995).

T

a

he conditional independence hypothesis may again be examined by the edge

f

exclusion deviance, that is the change in −2 loglikelihood when the edge is removed

rom the graph.

.4.2 The Directed Case

Now one would work with conditional distributions, given parents, and a joint

(

probability function as in (2.2) and in the case of Figure 4 for factorizations like

3.2.1).

4.3 Extensions.

There are mixed discrete/continuous models, see eg. Lauritzen (1989), Whittaker

v

(1990), Edwards (1995). In the contemporary research on this topic, given the discrete

ariables, the continuous variables are typically assumed jointly Gaussian.

5. Time Series.

Now random sequences and functions are under consideration.
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Consider the stationary vector-valued series Y(t ) where t is discrete or continu-

t

ous. The strength of association of the u -th and v -th components may be measured by

he crosscorrelation f unction

corr {Y (t +s ), Y (t )} (5.1.1)u v

nas a function of lag s or alternately by the coherency f unctio

R (λ) = lim corr { e Y (t ), e Y (t )} (5.1.2)uv
T →∞ t

−i λt
u

t

−i λt
vΣ Σ

e

o

as a function of frequency λ. As written, in (5.1.2), time is discrete and the sums ar

ver t = 0, . . . , T −1. Both (5.1.1) and (5.1.2) are identically 0 in the case that the

series Y and Y are statistically independent. The coherency matrix is a close analogu v

of a correlation matrix being the correlations of the components of frequency λ in the

series Y and Y , see Brillinger (1975).u v

In the case of a stationary Gaussian time series {Y(t )}, the mutual information of

the components Y and Y isu v

uv
2− ∫2π

�1�� log{1 − �R (λ) � }d λ

)

o

see Pinsker (1964), Granger and Hatanaka (1964). The coherency function (5.1.2

ccurs in this last expression. The measure is 0 when R ≡ 0 and ∞ when R ≡ 1.uv uv

vu ,

r

Suppressing the dependence on λ, the partial coherency of the series Y and Y

emoving the linear time invariant effects of the other series, is is given by

)R = (R − R R�� )/ (1− �R � )(1− �R � ) (5.1.3uv � rest uv u � rest v � rest u � rest
2

v � rest
2�√����������������

f

t

with the overbar denoting complex conjugate. This is the entry in row u , column v o

he inverse of the coherency matrix, R(λ) = [R (λ)]. It is a function of frequency, λuv

n

w

and so distinguished from the continuous variate case of Section 3.1. This functio

ill be identically 0 for stationary Gaussian Y when Y and Y are independent givenu v

,the rest. References to the concept of conditional coherency include: Tick (1963)
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.Granger and Hatanaka (1964), Brillinger and Hatanaka (1969,1970), Gersch (1972)

Following Granger and Hatanaka (1964), the partial mutual information of Y and

Yv

u

given the rest is

−
2π
�1�� log{1 − �R (λ) � }d λ∫ uv � rest

2

-

c

and one sees the appearance of the partial coherency. Coherency is an acausal con

ept, being identically 1 if either series involved is a linear time invariant filtered ver-

sion of the other, i.e. two-sided filters are allowed.

Sometimes one may wish to consider one-sided models and corresponding likeli-

hoods. For example consider the stationary autoregressive Gaussian case. Suppose

A[Y](t ) = E(t )

with Y and E r -vector-valued, with

A[Y](t ) = a(0)Y(t ) + a(1)Y(t −1) + . . . + a(p )Y(t −p )

and with

var E(t ) = σ I, cov {E(t +s ),E(t )} = 0 for s ≠ 0

c

2

onsider looking for 0 partial coherencies. The inverse of the spectral density matrix

is

2πA(λ)���� A(λ)/σ2τ

fand one sees that the entry u , v is 0 for all λ if and only i

a (t +s )a (t ) = 0
w
Σ Σ
=1

r

0≤t +s ,t ≤p
wu wv

for all s .

The strength of connection in these two cases may be estimated by the change in

deviance when model is fit both with some entries of A(.) identically zero and not.

Some distributions and estimates appropriate to the problems considered in this

section may be found in Andersen et al. (1995).
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5.2 The Directed Case.

One would set down a joint density function appropriate to the situation. In the

case of Figure 4 it might be derived from

Y f ree

2

1

s ≥1
21 1

s ≥1
23 3 2Y Σ Σ(t ) = a (s )Y (t −s ) + a (s )Y (t −s ) + ε (t )

Y (t ) = a (s )Y (t −s ) + ε (t )3
s ≥1

31 1 3Σ
3w 2 3 1 2ith ε (t ) and ε (t ) independent of past values of Y , Y , Y .

5.3 The State Space Case.

The book Harvey (1989) shows the ubiquity of the state space model in econom-

m

ics and econometrics. Vector ARMA’s and ARMAX’s are particular cases of this

odel. So too are models with complex, nonstationary trends and behavioral

econometric models. Included too is the case of time varying parameters.

One formulation is provided by

S = AS + BX + Ett t −1 t

t t t

w

Y = CS + εε
ith S the unobserved state vector, X an exogenous series and Y the endogenous.t t t

t tThe variates (E ,εε ) represent noise. The first equation is the transition equation, while

the second is the observation.

This state space model may be usefully described by a graph, see Figure 5, and

y

r

Normand and Tritcher (1992). The Kalman filter and algorithms developed b

esearchers in graphical modelling may be employed to predict and smooth Y here.

6. Point Processes.

t

The realizations of stochastic point processes are sets of points on the real line



.

- 13 -

. . < τ < τ < τ < . . .

F

0 1 2

or example the τ’s might correspond to times of: economic decisions, security sales,

,

s

or bankruptcies. A point process can also be described via counting functions

pecifically with I an interval one can set

N (I ) = # {τ in I } N (t ) = N (0,t ]

d
n

N (t ) = 1 if point in (t ,t +dt ]

R

= 0 otherwise

eferences to point process analysis include: Snyder (1975), Daley and Vere-Jones

6

(1988).

.1 Point Process Descriptions.

Under general conditions, the conditional intensity f unction characterizes a

vector-valued point process N. It is given by the vector-valued variate [µ (t �H )] ofu t

P u t u trob {dN (t ) = 1 �H } = µ (t �H )dt

swhere H = {d N(s ), s ≤t } The conditional intensity provides the likelihood and so it

basic to the analysis of point process data, see Snyder (1975), Daley and Vere-Jones

6

(1988).

.2 The Undirected Case.

The crossproduct density , of the components u and v of the stationary point

process N, provides a measure of strength of association. and is given by

Prob {dN (t +u ) = 1 and dN (t ) = 1}/dtdu (6.1.1)

T
u v

he association may also be studied via the coherency f unction

)R (λ) = lim corr { e , e } (6.1.2Σ Σuv
T →∞ m

−i λσ

n

−i λτn

w
m n

m

here Σ and Σ sum over points of the two types available in (0,T ]. These concepts

a

are analogs of the crosscovariance and coherency functions of time series mentioned

bove. There are also hybrid measures for time series and point processes.
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he partial coherency of components u and v , given the rest, is again defined by

-

u

(5.1.3). One can make two arguments for considering the partial coherency as a meas

re of conditional independence in the point process case. First, the empirical Fourier

n

transforms appearing in (6.1.2) satisfy a Central Limit Theorem, i.e. are approximately

ormal and one can look to the inverse of their covariance matrix as a measure of con-

ditional dependence. As an alternate argument, suppose that it is possible to write

dN (t ) = [ a (t −s )dN (s )]dt + d Γ (t )u Σ
j ≠u ,v

j j u

w u

∫
ith Γ a noise process such that

E {d Γ (t ) �N , j ≠u ,v } = 0

and
u j

cov {d Γ (s ),d Γ (t )} = 0

u v

u v

.

6

then the partial coherency of Y and Y will be 0

.3 Directed Case.

Suppose there is a directed network with three nodes having point processes as in

t

d

Figure 4. The arrows now mean that, for example, the behavior of process 2 at time

epends on the past of the other two processes. A structural model leading to associ-

.ated point processes Y and Y in the presence of a third point process Y , follows1 2 3

W 1 m 3 orite Y = {σ } and Y = {γ } and

U (t ) = a (t −σ ) + a (t −γ )
σm o<t

21 m
γ <t

23 o

2

Σ Σ
1 23 2 e

t

for summation functions a (.) and a (.) Suppose now that a Y point occurs at tim

when U (t ) upcrosses a random threshold θ(t ). The question of whether Y and Y 1

a 3 23

2

re independent given Y in this case may be phrased as: is a (.) ≡ 0? Given data

)this question may be addressed by fitting the model both with and without a (.23

present.

As an approximation to the likelihood based on the conditional intensity one pro-
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edure is to replace the point processes here by 0−1 discrete time series M , N , O ,

and to estimate parameters by maximizing the log likelihood

t t t

[N log Φ(U −µ) + (1 − N ) log(1 − Φ(U −µ))]Σ
t

t t t t

dwhere, for example, Φ(.) is the standard normal cumulative, an

U = m M + o Ou

∞
t −u

1

∞
t −u u

u =1
t

u =
Σ Σ

and

θ = µ + εtt

t d

n

Here it may be assumed that noise values ε are independent identically distribute

ormals. The strength of the edge 3 → 2 may be measured by the change in devi-

ance occurring when the function o is set to 0 identically.t

For related models and empirical analyses, motivated by biological neuron net-

works see Brillinger (1991,1995).

Explanatory variables may be included, eg. one corresponding to the presence of

m

an intervention. Set S (t ) = 1 when the intervention is present and = 0 otherwise. One

ight assume

dN (t ) = 1 if αS (t ) + a (t −s )dN (s ) upcrosses θ (t )u Σ
v ≠u 0

∞

uv v u

A

∫

s a measure of the strength of connection one can consider the change in devi-

ance resulting from refitting with some a (.) = 0.uv

7. Difficulties.

There may be unmeasured variates or measurement error, see Robinson (1986).

m

Interpretations can be fraunt with difficulties, as in the case of path analysis, see Freed-

an (1987). Feedback may be present, complicating the construction of the likelihood

8

function.

. Discussion and Summary.
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In distinction with the ordinary random variable case, the time series and point

f

process cases lead to the consideration of parameters that are functions, functions of

requency or lag.

Graphical representations have been found to be valuable in the sense that they

-

s

force one to think hard about the characters of the dependencies involved. Such con

iderations are basic to economics and econometrics, see Hendry and Richards (1983).

(

Econometricians are often lead to think about the issue of causality, see eg. Geweke

1984), and the current work on causality and graphs, see eg. Pearl (1995) and its dis-

cussion, has pertinent specific techniques to offer.

The referee made the basic point that temporal systems can be time-varying, the

a

graph may change (as an example I mention that nodes may appear or dissappear) and

more sophisticated structure is needed. I agree and thank the Referee for this and

other comments.

Experimental systems can provide a testbed for econometric techniques. The

n

techniques presented here have been validated, to an extent, by experimental data from

europhysiology, see Rosenberg et al (1989), Brillinger (1991,1995).
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F

Legends

igure 1. Philips Simple Model. C: consumption, E: total expenditure, I: investment

F

expenditure, M: surplus balances, M’: transfer balances, S: savings, Y: income.

igure 2. Example of an undirected graph, with 4 nodes.

.

F

Figure 3. Examples of a directed graph with 4 nodes and 2 directed edges

igure 4. Example of a directed graph with 3 nodes and 3 directed edges.

s

v

Figure 5. A directed graph representing the state space model with the exogenou

ariable X , the state variable S and the endogenous variable Y .t t t


