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To Liz



Alice sighed wearily. ‘I think you might do something better with the
time,” she said, ‘than waste it in asking riddles that have no answers.’

“If you knew Time as well as I do,’ said the Hatter, ‘you wouldn’t talk
about wasting it. It’s him.’

‘I don’t know what you mean,’ said Alice.

‘Of course you don’t”” the Hatter said, tossing his head contemptuously.
‘I dare say you never even spoke to Time!’

‘Perhaps not,” Alice cautiously replied: ‘but I know I have to beat time
when I learn music.’

‘Ah! that accounts for it,” said the Hatter. ‘He won’t stand beating.’

Lewis Carroll, Alice’s Adventures in Wonderland
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AR

MA
ARMA
ARIMA
SARIMA
TAR

ac.f.
acv.f.

FFT
NN
SWN
UWN
MD
MMSE

Ny, 0%
“

Y

B

E

(N, k)
iid.
{Z.}

Autoregressive

Moving average

(Mixed) autoregressive moving average
Autoregressive integrated moving average
Seasonal ARIMA

Threshold autoregressive

Autocorrelation function
Autocovariance function

Fast Fourier transform
Neural network

Strict white noise
Uncorrelated white noise
Martingale difference
Minimum mean square error

A normal distribution with mean p and variance o’

A chi-squared distribution with v degrees of freedom

The difference operator suchthat VX, = X, — X, _;

The backward shift operator such that BX, = X,

Expected value or expectation

The k-steps-ahead forecast of xy. made at time N
Independent and identically distributed

A purely random process — a sequence of i.i.d. random variables,
usually with mean zero



Preface to fifth edition

The analysis of time series can be a rather difficult topic, and my aim in writing
this book has been to provide a comprehensible introduction which considers
both theory and practice. Enough theory is given to introduce the concepts of
time-series analysis and make the book mathematically interesting. In
addition various practical examples are considered so as to help the reader
tackle the analysis of real data.

The book can be used as a text for an undergraduate or postgraduate course
in time series, or it can be used for self-tuition by research workers. The book
assumes a knowledge of basic probability theory and elementary statistical
inference. In order to keep the level of mathematics required as low as possible,
some mathematical difficulties have been glossed over, particularly in
Sections 3.4.8 and 3.5 which the reader is advised to omit at a first reading.
Nevertheless a fair level of mathematical sophistication is required in places, as
for example in the need to handle Fourier transforms, although I have helped
the reader here by providing a special appendix on this topic.

Although the book is primarily an introductory text, I have nevertheless
added appropriate references to further reading and to more advanced topics
so that the interested reader can pursue his studies if he wishes. These
references are mainly to comprehensible and readily accessible sources rather
than to the original attributive references.

One difficulty in writing an introductory textbook is that many practical
problems contain at least one feature which is ‘non-standard’, and these
cannot all be envisaged in a book of reasonable length. Thus the reader who
has grasped the basic concepts of time-series analysis should always be
prepared to use his common sense in tackling a problem. Example 5.1 is a
typical situation where common sense has to be applied and also stresses the
fact that the first step in any time-series analysis should be to plot the data. The
worked examples in Appendix D also include candid comments on practical
difficulties to complement the main text.

The first ten chapters of the fifth edition have the same structure as in the
fourth edition. Then three new chapters have been written to replace the old
Chapter 11. The new Chapter 11 introduces a variety of non-linear models
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including threshold autoregressive models, ARCH models, neural networks
and chaos, while Chapter 12 gives a brief introduction to multivariate models
including the idea of co-integration. Chapter 13 gives an even briefer
introduction to various other topics and is primarily intended to point the
reader in the right direction for further reading. It includes revised material
from the old Chapter 11 as well as incorporating some new topics such as
model uncertainty, wavelets and fractional differencing. The references have
been updated throughout the book, especially in Section 1.5 and Chapter 13,
in order to take account of recent research developments. Further examples
and additional practical advice have been added to Appendix D.

I am indebted to many people, too numerous to mention, for assistance in
the preparation of the current and earlier editions of the book. Of course any
errors, omissions or obscurities which remain are my responsibility and I will
be glad to hear from any reader who wishes to make constructive comments.

Chris Chatfield

School of Mathematical Sciences
University of Bath

Bath, Avon, BA2 7AY, UK
e-mail: cc@maths.bath.ac.uk
September 1995



1
Introduction

A time series is a collection of observations made sequentially in time.
Examples occur in a variety of fields, ranging from economics to engineering,
and methods of analysing time series constitute an important area of statistics.

1.1 SOME REPRESENTATIVE TIME SERIES

We begin with some examples of the sort of time series which arise in practice.

(a) Economic time series

Many time series arise in economics. Examples include share prices on
successive days, export totals in successive months, average incomes in
successive months, company profits in successive years, and so on.

Figure 1.1 shows part of the classic Beveridge wheat price index series which
consists of the average wheat price in nearly 50 places in various countries
measured in successive years from 1500 to 1869. This series is of particular
interest to economic historians. The complete series is tabulated by Anderson
(1971).
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Figure 1.1 Part of the Beveridge wheat price index series.
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(b) Physical time series

Many types of time series occur in the physical sciences, particularly in
meteorology, marine science and geophysics. Examples are rainfall on
successive days, and air temperature measured in successive hours, days or
months. Figure 1.2 shows the air temperature at Recife, in Brazil, averaged
over successive months. These data are tabulated and analysed in Ex-
ample D.1.
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Figure 1.2 Average air temperature at Recife, Brazil, in successive months.

Some mechanical recorders take measurements continuously and produce a
continuous trace rather than observations at discrete intervals of time. For
example in some laboratories it is important to keep temperature and
humidity as constant as possible and so devices are installed to measure these
variables continuously. Some examples of continuous traces are given in
Figure 7.4. In order to analyse such series, it may be helpful to sample or
digitize them at equal intervals of time.

(c) Marketing time series

The analysis of sales figures in successive weeks or months is an important
problem in commerce. Figure 1.3, taken from Chatfield and Prothero (1973),
shows the sales of an engineering product by a certain company in successive
months over a seven-year period. Marketing data have much in common with
economic data. It is often important to forecast future sales so as to plan
production. It may also be of interest to examine the relationship between
sales and other time series such as advertising expenditure.

(d) Demographic time series

Time series occur in the study of population. An example is the population of
England and Wales measured annually. Demographers want to predict
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Figure 1.3 Sales of a certain engineering company in successive months.

changes in population for as long as ten or twenty years into the future (e.g.
Brass, 1974).

(e) Process control

In process control, the problem is to detect changes in the performance ofa
manufacturing process by measuring a variable which shows the quality of the
process. These measurements can be plotted against time as in Figure 1.4.
When the measurements stray too far from some target value, appropriate
corrective action should be taken to control the process. Special techniques

Avh/\v‘ ‘\//\v/\ V/ Target value

Process Variable

S

Time

Figure 1.4 A process control chart.
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have been developed for this type of time-series problem, and the reader is
referred toa book onstatistical quality control (e.g. Wetherilland Brown, 1991).

(f) Binary processes

A special type of time series arises when observations can take one of only two
values, usually denoted by 0 and 1 (see Figure 1.5). Time series of this type,
called binary processes, occur particularly in communication theory. For
example the position of a switch, either ‘on’ or ‘off”, could be recorded as one or
zero respectively.

0 L L L

Time —®

Figure 1.5 A realization of a binary process.

(g) Point processes

A different type of time series occurs when we consider a series of events
occurring ‘randomly’ in time. For example we could record the dates of major
railway disasters. A series of events of this type is often called a point process
(see Figure 1.6). For observations of this type, we are interested in the
distribution of the number of events occurring in a given time period and also
in the distribution of time intervals between events. Methods of analysing data
of this type will not be specifically discussed in this book (see for example Cox
and Lewis, 1966; Cox and Isham, 1980).
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Figure 1.6 A realization of a point process (x denotes an event).

1.2 TERMINOLOGY

A time series is said to be continuous when observations are made continuously
in time as in Figures 1.5 and 7.4. The term ‘continuous’ is used for series of this
type even when the measured variable can only take a discrete set of values, as
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in Figure 1.5. A time series is said to be discrete when observations are taken
only at specific times, usually equally spaced. The term ‘discrete’ is used for
series of this type even when the measured variable is a continuous variable.

In this book we are mainly concerned with discrete time series, where the
observations are taken at equal intervals. We also consider continuous time
series more briefly, and in Section 13.5.4 we give some references regarding
the analysis of discrete time series taken at unequal intervals of time.

Discrete time series can arise in several ways. Given a continuous time
series, we could read off (or digitize) the values at equal intervals of time to give
a discrete series called a sampled series. Another type of discrete series occurs
when a variable does not have an instantaneous value but we can aggregate (or
accumulate) the values over equal intervals of time. Examples of this type are
exports measured monthly and rainfall measured daily. Finally, some time
series are inherently discrete, an example being the dividend paid by a
company to shareholders in successive years.

Much statistical theory is concerned with random samples of independent
observations. The special feature of time-series analysis is the fact that
successive observations are usually not independent and that the analysis must
take into account the time order of the observations. When successive
observations are dependent, future values may be predicted from past
observations. If a time series can be predicted exactly, it is said to be
deterministic. But most time series are stochastic in that the future is only
partly determined by past values, so that exact predictions are impossible and
must be replaced by the idea that future values have a probability distribution
which is conditioned by a knowledge of past values.

1.3 OBJECTIVES OF TIME-SERIES ANALYSIS

There are several possible objectives in analysing a time series. These
objectives may be classified as description, explanation, prediction and
control, and will be considered in turn.

(a) Description

When presented with a time series, the first step in the analysis is usually to plot
the data and to obtain simple descriptive measures of the main properties of
the series as described in Chapter 2. For example, looking at Figure 1.3 it can
be seen that there is a regular seasonal effect, with sales ‘high’ in winter and
“ow’ in summer. It also looks as though annual sales are increasing (i.c. show
an upward trend). For some series, the variation is dominated by such
‘obvious’ features, and a fairly simple model, which only attempts to describe
trend and seasonal variation, may be perfectly adequate to describe the
variation in the time series. For other series, more sophisticated techniques
will be required to provide an adequate analysis. Then a more complex model
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will be constructed, such as the various types of stochastic process described in
Chapter 3.

This book devotes a greater amount of space to the more advanced
techniques, but this does not mean that elementary descriptive techniques are
unimportant. Anyone who tries to analyse a time series without plotting it first
is asking for trouble. Not only will a graph show up trend and seasonal
variation, but it also enables one to look for ‘wild’ observations or outliers
which do not appear to be consistent with the rest of the data. The treatment of
outliers is a complex subject in which common sense is as important as theory.
The ‘outlier’ may be a perfectly valid but extreme observation which may for
example indicate that the data are not normally distributed. Alternatively, the
outlier may be a freak observation arising, for example, when a recording
device goes wrong or when a strike severély affects sales. In the latter case, the
outlier needs to be adjusted in some way before further analysis of the data.
Robust methods (e.g. Martin, 1983) are designed to be insensitive to outliers.

Another feature to look for in the graph of the time series is the possible
presence of turning points, where, for example, an upward trend has suddenly
changed to a downward trend. If there is a turning point, different models may
have to be fitted to the two parts of the series.

(b) Explanation

When observations are taken on two or more variables, it may be possible to
use the variation in one time series to explain the variation in another series.
This may lead to a deeper understanding of the mechanism which generated a
given time series.

Multiple regression models may be helpful here. In Chapter 9 we also
consider the analysis of what are called linear systems. A linear system
converts an input series to an output series by a linear operation. Given
observations on the input and output to a linear system (see Figure 1.7), one
wants to assess the properties of the linear system. For example it is of interest
to see how sea level is affected by temperature and pressure, and to see how
sales are affected by price and economic conditions.

(c) Prediction

Given an observed time series, one may want to predict the future values of
the series. This is an important task in sales forecasting, and in the analysis of
economic and industrial time series. Many writers, including myself, use the

INPUT OuUTPUT
- LINEAR SYSTEM >

Figure 1.7 Schematic representation of a linear system.
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terms ‘prediction’ and ‘forecasting’ interchangeably, but some authors do not.
For example Brown (1963) uses ‘prediction’ to describe subjective methods
and ‘forecasting’ to describe objective methods, whereas Brass (1974) uses
‘forecast’ to mean any kind of looking into the future, and ‘prediction’ to
denote a systematic procedure for doing so.

Prediction is closely related to control problems in many situations. For
example if one can predict that a manufacturing process is going to move off
target, then appropriate corrective action can be taken.

(d) Control

When a time series is generated which measures the ‘quality’ of a
manufacturing process, the aim of the analysis may be to control the process.
Control procedures are of several different kinds. In statistical quality control,
the observations are plotted on control charts and the controller takes action
as a result of studying the charts. A more sophisticated control strategy has
been described by Box et al. (1994). A stochastic model is fitted to the series,
future values of the series are predicted, and then the input process variables
are adjusted so as to keep the process on target. Many other contributions to
control theory have been made by control engineers and mathematicians
rather than statisticians. This topic is rather outside the scope of this book
but is briefly introduced in Section 13.4.

1.4 APPROACHES TO TIME-SERIES ANALYSIS

This book will describe various approaches to time-series analysis. In
Chapter 2 we will describe simple descriptive techniques, which consist of
plotting the data and looking for trends, seasonal fluctuations, and so on.
Chapter 3 introduces a variety of probability models for time series, while
Chapter 4 discusses ways of fitting these models to time series. The major
diagnostic tool which is used in Chapter 4 is a function called the
autocorrelation function which helps to describe the evolution of a process
through time. Inference based on this function is often called an analysis in the
time domain.

Chapter 5 discusses a variety of forecasting procedures. This chapter is not a
prerequisite for the rest of the book and the reader may, if he wishes, proceed
from Chapter 4 to Chapter 6.

Chapter 6 introduces a function called the spectral density function which
describes how the variation in a time series may be accounted for by cyclic
componerts at different frequencies. Chapter 7 shows how to estimate this
function, a procedure which is called spectral analysis. Inference based on the
spectral density function is often called an analysis in the frequency domain.

Chapter 8 discusses the analysis of two time series, while Chapter 9 extends
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this work by considering linear systems in which one series is regarded as the
input, while the other series is regarded as the output.

Chapter 10 introduces an important class of models, called state-space
models. It also introduces the Kalman filter, which is a general method of
updating the best estimate of the ‘signal’ in a time series in the presence of
noise.

Chapters 11 and 12 give brief introductions to non-linear and multivariate
time-series models while Chapter 13 surveys several other topics, with
appropriate references, to give a flavour of recent research developments.

1.5 REVIEW OF BOOKS ON TIME SERIES

This section gives a brief review of some other relevant books on time series.
The literature has expanded considerably in recent years and a selective
approach is necessary.

Alternative general introductory texts include Harvey (1993), Kendall and
Ord (1990), and Wei (1990), while Diggle (1990) is aimed primarily at
biostatisticians, Gottman (1981) at social scientists, and Mills (1990) at
economists.

There are many more advanced texts including Hannan (1970), Anderson
(1971), Fuller (1976), Brillinger (1981), Brockwell and Davis (1991) and
Priestley (1981). The latter is particularly strong on spectral analysis and
multivariate time series modelling. Kendall, Stuart and Ord (1983), now in
its fourth edition, is also a valuable reference source, but note that earlier
editions are somewhat dated.

The classic book by Box and Jenkins (1970) describes an approach to time-
series analysis, forecasting and control which is based on a particular class of
models, usually called ARIMA models. This important book is not really
suitable for the beginner, who is recommended to read Chapters 3-5 in this
book, Vandaele (1983) or Wei (1990). The 1976 revised edition of Box and
Jenkins (1970) was virtually unchanged, but the new third edition (Box et
al., 1994), with G. Reinsel as third author, has Chapters 12 and 13 completely
rewritten and so we refer to the 1994 edition in regard to this new material on
intervention analysis, outlier detection and process control. However, the
first eleven chapters have a very similar structure, though there are some
additions such as new material on ARMA model estimation and testing for
unit roots. For historical precedence and reader convenience we continue to
refer to the 1970 edition for the material on ARIMA models, identification,
estimation and forecasting.

Additional books are referenced as appropriate in later chapters.
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Simple descriptive
techniques

Statistical techniques for analysing time series range from relatively straight-
forward descriptive methods to sophisticated inferential techniques. This
chapter introduces the former, which will often clarify the main properties of a
given series and should generally be tried anyway before attempting more
complicated procedures.

2.1 TYPES OF VARIATION

Traditional methods of time-series analysis are mainly concerned with
decomposing the variation in a series into trend, seasonal variation, other
cyclic changes, and the remaining ‘irregular’ fluctuations. This approach is not
always the best but is particularly valuable when the variation is dominated by
trend and/or seasonality. However, it is worth noting that the decomposition
is generally not unique unless certain assumptions are made. Thus some sort of
modelling, either explicit or implicit, may be involved in these descriptive
techniques, and this demonstrates the blurred borderline between descriptive
and inferential techniques.
The different sources of variation will now be described in more detail.

(@) Seasonal effect

Many time series, such as sales figures and temperature readings, exhibit
variation which is annual in period. For example, unemployment is typically
‘high’ in winter but lower in summer. This yearly variation is easy to
understand, and we shall see that it can be measured explicitly and/or removed
from the data to give deseasonalized data.

(b) Other cyclic changes

Apart from seasonal effects, some time series exhibit variation at a fixed period
due to some other physical cause. An example is daily variation in
temperature. In addition some time series exhibit oscillations which do not
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have a fixed period but which are predictable to some extent. For example
economic data are sometimes thought to be affected by business cycles with a
period varying between about 5 and 7 years, although the existence of such
business cycles is the subject of some controversy.

(c) Trend

This may be loosely defined as ‘long-term change in the mean level. A
difficulty with this definition is deciding what is meant by ‘long term’. For
example, climatic variables sometimes exhibit cyclic variation over a very long
time period such as 50 years. If one just had 20 years’ data, this long-term
oscillation would appear to be a trend, but if several hundred years’ data were
available, the long-term oscillation would be visible. Nevertheless in the short
term it may still be more meaningful to think of such a long-term oscillation as
a trend. Thus in speaking of a ‘trend’, we must take into account the number of
observations available and make a subjective assessment of what is ‘long term’.
Granger (1966) defines ‘trend in mean’ as comprising all cyclic components
whose wavelength exceeds the length of the observed time series.

(d) Other irregular fluctuations

After trend and cyclic variations have been removed from a set of data, we are
left with a series of residuals, which may or may not be ‘random’. We shall
examine various techniques for analysing series of this type to see if some of the
apparently irregular variation may be explained in terms of probability
models, such as moving average or autoregressive models which will be
introduced in Chapter 3. Alternatively we can see if any cyclic variation is still
left in the residuals.

2.2 STATIONARY TIME SERIES

A mathematical definition of a stationary time series will be given later on.
However, it is now convenient to introduce the idea of stationarity from an
intuitive point of view. Broadly speaking a time series is said to be stationary if
there is no systematic change in mean (no trend), if there is no systematic
change in variance, and if strictly periodic variations have been removed.

Most of the probability theory of time series is concerned with stationary
time series, and for this reason time-series analysis often requires one toturna
non-stationary series into a stationary one so as to usc this theory. For
example it may be of interest to remove the trend and seasonal variation from
a set of data and then try to model the variation in the residuals by means of a
stationary stochastic process. However, it is also worth stressing that the non-
stationary components, such as the trend, may sometimes be of more interest
than the stationary residuals.
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2.3 THE TIME PLOT

After getting background information and carefully defining objectives, the
first, and most important, step in any time-series analysis is to plot the
observations against time. This graph should show up important features of
the series such as trend, seasonality, outliers and discontinuities. The plot is
vital, both to describe the data and to help in formulating a sensible model,
and a variety of examples are given throughout this book.

Plotting a time series is not as easy as it sounds. The choice of scales, the size
of the intercept, and the way that the points are plotted (e.g. as a continuous
line or as separate dots) may substantially affect the way the plot ‘looks’, and
so the analyst must exercise care and judgement. In addition, the usual rules
for drawing ‘good’ graphs should be followed: a clear title must be given, units
of measurement should be stated, and axes should be clearly labelled.

Nowadays, graphs are often produced by computers. Some are well done
but other packages may produce rather poor graphs and the reader must be
prepared to modify them if necessary. For example, one package plotted the
data in Figure 5.1(a) with a vertical scale labelled unhelpfully from
*.4000E + 03’ to *.2240F + 04’! The hideous E notation was naturally changed
before publication. Further advice and examples are given in Appendix D.

2.4 TRANSFORMATIONS

Plotting the data may suggest that it is sensible to consider transforming them,
for example by taking logarithms or square roots. The three main reasons for
making a transformation are as follows.

(@) To stabilize the variance

If there is a trend in the series and the variance appears to increase with the
mean then it may be advisable to transform the data. In particular if the
standard deviation is directly proportional to the mean, a logarithmic
transformation is indicated.

(b) To make the seasonal effect additive

If there is a trend in the series and the size of the seasonal effect appears to
increase with the mean then it may be advisable to transform the data so as to
make the seasonal effect constant from year to year. The seasonal effect is then
said to be additive. In particular if the size of the seasonal effect is directly
proportional to the mean, then the seasonal effect is said to be multiplicative
and a logarithmic transformation is appropriate to make the effect additive.
However, this transformation will only stabilize the variance if the error term
is also thought to be multiplicative (see Section 2.6), a point which is
sometimes overlooked.
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(c) To make the data normally distributed

Model building and forecasting are usually carried out on the assumption that
the data are normally distributed. In practice this is not necessarily the case;
there may for example be evidence of skewness in that there tend to be ‘spikes’
in the time plot which are all in the same direction (up or down). This effect can
be difficult to eliminate and it may be necessary to assume a different ‘error’
distribution.

The logarithmic and square-root transformations are special cases of the
class of transformations called the Box-Cox transformation. Given an
observed time series {x,} and a transformation parameter /, the transformed
series is given by

Y

_f(xF-1)/4 A#0
~ log x, A=0

This is effectively just a power transformation when A #0, as the constants are
introduced to make y, a continuous function of 4 at the value A=0. The ‘best’
value of A can be guesstimated, or alternatively estimated by a proper
inferential procedure, such as maximum likelihood.

It is instructive to note that Nelson and Granger (1979) found little
improvement in forecast performance when a general Box-Cox transforma-
tion was tried on a number of series. There are problems in practice with
transformations in that a transformation which, say, makes the seasonal effect
additive may fail to stabilize the variance and it may be impossible to achieve
all requirements at the same time. In any case a model constructed for the
transformed data may be less than helpful. For example, forecasts produced
by the transformed model may have to be ‘transformed back’ in order to be of
use and this can introduce biasing effects. My personal preference nowadays is
to avoid transformations wherever possible except where the transformed
variable has a direct physical interpretation. For example, when percentage
increases are of interest, then taking logarithms makes sense (see Ex-
ample D.3). Further general remarks on transformations are given by
Granger and Newbold (1986, Section 10.5).

2.5 ANALYSING SERIES WHICH CONTAIN A TREND

In Section 2.1 we loosely defined trend as a ‘long-term change in the mean
level’. It is much more difficult to give a precise definition and different authors
may use the term in different ways. The simplest trend is the familiar ‘linear
trend + noise’, for which the observation at time ¢ is a random variable X, given
by

X,=a+ft+e, 2.1)

where «, § are constants and ¢, denotes a random error term with zero mean.
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The mean level at time ¢ is given by m,= (x + t); this is sometimes called ‘the
trend term’. Other writers prefer to describe the slope f as the trend: the trend
is then the change in the mean level per unit time. It is usually clear from the
context which meaning is intended.

The trend in equation (2.1) is a deterministic function of time and is
sometimes called a global linear trend. This is generally unrealistic, and there is
now more emphasis on local linear trends where the parameters « and f§ in
equation (2.1) are allowed to evolve through time. Alternatively, the trend
may be of non-linear form such as quadratic growth. Exponential growth can
be particularly difficult to handle, even if logarithms are taken to transform the
trend to a linear form.

The analysis of a time series which exhibits trend depends on whether one
wants to (a) measure the trend and/or (b) remove the trend in order to analyse
local fluctuations. It also depends on whether the data exhibit seasonality (see
Section 2.6). With seasonal data, it is a good idea to start by calculating
successive yearly averages as these will provide a simple description of the
underlying trend. An approach of this type is sometimes perfectly adequate,
particularly if the trend is fairly small, but sometimes a more sophisticated
approach is desired and then the following techniques can be considered.

2.5.1 Caurve fitting

A traditional method of dealing with non-seasonal data which contain a trend,
particularly yearly data, is to fit a simple function such as a polynomial curve
(linear, quadratic etc.), a Gompertz curve or a logistic curve (e.g. see
Levenbach and Reuter, 1976; Meade, 1984). The Gompertz curve is given
by
logx, = a + br'
where a, b, r are parameters with 0 <r < 1, while the logistic curve is given by
x,=a/(l+be™ )
Both these curves are S-shaped and approach an asymptotic value as t— 0.
Fitting the curves to data may lead to non-linear simultaneous equations.
For all curves of this type, the fitted function provides a measure of the
trend, and the residuals provide an estimate of local fluctuations, where the

residuals are the differences between the observations and the corresponding
values of the fitted curve.

25.2 Filtering

A second procedure for dealing with a trend is to use a linear filter which
converts one time series, {x,}, into another, {y,}, by the linear operation
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+s
yl = Z arxl +r
r=-q
where {a,} is a set of weights. In order to smooth out local fluctuations and
estimate the local mean, we should clearly choose the weights so that Za, =1,
and then the operation is often referred to as a moving average. Moving
averages are discussed in detail by Kendall, Stuart and Ord (1983,
Chapter 46), and we will only provide a brief introduction. Moving averages
are often symmetric with s=¢q and a;=a_;. The simplest example of a
symmetric smoothing filter is the simple moving average, for which

a,=1/(2q+1)forr= —q,..., +4, and the smoothed value of x, is given by
Sm(x) =5 3,
m(x,) = ——- Xty
t 2q+1,=_q t+

The simple moving average is not generally recommended by itself for
measuring trend, although it can be useful for removing seasonal variation.
Another example is provided by the case where the {a,} are successive terms in
the expansion of (+1)?%. Thus when g=1, the weights are a_, =a,, =4,
a,=1. As q gets large, the weights approximate to a normal curve.

A third example is Spencer’s 15-point moving average, which is used for
smoothing mortality statistics to get life tables (Tetley, 1946). This covers 15
consecutive points with ¢=7, and the symmetric weights are

1

——[-3, -6, — 1 7,74, ...
320[ 3, —6,—5,3,21,46,67,74, .. .]

A fourth example, called the Henderson moving average, is described by
Kenny and Durbin (1982) and is finding increased use. This average aims to
follow a cubic polynomial trend without distortion, and the choice of g
depends on the degree of irregularity. The symmetric 9-term moving average,
for example, is given by

[—0.041, —0.010, 0.119, 0.267, 0.330, . . .]

The general idea is to fit a polynomial curve, not to the whole series, but to
different parts. For example a polynomial fitted to the first (2g + 1) data points
can be used to determine the interpolated value at the middle of the range
where ¢t = (g + 1), and the procedure can then be repeated using the data from
t=2to t=(2g+2), and so on. A related idea is to use the class of piecewise
polynomials called splines (e.g. Wegman and Wright, 1983).

Whenever a symmetric filter is chosen, there is likely to be an end-effects
problem (e.g. Kendall, Stuart and Ord, 1983, Section 46.11), since Sm(x,) is
calculated for t = (g + 1) to t = N—q. In some situations this is not important,
but in other situations it is particularly important to get smoothed values up to
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t=N. The analyst can project the smoothed values by eye, or by some further
smoothing procedure, or, alternatively, use an asymmetric filter which only
involves present and past values of x,. For example, the popular technique
known as exponential smoothing (see Section 5.2.2) effectively assumes that
s o]
Sm(x,)= Y a(l—a)ix,_;
j=0
where a is a constant such that 0<a<1. Here we note that the weights
a;=a(l —a)’ decrease geometrically with j.
Having estimated the trend, we can look at the local fluctuations by
examining

Res(x,) =residual from smoothed value

=x,—Sm(x,)

+s
= Z brxt+r

r=-—q

This is also a linear filter, and if Za, =1, then £b,=0,b,=1—a,.and b,= —a
for r£0.

How do we choose the appropriate filter? The answer to this question really
requires considerable experience plus a knowledge of the frequency aspects of
time-series analysis which will be discussed in later chapters. As the name
implies, filters are usually designed to produce an output with emphasis on
variation at particular frequencies. For example, to get smoothed values we
want to remove the local fluctuations which constitute what is called the high-
frequency variation. In other words we want what is called a low-pass filter. To
get Res(x,), we want to remove the long-term fluctuations or the low-
frequency variation. In other words we want what is called a high-pass filter.
The Slutsky (or Slutsky-Yule) effect is related to this problem. Slutsky showed
that by operating on a completely random series with both averaging and
differencing procedures one could induce sinusoidal variation in the data, and
he went on to suggest that apparently periodic behaviour in some economic
time series might be accounted for by the smoothing procedures used to form
the data. We will return to this question later.

r

Filters in series

Very often a smoothing procedure is carried out in two or more stages - so
that one has in effect several linear filters in series. For example two filters in
series may be represented as follows:

xl yl Zl
—»«* I > I >
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Filter I with weights {a;,} acts on {x,} to produce {y,}. Filter I with weights
{a;,} acts on {y,} to produce {z,}. Now

Zx:Z Ai2Vi+j
i
ZZ a;; Z A Xt jer
j r

ZZ CiXesj
J

where

CJ=Z a,18(-n2
r

are the weights for the overall filter. The weights {c;} are obtained by a
procedure called convolution, and we write

{e;h={a.} » {a,,}
where * represents convolution. For example, the filter (3, 3, 1) may be written
as

11 1y__¢1 1 11
@»d=G3)*E2)
Given a series x,, ..., Xy, this smoothing procedure is best done in three

stages by adding successive pairs of observations twice and then dividing by 4,
as follows:

Observations Stage [ Stage I Stage II1
X
X, +Xx,
X, X, +2x,+ X, (x;+2x,+x,)/4
X, + X, :
X5 X, +2x53+ X%,
X3+ X,
X4 X3+2x,+ X5
X4+Xs .
Xs
X5+ Xg

The Spencer 15-point moving average is actually a convolution of four filters,
namely

(%s %, %7 %) * (%’ %a %’ %) * (%5 %7 %a %’ %) * (_%’ %’ 1’%’ —%)
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2.5.3 Differencing

A special type of filtering, which is particularly useful for removing a trend, is
simply to difference a given time series until it becomes stationary. This
method is an integral part of the procedures advocated by Box and Jenkins
(1970). For non-seasonal data, first-order differencing is usually sufficient to
attain apparent stationarity, so that the new series {y,, ..., yy_,} is formed
from the original series {x,, ..., xy} by

V=X 41— X=VXx

First-order differencing is widely used. Occasionally second-order differencing
is required using the operator V2, where

2 _ —
VX2 =Vx = VX=X, 2%+ X,

2.6 ANALYSING SERIES WHICH CONTAIN SEASONAL
VARIATION

In Section 2.1 we introduced seasonal variation which is generally annual in
period, while Section 2.4 distinguished between additive seasonality, which is
constant from year to year, and multiplicative seasonality. Three seasonal
models in common use are

A X,=m+S,+e¢,
B X,=mS,+¢,
C X,=mS,

where m, is the deseasonalized mean level at time ¢, S, is the seasonal effect at
time ¢, and ¢, is the random error.

Model A describes the additive case, while models B and C both involve
multiplicative seasonality. In model C the error term is also multiplicative, and
alogarithmic transformation will turn this into a (linear) additive model which
may be easier to handle. The time plot should be examined to see which model
is likely to give the better description. The seasonal indices {S,} are usually
assumed to change slowly through time so that §,~ §,_, where s is the number
of observations per year. The indices are usually normalized so that they sum
to zero in the additive case, or average to one in the multiplicative case.
Difficulties arise in practice if the seasonal and/or error terms are not exactly
multiplicative or additive. For example the seasonal effect may increase with
the mean level but not at such a fast rate so that it is somewhere ‘in between’
being multiplicative or additive. A mixed additive-multiplicative seasonal
model is described by Durbin and Murphy (1975).

The analysis of time series which exhibit seasonal variation depends on
whether one wants to (a) measure the seasonal effect and/or (b) eliminate
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seasonality. For series showing little trend, it is usually adequate to estimate
the seasonal effect for a particular period (e.g.J anuary) by finding the average
of each January observation minus the corresponding yearly average in the
additive case, or the January observation divided by the yearly average in the
multiplicative case.

For series which do contain a substantial trend, a more sophisticated
appreach may be required. With monthly data, the commonest way of
eliminating the seasonal effect is to calculate

1 1
7x176+xt—5+x1—4+ +xt+5+7x1+6
12

Sm(x,) =

Note that the sum of the coefficients is 1. A simple moving average cannot be
used as this would span 12 months and would not be centred on an integer
value of t. A simple moving average over 13 months cannot be used, as this
would give twice as much weight to the month appearing at both ends. For
quarterly data, the seasonal effect can be eliminated by calculating

1 1
_7xz—2+x1—1+x1+x1+1+7xt+2

Sm(x,) 2

For 4-weekly data, one can use¢ a simple moving average over 13 successive
observations. The seasonal effect can be estimated by calculating x, — Sm(x,)
or x,/Sm(x,) depending on whether the seasonal effect is thought to be additive
or multiplicative. A check should be made that the seasonals are reasonably
stable, and then the average monthly (or quarterly etc.) effects can be
calculated.

A seasonal effect can also be eliminated by differencing (see Sections 4.6,
5.2.4: Box and Jenkins, 1970). For example with monthly data one can employ
the operator V,, where

VX, =X, —X,_12

Alternative methods of seasonal adjustment are reviewed by Butter and Fase
(1991) and Hylleberg (1992). These include the widely used X-11 method
which employs a series of linear filters (e.g. see Wallis, 1982; Kendall, Stuart
and Ord, 1983, Section 46.41). The possible presence of calendar effects
should also be considered (Cleveland and Devlin, 1982; Cleveland, 1983).
For example if Easter falls in March one year, rather than April, then this
may alter the seasonal effect on sales for both months.

2.7 AUTOCORRELATION

An important guide to the properties of a time series is provided by a series of
quantities called sample autocorrelation coefficients, which measure the
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correlation between observations at different distances apart. These coeffi-
cients often provide insight into the probability model which generated the
data. We assume that the reader is familiar with the ordinary correlation
coefficient, namely that given N pairs of observations on two variables x and y,
the correlation coefficient is given by

e I D) (=)
VIZ(—=3)Z(y; - 5)%]
A similar idea can applied to time series to see if successive observations are
correlated.

Given N observations x,, . .., xy, on a discrete time series we can form
N—1 pairs of observations, namely (x;,x;), (X5, X3),.-., (Xy_1, Xy).
Regarding the first observation in each pair as one variable, and the second
observation as a second variable, the correlation coefficient between x, and
X,,; Is given by

2.2)

N-1
Z (e —X1y) Kpe1— X2))
ry= t=1 2.3)

N1 N-1
\/I: _Z (x:"iu))z Z (x,+1—i(2))2:|

t=1

by analogy with equation (2.2), where

N-1
Xy = Z x,/(N—1)

t=1

is the mean of the first N— 1 observations and

N
X = Z x,/(N—1)

=2

is the mean of the last N—1 observations. As the coefficient given by
equation (2.3) measures correlation between successive observations it is
called an autocorrelation coefficient or serial correlation coefficient.

Equgtion (2.3) is rather complicated, and so, as X;,~X,,, it is usually
approximated by

N-1
Z (xt~i) (xt+1—i)
t=1

rl = N (2.4)

N-1) Y (x,—%)*N
t=1

where £=Y /L, x,/N is the overall mean. Some authors also drop the factor

N/(N—1), which is close to one for large N, to give the even simpler formula
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N-1
Y e =%) (x4 —X)
_ =1

r,=

2.5)

N

Z (xz_i)z

=1
and this is the form that will be used in this book.

In a similar way we can find the correlation between observations a distance
k apart, which is given by

N-k
Z (xt_i)(xzﬂc_i)
re="2 (2.6)

This is called the autocorrelation coefficient at lag k.

In practice the autocorrelation coefficients are usually calculated by
computing the series of autocovariance coefficients, {c,}, which we define by
analogy with the usual covariance formula as

1 N—k
ck=ﬁ ;1 (= %) (X4 — %) 2.7

This is the autocovariance coefficient at lag k.
We then compute
re==C/co (2.8)

fork=1,2,...,m, where m<N. There is often little point in calculating r, for
values of k greater than about N/4.
Note that some authors prefer to use

1 N-k _ _
%=N"% :;1 (= X) (X, 46— %)

rather than equation 2.7, but there is little difference for large N (see
Section 4.1).

2.7.1 The correlogram

A useful aid in interpreting a set of autocorrelation coefficients is a graph called
a correlogram in which r, is plotted against the lag k. Examples are given in
Figures 2.1-2.3. A visual inspection of the correlogram is often very helpful.

2.7.2 Interpreting the correlogram

Interpreting the meaning of a set of autocorrelation coefficients is not always
easy. Here we offer some general advice.
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(@) A4 random series

If a time series is completely random, then for large N, r, ~0 for all non-zero
values of k. In fact we will see later that for a random time series r, is
approximately N(O, 1/N), so that, if a time series is random, 19 out of 20 of the
values of r, can be expected to lie between +2/,/N. However if one plots say
the first 20 values of r, then one can expect to find one ‘significant’ value on
average even when the time series really is random. This spotlights one of the
difficulties in interpreting the correlogram, in that a large number of
coefficients is quite likely to contain one (or more) ‘unusual’ results, even when
no real effects are present. (See also Section 4.1.)

(b) Short-term correlation

Stationary series often exhibit short-term correlation characterized by a fairly
large value of | followed by a few further coefficients which, while greater than
zero, tend to get successively smaller. Values of r, for longer lags tend to be
approximately zero. An example of such a correlogram is shown in Figure 2.1.
A time series which gives rise to such a correlogram is one for which an
observation above the mean tends to be followed by one or more further
observations above the mean, and similarly for observations below the mean.

X

Time
+1
i
LN >
% F 8~ 12 Lag (k)

1k

Figure 2.1 A time series showing short-term correlation together with its correlo-
gram.
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(c) Alternating series

If a time series has a tendency to alternate, with successive observations on
different sides of the overall mean, then the correlogram also tends to
alternate. The value of r, will be negative. However the value of r, will be
positive, as observations at lag 2 will tend to be on the same side of the mean. A
typical alternating time series together with its correlogram is shown in
Figure 2.2.

(d) Non-stationary series

If a time series contains a trend, then the values of r, will not come down to
zero except for very large values of the lag. This is because an observation on
one side of the overall mean tends to be followed by a large number of further
observations on the same side of the mean because of the trend. A typical non-
stationary time series together with its correlogram is shown in Figure 2.3.
Little can be inferred from a correlogram of this type as the trend dominates all
other features. In fact the sample autocorrelation function, {r.}, is only
meaningful for stationary time series (see Chapters 3 and 4) and so any trend
should be removed before calculating {r,}.

(e) Seasonal fluctuations

If a time series contains a seasonal fluctuation, then the correlogram will also
exhibit an oscillation at the same frequency. For example with monthly
observations, r will be ‘large’ and negative, while r;, will be ‘large’ and

Xt A

Time

0 4 8 12 Lag (k)

-1

Figure 2.2 An alternating time series together with its correlogram.
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-1

Figure 2.3 A non-stationary time series together with its correlogram.

positive. In particular if x, follows a sinusoidal pattern, then so does r,. For
example, if

X,=a cos tw

where a is a constant and the frequency w is such that 0 < < 7, then it can be
shown (see Exercise 2.3) that

r.~cos kw for large N

Figure 2.4(a) shows the correlogram of the monthly air temperature data
shown in Figure 1.2. The sinusoidal pattern of the correlogram is clearly
evident, but for seasonal data of this type the correlogram provides little extra
information as the seasonal pattern is clearly evident in the time plot of the
data.

If the seasonal variation is removed from seasonal data, then the
correlogram may provide useful information. The seasonal variation was
removed from the air temperature data by the simple procedure of calculating
the 12 monthly averages and subtracting the appropriate one from each
individual observation. The correlogram of the resulting series (Figure 2.4(b))
shows that the first three coefficients are significantly different from zero. This
indicates short-term correlation in that a month which is say colder than the
average for that month will tend to be followed by one or two further months
which are colder than average.
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Figure 2.4  The correlogram of monthly observations on air temperature at Recife: (a)
for the raw data; (b) for the seasonally adjusted data. The dotted lines in (b) are at
+2/+/N. Values outside these lines are significantly different from zero.

(f) Outliers

If a time series contains one or more outliers, the correlogram may be seriously
affected and it may be advisable to adjust outliers in some way before starting
the formal analysis. For example, if there is one outlier in the time series and it
is not adjusted, then the plot of x, against x, ,, will contain twe ‘extreme’ points
which will tend to depress the sample correlation coefficients towards zero. If
there are two outliers this effect is even more noticeable, except when the lag
equals the distance between the outliers when a spuriously large correlation
may occur.

(8) General remarks

Clearly considerable experience is required in interpreting autocorrelation
coefficients. In addition we need to study the probability theory of stationary
series and discuss the classes of model which may be appropriate. We must
also discuss the sampling properties of r,. These topics will be covered in the
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next two chapters and we shall then be in a better position to interpret the
correlogram of a given time series.

2.8 OTHER TESTS OF RANDOMNESS

In most cases, a visual examination of the graph of a time series is enough to
see that it is not random. However it is occasionally desirable to test a
stationary time series for ‘randomness’. In other words one wants to test if
Xy, ..., Xy could have arisen in that order by chance by taking a simple
random sample size N from a population with unknown characteristics. A
variety of tests exist for this purpose and they are described by Kendall, Stuart
and Ord (1983, Section 45.15). For example one can examine the number of
times there is a local maximum or minimum in the time series. A local
maximum is defined to be any observation x, such that x,>x,_; and x,>x, , ;.
A converse definition applies to local minima. If the series really is random one
can work out the expected number of turning points and compare it with the
observed value. Tests of this type will not be described here, as I have always
found it more convenient to simply examine the correlogram (and possibly the
spectral density function) of a given time series to see if it is random.

Having fitted a model to a non-random series, one often wants to see if the
residuals are random. Testing residuals for randomness is a somewhat
different problem and will be discussed in Section 4.7.

EXERCISES

2.1 The following data show the sales of company X in successive 4-week
periods over 1967-1970.

I 11 m 1 v Vi VII VviI IX X XI XII XIII

1967 153 189 221 215 302 223 201 173 121 106 8 87 108
1968 133 177 241 228 283 255 238 164 128 108 87 74 95
1969 145 200 187 201 292 220 233 172 119 81 65 76 74
1970 111 170 243 178 248 202 163 139 120 96 95 53 94

(a) Plot the data.
(b) Assess the trend and seasonal effects.

2.2 Sixteen successive observations on a stationary time series are as follows:
1.6,0.8,12,05,09,1.1,1.1,06,1.5,0.8,09,12,05,1.3,08, 1.2

(a) Plot the observations.

(b) Looking at the graph, guess an approximate value for the
autocorrelation coefficient at lag 1.

(c) Plot x, against x,, ,, and again try to guess the value of 7.

(d) Calculate r,.



26
23

24

25

Simple descriptive techniques

If x,=a cos tw where a is a constant and w is a constant in (0, 7), show
that r,—cos kw as N> .

(Hint: You will need to use the trigonometrical results listed in
Section 7.2. Using equation (7.2) it can be shown that x—»0as N—00, so
that r,—X cos wt cos w(t+k)/Z cos> wt. Now use the result that
2cos A cos B=cos(A+ B)+cos(4— B) together with the result that
Z cos? wt = N/2 for a suitably chosen N.)

The first ten sample autocorrelation coefficients of 400 ‘random’ numbers
are r;=0.02, r,=005, ry;=-0.09, r,=0.08, rs=—0.02, rs=0.00,
r,=0.12, r3=0.06, r=0.02, r,,=—0.08. Is there any evidence of
non-randomness?

Given a seasonal series of monthly observations {X}, assume that the
seasonal factors {S,} are constant so that S,= S, _, , for all ¢, and also that
{&} is a stationary series of random deviations.

(a) With a global linear trend and additive seasonality, we have
X;=a+bt+S,+¢,. Show that the operator V,, acting on X, reduces
the series to stationarity.

(b) With a global linear trend and multiplicative seasonality, we have
X;=(a+bt)S,+¢,. Does the operator V, , reduce X, to stationarity? If
not, find a differencing operator which does.

(Note: As stationarity is not formally defined until Chapter 3, you should
use heuristic arguments. A stationary process may involve a non-zero,
but constant, mean value and any linear combination of the {&,}, but not
terms such as S,.)
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Probability models for
time series

3.1 STOCHASTIC PROCESSES

This chapter describes various probability models for time series, which are
collectively called stochastic processes. Most physical processes in the real
world involve a random element in their structure, and a stochastic process can
be described as ‘a statistical phenomenon that evolves in time according to
probabilistic laws’. Well-known examples are the length of a queue, the size of
a bacterial colony, and the air temperature on successive days at a particular
site. The word ‘stochastic’, which is of Greek origin, is used to mean ‘pertaining
to chance’, and many writers use ‘random process’ as a synonym for stochastic
process.

Mathematically, a stochastic process may be defined as a collection of
random variables which are ordered in time and defined at a set of time points
which may be continuous or discrete. We will denote the random variable at
time ¢ by X{(¢) if time is continuous (usually — o0 <t< ), and by X, if time is
discrete (usually t=0, +1, £2,...).

The theory of stochastic processes has been extensively developed and is
discussed in many books including Papoulis (1984), written primarily for
engineers, Parzen (1962), Cox and Miller (1968, especially Chapter 7),
Yaglom (1962) and Grimmett and Stirzaker (1992). In this chapter we
concentrate on those aspects particularly relevant to time-series analysis.

Most statistical problems are concerned with estimating the properties of a
population from a sample. In time-series analysis there is a rather different
situation in that, although it may be possible to vary the length of the observed
time series — the sample — it is usually impossible to make more than one
observation at any given time. Thus we only have a single outcome of the
process and a single observation on the random variable at time t.
Nevertheless we may regard the observed time series as just one example of the
infinite set of time series which might have been observed. This infinite set of
time series is sometimes called the ensemble. Every member of the ensemble is
apossible realization of the stochastic process. The observed time series can be
thought of as one particular realization, and will be denoted by x(t) for
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(0<t<T) if observations are continuous, and by x, for t=1,...,N if
observations are discrete.

Because there is only a notional population, time-series analysis is
essentially concerned with evaluating the properties of the probability model
which generated the observed time series.

One way of describing a stochastic process is to specify the joint probability
distribution of X(z,), . . ., X(t,) for any set of times ¢, . . . , t, and any value of
n. But this is rather complicated and is not usually attempted in practice. A
simpler, more useful way of describing a stochastic process is to give the
moments of the process, particularly the first and second moments, which are
called the mean, variance and autocovariance functions. These will now be
defined for continuous time, with similar definitions applying in discrete time.

Mean The mean function u(t) is defined by
u(t)= E[X(t)]
Variance The variance function ¢2(¢) is defined by
a?(t)=Var[X(t)]

Autocovariance The variance function alone is not enough to specify the
second moments of a sequence of random variables. In addition, we must
define the autocovariance function y(t,, t,), which is the covariance of X{(t,)
with X(¢,), namely

Y(tys )= E{[X(e,)— p(t,)] [X(e2) — p(t2)]}

(Readers who are unfamiliar with the term ‘covariance’ should read
Appendix C. When applied to a sequence of random variables, it is called an
autocovariance.) Note that the variance function is a special case of the
autocovariance function when ¢, =t,.

Higher moments of a stochastic process may be defined in an obvious way, but
are rarely used in practice, since a knowledge of the two functions u(t) and
y(ty, t5) is usually adequate.

3.2 STATIONARY PROCESSES

An important class of stochastic processes are those which are stationary. A
heuristic idea of stationarity was introduced in Section 2.2.

A time series is said to be strictly stationary if the joint distribution of
X(t,), . . ., X(t,)is the same as the joint distribution of X(¢, +1), . . ., X(¢, + 1)
forallt,, .. .,t,, . In other words, shifting the time origin by an amount t has
no effect on the joint distributions, which must therefore depend only on the
intervals between ¢y, t,, . . ., t,. The above definition holds for any value of n.
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In particular, if n = 1, strict stationarity implies that the distribution of X ()
is the same for all ¢, so that, provided the first two moments are finite, we have

ue)y=p
a%(t)=a?

are both constants which do not depend on the value of ¢.

Furthermore, if n=2 the joint distribution of X(¢,) and X(¢,) depends only
on (t,—t,), which is called the lag. Thus the autocovariance function y(t,, t,)
also depends only on (t, —t,) and may be written as y(t), where

(@)= E{[X(t)— u] [X(t+ 1) — ul}
=Cov[X(z), X(t+1)]

is called the autocovariance coefficient at lag t. In future, ‘autocovariance
function’ will be abbreviated to acv.f.

The size of an autocovariance coefficient depends on the units in which X{t)
is measured. Thus, for interpretative purposes, it is useful to standardize the
acv f. to produce a function called the autocorrelation function, which is given
by

p(t)=y(t)/»(0)

and which measures the correlation between X(t) and X(t +1t). Its empirical
counterpart was introduced in Section 2.7. In future, ‘autocorrelation
function’ will be abbreviated to ac.f. Note that the argument t of y(t) and p(t) is
discrete if the time series is discrete and continuous if the time series is
continuous.

At first sight it may seem surprising to suggest that there are processes for
which the distribution of X(t) should be the same for all t. However, readers
with some knowledge of stochastic processes will know that there are many
processes {X(t)} which have what is called an equilibrium distribution as
t—00, in which the probability distribution of X(t) tends to a limit which does
not depend on the initial conditions. Thus once such a process has been
running for some time, the distribution of X(¢) will change very little. Indeed if
the initial conditions are specified to be identical to the equilibrium
distribution, the process is stationary in time and the equilibrium distribution
is then the stationary distribution of the process. Of course the conditional
distribution of X{(¢,) given that X(t,) has taken a particular value, say x(t,),
may be quite different from the stationary distribution, but this is perfectly
consistent with the process being stationary.

3.2.1 Second-order stationarity

In practice it is often useful to define stationarity in a less restricted way than
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that described above. A process is called second-order stationary (or weakly
stationary) if its mean is constant and its acv f. depends only on the lag, so that

E[X(t)]=n
and
Cov[X(t), X(t +1)]=7(7)

No assumptions are made about higher moments than those of second order.
By letting T=0, we note that the above assumption about the acv f. implies
that the variance, as well as the mean, is constant. Also note that both the
variance and the mean must be finite.

This weaker definition of stationarity will generally be used from now on, as
many of the properties of stationary processes depend only on the structure of
the process as specified by its first and second moments. One important class
of processes where this is particularly true is the class of normal processes
where the joint distribution of X(t,), . . ., X(t,) is multivariate normal for all
ti,...,t, The multivariate normal distribution is completely characterized
by its first and second moments, and hence by u(t) and y(¢4, t,), and so it
follows that second-order stationarity implies strict stationarity for normal
processes. However, u and y(tr) may not adequately describe processes which
are very ‘non-normal’.

3.3 THE AUTOCORRELATION FUNCTION

We have already noted in Section 2.7 that the sample autocorrelation
coefficients of an observed time series are an important set of statistics for
describing the time series. Similarly the (theoretical) autocorrelation function
(ac.f.) of a stationary stochastic process is an important tool for assessing its
properties. This section investigates the general properties of the ac.f.

Suppose a stationary stochastic process X(t) has mean , variance o2, acv f.
y(1), and ac.f. p(r). Then

p(1)=7(1)/y(0)=7(z)/0”
Note that p(0)=1.
Property 1
The ac.f. is an even function of the lag in that
p()=p(—1)

This property simply says that the correlation between X(t) and X(t +7) is the
same as that between X(t) and X(t—7). The result is easily proved using

Y(t)=p(z)o? by
y(t)=Cov[X(t), X(t+1)]
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=Cov[X(t—1), X(1)] since X(t) stationary
=y(—1)
Property 2

lo(v)|< 1. This is the ‘usual’ property of a correlation. It is proved by noting
that
Var[ 4, X(t) + A, X(t+1)] >0

for any constants 4,, A,, since a variance is always non-negative. This variance
is equal to
A2 Var[X(1)] + A3 Var[X(¢+ 1)1+ 24,4, Cov[X(t), X(t +7)]
=224+ 212)0% + 24, A,7(7)
When A, =4,=1, we find

()= —a?

so that p(t)> —1. When A, =1, A,=—1, we find
6227()

so that p(t1)< +1.

Property 3

Lack of uniqueness. Although a given stochastic process has a unique
covariance structure, the converse is not in general true. It is usually possible
to find many normal and non-normal processes with the same ac.f. and this
creates further difficulty in interpreting sample ac.f.s. Jenkins and Watts (1968,
p. 170) give an example of two different stochastic processes which have the
same ac.f. Even for stationary normal processes, which are completely
determined by the mean, variance and acf., the invertibility condition
introduced in Section 3.4.3 is required to ensure uniqueness.

3.4 SOME USEFUL STOCHASTIC PROCESSES

This section describes several different types of stochastic process which are
sometimes useful in setting up a model for a time series.

34.1 A purely random process

A discrete-time process is called a purely random process if it consists of a
sequence of random variables {Z} which are mutually independent and
identically distributed. From the definition it follows that the process has
constant mean and variance and that
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y(k)=Cov(Z, Z,,})
=0 fork=+1, 2,...

As the mean and acv.f. do not depend on time, the process is second-order
stationary. In fact it is clear that the process is also strictly stationary. The ac.f.
is given by

1 k=0
"(k)z{o k=41, 42,. ..

A purely random process is sometimes called white noise, particularly by
engineers. Processes of this type are useful in many situations, particularly as
building blocks for more complicated processes such as moving average
processes (Section 3.4.3).

The possibility of defining a continuous-time purely random process is
discussed in Section 3.4.8.

3.4.2 Random walk

Suppose that {Z} is a discrete, purely random process with mean p and
variance ¢. A process {X} is said to be a random walk if

Xi=X-1+Z (3.1

The process is customarily started at zero when =0, so that

Xi=2,
and
t
X, = Z Z,
i=1

Then we find that E(X;)=tu and that Var(X,)=to3. As the mean and variance
change with ¢, the process is non-stationary.

However, it is interesting to note that the first differences of a random walk,
given by

VX=X-X_,=Z
form a purely random process, which is therefore stationary.
The best-known examples of time series which behave like random walks

are share prices on successive days. A model which often gives a good
approximation to such data is

share price on day t=share price on day (t— 1)+ random error
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3.4.3 Moving average processes

Suppose that {Z} is a purely random process with mean zero and variance o3.
Then a process {X;} is said to be a moving average process of order q
(abbreviated to an MA(q) process) if

A,t=ﬂOZt+ﬂth--l+”' +ﬂth—q (32)

where {B,} are constants. The Zs are usually scaled so that f,=1.
We find immediately that

E(X)=0
Var(X)=o2 ¥ B2
i=0

since the Zs are independent. We also have
yk)=Cov(X,, X,,)

= COV(ﬂoZ,+"'+ﬂqZ,_q, ﬂOZt+k+'.'+ﬂth+k—q)
0 k>gq

q—k
o5 Z BiBi sk k=0,1,....9
i=0

y(—k) k<0
since
o2 s=t
0 s#t
As y(k) does not depend on ¢, and the mean is constant, the process is second-
order stationary for all values of the {#,}. Furthermore, if the Zs are normally
distributed, then so are the Xs, and we have a strictly stationary normal

Cov(Z,, Z,)={

process.
The acf. of the MA(q) process is given by
[ 1 k=0
q-k q
CCER WU o
i=0 i=0
0 k>q
L p(—k) k<0

Note that the ac.f. ‘cuts off” at lag q, which is a special feature of MA processes.
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In particular the MA(1) process with f,=1 has an ac.f. given by

1 k=0
p(k) = B/(1+BY)  k=+1
0 otherwise

No other restrictions on the {8,} are required for a (finite-order) MA process
to be stationary, but it is generally desirable to impose restrictions on the {8;}
to ensure that the process satisfies a condition called invertibility (e.g. Box
and Jenkins, 1970, p. 50). This condition may be explained in the following
way. Consider the following first-order MA processes:

A X=Z+6Z_,
1
B Xz=Zz'*‘§Zz—1

It can easily be shown that these two different processes have exactly the same
ac.f. (Are you surprised? Then check p(k) for models A and B.) Thus we cannot
identify an MA process uniquely from a given ac.f. Now, if we express models
A and B by putting Z, in terms of X, X,_,,..., we find by successive
substitution that

A Z=X-0X_,+0°X,_,— -

1 1
B Z=X—gXo gk =

If |6| <1, the series for A converges whereas that for B does not. Thus an
estimation procedure which involves estimating the residuals (see Sec-
tion 4.3.1) will lead naturally to model A. Thus if |0| <1, model A is said to be
invertible whereas model B is not. The imposition of the invertibility
condition ensures that there is a unique MA process for a given ac.f.

The invertibility ccndition for the general-order MA process is best
expressed by using the backward shift operator, denoted by B, which is defined
by

BiX,=X,_; forallj
Then equation (3.2) may be written as
X,=(Bo+BB+ - +B,BYZ
=0(B)Z,

where 6(B) is a polynomial of order g in B. An MA process of order q is
invertible if the roots of the equation (regarding B as a complex variable and
not an operator)
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9(8)=B0+ﬂ18+ T +ﬁqu=0

all lie outside the unit circle (Box and Jenkins, 1970, p. 50). For example, in the
first-order case we have §(B)= 1 + 6B, which has root B= —1/6. Thus the root
is outside the unit circle provided that || <1.

MA processes have been used in many areas, particularly econometrics. For
example economic indicators are affected by a variety of ‘random’ events such
as strikes, government decisions, shortages of key materials and so on. Such
events will not only have an immediate effect but may also affect economic
indicators to a lesser extent in several subsequent periods, and so it is at least
plausible that an MA process may be appropriate.

Note that an arbitrary constant, u say, may be added to the right-hand side
of equation (3.2) to give a process with mean p. This does not affect the ac.f.
and has been omitted for simplicity.

3.4.4 Autoregressive processes

Suppose that {Z,} is a purely random process with mean zero and variance o3.
Then a process {X,} is said to be an autoregressive process of order p if

/Y‘=(X1/Y‘_1+"'+(XPIY‘_F+Z, (33)

This is rather like a multiple regression model, but X, is regressed not on
independent variables but on past values of X,; hence the prefix ‘auto’. An
autoregressive process of order p will be abbreviated to an AR(p) process.

{a) First-order process
For simplicity, we begin by examining the first-order case, where p=1. Then
X=aX_,+Z (34)

The AR(1) process is sometimes called the Markov process, after the Russian
A. A. Markov. By successive substitution in (3.4) we may write

X=a(aX,_,+Z,_)+Z
=a’(aX,_3+Z,_,)+aZ,_+Z

and eventually we find that X, may be expressed as an infinite-order MA
process in the form (provided —1<a< +1)

X=Z+0Z,_+o*Z_,+

This duality between AR and MA processes is useful for a variety of purposes.
Rather than use successive substitution, it is simpler to use the backward shift
operator B. Then equation (3.4) may be written

(1—aB)X,=Z,
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so that
X,=Z/(1—aB)

=(l4+aB+a*B*+ - °)Z,
=Z+aZ,_+o*Z,_,+ "
When expressed in this form it is clear that
E(X)=0
Var(X))=oc2(1 +a?+a*+ )
Thus the variance is finite provided that || <1, in which case
Var(X,)= o} =0%/(1~a?)
The acv.f. is given by
y(k)= E[X,X, 1]
= E[(Z'Z, ) (S0'Z, 4~ )]

=02 Y ao**t  for k>0

which converges for || <1 to
k) =a*o3/(1—a?)
=a*e%

For k <0, we find y(k)=y(—k). Since y(k) does not depend on ¢, an AR process
of order 1 is second-order stationary provided that |a| < 1. The acf.is given by

pk)=o* k=0,1,2,...
To get an even function defined for all integer k we can write
pk)y=a* k=0, +1, +2,...

The ac.f. may also be obtained more simply by assuming a priori that the
process is stationary, in which case E(X;) must be zero. Multiply through
equation (3.4) by X,_, (not X;,,!) and take expectations. Then we find, for
k>0, that

y(—k)=ay(—k+1)

assuming that E(ZX,_,)=0 for k>0. Since y(k) is an even function, we must
also have

y(k)y=ay(k—1) for k>0

Now y(0) =02, and so y(k) = a*a% for k0. Thus p(k)=a* for k >0. Now since
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lo(k)| < 1, we must have |«| < 1. But if || = 1, then |p(k)| = 1 for all k, which is a
degenerate case. Thus |«| <1 for a proper stationary process.
The above method of obtaining the acf. is often used, even though it
involves ‘cheating’ a little by making an initial assumption of stationarity.
Three examples of the acf. of a first-order AR process are shown in
Figure 3.1 for «=0.8, 0.3, —0.8. Note how quickly the ac.f. decays when
a=0.3, and note how the ac.f. alternates when « is negative.

(b) General-order case

As in the first-order case, we can express an AR process of finite order as an
MA process of infinite order. This may be done by successive substitution, or
by using the backward shift operator. Then equation (3.3) may be written as

(1-o;B— - —a,BP)X,=Z2,
or
X,=Z/(1-a,B— " —a,B")
=f(B)Z,
+1r
plk) & (a} =08 1
plk) & (c} «=-0.8
[o i T 1 J L Lgm
0 2 4 6 8
Lag ()
+1r
plk)A {b) a=0.3
_‘| L.

Lag (k)

Figure 3.1 Three examples of the autocorrelation function of a first-order auto-
regressive process with, (a) x=0.8; (b) =0.3; (¢) x= —0.8.
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where
f(B)=(1—a,B— - —a,B") "
=(1+B,B+B,B*+ )

The relationship between the as and the fs may then be found. Having
expressed X, as an MA process, it follows that E(X,)=0. The variance is finite
provided that 87 converges, and this is a necessary condition for stationarity.
The acv {. is given by

y(k)=a§ Z BBk where ;=1
i=0

A sufficient condition for this to converge, and hence for stationarity, is that
Z|B,| converges.

We can in principle find the ac.f. of the general-order AR process using the
above procedure, but the {8} may be algebraically hard to find. The
alternative simpler way is to assume the process is stationary, multiply
through equation (3.3) by X, _,, take expectations, and divide by ¢%, assuming
that the variance of X, is finite. Then, using the fact that p(k)=p(— k) for all &,
we find

p(k)=o,p(k—1)+ - +a,p(k—p)  forallk>0

This set of equations is called the Yule-Walker equations after G. U. Yule and
Sir Gilbert Walker. It is a set of difference equations and has the general
solution

plky=A 7+ + 4,7
where {r;} are the roots of the so-called auxiliary equation
y”—-d,y”wl e __ap=0

The constants {4,} are chosen to satisfy the initial conditions depending on
p(0)= 1, which means that £4,=1. The first (p— 1) Yule-Walker equations
provide (p — 1) further restrictions on the {4;} using p(0)=1and p(k)=p(— k).

From the general form of p(k), it is clear that p(k) tends to zero as k increases
provided that |r| < 1 for all i, and this is a necessary and sufficient condition for
the process to be stationary.

An equivalent way of expressing the stationarity condition is to say that the
roots of the equation

¢(B)=1—a,B— - —a,B"=0 (3.5)

must lie outside the unit circle (Box and Jenkins, 1970, Section 3.2).
Of particular interest is the AR(2) process, when 7, 7, are the roots of the
quadratic equation
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yi—ay—oa,=0
Thus |z, <1 if

a, £/ (0} +4a,)

1
7 <

from which it can be shown (Exercise 3.6) that the stationarity region is the
triangular region satisfying

oy o, <1
oy —a,>—1
o> —1

The roots are real if af + 4a,> 0, in which case the ac.f. decreases exponentially
with k, but the roots are complex if a2 + 4a, <0, in which case we find that the
ac.f. is a damped cosine wave. (See Example 3.1 at the end of this section.)

When the roots are real, the constants A, A, are found as follows. Since
p(0)=1, we have

A +A,=1
From the first of the Yule-Walker equations, we have
p(1)=a,p(0)+ayp(—1)
=a, +a,p(1)
Thus

p(l)=a,/(1—a,)
=An, +A,m,
=4 n,+(1—-A,)n,
Hence we find
Ay =[oy /(1 —0y)~m,]/(my ~73)
A,=1-4,

AR processes have been applied to many situations in which it is reasonable to
assume that the present value of a time series depends on the immediate past
values together with a random error. For simplicity we have only considered
processes with mean zero, but non-zero means may be dealt with by rewriting
equation (3.3) in the form

X—pu=a;(X_; =)+~ +°‘p(Xz-p‘l‘)+Zz

This does not affect the ac.f.
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Example 3.1 Consider the AR(2) process given by
Xz=Xz—1"%Xz—2+Zz

Is this process stationary? If so, what is its ac.f.?
In order to answer the first question we find the roots of equation (3.5),
which in this case is

¢(B)=1—-B+4iB*=0

The roots of this equation (regarding B as a variable) are 1 +1. As the modulus
of both roots exceeds one, the roots are both outside the unit circle and so the
process is stationary.

In order to find the acf. of the process, we use the first Yule-Walker
equation to give

p(1)=p(0)—3zp(—1)
=1-3p(1)

giving p(1)=2/3.
For k=2, the Yule-Walker equations are

p(k)=p(k—1)—3p(k—2)
We could find p(2), then p(3), and so on by successive substitution, but it is
easier to find the general solution by solving as a difference equation, which
has the auxiliary equation
yi—y+3=0

with roots y=(l+i)/2={[cos(n/4)+ i sin(n/4)]/\/2=e*"™*/,/2. Since aof+
40, = (1 —2)1s less than zero, the ac.f. is a damped cosine wave. Using p(0)=1
and p(1)=2/3, some messy trigonometry and algebra gives

= Y osnk+lsinnk
P2\ T3y

for k=0,1,2,....

345 Mixed ARMA models

A useful class of models for time series is formed by combining MA and AR
processes. A mixed autoregressive/moving-average process containing p AR
terms and ¢ MA terms is said to be an ARMA process of order (p, q). Itis given
by

X=a, X+ +°‘pr—p+Zz+ﬂlzz—1
F Bz, (3.6)
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Using the backward shift operator B, equation (3.6) may be written in the
form
$(B)X,=0(B)Z, (3.62)

where ¢(B), 0(B) are polynomials of order p, g respectively, such that
¢B)=1-a, B~ —a BF

and
6(B)=1+B,B+ - +B,B?

As for an AR process, the values of {«;} which make the process stationary are
such that the roots of

¢(B)=0

lie outside the unit circle. As for an MA process, the values of { §;} which make
the process invertible are such that the roots of

8(B)=0

lie outside the unit circle.

It is straightforward in principle, though algebraically rather tedious, to
calculate the ac.f. of an ARMA process, but this will not be discussed here. (See
Exercise 3.11; and see Box and Jenkins, 1970, Section 3.4).

The importance of ARMA processes lies in the fact that a stationary time
series may often be described by an ARMA model involving fewer parameters
than a pure MA or AR process by itself.

It is sometimes helpful to express an ARMA model as a pure MA process in
the form

X,=y(B)Z, (3.6b)
where (B)=Zy,B" is the MA operator which may be of infinite order. The ¥
weights, {,}, can be useful in calculating forecasts (see Chapter 5) and in
assessing the properties of a model (e.g. see Exercise 3.11). By comparison

with equation (3.6a), we see that y/(B)=0(B)/¢(B). Alternatively, it can be
helpful to express an ARMA model as a pure AR process in the form

WB)X,=Z, (3.6c)
where 7(B) = ¢(B)/6(B). By convention we write n(B)=1— ) m,B’, since the
natural way to write an AR model is in the form iz1

Xr=_21 nX,_it+ 2,

By comparing (3.6b) and (3.6¢c), we see that
By (B)=1
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The y weights or = weights may be obtained directly by division or by equating
powers of B in an equation such as

Y(B)p(B)=0(B)
Example 3.2 Find the Y weights and n weights for the ARMA(], 1) process
given by
X,=0.5X,_,+74,—-032,_,

Here ¢(B)=(1—0.5B) and 8(B)=(1—0.3B), so the process is stationary and
invertible. Then

Y(B)=0(B)/¢(B)=(1—0.3B)(1—-0.5B) "
=(1—-0.3B)(14+0.5B+0.5?B*+ - - )
=1+40.2B+0.1B>+0.005B>+ -

Hence

Y, =02x05""! fori=1,2,...
Similarly we find

n1,=02x0.3"1 fori=1,2,...

Note that both the  weights and = weights die away quickly, and this also
indicates a stationary, invertible process.

3.4.6 Integrated ARIMA models

In practice most time series are non-stationary. In order to fit a stationary
model, such as those discussed in Sections 3.4.3-3.4.5, it is necessary to
remove non-stationary sources of variation. If the observed time series is non-
stationary in the mean then we can difference the series, as suggested in
Section 2.5.3, and this approach is widely used in econometrics. If X; is
replaced by VX, in equation (3.6) then we have a model capable of describing
certain types of non-stationary series. Such a model is called an ‘integrated’
model because the stationary model which is fitted to the differenced data has
to be summed or ‘integrated’ to provide a model for the non-stationary data.
Writing

W,=V'X,=(1-B)'X,

the general autoregressive integrated moving average process (abbreviated
ARIMA process) is of the form

I'{/t=111['1/1—1-+' T +apu/t—p+zt+ T +ﬁqz

t—q

(3.7)
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By analogy with equation (3.6a), we may write equation (3.7) in the form

¢(B)W,=06(B)Z, (3.7a)
or

¢(B)(1-B)'X,=0(B)Z, (3.7b)

Thus we have an ARMA(p, q) model for W,, while the model in equa-
tion (3.7b), describing the dth differences of X, is said to be an ARIM A process
of order (p,d, q). The model for X, is clearly non-stationary, as the AR
operator ¢(B) (1 — B)* has d roots on the unit circle. In practice the value of d is
often taken to be one. Note that the random walk can be regarded as an
ARIMA(0, 1, 0) process.

ARIMA models can be generalized to include seasonal terms, as discussed
in Section 4.6.

13.4.7 The general linear process

The MA process, of possibly infinite order, is given by

Xo=3 iz, (38

i=0

in the notation of equation (3.6b), where {Z,} denotes a purely random
process. A sufficient condition for the sum to converge and for the process to
be stationary is that 3 .o, 1//,.2 < oo. The process described by equation (3.8) is
sometimes called a general linear process. Stationary AR, MA, and ARMA
processes are special cases of this model and the duality between AR and MA
processes is easily demonstrated using equations (3.6b) and (3.6c¢).

13.4.8 Continuous process

So far, we have only considered stochastic processes in discrete time, because
these are the main type of process the statistician uses in practice. Continuous-
time processes have been used in some applications, notably in the study of
control theory by electrical engineers. Here we shall only indicate some of the
problems connected with their use.

By analogy with a discrete-time purely random process, we might expect to
define a continuous-time purely random process as having an ac.f. given by

(c)= 1 =0
PRU=% o0

However, this is a discontinuous function, and it can be shown that such a
process would have an infinite variance and hence be a physically unrealizable

{These sections should be omitted at first reading.
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phenomenon. Nevertheless, some processes which arise in practice do appear
to have the properties of continuous-time white noise even when sampled at
quite small discrete intervals. We may approximate continuous-time white
noise by considering a purely random process in discrete time at intervals At,
and letting At—0, or by considering a process in continuous time with
acf. p(r)=¢* and letting A— oo so that the ac.f. decays very quickly.

As an example of the difficulties involved with continuous-time processes,
we briefly consider a first-order continuous AR process. A first-order discrete
AR process may be written in terms of X;, VX, and Z,. As differencing in
discrete time corresponds to differentiation in continuous time, a natural way
of trying to define a continuous first-order AR process is by

d—zfg+aX(t)=Z(t) (3.9)
where ais a constant, and Z(t) denotes continuous white noise. In the theory of
Brownian motion, this is called Langevin’s equation. However, as Z(t) does
not physically exist, it is more legitimate to write equation (3.9) in a form
involving infinitesimal small changes as

dX(t)+aX(t) de=dU(t) (3.10)

where {U(t)} is a process with orthogonal increments such that the random
variables [U(t,)— U(t,)] and [U(t,)— Ul(t;)] are uncorrelated for any two
non-overlapping intervals (t;, t,) and (t5, t,). It can then be shown that the
process X(t) defined in equation (3.10) has ac.f.

pl)=e "

which is similar to the ac.f. of a first-order discrete AR process in that both
decay exponentially. However, the rigorous study of continuous processes,
such as that in equation (3.9), requires considerable mathematical machinery,
including a knowledge of stochastic integration, and we will not pursue it here.
The reader is referred for example to Yaglom (1962) and Cox and Miller (1968,
Section 7.4).

+3.5 THE WOLD DECOMPOSITION THEOREM

This section gives a brief introduction to a famous result, called the Wold
decomposition theorem, which is of mainly theoretical interest. The treatment
in this section is a shortened version of that given by Cox and Miller (1968).
The Wold decomposition theorem says that any discrete stationary process
can be expressed as the sum of two uncorrelated processes, one purely
deterministic and one purely indeterministic. The terms ‘deterministic’ and

+This section should be omitted at first reading.
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‘indeterministic’ are defined as follows. We can regress X, on
(X,—g» Xi—g-1- - - ) and denote the residual variance from the resulting linear
regression model by 2. As t <Var(X)), it is clear that, as q increases, t2is a
non-decreasing bounded sequence and therefore tends to a limit as g—co0. If
lim,, ,2=Var(X;) then linear regression on the remote past is useless for
prediction purposes, and we say that {X,} is purely indeterministic. But if
lim,_, 007.'3 is zero then the process can be forecast exactly, and we say that {X;}
is purely deterministic.

All the stationary processes we have considered in this chapter, such as AR
and MA processes, are purely indeterministic. The best-known examples of
purely deterministic processes are sinusoidal processes (see Exercise 3.14),

such as
X, =g cos(wt +8) (3.11)

where g is a constant, w is a constant in (0, n) called the frequency of the
process, and 0 is a random variable called the phase which is uniformly
distributed on (0, 27) but which is fixed for a single realization. Note that we
must include the term 6 so that

E(X)=0 forall:

otherwise (3.11) would not define a stationary process. As 0 is fixed for a single
realization, once enough values of X, have been observed to evaluate 6, all
subsequent values of X, are completely determined. It is then obvious that
(3.11) defines a purely deterministic process.

The Wold decomposition theorem also says that the purely indeterministic
component can be written as the linear sum of an ‘innovation’ process {Z,},
which is a sequence of uncorrelated random variables. A special class of
processes of particular interest arise when the Zs are independent and not
merely uncorrelated, as we then have a general linear process (Section 3.4.7).
On the other hand when processes are generated in a non-linear way the Wold
decomposition is usually of little interest.

The concept of a purely indeterministic process is a useful one, and most of
the stationary stochastic processes which are considered in the rest of this
book are of this type.

EXERCISES

In all the following questions {Z,} is a discrete, purely random process, such
that E(Z,)=0, Var(Z,)=0%, Cov(Z, Z,,,)=0, k#0.
Exercise 3.14 is harder than the others and may be omitted.

3.1 Find the ac.f. of the second-order MA process given by
X,=2,+0.7Z,_,-02Z_,
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Show that the ac.f. of the mth-order MA process given by

X=3 Z_Jm+1)
k=0

1—k 1 k=0,1,...,
p(k)={(()m+ ) (m+1) - m

Show that the infinite-order MA process {X;} defined by
X=Z+CZ_+Z,_,+ )

where Cis a constant, is non-stationary. Also show that the series of first
differences {Y,} defined by

Yi=X—X_,
is a first-order MA process and is stationary. Find the ac.f. of { ¥;}.
Find the acf. of the first-order AR process defined by
X—pu=07(X_,—w+4

Plot p(k) for k= —6, —5,..., —1,0, +1,..., +6.

If X,= u+ Z + BZ,_,, where jis a constant, show that the ac.f. does not
depend on p.

Find the values of A,, 4,, such that the second-order AR process defined
by

X=MX,_ 1+ X _,+Z

‘ is stationary. If A, =1/3, A, =2/9, show that the ac.f. of X; is given by

16 /2\* 5 1\
- it - =0, +1, +2,...
p(k)—21<3> +21< 3> k=0, +1, +2,

Explain what is meant by a weakly (or second-order) stationary
process, and define the acf. p(u) for such a process. Show that
p(u)=p(—u) and that |p(u)| <1.

Show that the acf. of the stationary second-order AR process

1

1
=EX"1 +=X_tZ4

X 12

is given by

45 (1\M 32/ 1\M
S = -= k=0, +1, £2,...
p(k) 77<3> +77( 4>
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The stationary process {X,} has acv.f. yy(k). A new stationary process
{Y,} is defined by ¥,=X,—X,_,. Obtain the acv.f. of {Y,} in terms of
v4(k) and find yy(k) when yy(k)= I

For each of the following models:

(a) X,=03X_,+Z,
(b) X=2,—13Z_,+04Z_,
©) X,=0.5X,_,+Z—13Z,_,+04Z_,

express the model in B notation and determine whether the model is
stationary and/or invertible. For model (a) find the equivalent MA
representation.

A stationary process { X,} can be represented in the form X, = W(B)Z, or
n(B)X,= Z,. The autocovariance generating function is given by

T)= % yxk)s*
k=—-

Show that I'(s)=o2y(s)y(1/s)=03/[n(s)n(1/s)].
(Hint: Equate coefficients of s*.)
Show that the acf. of the ARMA(1, 1) model
X=0X _, +Z+pZ,_,
is given by
p(1)=(1+aB) (x+B)/(1 +* +22)
pk)=apk—1) k=2,3,...
For the model (1— B)(1-0.2B)X,=(1-0.5B)Z:

(a) Classify the model as an ARIMA(p, d, q) process (i.c. find p, d, q).
(b) Determine whether the process is stationary.

(c) Evaluate the first three y weights.

(d) Evaluate the first four 7 weights.

Show that the AR(2) process
X=X_,+cX_,+4

is stationary provided —1<c<0. Find the autocorrelation function
when ¢= —3/16.
Show that the AR(3) process

X=X_ +cX _,—cX_3+7Z

is non-stationary for all values of c.
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3.14 For a complex-valued process X(t), with (complex) mean g, the acv f. is
defined by

¥(7) = E{[X(0)— ] [X(t +1)— A1}

where the overbar denotes the complex conjugate. Show that the
process X(t)=Y e'* is second-order stationary, where Y is a complex
random variable mean zero which does not depend on t, and w is a real
constant. One useful form for the random variable Y occurs when it
takes the form g e*, where g is a constant and 6 is a uniformly
distributed random variable on (0, 27). Show that E(Y)=0 in this case
(see Yaglom, 1962, Section 2.8; but note that the autocovariance
function is called the correlation function by Yaglom).



4

Estimation in the time
domain

In Chapter 3 we introduced several different types of probability model which
may be used to describe time series. In this chapter we discuss the problem of
fitting a suitable model to an observed time series, confining ourselves to the
discrete-time case. The major diagnostic tool in this chapter is the sample
autocorrelation function. Inference based on this function is often called an
analysis in the time domain.

4.1 ESTIMATING THE AUTOCOVARIANCE AND
AUTOCORRELATION FUNCTIONS

We have already noted in Section 3.3 that the theoretical ac.f. is an important
tool for describing the properties of a stationary stochastic process. In
Section 2.7 we heuristically introduced the sample ac.f. of an observed time
series, and this is an intuitively reasonable estimate of the theoretical ac.f.,
provided the series is stationary. This section investigates the properties of the
sample ac.f. more closely.
Let us look first at the autocovariance function (acv.f.). The sample
autocovariance coefficient at lag k (see equation (2.7)), given by
N-k
Cx = 21 (x,—X) (X, 4 —X)/N @.1)
(=
is the usual estimator for the theoretical autocovariance coefficient y(k) at
lag k. The properties of this estimator are discussed by Jenkins and Watts
(1968, Section 5.3.3) and Priestley (1981, Chapter 5). It can be shown that the
bias in ¢, is of order 1/N. However,

lim E()=7(k)

so that the estimator is asymptotically unbiased.
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It can also be shown that

Covl(cy, e 3, {p(r)y(r+m—k)+y(r+m)y(r—k)}/N (4.2)
When m=k, formula (4.2) gives us the variance of ¢, and hence the mean
square error of ¢,. Formula (4.2) also highlights the fact that successive values
of ¢, may be highly correlated and this increases the difficulty of interpreting
the correlogram.
Jenkins and Watts (1968, Chapter 5) compare the estimator (4.1) with the
alternative estimator

=2, (=X) (X, — X)/(N—K)

This is used by some authors because it has a smaller bias, but Jenkins and
Watts conjecture that it generally has a higher mean square error. In any case
it is the biased estimator in equation (4.1) which gives a function having a
useful property called positive semi-definiteness (Priestley, 1981), which leads
to a finite Fourier transform which is non-negative. The latter is useful in
estimating the spectrum (see Chapter 7).

A third method of estimating the acv.f. is to use Quenouille’s method of bias
reduction, otherwise known as jackknife estimation. In this procedure the
time series is divided into two halves, and the sample acv f. is estimated from
each half of the series and also from the whole series. If the three resulting
estimates of y(k) are denoted by ¢, , ¢,, and ¢, in an obvious notation, then the
jackknife estimate is given by

€k=2ck—%(ck1 +¢Ci2) (4.3)

It can be shown that this estimator reduces the bias from order 1/N to
order 1/N?. It has an extra advantage in that one can see if both halves of the
time series have similar properties and hence see if the time series is stationary.
However, the method has the disadvantage that it requires extra computation.
It is also sensitive to non-stationarity in the mean, and c,,, c,, should be
compared with the overall ¢, as well as with each other.

Having estimated the acv.f., we then take

Te=Ci/Co (4.4)
as an estimator for p(k). The properties of r, are rather more difficult to find
than those of ¢, because it is the ratio of two random variables. It can be shown

that r, is generally biased. The bias can be reduced by jackknifing as in
equation (4.3). The jackknife estimator is given in an obvious notation by

Fo=2r = 51y +1e2)
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A general formula for the variance of r, is given by Kendall, Stuart and Ord
(1983, Section 48.1) and depends on all the autocorrelation coefficients of the
process. We will only consider the properties of r, when sampling from a
purely random process, when all the theoretical autocorrelation coefficients
are zero except at lag zero. These results help us to decide if the observed values
of r, from a given time series are significantly different from zero.

Suppose that x,,...,xy are independent and identically distributed
random variables with arbitrary mean. Then it can be shown (Kendall, Stuart
and Ord, 1983, Chapter 48) that

E(r)~-1/N
Var(r,)~1/N

and that r, is asymptotically normally distributed under weak conditions.
Thus having plotted the correlogram, as described in Section 2.7, we can plot
approximate 95% confidence limits at —1/N+ 2/\/ N, which are often further
approximated to +2/,/N. Observed values of r, which fall outside these limits
are ‘significantly’ different from zero at the 5% level. However, when
interpreting a correlogram, it must be remembered that the overall probability
of getting a coefficient outside these limits, given that the data really are
random, increases with the number of coefficients plotted. For example if the
first 20 values of r, are plotted then one expects one ‘significant’ value on
average even if the data really are random. Thus, if only one or two coeflicients
are ‘significant’, the size and lag of these coefficients must be taken into
account when deciding if a set of data is random. Values well outside the ‘null’
confidence limits indicate non-randomness. So also does a significant
coefficient at a lag which has some physical interpretation, such as lag 1 or a
lag corresponding to seasonal variation.

Figure 4.1 shows the correlogram for 100 observations, generated on a
computer, which are supposed to be independent normally distributed
variables. The confidence limits are approximately +2/,/100= +0.2. We see
that 2 of the first 20 values of r, lie just outside the significance limits. As these
occur at apparently arbitrary lags (namely 12 and 17) we conclude that there is
no firm evidence to reject the hypothesis that the observations are
independently distributed.

4.1.1 Interpreting the correlogram

We have already given some general advice on interpreting correlograms in
Section 2.7.2. The correlogram is also helpful in identifying which type of
ARIMA model gives the best representation of an observed time series. A
correlogram like that in Figure 2.3, where the values of 7, do not come down to
zero reasonably quickly, indicates non-stationarity and so the series needs to
be differenced. For stationary series, the correlogram is compared with the
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+1

-1 U

Figure 4.1 The correlogram of 100 ‘independent’ normally distributed observations.

theoretical acfs of different ARMA processes in order to choose the one
which is most appropriate. The ac.f. of an MA(q) process is easy to recognize
as it ‘cuts off” at lag ¢, whereas the ac.f. of an AR(p) process is a mixture of
damped exponentials and sinusoids and dies out slowly (or attenuates). The
ac.f. of amixed ARMA model will also generally attenuate rather than ‘cut off".
For example, suppose we find that r, is significantly different from zero but
that subsequent values of r, are all close to zero. Then an MA(1) model is
indicated since its theoretical ac f. is of this form. Alternatively, ifr,, r,, 75, . . .
appear to be decreasing exponentially, then an AR(1) model may be
appropriate.

The interpretation of correlograms is one of the hardest aspects of time-
series analysis and practical experience is a ‘must’. Inspection of the partial
autocorrelation function (see Section 4.2.2) can provide some help.

14.1.2 Ergodic theorems

The fact that one can obtain consistent estimates of the properties of a
stationary process from a single finite realization is not immediately obvious.
However some theorems, called ergodic theorems, have been proved which
show that, for most stationary processes which are likely to be met in practice,
the sample moments of an observed record of length 7 converge (in mean

1This section may be omitted at a first reading.
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square) to the corresponding population moments as 7— 0. In other words,
time averages for a single realization converge to ensemble averages. See for
example Yaglom (1962, Section 1.4). We will not pursue the topic here.

42 FITTING AN AUTOREGRESSIVE PROCESS

Having estimated the ac.f. of a given time series, we should have some idea as
to which stochastic process will provide a suitable model. If an AR process is
thought to be appropriate, there are two related questions:

(a) What is the order of the process?
(b) How can we estimate the parameters of the process?

We will consider question (b) first.

4.2.1 Estimating the parameters of an autoregressive process

Suppose we have an AR process of order p, with mean , given by
X—p=0, (X, —p)+ -+, (X~ +Z (4.5)

Given N observations X, ....Xxy, the parameters u, «,,...,o, may be
estimated by least squares by minimizing

N
S= Z [xt—“_al(x:~1_“)_ o _“p(xtfp_“)]z
t=p+1
with respect to p1, @, . . . , a,. If the Z, process is normal, then the least squares
estimates are in addition maximum likelihood estimates (Jenkins and Watts,
1968, Section 5.4) conditional on the first p values in the time series being
fixed.
In the first-order case, with p=1, we find (see Exercise 4.1)

ﬁzxu)l:“&xlx(l) (4.6)
and
N-1
Z (x,— @) (x4 1 —4)
Gy = s (4.7)
Zl (x,— A
o

where X, X5, are the means of the first and last (N — 1) observations. Now
since

X1y =Xy =X
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we have approximately that
g=x 4.8)

This approximate estimator, which is intuitively appealing, is nearly always
used in preference to (4.6). Substituting this value into (4.7) we have

T (=) (=)

oy =

4.9)

Itis interesting to note that this is exactly the same estimator that would arise if
we were to treat the autoregressive equation

X—X=o,(x,_; —X)+2,

as an ordinary regression with (x,_; — X) as the ‘independent’ variable. In fact
H. B. Mann and A. Wald showed in 1943 that, asymptotically, much of
classical regression theory can be applied to autoregressive situations.

A further approximation which is often used is obtained by noting that the
denominator of (4.9) is approximately

so that
d;cq/cq
=r1

This approximate estimator for &, is also intuitively appealing since r, is an
estimator for p(1) and p(1)=a, for a first-order AR process. A confidence
interval for o, may be obtained from the fact that the asymptotic standard
error of d; is \/{(1—a%)/N}, although the confidence interval will not be
symmetric for &, away from zero. When «, =0, the standard error of &, is
1//N, and so a test for a; =0 is given by seeing if &, =r, lies within the range
+2/,/N. This is equivalent to the test for p(1)=0 already noted in Section 4.1.

For a second-order AR process, with p=2, similar approximations may be
made to give

p~X
&I:rl(l—rz)/(l—rf) (4.10)
&22(’2_’12)/(1"12) (4.11)

These results are also intuitively reasonable in that if we fit a second-order
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model to what is really a first-order process, then as a,=0 we have
p(2)=p(1=0o? and so r,~r}. Thus equations (4.10) and (4.11) become
&, ~r, and &, ~0. Jenkins and Watts (1968, p. 197) describe &, as the (sample)
partial autocorrelation coefficient of order two which measures the excess
correlation between {X,} and {X,,,} not accounted for by r,.

In addition to point estimates of a; and «, it is also possible to find a
confidence region in the («,, «,) plane (Jenkins and Watts, 1968, p. 192).

Higher-order AR processes may also be fitted by least squares in a
straightforward way. Two alternative approximate methods are commonly
used. Both methods involve taking /i =X. The first method fits the data to the
model

A/l_x-zal(xt—l—'.x-)_'_ e +ap(xl—p—x.)+zt

treating it as if it were an ordinary regression model. A standard multiple
regression computer program may be used with appropriate modification.

The second method involves substituting the sample autocorrelation
coefficients into the first p Yule-Walker equations (see Section 3.4.4) and
solving for (&, ..., d,) (c.g. Pagano, 1972). In matrix form these equations
are

Ra=r (4.12)
where
1 r, r, Fo1
R ry 1 ry Fpoa
r, r, 1 Too3
ro_1 Tp_s 1

is a (p x p) matrix,

a'=(dy,...,4,)
and
=0y, ...,1,)

For N reasonably large, both methods will give estimated values ‘very close’ to
the true least squares estimates for which fi is close to but not necessarily equal
to X.

4.2.2 Determining the order of an autoregressive process

Itis usually difficult to assess the order of an AR process from the sample ac.f.
alone. For a first-order process the theoretical ac.f. decreases exponentially
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and the sample function should have a similar shape. But for higher-order
processes the ac.f. may be a mixture of damped exponential or sinusoidal
functions and is difficult to identify. One approach is to fit AR processes of
progressively higher order, to calculate the residual sum of squares for each
value of p, and to plot this against p. [t may then be possible to see the value of
p where the curve ‘flattens out’ and the addition of extra parameters gives little
improvement in fit.

Another aid to determining the order of an AR process is the partial
autocorrelation function (see Box and Jenkins, 1970, p. 64) which is defined as
follows. When fitting an AR(p) model, the last coefficient o, will be denoted by
n, and measures the excess correlation at lag p which is not accounted for by
an AR(p— 1) model. It is called the pth partial autocorrelation coefficient and,
when plotted against p, gives the partial ac.f. The first partial autocorrelation
coefficient 7, is simply equal to p(1), and this is equal to «, for an AR(1)
process. It can be shown (see Exercise 4.3) that the second partial correlation
coefficient is [p(2)— p(1)*]/[1—p(1)*], and we note that this is zero for an
AR(1) process where p(2)=p(1)*.

The sample partial ac.f. is estimated by fitting AR processes of successively
higher order and taking #, =&, when an AR(1) process is fitted, taking 7, =&,
when an AR(2) process is fitted, and so on. Values of 7, which are outside the
range +2/,/N are significantly different from zero at the 5% level. It can be
shown that the partial ac.f. of an AR(p) process ‘cuts off’ at lag p so that the
‘correct’ order is assessed as that value of p beyond which the sample values of
{=;} are not significantly different from zero. In contrast the partial ac.f. of an
MA process will generally attenuate, and so the partial ac.f. has ‘opposite’
properties to the ac.f.

Some additional tools to help in model identification are discussed in
Section 13.1.

4.3 FITTING A MOVING AVERAGE PROCESS

Suppose now that an M A process is thought to be an appropriate model for a
given time series. As for an AR process, we have two problems:

(a) Finding the order of the process
(b) Estimating the parameters of the process.

We consider problem (b) first.

4.3.1 Estimating the parameters of a moving average process

Estimation problems are more difficult for an MA process than an AR process,
because efficient explicit estimators cannot be found. Instead some form of
numerical iteration must be performed.
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Let us begin by considering the first-order MA process
X=p+2Z+B7Z -, (4.13)

where ., 8, are constants and Z, denotes a purely random process. We would
like to write the residual sum of squares, £Z?, solely in terms of the observed
xs and the parameters u, 8, as we did for the AR process, to differentiate with
respect to u and f,, and hence to find the least squares estimates.
Unfortunately the residual sum of squares is not a quadratic function of the
parameters and so explicit least squares estimates cannot be found. Nor can
we simply equate sample and theoretical first-order autocorrelation coeffi-
cients by

ri=PB./(1+B3) (4.14)

and choose the solution /i, such that |3,/ <1, because it can be shown that this
gives rise to an inefficieat estimator.

The approach suggested by Box and Jenkins (1970, Chapter 7)is as follows.
Select suitable starting values for u and f,, such as u=x and f, given by the
solution of equation (4.14) (see Table A in Box and Jenkins, 1970). Then the
corresponding residual sum of squares may be calculated using (4.13)
recursively in the form

Z=X—p-bZ- (4.15)
With z,=0, we have

=Xy M, zy=X;—u—Pyzy, -,
Zy=Xy—H—B1Zn-y

Then Y .z} may be calculated.

This procedure could then be repeated for other values of y and f, and the
sum of squares £z computed for a grid of points in the (x4, ;) plane. We may
then determine by inspection the least squares estimates of y and §, which
minimize £z2. These least squares estimates are also maximum likelihood
estimates conditional on the fixed zero value for z, provided that Z is
normally distributed. The procedure can be further refined by back forecasting
the value of z,, (see Box and Jenkins, 1970), but this is unnecessary except when
Nis small or when f, is ‘close’ to plus or minus one. Nowadays the values of u
and f which minimize £z? would normally be found by some iterative
optimization procedure, such as hill-climbing, although a grid search can still
sometimes be useful to see what the sum of squares surface looks like.

An alternative estimation procedure due to J. Durbin is to fit a high-order
AR process to the data and use the duality between AR and MA processes (see
for example Kendall, Stuart and Ord, 1983, Section 50.16). This procedure
has the advantage of requiring less computation, but the widespread
availability of high-speed computers has resulted in the procedure becoming
obsolete.
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For higher-order processes a similar type of iterative procedure to that
described above may be used. For example, with a second-order MA process
one would guess starting values for u, f§,, f,, compute the residuals recursively
using

Z!=xt_“_ﬁlzt-1_ﬁlzl—2

and compute Zz;7. Then other values of y, B, B, could be tried, perhaps over a
grid of points, until the minimum value of £z is found. Clearly a computer is
essential for performing such a large number of arithmetic operations, and a
numerically efficient optimization procedure is often used to minimize the
residual sum of squares. Box and Jenkins (1970, Section 7.2) describe such a
procedure, which they call ‘non-linear estimation’. This description arises
from the fact that the residuals are non-linear functions of the parameters,
but the description may give rise to confusion.

For a completely new set of data, it may be a good idea to use the method
based on evaluating the residual sum of squares at a grid of points. A visual
examination of the sum of squares surface will sometimes provide useful
information. In particular it is interesting to see how ‘flat’ the surface is; if the
surface is approximately quadratic; and if the parameter estimates are
approximately uncorrelated.

In addition to point estimates, an approximate confidence region for the
model parameters may be found as described by Box and Jenkins (1970,
p. 228) by assuming that the Z, are normally distributed. But there is some
doubt as to whether the asymptotic normality of maximum likelihood
estimators will apply even for moderately large sample sizes (e.g. N=200).

It should now be clear that it is much harder to estimate the parameters of
an MA model than those of an AR model, as the ‘errors’ in an MA model are
non-linear functions of the parameters and iterative methods are required to
minimize the residual sum of squares. Because of this, many analysts prefer to
fit an AR model to a given time series even though the resulting model may
contain more parameters than the ‘best’ MA model. Indeed the relative
simplicity of AR modelling is the main reason for its use in the stepwise
autoregression forecasting technique (see Section 5.2.5) and in autoregressive
spectrum estimation (see Section 13.5.1).

4.3.2 Determining the order of a moving average process

If an MA process is thought to be appropriate for a given set of data, the order
of the process is usually evident from the sample ac.f. The theoretical ac.f. of an
MA(q) process has a very simple form in that it ‘cuts off’ at lag g (see
Section 3.4.3), and so the analyst should look for the lag beyond which the
values of r, are close to zero. The partial ac.f. is generally of little help in
identifying MA models because of its attenuated form.
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4.4 ESTIMATING THE PARAMETERS OF AN ARMA
MODEL

Suppose now that a mixed autoregressive/moving-average (ARMA) model is
thought to be appropriate for a given time series. The estimation problems for
an ARMA model are similar to those for an MA model in that an iterative
procedure has to be used. The residual sum of squares can be calculated at
every point on a suitable grid of the parameter values, and the values which
give the minimum sum of squares may then be assessed. Alternatively some
sort of optimization procedure may be used.

As an example, consider the ARMA(1, 1) process whose ac.f. decreases
exponentially after lag 1 (see Exercise 3.11). This model may be recognized as
appropriate if the sample ac.f. has a similar form. The model is given by

X—p=o0,(X_ —w)+Z+BZ,_,

Given N observations x, . . ., Xy, we guess values for y, a;, f,,set z,=0and
Xo=H, and then calculate the residuals recursively by

=Xy T H

Zy=Xy—p—0 (Xy_y —p)—B1zy_4

The residual sum of squares ) ,-, z? may then be calculated. Then other

values of y, «,, B; may be tried until the minimum residual sum of squares is
found. Further details may be found in Box and Jenkins (1970).

Many variants of the above estimation procedure have been studied — see
the reviews by Priestley (1981, Chapter 5) and Kendall, Stuart and Ord (1983,
Chapter 50). Nowadays exact maximum likelihood estimates are often
preferred, despite the extra computation involved. The conditional least
squares estimates introduced above are conceptually easier to understand and
can also be used as starting values for exact maximum likelihood. The
Hannan-Rissanen recursive regression procedure (e.g. see Granger and
Newbold, 1986) is primarily intended for model identification but can
alternatively be used to provide starting values as well. The Kalman filter (see
Section 10.1.4) may be used to calculate exact maximum likelihood estimates
to any desired degree of approximation. We will say no more about this
important, but rather advanced, topic here. Many computer packages now
incorporate sound estimation routines.

4.5 ESTIMATING THE PARAMETERS OF AN ARIMA
MODEL

In practice most time series are non-stationary, and the stationary models we
have so far considered are not immediately appropriate. We can difference an
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observed time series until it is stationary, as described in Section 3.4.6. An AR,
MA or ARMA model may then be fitted to the differenced series as described
in Sections 4.2-4.4. The resulting model for the undifferenced series is the
fitted ARIMA model, and two examples are given in Appendix D.

4.6 THE BOX-JENKINS SEASONAL (SARIMA) MODEL

In practice, many time series contain a seasonal periodic component which
repeats every s observations. For example, with monthly observations, where
s=12, we may typically expect X, to depend on terms such as X,_,,, and
perhaps X,_,,, as well as terms such as X,_,, X;_,,.... Box and Jenkins
(1970) have generalized the ARIMA model to deal with seasonality, and define
a general multiplicative seasonal ARIMA model (abbreviated SARIMA
model) as

¢, (B)Dp(B*)W,=0,(B)Oy(B*)Z, (4.16)

where B denotes the backward shift operator, ¢ ,, ®,, 6,, ®, are polynomials
of order p, P, q, Q respectively, Z, denotes a purely random process, and

W,=VivPX, 4.17)

This model looks rather complicated at first sight. However, if say P=1, then
the term ®,(B°) will be (1 —constant x B*), which simply means that W, will
depend on W,__, since B*W,= W,_,. The variables { W,} are formed from the
original series {X,} not only by simple differencing (to remove trend) but also
by seasonal differencing, V,, to remove seasonality. For example f d=D =1
and s=12, then

Wi=VV,X =V X -V,X
=(X—X_12)— (X1 —X_13)
The model in equations (4.16) and (4.17) is said to be a SARIMA model of

order (p, d, q) x (P, D, Q),. The values of d and D do not usually need to

exceed one.
As an example, consider a SARIMA model of order (1,0, 0)x (0, 1, 1),,,
where we note s=12. Then equations (4.16) and (4.17) can be written

(1—-aB)W,=(1+6B%)Z,
where W,=V,,X,. Then we find

X=X_+aX_,—X,_13)+Z+0Z_,,

t

so that X, depends on X,_,, X, _,, and X, |, as well as the innovation at time
(t—12).
When fitting a seasonal model to data, the first task is to assess values of d
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and D which reduce the series to stationarity and remove most of the
seasonality. Then the values of p, P, g and Q need to be assessed by looking at
the ac.f. and partial ac.f. of the differenced series and choosing a SARIMA
model whose ac.f. and partial ac.f. are of similar form (see Section 5.2.4 and
Example D.3). Finally, the model parameters may be estimated by some
suitable iterative procedure. Full details are given by Box and Jenkins (1970,
Chapter 9), but the many computer programs now available means that the
average analyst need not worry too much about the practical details of
estimation routines.

4.7 RESIDUAL ANALYSIS

When a model has been fitted to a time series, it is advisable to check that the
model really does provide an adequate description of the data. As with most
statistical models, this is usually done by looking at the residuals, which are
defined by

residual = observation — fitted value

For a univariate time-series model, the fitted value is the one-step-ahead
forecast so that the residual is the one-step-ahead forecast error. For example,
with an AR(1) model (equation (3.4)) where a is estimated by least squares, the
fitted value at time t is dx,_, so that the residual corresponding to x, is

L= X T AX

Of course if o were known exactly then the exact error z, = x, — ax, _, could be
calculated, but this situation rarely arises in practice.

If we have a ‘good’ model then we expect the residuals to be ‘random’ and
‘close to zero’, and model validation usually consists of plotting residuals in
various ways. With time-series models we have the added feature that the
residuals are ordered in time and it is natural to treat them as a time series.

The two obvious steps are to plot the residuals as a time plot, and to
calculate the correlogram of the residuals. The time plot will reveal any
outliers and any obvious autocorrelation or cyclic effects. The residual
correlogram will enable autocorrelation effects to be examined more closely.
Let r, denote the autocorrelation coefficient at lag k of the {Z,}. If we have fitted
the true model, then the true errors form a purely random process and, from
Section 4.1, their correlogram is such that each autocorrelation coefficient is
approximately normally distributed, mean 0, variance 1/N for reasonably
large values of N. However, the correlogram of the residuals has somewhat
different properties. For example for an AR(1) process with a=0.7, the 95%
confidence limits are at +1.3/\/N for r,, +1.7/\/N for r,, and +2/,/N for
values of r, at higher lags. Thus for lags greater than 2, the confidence limits are
the same as for the correlogram of the true errors.
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The analysis of residuals from ARMA processes is discussed by Box and
Pierce (1970) and Box and Jenkins (1970, Chapter 8). It turns out that 1/\/N
supplies an upper bound for the standard error of the residual r;s, so that
values which lie outside the range +2/,/N are significantly different from zero
at the 5% level and give evidence that the wrong model has been fitted.

Instead of looking at the r,s one at a time, Box and Jenkins (1970,
Section 8.2.2) describe what they call a portmanteau lack-of-fit test which
looks at the first M values of the correlogram all at once. The test statistic is

M
O=N Z r,(2 (4.18)
k=1

where N is the number of terms in the differenced series and M is typically
chosen in the range 15 to 30. If the fitted model is appropriate, then Q should
be approximately distributed as x? with (M — p— q) degrees of freedom, where
p, q are the number of AR and MA terms respectively in the model.
Unfortunately the y? approximation can be rather poor for N<100, and
various alternative statistics have been proposed (e.g. Ljung and Box, 1978
suggest N(N+2)Zr?/(N—k)). However, the tests have rather poor power
properties (e.g. Davies and Newbold, 1979) and in my experience rarely give
significant results. A variety of other procedures have also been proposed for
looking at residuals (e.g. Newbold, 1988, Section 4), but my own preference is
usually just to ‘look’ at the few values of r,, particularly at lags 1, 2 and the first
seasonal lag (if any), and see if any are significantly different from zero using
the crude limits of + 2/\/ N. If they are, then I would modify the model in an
appropriate way by putting in extra terms to account for the significant
coefficient(s). However, if only one (or two) values of r, are just significant at
ags which have no obvious physical meaning (e.g. k =35), then there would not
be enough evidence to reject the model.

Another statistic which is used for testing residuals is the Durbin-Watson
statistic (see Granger and Newbold, 1986, Section 6.2). This often appears in
computer output and in my experience few people know what it means. The
statistic is defined by

d=

N
1=

N
(f.—fz—l)z/Z h (4.19)
2 t=1

Now since
N N N
~ a 22 P
z (Zt‘zt—l)zzz Z Z -2 z 24211
t=2 t=1 t=2
we find d~2(1—r,), where r,=%77,_,/E3? is the first autocorrelation

coefficient of the residuals (since the mean residual should be virtually zero).
Thus the Durbin-Watson statistic is simply the residual r, in a different guise.
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If the true model has been fitted, then we expect r;, ~0 and d~2, so that a
‘typical’ value for d is around two and not zero. Furthermore, a test on d is
asymptotically equivalent to a test on the residual r,.

The Durbin-Watson statistic was originally proposed for use with multiple
regression models as applied to time-series data. Suppose we have N
observations on a dependent variable y, and k explanatory variables
X5 .-»Xg, and we fit the model

Yt=ﬁ1x11+'”+ﬁkxk,+zt t=1,..., N

Having estimated the parameters {f;} by least squares, we want to see if the
error terms are really independent. The residuals are therefore calculated by

ftzyt——ﬁlxlt_”'-ﬁkxk, t=1,...,N

The statistic d may now be calculated, and the distribution of d under the null
hypothesis that the z, are independent has been investigated. Tables of critical
values are available (e.g. Kendall, Stuart and Ord, 1983) and they depend on
the number of explanatory variables. Since d corresponds to the residual r,,
this test implies that we are only considering an AR(1) process as an
alternative to a purely random process for z,. Although it may be possible to
modify the use of the Durbin-Watson statistic for models other than multiple
regression models, it is usually better to look at the correlogram of the
residuals as described earlier.

If the residual analysis indicates that the fitted model is inadequate in some
way then alternative models may need to be tried, and there are various
tools for comparing the fit of several competing models (see Section 13.1). An
iterative strategy for building time-series models, which is an integral part of
the Box-Jenkins approach, is discussed more fully in Section 4.8 and 5.2 4.

4.8 GENERAL REMARKS ON MODEL BUILDING

How do we set about finding a suitable model for a given time series? The
answer depends on a number of factors, including the properties of the series as
assessed by a visual examination of the data, the number of observations
available, and the way the model is to be used.

First it is important to understand the three main stages in model building,
which can be described as:

(a) Model formulation (or model specification)
(b) Model estimation (or model fitting)
(¢) Model checking (or model verification).

Textbooks often concentrate on estimation, but say little about formulation.
This is unfortunate because computer packages now make estimation
straightforward for many types of model, so that the real problem is knowing
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which model to fit in the first place. The use of residual analysis in model
checking is receiving increasing attention, and may result in several cycles of
model fitting as a model is modified and improved in response to these checks
or in response to additional data. Thus model building is an iterative,
interactive process (see Section 13.3 and Chatfield, 1995a, Chapter 5).

This section concentrates on model formulation. The analyst should consult
appropriate ‘experts’ about the given problem, ask questions to get relevant
background knowledge, ook at a time plot of the data to assess their more
important features, and make sure that a proposed model is consistent with
empirical and/or theoretical knowedge and with the objectives of the
investigation.

There are many classes of time-series model to choose from. Chapter 3
introduced a general class of (univariate) models called ARIMA models,
which includes AR, MA and ARMA models as special cases. This useful class
of processes provides a good fit to many different types of time series and
should generally be considered when more than about 50 observations are
available. Another general class of models is the trend and seasonal type of
model introduced in Chapter 2. Later in this book several more classes of
model will be introduced, including multivariate models of various types, and
structural models.

In areas such as oceanography and electrical engineering, long stationary
series often occur. If a parametric model is required, an ARMA model should
be considered and can be fitted as outlined earlier in the chapter. The observed
correlogram and the partial acf. are examined, the appropriate ARMA model
identified, and the model parameters estimated by least squares. However, as
we shall see in Chapters 6 and 7, we may be more interested in the frequency
properties of the time series, in which case an ARMA model may not be very
helpful.

In many other areas, such as economics and marketing, non-stationary
series often occur and in addition may be fairly short. If more than 50
observations are available, Box and Jenkins (1970) advocate the fitting of
ARIMA models by differencing the observed time series until it becomes
stationary and then fitting an ARMA model to the differenced series. For
seasonal series, the seasonal ARIMA model may be used. However, it should
be clearly recognized that when the variation of the systematic part of the time
series (i.e. the trend and seasonality) is dominant, the effectiveness of the
ARIMA model is mainly determined by the initial differencing operations and
not by the subsequent fitting of an ARMA model to the differenced series, even
though the latter operation is much more time-consuming. Thus the simple
models discussed in Chapter 2 may be preferable for time series with a
pronounced trend and/or large seasonal effect. Models of this type have the
advantage of being simple, easy to interpret and fairly robust. In addition they
can be used for short series where it is impossible to fit an ARIMA model.
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EXERCISES

4.1

4.2

43

44

4.5

4.6

Derive the least squares estimates for an AR(1) process having mean u
(i.e. derive equations (4.6) and (4.7), and check the approximations in
equations (4.8) and (4.9)).

Derive the least squares normal equations for an AR(p) process, taking
fa=x, and compare with the Yule-Walker equations (equation (4.12)).

Show that the (theoretical) partial autocorrelation coefficient of
order 2, n,, is given by

[p(2)—p(1)*1/[1 - p(1)*]
Compare with equation (4.11).
Find the partial ac f. of the AR(2) process given by

1
X=zX_,+

2
3 sX_2+2

9
(see Exercise 3.6).

Suppose that the correlogram of a time series consisting of 100
observations has r, =0.31, r,=0.37, ry= —-0.05, r,=0.06, r;= —0.21,
re=0.11,r,=008,r;=0.05,r,=0.12,r,,= —0.01. Suggest an ARMA
model which may be appropriate.

The first eight values of the ac.f. and partial ac.f. of 60 observations on a
quarterly economic index, and of the first differences, are shown below:

Lag 1 2 3 4 5 6 7 8
xd 095 091 087 082 079 074 070 0.67
t\#, 095 004 —005 007 000 007 —0.04 —-0.02

vy d T 002 008 012 005 -002 —0.05 -001 0.03
‘17 002 008 006 0.03 005 —-006 —004 —0.02

Identify a model for the series. What else would you like to know about
the data in order to make a better job of formulating a ‘good’” model?
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Forecasting

Forecasting is the art of saying what will happen, and then explaining why it didn't!
Anonymous

5.1 INTRODUCTION

Forecasting the future values of an observed time series is an important
problem in many areas, including economics, production planning, sales
forecasting and stock control.

Suppose we have an observed time series Xy, X3, ..., Xy. Then the basic

Jproblem is to estimate future values such as x ~+x> Where the integer k is called

the lead time. The forecast of x,,, made at time N for k steps ahead will be
denoted by X(N, k).

A wide variety of different forecasting procedures are available and it is
important to realize that no single method is universally applicable. Rather the
analyst must choose the procedure which is most appropriate for a given set of
conditions. It is also worth bearing in mind that forecasting is a form of
extrapolation, with all the dangers that entails. Forecasts are conditional
statements about the future based on specific assumptions. Thus forecasts are
not sacred and the analyst should always be prepared to modify them as
necessary in the light of any external information. For long-term forecasting, it
can be helpful to produce several different forecasts based on alternative sets of
assumptions so that alternative ‘scenarios’ can be explored.

Forecasting methods may be broadly classified into three groups as follows.

(a) Subjective

Forecasts can be made on a subjective basis using judgement, intuition,
commercial knowledge and any other relevant information. Methods range
widely from bold freehand extrapolation to the Delphi technique, in which a
group of forecasters try to obtain a consensus forecast with controlled
feedback of other analysts’ preliminary predictions. These methods will not be
described here (see e.g. Armstrong, 1985; Wright and Ayton, 1987) as most
statisticians will want their forecasts to be at least partly objective. However,
note that some subjective judgement is often used in a more statistical
approach, for example to choose an appropriate model and perhaps make
adjustments to the resulting forecasts.
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(b) Univariate

Forecasts of a given variable are based on a model fitted only to past
observations of the given time series, so that X(N, k) depends only on
Xy>Xy—1s - - - - FOr example, forecasts of future sales of a given product would
be based entirely on past sales. Methods of this type are sometimes called naive
or projection methods.

(c) Multivariate

Forecasts of a given variable depend at least partly on values of one or more
other series, called predictor or explanatory variables. For example, sales
forecasts may depend on stocks and/or on economic indices. Methods of this
type are sometimes called causal models.

In practice, a forecasting procedure may involve a combination of the above
approaches. In particular, marketing forecasts are often made by combining
statistical predictions with the subjective knowledge and insight of people
involved in the market. A more formal type of combination is to compute a
weighted average of two or more objective forecasts, as this often proves
superior on average to the individual forecasts. However, an informative
model does not result.

An alternative way of classifying forecasting methods is between an
automatic approach requiring no human intervention, and a non-automatic
approach requiring some subjective input from the forecaster. The latter
applies to subjective methods and most multivariate methods. Most
univariate methods can be made fully automatic but can also be used in a non-
automatic form, and there can be a surprising difference between the results.

The choice of method depends on a variety of considerations, including:

(a) How the forecast is to be used.

(b) The type of time series and its properties, such as presence/absence of
trend and/or seasonality. Some series are very regular and hence ‘very
predictable’, but others are not. As always, a time plot of the data is very
helpful.

(c) How many past observations are available.

(d) The length of the forecasting horizon. This book is mainly concerned with
short-term forecasting. For example, in stock control the lead time for
which forecasts are required is the time between ordering an item and its
delivery.

(¢) The number of series to be forecast and the cost allowed per series.

(f) The skill and experience of the analyst and the computer programs
available. The analyst should select a method he feels ‘happy’ with, and
also consider the possibility of trying more than one method.

It is particularly important to clarify the objectives (as in any statistical
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investigation). This means finding out how a forecast will actually be used, and
whether it may even influence the future. Some forecasts are self-fulfilling. In a
commercial environment, forecasting should be an integral part of the
management process leading to what is sometimes called a systems approach.
Although point forecasts are sometimes adequate, a prediction interval is
often helpful to indicate future uncertainty. The latter can be calculated
assuming that the fitted model holds true in the future or can be calculated on
anempirical basisfrom thefitted errors (e.g. Chatfield, 1993a). Theytendtobe
too narrow in practice, mainly because the underlying model may change.
Whatever forecasting method is used, some sort of forecast monitoring
scheme is often advisable, particularly with large numbers of series. A variety
of tracking signals for detecting ‘trouble’ are described by Gardner (1983).

5.2 UNIVARIATE PROCEDURES

This section introduces the many projection methods which are now available.
Further details may be found in Granger and Newbold (1986), Montgomery
et al. (1990), Abraham and Ledolter (1983) and Gilchrist (1976).

5.2.1 Extrapolation of trend curves

For long-term forecasting it is often useful to fit a trend curve (or growth
curve) to successive yearly totals and extrapolate. This approach is reviewed
by Harrison and Pearce (1972) and Meade (1984). A variety of curves may be
tried including polynomial, exponential, logistic and Gompertz curves (see
also Section 2.5.1). At least seven to ten years of historical data are required,
and Harrison and Pearce suggest that ‘one should not make forecasts for
a longer period ahead than about half the number of past years for which
data are available.” The method is worth considering for long-term
foreasting, where it is unlikely to be worthwhile to fit a complicated model
to past data.

A drawback to the use of trend curves is that there is no logical basis for
choosing among the different curves except by goodness-of-fit. Unfortunately
it is often the case that one can find several curves which fit a given set of data
almost equally well but which, when projected forward, give widely different
forecasts.

5.2.2 Exponential smoothing

This forecasting procedure, first suggested by C.C. Holt in about 1958,
should only be used in its basic form for non-seasonal time series showing no
systematic trend. Of course many time series which arise in practice do contain
a trend or seasonal pattern, but these effects can be measured and removed to
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produce a stationary series. Thus it turns out that adaptations of exponential
smoothing are useful for many types of time series. Gardner (1985) gives a
general review.

Given a non-seasonal time series with no systematic trend, x,, x,, . . ., Xy,
it is natural to take as an estimate of x5, , a weighted sum of the past
observations:

X(N, D)=coxy+eiXy_ 1 +CXy o+ (5.1)

where the {c;} are weights. It seems sensible to give more weight to recent
observations and less weight to observations further in the past. An intuitively
appealing set of weights are geometric weights, which decrease by a constant
ratio. In order that the weights sum to one, we take

c;=a(l —a) i=0,1,...
where « is a constant such that 0 <o < 1. Then (5.1) becomes
(N, D=axy+oa(l —a)xy_, +a(l—a)lxy_,+ - (5.2)

Strictly speaking, equation (5.2) implies an infinite number of past observa-
tions, but in practice there will only be a finite number. So equation (5.2) is
customarily rewritten in the recurrence form as

XN, D=axy+(1—a)foxy_;+a(l—o)xy_,+ -]
=oaxy+(1—)X(N-1,1) (5.3)

If we set X(1, 1)=x,, then equation (5.3) can be used recursively to compute
forecasts. Equation (5.3) also reduces the amount of arithmetic involved since
forecasts can easily be updated using only the latest observation and the
previous forecast.

The procedure defined by equation (5.3) is called exponential smoothing.
The adjective ‘exponential’ arises from the fact that the geometric weights lie
on an exponential curve, but the procedure could equally well be called
geometric smoothing.

Equation (5.3) is sometimes rewritten in the error-correction form

(N, =alxy—*(N—1, D]+ £N -1, 1)
=aey+%(N—1, 1) (5.4)

where ey =xy— X(N—1, 1) is the prediction error at time N.
It can be shown that exponential smoothing is optimal if the underlying
model for the time series is given by

X=p+a Y Z+2Z (5.5)

j<t

This infinite moving average process is non-stationary, but the first differences
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(X,,,—2X,) form a first-order moving average process, so that X, is an
ARIMA(O, 1, 1) process (see Exercise 5.6).

The value of the smoothing constant « depends on the properties of the
given time series. Values between 0.1 and 0.3 are commonly used and produce
aforecast which depends on a large number of past observations. Values close
to one are used rather less often and give forecasts which depend much more
on recent observations. When a =1, the forecast is equal to the most recent
observation.

The value of « may be estimated from past data by a similar procedure to
that used for estimating the parameters of a moving average process. The sum
of squared prediction errors is computed for different values of « and the value
is chosen which minimizes the sum of squares. With a given value of «,
calculate

(1, )=x,
e,=x,—x(1, 1)

22, )=ae, +%(1, 1)

ey=xy—X(N—1,1)

and compute Y ¥, e?. Repeat this procedure for other values of a between 0
and 1,sayinsteps of 0.1, and select the value which minimizes £e?. Usually the
sum of squares surface is quite flat near the minimum and so the choice of o is
not critical,

5.2.3 The Holt-Winters forecasting procedure

Exponential smoothing may readily be generalized to deal with time series
containing trend and seasonal variation. The resulting procedure is usually
referred to as the Holt-Winters procedure in honour of P.R. Winters’
pioneering work of 1960. Trend and seasonal terms are introduced which are
also updated by exponential smoothing.

Suppose the observations are monthly, and let L,, T,, I, denote the local
level, trend and seasonal index, respectively, at time ¢. Thus 7, is the expected
increase or decrease per month in the current level. Let o, y, & denote the three
smoothing parameters for updating the level, trend and seasonal index
respectively. The smoothing parameters are usually chosen in the range (0, 1).
Then, when a new observation x, becomes available, the values of L,, T, and ]
are all updated. If the seasonal variation is multiplicative, then the (recurrence
form) updating equations are

L=alx/L_))+(1—a)(L,_,+T,_,)
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Li=y(L,—L,_)+(1-9T_,
L=0(x,/L)+(1-0)]_,,
and the forecasts from time ¢ are then
2(t, k)= (LA 1 0

for k=1,2,...,12. There are analogous formulae for the additive seasonal
case. Unfortunately the literature is confused by many different notations and
by the fact that the updating equations may be presented in the equivalent
error-correction form such as

T=T_,+aye/l_,

where it looks as though ay is a smoothing parameter.

A graph of the data should be examined to see if an additive or a
muitiplicative seasonal effect is the more appropriate. If the seasonal period
does not cover 12 observations, then the updating equations need to be
modified in an obvious way.

In order to implement the method, the user must

(a) Provide starting values for L,, 7, and [ at the beginning of the series

(b) Estimate values for «, y, by minimizing Ze? over a suitable fitting period
for which historical data are available

(c) Decide whether or not to normalize the seasonal indices at regular
intervals (see Section 2.6)

(d) Choose between an automatic or non-automatic approach.

Full details on these and other practical questions are given by Gardner (1985)
and Chatfield and Yar (1988). The method is straight forward and is widely
used in practice.

5.2.4 The Box-Jenkins procedure

This section gives a brief outline of the forecasting procedure based on
autoregressive integrated moving average (ARIMA) models which is usually
known as the Box-Jenkins approach. The beginner may find it easier to read
books such as Vandaele (1983), Granger and Newbold (1986) or Jenkins
(1979) rather than the original book by Box and Jenkins (1970), although the
latter is still an essential reference source.

The main stages in setting up a Box-Jenkins forecasting model are as
follows.

(@) Model identification

Examine the data to see which member of the class of ARIMA processes
appears to be most appropriate.
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(b) Estimation
Estimate the parameters of the chosen model as described in Chapter 4.

(c) Diagnostic checking
Examine the residuals from the fitted model to see if it is adequate.

(d) Consider alternative models if necessary

If the first model appears to be inadequate for some reason, then other
ARIMA models may be tried until a satisfactory model is found.

Now AR, MA and ARMA models have been around for many years and are
associated in particular with G.U. Yule and H. O. Wold. The major
contribution of Box and Jenkins has been to provide a general strategy for
time-series forecasting, in which the different stages of model building as listed
above are all given due prominence. In addition, they showed how the use of
differencing can extend the use of ARMA models to deal with non-stationary
series, and also how to incorporate seasonal terms into seasonal ARIMA (or
SARIMA) models. Thus ARIMA models are often referred to as Box-Jenkins
models. When a satisfactory ARIMA model has been found, it is relatively
straightforward to calculate forecasts as conditional expectations.

The first step in the Box-Jenkins procedure is to difference the data until
they are stationary. This is achieved by examining the correlograms of various
differenced series until one is found which comes down to zero “fairly quickly’
and from which any seasonal cyclic effect has been largely removed, although
there may still be ‘spikes’ at lags, s, 2s, and so on, where s is the number of
observations per year. For non-seasonal data, first-order differencing is
usually sufficient. For seasonal data of period 12, the operator VV,, is often
used if the seasonal effect is additive, while the operator V3, may be used if the
seasonal effect is multiplicative. Sometires the operator V,, by itself will be
sufficient. Over-differencing should be avoided. For quarterly data the
operator V, may be used, and so on.

The differenced series will be denoted by {w,; t=1,..., N—c}, where ¢
terms are ‘lost’ by differencing. For example, if the operator VV,, is used, then
c=13.

If the data are non-seasonal, an ARMA model can now be fitted to {w,} as
described in Chapter 4. If the data are seasonal, then the SARIMA model
defined in equation (4.16) may be fitted as follows. ‘Reasonable’ values of p, P,
q, Q are selected by examining the correlogram and the partial ac.f. of the
differenced series {w,}. Values of p and q are selected as outlined in Chapter 4
by examining the first few values of r,. Values of P and Q are selected primarily
by examining the values of r, at k=12, 24 . . . (where the seasonal period is 12).
Iffor example r,, is large’ but r,,, is ‘small’, this suggests one seasonal moving
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average term, so we would take P=0, 0 =1, as this SARIMA model has an
ac.f. of similar form. Box and Jenkins (1970)list the acv f.s of various SARIMA
models.

Having tentatively identified what appears to be a reasonable SARIMA
model, least squares estimates of the model parameters may be obtained by
minimizing the residual sum of squares in a similar way to that proposed for
ordinary ARMA models. In the case of seasonal series, it is advisable to
estimate initial values of a, and w, by backforecasting (or backcasting) rather
than set them equal to zero. This procedure is described by Box and Jenkins
(1970, Section 9.2.4). In fact if the model contains a seasonal moving average
parameter which is close to one, several cycles of forward and backward
iteration may be needed. Nowadays several alternative estimation procedures
are available, based for example on the exact likelihood function, on
conditional or unconditional least squares, or on a Kalman filter approach
(see references in Section 4.4).

For both seasonal and non-seasonal data, the adequacy of the fitted model
should be checked by what Box and Jenkins call ‘diagnostic checking’. This
essentially consists of examining the residuals from the fitted model to see if
there is any evidence of non-randomness. The correlogram of the residuals 1s
calculated and we can then see how many coefficients are significantly different
from zero and whether any further terms are indicated for the ARIMA model.
If the fitted model appears to be inadequate, then alternative ARIMA models
may be tried until a satisfactory one is found. Section 13.1 describes some
additional model identification tools to help in choosing an appropriate
model.

When a satisfactory model is found, forecasts may readily be computed.
Given data up to time N, these forecasts will involve the observations and
the fitted residuals (i.e. the one-step-ahead forecast errors) up to and
including time N. The minimum mean square error forecast of Xy ., at time N
is the conditional expectation of Xy,, at time N, namely X(N, k)=
E(Xy+iXy> Xy-1, - - ). [nevaluating this conditional expectation, we use the
fact that the ‘best’ forecast of all future Zs is simply zero (or more formally that
the conditional expectation of Zy ., given data up to time N, is zero for all
k>0). Box and Jenkins (1970) describe three general approaches to
computing forecasts.

(a) Using the difference equation form

Forecasts are usually computed most easily directly from the model equation
which Box and Jenkins (1970) call the difference equation form. Assuming that
the model equation is known exactly, then X(N, k) is obtained from the model
equation by replacing (1) future values of Z by zero, (2) future values of X by
their conditional expectation, and (3) past values of X and Z by their observed
values.
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For example, consider the SARIMA(1, 0, 0) (0, 1, 1), , model used as an
example in Section 4.6, where
X=X-taX - —X-3)+Z4+0Z_,
Then we find
XN, D)=xy_1talxy—Xy_12)+0zy_ 1y
X(N, 2)=xy_1o+a[X(N, 1)=xy_1 1]+ 02y_ 10

Forecasts further into the future can be calculated recursively in an obvious
way. It is also possible to find ways of updating the forecasts as new
observations become available. For example, when x, , , becomes known we
have

XN+ ) =xy_jo+a(Xyy;—Xy_11)+ 02y 10
=X(N, 2)+ofxy ., —X(N, 1)]
=X(N, 2)+azy,,
(b) Using the Y weights

The y weights defined in equation (3.6b) can also be used to compute forecasts
and are particularly helpful in calculating forecast error variances. Since

XN+k=ZN+k+‘/’1ZN+k—1+ T

itis clear that X(N, k)is equaito } 2o ¥, , zy_; (i.e. no future zs are included).
Thus the k-steps-ahead forecast error is (Zy, +V¥,Zy 1+ "+
¥~ 1Zy+,)- Hence the variance of the k-steps-ahead erroris (1+y3+ - +

'/’3—1)‘73-
(¢) Using the © weights
The n weights defined in equation (3.6¢) can also be used. Since
vk =M Xyt X+ + 2y
it is intuitively clear that X(N, k) is given by
XN, k)y=m, (N, k~ 1)+ 71, 2N, k—=2)+ - - + Xy + 7, Xy +

These forecasts can be computed recursively, replacing future values of X with
predicted values.

In practice the model is not known exactly, and we have to estimate the model
parameters (and hence the ys and =s if needed); we also have to estimate the
past values of Z by the observed residuals or one-step-ahead errors. Thus for
the SARIMA(1,0,0)(0, 1, 1),, model given above, we would have, for
example, that
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X(N, )=xy_1y +&(XN_XN—12)+9iN—ll
Except for short series, this generally makes little difference to forecast error
variances.

Although some packages have been written to provide automatic ARIMA
modelling (with dubious results), the method is primarily intended for a non-
automatic approach where the analyst uses his subjective judgement to select
an appropriate model from the large family of ARIMA models according to
the properties of the individual series being analysed. Thus, although the
procedure is more versatile than many competitors, it is also more
complicated and considerable experience is required to identify an appro-
priate ARIMA model. Unfortunately, the analyst may find several different
models which fit the data equally well but give rather different forecasts, while
sometimes it is difficult to find any sensible model. The inexperienced analyst
will sometimes choose a ‘silly’ model. Another drawback is that the method
requires several years data (e.g. at least 50 observations for monthly
seasonal data).

My own view (see also Section 5.4) is that the method should not be used by
analysts with limited statistical experience or for series where the variation is
dominated by trend and seasonal variation (see Example 5.2 and Exam-
ple D.3). However, it can work well for series showing short-term correlation
(see Example D.2). It can also be combined with seasonal adjustment methods
as in the X-11 ARIMA method (e.g. Huot, Chiu and Higginson, 1986) and
generalized to the multivariate case (see Section 11.9).

5.2.5 Stepwise autoregression

Granger and Newbold (1986, Section 54) describe a procedure called
stepwise autoregression, which can be regarded as a subset of the Box-Jenkins
procedure and which has the advantage of being fully automatic. The method
relies on the fact that AR models are much easier to fit than MA or ARMA
models even though an AR model may require extra parameters to get as good
a representation of the data.

First, differences of the data are taken to allow for non-stationarity in the
mean. Then a maximum possible lag, say p, is chosen. The best autoregressive
model with just one lagged variable is then found:

W=p+aW,_ +el 1<k<p

where W,=X,— X,_,, and «{" is the autoregression coefficient at lag k when
fitting one lagged variable only. Then the best autoregressive model with
2,3, ... lagged variables is found. The procedure is terminated when the
reduction in the sum of squared residuals at the jth stage is less than some pre-
assigned quantity. Thus an integrated autoregressive model is fitted which is a
special case of the Box-Jenkins ARIMA class. Granger and Newbold suggest
choosing p = 13 for quarterly data and p=25 for monthly data.
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5.2.6 Other methods

Several other forecasting procedures have been proposed. Brown (1963) has
suggested a technique called general exponential smoothing which consists of
fitting polynomial, sinusoidal or exponential functions to the data and finding
appropriate updating formulae. One special case of this is double exponential
smoothing which is applicable to series containing a linear trend. Note that
Brown suggests fitting by discounted least squares, in which more weight is
given to recent observations.

Harrison (1965) has proposed a modification of seasonal exponential
smoothing which consists essentially of performing a Fourier analysis of the
seasonal factors and replacing them by smoothed factors. Parzen’s
ARARMA approach (Parzen, 1982) relies on fitting an AR model to remove
the trend (rather than just differencing the trend away) before fitting an
ARMA model.

There are two general forecasting methods, called Bayesian forecasting
(West and Harrison, 1989) and structural modelling (Harvey, 1989), which
rely on updating model parameters by a technique called Kalman filtering.
The latter is introduced in Chapter 10, and so we defer consideration of
these methods until then.

5.3 MULTIVARIATE PROCEDURES

This section provides a brief introduction to multivariate forecasting
procedures. Interest in such methods is growing, partly because of improve-
ments in computing power.

5.3.1 Multiple regression

This approach uses the multiple linear regression model, where the variable of
interest (say y) is linearly related to one or more other variables (say
Xy, ..., X,) which are called explanatory variables. In building a regression
model, it is helpful to distinguish between explanatory variables which can or
cannot be controlled, and predetermined variables such as time itself.
Regression on time alone would normally be regarded as a univariate
procedure. Lagged values of the response and explanatory variables may be
included, but the inclusion of autoregressive terms (past values of y) changes
the character of the model. Note that economists sometimes describe a
regression model as an econometric model.

A description of multiple regression can be found in many statistics
textbooks (e.g. Anderson, 1971) and will not be repeated here. With the
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general availabilty of multiple regression computer programs it is computa-
tionally easy (perhaps too easy!) to fit a multiple regression model and use it
for planning or forecasting.

Multiple regression models are widely used and sometimes work well,
particularly in a marketing context. But there are several dangers in the
method which need to be appreciated. First, the ready availability of computer
programs has resulted in a tendency to put more and more explanatory
variables into the model. with dubious results. The resulting model may
indeed appear to give a good fit to the available data. For example, by
including as many as 20 explanatory variables it is possible to achieve a
multiple correlation coefficient R? as high as 0.995. However, this good fit may
be spurious and does not necessarily mean that the model will give good
forecasts (Granger and Newbold, 1974). A more sensible number of
explanatory variables is a maximum of six or seven, and it is advisable to fit the
model to part of the available data and then check the model by forecasting the
remainder of the data. When doing this it is important to distinguish between
ex ante forecasts, which replace future values of the explanatory variables by
forecasts (and so are true forecasts), and ex post forecasts, which use the true
values of explanatory variables. The latter can look misleadingly good.

Explanatory variables were often called independent variables in the past,
but in marketing applications the so-called ‘independent’ variables are usually
not independent at all, and if some of them are highly correlated there may be
singularity problems. It is therefore advisable to look at the correlation matrix
of the ‘independent’ variables before carrying out a multiple regression so that,
if necessary, some variables can be excluded. It is unnecessary for the
explanatory variables to be completely independent, but large correlations
should be avoided.

Another difficulty arising in multiple regression is that some crucial
explanatory variables may have been held more or less constant in the past,
and it is then impossible to assess their effect and include them in the model in a
quantitative way. For example, a company may be considering increasing its
advertising expenditure and would like to construct a model which would
predict the effect on sales. But if advertising has been held relatively constant in
the past, then it will be impossible to estimate the effect of advertising; yet a
model which excludes advertising may be useless if advertising expenditure is
changed.

But perhaps the most important problem in multiple regression forecasting
concerns the structure of the error terms. It is often assumed that these are an
independent white noise sequence, but such an assumption is sometimes not
appropriate (Box and Newbold, 1971). Having fitted a multiple regression
model, one should check the residuals for autocorrelation as described in
Section 4.7. If the residuals are autocorrelated, one can try fitting a multiple
regression model with autocorrelated errors by a method, due to D. Cochrane
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and G. H. Orcutt, which is described by Kendall, Stuart and Ord (1983,
Section 51.2).

In summary, I am inclined to agree with Brown (1963, p. 77) that the use of
multiple regression models can be very dangerous except in certain special
cases where one has a definite reason why one series should be related to
another. An example of such a situation, involving just one explanatory
variable, is given in Example 5.3. Another example is given by Bhattacharyya

(1974).

5.3.2 Econometric models

Econometric models (e.g. Harvey, 1990) often assume that an economic
system can be described, not by a single equation, but by a set of simultaneous
equations. For example, not only do wage rates depend on prices but also
prices depend on wage rates. Economists distinguish between exogenous
variables, which affect the system but are not themselves affected, and
endogenous variables, which interact with each other. The simultaneous
equation system involving k dependent (endogenous) variables, {¥}, and g
predetermined (exogenous) variables, {X;}, may be written

Y=f(Y,,..., Y, Yiiy,..., Vi, Xy, ..., X)) +error
i=1,2,...,k

Some of the exogenous variables may be lagged values of the Y;. These
equations, often called the structural form of the system, can be solved to give
what is called the reduced form of the system, namely

Y,=F(X,, ..., X,)+error i=1,2,...,k

The principies and problems involved in constructing econometric models
are too broad to be discussed in detail here (e.g. see Granger and Newbold,
1986, Section 6.3). A key issue is the extent to which the form of the model
should be based on judgement, on economic theory and/or on empirical data.
While some econometricians have been scornful of univariate time-series
models which do not ‘explain’ what is going on, statisticians have been
generally sceptical of traditional econometric model building in which the
structure of the model is determined by economic theory and little attention is
paid to the ‘error’ structure. However, the uncontrolled nature of much
economic data makes it difficult to construct econometric models solely on an
empirical basis. Fortunately, mutual understanding has improved in recent
years as developments in multivariate time-series modelling have brought
statisticians and econometricians closer together to the benefit of both. It is
now widely recognized that econometric model building should be an iterative
process involving both theory and data.
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5.3.3 Other multivariate models

There are many other types of muitivariate model which may be used to
produce forecasts. The multivariate generalization of ARIMA models is
considered in Chapter 12. One special case is the class of transfer function
models (see Section 9.4.2) which concentrates on describing the relationship
between one ‘output’ variable and one or more ‘input’ or explanatory
variables. It is helpful to understand the interrelationships between all these
classes of multivariate model (e.g. see Granger and Newbold, 1986,
Chapters 6-8; Priestley, 1981, Chapter 9).

Of course, more specialized multivariate models may occasionally be
required. For example, forecasts of births must take account of the number
and age of women of child-bearing age. Common sense and background
knowledge of the problem should indicate what is required.

54 A COMPARATIVE REVIEW OF FORECASTING
PROCEDURES

We noted in Section 5.1 that there is no ‘best’ forecasting procedure, but rather
that the choice of method depends on a variety of factors such as the objective
in producing forecasts, the degree of accuracy required, and the properties of
the given time series. This section attempts a brief review of recent research but
makes no attempt to be exhaustive. The extensive annotated list of references
given by Armstrong (1985) indicates the growing research activity.

Many forecasts are used for planning purposes, while others act as a ‘norm’
against which the effect of changes in strategy may be assessed. Sometimes
more than one forecast is required to assess the effects of different assumptions
or strategies.

Univariate forecasts are particularly suitable when there are large numbers
of series to be forecast (e.g. in stock control) so that a relatively simple method
has to be used. They are also suitable when the analyst’s skill is limited, when a
‘norm’ is required, or when they are otherwise judged appropriate for the
client’s needs and level of understanding. Multivariate models are appropriate
to assess the effects of explanatory variables, to understand the economy, and
to evaluate alternative economic policy proposals by constructing ‘what-if’
forecasts.

54.1 Forecasting competitions

In order to clarify the choice between different univariate methods, there have
been several ‘competitions’ to compare the forecasting accuracy of different
methods on a given set of time series. The four major competitions are
described by Reid (1975), Newbold and Granger (1974), Makridakis and
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Hibon (1979) and Makridakis er al. (1984). The last study, commonly known
as the M-competition, was designed to be more wide ranging than earlier
studies, and compared 24 methods on 1001 series. Given different analysts and
data sets, it is perhaps not too surprising that the results from different
competitions have not always been consistent. For example, the two earlier
studies found that Box-Jenkins tended to give more accurate forecasts than
other univariate methods, but this was not the case in the later studies. A
detailed assessment of the strengths and weaknesses of forecasting competi-
fions is given by Chatfield (1988). 1113 essential that resulis be replicable and
that appropriate criteria are used. Moreover, accuracy is only one aspect of
forecasting, and practitioners think that cost, ease of use and ease of
interpretation are of almost equal importance. Furthermore, competitions
mainly analyse large numbers of series in a completely automatic way. Thus
although they tell us something, competitions only tell part of the story and
are mainly concerned with comparing automatic forecasts.

If an automatic approach is desirable or unavoidable, perhaps because a
large number of series is involved, then my interpretation of the competition
results is as follows. While there could be significant gains in being selective,
most users will want to apply the same method to all series for obvious
practical reasons. Some methods should be discarded, but there are several
automatic methods for which average differences in accuracy are small. Thus
the choice between them may depend on other practical considerations such as
availability of computer programs. The methods include Holt’s exponential
smoothing, Holt-Winters and Bayesian forecasting. My particular favourite,
partly on grounds of familiarity, is the Holt-Winters method, which can be
recommended as a generally reliable, easy to understand, all-purpose
automatic method.

5.4.2 Choosing a non-automatic method

Suppose instead that a non-automatic approach is indicated because the
number of series is small and/or because external information is available
which cannot be ignored. Then sensible forecasters will use their skill and
knowledge to interact with their clients, incorporate background knowledge,
plot the data and generally use all relevant information to build a model and
compute forecasts. The choice then lies between some form of multivariate
method and a non-automatic univariate procedure. Here forecasting competi-
tions are of limited value and it is easy to cite case studies where subjective
adjustment of automatic forecasts leads to improvements (e.g. Chatfield,
1978). Moreover, the average differences in accuracy for different methods
are relatively small compared with the large differences in accuracy which
can arise when the methods are applied to individual series. The rewards in
being selective indicate that the distinction between an automatic and a
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non-automatic approach may be more fundamental than the differences
between different forecasting methods.

It is also easy to cite case studies (e.g. Jenkins and McLeod, 1982) where
statistician and client collaborate to develop a successful multivariate model.
However, it is difficult to make general statements about the relative accuracy
of different multivariate methods. Many people expect multivariate forecasts
to be at least as good as univariate forecasts, but this is not true either in theory
or in practice, partly because the computation of multivariate forecasts may
require the prior computation of forecasts of exogenous variables, and the
latter may not be good enough (Ashley, 1988). Chatfield (1988) reviews the
empirical evidence. Regression models do rather better on average than
univariate methods, though not by any means in every case (Fildes, 1985).
Econometric simultaneous equation models have a patchy record and it is
easy to cite cases where univariate forecasts are more accurate (e.g. Naylor,
Seaks and Wichern, 1972; Makridakis and Hibon, 1979, Section 2). There
have been some encouraging case studies using transfer function models (e.g.
Jenkins, 1979; Jenkins and McLeod, 1982) but such models rely on the
absence of feedback which may not apply to much economic data.
Multivariate ARIMA models also have a mixed record and are perhaps more
useful for understanding relationships than for forecasting. Of course
multivariate models can usually be made to give a better fit to given data than
univariate models, but this superiority does not necessarily translate into
better forecasts, perhaps because multivariate models are more sensitive to
changes in structure.

It has to be realized that the nature of economic time-series data is such as to
make it difficult to fit reliable multivariate time-series models. Most economic
variables are simply observed, rather than controlled, and there are usually
high autocorrelations within each series. In addition there may be high
correlations beween series, not necessarily because of a real relationship but
simply because of mutual correlations with time (Pierce, 1977). Feedback
between ‘output’ and ‘input’ variables is another problem. There are special
difficulties in fitting regression models to time-series data anyway, as already
noted in Section 5.3.1, and an apparent good fit may be spurious.
Simultaneous equation and multivariate ARIMA models are even more
difficult to construct, and their use seems likely to be limited to the analyst who
is as interested in the modelling process as in forecasting. Thus although the
much greater effort required to construct multivariate models will sometimes
prove fruitful, there are many situations where a univariate method will be
preferred.

With a non-automatic univariate approach, the main choice is between the
Box-Jenkins approach and the non-automatic use of a simple method, such as
Holt-Winters, which is perhaps more often used in automatic mode. The Box-
Jenkins approach has been one of the most influential developments in
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time-series analysis. However, the accuracy of the resulting forecasts has been
rather mixed in practice, particularly when one realizes that forecasting
competitions are biased in favour of Box-Jenkins by implementing other
methods in a completely automatic way. The advantage of being able to choose
from the broad class of ARIMA models is clear, but, as noted in Section 5.2.4,
there are also dangers in that considerable experience is needed to interpret
correlograms and other indicators. Moreover, when the variation in a series is
dominated by trend and seasonality, the effectiveness of the fitted ARIMA
model is mainly determined by the differencing procedure rather than by the
identification of the autocorrelation structure of the differenced (stationary)
series, which is what is emphasized in the Box-Jenkins approach. Nevertheless,
some writers have suggested that all exponential smoothing models should be
regarded as special cases of Box-Jenkins, the implication being that one might as
well use Box-Jenkins. However, this view is now discredited (Chatfield and Yar,
1988) because exponential smoothing methods are actually applied in a
completely different way to Box-Jenkins.

In some situations, a large expenditure of time and effort can be justified and
then Box-Jenkins is worth considering. However, for routine sales forecasting,
simple methods are more likely to be understood by managers and workers
who have to utilize or implement the results. Thus I suggest that Box-Jenkins
is only worth considering when the following conditions are satisfied: (1) the
analyst is competent to implement it; (2) the objectives justify the complexity;
and (3) the variation in the series is not dominated by trend and seasonality.

5.4.3 A strategy for non-automatic univariate forecasting

If circumstances suggest a non-automatic univariate approach, then I suggest
that the following steps will generally provide a sensible strategy.

(a) Get appropriate background information and carefully define the
objectives.

(b) Plot the data and look for trend, seasonal variation, outliers, and changes
in structure such as slow changes in variance or sudden discontinuities.

(c) ‘Clean’ the data if necessary, for example by adjusting any suspect
observations, preferably after taking account of external information.
Consider the possibility of transforming the data.

(d) Decide if the seasonal variation is (i) non-existent, (i) multiplicative, (iii)
additive or (iv) something else.

(¢) Decide if the trend is (i) non-existent, (ii) global linear, (iii) local linear or
(iv) non-linear.

(f) Fit an appropriate model where possible. It is helpful to distinguish four
types of series:
(i) Discontinuities present. Figure 5.1(a) shows a series containing a
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Figure 5.1 Three types of time series. (a) Discontinuity present: numbers of new
insurance policies issued by a particular life office (monthly in hundreds). (b) Short-
term autocorrelation present: unemployment rate in USA (quarterly). (c) Exponential
growth present: world-wide sales of IBM (yearly).
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major discontinuity where it is generally unwise to produce any univariate
forecasts. There is further discussion of this series in Section 13.2.

(ii) Trend and seasonality present. Figures 1.3, 5.3 and D.2 show series
whose variation is dominated by trend and seasonality. Here the Holt-
Winters exponential smoothing method is a suitable candidate. The
correct seasonal form must be chosen and the smoothing parameters can
be estimated by optimizing one-step-ahead forecasts over the period of fit.
Full details are given by Chatfield and Yar (1988).

(iti) Short-term correlation present. Figure 5.1(b) shows a non-seasonal
series whose variation is dominated by short-term correlation. Many
economic indicator series are of this form and it is essential to try to
understand the autocorrelation structure. Thus the Box-Jenkins
approach is recommended here. (See Example D.2.)

(iv) Exponential growth present. Figure 5.1(c) shows a series dominated
by a steadily increasing trend. Series of this type are difficult to handle
because exponential forecasts are inherently unstable. No one really
believes that economic growth or population size can continue to increase
exponentially indefinitely. Two alternative strategies are to fit a model
which explicitly includes exponential (or perhaps quadratic) growth
terms, or (my preference) to fit a model to the logarithms of the data (or
some other suitable transformation). There is some evidence to suggest
that damping the trend will improve accuracy (Gardner and McKenzie,
1985).

Check the adequacy of the fitted model. In particular, study the one-step-
ahead forecast errors over the period of fit to see if they have any
undesirable properties such as high autocorrelation. Modify the model if
necessary.

Compute forecasts. Decide if the forecasts need to be adjusted subjectively
because of anticipated changes in other variables, or because of any other
reason.

5.4.4 Summary

It is difficult to summarize the many empirical findings (e.g. see Makridakis,
1986, especially Exhibit 1), but I make the following general observations and
recommendations:

()

(b)

Fitting the ‘best’ model to historical data does not necessarily minimize
post-sample forecast errors. In particular, complex models often give
forecasts which are no better than simple models. The more frequent and
the greater number of forecasts required, the more desirable itis to use a
simple approach.

Combinations of forecasts from different methods are generally better
than forecasts from individual methods.
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The higher the level of aggregation of a series, the better is the forecast
accuracy.

Prediction intervals, calculated on the assumption that the model fitted to
past data will also be true in the future, are generally too narrow.

If an automatic univariate method is required, then the Holt-Winters
method is a suitable candidate, but there are several close competitors.

When a non-automatic approach is appropriate, there is a wide choice
from judgemental and multivariate methods through to (univariate) Box-
Jenkins and the ‘thoughtful’ use of univariate methods which are often
regarded as automatic. A strategy for non-automatic univariate forecast-
ing has been proposed which may incorporate Box-Jenkins, Holt-Winters
or some form of growth curve model. Whatever approach is used, the
analyst should be prepared to improvise and modify ‘objective’ forecasts
using subjective judgement.

SOME EXAMPLES

In this section we discuss three sets of data, to illustrate some of the problems
which arise in real forecasting situations.

Example 5.1 Figure 5.2 shows the (coded) sales of a certain company in
successive quarters over 6 years. Suppose that a univariate forecast is required

Number of items sold

3000 r
A
2000 +
1000 i 1 1 L 1 1 i
4 8 12 16 20 24
Quarter

Figure 5.2 Sales of a certain company in successive three-month periods.
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for the next four quarters. What method is appropriate? This series
demonstrates the importance of plotting a time series and making a visual
examination before deciding on the appropriate forecasting procedure. It is
evident from Figure 5.2 that there is an increasing trend and a pronounced
seasonal effect with observations 1, 5,9, 13, . . . relatively low. The series is too
short to use the Box-Jenkins method. Instead a suitable forecasting procedure
might appear to be that of Holt-Winters. But closer examination of Figure 5.2
reveals that the observation in quarter 22 is unusually low while the following
observation seems somewhat high. If we were to apply Holt-Winters with no
modification, these unusual observations would have a marked effect on the
forecasts. We must therefore find out if they indicate a permanent change in
the seasonal pattern, in which case earlier observations will have little
relevance for forecasting purposes, or if they were caused by some unusual
phenomenon such as a strike, in which case some data adjustment may be
advisable. Asking questions to get background information is most important.

Example 5.2 TFigure 5.3 shows some telephone data analysed by Toma-
sek (1972) using the Box-Jenkins method. He developed the model

(1—0.84B) (1 — B1?)(X,— 132)=(1—0.60B) (1 +0.37B'%)Z,

which, when fitted to all the data, explained 99.4% of the total variation about
the mean (i.e. the total corrected sum of squares, Z(x, — %)?). On the basis of
this good fit, Tomasek recommended the use of the Box-Jenkins method for
forecasting.

However, it is not at all clear that this is a sensible recommendation.
Looking at Figure 5.3, we see that the series has an unusually high regular
seasonal pattern. In fact 97% of the variation about the mean is explained by a
linear trend and constant seasonal pattern. As we remarked in Section 4.8,
when the variation due to trend and seasonality is dominant, the effectiveness
of the ARIMA model is mainly determined by the initial differencing
operations and not by the time-consuming ARMA model fitting to the
differenced series (Akaike, 1973). For such regular data, nearly any forecasting
method will give good results. For example, the Holt-Winters method
explains 98.9% of the variation, and it is rather doubtful if the extra expense of
the Box-Jenkins method can be justified by increasing the explained variation
from 98.9% to 99.4%.

Example 5.3 Figure 5.4 shows quarterly sales data for company C over 12
successive years. Although there is some evidence of a seasonal pattern, it is
not particularly regular. D. L. Prothero tried two univariate procedures on
these data, namely Holt-Winters and Box-Jenkins. The Box-Jenkins model
fitted was

VV,X,=(1—0.2B)(1—0.8B%)Z,
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Prediction theory 89

The mean absolute forecast errors up to four quarters ahead were calculated as
follows:

No. of quarters ahead 1 2 3 4
Holt-Winters 254 28.6 31.7 373
Box-Jenkins 245 29.9 342 41.4

Thus although Box-Jenkins is 3% better one step ahead, it is up to 10% worse
four steps ahead.

This result is typical in the sense that Box-Jenkins tends to do less well as the
lead time increases. But the result is not typical in that, for series as irregular as
that shown in Figure 5.4, Box-Jenkins will sometimes do considerably better
than other methods. Thus, if sufficient money and expertise are available, the
Box-Jenkins method is worth a try for data of this type.

These data also illustrate the possible advantages of multivariate forecast-
ing. It was found that if detrended, deseasonalized sales are linearly regressed
on detrended, deseasonalized stocks two quarters before, the mean absolute
forecast error one step ahead was 19.0, which is considerably better than either
of the two univariate procedures. In other words stocks are a leading indicator
for sales. This illustrates the general point that if one wants to put in a lot of
effort to get a good forecast, it may well be better to try a multivariate
procedure such as multiple regression rather than a complicated univariate
procedure such as Box-Jenkins, although this is not always the case.

5.6 PREDICTION THEORY

Over the last thirty years or so, a general theory of linear prediction has been
developed by Kolmogorov, Wiener (1949), Yaglom (1962) and Whittle (1963)
among others. All these authors avoid the use of the word ‘forecasting’,
although most of the univariate methods considered in Section 5.2 are in the
general class of linear predictors. The theory of linear prediction has
applications in control and communications engineering and is of consider-
able theoretical interest, but readers who wish to tackle the sort of forecasting
problem we have been considering earlier in this chapter will find this
literature less accessible than the other references. Here we will only give a brief
introduction.

Two types of problem are often distinguished. In the first type of problem we
havedata up to time 7, {X, X;_,, . . .}, and wish to predict the value of x4, ,,.
One approach is to use the predictor

X7 om=2C X7

which is a linear function of the available data. The weights {c,} are chosen so

1This section may be omitted at first reading.
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as to minimize the expected mean square prediction error, E(xy, . — X1, )2
This is often called the prediction problem (e.g. Cox and Miller, 1968), while
Yaglom (1962) refers to it as the extrapolation problem and Whittle (1963)
calls it pure prediction. As an example of the sort of result which has been
obtained, Wiener (1949) has considered the problem of evaluating the weights
{c;}, so as to find the best linear predictor, when the acf. of the series {x,} is
known and when the entire past sequence {x,} is known. It is interesting to
compare this sort of approach with the forecasting techniques proposed earlier
in this chapter. The Box-Jenkins approach, for example, also employs a linear
predictor which will be optimal for a particular ARIMA process. But whereas
Wiener says little about estimation, Box and Jenkins (1970) show how to find a
linear predictor when the ac.f. has to be estimated.

The second type of problem arises when the process of interest, s(z), called
the signal, is contaminated by noise, n(t), and we actually observe the process

y(&)=s(t)+n(t)

In some situations the noise is simply measurement error; in engineering
applications the noise may be an interference process of some kind. The
problem now is to separate the signal from the noise. Given measurements on
y(t) up to time T we may want to reconstruct the signal up to time T or
alternatively make a prediction of s(T+ t). The problem of reconstructing the
signal is often called smoothing or filtering. The problem of predicting the
signal is also often called filtering (Yaglom, 1962; Cox and Miller, 1968), but is
sometimes called prediction (Astrom, 1970). It is often assumed that the signal
and noise processes are uncorrelated and that s(t) and n(t) have known ac.f.s.

It is clear that both the above types of problem are closely related to the
control problem because, if we can predict how a process will behave, then we
can adjust the process so that the achieved values are, in some sense, as close as
possible to the target value. Further remarks on control theory must await a
study of linear systems.

EXERCISES
5.1 For the MA(1) model given by
X=Z+6Z_,

show that £(N, 1)=0z, and that £(N, k)=0 for k=2,3,....

Show that the variance of the k-steps-ahead forecast error is given by
o2for k=1,and by (14 6%)o3for k>2, provided the true model is known.
(In practice we would take %(N, 1)=0%,, where f is the least squares
estimate of 6 and 7, is the observed residual at time N.)

5.2 For the AR(1) model given by
X=0X_+7
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show that #(N, k)=da*xyfork=1,2,. ... Alsoshow that the variance of
the k-steps-ahead forecast error is given by (1 —a**)el/(1 —o?).
For the AR(1) model given by

X—p=a(X,_,—)+7
show that £(N, k)=p+o*(xy—p)fork=1,2,....(In practice the least
squares estimate of o would be substituted into the above formulae.)

Consider the SARIMA(1, 0, 0) (0, 1, 1);, model used as an example in
Section 5.2.4. Show that

X(N, 2)=XN—10+°‘2(XN—XN—12)+9°‘ZN—11 +0zy_10

For the SARIMA(0, 0, 1) (1, 1, 0),, model, find forecasts at time N for
up to 12 steps ahead in terms of observations and estimated residuals up
to time N.

For the model (1—B)(1—02B)X,=(1-05B)Z in Exercise 3.12, find
forecasts for one and two steps ahead, and show that a recursive
expression for forecasts three or more steps ahead is given by

(N, k)=12%(N, k—1)—0.2%(N, k—2)

Find the variance of the one-, two- and three-steps-ahead forecast errors.
Ifzy=1, xy=4, xy_, =3 and 05=2, show that £(N, 2)=3.64 and that
the standard error of the corresponding forecast error is 1.72.

Consider the ARIMA(0, 1, 1) process
(1-B)X,=(1-0B)Z,

Show that (N, 1)=xy—0zy,and X(N, k)=X(N, k—1) for k= 2. Express
%(N, 1)in terms of xy and £(N—1, 1) and show that this is equivalent to
exponential smoothing. By considering the ¥ weights of the process,
show that the variance of the k-steps-ahead prediction error is
[1+(k—1)(1-0)*J3.
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Statlonary processes in
the frequency domain

6.1 INTRODUCTION

In Chapter 3 we described several types of stationary stochastic process,
placing emphasis on the autocovariance (or autocorrelation) function which is
the natural tool for considering the evolution of a process through time. In this
chapter we introduce a complementary function called the spectral density
function, which is the natural tool for considering the frequency properties of a
time series. Inference regarding the spectral density function is called an
analysis in the frequency domain.

Some statisticians initially have difficulty in understanding the frequency
approach, but the advantages of frequency methods are widely appreciated in
such fields as electrical engineering, geophysics and meteorology. These
advantages will become apparent in the next few chapters.

We shall confine ourselves to real-valued processes. Many authors consider
the more general problem of complex-valued processes, and this results in
some gain of mathematical conciseness. But, in my view, the reader is more
likely to understand an approach restricted to real-valued processes. The vast
majority of practical problems are covered by this approach.

6.2 THE SPECTRAL DISTRIBUTION FUNCTION

In order to introduce the idea of a spectral density function, we must first
consider a function called the spectral distribution function. The approach
adopted is heuristic and not mathematically rigorous, but will, hopefully, give
the reader a better understanding of the subject than a more theoretical
approach.

Suppose we suspect that a time series contains a periodic sinusoidal
component with a known wavelength. Then a natural model is

X,=R cos(wt +0)+ Z, 6.1)

where w is called the frequency of the sinusoidal variation, R is called the
amplitude of the variation, 6 is called the phase, and Z, denotes some stationary
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random series. Note that the angle (wt + 6) is usually measured in units called
radians, where 7 radians = 180°. Since w is the number of radians per unit time
it is sometimes called the angular frequency, but in keeping with most authors
we call w the frequency. However some authors, notably Jenkins and Watts
(1968), refer to frequency as f=w/2n, the number of cycles per unit time, and
this form of frequency is much easier to interpret from a physical point of view.
We usually use the angular frequency w in mathematical formulae for
conciseness, but will often use the frequency f= w/2x for the interpretation of
data. The period of a sinusoidal cycle, called the wavelength, is clearly 1/f or
2n/w. An example of a sinusoidal function is shown in Figure 6.1. Theref=1/6
and the wavelength is 6.

Xe &

+2 [ /\ /\ /‘\
0 I I i i i i 1 -

/—3 —eVz 0 U 6 Y/m
-2

~

Figure 6.1 A graph of R cos{wt +6) with R=2, w=m/3 and 0=mn/6.

Model (6.1) is a very simple model, but in practice the variation in a time
series may be caused by variation at several different frequencies. For example,
sales figures may contain weekly, monthly, yearly and other cyclical variation.
In other words the data show variation at high, medium and low frequencies.
It is natural therefore to generalize (6.1) to

k
X,:; R cos(wit+0)+Z, (6.2)

j=1

where R; is the amplitude at frequency w;.

The reader will notice that models (6.1) and (6.2) are not stationary if R, 0,
{R;} and {0} are fixed constants because E(X,) will change with time. In order
toapply the theory of stationary processes to models like (6.2), it is customary
to assume that {R;} are (uncorrelated) random variables with mean zero, or
that {6} are random variables with a uniform distribution on (0, 27), which
are fixed for a single realization of the process (see Section 3.5 and
Exercise 3.14). This is something of a ‘mathematical trick’, but it does enable
us to treat time series containing one or more deterministic sinusoidal
components as stationary series.
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Since cos(wt + 8)=cos wt cos 8 —sin wt sin 8, model (6.2) can be expressed
as a sum of sine and cosine terms in the form

k
X,=Y (a;coswit+b;sinwi)+Z, (6.3)
j=1

j=

where a;=R; cos 6; and b;= — R, sin 0;.

But we may now ask why there should only be a finite number of frequencies
involved in model (6.2) or (6.3). In fact, letting k— oo, the work of Wiener and
others has shown that any discrete stationary process measured at unit
intervals may be represented in the form

X,=J cos wt du(w)+f sin wt dv(w) 64)
0 0
where u(w), v(w) are uncorrelated continuous processes with orthogonal
increments (see Section 3.4.8) which are defined for all w in the range (0, n).
Equation (6.4) is called the spectral representation of the process; it involves
stochastic integrals, which require considerable mathematical skill to handle
properly. It is intuitively more helpful to ignore these mathematical problems
and simply regard X, as a linear combination of orthogonal sinusoidal terms.
Thus the derivation of the spectral representation will not be considered here
(see for example Cox and Miller, 1968, Chapter 8).

The reader may wonder why the upper limits of the integrals in (6.4) are n
rather than co. For a continuous process the upper limits would indeed be o,
but for a discrete process measured at unit intervals of time there is no loss of
generality in restricting o to the range (0, x), since

cos t k, t integers with k even

cos[(w+kn)t] = {

cos(m— w)t k, t integers with k odd

and so variation at frequencies higher than n cannot be distinguished from
variation at a corresponding frequency in (0, ). The frequency w = = is called
the Nyquist frequency. We will say more about this in Section 7.2.1. For a
discrete process measured at equal intervals of time of length At, the Nyquist
frequency is m/At. In the next two sections we consider discrete processes
measured at unit intervals of time, but the arguments carry over to discrete
processes measured at intervals At if we replace n by n/At.

The main point of introducing the spectral representation (6.4) is to show
that every frequency in the range (0, 7) may contribute to the variation of the
process. However, the processes u(w) and v(w) in (6.4) are of little direct
practical interest. Instead we introduce a function F(w) called the (power)
spectral distribution function, which arises from a theorem (e.g. Bartlett, 1966,
Section 6.1), called the Wiener-Khintchine theorem, named after N. Wiener
and A. Y. Khintchine. As applied to real-valued processes, this theorem says
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that, for any stationary stochastic process with autocovariance function y(k),
there exists a monotonically increasing function F(w) such that

x
y(k):f cos wk dF(w) (6.5)
0

Equation (6.5) is called the spectral representation of the autocovariance
function, and involves a type of integral (called Stieltjes) which may be
unfamiliar to some readers. It can however be shown that the function F(w)
has a direct physical interpretation: it is the contribution to the variance of the
series which is accounted for by frequencies in the range (0, w). It is most
important to understand this physical interpretation of F(w). There is no
variation at negative frequencies, so that

Flw)=0 for w<0

For a discrete process measured at unit intervals of time, the highest possible
frequency is = and so all the variation is accounted for by frequencies less than
n. Thus

F(m)=Var(X,)=0}

This last result also comes directly from (6.5) with k=0, when

V(0)=0;2(=J dF(w)= F(n)
0
In between w=0 and w=n, F(w) is monotonically increasing.

If the process contains a deterministic sinusoidal component at frequency
Wy, say R cos(w,t +6) where R is a constant and 0 is uniformly distributed on
(0, 2n), then there will be a step increase in F(w) at w, equal to
E[R?* cos*(wgyt +0)]= 3R>,

As F(w) is monotonic, it can be decomposed into two functions, F; (w) and
F,(w), such that

Flw)=F (o) + F(o) (6.6)

where F(w) is a non-decreasing continuous function and F,(w) is a
non-decreasing step function. This decomposition usually corresponds to the
Wold decomposition, with F,(w) relating to the purely indeterministic
component of the process and F,(w) relating to the deterministic component.
We shall be mainly concerned with purely indeterministic processes, where
F{w)=0, so that F(w) is a continuous function on (0, n).

The adjective ‘power’, which is sometimes prefixed to ‘spectral distribution
function’, derives from the engineer’s use of the word in connection with the
passage of an electric current through a resistance. For a sinusoidal input, the
power is directly proportional to the squared amplitude of the oscillation. For
a more general input, the power spectral distribution function describes how
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the power is distributed with respect to frequency. In the case of a time series,
the variance may be regarded as the total power.
Note that some authors use a normalized form of F(w) given by

F¥(w)=Flw)/ox (6.7)

Thus F*(w) is the proportion of variance accounted for by frequencies in the
range (0, w). Since F*(n)=1, and F*(w) is monotonically increasing, F*(w)
has similar properties to a cumulative distribution function.

6.3 THE SPECTRAL DENSITY FUNCTION

For a purely indeterministic discrete stationary process, the spectral
distribution function is a continuous (monotone bounded) function in (0, «),
and may therefore be differentiated with respect to w in (0, 7). (Strictly
speaking, F(w) may not be differentiable on a set of measure zero, but this is of
no practical importance.) We will denote the derivative by f(w), so that

dF(w)
flo)==35 (68)
This is the {power) spectral density function. The term ‘spectral density
function’ is often shortened to spectrum, and the adjective ‘power’ is sometimes
omitted.

When f(w) exists, equation (6.5) can be expressed in the form

y(k)=Jn cos wk f(w) dw 6.9)
0

This is an ordinary (Riemann) integral and therefore much easier to handle.
Putting k=0, we have

T

J0)=o%= J f(@) do=Fix) (6.10)
0
The physical meaning of the spectrum is that f(w)dw represents the
contribution to variance of components with frequencies in the range
(w, w+ dw). When the spectrum is drawn, equation (6.10) indicates that the
total area underneath the curve is equal to the variance of the process. A peak
in the spectrum indicates an important contribution to variance at frequencies
in the appropriate interval. An example of a spectrum is shown in Figure 6.2,
together with the corresponding normalized spectral distribution function.
It is important to realize that the autocovariance function (acv.f.) and the
power spectral density function are equivalent ways of describing a stationary
stochastic process. From a practical point of view, they are complementary to
each other. Both functions contain the same information but express it in
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1 r-
flw) I FYo) A
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0 w ki 0 w k4

Figure 6.2 An example of a spectrum, together with the corresponding normalized
spectral distribution function.

different ways. In some situations a time-domain approach based on the acv.f.
is more useful, while in other situations a frequency-domain approach is
preferable.

Equation (6.9) expresses y(k) in terms of f(w) as a cosine transform. The

inverse relationship (see Appendix A) is given by

oc

f@)=2 T ke 6.11)

= e 9]

so that the spectrum is the Fourier transform of the autocovariance function.
Since y(k) is an even function, (6.11) is often written in the equivalent form

flw)= % [:y(O)+ 2 Y y(k) cos wk:l (6.12)
k=1

Note that if we try to apply (6.12) to a process containing a deterministic

component at frequency w,, then Xy(k) cos wyk will not converge, since F(w)

is not differentiable at w, and so f(w,) is not defined.

The reader should note that several other definitions of the spectrum are
given in the literature, most of which differ from (6.12) by a constant multiple
and by the range of definition of f(w). The most popular approach is to define
the spectrum in the range (—n, ) by

I & .
f@)y=5-3 ykje™™* (6.13)

2nk=—oo

whose inverse relationship (see Appendix A) is

y(k)zjn e (w) do (6.14)

Jenkins and Watts (1968) use these equations, except that they take f=w/27 as
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the frequency variable (see equations (A.3) and (A .4)). Equations (6.13) and
(6.14), which form a Fourier transform pair, are the more usual form of the
Wiener-Khintchine relations. The formulation is slightly more general in that
it can be applied to complex-valued time series. But for real time series we find
that f(w) is an even function, and then we need only consider f(w) for w >0.1In
my experience the introduction of negative frequencies, while having certain
mathematical advantages, serves only to confuse the student. As we are
concerned only with real-valued processes, we prefer (6.11) defined on (0, n).

It is sometimes useful to use a normalized form of the spectral density
function, given by

dF*(w)

f*(w)=f(w)/ox = T (6.15)

This is the derivative of the normalized spectral distribution function (see
equation (6.7)). Then we find that f*(w) is the Fourier transform of the
autocorrelation function, namely

f*(w)=1[:1+2 i p(k) cos wk:l (6.16)
k

n =1
and that f*(w) is the proportion of variance in the interval (o, w+dw).
Kendall, Stuart and Ord (1983, equation 47.20) define the spectral density
function in the range (0, 7) in terms of the autocorrelation function but omit
the constant 1/z from equation (6.16). This makes it more difficult to give the

function a physical interpretation. Instead they introduce an intensity function
which corresponds to our power spectrum.

6.4 THE SPECTRUM OF A CONTINUOUS PROCESS

For a continuous purely indeterministic stationary process X(t), the
autocovariance function y(r) is defined for all t and the (power) spectral
density function f(w) is defined for all positive w. The relationship between
these functions is very similar to that in the discrete case except that there is no
upper bound to the frequency. We have

f(w)=% f e de

2 a0
=— f y(1) cos wt dt 6.17)
T Jo

for 0 <w < o0, with the inverse relationship

1) = Jw flw) cos wt dw {6.13)

o]
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6.5 DERIVATION OF SELECTED SPECTRA

In this section we derive the spectral density functions of some simple but
important stationary processes.

(a) Purely random process

A purely random process in discrete time, {Z}, is defined in Section 3.4.1. If
Var(Z)=o02, then the acv f. is given by

o2 k=0
ky={7%
v(k) {0 otherwise

so that the power spectral density function is given by
fl)=0}/n (6.19)

using (6.12). In other words the spectrum is constant in the range (0, m).
We have already pointed out that a continuous white noise process is
physically unrealizable. A process is regarded as a practical approximation to
continuous white noise if its spectrum is substantially constant over the
frequency band of interest, even if it then approaches zero at high frequency.

(b) First-order moving average process
The first-order MA process (see Section 3.4.3)

,X,=Z,+ﬂ2,_ 1
has an ac.f. given by
1 k=0
pk)y=< B/(1+5% k=41
0 otherwise

So, using (6.16), the normalized spectral density function is given by

f*(w) =% [1+ (28 cos w)/(1+ f*)] (6.20)

for 0<w <. The power spectral density function is then
f)=0xf* @)

where 6% = (1 + f*)o3.

The shape of the spectrum depends on the value of . When f >0 the power
is concentrated at low frequencies, giving what is called a low-frequency
spectrum; if <0 the power is concentrated at high frequencies, giving a high-
frequency spectrum. Examples are shown in Figure 6.3.
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2/n 2/n
(b) §= -1
F(w) *(w)A
. B i
00 w " 00 w "

Figure 6.3 Two examples of spectra of first-order moving average processes with, (a)

B=1;(b) f=—1.

(c) First-order autoregressive process
The first-order AR process (see Section 3.4.4)

X=aX,_+Z (6.21)
has an acv.f. given by
y(k)= o2 o k=0, +1, £2,...

The power spectral density function is then, using (6.11),
2

o] ot . had .
f(w) =_X <1 + Z ake—lkw+ Z akelkw>
n k=1 k=1

o% ae ™ ae'®
=—{1+ -iw + iw
i 1—oae 1—ae

which after some algebra gives
flw)=0(1 —a?)/[r(l —2a cos w +a?)] (6.22)
=¢%/n(1 —2x cos w+ao?) (6.23)

since 02 =03(1—a?).

The shape of the spectrum depends on the value of «. When o >0 the power
is concentrated at low frequencies, while if « <0 the power is concentrated at
high frequencies. Examples are shown in Figure 6.4.

It is hoped that the reader finds the shapes of the spectra in Figure 6.4
intuitively reasonable. For example if « is negative then it is clear from (6.21)
that values of X, will tend to oscillate, and rapid oscillations correspond to
high-frequency variation.
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5.7/n 5.7/m

) & ) b (b) a=—07

0

0 L
w

0 k4 0

Figure 6.4 Two examples of spectra of first-order autoregressive processes with, (a)
a=0.7; (b) a= —0.7.

(d) Higher-order autoregressive processes

It can be shown (e.g. Jenkins and Watts, 1968) that the spectrum of a second-
order AR process with parameters «,, «, is given by

flw)=03/n[1+a}+0a3—20,(1—a,) cos w—2a, cos 2w]

for 0 <w <n. The shape of the spectrum depends on the values of «, and a,. It
is possible to get a high-frequency spectrum, a low-frequency spectrum, a
spectrum with a peak between 0 and =, or a spectrum with a minimum between
0 and 7.

For higher-order AR processes, one can get spectra with several peaks or
troughs.

(e) A deterministic sinusoidal perturbation

Suppose that
X, =cos(wgt +86) (6.24)

where , is a constant in (0, n) and 8 is a random variable which is uniformly

distributed on (0, 27). As explained in Section 3.5, 6 is fixed for a single

realization of the process and (6.24) defines a purely deterministic process.
The acv.f. of the process is given by

y(k) =3 cos wk

which we note does not tend to zero as k increases. This is a feature of most
deterministic processes.

From (6.24)it is obvious that all the ‘power’ of the process is concentrated at
the frequency w,. Now Var(X,)=E(X?)=1$, so that the power spectral
distribution function is given by

0 w<w,

Flw)= {

3 W=,
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Since this is a step function, it has no derivative at w, and so the spectrum is
not defined at w,. If we nevertheless try to use equation (6.12) to obtain the
spectrum as the Fourier transform of the acv.f. then we find that

fl@)=0 oo,
but that Zy(k) cos wk does not converge at w=w,.

(f) A mixture

Our final example contains a mixture of deterministic and stochastic
components, namely

X, =cos(wt+0)+Z,

where w,, 0 are as defined in example (e) above, and {Z,} is a purely random
process with mean zero and variance . Then we find that the acv f. is given by

L+l k=0
vk éwu%k k=+1, +2,...

Again note that y(k) does not tend to zero as k increases because X, contains a
deterministic component.

We can obtain the power spectral distribution function by using (6.6), since
the deterministic component cos(w,t + 0) has a distribution function

0 W< W,

Fl(w)={1
2

wZw,
while the stochastic component Z, has a distribution function
F(w)=0iw/n O<o<=

on integrating (6.19). Thus the overall spectral distribution function is given
by

Flo) oio/n O<w<w,
)=
1t/ wo<o<m

As in example (e), the power spectrum is not defined at v =w,.

'EXERCISES

In the following questions {Z,} denotes a purely random process, mean zero
and variance o3.

6.1 Find (a) the power spectral density function, (b) the normalized spectral
density function of the first-order AR process

X=iX_,+2,
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6.4

6.5

6.6

Exercises 103

(Note: (a) is covered in the text, but see if you can do it without looking it

up.)
Find the power spectral density functions of the following MA processes:

@ X=Z+z ,+7_,
b) X=Z2+05Z_,-037_,

Show that the second-order MA process
X=u+27+082_,+05z_,

is second-order stationary, where u denotes a constant. Find the acv f.
and ac.f. of { X} and show that its normalized spectral density function is
given by

S*(@)=(141.27 cos 0 +0.53 cos 2w)/n O<ow<n

A stationary time series (Xst=...,—-1,0, +1,.. .) has normalized
spectral density function

S*()=2(r—w)/n? O<w<mn

Show that its ac.f. is given by

1 k=0
o(k)= (2/nk)? k odd
0 k even (#0)

A two-state Markov process may be set up as follows. Alpha particles
from a radioactive source are used to trigger a flip-flop device which
takes the states +1 and —1 alternately. The times ¢, at which changes
occur constitute a Poisson process, with mean event rate 4. Let X(1)
denote the state variable at time ¢. If the process is started at t=0 with
PLX(0)=11=P[X(0)= —1]=1 show that the process is second-order
stationary, with autocorrelation function

p)y=e M _pcu<oo
and spectral density function
fw)=41/[rn(42% + w?)] O<w<w

Show that if {X,} and {Y,} are independent, stationary processes with
power spectral density functions f,(w) and f,(w), then {V}} ={X,+ ¥} is
also stationary with power spectral density function f(w)=£.(w) + Sy (w).
If *

V=X+7,

where
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6.7

Stationary processes in the frequency domain
X=aX,_ + W, —l<a< +1

and {Y,}, { W,} are independent purely random processes with zero mean
and common variance o2, show that the power spectral density function
of {¥,} is given by

filw)=0*2 20 cos w+a?)/n(l—20cos w+a?) O<w<m

Show that the normalized spectral density function of the ARMA(1, 1)
process

X=oX _+Z+BZ_,
is given by
1
f*w)=—~[1+2p(1)(cos w—a)/(1 -2 cos w+a?)] O<w<m
s
(Hint: Use the results in Exercise 3.11. Note that an easier way of finding

the power spectral density function of ARMA processes is given in
Chapter 9: see Exercise 9.5)
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Spectral analysis is the name given to methods of estimating the spectral
density function, or spectrum, of a given time series.

In the last century, research workers such as A. Schuster were essentially
concerned with looking for ‘hidden periodicities’ in data, but spectral analysis
as we know it today is mainly concerned with estimating the spectrum over the
whole range of frequencies. The techniques are now widely used by many
scientists, particularly in electrical engineering, physics, meteorology and
marine science.

We are mainly concerned with purely indeterministic processes, which have
a continuous spectrum, but the techniques can also be used for deterministic
processes to pick out periodic components in the presence of noise.

7.1 FOURIER ANALYSIS

Spectral analysis is essentially a modification of Fourier analysis so as to make
it suitable for stochastic rather than deterministic functions of time. Fourier
analysis (e.g. Priestley, 1981) is basically concerned with approximating a
function by a sum of sine and cosine terms, called the Fourier series
representation. Suppose that a function f{t) is defined on (— =, 7] and satisfies
the so-called Dirichlet conditions. These conditions ensure that fit) is
reasonably ‘well behaved’, i.e. that over the range (—=x, n], f{t) is absolutely
integrable, has a finite number of discontinuities, and has a finite number of
maxima and minima. Then f{t) may be approximated by the Fourier series

k
a
7°+ Y. (a,cos rt+b, sin rt)
r=1
where -

1 '

ao—;“_nﬂt)dt
1 rn

a,=-~ S(t) cos rt dt r=1,2,...
n -r
1 rn

b==| AY)ysinredt r=1,2,...
n -
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It can be shown that this Fourier series converges to f{(t) as k— oo except at
points of discontinuity, where it converges to half-way up the step change.
Mathematicians say that this is the average of the limit from below and the
limit from above, and write it as 3[f(t —0) +£(t +0)].

In order to apply Fourier analysis to discrete time series, we need to
consider the Fourier series representation of f(t) when f{(t) is defined only on
theintegers 1, 2, . . ., N. Rather than write down the formula, we demonstrate
that the required Fourier series emerges naturally by considering a simple
sinusoidal model.

7.2 A SIMPLE SINUSOIDAL MODEL

Suppose we suspect that a given time series, with observations made at unit
time intervals, contains a deterministic sinusoidal component at frequency w
together with a random error term. So we will consider the model

X,=p+o cos wt+ f sin wt + Z, (7.1)

where Z, denotes a purely random process, and y, , f are parameters to be
estimated from the data.

The observations will be denoted by (x,, x,, . . . , xy). The algebra in the
next few sections is somewhat simplified if we confine ourselves to the case
where N is even. There is no real difficulty in extending the results to the case
where Nis odd (e.g. Anderson, 1971), and indeed many of the later estimation
formulae apply for both odd and even N, but some results require one to
consider odd N and even N separately. Thus, if N happens to be odd and a
spectral analysis is required, it can make things simpler to remove the first
observation so as to make N even. If Nis reasonably large, little information is
lost.

Model (7.1) can be represented in matrix notation by

E(X)= 40
where
XT=(X,,...,Xy)
0" =(u, B

1 cosw sin @

A= |1 cos2w sin2w

As this model is linear in the parameters u,  and B, it is an example of a general
linear model. In that case the least squares estimate of 0, which minimizes
YN | (x,—u—acos wt— B sin wt)?, is ‘well known’ to be
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0=(4T4)"14"x
where
XT=(x,...,xy)

Now the highest frequency we can fit to the data is the Nyquist frequency,
given by w = n, while the lowest frequency we can reasonably fit completes one
cycle in the whole length of the time series (see Section 7.2.1). By equating the
cycle length 2m/w to N, we find that this lowest frequency is given by 2n/N. The
least squares estimates are particularly simple if w is restricted to one of the
values

w,=2np/N p=1,...,N/2

as (47 A) then turns out to be a diagonal matrix in view of the following
‘well-known’ trigonometric results (all summations are for t=1 to N):

Tcoswt=Zsinw,t=0 (7.2)
0 P#4q
X COS w,t COS )t = N p=q=N/2 (7.3)
N/2 p=q+#N/2
0 P#4q
Z sin w,t sin @t = 0 p=q=N/2 (7.4)

N/2 p=q#N/2

X cos w,t sin w,t =0 for all p, ¢ 7.5)

With (AT A) diagonal we can easily find 6. For w, such that p # N/2, we find
(Exercise 7.2)

4=%x/N=x
a=2Zx, cos(w,t)/N (7.6)
B=2%x, sin(w,t)/N

If p= N/2 we ignore the term in § sin wt, which is zero for all t, and find

X

Ex,(—1)YN

i

A (1.7)
o

i

Model (7.1) is essentially the one used in the last century to search for hidden
periodicities, but this model has now gone out of fashion. However it can still
be useful if we have reason to suspect that a time series does contain a
deterministic periodic component at a known frequency and we wish to isolate
this component (e.g. Bloomfield, 1976, Chapter 2; Pocock, 1974).
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Readers who are familiar with the analysis of variance technique will see
that the total corrected sum of squared deviations, namely

N

Z (Xt_f)z

r=1

can be partitioned into two components which are the residual sum of squares
and the sum of squares ‘explained’ by the periodic component at frequency ,,.
This latter component is given by

N ~

Y. (& cos w,t+ B sin w,t)?

t=1
which after some algebra (Exercise 7.2) can be shown to be

(@2 +B*)N2  p#N)2
&N p=N/2

using (7.2)-(7.5).

7.2.1 The Nyquist frequency

In Chapter 6 we pointed out that for a discrete process measured at unit
intervals there is no loss of generality in restricting the spectral distribution
function to the range (0, ). We now demonstrate that the upper bound =,
called the Nyquist frequency, is indeed the highest frequency about which we
can get meaningful information from a set of data.

First we will give a more general form for the Nyquist frequency. If
observations are taken at equal intervals of length At, then the Nyquist
(angular) frequency is wy = n/At. The equivalent frequency expressed in cycles
per unit time is fy = wy/2n=1/2At.

Consider the following example. Suppose that temperature readings are
taken every day in a certain town at noon. It is clear that these observations
will tell us nothing about temperature variation within a day. In particular
they will not tell us if nights are hotter or cooler than days. With only one
observation per day, the Nyquist frequency is wy=m radians per day or
fn=13 cycle per day (1 cycle per two days). This is lower than the frequencies
which correspond to variation within a day. For example variation with a
wavelength of one day has (angular) frequency w=2n radians per day or
f=1 cycle per day. In order to get information about variation within a day at
these higher frequencies, we must increase the sampling #ate and take two or
more observations per day.

A similar example is provided by yearly sales figures. These will obviously
give no information about any seasonal effects, whereas monthly or quarterly
observations will give information about seasonality.
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Finally, we make a comment about the lowest frequency we can fit to a set of
data. If we had just six months of temperature readings from winter to summer
it would not be clear if there was an upward trend in the observations or if
winters are colder than summers. However, with one year’s data it would
become clear that winters are colder than summers. Thus if we are interested in
variation at the low frequency of 1 cycle per year, then we must have at least
one year’s data. Thus the lower the frequency we are interested in, the longer
the time period over which we need to take measurements, whereas the higher
the frequency we are interested in, the more frequently must we take
observations.

7.3 PERIODOGRAM ANALYSIS

Early attempts at discovering hidden periodicities in a given time series
basically consisted of repeating the analysis of Section 7.2 at all the frequencies
2r/N, 4n/N, .. ., n. In view of (7.3)(7.5) the different terms are orthogonal
and we end up with the finite Fourier series representation of the {x,}, namely

(N/2)—-1
X, =do+ . La, cos2npt/N)+b, sin(2rnpt/N)]+ay,, cos nt
p=1

t=1,2,...,N (1.9)

where the coefficients {a,,, b, | are of the same form as equations (7.6)and (7.7),
namely

ag=Xx

Ay, =Z(—1) x,/N
a,=2[Zx, cos(2npt/N)]/N
b,=2[Zx, sin(2npt/N)]/N

(7.10)
} p=1,... (Nj2)-1

An analysis along these lines is sometimes called a Fourier analysis or a
harmonic analysis. The Fourier series representation (7.9) has N parameters to
describe N observations and so can be made to fit the data exactly (just as a
polynomial of degree N—1 involving N parameters can be found which goes
exactly through N observations in polynomial regression). This explains why
thereis no error termin (7.9) iftcontrast to (7.1). Also note that there is no term
in sin it in (7.9) as sin nt is zero for all integer ¢.

It is worth stressing that the Fourier series coefficients (7.10) at a given
frequency w are exactly the same as the least squares estimates for model (7.1).

The overall effect of the Fourier analysis of the data is to partition the
variability of the series into components at frequencies 2n/N, 4n/N, ..., 7.
The component at frequency w,=2np/N is often called the pth harmonic. For
p#Nj/2, it is often useful to write the pth harmonic in the equivalent form
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a,cos w,t+b,sin w,t=R, cos(w,t+¢,) (7.11)
where
R,=./(a}+b}) (7.12)
is the amplitude of the pth harmonic, and
¢,=tan"'(—b,/a,) (7.13)

is the phase of the pth harmonic.

We have already noted in Section 7.2 that, for ps N/2, the contribution of
the pth harmonic to the total sum of squares is given by N(a’ +b?)/2. Using
(7.12), this is equal to NR?/2. Extending this result using (7.2)~(7.5) and (7.9),
we have, after some algebra, that (Exercise 7.3)

N (N/2)—-1
Y (x,—%)?=N Y R%2+Na}, (7.14)

t=1 p=1

Dividing through by N we have

(N/2)—1

S(x,—%)YN= Y R%2+al, (7.15)
p=1

which is known as Parseval’s theorem. The left-hand side of (7.15) is effectively
the variance of the observations, although the divisor is N rather than the
more usual (N—1). Thus R§/2 is the contribution of the pth harmonic to the
variance, and (7.15) shows how the total variance is partitioned.

If we plot R?/2 against w,=27np/N we obtain a line spectrum. A different
type of line spectrum occurs in the physical sciences when light from molecules
in a gas discharge tube is viewed through a spectroscope. The light has energy
at discrete frequencies and this energy can be seen as bright lines. But most
time series have continuous spectra, and then it is inappropriate to plot a line
spectrum. If we regard R’/2 as the contribution to variance in the range
w,+n/N, we can plot a histogram whose height in the range w, + 7/N 1s such
that .

Rg /2=area of histogram rectangie

=height of histogram x 2n/N

Thus the height of the histogram is given by
I(w,)=NR}/4n (7.16)
As usual, (7.16) does not apply for p=N/2; we may regard a,f,/z as the
contribution to variance in the range [z(N—1)/N, n] so that
I(n)=Naj,,/n

The plot of I(w) against w is usually called the periodogram even though /(w)is



Periodogram analysis 111

a function of frequency rather than period. Other authors define the
periodogram in a slightly different way, as some other multiple of R,f. Hannan
(1970, equation (3.8)) defines the periodogram in terms of complex numbers
as

N

Z X[Cim’

t=1

2

2nN

which is 1 x expression (7.16). Anderson (1971, Section 4.3.2) describes the
graph of R; against the period N/p as the periodogram, and suggests the term
spectrogram to describe the graph of Rﬁ against frequency. An advantage of
definition (7.16) is that the total area under the periodogram is equal to the
variance of the time series. Expression (7.16) may readily be calculated
directly from the data by

I(w,)=[(Ex, cos 2npt/N)* + (x, sin 2npt/N)?]/N=n (7.17)

Equation (7.17) also applies for p=N/2. Jenkins and Watts (1968) define a
similar expression in terms of the variable f=w/2n, but call it the ‘sample
spectrum’.

The periodogram appears to be a natural way of estimating the power
spectral density function, but we shall see that for a process with a continuous
spectrum it provides a poor estimate and needs to be modified.

73.1 The relationship between the periodogram and the autocovariance
function

The periodogram ordinate /(w) and the autocovariance coefficient ¢, are both
quadratic forms of the data {x }. It is of interest to see how they are related. We
will show that the periodogram is the finite Fourier transform of {c;}.
Using (7.2) we may rewrite (7.17) for p#N/2 as
Hw,)={[Z(x,— %) cbs @] 24 [E(x,— %) sin w,t]*}/N=n
N
= Y (x,—X)(x;—X)(cos w,t cos w,5+sin @t sin w,S)/Nn
st=1

But (see (4.1))

N-k
Y (= %) (X = XY N=¢,
=1
and
cos w,t cos w,(t+k)+sin w,t sin w,(t+k)
=cos w,(t+k—1)

=cos w,k
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so that
N—-1
Lw,)=(co+2 Y ¢, coswk)n (7.18)
k=1
N—-1
= Y et (7.19)
k=-(N—-1)

We recognize (7.19) as a finite Fourier transform (assuming that ¢, =0 for
k|=N).

7.3.2 Properties of the periodogram

When the periodogram is expresssed in the form (7.18), it appears to be the
‘obvious’ estimate of the power spectrum

flw)=(o+2 Y 7, cos wk)/n
k=1

simply replacing y, by its estimate ¢, for values of k up to (N - 1), and putting
subsequent estimates of y, equal to zero. But although we find

E ) -f©) (7.20)

so that the periodogram is asymptotically unbiased, we will see that the
variance of I{(w) does not decrease as N increases. Thus I{w) is not a consistent
estimator for f(w). An example of a periodogram is given in Figure 7.5(c), and
it can be seen that the graph fluctuates wildly. The lack of consistency is
perhaps not too surprising when one realizes that the Fourier series
representation (7.9) requires one to evaluate N parameters fromgN observa-
tions however long the series. Thus in Section 7.4 we will consider alternative
ways of estimating a power spectrum which are essentially ways of smoothing
the periodogram.

We complete this section by proving that I(w) is not a consistent estimator
for f(w) in the case where (x|, ..., x,) are taken from a discrete purely
random process, where the observations are independent N(u, o?) variates.
This result can be extended to other stationary processes with continuous
spectra, but this will not be demonstrated here.

From (7.10) we see that a, and b, are linear combinations of normally
distributed random variables and so will themselves be normally distributed.
Using (7.2)-(7.4), it can be shown (Exercise 7.4)that a,and b, each have mean
zero and variance 26%/N for p# N/2. Furthermore we have

Cov(a,, b,)=4 Cov[(Zx, cos w,t), (Zx, sin w,t)]/N?

=40°(Z cos w,t sin w,t)/N?
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since the {x,} are independent. Thus, using (7.5), we see that a, and b, are
uncorrelated. Since (a,, b,) are bivariate normal, zero correlation implies that
a,and b, are independent. Now a result from distribution theory says that if
Y,, Y, are independent N(0, 1) variables, then (Y2 + Y?2)hasa y* distribution

with two degrees of freedom, which is written x3. Thus

N} +b}) l(w,)n
262 ao?

is 73. Now the variance of a y2 distribution with v degrees of freedom 1s 2v, 50
that

Var[/(w,)2n/o’] =4
and
Var[l(w,)]=c*/n’

As this variance is a constant, it does not tend to zero as N— o0, and hence
I(w,) is not a consistent estimator for f(w,). Furthermore it can be shown that
neighbouring periodogram ordinates are asymptotically independent, which
further explains the very irregular form of an observed periodogram. Thus the
periodogram needs to be modified in order to obtain a good estimate of a
continuous spectrum.

74 SPECTRAL ANALYSIS: SOME CONSISTENT
ESTIMATION PROCEDURES

This section describes several alternative procedures for carrying out a
spectral analysis. The different methods will be compared in Section 7.6. Each
method provides a consistent estimate of the (power) spectral density function,
in contrast to the periodogram. But although the periodogram is itself an
inconsistent estimate, we shall see that the procedures described in this section
are essentially based on the periodogram by using some sort of smoothing
procedure.

Throughout the section we will assume that any obvious trend or seasonal
variation has been removed from the data. If this is not done, the results of the
spectral analysis are likely to be dominated by these effects, making any other
effects difficult or impossible to see. Trend will produce a peak at zero
frequency, while seasonal variation produces peaks at the seasonal frequency
and at integer multiples of the seasonal frequency. These integer multiples of
the fundamental frequency are called harmenics (see Section 7.8). For a non-
stationary series, the estimated spectrum can depend rather crucially on the
method chosen to remove trend and seasonality.

The methods described in this chapter are essentially non-parametric in that
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no model is assumed a priori. An alternative parametric approach called
autoregressive spectrum estimation will be introduced in Section 13.5.1.

7.4.1 Transforming the truncated autocovariance function

One type of estimation procedure consists of taking a Fourier transform of the
truncated weighted sample autocovariance function. From equation (7.18),
we have that the periodogram is the discrete Fourier transform of the complete
sample autocovariance function. But it is clear that the precision of the Cx
decreases as k increases, so that it would seem intuitively reasonable to give
less weight to the values of ¢, as k increases. An estimator which has this
property is

=1

flw) =;lt— {ioco +2 i Ay, cOs wk} (7.21)

where {4} are a set of weights called the lag window, and M(< N)is called the
truncation point. Comparing (7.21) with (7.18) we see that values of ¢, for
M <k <N are no longer used, while values of ¢, for k<M are weighted by a
factor 4,.

In order to use the above estimator, the reader must choose a suitable lag
window and a suitable truncation point. The two best-known lag windows are
as follows. .

(a) Tukey window

1 nk
ik=§<1+COSﬁ> k=0, 1,...,M

This window is also called the Tukey-Hanning or Blackman-Tukey window.

(b) Parzen window

1=6( XV i6(5Y  o<k<mn
—6f — = <ks<

[ i) oerew
200 —k/Mm)? MP2<k<M

These two windows are illustrated in Figure 7.1 with M = 20.

The Tukey and Parzen windows will give very much the same estimated
spectrum for a given time series, although the Parzen window has a slight
advantage in that it cannot give negative estimates. Many other lag windows
have been suggested (see Hannan, 1970, Section 5.4), and ‘window carpentry’
was a popular research topic in the 1950s. Ways of comparing different
windows will be discussed in Section 7.6. The well-known Bartlett window,
with 4, =1—k/M for k=0, 1, ..., M, is no longer used as its properties are
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Figure 7.1 The Tukey and Parzen lag windows with M=20.

inferior to the Tukey and Parzen windows. Neave (1972b) has suggested an
alternative window which has superior properties but which is more
complicated to use. *

The choice of the truncation point M is rather difficult and little clear-cut
advice is available in the literature. It has to be chosen subjectively so as to
balance ‘resolution’ against ‘variance’. The smaller the value of M, the smaller
will be the variance of f(w) but the larger will be the bias. If M is too small,
important features of f(w) may be smoothed out, while if M is too large the
behaviour of f(w) becomes more like that of the periodogram with erratic
variation. Thus a compromise value must be chosen. A useful rough guide is to
choose M to be about 2\/N, so that if for example N is 200, then M will be
round about the value 28. This choice of M ensures the asymptotic situation
that as N— o0, so also does M—oco but in such a way that M/N-0. A
somewhat larger value of M is required for the Parzen window than for the
Tukey window. Jenkins and Watts (1968) suggest trying three different values
of M. A low value will give an idea where the large peaks in f(w) are, but the
curve is likely to be too smooth. A high value is likely to produce a curve
showing a large number of peaks, some of which may be spurious. A
compromise can then be achieved with the third value of M. As Hannan (1970,
p. 311) says, ‘experience is the real teacher and that cannot be got from a
book.’

In principle (7.21) may be evaluated at any value of @ in (0, 7), but it is
usually evaluated at equal intervals at w = nj/Qforj=0,1,...,Q,where Qis
chosen sufficiently large to show up all features of, f(w). Often Q is chosen to be
equal to M. The graph of f(w) against w can then be plotted and examined. An
example is given in Figure 7.5 for the data plotted in Figure 1.2 using the
Tukey window with M =24.
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7.4.2 Hanning

This procedure, named after Julius Von Hann, is equivalent to the use of the
Tukey window as described in Section 7.4.1, but adopts a different
computational procedure. The estimated spectrum is calculated in two stages.
First, a truncated unweighted cosine transform of the data is taken to give

k=1

filw)= % <co +2 i ¢y €O8 wk) (7.22)

This is the same as (7.21) except that the lag window is taken to be unity (i.e.
A,=1). The estimates given by (7.22) are calculated at w=mnj/M for

j=0,1,..., M. These estimates are then smoothed using the weights (4, 1, 1)
to give the Hanning estimates
fw)=ifi(@—n/M)+ 1 (@) + 3 (@+7/M) (7.23)
A d

at o=mnj/M for j=1,2,...,(M—1). At zero frequency, and at the Nyquist
frequency n, we take

J10)=13L1,(0)+f,(m/M)]
fmy=31,(m)+f,(r(M —1)/M)]

It is easily demonstrated that this procedure is equivalent to the use of the
Tukey window. Substituting (7.22) into (7.23) we find

M
flw)= % {co+2 Y ¢l cos(w—n/M)k+ 4% cos wk + % cos(w+7t/M)k]}

k=1
But
cos(w —7/M)k+ cos(w+n/M)k =2 cos wk cos(nk/M)

and comparing with (7.21) we see that the lag window is indeed the Tukey
window.

There is relatively little difference in the computational efficiency of
Hanning and the straightforward use of the Tukey window. Both methods
yield the same estimates and so it matters little which of the two procedures is
used in practice.

7.4.3 Hamming

This technique is very similar to Hanning and has a very similar title, which
sometimes leads to confusion. In fact Hamming is named after a quite different
person, namely R. W. Hamming. The technique is nearly identical to Hanning
except that the weights (4, 3, 1) in (7.23) are changed to (0.23, 0.54, 0.23). At
the frequencies w =0 and w =7, the weights are 0.54 and 0.46. The procedure
gives similar estimates to those produced by Hanning.



Spectral analysis: consistent estimation procedures 117

744 Smoothing the periodogram

The methods of Sections 7.4.1-7.4.3 are based on transforming the sample
autocovariance function. An alternative type of approach is to smooth the
periodogram by simply grouping the periodogram ordinates in sets of size m
and finding their average value. This approach is based on a suggestion by
P.J. Daniell in 1946. Then we find

flo)= 1 Y I(w)) (7.24)
m:;
where w;=2nj/N and j varies over m consecutive integers so that the w; are
symmetric about w. In order to estimate f(w) at w=0and w =r, (7.24) has to
be modified in an obvious way, treating the periodogram as being symmetric
about 0 and n. Then, taking m to be odd with m*=(m—1)/2, we have

m*

f0)=2 ¥ IQ2mj/N)m

i=1

assuming /(0)=0. We also have
*

fim) [ +2Z n— 27‘[]/]\/}/

Now we know that the periodogram is asymptotically unbiased but
inconsistent for the true spectrum. Since neighbouring periodogram ordinates
are asymptotically uncorrelated, it is clear that the variance of (7.24) will be of
order 1/m. It is also clear that the estimator (7.24) may be biased since

E[f(w Zf(w

which is equal to f{w) only if the spectrum is linear over the interval. However,
the bias will be unimportant provided that f(w) is a reasonably smooth
function and m is not too large compared with N.

Thus the choice of m is rather like the choice of the truncation point M in
Section 7.4.1 in that it has to be chosen so as to balance resolution against
variance, although the effects are in opposite directions. The larger the value of
mthe smaller will be the variance of the resulting estimate but the larger will be
the bias, and if m is too large then interesting features of f(w), such as peaks,
may be smoothed out. As N increases, so we can allow m to increase.

There seems to be relatively little advice in the literature on the choice of m.
[t seems advisable to try several values, in the region of N/40. A high value
should give some idea where the large peaks in f(w) are, but the curve is likely
to be too smooth. A low value is likely to produce a curve showing a large
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number of peaks, some of which may be spurious. A compromise can then be
made.

Although the procedure described in this section is computationally quite
different from that of Section 7.4.1, there are in fact close links between the two
procedures. In Section 7.3.1 we derived the relationship between the
periodogram and the sample autocovariance function, and if we substitute
equation (7.18) into (7.24) we can express the estimate f(w) in terms of the
sample autocovariance function in a similar form to equation (7.21). We find,
after some algebra (Exercise 7.5), that the truncation point is (NV—1) and the
lag window is given by

1 k=0
A, =< sin(mnk/N)
m sin (nk/N)

This lag window works reasonably well, but has the undesirable property that
it does not tend to zero as k tends to N. This illustrates that a sudden cut-off in
the frequency domain can give rise to ‘nasty’ effects in the time domain, and
vice versa. Because of this, it is worth noting that it is possible to smooth the
periodogram by a variety of non-uniform averaging procedures, such as
Hanning, but they will not be considered here.

Historically, the smoothed periodogram was not much used until recent
years because it apparently requires much more computational effort than the
procedure of Section 7.4.1. Calculating the periodogram using equa-
tion (7.17) at w, for p=1,2,..., N/2 would require about N? arithmetic
operations (each one a multiplication and an addition), whereas using
equation (7.21) fewer than MN operations are required to calculate the {c} s0
that the total number of operations is only of order M(N + M) if Q=M. Two
factors have led to the increasing use of the smoothed periodogram. First, the
advent of high-speed computers means that it is no longer necessary to restrict
oneself to the method requiring the fewest calculations. The second factor has
been the rediscovery of a technique called the fast Fourier transform which can
speed up the computation of the periodogram quite considerably. This
technique will now be described.

k=1,2,... , N—1

7.4.5 The fast Fourier transform

This technique substantially reduces the time required to perform a Fourier
analysis on a computer, and is also more accurate. The title is usually
abbreviated to FFT and we will use this abbreviation. (But note that Hannan,
1970, uses this abbreviation to denote finite Fourier transform.)

A history of the FFT is described by Cooley, Lewis and Welch (1967), the
ideas going back to the early 1900s. But it was the work of J. W. Cooley,
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J. W. Tukey and G. Sande about 1965 which first stimulated the application
of the technique to time-series analysis. Much of the subsequent work was
published in IEEE Transactions on Audio and Electroacoustics (since
succeeded by IEEE Transactions on Acoustics, Speech and Signal Processing).
We will only give a broad outline of the technique here. For further details, see
for example Bendat and Piersol (1986), Bloomfield (1976) and Priestley
(1981).

The basic idea of the FFT can be illustrated in the case when N can be
factorized in the form N=rs. If we assume that N is even, then at least one of
the factors, say r, will be even. Using complex numbers for mathematical
simplicity, the Fourier coefficients from equation (7.10) are given by

a,+ib,=2[Lx, e2mPN N (7.25)
for p=0,1,2,...,(N/2)—1. For mathematical convenience we denote the
observations by X, X;, - - - » Xy—1, 50 that the summation in (7.25) is from

t=0to N—1. Now we can write t in the form
t=rt,+1t,

wheret,#0,1,...,s—1,and t,=0,1,..., r—1,astgoesfrom0to N—1,in
view of the fact that N=rs. Similarly we can decompose p in the form

p=sp, +po
where p, =0, 1, ..., (r/2)—1, and po=0,1,...,s—1, as p goes from 0 to
(N/2)— 1. Then the summation in (7.25) may be written
r—1 -1

s
Z eZmpro/N Z X, eZmpnl/N
to=0 ;=0

But

elniprrl/N — eZni(spl +porty /N eZniporr,/N

since 2PtV —e2%inits — 1 for all p,, t,. Thus Y3 x, e?®P"/N does not
depend on p, and is therefore a function of ¢, and p, only, say A(p,, t,)- Then
(7.25) may be written

r—1
ap+ibp=2 |: Z A(py> to) CZﬂP“’/N]/N

K0=0

Now there are rs functions of type A(po, to) to be calculated, each requiring s
complex multiplications and additions. Then the a,+ib, may be calculated
with r2s/2 complex multiplications and additions, giving a grand total of
rs(s+r/2)= N(s +r/2) calculations instead of the N?/2 calculations required to
use (7.25) directly.

Much bigger reductions in computing can be made by an extension of the
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above procedure when N is highly composite (i.e. has many small factors). In
particular, if ¥ is of the form 2" then we find that the number of operations is of
order Nn (or Nlog,N) instead of N?. Substantial gains can also be made when
N has several factors (e.g. N=27395". ).

In practice it is unlikely that N will be of a simple form such as 2", although it
may be possible to make N highly composite by omitting a few observations.
More generally we can add zeros to the (mean-corrected) sample record so as
to increase the value of ¥ until it is a suitable integer. Then a procedure called
tapering or data windowing (e.g. Percival and Walden, 1993; Priestley, 1981)
is sometimes recommended to avoid a discontinuity at the end of the data
though its use is now controversial. Suppose for example that we happen to
have 382 observations. This value of N is not highly composite and we might
proceed as follows:

(a) Remove any linear trend from ghe data, and keep the residuals (which
should have mean zero) for subsequent analysis. If there is no trend,
simply subtract the overall mean from each observation.

(b) Apply alinear taper to about 5% of the data at each end. In this example, if

we denote the detrended mean-corrected data by x4, x,, . .., X35, then
the tapered series is given by
(t+1)x,/20 t=0,1,...,18
x> = (382 —1)x,/20 r=363,...,381
X, t=19,20,...,362

(c) Add 512—382=130 zeros at one end of the tapered series, so that
N=512=2°

(d) Carry out an FFT on the data, calculate the Fourier coefficients a, +ib,,,
and average the values of (¢} +b) in groups of about 10.

Infact with N aslow as 382, the computational advantage of the FFT is limited
and we could equally well calculate the periodogram directly, which avoids the
need for tapering and adding zeros. The FFT really comes into its own for
N> 1000.

Jenkins and Watts (1968) give two reasons why they think the case for using
the FFT in spectral analysis is not strong. First, they say that fast computers
are more than adequate for carrying out a spectral analysis by traditional
methods. This is certainly true for say N < 1000, but perhaps not for several
thousand observations. Secondly, Jenkins and Watts say that the autocorrela-
tion function is an invaluable intermediate stage in spectral analysis. This is
also true, but does not mean that the FFT is useless because it can be quicker
to calculate the sample autocovariance function by performing two FFTs (e.g.
Priestley, 1981, Section 7.6). We can compute the Fourier coefficients (a,, b,)
with an FFT of the mean-corrected data at w,=2np/Nforp=0,1,... ,N-1
and not for p=0,1, ..., N/2 as we usually do. The extra coefficients are
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redundant for real-valued processes since ay _, =4, and by_,= —b,. We then
compute R2=a2+b2 and fast Fourier retransform the sequence (R}?) to get
the mean lagged products. With N =2'2=4096, for example, R. Fenton found
that it took over three times as long to calculate one-sixth of the {c,} directly
than to calculate all the {c,} using two FFTs. In using the FFT for this
purpose, one has to be careful to add enough zeros to the data (without
tapering) to make sure that one gets non-circular sums of lagged products, as
defined by equation (4.1) and used throughout this book. Circular coefficients
result if zeros are not added where, for example, the circular autocovariance
coefficient at lag 1 is

cté[}’v: (x,—xux,ﬂ—ﬂ]/zv

where Xy, , is taken equal to x,. If x; =X, the circular and non-circular
coefficients at lag 1 are the same. To calculate all the autocovariance
coefficients of a set of N observations one adds N zeros, to make 2N
‘observations’ in all.

7.5 CONFIDENCE INTERVALS FOR THE SPECTRUM

The methods of Section 7.4 all produce point estimates of the spectral density
function at different frequencies. In this section we show how to find
confidence intervals for the spectrum at different frequencies.

In Section 7.3.2 we showed that a white noise process, with constant
spectrum f(w) = 02/x, has a periodogram ordinate I(w)at frequency w which is
such that 2/(w)/f(w) is distributed as x2. A more general result is given by
Jenkins and Watts (1968, Section 6.4.2) for the estimator of Section 7.4.1,
namely

f(w)=[ ‘E Ay COS wk]/n

which is that asymptotically vf(w)/f(w) is approximately distributed as X2,
where

M
v=2N/ v i (7.26)
k=-M
is called the number of degrees of freedom of the lag window. Then
P(Xf,l —aj2 < Vﬂw)/ﬂw) < Xa,a/Z) = 1 —a
so that the 100(1 —a)% confidence interval for f(w) is given by

(@) (@)

to

2 2
Xv,a/Z Xv,l—a/Z
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The degrees of freedom for the Tukey and Parzen windows turn out to be
2.67N/M and 3. 71N/M respectively. When smoothing the periodogram in
groups of size m, it is clear that the result will have 2m degrees of freedom and
there is no need to apply equation (7.26). In fact equation (7.26) does not work
for the periodogram when expressed in the form (7.18), as noted by Hannan
(1970, p. 281).

The confidence intervals given in this section are asymptotic results. Neave
(1972a) has shown that these results are also quite accurate for short series.

7.6 A COMPARISON OF DIFFERENT ESTIMATION
PROCEDURES

Several factors need to be considered when comparing the different estimation
procedures which were described in Section 7.4. These include such practical
considerations as computing time and the availability of computer programs.
We begin by considering the theoretical properties of the different procedures.
Other comparative discussions are given by Jenkins and Watts (1968), Neave
(1972b), Bloomfield (1976) and Priestley (1981, Section 7.5).

It is useful to introduce a function called the spectral window or kernel,
which is the Fourier transform of the lag window. If we define the lag window
A, to be zero for k> M, and to be symmetric so that A_, = A,, then the spectral
window is given by

@

Z ¢ ko (7.27)

1

for (—m<w<m). This has the inverse relation

A= J K(w)e'* dw (7.28)
—n [}
All the estimation procedures for the spectrum can be put in the general
P N2t .
flwg)== ¥ o e ook
Ty=-N+1
1 " . .
== z K(w)e* dw [c, e ook
1
n

J K(w)[Zc, e*@~ 2] dw

= J K()(w,— o) do (7.29)

form using equation (7.19). Equation (7.29) shows that all the estimation



A comparison of different estimation procedures 123

procedures are essentially smoothing the periodogram using the weight
function K{(w). The value of the lag window at lag zero is usually specified to be
one, so that from (7.28) we have

AO=1=J K(w)do
which is a desirable property for a smoothing function.
Taking expectations in equation (7.29) we have asymptotically that

Elf(@o)]= j " Ko)f(@o-o) do (730)

Thus the spectral window is a weight function expressing the contribution of
the spectral density function at each frequency to the expectation of f(w,). The
name ‘window’ arises from the fact that K(w) determines the part of the
periodogram which is ‘seen’ by the estimator.

Examples of the spectral windows for the three commonest methods of
spectral analysis are shown in Figure 7.2, which is adapted from Jones (1965,
Figure 5). Taking N = 1000, the spectral window for the smoothed periodo-
gram with m =20 is shown as line A. The other two windows are the Parzen
and Tukey windows, denoted by lines B and C. The values of the truncation
point M were chosen to be 93 for the Parzen window and 67 for the Tukey
window. These values of M were chosen so that all three windows gave
estimators with equal variance. Formulae for variances will be given later in
this section,

Kiw) & Y 2
N/2mn |-
C
Side lobe
0 1 | 1 >
~mu/N 0 mn/N w

Figure 7.2 The spectral windows for three common methods of spectral analysis: A,
smoothed periodogram (m=20); B, Parzen (M =93); C, Tukey (M =67); all with
N=1000.
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Inspecting Figure 7.2, we see that the Parzen and Tukey windows look very
similar, although the Parzen window has the advantage of being non-negative
and of having smaller side-lobes. The shape of the periodogram window is
quite different. It is approximately rectangular with a sharp cut-offand is close
to the ‘ideal’ band-pass filter, which would be exactly rectangular but which is
unattainable in practice. The periodogram window also has the advantage of
being non-negative.

In comparing different windows, we also want to consider bias, variance
and bandwidth. We will not derive formulae for the bias produced by the
different procedures. It is clear from equation (7.30) that the wider the
window, the larger will be the bias. In particular it is clear that all the
smoothing procedures will tend to lower peaks and raise troughs.

As regards variance, we have from Section 7.5 that vf(w)/f(w) is approxi-
mately distributed as y?, where v=2m, 3.71 N/M, and 8N/3M for the
smoothed periodogram, Parzen and Tukey windows, respectively. Since

Var(y?)=2v
and

Var[f(0)/f(w)]=v* Var[f(»)/f(®)]

we find Var[ f(w)/f(w)] turns out to be 1/m, 2M/3.71N, and 3M/4N for the
three windows. Equating these expressions gives the values of M chosen for
Figure 7.2.

Finally let us introduce the term bandwidth, which roughly speaking is the
width of the spectral window. Various definitions are given in the literature,
but we shall adopt that used by Jenkins and Watts (1968), namely the width of
the ‘ideal’ rectangular window which would give an estimator with the same
variance. The window of the smoothed periodogram is so close to being
rectangular for m ‘large’ that it is clear from Figure 7.2 that the bandwidth will
be 2rnm/N. The bandwidths for the Parzen and Tukey windows turn out to be
2n(1.86/M) and 87/3M respectively. When plotting a graph of an estimated
spectrum, it is a good idea to indicate the bandwidth which has been used.

The choice of bandwidth, or equivalently the choice of m or M, is an
important step in spectral analysis. For the Parzen and Tukey windows, the
bandwidth is inversely proportional to M (see Figure 7.3). As M gets larger,
the window gets narrower and the bias gets smaller but the variance of the
resulting estimator gets larger. In fact the variance is inversely proportional to
the bandwidth. For the smoothed periodogram, the bandwidth is directly
proportional to m. For the unsmoothed periodogram, with m =1, the window
is very tall and narrow giving an estimator with large variance as we have
already shown. All in all, the choice of bandwidth is rather like the choice of
class interval when constructing a histogram.
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Figure 7.3 Spectral windows for different values of M.

We will now summarize the comparative merits of the three main estimation
procedures. From the preceding discussion, it appears that the smoothed
periodogram has superior theoretical properties in that its spectral window is
approximately rectangular. From a computing point of view, it can be much
stower for large N unless the FFT is used. If the FFT is used, however, it can be
much quicker and it is also possible to calculate the autocorrelation function
using two FFTs. For small N, computing time is relatively unimportant.
Regarding computer programs, it is much easier to write a program for the
Parzen or Tukey windows, but programs and algorithms for the FFT are
becoming readily available. Thus the use of the smoothed periodogram is
becoming more general.

7.7 ANALYSING A CONTINUOUS TIME SERIES

We have so far been concerned with the spectral analysis of discrete time series.
But time series are sometimes recorded as a continuous trace, as for example
air temperature, the moisture content of tobacco emerging from a processing
plant, and humidity. For series which contain components at very high
frequencies, such as those arising in acoustics and speech processing, it may be
possible to analyse them mechanically using tuned filters, but the more usual
procedure is to digitize the series by reading off the values of the trace at
discrete intervals. If values are taken at equal time intervals of length At, we
have converted a continuous time series into a standard discrete time series
and can use the methods already described.

In sampling a continuous time series, the main question is how to choose the
sampling interval At. It is clear that sampling leads to some loss of information
and that this loss gets worse as At increases. However, it is expensive to make
At very small and so a compromise value must be sought.

For the sampled series, the Nyquist frequency is n/At radians per unit time,
and we can get no information about variation at higher frequencies. Thus we
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clearly want to choose At so that variation in the continuous series is negligible
at frequencies higher than n/Az. In fact most measuring instruments are band-
limited in that they do not respond to frequencies higher than a certain
maximum frequency. If this maximum frequency is known or can be guessed,
then the choice of At is straightforward.

If At is chosen to be too large, then a phenomenon called aliasing may occur.
This can be illustrated by the following theorem.

Theorem 7.1 A continuous time series, with spectrum f,(w) for 0 <w <00,
is sampled at equal intervals of length At. The resulting discrete time series has
spectrum fy(w) defined over 0 < w <n/At. Then fy(w) and f(w) are related by

filw)= ifc(w+2ns/At)+ ifc(—w+2ns/At) (7.31)
s=0 s=1

Proof The proof will be given for the case At=1. The extension to other
values of At is straightforward.

The acv.f.s of the continuous and sampled series will be denoted by y(7) and
¥, It is clear that when 1 takes an integer value, say k, then

y(k)=7, @.32)
Now from (6.9) we have

V= J Ja(w)cos wk dw
]

while from (6.18) we have

y(t) = wac(w)cos wt dw
]

Thus, using (7.32), we have

J‘”fd(w)cos wk dw = Jwﬁ(wkos wk dw
0

0
for k=0, +1, +2,.... Now
© o) 2n(s+ 1)
J f(w)cos wk dw =Y f.(w)cos wk dw
0 s=0 J2=ns

Ms

2n
J f.(w+2ns)cos wk dw

0

s=0

i
i

J"' {f(w+2ms)+f.[2n(s+ 1)—w]}cos wk dw

s ]

=J"‘ {i Jlw+2ms) + i fc(2ns—w)}cos wk do
0 {(s=0

s=1

and the result follows.
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The implications of this theorem are now considered. First, we note that if the
continuous series contains no variation at frequencies above the Nyquist
frequency, so that f (w)=0 for w>n/At, then fy(w)=f(w). In this case no
information is lost by sampling. But more generally, the effect of sampling will
be that variation at frequencies above the Nyquist frequency will be ‘folded
back’ and produce an effect at a frequency lower than the Nyquist frequency in
Jalw). If we denote the Nyquist frequency, /At, by @y, then the frequencies w,
2004 — w, 2005+ w, 400y —w, . . . are called aliases of one another. Variation at
all these frequencies in the continuous series will appear as variation at
frequency w in the sampled series.

From a practical point of view, aliasing will cause trouble unless At is chosen
so that f,(w)~0 for w>n/At. If we have no advance knowledge about f, (w)
then we can guesstimate a value for Az. If the resulting estimate of fy(w)
approaches zero near the Nyquist frequency n/At, then our choice of At was
almost certainly sufficiently small. But if f;(w) does not approach zero near the
Nyquist frequency, then it is probably wise to try a smaller value of At.
Alternatively one can filter the continuous series to remove the high-frequency
components if one is interested fn the low-frequency components.

7.8 DISCUSSION

Spectral analysis can be a useful exploratory diagnostic tool in the analysis of
many types of time series. In this section we discuss how the estimated
spectrum should be interpreted, when it is likely to be most useful and when it
is likely to be least useful. We also discuss some of the practical problems
arising in spectral analysis.

We begin this discussion with an example to give the reader some feel for the
sorts of spectrum shape that may arise. Figure 7.4 shows four sections of trace,
labelled A, B, C and D, which were produced by four different processes
(generated in a control engineering laboratory). The figure also shows the
corresponding long-run spectra, labelled J, K, L and M, but these are given in
random order. Note that the four traces use the same scale, the length
produced in one second being shown on trace D. The four spectra are plotted
using the same linear scales. The peak in spectrum L is at 15 cycles per second
(or 15 Hz). The reader is invited to decide which series goes with which
spectrum before reading on.

Trace A is much smoother than the other three traces. Its spectrum is
therefore concentrated at low frequency and is actually spectrum M. The other
three spectra are much harder to distinguish. Trace B is somewhat smoother
than C or D and corresponds to spectrum K, which ‘cuts off” at a lower
frequency than J or L. Trace C corresponds to spectrum J, while trace D
contains a deterministic sinusoidal component at 15 cycles per second which
contributes 20% of the total power. Thus D corresponds to spectrum L.
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Figure 7.4 Four time series and their spectra. The spectra are given in random order.
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From a visual inspection of traces C and D, it is difficult or impossible to
decide which goes with spectrum L. For this type of data, spectral analysis is
invaluable in assessing the frequency properties. The reader may find it
surprising that the deterministic component in trace D is so hard to see. In
contrast the regular seasonal variation in air temperature at Recife given in
Figure 1.2 is quite obvious from a visual inspection of the time plot, but there
the deterministic component accounts for 85% of the total variation. A
spectral analysis of air temperature at Recife yields the spectrum shown in
Figure 7.5(a) with a large peak at a frequency of one cycle per year. But here
the spectral analysis is not really necessary as the seasonal effect is obvious
anyway. In fact if one has a series containing an obvious trend or seasonality,
then such variation should be removed from the data before carrying out a
spectral analysis, as any other effects will be relatively small and are unlikely to
be visible in the spectrum of the raw data. Figure 7.5(b) shows the spectrum of
the Recife air temperature data when the seasonal variation has been removed.
The variance is concentrated at low frequencies, indicating either a trend
which is not apparent in Figure 1.2, or short-term correlation as in a first-
order AR process with a positive coefficient (cf. Figure 6.4(a)).

Removing trend and seasonality is the simplest form of a general procedure
called prewhitening. It is easier to estimate the spectrum of a series which has a
relatively flat spectrum. Prewhitening consists of making a linear transforma-
tion of the raw data so as to achieve a smoother spectrum, estimating the
spectrum of the transformed data, and then using the transfer function of the
linear transformation to estimate the spectrum of the raw data (see Chapter 9
and Anderson, 1971, p.546). But this procedure requires some prior
knowledge of the spectral shape and is not often used except for removing
trend and seasonality.

Having estimated the spectrum of a given time series, how do we interpret
the results? There are various features to look for. First, are there any peaks in
the spectrum? If so, why? Secondly, is the spectrum large at low frequency,
indicating possible non-stationarity in the mean? Thirdly, what is the general
shape of the spectrum? The typical shape of the power spectrum of an
economic variable is shown in Figure 7.6, and the implications of this shape
are discussed by Granger (1966). There are exceptions. Granger and Hughes
(1971) found a peak at a frequency of 1 cycle per 13 years when they analysed
Beveridge’s yearly wheat price index series. But this series is much longer than
most economic series, and the results have, in any case, been queried (Akaike,
1978).

The general shape of the spectrum may occasionally be helpful in indicat-
ing an appropriate parametric model, but it is not generally used in this way.
The spectrum is not, for example, used in the Box-Jenkins procedure
for identifying an appropriate ARIMA process (though Hannan, 1970,
Section 6.5 has suggested that it might be). Spectral analysis is essentially a
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Figure 7.5 Spectra for average monthly air temperature readings at Recife, (a) for the
raw data; (b) for the seasonally adjusted data using the Tukey window with M =24; (c)
the periodogram of the seasonally adjusted data is shown for comparison.
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Figure 7.6 The typical spectral shape of an economic time series.

non-parametric procedure in which a finite set of observations is used to
estimate a function defined over the range (0, 7). The function is not
constrained to any particular parametric class and so spectral analysis isa
more general procedure than inference based on a particular parametric class
of models, but is also likely to be less accurate if a parametric model really is
appropriate.

Spectral analysis is at its most useful for series of the type shown in
Figure 7.4, with no obvious trend or ‘seasonal’ variation. Such series arise
mostly in the physical sciences. In economics, spectral techniques have
perhaps not proved as useful as was first hoped, although there have been
some successes. Attempts have also been made to apply spectral analysis to
marketing data, but it can be argued (Chatfield, 1974) that marketing series
are usually too short and the seasonal variation too large for spectral analysis
to give useful results. In meteorology and oceanography, spectral analysis can
be very useful (e.g. Craddock, 1965; Snodgrass et al., 1966; Mooers and Smith,
1968) but, even in these sciences, spectral analysis may produce no worthwhile
results. For example, Chatfield and Pepper (1971) analysed a number of
monthly geophysical series but found no tendency to oscillate at frequencies
other than the obvious annual effect.

We conclude this section by commenting on some practical aspects of
spectral analysis.

Most aspects, such as the choice of truncation point, have already been
discussed and will be further clarified in Example 7.1. One problem, which has
not been discussed, is whether to plot the estimated spectrum or its logarithm.
An advantage of plotting the estimated spectrum on a logarithmic scale is that
its asymptotic variance is then independent of the level of the spectrum, so that
confidence intervals for the spectrum are of constant width on a logarithmic
scale. For spectra showing large variations in power, a logarithmic scale also
makes it possible to show more detail over a wide range. (For example, in
measuring sound, engineers use decibels which are measured on a logarithmic
scale.) Jenkins and Watts (1968, p. 266) suggest that spectrum estimates
should always be plotted on a logarithmic scale. But Anderson (1971, p. 547)
points out that this exaggerates the visual effects of variations where the
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spectrum is small. Thus it is often easier to interpret a spectrum plotted on an
arithmetic scale as the area under the graph corresponds to power and one can
more readily assess the importance of different peaks. So, while it is often
useful to plot f(w) on a logarithmic scale in the initial stages of a spectral
analysis, when trying different truncation points and testing the significance of
peaks this writer generally prefers to plot the estimated spectrum on an
arithmetic scale in order to interpret the final result. It is also generally easier
to interpret a spectrum if the frequency scale is measured in cycles per unit time
(f) rather than radians per unit time (w). This has been done in Figures 7.4
and 7.5. A linear transformation of frequency does not affect the relative
heights of the spectrum at different frequencies, which are of prime
importance, though it does change the absolute heights by a constant multiple.

Another point worth mentioning is the possible presence in estimated
spectra of harmonics. When a spectrum has a large peak at some frequency o,
then related peaks may occur at 2w,3w,.... These multiples of the
fundamental frequency are called harmonics and generally speaking simply
indicate the non-sinusoidal character of the main cyclical component. For
example Mackay (1973) studied the incidence of trips to supermarkets by
consumers and found (not surprisingly!) a basic weekly pattern with
harmonics at two and three cycles per week.

Finally, a question that is often asked is how large a value of Nis required to
get a reasonable estimate of the spectrum. It is often recommended that
between 100 and 200 observations is the minimum. Granger and Hughes
(1968) have tried smaller values of N and conclude that only very large peaks
can then be found. If the data are prewhitened, so that the spectrum is fairly
flat, then reasonable estimates may be obtained even with values of N less than
100.

Example 7.1 As an example, we analysed part of trace D of Figure 7.4.
Although a fairly long trace was available, we decided just to analyse a section
lasting for one second to illustrate the problems of analysing a fairly short
series. This set of data will also illustrate the problems of analysing a
continuous trace as opposed to a discrete series.

The first problem was to digitize the data, and this required the choice ofa
suitable sampling interval. Inspection of the original trace showed that
variation seemed to be ‘fairly smooth’ over a length of 1 mm, corresponding to
1/100 second, but to ensure that there was no aliasing we chose 1/200 second
as the sampling interval, giving N =200 observations.

For such a short series, there is little to be gained by using the fast Fourier
transform. We decided to transform the truncated autocovariance function,
using equation (7.21), with the Tukey window. Several truncation points were
tried, and the results for M =20, 40 and 80 are shown in Figure 7.7. Above
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about 70 cycles per second, the estimates produced by the three values of M
are very close to one another when the spectrum is plotted on an arithmetic
scale and cannot be distinguished on the graph. Equation (7.21) was evaluated
at 51 points, taking Q =50, at w =7j/50 (j=0, 1, . . ., 50) where w is measured
inradians per unit time. Now in this example ‘unit time’ is 1/200 second and so
the values of w in radians per second are w=2007j/50 for j=0,1,...,50.
Thus the frequencies expressed in cycles per second, by f= w/2r, are f=2j for
j=0,1, ..., 50. The Nyquist frequency is given by fy = 100 cycles per second,
which completes one cycle every two observations.

Looking at Figure 7.7, the estimated spectrum is judged rather too smooth
with M =20, and much too erratic when M =80. The value M =40 looks
about right, although M =30 might be even better. There is a clear peak at
about 15 cycles per second (15 Hz)as there is in spectrum L of Figure 7.4, but
there is also a smaller unexpected peak around 30 cycles per second, which
looks like a harmonic of the variation at 15 cycles per second. If a longer series
of observations were to be analysed, this peak might disappear, indicating that
the peak is spurious.

We also estimated the spectrum using a Parzen window with a truncation
point of M = 56. This value was chosen so that the degrees of freedom of the
window, namely 13.3, were almost the same as for the Tukey window with
M=40.1intended to plot the results on Figure 7.7, but the graph was so close
to that produced by the Tukey window that it was impossible to draw them
both on the same graph. The biggest difference in estimates at the same
frequency was 0.33 at 12 cycles per second, but most of the estimates differed
only in the second decimal place. It is clear that the Tukey and Parzen
windows give very much the same estimates when equivalent values of M are
used.

One feature to note in Figure 7.7 is that the estimated spectrum approaches
zero as the frequency approaches the Nyquist frequency. This suggests that
there is no aliasing and that our choice of sampling interval was sufficiently
small.

Also note that the bandwidths are indicated in Figure 7.7. The bandwidth
for the Tukey window is 87/3M in radians per unit time. As ‘unit time’ is
1/200 second, the bandwidth is 16007/3M in radians per second or 800/3M in
cycles per second.

Confidence intervals can be calculated as described in Section 7.5. For a
sample of only 200 observations, they turn out to be disturbingly wide. For
example when M =40, the degrees of freedom are 2.67N/M=13.3. For
convenience this is rounded off to the nearest integer, namely v =13. The peak
in the estimated spectrum is at 14 cycles per second, where f(w)=1.5. Here the
95% confidence interval is (3.9 to 19.5). Clearly a longer series is desirable to
make the confidence intervals acceptably narrow.
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EXERCISES

7.1

7.2
7.3
74

7.5

7.6

Revision of Fourier series. Show that the Fourier series which represents
the function

flx)=x?2 in —n<x<n

is given by

n? cos x COs2x cos 3x
f(x)=—3——-4< Y + 32 —>
Derive equations (7.6) and (7.8).
Derive Parseval’s theorem, given by equation (7.15).
If X,, ..., Xy are independent N(u, ¢2) variates show that
a,=2[ZX, cos(2npt/N)]/N
is N(0, 2¢2/N) for p=1,2,...,(N/2)—1.

Derive the lag window for smoothing the periodogram in sets of size m.
For algebraic simplicity take m odd, with m=2m* +1, so that

foa=t §_i(o2)

(Hint: The answer is given in Section 7.4.4. The algebra is messy. Use
equation (7.18) and

cos 2mk(p +j)/N +cos 2nk(p—j)/N =2 cos 2nkp/N cos 2nkj/N
Also use sin 4 —sin B=2 sin[(4 — B)/2]cos[(4 + B)/2].)

Evaluate the degrees of freedom for the Tukey window using equa-
tion (7.26).
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Bivariate processes

Thus far, we have been concerned with analysing a single time series. We now
turn our attention to the situation where we have observations on two time
series and we are interested in the relationship between them.

Jenkins and Watts (1968, p. 322) distinguish two types of situation. In the
first type of situation, the two series arise ‘on an equal footing’ and we are
interested in the correlation between them. For example it is often of interest to
analyse seismic signals received at two recording sites. In the second, more
important type of situation, the two series are ‘causally related’. One series is
regarded as the input to a linear system, while the other series is regarded as the
output; we are then interested in finding the properties of the linear system. The
two types of situation are roughly speaking the time-series analogues of
correlation and regression.

The first type of situation is considered in this chapter, where the cross-
correlation function and the cross-spectrum are introduced. These functions
are also useful in the study of linear systems which are discussed in Chapter 9.

8.1 CROSS-COVARIANCE AND CROSS-CORRELATION
FUNCTIONS

Suppose we have N observations on two variables, x and y, at unit time
intervals over the same period. The observations will be denoted by
(X1» Y1)s - - -, (xy, yy)- These observations may be regarded as a finite
realization of a discrete bivariate stochastic process (X, ¥;).

In order to describe a bivariate process it is useful to know the moments up
to second order. For a univariate process, the moments up to second order are
the mean and autocovariance function. For a bivariate process, the moments
up to second order consist of the mean and autocovariance functions for each
of the two components plus a new function, called the cross-covariance
function, which is given by

yxy(ts k) = COV(‘XI’ Y'H'k)

We will only consider bivariate processes which are second-order stationary,
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so that all moments up to second order do not change with time. We will use
the following notation:

EX)=p,  E(Y)=p,
CoviX,, X,01)=7.x(k)
CoV(Y,, Y1) =1,,(k)
CoV(X;, %)= 75, (K) (8.1)

Note that some authors define the cross-covariance function in the ‘opposite
direction’ by
Cov(X,, Y,_)=73,(k)

Comparing with (8.1) we see that
yxy(k) = y:y( - k)

The cross-covariance function differs from the autocovariance function in that
it is not an even function, since in general

Vay(k) # 75, (—K)

Instead we have the relationship

yxy(k) = yyx( - k)

where the subscripts are reversed.

The size of the cross-covariance coefficients depends on the units in which X,
and Y, are measured. Thus for interpretative purposes, it is useful to
standardize the cross-covariance function to produce a function called the
cross-correlation function, p, (k), which is defined by

Pay(k) =72 (k)// [7:x(0,,(0)] 8.2)

This function measures the correlation between X; and Y,,, and has the
properties

(a) pxy(k)=pyx(—k)
(b) |pxy(k)| <1 (see Exercise 8.2).

Whereas p,,(0), p,,(0) are both equal to one, the value of p, (0) is not
necessarily equal to one, a fact which is sometimes overlooked.

8.1.1 Examples

Before discussing the estimation of cross-covariance and cross-correlation
functions, we will derive the theoretical functions for two examples of bivariate
processes. The first example is rather ‘artificial’, but the model in Example 8.2
can be useful in practice.
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Example 8.1 Suppose that {X;}, { ¥} are both formed from the same purely
random process {Z,}, which has mean zero, variance o2, by

X=2
Y,=05Z,_,+0.57,_,
Then using (8.1) we have

0.5062 k=1,2
ky=3 77 ’
VoK) {0 otherwise
Now the variances of the two components are given by
72x(0)=0%

7y(0)=03/2
so that, using (8.2), we have

0.5/2  k=1,2
Prl) = {0 otherwise

Example 8.2 Suppose that
X= Zl,t
Yi=X_4+2,, (8.3)

where {Z, .}, {Z, ,} are uncorrelated purely random processes with mean zero
and variance o2, and where d is an integer. Then we find

2
_foz k=d

Vxylk) = {0 otherwise
2 k=d

Prlk) = {0 otherwise

In Chapter 9 we will see that equation (8.3) corresponds to putting noise into a
linear system which consists of a simple delay of lag d and then adding more
noise. The cross-correlation function has a peak at lag d corresponding to the
delay in the system, a result which the reader should find intuitively
reasonable.

8.1.2 Estimation

The ‘obvious’ way of estimating the cross-covariance and cross-correlation
functions is by means of corresponding sample functions. With N pairs of
observations {(x;, y,); i=1 to N}, the sample cross-covariance function is
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N—-k
Z (xt—i)(yr-kk_y)/N k'_‘O’ 1”N—1
¢, (k)= ';‘ _ ) (8.4)
_ _ =-1,-2,...,
;.-_21:—1( (x,—x)(y,+k—y)/N —(N—l)

and the sample cross-correlation function is

(k) =y (k)//[€2x(0)c,,(0)] (8.5)

where ¢,.(0), c,,(0) are the sample variances of observations on x, and y,
respectively.

It can be shown that these estimators are asymptotically unbiased and
consistent. However, it can also be shown that successive estimates are
themselves autocorrelated. In addition the variances of the estimators depend
on the autocorrelation functions of the two components. Thus for moderately
large values of N (e.g. N about 100} it is possible for two series, which are
actually unrelated, to give rise to apparently ‘large’ cross-correlation
coefficients which are actually spurious. Thus if a test is required for non-zero
correlation between two time series, both series should first be filtered to
convert them to white noise before computing the cross-correlation function
(Jenkins and Watts, 1968, p. 340). For two uncorrelated series of white noise it
can be shown that

E[r,,(k)]~0
Var[r, (k)] =1/N

sothat values outside theinterval £2//N aresignificantly different from zero.

The filtering procedure mentioned above is accomplished by treating each
series separately and fitting an appropriate model. The new filtered series
consists of the residuals from this model. For example, suppose that one series
appeared to be a first-order AR process with estimated parameter &. Then the
filtered series is given by

Xy =(x,— X)—alx,_, —X)

8.1.3 Interpretation

The interpretation of the sample cross-correlation function can be fraught
with danger unless one uses the prefiltering procedure described in
Section 8.1.2. For example, Coen, Gomme and Kendall (1969) calculated
cross-correlation functions between variables such as (detrended) Financial
Times (FT) share index and (detrended) UK car production, and this resulted
ina fairly smooth, roughly sinusoidal function with ‘large’ coefficients at lags 5
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and 6. Coen et al. used this information to set up a regression model to
‘explain’ the variation in the FT share index. However, Box and Newbold
(1971) have shown that the ‘large’ cross-correlation coefficients are spurious as
the two series had not been properly filtered. By simply detrending the raw
data, Coen et al. effectively assumed that the appropriate model for each series
was of the form

x,=a+pt+a,

where the a, are independent. In fact the error structure was quite different.

If both series are properly filtered, we have seen that it is easy to test whether
any of the cross-correlation coefficients are significantly different from zero.
Following Example 8.2, a peak in the estimated cross-correlation function at
lag d may indicate that one series is related to the other when delayed by
time d.

8.2 THE CROSS-SPECTRUM

The cross-correlation function is the natural tool for examining the
relationship between two time series in the time domain. In this section we
introduce a complementary function, called the cross spectral density function
or cross-spectrum, which is the natural tool in the frequency domain.

By analogy with equation (6.11), we will define the cross-spectrum of a
discrete bivariate process measured at unit intervals of time as the Fourier
transform of the cross-covariance function, namely

1 iod .
fxy(w)=—[ 3 yxy(k)e"wk} 8.6)
n k=—w

over the range 0 < < n. The physical interpretation of the cross-spectrum is
more difficult than for the autospectrum (see Priestley, 1981, p. 657). Indeed a
physical understanding of cross-spectra will probably not become clear until
we have studied linear systems.

Note that f, (w) is a complex function, unlike the autospectrum which is
real. This is because y,, (k) is not an even function.

The reader should note that many authors define the cross-spectrum in the
range (— 7, 7) by analogy with equation (6.13) as

1 < —iw
fxy(w) = E; |:k= - yxy(k)e k] (87)
This definition has certain mathematical advantages, notably that it can

handle complex-valued processes and that it has a simple inverse relationship
of the form
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b (k)= j () do 8.5)

whereas (8.6) does not have a simple inverse relationship. But (8.7) introduces
negative frequencies, and for ease of understanding we shall use (8.6). As
regards definition (8.7), note that f, (— w) is the complex conjugate of £, (w)
and so provides no extra information. Authors who use (8.7) only examine
f(w) at positive frequencies. Note that Kendall, Stuart and Ord (1933,
Chapter 51) use a different definition to other authors by omitting the
constant 1/z and transforming the cross-correlation function rather than the
cross-covariance function.

We now describe several functions derived from the cross-spectrum which
are helpful in interpreting the cross-spectrum. From (8.6), the real part of the
cross-spectrum, called the co-spectrum, is given by

c(w) = % I: i 75 (k)cOs wk]
k

= -

=£ {«,xy(opr 5 [yxy(k)+yyx(k):,cos wk} (8.9)
k=1

The complex part of the cross-spectrum, with a minus sign, is called the
quadrature spectrum and is given by

[0

glw) = ! I: Y ylk)sin wk]

k=—

. { i [ny(k)—vyx(k)} sin wk} (8.10)
k=1

so that

for(@)=c(w)—ig(w) (8.11)

Note that Kendall, Stuart and Ord (1983, Section 51.33) express the
cross-spectrum as c(w)+ig(w) in view of their alternative definition of the
cross-covariance function (as y¥,(k) —see Section 8.1).

An alternative way of expressing the cross-spectrum is in the form

fol@)=0 (@)= (8.12)
where
o(@)=/[c*(0) +¢* ()] (8.13)
is the cross-amplitude spectrum, and

¢ (w)=tan"'[ —g(w)/c(w)] (8.14)
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is the phase spectrum. From (8.14) it appears that ®.,(w) is undetermined by a
multiple of n. However, if the cross-amplitude spectrum is required to be
positive so that we take the positive square root in (8.13), then it can be seen
that the phase is actually undetermined by a multiple of 27 using the equality
of (8.11) and (8.12). This apparent non-uniqueness makes it difficult to graph
the phase. However, when we consider linear systems in Chapter 9, we will see
that there are physical reasons why the phase is generally uniquely determined
and not confined to the range + 7 or + /2. The phase is usually zero at w =0
and is a continuous function as w goes from 0 to =.

Another useful function derived from the cross-spectrum is the (squared)
coherency, which is given by

C(w)=[c*(@)+q*@))/ S0, ()]
=ag,(@)fi(@)f, () (8.15)

where f,(w), f,(w) are the power spectra of the individual processes, X, and Y,.
It can be shown that

0<Clw)<1

This quantity measures the square of the linear correlation between the two
components of the bivariate process at frequency w and is analogous to the
square of the usual correlation coefficient. The closer C(w) is to one, the more
closely related are the two processes at frequency w.

Finally we will define a function called the gain spectrum, which is given by

G ()=, (@)C(0)/f ()]
=, (0)/f{w) (8.16)

which is essentially the regression coefficient of the process Y, on the process X,
at frequency w. A second gain function can also be defined by G, (w)=
o, (w)/f () in which, using linear system terminology, Y, is regarded as the
input and X, as the output.

By this point, the reader will probably be rather confused by all the different
functions which have been introduced in relation to the cross-spectrum.
Whereas the cross-correlation function is a relatively straightforward
development from the autocorrelation function, statisticians often find the
cross-spectrum much harder to understand than the autospectrum. Usually
three functions have to be plotted against frequency to describe the
relationship between two series in the frequency domain. Sometimes the co-,
quadrature and coherency spectra are most suitable. Sometimes the
coherency, phase and cross-amplitude are more appropriate, while another
possible trio is coherency, phase and gain. The physical interpretation of these
functions will probably not become clear until we have studied linear systems
in Chapter 9.
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8.2.1 Examples

In this section, we derive the cross-spectrum and related functions for the two
examples discussed in Section 8.1.1.

Example 8.3 For Example 8.1, using (8.6) the cross-spectrum is given by
fo(@)=(0.563 ¢ 7 +0.50} ¢~ %)/
Using (8.9), the co-spectrum is given by
c(w)=0.562(cos w + cos 2w)/n
Using (8.10), the quadrature spectrum is given by
g(w)=0.5¢%(sin w +sin 2w)/n
Using (8.13), the cross-amplitude spectrum is given by

0.5¢2

J[(cos w+cos 2w)* + (sin w +sin 2w)?]
n

% () =

which, after some algebra, gives
a,,(w)= 03 cos(w/2)/n
Using (8.14), the phase spectrum is given by
tan ¢, (w)= — (sin w +sin 2w)/(cos w +cos 2w)

In order to evaluate the coherency, we need to find the power spectra of the
two processes. Since X,=Z, it has a constant spectrum given by f,(w)=a2/x.
The spectrum of Y, is given by

filw)=0.563(1+cos w)/n
= ¢3 cos*(w/2)/n
Thus, using (8.15), the coherency spectrum is given by
Clw)=1 for all w in (0, =)

This latter result may at first sight appear surprising. But both X, and Y, are
generated from the same noise process and this explains why there is perfect
correlation between the components of the two processes at any given
frequency. Finally, using (8.16), the gain spectrum is given by

G,,(w)=cos(w/2)
Since the coherency is unity, G, (w)=/[f,(@)/f,(®)].
Example 8.4 For Example 8.2 we find

fo(w)=07e™n
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Figure 8.1 The phase spectrum for Example 8.4 with d=4, with, (a) phase
unconstrained; (b) phase constrained.

c(w)=02% cos wd/n
g(w)=o03 sin wd/n
tan ¢, (w)= —tan wd {8.17)
Then, as the two autospectra are given by
fx(w) = (7%/7[
flw)=20%/n
we find
Clw)=1,2
The function of particular interest in this example is the phase, which from
(8.17) is a straight line with slope —d when ¢,,{w) is unconstrained and is
plotted against w as a continuous function starting with zero phase at zero
frequency (see Figure 8.1(a)). If, however, the phase is constrained to lie within
the interval (—=, ) then a graph like Figure 8.1(k) will result, where the slope
of each line is —d.
This result is often used in identifying relationships between time series. If

the estimated phase approximates a straight line through the origin then this
indicates a delay between the two series equal to the slope of the line. An
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example of this in practice is given by Barksdale and Guffey (1972). More
generally, the time delay between two recording sites will change with
frequency, due, for example, to varying speeds of propagation. This is called
the dispersive case, and real-life examples are discussed by Haubrich and
Mackenzie (1965) and Hamon and Hannan (1974).

8.2.2 Estimation

As in Section 7.4, there are two basic approaches to estimating the cross-
spectrum. First, we can take a Fourier transform of the truncated sample
cross-covariance function (or of the cross-correlation function to get a
normalized cross-spectrum). The estimated co-spectrum is then given by

M
éw) = % I: Y Ay, tk)cos wk] (8.18)
k=-M

where M is the truncation point, and {4,} is the lag window. The estimated
quadrature spectrum is given by

M
G(w) = % [ Y Ay, (k)sin wk] (8.19)
k=-M

Equations (8.18) and (8.19) are often used in the form

M
c”(w):l AoCy(0) + Y Ale, (k) + ¢ (—k)]cos wk
n k=1

1 M
)=~ { Y. Alegyk)— ey (—k)Jsin wk}
k=1

The truncation point M and the lag window {/,} are chosen in a similar way to
that used in spectral analysis for a single series, with the Tukey and Parzen
windows being most popular.

Having estimated the co- and quadrature spectra, estimates of the cross-
amplitude spectrum, phase and coherency follow in an obvious way from
equations (8.13), (8.14) and (8.15). We have

b (w)=/[¢Xw)+§* ()]
tan ¢,,(w)= —Gd(w)/é(w)
Clw)=a2 () ()], ()

When plotting the estimated phase spectrum, similar remarks apply as to the
(theoretical) phase. Phase estimates are apparently not uniquely determined
but can usually be plotted as a continuous function which is zero at zero
frequency.
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Before estimating the coherency, it may be advisable to align the two series.
If this is not done, Jenkins and Watts (1968) have demonstrated that estimates
of coherency will be biased if the phase changes rapidly. If the sample cross-
correlation function has its largest value at lag s, then the two series are aligned
by translating one of the series a distance s so that the peak in the cross-
correlation function of the aligned series is at zero lag.

The second approach to cross-spectral analysis is to smooth a function
called the cross-periodogram. The univariate periodogram of a series {x,} can
be written in the form

I(w,)=(Zx, e"#") (Zx, e ')/ Nn
=N(a?+b})/4n

using (7.17) and (7.10). By analogy with (8.20) we may define the
cross-periodogram of two series (x,) and (y,) as

I,(@,)= (Ex, €°5") (Ey, e ')/ Nr (8.21)

(8.20)

We then find that the real and imaginary parts of I, (w,) are given by
N(a,.a, +b, b, )4t and N(a —ayb,. )/4n

pxTpy px—py
where (a,,, b,.), (a,,, b,,) are the Fourier coefficients of {x,}, { y,} at w,. These
real and imaginary parts may then be smoothed to get consistent estimates of
the co- and quadrature spectral density functions by

pxbpy

p+m*

Hw,)=N Y (aga,+b,b,)4mm
g=p-m*
p+m*

dw)=N Y (a,b,,—ayb,)/4nm

q=p-m*

where m=2m*+ 1. These estimates may then be used to estimate the
cross-amplitude spectrum, phase etc. as before.

The computational advantages of this type of approach are clear. Once a
periodogram analysis has been made of the two individual processes, nearly all
the work has been done as the estimates of c(w) and g(w) only involve the
Fourier coefficients of the two series. The disadvantage of the approach is that
alignment 1s only possible if the cross-correlation function is calculated
separately. This can be done directly or by the use of two (fast) Fourier
transforms by an analogous procedure to that described in Section 7.4.5.

The properties of cross-spectral estimators are discussed by Jenkins and
Watts (1968) and Priestiey (1981), while Granger and Hughes (1968) have
carried out a simulation study on some short series. The following points are
worth noting. Estimates of phase and cross-amplitude are imprecise when the
coherency is relatively small. Estimates of coherency are constrained to lie
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between 0 and 1, and there may be a bias towards 1/2 which may be serious
with short series. Finally we note that rapid changes in phase may bias
coherency estimates.

8.2.3 Interpretation

Cross-spectral analysis is a technique for examining the relationship between
two series over a range of frequencies. The technique may be used for two time
series which ‘arise on a similar footing’ and then the coherency spectrum is
perhaps the most useful function. It measures the linear correlation between
two series at each frequency and is analogous to the square of the ordinary
product-moment correlation coefficient.

The other functions introduced in this chapter, such as the phase spectrum,
are most readily understood in the context of linear systems which will be
discussed in Chapter 9. We will therefore defer further discussion of how to
interpret cross-spectral estimates until Section 9.3.

EXERCISES

8.1 Show that the cross-covariance function of the discrete bivariate process
(X;, ;) where

X=2Z,+B\Zs -1+ 81275,
Yt=ZZ,1+ﬁ2121.t—1 +ﬁ2222,r-1

and (Z,,), (Z,,) are independent purely random processes with zero
mean and variance o3, is given by

05811821+ B12B2;) k=0

B,,02 k=1
Pok)=< "2

By 20z k=—1

0 otherwise

Hence evaluate the cross-spectrum.
8.2 Define the cross-correlation function p,(t) of a bivariate stationary
process and show that |p, ()| <1 for ail 7. Two MA processes

X,=Z+04Z,_,
Y,=27,-04Z_,

are formed from a purely random process {Z,} which has mean zero and
variance ¢2. Find the cross-covariance and cross-correlation functions of
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the bivariate process {X,, Y,} and hence show that the cross-spectrum is
given by
foy(w)=03(0.84+0.8i sin w)/n O<w<n

Evaluate the co-, quadrature, cross-amplitude, phase and coherency
spectra.
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9.1 INTRODUCTION

An important problem in engineering and the physical sciences is that of
identifying a model for a physical system (or process) given observations on
the input and output to the system. For example, the yield from a chemical
reactor (the output) depends inter alia on the temperature at which the reactor
is kept (the input). Much of the literature assumes that the system can be
adequately approximated over the range of interest by a linear model whose
parameters do not change with time, although recently there has been
increased interest in time-varying and non-linear systems. Apart from Box
et al. (1994), much of the literature (e.g. Ljung, 1987) is written from a control
engineering viewpoint.

We shall denote the input and output series by {x,}, { y,} respectively in
discrete time, and by {x(z)}, { y(t)} respectively in continuous time.

In this chapter we confine attention to linear systems. A precise definition of
linearity is as follows. Suppose y, (1), y,(t) are the outputs corresponding to
x,(t), x,(t) respectively. Then the system is said to be linear if, and only if, a
linear combination of the inputs, say 4,x,(t)+ 4,x,(t), produces the same
linear combination of the outputs, namely 4, y,(t)+ 4, y,(t), where 4,, 4, are
any constants.

We shall further confine our attention to linear systems which are time-
invariant. This term is defined as follows. If input x(¢) produces output y(z),
then the system is said to be time-invariant if a delay of time 7 in the input
produces the same delay in the output. In other words x(t — 1) produces output
y(t—1), so that the input—output relation does not change with time.

We will only consider systems having one input and one output. The
extension to several inputs and outputs is straightforward in principle, though
difficult in practice.

The study of linear systems is useful not only for the purpose of examining
the relationship between different time series, but also for examining the
properties of filtering procedures such as detrending.

In Sections 9.2 and 9.3 we show how to describe linear systems in the time
and frequency domains respectively, while in Section 9.4 we discuss the
identification of linear systems from observed data.
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9.2 LINEAR SYSTEMS IN THE TIME DOMAIN

A time-invariant linear system may generally be written in the form

y(t):JwO h(u)x(t —u) du 9.1)

e o)

in continuous time, or

Y= Z hex, 9.2)
k=—wo

in discrete time. The weight function, h(u) in continuous time or {h,} in
discrete time, provides a description of the system in the time domain. This
function is called the impulse response function of the system, for reasons which
will become apparent later.

It is clear that equations (9.1) and (9.2} are linear. The property of time
invariance ensures that the impulse response function does not depend on t.
The system is said to be physically realizable or causal if

h(u)=0 u<0
or
h,=0 k<0

Engineers have been principally concerned with continuous-time systems but
are increasingly studying sampled-data control problems. Statisticians
generally work with discrete data and so the subsequent discussion is mainly
concerned with the discrete case.

We will only consider stable systems for which any bounded input produces
a bounded output, although control engineers are frequently concerned with
the control of unstable systems. A sufficient condition for stability is that the
impulse response function should satisfy

Xlml<c
k

where C is a finite constant.

9.2.1 Some types of linear system

The linear filters introduced in Section 2.5.2 are examples of linear systems.
For example the simple moving average given by

ye=(x,_ 1 +xr+x1+1)/3
has impulse response function

b= 1/3 k=-1,0, +1
70 otherwise
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Note that this filter is not ‘physically realizable’, although it can of course be
used as a mathematical smoothing device.

Another general class of linear systems are those expressed as linear
differential equations with constant coefficients in continuous time. For
example, if T is a constant, then

dy(t) _
Td—t + y(t)—X(t)

is a description of a linear system. In discrete time, the analogue of differential
equations are difference equations given by

Vet aiVy+agViy oo =Box,+ BV + B, Vx4 (9.3)
where Vy,=y,—y,_,. Equation (9.3) can be rewritten as
yt=a1yt—1+a2y1~2+'”+b0xt+b1xt—1+”' (94)

It is clear that equation (9.4) can be rewritten in the form (9.2) by successive
substitution. For example if

= %yl -1t X
then we find
yl=‘xt+%‘xl—1+%‘xl—2 e
so that the impulse response function is given by
b= (3 k=0,1,...
0 k<0
Two very simple linear systems are given by
=Xy 9.5)
called simple delay, where the integer d denotes the delay time, and
Yi=9gx, (9-6)

called simple gain, where g is a constant called the gain. The impulse response
functions of (9.5) and (9.6) are

b 1 k=d
0 otherwise

and

hol9 k=0
k70 otherwise

respectively.
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In continuous time, the impulse response functions of simple delay and
simple gain, namely

y(t)=x(t—r1)
and
y(t)=gx(t)

can only be represented in terms of the Dirac delta function (see Appendix B).
The functions are oé(u—1) and gd(u) respectively.

An important class of impulse response functions, which often provides a
reasonable approximation to physically realizable systems, is given by

—(u-wyT
h(u):{[ge VT  u>t
0 U<t

A function of this type is called a delayed exponential, and depends on three
constants, g, 7 and 1. The constant t is called the delay. When t=0, we have
simple exponential response. The constant g is called the gain, and represents
the eventual change in output when a step change of unit size is made to the
input. The constant T governs the rate at which the output changes. Figure 9.1
shows how the output to a delayed exponential system changes when a step
change of unity is made to the input.

9.2.2 The impulse response function

The impulse response function describes how the output is related to the input
of a linear system (see equations (9.1) and (9.2)). The name ‘impulse response’
arises from the fact that the function describes the response of the system to an
impulse input of unit size. For example, in discrete time, suppose that the input
x, is zero for all ¢ except at time zero when it takes the value unity, so that
xo=1. Then the output at time t is given by

Ye=Zhx,_
=hl

Thus the output resulting from the unit impulse input is the same as the
impulse response function, and this explains why engineers often prefer the
description ‘unit impulse response function’.

9.2.3 The step response function

An alternative, equivalent, way of describing a linear system in the time
domain is by means of a function called the step response function, which is
defined by
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Figure 9.1 A delayed exponential response to a unit step change in input, showing
graphs of, (a) impulse response function; (b) input; (c) output.

S(t)= j h(u) du 9.7)

- a0
in continuous time, and
S, = Z hy (9.8)
k<t

in discrete time.

The name ‘step response’ arises from the fact that the function describes the
response of the system to a unit step change in the input. For example, in
discrete time, suppose that the input is given by

_ 0 t<0
=Y 120
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Then
Yz:Z hkxt—k= Z hk=St
k

k<t
so that the output is equal to the step response function.

Engineers sometimes use this relationship to measure the properties of a
physically realizable system. The input is held steady for some time and then a
unit step change is made to the input. The output is then observed and this
provides an estimate of the step response function, and hence of its derivative,
the impulse response function. A step change in the input may be easier to
provide than an impulse.

The step response function for a delayed exponential system is given by

S(t)=g[l—e 79T t>1 9.9)

and the graph of y(t) in Figure 9.1 is also a graph of S(¢).

9.3 LINEAR SYSTEMS IN THE FREQUENCY DOMAIN

9.3.1 The frequency response function

An alternative way of describing a linear system is by means of a function,
called the frequency response function or transfer function, which is the
Fourier transform of the impulse response function. It is defined by

e o)

H(w)zfoo h(we “*du  O<w<oo 9.10)

in continuous time, and

Hw)=Y h e  O<w<nr 9.11)
x

in discrete time.

The frequency response and impulse response functions are equivalent ways
of describing a linear system, in a somewhat similar way that the
autocovariance and power spectral density functions are equivalent ways of
describing a stationary stochastic process, one function being the Fourier
transform of the other. We shall see that, for some purposes, H(w) is much
more useful than h(u). First we prove the following theorem.

Theorem 9.1 A sinusoidal input to a linear system gives rise, in the steady
state, to a sinusoidal output at the same frequency. The amplitude of the
sinusoid may change and there may also be a phase shift.

Proof The proof is given for continuous time, the extension to discrete
time being straightforward. Suppose that the input to a linear system, with
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impulse response function h(u), is given by
x(t)=cos wt for all ¢

Then the output is given by

y(t)=fw h(u)cos w(t—u) du (9.12)

Now cos(A4 — B)=cos A cos B+sin A sin B, so we may rewrite (9.12) as

a0 e 9]

h(u)cos wu du+sin wt j h(u)sin wu du

— a0

y(t)=cos wt j

= a0
As the two integrals do not depend on t, it is now obvious that y(t) is a mixture
of sine and cosine terms at frequency w. Thus the output is a sinusoidal
perturbation at the same frequency w as the input.

If we write
A(w)=jw h(u) cos wu du
B(w)=Jw h(u) sin wu du
G(w)=[4*()+ B*(0)] (9.13)
tan ¢(w)= — B(w)/A(w) (9.14)
then

y(t)= A(w)cos wt + B(w)sin wt
=G(w)cos[wt + ()] (9.15)

Equation (9.15) shows that a cosine wave is amplified by a factor G(w), which
is called the gain of the system. The equation also shows that the cosine wave is
shifted by an angle ¢(w), which is called the phase shift. Note that both the gain
and phase shift may vary with frequency. From equation (9.14) we see that the
phase shift is apparently not uniquely determined. If we take the positive
square root in equation (9.13), so that the gain is required to be positive, then
the phase shift is undetermined by a muitiple of 2 (see also Sections 8.2 and
9.3.2).

We have so far considered an input cosine wave. By a similar argument it
can be shown that an input sine wave, x(t)=sin wt, gives an output
y(t)=G(w) sin[wt + ¢(w)], so that there is the same gain and phase shift. More
generally if we consider an input given by

x(t)=€'"=cos wt +i sin wt
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then the output is given by
y(t)=G(w){cos[wt + p(w)] +1 sin[wt + d(w]}
= G(w)eiler+ o))
=G(w)e*x(t) 9.16)
Now from equations (9.13) and (9.14)
G(w)e"") = A(w)—iB(w)

=f h(u) (cos wu—i sin wu) du

- a0

=f h(u)e ™ ** du

= H(w) 9.17)

So when the input in equation (9.16) is of the form €', the output is given
simply by frequency response function times input, and we have (in the steady-
state situation)

y(t)=H(w)x(t) (9.18)

This completes the proof of Theorem 9.1.

Transients The reader should note that Theorem 9.1 only applies in the
steady state where it is assumed that the input sinusoid was applied at t = — co.
Ifin fact the sinusoid is applied at say t =0, then the output will take some time
to settle to the steady-state form given by the theorem. The difference between
the observed output and the steady-state output is called the tramsient
component. The system is stable if this transient component tends to zero as
t—oo. If the relationship between input and output is expressed as a
differential (or difference) equation, then the steady-state solution corres-
ponds to the particular integral, while the transient component corresponds to
the complementary function.

It is easier to describe the transient behaviour of a linear system by using the
Laplace transform of the impulse response function. Engineers also prefer the
Laplace transform as it is defined for unstable systems. However, statisticians
have customarily dealt with steady-state behaviour and used Fourier
transforms, and we will continue this custom. Nevertheless this is certainly an
aspect of linear systems which statisticians should look at more closely.

Discussion of Theorem 9.1 Theorem 9.1 helps to introduce the importance
of the frequency response function. For inputs consisting of an impulse or step
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change it is easy to calculate the output using the impulse response function.
But for a sinusoidal input, it is much easier to calculate the output using the
frequency response function. (Compare equations (9.12) and (9.18).) More
generally for an input consisting of several sinusoidal perturbations, namely

x(t)=Z Afw;)e's

it is easy to calculate the output using the frequency response function as

Y(f)=z Aj(wj)H(wj)eiw"t

Thus a complicated convolution in the time domain, as in equation (9.12),
reduces to a simple multiplication in the frequency domain, and we shall see
that linear systems are often easier to study in the frequency domain.

Returning to the definition of the frequency response function as given by
equations (9.10) and (9.11), note that some authors define H(w) for negative as
well as positive frequencies. But for real-valued processes we need only
consider H(w) for w>0. Note that, in discrete time, H(w) is only defined for
frequencies up to the Nyquist frequency = (or n/At if there is an interval At
between successive observations). We have already introduced the Nyquist
frequency in Section 7.2.1. Applying similar ideas to a linear system, it is clear
that a sinusoidal input which has a higher frequency than = will have a
corresponding sinusoid at a frequency in (0, z) which gives identical readings
at unit intervals of time and which will therefore give rise to an identical
output.

We have already noted that H(w) is sometimes called the frequency
response function and sometimes the transfer function. We will use the former
term as it is more descriptive, indicating that the function shows how a linear
system responds to sinusoids at different frequencies. In any case the term
‘transfer function’ is used by some authors in a different way. Engineers use the
term to denote the Laplace transform of the impulse response function (see
Appendix A). For a physically realizable stable system, the Fourier transform
of the impulse response function may be regarded as a special case of the
Laplace transform. A necessary and sufficient condition for a linear system to
be stable is that the Laplace transform of the impulse response function should
have no poles in the right half-plane or on the imaginary axis. For an unstable
system, the Fourier transform does not exist, but the Laplace transform does.
But we will only consider stable systems, in which case the Fourier transform is
adequate. Note that Jenkins and Watts (1968) use the term ‘transfer function’
to denote the Z transform of the impulse response function (see Appendix A)
in the discrete case. Z transforms are also used by engineers for discrete-time
systems (e.g. Schwarz and Friedland, 1965).
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9.3.2 Gain and phase diagrams

The frequency response function H(w) of a linear system is a complex function
which may be written in the form

H(w)=G(w)e*™

where G(w), ¢(w) are the gain and phase respectively — see equations (9.13)
and (9.14). In order to understand the frequency properties of the system, it
is useful to plot G(w) and ¢(w) against w to obtain what are called the gain
diagram and the phase diagram. If G(w) is ‘large’ for low values of w, but
‘small’ for high values of w, as in Figure 9.2(a), then we have what is called a
low-pass filter. This description is self-explanatory in that, if the input isa
mixture of variation at several different frequencies, only those components
with a low frequency will ‘get through’ the filter. Conversely, if G(w) is ‘small’
for low values of , but ‘large’ for high values of w, then we have a high-pass
filter as in Figure 9.2(b).

Plotting the phase diagram is complicated by the fact that the phase in
equation (9.14) is not uniquely determined. If the gain is always taken to be
positive, then the phase is undetermined by a multiple of 2z and is often
constrained to the range (— 7, 7). The (complex) value of H(w) is examined to
see which quadrant it is in. If G(w) can be positive or negative, the phase is
undetermined by a multiple of = and is often constrained to the range
(—m/2, n/2). These different conventions are not discussed adequately in
many books (Hause, 1971, p. 214). In fact there are physical reasons why
engineers prefer to plot the phase as a continuous unconstrained function,
allowing G(w) to be positive or negative, and using the fact that ¢(0)=0
provided G(0) is finite.

9.3.3 Some examples
Example 9.1 Consider the simple moving average
V=X o H X F Xy /3
which is a linear system with impulse response function

1/3 k=-1,0, +1
0 otherwise

=

The frequency response function of this filter is (using equation (9.11))

1 —iw 1 1 iw
H(w)=§e +§+§e
—1+zcos O<w<
—3 3 w w n
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This function happens to be real, not complex, and so the phase appears to be
given by

d(w)=0 O<w<n

However, H(w)is negative for w > 2r/3, and so if we adopt the convention that
the gain should be positive, then we have

1 2
~+-cCcosw

Glw)=3+3

1 2
§+§cosw O<w<2nr/3

12
—§—§cosw 2nf3<w<n

and

0 O<w<2n/3
n n3<w<n

¢(w)={

The gain is plotted in Figure 9.2(c) and is of low-pass type. This is to be
expected as a moving average smooths out local fluctuations (high-frequency
variation) and measures the trend (the low-frequency variation). In fact it is
probably more sensible to allow the gain to go negative in (27/3, m) so that the
phase is zero for all w in (0, 7).

Example 9.2 A linear system showing simple exponential response has
impulse response function

h(uy=ge™T/T  u>0
Using (9.10), the frequency response function is
H)=g(1-ioT)/(1+w?*T?) ©>0
Hence
Gl)=g//(1 +0?T?)
tan ¢(w)= —Tw

As the frequency increases, G(w) decreases so that the system is of low-pass
type. As regards the phase, if we take ¢(w) to be zero at zero frequency, then
the phase becomes increasingly negative as w increases until the output is out
of phase with the input (see Figure 9.3).

Example 9.3 Consider the linear system consisting of pure delay, so that

y(t)=x(t—)
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Figure 9.3 Phase diagram for a simple exponential response system.

where 7 is a constant. Jenkins and Watts (1968) give the impulse response
function as
h(u)=956(u—1)

where § denotes the Dirac delta function (see Appendix B). Then the frequency
response function is given by

H(cu)=J‘00 S(u—Tt)e” ' du

i (14

=€

In fact H(w) can be derived without bringing in delta functions by using
Theorem 9.1. Suppose that input x(t)=e¢'* is applied to the system. Then the
output is y(t) =¢'“" "9 =e ™" x input. Thus, by analogy with equation (9.18),
we have H(w)=¢ ™",

For this linear system, the gain is constant, namely

G(w)=1
while the phase is given by
d(w)=—wr

9.3.4 General relation between input and output

We have, so far, considered only sinusoidal inputs in the frequency domain. In
this section we consider any type of input and show that it is generally easier to
work with linear systems in the frequency domain than in the time domain.

The general relation between input and output in the time domain is given
by equation (9.1), namely

y(t)= '[ " h(w)x(t—u) du 9.19)

-
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When x(t) is not of a simple form, this integral may be hard to evaluate. Now
consider the Fourier transform of the output, given by

Y(a))zJ‘aO y(t)e e dt
:Jw Jw h()x(t —u)e """ du dt

:f f h(u)e™ " x(t —u)e ™"~ dy dt

But

f x(t—u)e et dtzf x(t)e ™ dt

- — 0

for all values of u, and is therefore the Fourier transform of x(t) which we will
denote by X(w). And

Jw h(u)e ™" du= H(w)

so that
Y(w)= H(w)X(w) (9.20)

Thus the integral in (9.19) corresponds to a multiplication in the frequency
domain provided that the Fourier transforms exist. A similar result holds in
discrete time.

A more useful general relation between input and output, akin to
equation (9.20), can be obtained when the input x(¢) is a stationary process
with a continuous power spectrum. This result will be given as Theorem 9.2.

Theorem 9.2 Consider a stable linear system with gain function G(w).
Suppose that the input X(t) is a stationary process with continuous power
spectrum f,(w). Then the output Y(t)is also a stationary process, whose power
spectrum f (w) is given by

Hw)=G* (o) (0) 9.21)

Proof The proof will be given for continuous time, but the same result
holds for discrete time. Let us denote the impulse response and frequency
response functions of the system by h(u), H(w) respectively. Thus
G(w)=|H ()|

Itis easy to show that a stationary input to a stable linear system gives rise to
a stationary output, and this will not be shown here. For mathematical
convenience, let us assume that the input has mean zero. Then the output
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Y(t)= j ; h(u)X(t —u) du

-
also has mean zero.

Denote the autocovariance functions of X(t), Y(t) by 7.(1), 7,(t) respectively.
Then

yy(t)=E[Y(t)Y(t+t)] since E[Y(1)]=0

:E[jwo h(u)X(t—u)duj‘QO h(u’)X(t+t—u’)du’]

- — o

=‘”w h(u)h(W)ELX(t —u)X(t+1—u')] du dv’

But
E[X(t—u)X(t+1—u)] =y {t—u' +u)
Thus

m(r):jfw h(wh(u' Yy (v — ' +u) du du’ (9.22)

-~ 0

The relationship (9.22) between the autocovariance functions of input and
output is not of a simple form. However, if we take Fourier transforms of both
sides of (9.22) by multiplying by e~ '/z and integrating with respect to 7, we
find for the left-hand side

1 [ .
- f (e dr=/,(@)
n o}

from equation (6.17), while for the right-hand side

JJ ; h(u)h{y) [% jwo yx(t—u’+u)e_i“”dt] du du

® . B . .
=ff h(u)e™h(u')e ™" [EJ (T —u Fuye T d‘t] du du’

But

| B o, 1 (= .

L7 pa—wrwemee i de=— | (meT de=fi(w)
T —

— ®©

forall u, «, and (denoting the complex conjugate of H(w) by H(w))

fw h(u)eiwu Zm

-

=G(w)e ¢
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Thus

This completes the proof.

The relationship between the spectra of the input and the output of a linear
system is a very simple one. Once again a result in the frequency domain
(equation (9.21)) is much simpler than the corresponding result in the time
domain (equation (9.22)).

Theorem 9.2 can be used to evaluate the spectrum of some types of
stationary process in a simpler way to that used in Chapter 6, where the
method was to evaluate the autocovariance function of the process and then
find its Fourier transform. Several examples will now be given.

(a) Moving average process
An MA process of order ¢ is given by
X=BoZ+ - +B.Z -,

where Z, denotes a purely random process with variance ¢3. This equation
may be regarded as specifying a linear system with {Z,} as input and {X} as
output, whose frequency response function is given by

H(w)= i Be '
j=0

As {Z} is a purely random process, its spectrum is given by (see equation
(6.19))

fz(w)=‘7%/7t

Thus, using (9.21), the spectrum of {X,} is given by

q 2
flw)=|} Bje™) ai/n
j=0
For example, for the first-order MA process
X,=Z+p7_, 9.23)

we have

Hw)=1+Be '@
and

G¥(w)=|H()|*=(1+ B cos w)* + 2 sin* w
=1+2p cos w+ f?
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so that f (w)=(1+2f cos v+ B*)o%/n as already derived in Section 6.5.

This type of approach can also be used when {Z,} is not a purely random
process. For example, suppose that the {Z,)} process in equation (9.23) has
arbitrary spectrum f(w). Then the spectrum of {X,} is given by

fe(w)=(1+2B cos o+ p*)fz (@)

(b) Autoregressive process
The first-order AR process

X=aX,_+Z
may be regarded as a linear system producing output X, from input Z,. It may

also be regarded as a linear system ‘the other way round’, producing output Z,
from input X, by

Z=X—oaX
This formulation has frequency response function
Hw)=1-ae ™
and gives the desired result in a mathematically simpler way. Thus
GHw)=1-2acos w+a’
and so
f5(@)=(1=2a cos ®+a>)f (@) (9.24)

But if {Z,} denotes a purely random process with spectrum f,(w)=o3/7, then
equation (9.24) may be rewritten to evaluate f (w) as
fi(w)=0%/n(l — 20 cos w +a?)

which has already been obtained as equation (6.23) by the earlier method.
This approach may also be used for higher-order AR processes.

(c) Differentiation
Consider the linear system which converts a continuous input X (t)into output
Y(t) by

dX(r)

- (9.25)

Y(1) =

A differentiator is of considerable mathematical interest, although in practice
only approximations to it are physically realizable.
If the input is sinusoidal, X(r)=¢'", then the output is given by

Y(t)=iw &
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so that, using (9.18), the frequency response function is
H(w)=iw

If the input is a stationary process, with spectrum f,(w), then it appears that the
output has spectrum

Sl)=lioff (o)
=0’ (w) (9.26)

However, this result assumes that the linear system (9.25) is stable, when in
fact it is only stable for certain types of input process. For example, it is clear
that the response to a unit step change is an unbounded impulse. In order for
the system to be stable, the variance of the output must be finite. Now

var[Y(t)]:JwA(w) dw
0

=Jw w*f () dw

o

But, using equation (6.18), we have

)’x(k)———f wfx(w)cos wk dw
0

and

2 ©
d ;;gk) = -—f w*f (w)cos wk dw
0]

so that

4%y (k
Var[ Y(t)] = —[ dykg )] )
k=

Thus Y(t) has finite variance provided that y (k) can be differentiated twice at
k=0, and only then does equation (9.26) hold.

9.3.5 Linear systems in series

The advantages of working in the frequency domain are also evident when we
consider two or more linear systems in series (or in cascade). For example
Figure 9.4 shows two linear systems in series, where the input x(t) to system I
produces output y(t) which in turn is the input to system II producing output
z(t). It is often of interest to evaluate the properties of the overall system, which
is also linear, where x(¢) is the input and z(¢) is the output. We will denote the
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x(t) —®—] SYSTEM |

SYSTEM I —»——z{t)

yit)

Figure 9.4 Two linear systems in series.

impulse response and frequency response functions of systems I and II by
hy(u), hy(u), H(w) and H,(w).

In the time domain, the relationship between x(¢) and z(t) would be in the
form of a double integral involving h,(x) and h,(u), which is rather
complicated. But in the frequency domain we can denote the Fourier
transforms of x(), y(t), z(t) by X(@), Y(w), Z(w) and use equation (9.20). Then

Y(w)=H,(w)X(w)
and

Z(0)=H,()Y(0)
= Hy(@)H,(0)X(©)

Thus it is easy to see that the overall frequency response function of the
combined system is

H(w)= H(0)H,(w) 9.27)

H, (@) =G (@)
H, (@)= G,(w)e'***
then
H(0)=G,(0)G(w)e® 1+ 400

Thus the overall gain is the product of the component gains, while the overall
phase is the sum of the component phases.

The above results are easily extended to the situation where there are k
linear systems in series with respective frequency response functions
H,(®), . . . , H(w). The overall frequency response function is

H(0)=H,(@)H,(©) . . . ()

936 Design of filters

The results of this section enable us to consider in more depth the properties of
the filters introduced in Section 2.5.2. Given a time series {x,}, the filters for
estimating or removing trend are of the form

Yt=z hix, -k
k
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and are clearly linear systems with frequency response function

H(w)=Y h, e~ iok
k

If the time series has spectrum f,(w), then the spectrum of the smoothed series
is given by

Hlw)=G*w)f(w) (9.28)

where G(w)=|H(w)|.

How do we set about choosing an appropriate filter for a time series? The
design of a filter involves a choice of {k,} and hence of H(w) and G(w). Two
types of ‘ideal’ filter are shown in Figure 9.5. Both have sharp cut-offs, the low-
pass filter completely eliminating high-frequency variation and the high-pass
filter completely eliminating low-frequency variation.

But ‘ideal’ filters of this type are impossible to achieve with a finite set of
weights. Instead the smaller the number of weights used, the less sharp will
generally be the cut-off property of the filter. For example the gain diagram of
a simple moving average of three successive observations (Figure 9.2(c)) is of
low-pass type but has a much less sharp cut-off than the ‘ideal’ low-pass filter
(Figure 9.5(a)). More sophisticated moving averages such as Spencer’s 15-
point moving average have much better cut-off properties.

The differencing filter (Section 2.5.3), for removing a trend, of the form

V=X =X
has frequency response function
Hw)=1—e¢ i®
and gain function
G(w)=/[2(1—cos w)]
which is plotted in Figure 9.6. This is indeed of high-pass type, but the cut-off

Glw) & Glw)

ey
2 )

{a) (b)

Figure9.5 Two types of ideal filter, (a) a low-pass filter or trend estimator; (b) a high-
pass filter or trend eliminator.
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Figure 9.6 The gain diagram for the difference operator.

property is rather poor and this should be borne in mind when working with
first differences.

9.4 IDENTIFICATION OF LINEAR SYSTEMS

We have so far assumed that the structure of the linear system under
consideration is known. Given the impulse response function of a system, or
equivalently the frequency response function, we can find the output
corresponding to a given input. In particular, when considering the properties
of filters for estimating trend and seasonality, a formula for the ‘system’ is
given.

But many problems concerning linear systems are of a completely different
type. The structure of the system is not known and the problem is to examine
the relationship between input and output so as to infer the properties of the
system. This procedure is called the identification of the system. For example,
suppose we are interested in the effect of temperature on the yield from a
chemical process. Here we have a physical system which we assume, initially at
least, is approximately linear over the range of interest. By examining the
relationship between observations on temperature (the input) and yield (the
output) we can infer the properties of the chemical process.

The identification process is straightforward if the input to the system can be
controlled and if the system is ‘not contaminated by noise’. In this case, we can
simply apply an impulse or step change input, observe the output, and hence
estimate the impulse response or step response function. Alternatively we can
apply sinusoidal inputs at different frequencies and observe the amplitude and
phase shift of the corresponding sinusoidal outputs. This enables us to
evaluate the gain and phase diagrams.

But many systems are contaminated by noise as illustrated in Figure 9.7,
where N(t) denotes a noise process. This noise process may not be white noise
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NOISE
N(t)

INPUT LINEAR OUTPUT
—’.._—.-—
X(t) SYSTEM LR 413

Figure 9.7 A linear system with added noise.

(i.e. may not be a purely random process), but is usually assumed to be
uncorrelated with the input process X(¢).

A further difficulty arises when the input is observable but not controllable.
In other words one cannot make changes, such as a step change, to the input.
For example, attempts have been made to treat the economy as a linear system
and to examine the relationship between variables like price increases (input)
and wage increases (output). But price increases can only be controlled to a
certain extent by governmental decisions, and there is also a feedback problem
in that wage increases may in turn affect price increases (see Section 9.4.3).

When the system is affected by noise and/or the input is not controllable,
more refined techniques are required to identify the system. We will describe
two alternative approaches, one in the frequency domain and one in the time
domain. In Section 9.4.1 we show how cross-spectral analysis of input and
output may be used to estimate the frequency response function of a linear
system. In Section 9.4.2 we describe a method proposed by Box and Jenkins
(1970) for estimating the impulse response function of a linear system.

9.4.1 Estimating the frequency response function

Suppose that we have a linear system with added noise, as depicted in
Figure 9.7, where the noise is assumed to be uncorrelated with the input and to
have mean zero. Suppose also that we have observations on input and output
over some time period and wish to estimate the frequency response function of
the system. We will denote the (unknown) impulse response and frequency
response functions of the system by h(u), H(w) respectively.

The reader may think that equation (9.21), namely

fw)=G*(w)f(w)

can be used to estimate the gain of the system. But this equation does not hold
in the presence of noise N(t), and does not in any case give information about
the phase of the system. Instead we will derive a relationship involving the
cross-spectrum of input and output.

In continuous time, the output Y(t) is given by
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Y(t)=J~GO h(u)X(t —u) du+ N(1) (9.29)

Note that we are only considering physically realizable systems, so that h(u) is
zero for u<0. For mathematical convenience we assume E[X(t)]=0 so that
E[Y(t)]=0, but the following results also hold if E[X(t)]+#0. Multiplying
through equation (9.29) by X (¢ —1) and taking expectations, we have

E[N®)X(t—1)]1=0

since N(t) is assumed to be uncorrelated with input, so that

vxym=j ) {7 — 1) d 930)
0
where 7, is the cross-covariance function of X(t) and Y(t), and y,, is the
autocovariance function of X(t). Equation (9.30) is called the Wiener-Hopf
integral equation and, given y,,and y,,, canin principle be solved to find the
impulse response function h(u). But it is often easier to work with the
corresponding relationship in the frequency domain.

First we revert to discrete time and note that the discrete-time analogue of
equation (9.30) is

YD) = 2 Bo(t—Fk) (6.31)
k=0

Take Fourier transforms of both sides of this equation by multiplying by
e i*/x and summing from 7= — 0 to + co. Then we find

[ o]

fxy(w) = Z i hk e_i“ﬂ‘ Vxx(r_k)e_iwu_k)/n

t=-w k=0
= Z hk e_ikax(w)
k=0

= H(w)f,(®) (9.32)

where ,, is the cross-spectrum of input and output and f is the (auto)spectrum
of the input. Thus, once again, a convolution in the time domain corresponds
to a multiplication in the frequency domain.

Estimates of f,,(w) and f,(w) can now be used to estimate H(w) using (9.32).
Denote the estimated spectrum of the input by f,(w), and the estimate of f,,»
obtained by cross-spectral analysis, by fxy(w). Then

A(w) =], (@)/f)
We usually write
H(w)=G(w)e"*
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and estimate the gain and phase separately. We have
() =|H )| =|fs@)fx)
=|fs@)/fiw)  since f (o) is real
=, (@)/fi() 9.33)

where a_ () is the cross-amplitude spectrum (see equation (8.13)).
We also find

tan $(w)= —§(w)/é(®) (9.34)

where g(w), c(w) are the quadrature and co-spectra, respectively (see
equation (8.14)).

Thus, having estimated the cross-spectrum, equations (9.33) and (9.34)
enable us to estimate the gain and phase of the linear system, whether or not
there is added noise.

We can also use cross-spectral analysis to estimate the properties of the
noise process. The discrete-time version of equation (9.29) is

[ o]

Y, = Z hX,_+ N, (9.35)

k=0

For mathematical convenience, we again assume that E(N,)= E(X,)=0so that
E(Y,)=0. If we multiply both sides of (9.35) by ¥,_,, we find

Y, n= EhX -+ N) EnX, -kt N )
Taking expectations we find
'yyy(m) = Z Z hkhj'})xx(m - k +j) + 'ynn(m)
ko j

since {X,} and {N,} are assumed to be uncorrelated. Taking Fourier transforms
of both sides of this equation, we find

(@)= H)H(@)f(0) +/,()

But
H(w)H(0)=G*()
= C(0)f,(@)/fx(w)
so that
ful@)=f(@)[1-Cl(w)] (9.36)

Thus an estimate of f,(w) is given by

fuw)=f(w)[1-C(w)]
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Equation (9.36) also enables us to see that if there is no noise, so that there is a
pure linear relation between X, and Y,, thenf,(w)=0and C(w)=1forall w. On
the other hand if C(w)=0 for all w, then f,(w)=f,(w) and the output is not
linearly related to the input. This confirms the point mentioned in Chapter 8
that the coherency C(w) measures the linear correlation between input and
output at frequency w.

The results of this section not only show us how to identify a linear system
by cross-spectral analysis, but also give further guidance on the interpretation
of functions derived from the cross-spectrum, particularly the gain, phase and
coherency. An example, involving a chemical process, is given by Goodman et
al. (1961), while Gudmundsson (1971) describes an economic application of
cross-spectral analysis.

In principle, estimates of the frequency response function of a linear system
may be transformed to give estimates of the impulse response function
{Jenkins and Watts, 1968, p. 444) but I do not recommend this. For instance
Example 8.4 appears to indicate that the sign of the phase may be used to
indicate which series is ‘leading’ the other. But Hause (1971) has shown that
for more complicated lagged models of the form

Y = Z heX, i (9.37)
k=0

which are called distributed lag models by economists, it becomes increasingly
difficult to make inferences from phase estimates. Hause concludes that phase
leads and lags will rarely provide economists with direct estimates of the time-
domain relationships that are of more interest to them.

9.4.2 The Box-Jenkins approach

This section gives a brief introduction to the method proposed by
G. E. P. Box and G. M. Jenkins for identifying a physically realizable linear
system, in the time domain, in the presence of added noise. Further details can
be found in Box and Jenkins (1970).

The input and output series are both differenced d times until both are
stationary, and are also mean-corrected. The modified series will be denoted
by {X;}, { ¥}, respectively. We want to find the impulse response function {h,}
of the system, where

Y, = Z hX .+ N, (9.38)
k=0

The ‘obvious’ way to estimate {h,} is to multiply through equation (9.38} by
X _,, and take expectations to give

‘))xy(m)——_ hnyx(m)+hIVXx(m_ 1)+ e (939)
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assuming that N, is uncorrelated with the input. If we assume that the weights
{h,} are effectively zero beyond k=K, then the first K+ 1 equations of type
(9.39) for m=0,1,...,K, can be solved for the K+1 unknowns
ho, hy, . . ., hg, on substituting estimates of y,, and y, .. Unfortunately these
equations do not, in general, provide good estimators for the {h,}, and, in any
case, assume knowledge of the truncation point K. The basic trouble, as
already noted in Section 8.1.2, is that autocorrelation within the input and
output series will increase the variance of cross-correlation estimates.

Box and Jenkins (1970) therefore propose two modifications to the above
procedure. First, they suggest ‘prewhitening’ the input before calculating the
sample cross-covariance function. Secondly, they propose an alternative form
of equation (9.37) which will in general require fewer parameters. They
represent the linear system by the equation

Y;_(SIY;—I_ e —5r)/t—r
=0oX, =@ X,y — 0K (9.40)

This is rather like equation (9.4), but is given in the notation used by Box and
Jenkins (1970) and involves an extra parameter b, which is called the delay of
the system. The delay can be any non-negative integer. Using the backward
shift operator B, (9.40) may be written as

3(B)Y,=w(B)X,_, (9.41)
where
8(B)=1—-9,B—---—94,B"
and
o(B)=wy—w,;B— " —wB*

Box and Jenkins (1970) describe equation (9.41) as a transfer function model,
which is a potentially misleading description in that the term ‘transfer
function’ is often used to describe some sort of transform of the impulse
response function.

The Box-Jenkins procedure begins by fitting an ARMA model to the
(differenced) input. Suppose this model is of the form (see Section 3.4.5)

o(B)X,=0(B)a,

where {o,} denotes a purely random process, in the notation of Box and
Jenkins. Thus we can transform the input to a white noise process by

$(B)0 ™! (B)X, =1,
Suppose we apply the same transformation to the output, to give

$(B)O™'(B)Y, =B,
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and then calculate the cross-covariance function of the filtered input and
output, namely {¢,} and {,}. It turns out that this function gives a better
estimate of the impulse response function, since if we write

h(B)=hy+h,B+h,B*+ - - -

so that
Y,=h(B)X, + N,
then
B.=¢(B)0™'(B)Y,
=¢(B)0™ ' (B)[h(B)X,+ N]
=h(B)o,+¢(B)0™ (BN,
and

yaﬂ(m) = hm Var(al) (942)

since {a,} is a purely random process, and N, is uncorrelated with {a,}.
Equation (9.42) is of a much simpler form to equation (9.39). If we denote the
sample cross-variance function of o, and 8, by c,,, and the observed variance of
a, by s2, then an estimate of h,, is given by

By = C,g(m)/s? (9.43)

These estimates should be more reliable than those given by the solution of
equations of type (9.39).

Box and Jenkins (1970) give the theoretical impulse response functions for a
variety of models of type (9.40) and go on to show how the shape of the
estimated impulse response function given by (9.43) can be used to suggest
appropriate values of the integers 7, b and s in equation (9.40). They then show
how to obtain least squares estimates of 8,, 35, . . ., @g, @,, . . ., given values
of r, b and s. These estimates can in turn be used to obtain refined estimates of
{h,,} if desired.

Box and Jenkins go on to show how a model of type (9.40), with added
noise, can be used for forecasting and control. Some successful case studies
have now been published (e.g. Jenkins, 1979; Jenkins and Mcleod, 1982) and
the method looks potentially useful. However, it should be noted that the main
example discussed by Box and Jenkins (1970), using some gas furnace data,
has been criticized by Young (1984) and Chatfield (1977, p. 504) on a number
of grounds, including the exceptionally high correlation between input and
output which means that virtually any identification procedure will give good
results.

A modification to the Box-Jenkins procedure has been proposed by Haugh
and Box (1977) in which separate models are fitted to both the input and the
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output before cross-correlating the resulting residual series. Further exper-
jence is needed to see if this is generally advisable. The modified procedure has
been used by Pierce (1977) to assess the relationship between various pairs of
economic series, and he shows that, after taking account of autocorrelation
within each series, there is usually very little correlation left between the
residual series. Pierce discusses how to reconcile these results with the views of
economists.

The question as to when it is better to use cross-spectral analysis or a time-
domain parametric model approach is still unresolved, though it has been
discussed by a number of authors (e.g. Astrom and Eykhoff, 1971). It seems to
me to be unwise to attempt to make general pronouncements on the relative
virtues of time-domain and frequency-domain methods. The two approaches
appear to be complementary rather than rivals, and it may be helpful to try
both.

A transfer function model may be regarded as a special case of a multivariate
ARIMA model (see Section 12.3). If the open-loop nature of the data is open
to question, perhaps because of the presence of feedback (see Section 9.4.3),
then it may be advisable to try to fit the more general multivariate ARIMA
model.

In conclusion, it is worth noting that a similar method to the Box-Jenkins
approach has been independently developed by two control engineers,
K. J. Astrom and T. Bohlin. This method also involves prewhitening and a
model of type (9.40) (Astrom and Bohlin, 1966, Astrom, 1970), but does not
discuss identification and estimation procedures in equal depth. One
difference in the Astrom-Bohlin approach is that non-stationary series may be
converted to stationarity by high-pass filtering methods other than differenc-
ing.

9.4.3 Systems involving feedback

A system of the type illustrated in Figure 9.7 is called an open-loop system, and
the procedures described in the previous two sections are appropriate for data
collected under these conditions. But data are often collected from systems
where some form of feedback control is being applied, and then we have what is
called a closed-loop system as illustrated in Figure 9.8. For example, when
trying to identify a full-scale industrial process, it could be dangerous, or an
unsatisfactory product could be produced, if some form of feedback control is
not applied to keep the output somewhere near target. Similar problems arise
in an economic context. For example, attempts to find a linear relationship
showing the effect of price changes on wage changes are bedevilled by the fact
that wage changes will in turn affect prices.

The problem of identifying systems in the presence of feedback control is
discussed by Granger and Hatanaka (1964, Chapter 7), Astrom and Eykhoff
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Figure 9.8 A closed-loop system.

(1971, p. 130), Gustavsson, Ljung and Soderstrom (1977) and Priestley
(1983), and it is important to realize that open-loop procedures may not be
applicable. The situation can be explained more clearly in the frequency
domain. Let f, () denote the cross-spectrum of X(t) and Y(t) in Figure 9.8,
and let f (w), f,(w), f,(w) denote the spectra of X(t), N(t) and V(t) respectively.
Then if H(w) and J(w) denote the frequency response functions of the system
and controller respectively, it can be shown (e.g. Akaike, 1967) that

Solts=Hf,+ I, +ITf,) (.44

where all terms are functions of frequency, and Jis the complex conjugate of J.
Onlyiff,=0o0rJ=0is the ratiof, /f, equalto H as is the case for an open-loop
system (equation (9.32)). Thus the estimate of H provided byf, /f will be poor
unless f,/f, is small. In particular, if f,=0, fxy/ . will provide an estimate of J = !
and not of H.

Similar remarks apply to an analysis in the time domain. The time-domain
equivalent of (9.44) is given by Box and MacGregor (1974).

The above problem is not specifically discussed by Box et al. (1994),
although it is quite clear from the remarks in their Section 11.6 that their
methods are only intended for use in open-loop systems. However, some
confusion may be created by the fact that Box et al. (1994, Section 13.2) do
discuss ways of choosing optimal feedback control, which is quite a different
problem. Having identified a system in open loop, they show how to choose
feedback control action so as to satisfy some chosen criterion.

Unfortunately, open-loop identification procedures have sometimes been
used for a closed-loop system where they are not appropriate. Tee and Wu
(1972) studied a paper machine while it was already operating under manual
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control and proposed a control procedure which has been shown to be worse
than the existing form of control (Box and MacGregor, 1974). In marketing,
several authors have investigated the relationship between expenditure on
offers and advertising on the sales of products such as washing-up liquid and
coffee. However, expenditure on advertising is often in turn affected by
changes in sales levels, so that any conclusions obtained by an open-loop
analysis are open to doubt.

What then can be done if feedback is present? Box and MacGregor (1974)
suggest one possible approach in which one deliberately adds an independent
programmed noise sequence on top of the noise F(¢). Alternatively one may
have some knowledge of the noise structure or of the controller frequency
response function. Akaike (1968) claims that it is possible to identify a system
provided only that instantaneous transmission of information does not occur
in both system and controller, and an example of his, rather complicated,
procedure is given by Otomo, Nakagawa and Akaike (1972).

However, a further difficulty is that it is not always clear if feedback is
present or not, particularly in economics and marketing. Some indication may
be given by the methods of Granger and Hatanaka (1964, Chapter 7), or by
observing significantly large cross-correlation coefficients between (pre-
whitened) input and output at a zero or positive lag. Alternatively it may be
clear from physical considerations that feedback is or is not present. For
example in studying the relationship between average (ambient) temperature
and sales of a product, it is clear that sales cannot possibly affect temperature
so that one has an open-loop system. However, if feedback is present, then it is
important to realize that cross-correlation and cross-spectral analysis of the
raw data may give misleading results.

EXERCISES

9.1 Find the impulse response function, the step response function, the
frequency response function, the gain and the phase shift for the
following linear systems (or filters):

(@) yi=3% -1+ X+ 3% 4y

(b) ,Vx—s( cm2 X XX X )
© vy

(d) y,=V X

where in each case ¢ is integer-valued. Plot the gain and phase shift for
filters (a) and (c). Which of the filters are low-pass and which high-pass?

If filters (a) and (b) are joined in series, find the frequency response
function of the combined filter.
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9.2 Find the frequency response functions of the following linear systems in

9.3

94

9.5

continuous time:

(@) y(t)=gx(t—1)

(b) y(t)=§,ﬁ)we'“”x(t—u)du

where g, T and 1 are positive constants.
If {X;} is a stationary discrete time series with power spectral density
function f(w), show that the smoothed time series

k
Y, = Z a,X,_,
p=0

where the as are real constants, is a stationary process which has power
spectral density function

k k
3 3 ue cos(p -0 | (0)

q=0 p=0
In particular, if a,=1/(k+1) for p=0, 1, ..., k, show that the power
spectrum of Y, is

flw) {1 —cos(k+ w]/(k+1)*(1 —cos w)

(Hint: Use equation (9.21) and the trigonometric relation cos 4 cos B
= 3{cos(4 + B)+cos(4— B)].)

Consider the one-parameter second-order AR process
X=aX_,+2

where {Z,} denotes a purely random process, mean zero, variance g3.
Show that the process is second-order stationary if |« <1, and find its
autocovariance and autocorrelation functions.

Show that the power spectral density function of the process is given by

flw)=0%/n(1-20cos 2w+a?) O<w<n

using two different methods: (a) by transforming the autocovariance
function; (b) by using the approach of Section 9.3 4.

Suppose now that {Z} is any stationary process which has power
spectrum fz(w). What then is the power spectrum of { X,} as defined by the
above equation?

Show that the power spectral density function of the ARMA(L, 1)
process

X=oX,_ +Z+pZ,_,
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is given by fy(w)=02(1 + 28 cos w+ f?)/n(1 — 2 cos w+a*) for 0<w <
7, using the approach of Section 9.3.4. It may helptolet ¥,=Z +§Z,_,.
(This power spectrum may be shown to be equivalent to the normalized
spectrum in Exercise 6.7 after some algebra.)

More generally, for the MA process X, =6(B)Z,, show that the transfer
function of the filter Z,— X, is H(w)=6(e '), so that the spectrum of X, is
given by 6(e " )A(e*“)a3/n for 0 <w<n. Hence show that the spectrum
of the general ARMA process ¢(B)X,=0(B)Z, is given by
B(e~*)0(e'*)o2/nd(e ~*)p(e*). Check this result on the above ARMA
(1,1) process.
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State-space models and
the Kalman filter

A general class of models, arousing much current interest, is that of state-space
models. They were originally developed by control engineers, particularly for
applications concerning navigation systems such as controlling the position of
aspace rocket. However, they have also been found to be useful in many types
of time-series problem, such as short-term forecasting.

This chapter introduces state-space models for the time-series analyst, as
well as describing the Kalman filter, which is an important general method of
handling state-space models. Essentially, Kalman filtering is a method of
signal processing which gives optimal estimates of the current state of a
dynamic system. It consists of a set of equations for recursively estimating the
current state of a system and for finding variances of these estimates. More
details may be found for example in Janacek and Swift (1993) and Harvey
(1989).

10.1 STATE-SPACE MODELS

When the scientist tries to measure any sort of signal it will typically be
contaminated by noise, so that the actual observation X, is given (in words) by

observation = signal + noise (10.1)

In state-space models the signal is taken to be a linear combination of a set of
variables, called state variables, which constitute what is called the state vector
at time ¢. This vector describes the state of the system at time t, and is
sometimes called the ‘state of nature’.

We have used the jargon of control engineering, but the ideas are equally
applicable to statistical problems. For example the observation could be some
observed economic variable, and the state variables could then include such
quantities as the current true underlying level and the current seasonal factor
(if any).

It is an unfortunate complication that there is no standard notation for the
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problem. We denote the (m x 1) state vector by 0,, and write equation (10.1) as
X,=h'0,+n, (10.2)

where the (m x 1) vector h, is assumed to be a known vector and n, denotes the
observation error.

The state vector 9,, which is of prime importance, cannot be observed
directly (i.e. is unobservable), and so we wish to use the observations on X; to
make inferences about 0,, Although not directly observable, it is often
reasonable to assume that we know how 0, changes through time, and we
denote the updating equation by

0,=G0,_,+w, (10.3)

where the (m x m) matrix G, is assumed known, and w, denotes a vector of
deviations.

The two equations (10.2) and (10.3) constitute the general form of the
(univariate) state-space model. Equation (10.2) is called the observation (or
measurement) equation, while (10.3) is called the tramsition (or system)
equation.

The ‘errors’ in the observation and transition equations are generally
assumed to be uncorrelated with each other at all time periods, and also to be
serially uncorrelated. We may further assume that n, is N(0, 62) while w, is
multivariate normal with zero mean vector and known variance-covariance
matrix denoted by W,.

The state-space model can readily be generalized to the case where X; is a
vector by making h, a matrix of appropriate size and by making n, a vector of
appropriate length. It is also possible to add terms involving known linear
combinations of explanatory (or exogenous) variables to the right-hand side
of (10.2).

The application of state-space models to engineering problems, such as
controlling a dynamic system, is fairly clear. There the equations of motion of a
system are often assumed to be known a priori, as are the properties of the
system disturbances and measurement errors, although some model parameters
may have to be estimated from data. Neither the equations nor the ‘error’
statistics need be constant as long as they are known functions of time.
However, at first sight, state-space models may appear to have little connection
with earlier time-series models. Nevertheless it can be shown, for example, that
it is possible to put many types of time-series model into the state-space
formulation. They include regression and ARMA models as well as the sort of
trend-and-seasonal model for which exponential smoothing methods are
thought to be appropriate. Bayesian forecasting (see Section 10.1.5) also relies
on what is essentially a state-space representation, while some models with time-
varying coefficients can also be represented in this way.

Moreover, Harvey (1989) has described a general class of trend-and-
seasonal models which involve the classical decomposition of a time series into
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trend, seasonality and irregular variation, but which can also be represented as
state-space models. We pay particular attention to these important models.
Note that the decomposition must be additive in order to get a linear state-
space model. If for example the seasonal effect is thought to be multiplicative,
then logarithms must be taken in order to fit a structural model, although this
implicitly assumes that the ‘error’ terms are also multiplicative. A key feature
of structural models (and more generally of linear state-space models) is that
the observation equation involves a linear function of the state variables and
yet does not restrict the model to be constant through time. Rather it allows
local features, such as trend and seasonality, to be updated through time using
the transition equation.

10.1.1 The steady model
Suppose that the observation equation is given by
X=p+n (10.4)

where the unobservable current level p, is assumed to follow a random walk
given by

”t=”r—1+wr (105)

Equation (10.5) is the transition equation. The state vector, 0,, here consists of
a single state variable, namely p, and so is a scalar, while h, and G, are also
constant scalars, namely unity. The modelinvolves two error terms, namely n,
and w,, which are usually assumed to be independent, normally distributed
with zero means and respective variances o2 and ¢ The ratio of these two
variances, namely o2 /a2 is called the signal-to-noise ratio and is an important
factor in determining the features of the model. In particular, if 02 =0then p, is
a constant and the model reduces to a trivial, constant-mean model.

The state-space model defined by equations (10.4) and (10.5) is customarily
called the steady model because there is no trend term included (compare with
the linear growth model in Section 10.1.2). The model is very simple but very
important since it can be shown that simple exponential smoothing produces
optimal forecasts, not only for an ARIMA(0, 1, 1) model (see Chapter 5) but
also for this steady model (see Section 10.2 and Exercise 10.1). The reader can
readily explore the relation with the ARIMA(0, 1, 1) model by taking first
differences of X, in equation (10.4) and using equation (10.5) to show that the
first differences are stationary and have the same autocorrelation function as
an MA(1) model. It can also be shown that the steady model and the
ARIMA(0, 1, 1) model give rise to the same forecast function.

Thus the steady model could be considered for data showing no long-term
trend and no seasonality but some short-term correlation.
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10.1.2 The linear growth model

The linear growth model is specified by the three equations

Xe=p+n,
.ut::ut—1+18t—1+wl,t (10.6)
ﬁz:ﬁx—1+wz,t

The first equation is the observation equation, while the next two are
transition equations. The state vector 8; = (u,, $,) has two components, which
can naturally be interpreted as the local level , and the local trend f,. Note
that the latter state variable does not actually appear in the observation
equation, and the reader may readily verify that hY = (1, 0) and

11
o ]

are both constant through time.

The title ‘linear growth model is self-explanatory. The current level 7
changes linearly through time, but the growth rate (or trend) may also evolve.
Of course if w, , and w,, have zero variance, then the trend is constant (or
deterministic) and we have what is called a global linear trend model.
However, this situation is unlikely to occur in practice and modern thinking
generally prefers a local linear trend model where the trend is allowed to
change. In any case the global model is a special case of model (10.6) and so it
seems more sensible to fit the latter, more general model. It is arguably easier
to get a variety of trend models from special cases of a general structural state-
space model than from the Box-Jenkins ARIMA class of models.

The reader may easily verify that the second differences of X; in equation
(10.6) are stationary and have the same autocorrelation function as an MA(2)
model. In fact it can be shown that two-parameter exponential smoothing
(where level and trend are updated) is optimal for an ARIMA(0, 2, 2) model
and also for the linear growth model (e.g. see Abraham and Ledolter, 1986).

10.1.3 The basic structural model

There are various ways of incorporating seasonality into a state-space model,
such as the following model which is usually called the basic structural model:

‘X/tznut+it+nt
.utz.ut—1+:81—-1+wl,t

iBtlel—1+W2t (107)

s—1

o= — 3 .+ ws,
j=1
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This model includes a local level p,, a local trend f,, a local seasonal index i,
and four separate ‘error’ terms which are all assumed to be additive. If there are
s periods in one year (or season), then the fourth equation in (10.7) assumes
that the expectation of the sum of the seasonal effects over one year is zero. The
state vector now has s+ 2 components, namely f,, B, iy b ys .- s li—se1- A
full discussion of this model is given by Harvey (1989) who also discusses
various extensions, such as the incorporation of intervention and explan-
atory variables. Further comments on structural models are given by
Chatfield and Yar (1988, Section 6) and Newbold (1988) while Andrews
(1994) gives some encouraging empirical results.

10.1.4 State-space representation of an AR(2) process
The AR(2) model can be written as
X=0,X -, +¢, X2 +2Z, (10.8)

Define the (rather artificial) state vector at time t as 0] = (X;, ¢,X; ). Then the
observation equation may be written as

X,=(1,0)9,
with 62 =0, while (10.8) may be written as part of the transition equation
¢, 1 1
= 10.9
0! [¢2 0 0!— 1 + 0 Zt ( )

since 8;_, = (X,_,, §,X. ).

This looks (and is!) a rather contrived piece of mathematical trickery, and
we normally prefer to use equation (10.8) which appears more natural than
equation (10.9). (In contrast the state-space linear growth model (10.6) may
well appear more natural than an ARIMA(0, 2, 2) model.) However, equation
(10.9) does replace two-stage dependence with two equations involving one-
stage dependence, and also allows us to use the general results relating to state-
space models, such as the recursive estimation of parameters, should we need
to do so. For example the Kalman filter provides a general method of
estimation for ARIMA models (e.g. Kohn and Ansley, 1986). However, it
should also be said that the approach to identifying state-space models is
generally quite different to that for ARIMA models.

Note that the state-space representation of an ARMA model is not unique
and it may be possible to find many equivalent representations. For example,
the reader may like to find an alternative state-space representation of
equation (10.8) using the (more natural?) state vector 07 =(X,, X,_,), or using
the (more useful?) state vector 0 =[x, X(t, 1)]; see Exercise 10.4.

10.1.5 Bayesian forecasting

Bayesian forecasting (West and Harrison, 1989) is a general approach to



186  State-space models and the Kalman filter

forecasting which includes a variety of methods, such as regression and
exponential smoothing, as special cases. It relies on a model, called the
dynamic linear model, which is closely related to the general class of state-space
models. The Bayesian formulation means that the Kalman filter is regarded as
a way of updating the probability distribution of 8, when a new observation at
time ¢ becomes available. The Bayesian approach also enables the analyst to
consider the case where several different models are entertained and it is
required to choose a single model to represent the process, or alternatively to
compute forecasts which are based on several alternative possible models. For
example when the latest observation appears to be an outlier, one could
entertain the possibility that this represents a step change in the process, or
that it arises because of a single intervention, or that it is a ‘simple’ outlier with
no change in the underlying model. The respective probabilities of each model
being ‘true’ are updated after each new observation. An expository
introduction is given by Bolstad (1986). Some case studies and computer
software are given by Pole et al. (1994). Further developments are described
by West, Harrison and Mignon (1985) and West and Harrison (1989).

The approach has some staunch adherents, while others find the avowedly
Bayesian approach rather intimidating. This author has no practical
experience with the approach, but see Taylor and Thomas (1982) and Fildes
(1983). The latter suggests that the method is generally not worth the extra
complexity compared with alternative, simpler methods, though there are of
course exceptions.

10.1.6 A regression model with time-varying coefficients

Suppose that the observed variable X, is known to be linearly related to a
known explanatory variable u, by

A,r=at'+‘brur'+'nr

where the regression coefficients a, and b, are allowed to evolve through time
according to a random walk. If we write 8] =[a,, b,] and hT =[1, u,], then we
may write this model in state-space form by

X,=hﬂ),+ﬁ, (10.10)
9,=9,_1+W, ‘

Of course if the elements of w, have zero variance, then , is constant and we are
back to the familiar linear regression model with constant coefficients. The
advantage of equation (10.10) is that we can consider a much more general
class of models, which includes simple regression as a special case, and then
apply the general theory relating to state-space models.
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10.1.7 Model building

An important difference between state-space modelling in time-series
applications and in some engineering problems is that the structure and
properties of a time series may not be known a priori. In order to apply state-
space theory, we need to know h, and G, in the model equations and also to
know the variances and covariances of the disturbance terms, namely o2 and
W,. The choice of h, and G, (i.e. the choice of a suitable state-space model) may
be accomplished using a variety of aids including external knowledge and a
preliminary examination of the data. For example Harvey (1989) claims that
the basic structural model (see Section 10.1.3) can describe many time series
with trend and seasonal terms, but the analyst must for example check that the
seasonal variation is additive (or consider a transformation). In other words
the use of a state-space model does not take away the usual problem of finding
asuitable type of model. (Model fitting is usually easy, but model building can
be hard.)

Another problem in time-series applications is that the error variances are
generally not known a priori. This can be dealt with by guesstimating, and
then updating, them in an appropriate way, or by estimating them from a set
of data over a suitable fit period.

10.2 THE KALMAN FILTER

In state-space modelling, the prime objective is to estimate the signal in the
presence of noise. In other words we want to estimate the state vector 0,. The
Kalman filter provides a general method of doing this. It consists of a set of
equations which allows us to update the estimate of 8, when a new observation
becomes available. This updating procedure has two stages, called the
prediction stage and the updating stage.

Suppose we have observed a time series up to time t— 1, and that §, _, is the
‘best’ estimator for 8,_, based on information up to this time. By ‘best’ we
mean that it is the minimum mean square error estimator. Further, suppose
that we have evaluated the variance-covariance matrix of 6,_, which we
denote by P,_,. The first stage, called the prediction stage, is concerned with
forecasting 0, from time t—1, and we denote the resulting estimator in an
obvious notation by 6,|,_1. Considering equation (10.3), where w, is still
unknown at time t— 1, the obvious estimator for 0, is given by

0,-1=G8,_, (10.11)

with variance-covariance matrix
P,|,-1=G,P,_1G,T+ W, (10.12)
Equations (10.11) and (10.12) are the prediction equations. Equation (10.12)
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follows from standard results on variance-covariance matrices for vector
random variables (e.g. Chatfield and Collins, 1980, equation (2.9)).

When the new observation at time ¢, X;, becomes available, the estimator of
0, can be modified to take account of this extra information. The prediction
error is given by

et=Xz—hzTét;t—1
and it can be shown that the updating equations are given by
0,=0,_,+Ke, (10.13)
and
P,=P,,,_1—K,h,TP,|,_1 (10.14)
where
K=P,_ 1h,/[h,TP,[,_ h,+02] (10.15)

is called the Kalman gain matrix, which in the univariate case is just a vector.
Equations (10.13) and (10.14) constitute the second stage of the Kalman filter
and are called the updating equations.

We will not attempt to derive the updating equations or to demonstrate the
optimality of the Kalman filter. However, we note that the results may be
found via least squares theory or using a Bayesian approach. A clear
introduction to the Kalman filter is given by Meinhold and Singpurwalla
(1983), while more detailed accounts are given by Abraham and Ledolter
(1983, Section 8.3.1), Harvey (1989; 1993, Chapter 4) and Aoki (1987).

A major practical advantage of the Kalman filter is that the calculations are
recursive, so that although the current estimates are based on the whole past
history of measurements, there is no need for an ever-expanding memory.
Recursive methods, such as exponential smoothing, are increasingly popular
in many areas of statistics. A second advantage of the Kalman filter is that it
converges fairly quickly when there is a constant underlying model, but can
also follow the movement of a system where the underlying model is evolving
through time.

The Kalman filter equations look rather complicated at first sight, but they
may readily be programmed in their general form and reduce to much simpler
equations in certain special cases. For example, consider the steady model of
Section 10.1.1 where the state vector 8, consists of just one state variable, the
current level y,. After some algebra (e.g. Abraham and Ledolter, 1986), it can
be shown that the Kalman filter for this model in the steady-state case (as
t— o) reduces to the simple recurrence relation

=, +ae, (10.16)

where the smoothing constant « is a (complicated) function of the
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signal-to-noise ratio a2/o? (see Exercise 10.1). When o2 tends to zero,
so that y, is a constant, we find that « tends to zero as would intuitively be
expected, while as 62 /o7 becomes large, then « approaches unity. Equation
(10.16) is of course simple exponential smoothing.

As a second example, consider the linear regression model with time-
varying coefficients in Section 10.1.6. Abraham and Ledolter (1983, Sec-
tion 8.3.3) show how to find the Kalman filter for this model. In particular it is
easy to demonstrate that, when W, is the zero matrix, so that the regression
coefficients are constant, then G, is the identity matrix, Py_,=P,_,,and the
Kalman filter reduces to the equations

0,=0,_,+Ke,
Pt:Pz~1"thtTPt—1
where
etZ/Yt—hrTOt—l
Kt:f)r—lht[h;rpt~1ht+af] ot

Abraham and Ledolter (1983, Section 8.3.3) demonstrate that these equations
are the same as the ‘well-known’ updating equations for recursive least squares
provided that starting values are chosen in an appropriate way.

In order to initialize the Kalman filter, we need values for 0, and P, at the
start of the series. This can be done by a priori guesswork, relying on the fact
that the Kalman filter will rapidly update these quantities so that the initial
choices become dominated by the data. Alternatively, one may be able to
estimate the (m x 1) vector 0, at time t=m by least squares from the first m
observations, since if we can write

X, =M, +e
where XJ = (X,,, X,,_,, ..., X,), M is a known non-singular (m x m) matrix,
and e is an m-vector of independent ‘error’ terms, then

0,=M"'X, (10.17)

is the least squares estimate of 8, (since M is a square matrix). An example is
given in Exercise 10.2.

Forecasts may easily be obtained from the state-space model. At time ¢, the
k-step-ahead forecast is given by

X(t, k)=hy .8, .,
=htT+th+kGr+k—1 -Gy 16r
Of course if G, is a constant, say G, then

X(t, k)=h", ,G*6, (10.18)
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The Kalman filter is applied to state-space models which are linear in the
parameters. In practice many time-series models, such as multiplicative
seasonal models, are non-linear. Then it may be possible to apply a filter,
called the extended Kalman filter, by making a locally linear approximation to
the model. Applications to data where the noise is not necessarily normally
distributed are also possible (Kitagawa, 1987), but we will not pursue these
more advanced topics here.

10.2.1 The linear growth model

We will evaluate the Kalman filter for the linear growth model of
Section 10.1.2. Suppose that from data up to time (¢—1) we have estimates
f,—,and B,_ , of the level and trend. At time (¢ — 1) the best forecasts of w, ,and
w, , are both zero so that the best forecasts of u, and B, in equation 10.6 are
clearly given by

ﬁrlr—l =1 +B 4

and
Brlr— 1 =ﬁt— 1

These agree with equation (10.11). When X, becomes available, we can find
€,=X,—fi;,_, so that we may use equation (10.13) to give

ﬁr=ﬁr|t—1 +Cre=f- 1+, +Cy .8
and

Br =ﬂt|t— 1+ C2,tet=Bt— 1+ C2,rer

where C, ,, C,, are the elements of the Kalman gain ‘matrix’ (here a 2 x 1
vector), K,, which can be evaluated after some algebra. It is interesting to note
that these two equations are of similar form to those in the 2-parameter non-
seasonal version of Holt-Winters (see Section 5.2.3). There the level and trend
are denoted by L,, T, respectively and we have for example that

Li=aXi+(1-0) (L1 +T,)
=L_,+T_,+oe,

where e,=X,—[L,_,+T,_,]. In the steady state as t—o0, C,, tends to a
constant which corresponds to the smoothing parameter a. This demonstrates
that 2-parameter Holt-Winters is optimal for the linear growth model.

An intuitively obvious way to initialize the two state variables from the first
two observations is to take fi, =X, and f,=X,— X, (see Exercise 10.2).
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EXERCISES

10.1

10.2

Consider the steady model in Section 10.1.1, and denote the signal-to-
noise ratio ¢2/c2 by c. Show that the first-order autocorrelation
coefficient of (1 — B)X,is —1/(2+ c) and that higher-order autocorrela-
tions are all zero.

For the ARIMA(O, 1, 1) model

(1-B)X,=2+6Z_,

show that the first-order autocorrelation coefficient of (1—B)X, is
6/(1+46%) and that higher-order autocorrelations are all zero. Thus
the two models have equivalent autocorrelation properties when
0/(14+6%*)= —1/(2 +c). Hence show that the invertible solution with
0] <1is 6=4{(c*+4c)'*—c]—1.

Applying the Kalman filter to the steady model we find, after some
algebra, that in the steady state (as t— co and P,—constant) we have

Ay=p, tae,
and
a=14+0=3[(c2+4c)'*—]

and this is simple exponential smoothing. Now the ARIMA model is
invertible provided that — 1 <6 <1, suggesting that 0 <« <2. However,
the steady model restricts o to the range 0 <o < 1 (and hence —1<6<0)
and physical considerations suggest that this is generally a more
sensible model. Do you agree?

Consider the following special case of the linear growth model:

X:'—'II:'H':
ut=ut—l+ﬁl—l
Bt=Bt—l+Wt

where n,, w, are independent normal with zero means and respective
variances o2, 62. Show that the initial least squares estimator of the
state vector at time t=2, in terms of the observations X, and X;, is
L4y, B,1=[X,, X, — X,] with variance-covariance matrix

2 2

P —_ an an
2= 2 2 2
o; 20.+0,

If 62=0, so that we have ordinary linear regression with constant
coefficients, and a third observation X; becomes available, apply the
Kalman filter to show that the estimator of the state vector at time t =3
is given by

(43, Bs1=[8X: + 35X, —3X,, (X; — X})/2]
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10.3

104

State-space models and the Kalman filter

Verify that these are the same results that would be obtained by
ordinary least squares regression.

Find a state-space representation of (a) the MA(1) process X,=
Z,+BZ,_,, (b) the MA(2) process.

(Hint for (a): Try 6] =[X,, X(t, 1)]=[X,, Z].)

Find a state-space representation of the AR(2) process in equa-
tion (10.8) based on the state vector 87 = (X, X,_,), and show that

¢ ¢,
G =
A
Also find the state-space representation based on the state vector

0T =[X, X(t, 1)], where X(t, 1)is the optimal one-step-ahead predictor
at time ¢, namely ¢, X, + ¢,X,_,, and show that

with w! = (1, ¢,)Z,.
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Non-linear models

Most of this book (like most of the time-series literature) is concerned with
linear methods and models. However there is no reason why real-life
generating processes should all be linear, and one suspects the assumption
of linearity is often made for mathematical convenience rather than because
itis really believed. This chapter introduces various types of univariate non-
linear model, in order to reflect the growing interest in such models over
recent years. A brief bibliography is given at the end of the chapter.

11.1 INTRODUCTION

This section motivates the need for non-linear models and attempts the
difficult task of distinguishing between linear and non-linear models.

11.1.1 Why non-linearity?

Figure 11.1 displays (part of) a famous time series giving the average number
of sunspots recorded in successive months. The data are listed, for example,
by Andrews and Herzberg (1985) and the (updated) series may be obtained
electronically over the internet — see Appendix D.6. Two representations of
the data from 1850 to 1977 are given, with different vertical axes. Close
inspection of either graph reveals that there is regular cyclic behaviour with
a period of approximately 11 years. At first sight, the upper graph seems a
more natural way to display the data, but the graph goes up and down so
rapidly that it is really only possible to see where the maxima and minima
occur. The lower graph arranges the slope of the graph to be around 45° as
the series rises and falls, and it is this graph which enables us to see that the
series generally increases at a faster rate than it decreases. This time plot
provides an excellent example of the care that is needed in drawing graphs,
particularly as regards the choice of scales (see Section 2.3 and Appendix
D.4). One representation may be ‘good’ for one purpose (e.g. displaying the
maxima) while a second representation may be ‘good’ for a different purpose
(e.g. looking at the slope of increases and decreases). The plotting of the
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yearly version of the sunspot data is discussed by Cleveland (1994) together
with additional relevant examples and advice.

Another famous time series records the annual numbers of lynx trapped in
the Mackenzie River district of North-West Canada between 1821 and 1934
(see, for example, Hand et al. 1994, Data Set 109). These data are also
available over the internet — see Appendix D.6. This series also shows
asymmetric cyclic behaviour but with the series falling faster than it rises.
Asymmetric behaviour can also arise in studying the economy since the
relationships between economic variables tend to be different when the
economy is MoOVving into a recession rather than when coming out of a
recession — downturns are often steeper and more short-lived than upturns.
Thus ‘it seems to be generally accepted that the economy is nonlinear’
(Granger and Terdsvirta, 1993, p. 1). As yet another example, the amount of
water flowing down a river tends to increase sharply after a heavy storm and
then tail off gradually. For seasonal series with a fixed cycle length, it may be
possible to model such asymmetric behaviour with a non-sinusoidal seasonal
component, but when the cycle length is not fixed, as in the above examples, a
non-linear model is much more compelling for describing series with
properties such as ‘going up faster than coming down’. Non-linear models
are also needed to describe data where the variance changes through time —
see Section 11.3 and Figure 11.2.

Non-linear models can also be used to explain, and give forecasts for, data
exhibiting regular cyclic behaviour. As such they provide an interesting
alternative to the use of harmonic components, especially if the behaviour is
asymmetric. For some non-linear models, if the noise process is ‘switched
off’, then the process will converge asymptotically to a strictly periodic form
called a limit cycle (Priestley, 1988; Tong, 1990).

Questions about non-linearity also arise when we consider transforming a
variable using a non-linear transformation such as the Box-Cox
transformation (see Section 2.4). Data may be transformed for a variety of
reasons such as to make the data more normally dist