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1 Introduction

1.1 Background

The study of models describing qualitative variables dates from the 1940s and
19505 (Berkson [Berd4], [Ber31]). Their initial applications were in the field
of biology, followed by psychology and sociology. Only recently have these
models been applied 10 economic data, where the development of gualitative
models has taken two principal directions.

* [t has often been possible o construct moedels of individual behaviour based
directly on the underlving economic theory. This approach has led 1o a better
understanding of the significance of certain common models, e.g. the logit
model (McFadden | McF74 ). Furthermore, the modelling of certain economic
phenomena (consumption of durable goods, disequilibrium analysis, ete.),
though strictly speaking not of a qualitative nature, draws heavily on these
models (cf. Tobin [Tob58], Fair-Taffee [FJ72] and Heckman [Hec76]).

+ The second development has been the introduction of exogenous variables
to.explain the values assumed by the qualitative variable. The primary role
of these models 1s explanatory. It is natural to compare these explanatory
models to the traditional linear formulation.

1.2 Review of Qualitative Variables
[.2.1 Generalities

Statistical data available to the researcher often reflect qualitative characteris-
tics of the study subjects, such as: socio-economic class, field of education,
employment status, whether or not they have purchased a certain good, etc.
Inference from this data requires an enturely different set of tools from those
apphied to the more typical quantitative data, as the former is characterized by
1ts discrete nature and, frequently. the absence of a natural order.



2 Econometrics of Qualitative Variables

In the text, we will formulate this problem as follows: let a variable y assume
K + | disjoint values denoted k = 0. ..., K. If K + 1 = 2(3), the variable ¥
is called dichotomous (trichotomous). In the general case with X being some
positive integer, ¥ is called polychotomous (or polytomous}.

When y is stochastic, its distribution is defined by the probabilities associated
with k, these probabilities are denoted P, kA =0...., K.

1.2.2  Quantitative Representation of a Qualitative Variable

It is always possible to represent a gualitative variable quantitatively without
losing any information: this process is known as coding. For example, let the
variable y represent “socio-economic class”™ assuming XK 4+ 1 = 3 possible
values, defined:

0 — labourer,
1 — salancd employee,
2 —  executive.

Example 1: Define the quantitative variable ¥ as:

1. if y = labourer,
¥ = ¢ 2, if y = salaned employce,
3, if ¥y = executive.

From a given value of § we can immediately derive the corresponding value of
v, and vice versa.

Example 2: Consider the vector £ with three elemenis & =
(1. &3, £3) . defined:

1, if v = labourer,
{), otherwise,

1. if ¥ = salaried employce,
Ea = .
- 0, otherwise,

. 1, if ¥ = management,
= Y 0. otherwise.

This is a different quantitative representation of y. now assuming valucs 1n
(0, 1. Notice that £, + &2 + 63 = 1.

Example 3: A general tormulation of all the quantitalive representa-
lions of y can be written ¥ (y). where ¥ is a one-to-onc mapping of {0, 1, 2}
mto K7,
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We now generalize these results to the case of 4 qualitative variable y assum-
ing K + 1 values. The coding of example | now becomes ¥ =&k + L if y = £.
From example 2 we have & = (&) ..., £41) with:

L1 ify=k-1
* =10, otherwise. '

We still observe that:

The primary advantage of using a quantitative representation of the data is that
it allows us to work with discrete distributions on &, or on R?”. The distribution
of £ 15 seen to be multinomial, since £; is a Bernoulli variable. We must,
however, exercise care associating distributions with these representations, the
only information truly representative of the quantitative variable y is that which
1s independent of the tunction 7. It s comprised in the values assumed by
Po..... Pg.

Example 4: We cannot accord much significance to the moments
(mean, variance, etc.} of the function ¢ (). Notice, though, that in the case of
the ceding e the mathematical expectation may be uscd to recover the vector
of probabilities P = (P, ... Px) .

Example 5: Consider a second quantitative variable, x. A traditional
method of testing for dependence between x and v is to calculate the correlation
coefficient. In the case of qualitative variables both the sign and the value of
this statistic o [x, ¥ (¥)] depend upon the coding, .

Example 6: We may, however, still test for independence. Tf i and
W * are two different codings, and if x and (¥} are independent., then x and
W () will also be independent.

Example 7: Most importantly (as it constitutes the raison-d’étre for
this book). linear regression methods are not generally applicable to these coded
variables. We cannot simultaneously have:

E[y (y)| x] = xb
and

E{¢™ ()] x] =xe
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{.2.3  Vectors of Qualitative Variahles

Consider @ qualitative variables y,.¢ = 1...., @ assuming K, + 1 values
ky kg =0,..., K, respectively. The vector y = (_‘y‘l, R }-‘Q)’ can be viewed
as aqualitative variable whose domain is restricted to the ZEL] (K, + 1} values
{kl e kg). The corresponding probabilities are denoted Fy,. ..., Fy,.

Conversely, anv given polychotomous qualitative variable can be expressed
as a vector of dichotomous qualitative variables. We have seen that a variable
y assuming X -+ | values can be represented by € = (g, ..., 8¢41)", where
g = {0, 1} indicates whether or not v assumcs the value & — 1.

Consequently, there is no fundamental difference between the study of one
qualitative variable and that of a series of such variables. Nonetheless, the
vector representation shall prove practical when we turn our attention to the
issues of dependence between several variables and calculation of marginal
and conditional distributions.

1.3 Overview of the Book

The chapters are organized so as to introduce the various aspects of qualitative
models progressively. Chapters 2 through 6 present models with endogenous
qualitative variables. In chapter 7 we look at models within which the exoge-
nous variable is sometimes quantitative and sometimes qualitative. Chapters
& throngh 10 are devoted to changing-regime madels, where the dependent
variable is quantitative, but 1s expressed in terms of a qualitative vanable. The
final two chapters desceribe models which explain vailues assumed by discrete
Or continuous posilive variables.

The simplest models arise when the qualitative endogenous variable is di-
chotomous (cf. chapter 2). Our examination of this case shall provide an oppor-
tunity to clearly establish the difference between quantitative and qualitative
dependent variable models, and to explore in some detail the principal estima-
tion methods.

The process of model building itselt assumes more importance when we
move inte the domain of guantitative variables taking more than two values. In
contrast to what we shall encounter in the dichotomous case, polychotomous
gualitative dependent variables can be modelled using significantly different
functional forms. In these cases specification must be based upon economic
reasoning. Examples of this are explored in chapter 3. Estimation methods, and
the propertics ot the corresponding estimators, are discussed in chapter 4.

Chapter 5 is devoted to the descriptive use of qualitative meodels. In this chap-
ter we introduce the log-linear model, which is of particular use for analysing
independence between variables.
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The introduction of panel data poses a further problem: we now must account
for possible correlations between the observations. In chapter 6 we examine a
partial solution to this problem using Markov chains.

[n chapter 7 we turn our attention to models in which the dependent variable
1s quantitative, but is constrained by a threshold (floor or ceiling). This cut-off
point may be fixed (the simple Tobit model), or random {the generalized Tobit
modely. These models combine a gualitative aspect (reflecting whether or not
the threshold has been reached) and a quantitative aspect (for the unconstrained
range of the data). This structure is very important in economics, where it
13 used to analyse the consumption of durable goods and the behaviour of
disequilibrium markets, for example. This latter application is examined in
detail in chapter 8.

It 1s possible to find a general formulation incorporating all of the above-
mentioned models, qualitative and Tobit, as special cases, and this is the subject
of chapters 9 and 10. The purpose of this exercise is not only to create a unified
theory of the econometrics of limited dependent variables, but also to expand
our analysis to include more than one endogenous variable, limited or not,
and in particular to account for the existence of simultaneity. Furthermore,
this exercise focuses our attention on some of the problems occurring in the
construction of such models, especially the issue of identification.

The Tobit madel may be viewed as an intermediate form between qualita-
tive and linear modeis. Other intermediate forms are obtained from models of
variables with integer dependent values (chapter 11),

Finally. the modelling of discrete vanables ts closely tied to the issue of
tmodelling durations. This 1s the topic of chapter 12,

This book presupposes knowledge of the basic principles of statistics and
econometrics. Suggested references are Johnston [Joh84] and Theil | The71].



2  The Simple Dichotomy

In this chapter we shall study the modelling of dichotomous endogenous vari-
ables. These variables may assume two values, usually denoted zero () and
one (1). The models presented here are a subset of those introduced in chap-
ters 3 and 4, yel they merit separate treatment because their very simplicity
allows us to highlight some of the issues with which this book will deal. We
shall illusirate the basic differences between qualitative and quantitative mod-
els and introduce some of the estimation methods which shall be generalized
subsequently.

2.1 Why not Use a Linear Model?

A specific treatment of models with qualitative endogenous variables is worthy
of interest only insofar as the issues with which they deal with cannot be ade-
quately handled by the classical linear model with its associated least-squares
estimators. ordinary or generalized.

Assume we have i observations on an endogenous variable y;, i = 1.....#
with corresponding vectors of K exogenous variables denoted xX; = (xy;. ...
xg) T, i =1,...,n. The linear model is written:

v, =xb+u, i=1,...,n. (2.1)

where b is a K -dimensional vector of unknown parameters and u, is the distur-
bance (crror) term associated with the i -th observation. When y is dichotomous,
this formulation is clearly inadequate. Following are some reasons, which draw
on both intition and mathematical reasoning.

' The vector X; is often represented x;. to reflect the fact that we are referring to all columns of
the i-th row of the # x & matrix X. Tn what follows there is no ambiguity, so we shorien the
notation.
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Ya
i B =
qg L =l = T =0k =
¥ F1
Fig. 2.1. Scatter of v = {0, 1)

(1}

(i)

(111)

{1v)

(v)

The twa sides of equation (2.1} are different types of mathematical entty:
y; is a discrete variable, while x;b + «; 1s continuous. There is obviously
something wrong here.

The coding on the left hand side of equation (2.1} 15 fundamentally arbi-
trary. A given estimate of b, say by, gencrated by one coding will ditfer
[rom that obtained from another. For cxumple, il the coding v = ({. 1)
vields an estimator by, then letting v = (00, 2) will generate 2Zhy,. Conse-
quently, the value of the parameter b is meaningless.

The inadequacy of the linear formulation can also be illustrated graphi-
cally. Consider the special case of equation (2. 1) corresponding to a simple
regression:

i =1,

Vi = by + xiby o+ by

= R

If we plot the observations (x;, ) in the usual Cartesian plane, the data
points will be strung out along the two parallel lincs vy = 0 and y = 1,
making it difficult to fit them with a single straight line! This is depicted
in figure 2.1.

These intuitive arguments are sufficient grounds for rejecting the linear
meodel in equation (2.1). butl they are reinforced by considerations of a
more mathematical nature.

For fixed values of the vector X; the disturbance term #,; can only assume
one of the following values: | — x;b. or —x;b. Thus the distribution of the
crror term 1s discrete. 1t 1s not, in particular, normal.

Tuming our attention now to the probability distribution associated with
v, we see that requiring the disturbance to have zero mean implies that £;
is uniquely determined, because:

E(u)= £ {1 —xb)— (1 — Pyx;b=0= P =xb.
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Notice that this imposes the following constraints on the parameters:
d=<xb=<1, i=1.....n.

These constraints may be incompatible with the data.

(vi) If the constraints are not incompatible, we encounter at least two more
difficultics. First, the parameter vector b must be estimated subject to
inequality constraints. Second. it is possible to forecast the valuc v,
only it 0 < x,b < 1 implies 0 < x,.|b = 1.

(vi1) Finally, turning to the crror varignce, we have:

var (#;) = (1 — %) P + (—x;b)* (1 — P)),
= (1 = x;b)?x;b+ (x;0)2 (1 - x/b),
= x;b{1 — x;b).

Notice that this variance is heteroscedastic. However, the method of
welghted least squares is not applicable here, since the covariance matrix
of the errors depends on the same unknown pararncter b which appears
on the right hand side of equation (2.1).

2.2  Modelling the Simple Dichotomy

The models 1n this chapter were first developed in the biological sciences, but
are now widely applied. They are most frequently used to investigatc the level
of tolerance which individuals (be they insccts, weeds, or people) have to some
product {insecticide, herbicide, or drug). To this end numerous experiments
are performed in which individuals with different characteristics arc placed
under differing environmental conditions and given varying dosages of the
product. For each trial the individuals’ reactions to the test are observed and the
values:

0, if the individual withstands the dosage,

i 1. if the individual succumbs (or reacts} to the dosage,

are assigned to the dichotomous endogenous variable.

The outcome y; depends on the vector of conditions x; associated with trial 7
and on the dose £; to which the individual was subjecied. Tt is usual to complete
the model by introducing an auxiliary variable yF (known as the latens variable)
represeniing the maximum dose the subject of the ¢-th trial can withstand. This
variable 15 a function of the vector x; and can be considered random, since two
individuals with the same characteristics, placed under the same conditions,
will not necessarily react identicaily.



The Simple Dichotomy 9

The observed qualitative variable is defined in terms of this auxiliary variable
by:

-

o 0, af _}‘: = £, ;
Y= { 1. otherwise, (2.2)

It remains to specify how the threshold tolerance, as represented by the latent
variable, depends on the conditions of the experiment. The usual form adopted
is the linecar moded

}Ii* = X,-b —I— . ! —_ 1 ..... . (23)

In equation (2.3) the disturbance terms ##; are assumed independent and
identically distributed, with zero mean and a shared cumulative density function
(c.d.f.) which 1s known up to a scaling parameter. In other words, we assume that
the random variable “* has c.d.f. F, where o is an unknown positive parameter.

Notice that the assumption of independent disturbances is not innocuous.
In our experimental example. this assumption requires that the trials be per-
tormed on difterent groups of individuals, otherwise the result of one trial may
incorporate the impact of previous participation by the samc subject.

Notice also that equation ¢2.3) is logically consistent, in that both sides of
the equation are continuous.

The distribution of y follows easily from equations (2.2} and (2.3):

Priyi=1) = F’r(}-'?“ < Ef),

!

= Prix;b+u; < £;),

(u,- f,‘ X;b)
=Pry — = —— )
T 2] F

= F; (by construction).

Appealing 1o the assumption of independence. we obtain the likelthood:

Liyiboy=][1P" (=Pt ]
i=1

A (-2 por -] )

i=1

Te simplity notation, let z; denote the row vector of exogenous variables

= (E, —X,').
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and define the vector of parameters:

=y

The model may then be written:

L(y:c) = H [F(ze) [1 — F(ze)]' ™}, (2.4)
i=1
where F is a ¢.d.f. with zero mean.

Henceforth, we shall call this model the simple dichotomy. Expression (2.4}
follows from the formulation ot £ = Pr (y, = 1) and the hypothesis of indepen-
dence of the y'-s. As we shall see 1n section 3.4.2, relaxing these assumptlions
yvields different models with dichotomous dependent variables.

2.3 Examples

The models in section 2.2 have numerous applications, of which we give two
examples.

2.3.1 Cholice of University

Several of the earliest economic studies using qualitative response models to-
cused on the behaviour of students, 1in particular on what motivates them to
choose a particular institute of higher education. Studies of this kind were de-
veloped mainly in the United States, as a result of the organizational structure
of university education in that country (cf. Kohn-Muanski-Mundel [KMM76]
and Miller-Radner [MR70]).

We begin by dividing the universities inte two groups: residential and non-
residential. Students choose which type to attend based on a vectlor ol charac-
teristics, including: income. gender, distance of the university from home, and
personal preference vis-a-vis living on or off campus.

The prohability that a student chooses to study at a residential institution can
be written:

Pr{y, = 1) = F {x;h)

where X; 15 student s vector of characteristics.

Estimation of this model using survey data shows that, ceteris paribus, the
probability mcreases with distance and with income, as in figurce 2.2,

We also observe that the probability of choosing a residential institution is
positively correlated with an expressed preference for living on campus. The
fact that students™ choices reflect their preferences is hardly surprising, but it
18 interesting to note that preference appears less important than income and
distance,
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Probability
1.a . >

.8
0.6

a.4

.2

oS

¢ Distance

Fig. 2.2, Probability of living on campus {men who prefer living on campus)

A further result 1s that men are more likely that women to live in resi-
dence.

2.3.2 Non-Response

In any survey, there is always a certain proportion of non-respondents. This
may be due to: retusal to participate, failure to understand the questions, or
absence from home when the interviewer calls. The non-response rate depends
on the methad of data collection as well as on the personal characteristics (age,
education, gender) of both respondents and interviewers. Clearly, it is important
to understand how non-response depends on these factors in order to find ways
of diminishing its mncidence.

This problem reduces 1o describing the dichotomous variable “does/does not
respond’ as a function of other variables., which can be dealt with using a model
of the form (2.4).

2.4 Estimation by the Maximum-Likelihood Method
24§ The Likelihood Eqguation

We have seen that, once the identifiable parameters are established. the likeli-
hood function of the simple dichotomy is written;

fl
Liy;by= ][ {F by [t —F @)} (2.5)
i=1
where F 15 a cumulative density function with zero mean.
To complete the model we need to specify F. It 1s common to select either
a standard normal distribution, in which case the model 15 known as the probir
model, or a logistic distribution, yiclding the fogit model.
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Specifically, we have:

I.x - ] I_‘l
e T dt

F = b =
() = © (x) j_m _
in the probit model, and:
|
F —
=1

in the logit model’. Both these distributions are symmetric with F (—x) =
1 — F (x), so their means are zero,

2.4.2 Unmigueness of the Maximum-Likelthood Estimator
From equation (2.5) we obtain an expression for the log-likelihood:

log (L) = > {y:log [F ()1 + (1 — 3) log[1 — F (x;b)]}.

i=l1

D log[F(xb)l+ ) log[l — F (xib)l, (2.6)

iy =1 iovy=ll

A sufficient condition for uniqueness of the global maximum of log (L}
{assuming it exists) is that this function be strictly concave or, equivalently, that
log (F} and log (1 — F') be strictly concave.

This condition holds in the case of both the probit and the logit models. We
shall verify this for the logit model.

We have;
a [1 I )] L 4 £ {x)
— |lo X)) = ——F {x),
dx g F{x)dx
_ e
1l 4e’
=1— F(x).
Furthermore:
d* —e
log Fix) = ———,
dxz[ g F ()] (1 + ey

=—F)[1 - Fix)] <0,

T In keeping with convention, throughout this book & represents the cumulative densify function
of the nommal distribution.
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50 log ( F) is strictly concave. And:

et

= —x +log [F (x}].

log[1l — F{x)] = log

which 1s also strictly concave.

The demonstration for the probit case, where F = &, is left to the reader {ct.
exercise 4 at the end of the chapter).

Thus, in the two standard cases, the maximum-likelihood (ML) estimator
may be obtained from the first-order conditions for a maximum.

2.4.3 Solving the Likelihood Equation

Let us differentiate the log-likelihood tunction {2.6) with respect to the param-
eter vector b and set the vector of derivatives equal to zero;

angL f (Xxb} I (x;) '
Z F by Z —rami=" (2:7)

where f is the density function associated with F and x} denotes the transpose
of x;.

” i I — i ;
. ;=Z1 |:F xb) 11— F(xib}} S xb)x;,

B # v; — F {x;b) . r
= ;_F x;B[1 — F (x;b}]j (x;b} x..

In the logit model we can simplify this last equation using the fact that:

—

=F() [l -F =,
S (x) (x)[ (x}] T

vielding:

0=> [»n—Fxbix,

{=1

iy,-x; = Z F (x;h) x| (2.8)
=l i=1

The likelihood equations associated with the probit and logit models are non-
linear in the parameters. Simple closed-torm expressions for the ML estimators
are not available, so they must be solved using numerical algorithms (section 2.3
below).
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2. 4.4 Maximum-Likelithood Estimeators: Existence
and Asympiotic Properties

We have just seen that in the case of the probit and logit models the solution of
the likelihood equation, assuming it exists, is unique and maximizes the [unction
log (L). Existence of a solution, however, is not alwavs assured. Consider, for
example, the case of the logit model with a single, positive, explanatory variable
x. Equation (2.8) then becomes:

H

Z Vix; = i: Fix:b)x.

i=1 i=1

Now, both sides of this equation are bounded by zeroand (x) + ... + x,). The
left hand side equals zero when y; = (0, Vi, and equals > x; when y;, = |, ¥/,
The value assumed by the right hand side, however, is constrained to lie in the
open interval (0, 37 x}. Thus the likelihaod has a solution if, and only if, y
assumes cach of the values zero and one at least once in the sample.

The solution to the likelihood cquation. even when it cxists, does not neces-
sarily have nice asymptotic properiies. Consistency and asymplotic normality
are assured only when certain conditions are impesed on the large-sample be-
haviour of the explanatory variables. There are two ways of dealing with this:

(1) Assume that the explanatory variables are stochastic. The conditions are
then of the form “'the x;-s are independent, 1dentically distributed random
variables admitting moments of sutficiently high order” (ct. Amemiva
[AmeT6] and McFadden |[McE74]).

(1) Assume that the explanatory variables are fixed, in which case the relevant
conditions are that:

{1} the asymptotic vanance-covariance matrix of the y;-s exists; or
{21 the x; -5 arc bounded, 1.c. Tor some Axed constants s, M m = — o6,
M = oc we have:

m < xf <= M., Vik.
(Gourieroux-Monfort [GMZEZ1] ).

We shall assume from now on that one or the other of these conditions 18
satisfied. It follows that the maximum-likelihood estimator sy exists for all
sufficiently large #. converges to the true value b, and is asymptotically normally
distributed with mean b and covariance matrix equal to the inverse of the Fisher
information matrix:

2 —t
_ a* log (L)
=l p | e .
{ |i dhab’ }}

The expectation here 1s understood to be conditional on x.
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Summarizing our resulls, we have:

[8210g )]
o “("*{‘“[W” )

Notice, though, that we are indulging in a common and convenient abuse of
mathematical language. The correct statement of the result is that:

@2 log (L) :
{—E [W} } (Byur — b)

converges in distribution to N (0, 7).

In practice, the asymptotic covariance matrix of 334, ., which depends on the
unknown parameter b, must be estimated. We do this by replacing b by 3y,
in the expression:

3% logil) B
ar... (3 ] _p |12 ) 2.9
Valas, (.@WL] { [ dbidh’ ]}h:_ﬁ.w. { |

2.4.5 Calculation of the Asvmptotic Covariance Matrix

The matrix of sccond denvatives [the Hessian matrix in equation (2.9)] 1s
derived from expression (2.7):

d*log (L) _ 9 [M]

abab’  ab ab

_ J'F—f* o Fra—Fy+ f° _
— Z — X X, Z 1 F) XX,

ivi=l fivp =1

~[fF—7? ffO=F+f
- [_

XXV —
2 e (- F)?

xgxf. (I - yl'):l *

=1

where F = Fix;hyand f = f (x;h).
The Fisher mformation mairix is obtained when we multiply through by

minus one and take expectations. Using the fact that E(y;} = F (x;b). we

have:

82 log " |
I:E[ dlua.(u} )3 Lf (x;b)] /

Fbab - Fi{x;m |l — F (ij}]x*x“

=]
The asymptolic variance-covariance matrix of By, is therefore:

L4

4 -1
, L [f (xp)7]° .
Vilgsw (Bury=1"" = {Z F by [ — F {x;h)]xfxr} .

=1
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and is estimated with:

- —1
v e ? [f (XEIJB.'HL)-IH ' o
Valasy (b) = 177 = {Z F B [ — F(x;ﬁm,ﬁlxim} |

Remark 1: In the special case of the logit model:

F=F( - F),
and so:
—3*log(L)] ,
{W} - ; F(x;b)[1 — F(x;b)Ixx,.

Remark 2: It is possible to express the Hessian matrix in a more
compact form. Let X be the # x & dimensional matrix of observations on the
exogenous variables, and let X; continue to represent the £-th row of this matrix.
Denote A the diagonal matrix of order # whose i-th diagonal entry is:

[F ()]
Fixb)y |l — Fix;b)]

Then:

Y.
E [ d< log (L)

= X'AX,
dhab’ }
and:

Varssy (Bue) = (X'AX)

This form of the covariance matrix is reminiscent of the generalized least
squares estimator,

2.5 Numerical Solution of the Likelihood Function

All of the commonly used approaches to the numerical solution of likelihood
equations derive from Newton’s method. Its direct application leads to the
- Newton-Raphson algorithm.

2.5.1 Newton-Raphson Method
The goal of this algorithm is to find a root of the equation:

dlog (L}

= 1.
db
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To this end, we choose an initial value by and consider the mapping of b onto
the tangent plane:
dlog (L)
&b :b ! = —.
( o o

The frst-order Taylor expansion around an initial value by isT:
_ dlog[L (b)] i 32 log [L (b)]

93 3033
which constitutes a linear approximation to the original map. We can therefore

approach the desired solution with:

dlog[L (b)] & log[L ()]
a B 38600

(b — ).

(B — Bo) =0,

yielding:

32 log [L (bY] }“ dlog[L (h)]
33008, a3y ?

where 3, constitutes our first estimate of b. We take this value as our starting
point for the next iteration. The algorithm thus yields a sequence of approximate
solutions {3, } given by the recurrence formula:

82 log [L (b)] }‘1 3 log [Z (b)]

J@I:.B{J_{

Baar = 3y — { (2.10)

354303, 38
If the sequence {{3;} converges to a limit {3}, then this limit must be a root

of the likelihood equation, because:

—1
T _q J i log[L(k dlog [L (b}]
z@—h“ﬂ]ﬁhﬁ—ﬁ { PYCEYE] } 33 ;
o dloglL b))
— Ve i

2.5.2 The Method of Scoring
This method consists of replacing the term:
3 log L (b)]
a3a3

in equation (2.10} by its expectation conditional on X. This can be justified

t fﬁ represents the derivative of - - - with respect (o b evaluated at b = 3.
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when the model has good asymptotic properties, in particular in the case of
random sampling from a “well-behaved™ population. The recurrence formula
then becomes:

3% log [L (b)] ~'3lo [L (b)]
Bt = By +E{ — i 2
335 a8
In the special case of the simple dichotomy we can derive this formula in
another way. Since E{y;) = F (x;b) and var(v;) = F (x,;b) |1 — & {x;b)], we
may write:

yi = F(xb) 4w,

where E(v;) = 0and var(v;) = F - (1l — F).
It we know, @ priori, that the true value of b is close to some known vector
b, it is reasonable to expand F (x;b) linearly around by. This yields:

. (2.11)

¥i = F {Xibﬂ) + f (Xr' h{]l} X (b - bﬂ] + vy
and:
yi — F(x;bo) 4+ f (x:bo) x;bg = f{x;bp)xib + v,

The i -th observation on the endogenous variableis: v; — F (X;bg)+ f (X; bg) x: by,
and on the exogenous variable — f {x;by) x;. The covariance matrix of v 1s
approximated using the same matrix with /3 replacing b. The weighted least-
squares estimator of b 1s then:

S~ X Bl |

— F(x:B3p) |1 — F (x,84)]

« i [y — F{xBn) + F B0 %00 F (X80 X,
FxB81 — Fx8]

_ E{_EF log [L (B4)] }“

i=I

abab’
8 log [L (By)] 7 log [L (8]

x ( b +E{ abab’ ﬁ“})"
_ 3 1og[L (B1) ' 8loglL (B8]
_Bh+E{" abab’ } b
= zgh+1-

Thus, the recurrence formula obtained by successive application of lineariza-
tion and weighted least-squares estimation is identical to that from the method
of sconng.
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2.5.3 The Berndr-Hall-Hall-Hausman Method

Moving from the Newton-Raphsen algorithm to the method of scoring is a
matter of replacing:

a%log (L)

. 3% log (L)
bl with E [ ]

dbab’
From the right-hand side, we may wnte:

o a2 Iog{L] ﬁlog(L)Blog{L]
E{Zl{ " abab’ ” ZE{ b’ ]

{=

where L, denotes the likelihood of the i-th observation.
Removing the expectations operator we obtain a new algorithm involving
only first-order derivatives. The recurrence formula is now:

e PERIE

1
= dlog[L; (3x)] 3log[L; (Bu)] dlog[L (By)]
Bn + {Z ab b’ } 3b '

i=]
(2.12)

2.5.4 Convergence

To ensure that these algorithms converge, and do so in a reasonable time, we
should choose an -initial value, 3y, which is likely to be close to the true value
b. Thus the statistical problem of estimating b in a manner which is simpler
than maximum likelihood 1s not only interesting in its own right, but also yields
usetul results for ML estimation.

Even given a good start, convergence of these algorthms can still be rather
slow when the recurrence formulas above are applied directly. It 15 possible 10
improve on each of the algorithms by using a variable step-length. In this vein,
the Berndt-Hall-Hall-Hausman algorithm expands on the recurrence formula
{2.12) by the introduction of a coefticient 4; 0 < A < 1, yielding:

1
i dlog|f; (Bn)]} dlog[L; (3s)] }

= A
Ba1 = B+ h{==1 T ™

y aog [L (Ba)]
db |
where Ay is chosen by a search procedure to maximize the increase in the
log-likelihood.
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2.6 Grouped Data
2.6.1 Description

When applying qualitative models to data, we often encounter repetition in
the values assumed by the exogenous variabies such that these repeated values
correspond to different values of the endogenous variable. This is often built into
controlied experimenits, but can also occur in samples of non-cxperimental data.
The latter case may invelve, for example, households grouped by charactenstics
(size, location, age of members, income class of household head, etc.} in cross-
section studies.

Letx/.j = 1,.... ./, represent the J possible values of the vector of K
explanatory variables, and call a *trial of type j7 4 run of the experiment
performed under the conditions x = x/. Let there be n; such trials, the values
of the dichotomous endogenous variable are denoted by ¥/, i = 1, ..., n;, j =
l,..., 1.

In this case the likelihood function (2.5) becomes:

L(y;h) = HH{ (x/b)’ [1 —F (xv"h)]""f},

f=li=l

L T St
= H{ (x/b) ==t {1 — F (x'b)" 2 }]}
Letting §; denote the proportion of trials of type j for which v = I:

[ -

-3
-

we may write the likelihood in the form:
j - -
Liyv:b) = H {F (xjh)n,,-pj [] —F (xjh)Juj(l—P,,-)}_
i=1

Notice that the observed frequencies p;, f = 1, ..., J, constitute sufficient
statistics, so we can focus on their distributions, In fact, the products n; p;, j =

1...., J are independent binomial variates with distributions parameterized by
n; and P; = F (x;b). The likelihood is:
Lipib)y=

ﬁ{ PRI .A_).F(x-rb)"”‘”[lF(x-fb)]“f"f“ﬁ”}.
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2.6.2 Berkson s Method

Assume that we are analysing data from an experiment which is repeated a larpe
number of times under each of several sets of conditions. We shall see that the
model can be approximated linearly.

Let J be given and assume that each of the integers n,, .. .. ny is large (notice
that this assumption is stronger than that encountered in section 2.4.4, which
merely stated that the sumn = n) + ... + »n; be large). For each j, p; is the
sample mean of the large random sample {y;', i=1,...,n; } Since n; is large,
p;isclose 10 E (yi:’) = F {x'b) = p; by the law of large numbers. Also, by

the central limit theorem, the random variable /7 ( Pi— p_,—) 15 approximately
normally disiributed with mean zero and varance equal to:

var (};}) = F (xfh) [] - F (xfh)} =p; (1 — p;).

We can therefore write:
pr = F(xfh) vl je=1..

where the errors are independent and normally distributed with mean zero and
variance:

var (Hf) = & (1 — pj) .
fij

We still do not have a model which is linear in the parameter b, however. To
move il that direction, we use Slutsky's well-known theorem on convergence
in probability (cf. Cramer [Cra46]). Since n; s large:

P~ F (p) = B L[F (B)] = b,
and the random variable:
g [FH(p) — F~ (p)] = A7 [F71 (B;) — x/D]

1s approximately normally distributed with mean zero and variance:

(dF;—;m)_J ) {fp[jﬁ‘_(;}))] a3

;i (] *" PJ') +
£ (x/b)]°

This brings us finally to the approximating model:

pi (1= p;)

Fliph=xb+uw, j=1...., VA
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where the w ;-5 are independent and normally distributed, with mean zero and
variance:

var () = 21z pi) _ FO0b) (1= F (b))

n e e [ (b))

This approximation can be regarded as a model in which the deterministic
part is lincar in b. Notice that b enters into the expression for var ('w_;), $0 the
error term is heteroscedastic, though not serally correlated. The paramcter b
can therefore be estimated by weighted least squares, with weights obtained,
for example, by replacing var (m ;) with:

ﬁ_}' (] - f?;) .
n {fIF (]

In the casc of the logit model, the variance of the disturbance term becomes:

F (x/b) [1 — F (x/b)] 1

var (w;) = — ’:Ef (x-f'b)jz - n;F (x/b) [1— F (x/b)]’

2.6.3  The Minimum Chi-Square Method

This method consists of finding parameter values minimizing a measure of the
distance between the observed [requencics f; and the theoretical frequencies
F {x/b). Generally, the measure chosen is of the type used in classical x~ tests
of goodness of (it. The distance for trials of type j is therefore:

¢ (b) ,, ﬂ
e ()] {omp-fi-r ()]

F (x/b) N [ —F (x-jh) o
oy
F(x/b) [1—F (x/n)]

The minimand over the entire set of ohservations 1s given by:

= fi_;‘
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Alternatively, we can minimize;

| N A
B

f=l

The estimator obtained by minimizing ¢; is the same as that obtained by
wriling the model in the form p; = F (x,;b) + v; (as in Berkson's method) and
applying nonhnear least squares, with the obvious correction for heteroscedas-
t1city.

Given that #; is large, il is intuitively clear that there is little to choose
between minimizing either ¢ or ¢». Unfortunately, neither set of first order
conditions can be appreciably simplified, even if we specity the form of F
(cl. section 4.4 below). Consequently, parameter estimation must be performed
using numecrical methods,

2.7 Example: Pass Rates of First-Year Medical Students in France

This study, described in Lassibile [1979], utilizes a logit model to explain a
single dichotomous variable. The obscrved endogenous variable, y, reflects the
grade received on the {inal examination by first-year medical students: y; = 0
indicates a failing grade, v, = 1—passing.

The probabilily of success is assigned the logistic form:

1

Priy, =1) = A
ro ) F+exp{—xh)

The explanatory variables and their estimated coefficients arc shown in
table 2.1. Notice that the last four explanatory variables, excluding the con-
stant, are dichotomous (dummy) variables, “Previous studies™ is set to onc if
the student was enrolled in higher education the previous vear, zero otherwise.
“Type of high school™ is assigned the valuc one if the student attended a public
high school (in the French or American scnsc), zero otherwise. The last two
dummy variables correspond to a three-way division of subject areas in the ma-
triculation exam. The “omitted category™, with both dummics taking the value
zero, occurs when the student specialized in natural sciences.

Notice that the numerical value of an estimated coefficient has no dircet in-
terpretation, whereas its sign and significance have. The sign of a coefficient
tells us whether the probability of passing the examination is an increasing or
decreasing function, ceteris paribus, of the variable. Thus, for example, the
negative coefficient on age implics that older students have less chance of pass-
ing, and significantly so. at the one percent level. Conversely, the insignificance
at the five percent level of the coefficient of “type of high school™ shows this to
be a variable with little explanatory power with respect to success or failure in
the exam.
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Table 2.1. Estimated coefficients of factors affecting pass rates

Eslimated
Vartable coefficient  Significance
Size of home community —0.31 +++
Parents” wealth 1.16 +++
Age —3.65 +++
Grade obtained on a test of logical ability 018 ++4
Average grade at undergraduate level 5.27 +++
Previous studies 1.85 +—+
Type of high school 0.37 +
Bacheiors degree in math or physics 1.39 +++
Bachelors degree in humanities —15.13 +
Constunt —0.53 +++

+: 10% ++: 3% +++: 1%

The “quality” of the model was evaluated using the likelihood-ratio test
(cf. section 4.8.2), which involves comparing the model with the estimated
coefficients to that obtained by setting all coefficients other than the constant
to zero. The x 2-statistic of 86 with nine degrees of freedom is very significant.

Lassibile used this model to predict the probability of students with given
characteristics passing the exam. Other possibic applications may include, for
example, determining an admissions policy to ensure in a given pass rate.

2.8 Specification Error

The estimation methods which we have introduced — maximum likelihood,
Berkson’s method, minimum-x? — have nice asymptotic properties when ap-
plied to the correct model, i.e. when equation (2.5) represents the “true” like-
lihood function for the observations. It is obviously important to see how well
these estimators perform in the presence of specification errors.

Errors which may occur include: incorrect specification of the functional
form F, violation of the assumption of independence of the observations, im-
proper selection of explanatory variables, and the introduction of biases via the
sampling methodology (cf. exercises 6 and 7).

2.8.1 Misspecification of F

2.8.1.1 The Choice between Logit and Probit
The logit mode! was originally introduced as a computationally
simpler approximation to the probit model. What are the consequences of
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assuming a logistic form for F when the true distribution is normal? Using
Monte Carlo studies, Morimune [Mor79] demonstrated that there is generally
little difference in parameter estimates obtained by the two methods — apart
from a scale factor, which we shall discuss presently — or in the precision of the
cstimates.

This is explained by the fact that the shape of the normal and legistic distri-
butions are very similar. The usual form of the logistic function, namely:

q 1
Fx)= 1o

: 2 .
has mean zero and variance %-. Thus, to comparce the normal and logistic

distributions we should use the standard normal and a variant of the logistic
cumulative density function given by:

1
(1)’

Gy (x) =

where ¢ = %
As figure 2.2 shows, |Gg (x) — @ (x| 18 small for all real x.

2.8.1.2 Misspecification of F when X Normally Distributed

We consider here the consistency of estimators for b obtained by max-
imizing a likelihood function which incorporates an incorrect choice of F. Sup-
pose that the true model, conditional on x, is that y;. ..., ¥, ate independent,
with:

Priy, = 1) = G (x;b).

Priy,y =0 =1-G(xb), Vi

where G 15 4 cumulative density function. Suppose further that we estimate b
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by maximizing:
[Ug (f_,:l = i {}!E ]{}g [,F (X;‘E*)} + (1 — ;) I(]g [1 - (x;'l‘—j*)j| }a
£=l
{2.13)

where F is some ¢.d.f. which differs from .

Proposition 1: Let the model contain a constant term, so that:
x;b=by+ x5Hb + ...+ 510k,

Assume that (x;3, ..., x1). i = 1.....#8 are n independent random vectors
with the same multivariate normal distribution, then the estimators 3 obtained
by maximizing the incorrect likelihood function (2.13}) are such that gﬁ con-
verges to E—:, v, £, where ﬁj is the estimate for b; derived from the impr&rperly
specified model.

Thus the coefficients of the explanatory variables in the true model are con-
sistently estimated to within a scaling factor. We now sketch a proof, referring
the reader to the article by Ruud |Ruu83] for a more rigorous demonstration.

Proof: Asymptotically, the maximum-likelihood estimators obtained
by maximizing "—’ﬁfﬂ tend in probability to the solution of the himit-problem:

nEponwilug[L(bﬂ],
with:
plim”ﬂllog [L ("), = Ex (Eyx {ylog [F (xb™}]
+ (1 —yylog [1 — F (xb*) ] }).

where plim means probability limit as usual, E; denotes taking expectations
with respect to the marginal distribution of x, and E,x — expectations with
respect to the conditional expectation of v given x1.

Since E (v) = G (xb), where b is the true parameter value, we have:

| .
plim, = log [L (b*)] = E, {G (xb) log [ ¥ (xb")]

+ [1 — G (xb)]log [1 — F (xb*}] }.

' for a discussion of the application of the expectations operator to bivariate distributions, cf.
Johnston [JohB4], appendix A-8,
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To focus our attention on the ratios of the coefficients we perform the fol-
lowing transformations:

by
=5
c; = b —cibe, k=2,

W * L
(.n — bﬂ - ('].bU°

K
5

Let:
&= (i ..., c})’
X' =(x2,...,xg)
x| =xb
then:

xb* = h;:'l' + IUbT + -":2!'5; + ...+ JCK,'E?:“
=ty + ¢]bo + xi b1l + xy (bgc‘f + -:r;)
-+ T X (}JKL‘T + C:;{)*,
= ¢f + X} €] + X7 = x"et.
In terms of the new parameters, the maximization problem becomes:
]
max plim, — log [L* {¢*}],
c* 1
with:
1
plim, —log [L™ {¢"}] = E. {G (xb) log [F {x*¢"}]
1
+[1— G (xb]log [I — F (x*¢*)] }.

The asymptotic first-order conditions may be written:

f et ]

We must now see whether these equations have a unique solution ¢*, such
that €* = 0. Equivalently, we can verify whether the system of K + | equations:

fles+xie) [G (1) = F (g +xien)] {

Fc+xi¢}) [1 = F (¢ +xtct)] g

Ex

solves uniquely for ¢ff and ¢7. By our assumption of normality. we have:

Ex (X"

®y et
"1) = z + WX],
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where z and w are vectors of constants. Writing the last X — | equations of the
system in the form:

£ (s 4 xi€q) [G (xt) = F (@ +x7ch)]
F (e +xjed) [1— F (e +xie])]

2, E. [x*|L,x]] 3 =0,
we see that they are linear combinations of the first two equations, so the result
holds as required. O

2.8.2 Non-Parametric Methods

As we have just seen, the maximum-likelihood method, applied to a misspec-
ified distribution function ¥, does not vield consistent estimates of all the pa-
rameters.

It may therefore be of interest to introduce non-parametric methods of esti-
mation, i.e. methods which make no assumptions about the form of F. Such
methods are more robust than those just described, but are less precise in cases
where a fairly good approximation to F can be chosen.

2.8.2.1 The Maximum-Score Method
This method {which should not be confused with the method of scoring
described in section 2.5.2) was proposed by Manski [Man75]. It yields consis-
tent parameter estimates provided that the distribution F has median zero.
The model is as follows. Suppose that, conditional on X, the cbservations
¥1.....¥s Oonthe endogenous variable are independent with:

Priyv, = 1) = F (x;b},
Priy; =0) = 1 — F({x;bh).

for all ;. Here F is an unknown c.d.f. whose median i1s assumed to be zero.

To estimate b by the maximum-score method we count, for an arbitrary b,
the number of sample points i for which either x;b > 0Oand y; = L or x;b = 0
and v; = 0. The maximum-score {MS) estimator of b is given by thc value
which maximizes this count.

Proposition 2: Maximum-score estimation yiclds strongly consistent
-estimators’.

Proof: A common method of estimation consists of maximizing {or
minimizing). with respect to a parameter b, some objective function of the

T An estimate ix said 1o be stronply consistent if it converges to the true value of the parameter
with probability one as »# tends to infinity.
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form:

D guxib),

i=l

where g is known.

We shall examine whether such an estimator exists and is strongly consistent.
We assume throughout that x is stochastic. As in the proof of proposition (1), Ey
denotes the expectation with respect to the marginal distribution of x, and E,,
the conditional expectation of y given x. The general proceedure is as follows.

(1) We investigate whether:

1 ”
- ZQ (¥, %:i b) (2.14}

i=1

tends to a limit as » tends to infinity. Under assumptions such as “conditional
on the x;-s, the random variables y;, ..., y, are independent”, and “‘the
X;-8 are obtained by random sampling from a well-behaved continuous
distribution,” it can be shown that;

1 |
- ST g (X3 b) =% Ex {Eix[g O, %5 D)}
i=1

(Sece Jennrich [Jen69] for details of conditions and proofs).
{11) As to the maximization problem:

max E, [-E-}:p;g (¥ X4 h)] \

if this equation has the true value of the parameter, by, as its unique solution,
then the value of b which maximizes equation (2. 14) exists almost surely
for sufficiently large n, and is a strongly consistent estimator for by,

We now follow this approach to study the asymptotic properties of the
maximume-score estimator in our model.
Define a function o (¢} : £ — {(, 1}, such that:

chI:r)={l, if ¢ = 0,

(), otherwise.

Muximum likelihood estimation is then a matter of choosing b to maximize:

H
> g (iox;i by,

=l
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where:

) . a (X;‘h), if M= 1!
8(}';~ X; h} —_ { 1 —a (X;‘h}, if ¥ o= 0.

The associated limit-problem is to maximize E, [G {(X: b}]. where:

(7 (x;;b) =E[g (¥, x:; b))
—a(x;Priv=1|x)+ [l —a{x;h)|Pr{y =0 x),
= o (x;by £ (x;bp) + |1 — o (x;)][1 — F (X:bo) .

_ F (X;‘b{}), it X;‘b = 0,
1 1 = F(x;by), otherwise.

Now observe that & (x. b) differs from < (x, by) only if either i) x;b < 0 <
x;bg or ii) x;by < 0 < x;b. By our assumption about the median, F is an

increasing function such that F (0) = % Thus & (x, b) < % < (X, bg) In

casc i, while 7 (x, by) < % < (7 (x;b) in case ii. with strict inequalitites if
¥b = 0. It fellows that 5 (x;b) =< G (x;by) for all x, b, with strict inequality
if (x;b} (xX;by) < O,

Let b be any vector which is not a scalar multiple of bs. Then the set of x
tor which (x;b) (x;bg) < O is non-empty, and under weak assumptions about
the distribution of x will have positive probability, and thus E|C {x;b)] =
E[C (x:by)]. We now have shown that by is the unigue solution of the limit
problem; the existence and strong consistency of the MS estimator follow from

this. O

Notice that the procedure just described does not involve estiinating the
unknown c.d.f. F. This can, however, be done using non-parametric methods —
(cf. Cosslett |Cos81] and Mansk: [Man85]).

2.8.2.2 “Semi-Parametric Discriminant Analysis”

Klein and Spady [KS86] introduced a2 procedure which differs from
that proposed by Manski and Cosslett. It is founded upon the following two
observations.

First Observation  There are a variety of non-parametric methods tor
estimating densities, many are based on approaches of the “kernel” type. These
can, in principle. be used to estimate the form of the conditional probability:

Pr{yv =1]|x).

Unfortunately, these methods require a very large number of observations
when there are several exogenous variables. Thus, fora given degree of precision
in estimation, the required number of observations increases by a factor of about
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17 when the number of explanatory variables increases from ane to three, and
210,000 times when the number of explanatory variables increases from one to
lem.

We can revert to the case of a single conditioning variable by using Baves’
Theorem. Let the variables x; and y; be independent and identically distributed.
Suppose further that x is continuous with g (x) and g (x| y = 1) denoting the
marginal and conditional joint densities respectively, then:

g(xly=1}

Pri{y=1|x) =Pr(y =1)
g x)

Second Observation  This application of Bayes™ Theorem makes the
conditioned rather than the conditioning variable a vector, The problem can be
further simplified in our model, where x affects y only via the scalar quantity
xh, if we write:

Priy=1x)=Pr(y =) Sy =1 (2.15)
g {xb}

Denote the right hand side of equation (2.135) Pr (xh). If b were known, we
could estimate Pr (xb) by:

G txby = 5RO =D -
Prixb) =% Z (xb) . (2.16)

where & (xb) and g (xb|y = 1) are non-parametric estimates of the densities
g (xb} and g (xb|y = 1), and ¥ the obscrved mean of y. For example, adopting

the Gaussian kernel ¢ (z) = v,,',—q exp (— E) vields:
~ %(ﬁ [xh—xfh]
~ =1
gbly=1="pF— -,
> Y
i=l1
- b—xb
> Iy [x__.ﬁﬁ;..h}
g (xby = = _ . (2.17)

In fact. b is unknown, so the cxpression p (xb) in equations (2.15) and (2.17)
is not a feasible estimate of Pr (y = 1)x). We therefore adopt the following two-
step procedure:
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(i) We solve:
max Z {}n- log[Pr (x;b)] + (1 — ¥:) log [1 - ';'"("*’b)} }

to find an ““approximate maximum-likelihood™ estimator, By, for b,
{ii} We then use Pr (xf}M L) as an estimator for the response function
Priy = 1|x).

Klein and Spady [KS86] demonstrated that 3,1 is a consistent estimator for
b. It is probably asymptotically normal, though this has yet to be demonstrated.

The interest of this approach is that it provides estimates, not only of the
vector b, but also of the response function Pr (¥ = 1| x), without making any
a priori assumptions about the form of the density function.

2.8.3 Omitted Variables

2.8.3.1 Errors in the List of Explanatory Variables

It is well known that we can estimate the standard linear regression
model by ordinary least squares whenever relevant variables which have been
omitted from the model are orthogonal to the included regressors. Unfortunately,
this property of the linear model does not generalize to maximum-likelihood
estimation of qualitative response models.

We shall verify this using a logit model with two explanatory variables x!

and x>

Priy; = 1) = F (x!b) 4 x7b»),
with:
F{x)= :
T —exp(—x)

Suppose we estimate b, by applying maximum likelihood to the misspecified
model:

Priy, = 1) = F (x'b}).

- We solve:

[

Z b"i —F (xflb?” xil =0,

i=1

which converges in probability to the solution of:

G = Ey {E}-Ix [}’ — F (-’Clb?)] xl}‘
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Substituting for y, we have:
0 =Ey {[F (x'br + x%h) — F (x'b7)] '},

This yields a consistent estimator of b, if, and only if, the last equation is
solved by b, = b}, and this happens if and only if x' is orthogonal to:

Fx'b+x*h) — F (x'8).

This orthogonality condition is very different from the corresponding one for
the linear madel: By (x'x*) = 0. As it depends on the unknown parameters b,
and bs. it is of no practical use.

2.8.3.2 Correction for Omitied-Variable Bias

Consider again the system with repeated observations from section
2.6. As in that section, let n = ny + ... + n;, where n; denotes the number of
trials of type j, and let p; denote the proportion of trials of type j for which
¥ = L. Then:

pi=F(x'b)+v;, j=1,....J
where v ; is a random disturbance term with mean zero and variance:

F (xjh} [I - F (ij)]

H}'

It often happens in practice that the number of observations (#;) for cach
trial of type j 1s sufficiently large that the foregoing expression for the variance
evaluates to a negligible amount. However, a deterministic model of the form
p = F {x'b} will not fit the data exactly.

This difficulty arises because the error sttucture of the model takes into ac-
count only the random component of individual behaviour and ignores other
sources of error: for example, errors in measurement and voluntary or involun-
tary omission of variables. We shall examine the latter source of error.

Let the observed qualitative variable y/,i = 1,..., ni,j =1,.... 4 be
related to a latent quantitative variable };’ * as follows:

J 1. lf};’r* = {),

Vi 0, otherwise,

and let the latent variable be determined by the model:
}}}*:X{*h*-'—u:r‘ j:lq+p.,.f+ !-'.=1,...I‘1_;7

Assume further that only the exogenous variables {x/} < {x/*} are observed.
We can then write:

vi'=x'b+ e +ui,
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where ef represents the joint effect of the omitted variables. This additional error
is independent of the structural disturbance #]. Furthermore, it is reasonable
to suppose that some of the omitted variables depend only on the trial type J,
while others depend on the individual i. We therefore decompose €/ as follows:

¢ = o + 8,

where «/ and ﬁij are random variables with mean zero. and which are indepen-
dent of each other and of the x/-s.
Pulling all this together, we have:

. ) . ”
vt =x'b+a +ul”,
where:
J= __ nalf J
ue' — ﬁa’ + =

The essential difference between this model and the usual one comes from the
term o/ — different trials of the same type are no longer independent.

Turning our attention to the observed gqualitative variables ¥/, recall that §;
denotes the proportion of trials of type j for which y = 1:

”j

1 .
pj= EZH’

=1

Conditional on ¢/, the random variable n; p; follows a binomial distribution
with parameters n; and F (x;b + «;), where F denotes the c.d.f. of —u}".
Again, we see that the usval model is complicated by the introduction of the
random variable o/. What we do about this complication depends on the avail-
able nuraber of observations # ;. There are three cases to consider:

(i) n; = 1 for all j. Here the type effect cannot be separated from the indi-
vidual effect, and there 15 nothing we can do.
(11) r; 18 large for all 7. Here we have, approximately:

By=F(xbtuo;) e Fl{p)=xb+ua,

and we revert to a linear model. Since the variance of the error term e/
does not depend on the parameter b, we can estimate b by ordinary lcast
squares, regressing F~' (p;} on x;.

(iif) For all j. n; 1 but n; is not very large. In this case we must take into
account the distribution of the random variable oo/, Assuming that this
random variable is continuous with density function v, the unconditional
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likelihood function is given by:

i/, o
nip;! ”J - ”;PJ)T

x [1— F (x,b+a)]" ") y (o) den.

Assuming for simplicity that ¥ is known up to a scale parameter, we may
maximize the likelikood with respect to b and that parameter. The awkward
aspect of this procedure is that the ML esuamator of b depends strongly on
the hypothesized form for 1.

2.8.4 Correlated Errovs

In the linear model, some of the nice properties of QLS estimation carry over
to the case of correlated errors — unbiasedness and consistency, for example, A
similar result holds for ML estimation in the simple dichotomy.

Suppose that the observed dichotomous variable v is related in the usual way
to an unobserved latent variable v*, generated by a linear model. and supposc
that the errors in this linear model follow a first-order antoregressive process.
Specifically. let:

_J 1o iy =0, _
}I_{U. otherwise:’ p=L 1 (2.18)

and:

¥, = x%b + u,,

Hy = pit;_| + €.

where {¢,} is a series of independent N (0, 1) variates and || =< 1. In this
case, the vector of latent variables ( ¥}, .... ¥} has a T-dimensional normal
distribution depending on b and p. Denote the corresponding density function

by ¢ (}-‘]", A S 1 B p].
In terms of the latent variables ¥*, we sec that the likelihood function is:

L(}H....,}-‘f;h,(ﬁ)=f---jqb(}!T,...._‘y‘;;h,qb)d}"l"...d_v}'i,

where the region of integration is dictated by equation (2.18).

Thus, the correctly specified likelihood function is a T -dimensional integral.
Attempting to maximize such a tunction leads to insuperable computational
problems.

Under these conditions it is often practical to simply ignore the existence
of correlation, 1L.e. to proceed as if o were zero, The estimator of b is then the
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solution of the system:

T
max Y {y, log [® (b)) + (1 — y)log 1 — & (x,D)1}.

t=1

It has been shown by Robinson [Rob82] and by Gourieroux, Monfort and
Trognon {GMTS80] that this cstimator of 5 is consistent, but that the usual
formulas for standard errors have to be modified.

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Exercises

Can the use of a linear formulation [as in equation (2.1}] be justified if we possess &
priori information of the Lype: the value of the parameter b is closc to some known
value b{;?

Consider a logit model with a constant term. From equation (2.8), show that the
maximum-likelihood estimator 34, satisifies:

Z lyi — F (x:8u)] = 0.

i—l

How can this result be used to verify the precision of numerical calculations
of I{jML ?
An argument which may be made against using the model:

Priy, = 1) = F (x;b).

where £ is a distribution function, is that this formulation only allows for a mono-
tonic relationship between the explanatory variables and the probabilily of observing
1. Do you agree or disagree with this argument?

Let @ represent the standard normal distribution. Show that log (<€) and log (1 — &)
arc concave functicns.

Consider a population in which each individual will become ill with probability #.
#n individuals are drawn at random from this population, what is the distnibution of
this sample?

Now we continue drawing uniil the number of sick people is equal 10 some value
#t;. What is the distribution of the observations now? Verily that if the number of
individuals who are well, ny, and the number of sick individuals, sy, arc the same
in the two samples, the likelihcods only difler by a constant.

Endogenous sampling

An individual with characteristics x; prefers taking the subway {y, = 1) with prob-
ability F (x;b) and taking the bus (y; = 0) with probability | — F {x;b).

In order (o estimate b, we draw a random sample of ten individuals in the subway
and twenty individuals in the bus and observe their characteristics. Why iy this
sampling technique called endogenous sampling? What is the distribution of the
observations?

(Continuation of 6).

Show that estimates of the parameters obtained from the standard dichotomous
maocdel will be biased.
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Using the logistic model:

1
| +explat + &)

P =
we wish to describe how the proportion of the populaticn ownmg a ceriain good,
P, evolves over time, Show that:

dpy
1— p

= —apdt,

and that this relationship implies that the ratc of change of the population proportion
possessing the good is a function of the number of people who alrcady own it. How
can we modify this model so that the share of owners does nol exceed ¢ = |7
Venty that the maximum-score method is equivalent to minimizing:

It
E sz.-h::u — iy = 1.

fe=1
where:

o _ 41 ifxb>1
*xb = 3% 0 otherwise ’

and

1 ifw =1
b 0 otherwise’



3 Modelling

We have seen several cases involving a single dichotomous variable (cf. section
2.3). and have discovered that they can all be described by the same model (cf,
sections 2.2 and 2.3).

When dependent variables can take mare than two values. or when we have
more than one dependent variable, qualitative models assume a variety of forms.
The search for the appropriate form is thus a crucial element of the study of
qualitative response models.

In this chapter, we describe several representative models and look at some
of their applications.

3.1 Grouping
A L1 The Case of a Single Variable

Assume that we want to examine how household /’s income, y. depends on a
vector X; of explanatory characteristics. While income 1s, in principle, a con-
tinuous vanable, we often only dispose of data on income brackets. Let the
brcakdown be as in table 3.1,

The observed value, income bracket, is in fuct a qualitative variable taking
K + 1 values. Letting & = 0. 1..... K represent the values in their natural
order, and y; the qualitative variable, we have:

vi=k S < v < ey,

where rp = —oC, Fg 4| = +00.

To complete the model we note that it is reasonable to use a linear tormulation
to describe the relationship between the unobserved actual salary (the latent
variable) v and the household's characteristics:

¥ =xb+ u, (3.1)

I
where b 15 a vector of unknown parameters and where the distribution of the

38
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Table 3.1. Breakdown by salary group

salary less than ry
salary greater than »y and less than 72, where () = 12}

salary grealer than rg_ | and less than g, where (Fg ) = Fp )
salary grealer than rg .

disturbance term, w,, is such that Z* follows a cumulative density function £,
Assume that the error terms corresponding to different individuals are uncorre-
lated. From cquation (3.1} we derive the distribution of the qualilative variable
¥it

Poi(b) = Priy; = 0y = Pr (v < r|).

(F| X;‘h)
=rF{2t_ ,
¥ ¥

Pii(b) = Pr{y; = 1) =Pr(r <
:F(z_ﬂ)_F(ﬁ_ﬂ)_
) 42 F o

Py;(b) = Pr(y, = K) = Prirg < ¥},

: X,'h
_=1—F(ri— )
¥ F

This type of model is sometimes culled ordered polvehotomous univariate
(a natural order to the values assumcd by y, several values, one variable).

When the distribution function ¥ 1s normal with mean zero the modcel 15
called probit and when F is the logistic tunction we speak of the logit model.

From a practical point of view, methods appropriate for grouped data are
only of interest when the number of groups is sufficienily small. Otherwise, a
linear regression will yield an acceptable continuous approximation to the
variable v;.

3.1.2 The Case of Two Variableys

Assume that we want to explain salary y¥}* and savings ¥7* as a function of

a household’s characteristics, and that we have grouped data on these two
endogenous variables. To simplify, we'll assume that each of y! and ¥} can
take two values, and that these are determined by the threshold values v and



40} Ecomometrics of (Qualitative Variables

respectively. This is the case of two dichotomous variables;

i 1. if }-‘I-l"‘ > o,
1,,-‘. —_— )
" (0. otherwise,

B 1, ifyf*z.s.
T = 0. otherwise,

The relationship between the latent variables v!*, ¥2* and the exogenous

-t

variables x can be made explicit through use of a linear model:

1
b?
have a joint density function F {u', #*). We assume that disturbances for dif-
ferent individuals are independent:

h|.
where b = [ is a vector of parameters and where the crror terms (u!-' , u?)

Po: () = Pr(y! =0, y? = 0),

* s

=Pr (" < w. 3" <),

These probabilities can be expressed in terms of F, vielding:
Py () = F (w — x/b', s — x*h?),
Py (b) = F (w —x;b', +00} — F (w —x/b', s —x;b°),
Py (b) = F (+00,5 —x;h*) — F (w — x!b'. 5 — x;b"), (3.2)
Py =1—F (+0o0,s —x{b*) — F {w —x/b’. +00)
+ F (w — x,!h',s — x?bz)

This model is called ordered bivaricate dichotomons.
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But what distribution should we postulate for £7 It is usuval in these cases to
assume that the disturbance terms 221, and u; are correlated. We obtain a probit
if we let the distnbution function be normal two-dimensional with mean zero
and a varlance-covariance matrix given by:

0'12 Flenes
po oy 0’22 -

Even though this formulation reflects & simple model we see that the proba-
bilitics involve double integrals, rendering their calculation difficult. Derivation
of a logir model for this case would require a straightforward generalization of
the logistic distribution to the two-dimensional case. This generalization, if it
exists, 1s not yet known.,

3.2 Models with Interpretable Quantitative Variables

The models we shall examine in this section ditfer from those in the previous
section in that the qualitative variables do not have the same intuitive interpre-
tation as the underlving latent variables.

3.2.1  Reactions in Physiological Systems

In a 1970 study of respiratory atlments in coal miners, Ashford and Sowden
[AS70] sought to explain shortness of breath and wheczing as a function of
age.

For each symptom we define a resistance function depending on the miner’s
age:

yr=g' + b'x + o' {shortness of breath),
v = a” + b°x + u” (wheezing),

where a!, @%. b!. and b? arc unknown coefficients, x represents the miner's age,

and #! and #? are random variables whose distribution is bivariate normal with
mean zero and covariance matrix;

B!

As in section 2.2, v' and v° can be interpreted as the difference between the
applicd dosage and the highest dose the organism 1s capable of withstand-
ing. However, neither the dosage nor the tolerance are observable. Since the
only explanatory variable we have is age, only the sign of this difference is
identifiable.
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Table 3.2, Number of miners showing symploms, as a
Junction of age

Shortness of breath Yes No

Wheezing Yes No Yes No Total
20-24 9 7 a5 1841 1952
2529 23 9 105 1654 1791
3034 54 19 177 1863 2113
3539 121 48 257 2357 2783

Age Group 4044 169 54 273 1778 2274
4549 269 58 324 1712 2393
50-54 404 117 245 1324 20090
5559 406 152 225 967 175{)
664 372 11014} 132 526 1136

Total L8277 6 1833 14022 18282

The miner shows symptom j, where j = {1.2}. when y/* = (. and does
not when v/* < 0. The observed qualuitative variables are the two dichotomous
variables;

O Loy =0,
Y=o, olherwisc,
}.-2 — I’ |f}2* 2 “’

). otherwise.

For each observation this coupiet can take one of four values: (L. 1), {1, ().
{0, 1), (0, 0}, which are observed with probabilitics analogous in form Lo equa-
tion (3.2).

Note that the goodness of fit of the model can be inspected visually. Let
1. (x) represent the proportion of miners of age x showing the first symptom;
if the model is true, we have approximately (ctf. section 2.6.2);

&g ) ~al +b'x
The points defined by ©@ ' [ 1. (x)] should, more or less, tall on astraight line,

Furthermore, the values «' for ¢', and 8! for »! obtained by visual examination
of their graph provide usetul initial values for numeric estimation procedures,

3.2.2 Success in University Studies

We can easily generalize the example in scetion 2.7 1o a case in which we si-
multancously consider the probability of success or fatlure in several successive
yeurs of university studies.
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Consider, for example, the case of a two-year program. Each year ends with
an examination, if the student receives a grade greater than or equal to fifty
percent he passes. otherwise he fails. A passing grade at the end of the first year
allows the student to move on to the second year, while a pass after the second
vear results in a diploma being awarded. Failure in any year results in expulsion
from the program.

Three scenarios are possible:

Results of a Two-year Program

Case 1: The student fails has first year,
Case 2: The student passes his first year and fails his second year,
Case 3: The student receives his diploma.

These cases, y;. j = {l. 2, 3} obviously follow directly from the students’
grades, which constitute the natural focus of our model building.

Let V! represent the grade received by student i after the first year. This
grade depends upon the student's characteristics; V! = x;b; + v/, In the same
manner we mode! the student’s grade on the second exam: V,-z = ab‘:—l +%7:ba +
v?. The presence of V! in the second equation indicates that the second year’s
results are influenced by those of the first year. The disiribution of the observed
gualitative variable 1s seen to be:

P =Pr{y = 1)

= Pr{V! < 50).
Py = Priy; = 2),

= Pr{V = 50, V7 < 50).
P = Pr(y; = 3),

= Pr{V; = 50. V7 = 50}.

This type of model is called frichaotomaous sequential. To complete the model
it remains to specify the distribution of the disturbance terms (1,'!-1, vf) (cf.
exercise 1).

3.2.3 Choices Based on Cost Comparisons

A manufacturer considering replacing some machines, a firm looking to site a
new plant. a houschold evaluating which type of cnergy to use for heating: all
these represent situations in which cost comparisons are approprate.

Let us denote the individuals /.1 = 1,.... /N, and the options they face
kok=1...., K. Option k chosen by individual / entails a cost of ¥*. This
cost depends upon the characteristics of the individual (for example, the size
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of the house). as well as on the characteristics of the selection (1.e. electricity,
gas, etc.). To model these dependencies we use a linear formulation:
v = xfbk + H':L

I

where u* represents the error term.
Individual i chooses the least cost option. The probability that he will choose
option zero is thus:
Pri{yv; =0) = Pr(V-ﬂ < V!, V‘-n < Vf, PR VA, VE"‘)

3 i
:F‘r(.uiTl —uf = ch‘bk —1? —bﬂ), k=1,...K.
The exact form of these probabilities depends upon the specilication of the
error term ¥ (cf. section 3.3 and exercise 2).

3.3 Individual Preferences: One Decision-Malker!

In the cases we have examined thus far the values assumed by the lutent variables
were directly interpretable: that will not be the case for the models introduced
in this section. While the models we are about to consider arec mathematically
close to those in section 3.2.3, the interpretation of the resultls, especially the
coefficient estimates, is very different.

The purpose of these models is to analyse individuals” preferences based on
observations of their behaviour when confronted with certain choices. These
models are usually constructed on the basis of the theory of stochastic pret-
crences, which derives from the application of statistics to the principles of
revealed preference. They can be used, for example, to describe how people
select vacation destinations, the mode of transportation they use to commute,
how they vote, under what conditions firms may opt to dclay investments, etc.
The difference with our analysis in section 3.2.3 is thal now the criteria on
which decisions are based are fundamentaily subjective.

3.3. 1 Choice Sets

In order to conceptualize how an individual makes choices, the best place to start
may be simply to imagine her faced with certain options, and then Lo watch her.

Suppose she has to select one option s from a set of possibilities M, called
~ the feasible set, and that the choice depends on a vector @ representing the
state of the world (or state of nature). Her behaviour would be perfectly defined
(deterministic} if we knew how she would react in every possible state of the

! The material in this section, as well as in appendix 3.1 owes a lot w previous work conducted
with Eric Renanlt.
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world @ = £2, i.e. for each m € M and «w € 2 we bave an unambiguous
relationship from « 1o #1.

A q1u 18 called the choice set of m and represents the sct of all w for which m
is chosen. The family of choice sets generated when m varies in M constitutes
a partition of £2, and, conversely. every partition of £2 defines a possible course
of action,

In this scenario, in which a person’s choices are observed and analysed, the
individual conducting an experiment can sometimes dictate which options are
available. Thus, for example, he may ask: do you prefer going to the theatre, to
the cinema, or to a museum? Or he may simply ask: do you prefer going to the
theatre or to the cinema?

Let us formulate a madel to descnibe the mmdividual’s behaviour for each
possible outcome. If we denote A the universe of all choice sets. we have:

{Any. MCM, card(M}=>2, meM}.

For example, if M includes three options {1, 2., 3}, the family of choice sets
contains nine members:

Ay Az Ay

Az Ay

33
A Az (-3
Azppz Azpe;

Definition 1: We call an individual’s choices rational il
Yime M CM, Awmu C Apw

As the number of choices increases, the number of states of the world which
results in each one being chosen decreases. In other words, a rational individual
who prefers m when given a choice from the set M will also prefer s when
choosing trom a smaller set which contains m.

Remark 3: A traditional representation of the individual’s behaviour
agsumes that preferences can be represented by a utility funciden V. Let V,, ()
represent the level of utility associated with 7 when the state of nature 1s w. If
the consumer makes choices in order to maximize utility, his choice set Ap,
15 given by:

Ayt = {1 Vi {w) = Vi (). Y £m, m e M},

|we exclude the possibility that V,, () = V- (w)]. It can easily be verified
that, given the form of the choice set, this represents a rational choice by the
individual.

A more interesting case is provided by the inverse situation.



46 Econometrics of Qualitative Variables

Proposition 3: Rational choices can be represented by a utility
funciion.

For a proof see appendix 3.1,

From here on we will make use of the notion of a utility function. This
function has all the usual propertics. such as being unigque up to a monotonic
transformation, Le. if V (@) is a utility tunction, then & [V (w), w], where A 1s
strictly increasing with respect to its tirst argument. is also a utility function
and represents the sume preference ordering.

Using the notion of utility function. we write the choice sets as follows:

Az = (Vi = W, V) = V3),
Aziza = (V2 = Vi, Vo = Vi),
Ay = (Va= ¥, V3 = V7)),
Az = (V) = V3,
Az = (Vo = Vi),
Ay = (V) = V),
Azpz = (V3 = Vi),
Az = (Vh = V3),
Azzz = (V5 = W),

These can all be expressed as the union of the six following elementary
sets:

AjLrny = (V= Vo > V),
Al = (V) = Vi = W),
Az = (Vo = V) = Vi), (3.4)
Azngzy = (Vo = Vi = Vi),
Azeza) = (Vi = Vo = Vi),
Azalzn = (Vi > V) = Vo).

Where. for example. the first line should be read “the set of w for which onc
is preferred to two, and two preferred to three,” and so on. Thus we have:

Ariy = Apazaa U Arasas,
-‘11|'J’2 = AI_‘.:-E:—-} . A]:.;{:-,E L A3.}l;=-21

cte.

3.3.2  Introduction to Probabilistic Choice Models

At this point it may be useful to take 2 more formal look at what constitutes
the state of the world at the point in time in which the choice i1s made. Among
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the elements of @ which impact on the decision, some may be known: traits
of the individual and varables controllable by the researcher, to mention a few.
We will denote these x. Other factors, which we will call «x, may be unknown
or known and unobservable. These are generally considered random. Since we
only know a subset X of the environment we cannot foresee the individual’s
choices with certainty. We can however, form a reasonable prediction of how
he will act in any given state of the world by calculating the probability of each
choice from the conditional distribution of a given x.

The selection probahility associaled with A, ar is denoted P, 4 (This prob-
ability is conditional on x, but for simplicity this dependence is suppressed in
the notation).

The decomposition of the choice sets into elementary scts translates directly
into the selection probabilities. Consider the three-value case:

g1 = Pr{A...3).

gr = Pr{d ..},

g3 = Pr{Aaz.|.3),

g4 = Pr{Az.3.1).

gs = Pr{Ai.z.).

ge = Pr{Az.;.2).

which viclds:

Piiza = g+ + g2,
Pri23 = g3 + ¢4,
Piioy = g5 + g6,

Prin = g1+ g2 + ge.
Papi2 = g3 + g4 + g5. (3.3)
Pz =q1+ g2 + g,
Pa1a = g4+ g5 + ge,
Paa = g3+ qa+ 4,
Py = ¢s + g + g2

3.3.3  Specifving the Model

Here we have a classical model of qualitative choice. For each experiment
conducted under conditions x we have defined the probability of observing a
given result m : Py ar, where M 15 the cholce set. To complete the model we
now have to specify the relationship between these probabilities and x. We will
look at three suggested formulations [or the case of three values:
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3.3.3.1  First Approach
The probabilities g, ... g¢ are formulated in terms of x, from which
the selection probabilities arc derived. We could, for example, let:

exp (x; h_;) _
S oy exp(xibi)

The disadvantage of this method is that the selection probabilitics tend to
have complicated forms and are hence difficult to cstimate.

g =

3.3.3.2 Second Approach

The selection probabilities are directly expressed as functions of x.
When using this approach we must ensure that the axioms of rational behaviour
are satisfied.

3.3.3.3 Third Approach

Postulating the distribution of the utility function a priori, we derive
the expressions for the selection probabilities. This is the usual approach. We
write V,, = x,b,, + v,, where v, 158 a disturbance term. When we spec-
ify the distribution of this term we have the analytical form of the selection
probabilities.

This methodology 1s very similar to the one we used in sections 3.1 and
3.2 because 1t is based on latent variables V,,. However, cstimation of the
utility function, which is defined up to a monotenic transformation, yields
non-interpretable values. We can, furthermore, question the usefulness of the
formulation V,, = X, b, + v, as 1t 1s not invariant with respect to a monotonic
transformation of V,,.

Example 8: Consider a three-value case and assume that the crror
terms ;. v», vy are independent and identically distributed according to the
Weibull distribution, given by £ {v} = exp [—exp {—-v)].

We have:
Pliz3=Pr{V, = Vo, Vi = V3),
Priay = Prixby + vy = xzby + v2, x4by + vy > X3b3 + 13).

= Pr(vs < vy +%1b; —Xahs, 3 <= vy + x1by — x2by),

to=
— / exp {—exp [— (v +x/by — xb3)} ]}

i

exp {—cxp [— (v +X(by — X3h3)1} d {exp [—exp (—v)] },
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+ox
— [ exp {—cxp (—1) [:—:xp {X:b> — x;, b))

A
+exp {(x3sby — x1by) + 1] } d [exp (—v}],

1
exp (Xabs — X by} + exp {X3hs — x1by) + 1’

exp (x;b)
i) exp (xeby)
The other selection probabilities have similar forms:

P _ exp(xzby)
20123 = =3 :
> o exp (X:b)
p _ expixabs)
3123 = =5 ,
Z;‘ _1exp (x:b;)
exp (X;b;)
Py = — ,
Er'-—] CXp (Xt'ht'}
Py, . SXP (X2b2)
W= T
Zf:] cxp (xi!'b!'}
etc.
These forms generalize the dichotomous logit model to the polvchotomous
fogit model.

Notice that we had to choose a rather unusual distribution function in order to
obtain tractable forms for the selection probabiliues, However, as it is generally
truc that any monotonically increasing transformation & of a utility function f
will yield the same choices as . we have some flexibility in our cheice. Notice
alseo that under the formulation given above the parameters cannot be recovered,
since the probabilities depend only on the differences x1b; —x2ba, X, by —X3b3.
and x;b» — x3hs. In order 1o obtain identifiability, we must impose exclusion
conditions on the parameters, such as by = 0 if x; = x» = x3 = X. which
corresponds to performing a translation of xb, onto utility V.

3.3.4  Independence of un Irrelevant Alternative

A fundamental principle which applics to these models is known as the indepen-
dence of irrelevent alternatives. If a new option is added to an individual’s choice
set, and if it is similar to a option which already exisis, then the probability of
any other option being chosen should not be affected.
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Examination of the polychotomous logit modcel obtained in example 8 reveals
that:
Py Py exp(Xiby)

Pyizs Paz exp{xzha)’

The choice between one and two is unalfected by the availability of option
three. We say that the choice between one and two is independent of the irrele-
vant alternaiive three. Given the symmetry of the polychotomous logit model,
this holds for choices one and two as well.

Consider a set of selection probabilities between three options and assume
that the independence of irrelevant aiternatives (i.1.a.) holds:

Praoy P
Prizs Puin’
Prazy P
Piizy Pya’
Prizn Pops
Piin Py

The first equality vields:
Piiz Pz 1 UIEX

- _— —_ Pll]?. frrrd .
P P23 Py + Pz Pz + Pain

Repeating this exercise for each equality, we see that the chotce probabilitics
have the form:

P it
1123 = :
o+ oy + oy
L]
Pz = \
) + o6y + o
45!
P3|1?3 —- e
o+ oy + ey
o)
Pia= ——.
o) 1+ o
¥z
Py = ——.,
o) + o2
ox)
P||]q _ "
] + ey
X3
Pz = ———-
] + o
2
Pllﬁﬁ — T
oy + ey
3
P_1|23 = .
oy + s

where ¢, o7, o3 = (L
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This 1s similar to what we saw in example 8, except that «; i1s not explic-
itly formulated in terms of the conditions x. Thus we see that choosing the
palychotomous logit model 15 tantamount to making the hypothesis of the in-
dependence of irrelevant alternatives.

We now wish 1o see under what conditions this hypothesis is salisfied in
practice. The best illustration can be found in an example where it manifestly
does not hold, commonly referred to as the “*blue bus, red bus™ problem.

Assume you ask an individual which means he prefers for his commute to
work: 1) the subway, 1i) a blue bus, or iil) a red bus. We can reasonably assume
that the colour of the bus 1s not a significant factor in a typical individual’s choice
of which form of transportation to use, 5o we would expect that P23 = Pyj1aa.
It you now ask him whether he prefers taking the subway or a bus, the choice
probabilities should be:

P12 = Py
Panz = Papaa + Pajza.

This gives us:

Priz _ P2
P Bt Py
1 Pyins
2 Pyiny

s0 the hypothesis that the choice between options one and two does not depend
on three is not borne out,

Due to the i.i.4., this form of the polychotomous logit model 15 not suitable
to explain all types of behaviour. In light of this problem, we have several
choices:

{i) We can select a distribution for the utility function for which the inde-
pendence of irrelevant alternatives does not hold. We can, for example,
postulate that the errors (i, 112, ©3) are distributed:

(G 1 pi2 o3
N 0 £12 1 o
O £ s |

(11} We can reformulate the model, while retaining use of the logistic function,
to create a structure in which the i.i.a. 1s no longer an 1ssue. For example,
in the blue bus, red bus scenarier we can break the decision down into two
stages: first the individual chooses between the subway and the bus. which
we analyse using a dichotomous logit model, then chooses between the
blue and red buses with probability 1, 1 (cf. section 3.4.1).
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Finally, notice that observations will generally correspoend to selections from
onc solution set, for example {1. 2, 3}. In this case, only the expressions for
P23, P2 230 and Paj2; can be recavered, and they may be identical to those
yiclded by the polychotomeous logit model. This will not hold true for the other
probabilities (cf. exercise 4).

3.4 Individual Preferences: Several Decision-Makers

The theory derived in the previous section incorporates the implicit assumption
that there is only one decision maker. Clearly. situations exist in which that
is not realistic. For example, when individual choices result from a sequence
of successive decisions, behaviour should not be modelled as a single max-
imization of a utility function, but rather as a series of maximizations, cach
one conditional on previous decisions. This situation is best represented by a
model of several decision makers, even though it pertains to a single individ-
ual’s behaviour. This approach is suitable, for example, for modelling how an
individual chooses his vacation destination and what means of transportation
he will use to get there. [t secms reasonable that the decision of where to go
precedes, and determines, the choice of how 1o get there.

[n the same vein, the theory discussed in the previous section is not apph-
cable 1o modelling situations in which several different agents make decisions
simultaneously. This problem is examined more closely in section 3.4.2 where
we lock at some examples.

3.4.]1 Sequential Decisions!

At the end of the previous section we observed that the “blue bus, red bus”™
problem can intuitively be handled by a two-stage process: first the individ-
ual chooses between the subway and the bus, then decides on the colour of
the bus. We thus distinguish between the “means of transportation” aspect
and the “colour™ aspect. This process can be illustrated by a decision iree,
each node represents a stage of the decision making process with branches for
the available choices at that level, This approach can easily be generalized as
tollows:

Define a partition of the consumption set into K clements, k = 1,.... K
(first aspect), und subsequently partition each of the ensuing K subsets into
L, elements € = 1,....L; (sccond aspect), and so on until we have reached
the most detailed level, corresponding 10 the original choices. The resulting
H -order sequential model of the various aspects gives rise to A nested choices.
The ordering of the aspects obviously plays a key role in this model.

T of. Twversky | Tve72al, [Tve72b], [Tve77].
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subway

red bus

bus

bluc bus

Fig. 3.1. A decision tree

Use of the polychotomous logit model to formulate the decision at each
branch of the tree allows us to derive the selection probabilities. Consider., for
example, the case of two successive aspects. Each choice m is characterized by
two elements: & — denoting the primary aspect. and £ — the secondary aspect.
We can write m1 = (&, £). The values &k = 1, ..., K of the primary aspect are
tormulated using a logit model, yielding the probability:

oy
Wy + ... fog
for aspect k. If & is chosen at the first stage, it remains to select £ =1, ..., Ly

among the secondary aspects. If we model this choice with the logit polychoto-

mous model as well, the probability of selecting £ at this second stage is given
by

Br
Bui + .o+ Ber,
The selection probability of m = {k, £) has the form:

oy Bie
@1+ ..ot ok B+ Ber,

Poist = Prenm = (3.6)

If the parameters v, , §;; are written as exponentiations of linear functions of
the explanatory variables, this model 1s called sequential ingir.

Postulating thal cach stage of the decision making process fits a polychoto-
mous logit model is tantamount 1o assurning that at each level the independence
of irrelevant alternatives obtains. This suggests that the placement of the op-
tions in the decision iree is important. Notice, though, that even if the 1.1.a.
hvpothesis must hold for each level of the decision tree, it does not need 10 hold
globally.

To illustrate, assume that we have a model of choice with two primary aspects
{i.2}. Option one leads to a further choice between two options {1. 2} while
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primary aspect two prescnts only one possibility at the second stage, {3}. Inother
words, the decision maker must first choose between two options, and only 1f
the first is selected 1s a [urther choice necessary. The selection probabilities
are:

) ﬁl
Pl = .
o) + g i+ B
] B
Fa = - :
o)+ B+
P *2
s =

i we restrict the consumption set and apply the conditional logit model at
edach stage, we can calculate new selection probabilities:

£
Frua= ~——F%,
B+ B2
£
Prjn= ——.
B1+ 2
Plis = Ppys = —
113 = Faas = o
o2
Pija = Pyjpy = ————.
) + o
We see that
Pina Proas
2 12 Py

s0 the choice between alternatives one and two is independent of alternative
three. On the other hand,

Is not, generally, the same as:

Pups _ o B
Pajizs aa Bi+ B

3.4.2 Simultaneous Decisions Involving More than One Agent

3 4.2. 7 Unanimous Decisions

A modecl of this type was proposed by Poirier [Poi80] to examine tac-
tors which affect the level of difficulty which an unemployed person experiences
finding a job.
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A job-seeker will fill a given position if the following two conditions are
satistied: He must deemn the job suitable:

1 1, if the job is suitable.
Y 7 10. otherwise,

and the prospective employer must feel that he has the necessary abilities:

2 | 1, if the candidate is qualified,
Y= 0, otherwise.

Assume that y!, y* are independent and that;
Pr(y'=1) = F (x'p'),
Pr(y* = 1) = F (x’b*).

The observed variable v is:

_ | 1, if the applicant occupies the position,
0, otherwise,

For y = 1, both agents, job-secker and employer, must agree:
Prix=1=Pr{3' =1,y =1),
= F (x'b') F (x*b?),
Pe{y =0 =1—F (x'b") F (x’b?).

We obtain a dichotomous model of a different form from that studied in
chapter 2.

3.4.2.2 Behaviour Conditional on that of Another Agent

Assume we want to study the question of why, in some households,
only one spouse works, while in others both have a job. We need to explain the
values taken by two dichotomous variables:

i 1, if the man works,
0, otherwise,

2 | 1, if the woman works,
Y = 10. otherwise.

Several models have been proposed, each reflecting different assumptions
concerning the couple’s behaviour.

Case One  Assume first that the husband (wite) makes the decision
for the household. In this case there is only one decision maker and we can
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apply the polychotomous logit model from section 3.3, giving us:
Pu=Pr{y =1y =1},
exp (x'b')
B Soi_iexp (xthh)’
Po=Pr{y' =1y =0),
_exp (x’b?)
 Xhorexp (x*h)
Poo =Pr{3' =0,y =1).
exp (x*b?)
T Sieiexp (xb?)
Pu=Pr{y =0y" =0,
B exXp (x4h4)
" S )

-

Case Two  Another possible way of modclling the couple’s behaviour
is as follows. The man decides first whether or not he’ll work.

I
I +cxp (x'b'}
. exp (x'bh)
© 1 +exp(x'b')

Priy'=1) =

Pr(y'=0)

Subsequently, the woman bases her decision on his chowce:

1
‘2 = 5" — —

Priyi =1y =1) 1 + exp {x?b?)’
2 n oty EXp {(x’b?)
Priy® =0y =1) = L + exp (x?b?}’

1
‘2 — ?I — —
Priy® =17 =0) I +exp (x*b3}
_ i’

T 14 exﬁ'(zﬁh-‘)'
We can now derive the probabilities of the joint distribution. For cxample:
Pu=Pr(y' =)Pr{y’=1]y =1).
| 1
- ] + exp (x]b’) 1 + exp (xghg) '

These probabilities are marginal-conditional.
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Cuse Three If each individual selects his own course of action on
the principle that the other’s behaviour is given, we come up with yet another
model. This model is defined by the following four conditional distributions:

1
- 1+4+exp (x'b!)’
1
L rl= =
Priyi=1] 1) I + exp (x?b?)"
1
11vi =0} = —_
|} ) ]_|_er (x:'!b:'!),
1) = :
T 1 +exp(x*ht)

Pr{y'=1|y*=0)

(3.7)

P‘r(y2

-
=

Pr{y*=1|y' =

Intuitively, we can easily see that this type of conditional behaviour is not
necessarily compatible. Assume, for example, that the man decides to work if
his wife works, and not to work if she doesn’t. The wife., on the other hand.
decides not to work if her husband works and to work if he doesn’t. This is
obviously incompatible behaviour.

In order for the postulated conditional distnbutions to unambiguously define
a course of action for the couple. they clearly have to be compatible. Mathe-
matically, this means that x'b! + x*b* = x?b? + x*b* must be satisfied. In this
case the couple’s behaviour is perfectly defined (cf. appendix 3.2). This model
15 called cenditional-conditional.

3.4.2.3. Behaviour Conditional on that of a Group of Agents

In the preceding section we looked at ways to model how an agent
adjusts his behaviour to account for that of another individual. The model is
different, however, when we divide zall the agents into two groups, assumed
very large, and make the behaviour of a given member of one group dependent
on the collective behaviour of all the members of the other group. Consider,
for example, ownership of a certain durabie good by two different categories of
people. If inutation plays a role, members of the first group, when making their
purchasing decision, will take into consideration the proportion of the second
group who own the good. If p| (p-) is the proportion of members of the first
(second) group who own the good. then p, { p2) represents the probability of a
member of group one (two) owning the good (if the groups are large), and this
probability depends on p» (p). Using the logistic form, we write:

1

[+ expla p:+ b))
1

I +explaipr + P2)

1

Pl
(3.8)

P2 =
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B \ A
- p -
e
- -
0 \ 1 :
v M p

Fig. 3.2. Behaviour conditional on a group of agents

Obviously, we have to verify that this system vields a unique solution in p
and p>. Assume, for cxample, that ¢; and @, are strictly positive. The mapping
of p; € R to:

1
1 +exp{a p2 + &)

is decreasing, approaching one as p» approaches —oo and zero as p2 approaches
+oc. The function which maps p € R to:

1
1+ expiazp + b2)

has similar properties.

Graphing these functions together, with p; on the abscissa and p» on the
ordinate, we see that they have a unique point of intersection such that values
of py and p; are contained in the open interval (1, 0).

In this case, the behaviour of an individual in the first grooup is independent
of the behaviour of any one individual in the second group. Or, more pre-
cisely, the latter’s influence is negligible as it only works through his impact
On .

3.5 Importance of the Sampling Method

Models of qualitative choice contain two sources of randomness, So far we have
examined the first, originating in the behaviouvr of individuals. We now turn our
attention to the second, which results from the sampling procedure itself.
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Models of individual behaviour attempt to describe the actions of a clearly
defined population. Usually, however. the entire population cannot be observed.
Denote the population I, each individual has a vector of exogenous character-
istics X and a vector of endogenous characteristics ¥. These latter, qualitative
variables, take values j conditional on x = x; with probability p,;. p;; depends
on x; and on the parameters b : p;; = p; {X;: b), which are 10 be estimated.
Furthermore, the exogenous characteristics x are distributed over the popuolation

by i (x).

3.5.1  Fgui-Probable Sampling with Replacement

Let the sample s comprising »# individuals be drawn equi-probably with replace-
ment from the population I1. The distribution of the observations {x; y;),i € s
18 proportional to:

g g
[[ o [T17 xm]™ b =] 1] []] [P )],

les J=0 2=y fex j=i}

hence it is also proportional to:

S
LI [P (e )] (3.9)

fes f=0

Since only this part of the distribution depends upon the parameter b, it s
all we need to obtain our estimates, using, for example, maximum-likelihood
estimators. This simply means that it is possible for us to reason conditional on
Ix;: { € 5}. When a sampling method leads to an expression of the form (3.9}
we have a multinomial distribution.

3.5.2 Exogenous Stratification

Assume that the exogenous vanables can only assume a finite number of val-
ues x*, & = 1,..., K, and that we stratify our sample using x. We need to
establish the optimal size of each sample n, drawn independently from the
sub-populations Il;.

It #y; indicates the number of individuals from the &-th sample for whom y;
assumes the value j. the distribution of the observations is propoertional to:

HHP (xk,h}”"f—HH (x;; b)] ™.

k=1 f=A) fe=s J=0

Again, this 1s multinomial.
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3.5.3 Endogenous Stratification

When studying the means of wransportation used by individuals commuting to
work it is standard procedure to question them where they get off the bus, exit
the subway, etc. This is stratification by an endogenous characteristic y, also
called choice-based sampling.

Let n; represent the size of a sample drawn independently from the sub-
population IT; of individuals for whom y; = j, and n;; the number of individ-
uals from the j-th sample for whom x; assumes the value x,. The distribution
of the observations 15 proportional to:

K
TLT1 [Prixely: = jsby™],

J=tr k=1

where Pr{x;|y; = j; b) i1s the probability that x; has the value x4, given that
v; = j. This conditional probability can also be written:

_ B b) e (x)
Zf:] P (x;. b) e (%)

This equation is no longer multinomial, and has a more complicated distri-
bution for the behavioural parameters b. The distribution is proportional to:

Prix;iy, = j: h) (Bayes’ formula).

ﬁ ﬁ P; (%, b) i
ST Py (X, b)Y ()

j=0k=I

Henceforth we will always assume that the multinomial distribution obtains,
but it is important to bear in mind that this formulation is inappropriate for cer-
tain types of sampling procedures. Its use in these cases yiclds non-convergent
cstimators (cf. exercises 6 and 7).

3.6 Variations on the Basic Models

The various models considered in the preceding sections must be considered
archetypes requinng modification before being applied to practical cases. The
original model is generally expanded by the addition of supplementary param-
cters 50 as to obtain a more tractable form of the response function. We will
present two such modifications for the ordered univariate model (cf. section
3.1.1).

These modified models are sometimes used to evaluate respoases to ques-
tionnaires on trend data. The study group is asked to conjecture on the evolution
of a given variable, and given a choice among the following three possibilities:

/ — N

increase no change decrease’
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If we denote Ar the change in value of a variable r, and ey and o) {0y < o),
the threshold values used by the respondents to evaluate the change in r, we
have:

A if Ar < arg,

— g = Ar < oy,
 1f Ar = oy,

The probabiiities associated with each value assumed by the variables are
then given by:
Py = PriAr = op).

P| = PI."(&'.“ = FAY gy U|:|,

Pr = Prio < Ar).

3.6.1 Modification by a Scaling Factor

The procedure used in section 3.1.1 consisted of describing the latent vanable
Ar with a linear model: Ar = xb + u. where u is distributed according to a
density function . This gave us:

P.:, = F ((xﬂ — Kb},
Fao+ P = Fiw; — xb).

Anderson fAnd84] proposed a modification of this model entailing the addition
of a scaling Factor in front of the explanatory variables, yiclding:

Py = F (o9 — Poxb),
Fo+ P = Fio — ﬁlxb),

Obviously, the auxiliary parameters must be constrained:

{1) to ensure the identifiability of the parameters (set Sy = 1).

(11) to cnsurc the inequality py = O (set 8, < Bg = 1, if xb 15 always positive).
This expanded model includes the original as the special case Sy = £ = 1.

3.6.2 The Stwochastic Indifference Interval

Sometimes it is possible 10 augment the gualitative results of trend surveys
with quantitative results from other surveys. Thus, in some cases, we simulta-
neously have available responses to gqualitative questions about 7, —, ™ and
data ont Ar. We can then attempt to understand how the respondents formed
their responses to the qualitative questions — that 1s, how they establish the
cut-off points oy and ;. If we retain the same formulas for the probabilities of
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P&
<] -
1
-;_—___-“'-- *
p'fDz) p (Dz)}
__——'—"_'—'_- f
p(Dz)
< -
g v Dz

Fig. 3.3, Response functions for the stochastic indifference interval

the responses:

Fo (Ar) = Pr{Ar < o),
Py (Ar) = Prion < Ar < ay),
P (Ar) = Priocy < Ar),

Ar can now be considered an exogenous variable and the values ap and o,
which vary among respondents, as random.
Under the hypothesis that the distribution of the threshold values no longer
depends upon Ar, we see that:
(1) Py (Ar)1s decreasing in Ar,
(i) P> (Ar) is increasing in Ar,
(iil) P (Ar) tends toward O as Ar tends toward +o0, and. if this function is
reasonably regular, it is likely to be increasing at first and then decreasing.

In summary, the response functions have the shapes given in figure 3.3,

We see that we can define a model by first stipulating the distribution func-
tion of the threshold values ag and «;. This procedure is not, however, nec-
essarily straightforward, as the variables must be selected such that oy < o).
Another possible solution involves directly postulating the functional forms for
Py, P, and P; so as to satisfy the above mentioned limits and conditions of
monotonicity.

Thus, starting from a logit polychotomous formulation:

exp (ce; + B;Ar)
Soi_oexp (o) + B;Ar)

we can casily show the following result (Ronning [Ron86j).

j=10,1,2]
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Propaosition 4; In the polychotomous logit case:

(1) Fy is decreasing with Pp(—oc0) = 1, Py (+20) = (.
{1}) P; has a unique maximum and P {(—oc) = P {+00) = (.
{111) P, 1s increasing with P (—oc) = 0, Py (+o00) = 1,

iff By < By < Bs.

This example shows how the polychotomous logit model can be adapted to
describe some ordered variables.

31

34

35

Exercises

Consider the cxample in section 3.2.1 and assume that ihe observalions are as in
table 3.2,

Represent this data in a graph. Docs the model in the example explain the data? Use
the graph 10 estimate the parameters a', 6!, a2, and 2. Is the correlation between
the symptoms, g, positive?

Find the probabilities Py;. Py, #5; corresponding (o the sequential trichotomons
maodel in section 3.2.2 when (v);. v+;) are normally distributed:

660l

Consider the model in section 3.2.3 with £ = 2. Let:

0 ot 0O 0
(Vi v vy ) ~ N 0 0 af 0 }
0 0 0 o

Discuss the identification of the parameters: &y, b;, b1, o], 65, 0.

From the model in example B, determine the distribution of exp (V) and find the
other assumptions which need to be imposed on the random atility function in order
to derive the polychoiomous logit model.

Consider the following set of selection probabilities:

exp (x'h')
Finzy = 3 —.
> exp (x* h’)
P B exp (xzbz)
2123 = Zf__l exp (x"h") .
3h3
Payiss = exp (x )

T 2L e (e
P1||2 — P||13 = P||13

1
Pozz = Pyny = 3

FPoja = Papy = 2Pa23.
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Show that these correspond to rational behaviour. Does the independence of inde-
pendent alternatives apply?
Consider » 4+ m individuals having the same characteristics. The first # are given
a choice between three options 1, 2, 3 (with sclection probabilities Py = P o,
o= Py, and Py = Pana). #y (k2o h;) choose option L. (2, 3). The second
group of m individuals are then made 1o choose between opiions | and 2 (with
probabilities Ry = P2 and R: = Py2. mi; choese 1, while m2 = m — m
choose 2.

Find the maximum-likelihood estimators of Py, Py, P35, R and R;. Whal are the
maximum-likelihood estimators 1l the assumption of the i.1.a. applies to option 3.
Test this assumption using the Lagrange multiplier method.

Venify that:
e P
Papa Pouz

if and only if z; and z; are independent, where:

- l._ if Vl - Vz..
“'7 10, otherwise,

and:

i V= max (V) V),
27950, otherwise.

Show thatif V. Vo, V; are independent random variables, it is possible to find an in-
creasing transformation ¢ such that ¢ [V {e) . @] @ [Vz (), ev]and @ [ V5 (), ]
are as highly correlated as desired.

The quantitics of goods consumed by an individual may be considered the result of
a scrics of sequential decisions. Consider a person having income, K, and assume
that he splits his income between consumption goeds in a fixed proportion, such
that R = K-Ry. K € N. The first amount, Ry, is allocated to the consumption of
one of the goods € = 1, . ... L, with probability P, such that:

L
P, >0, Zpﬁ: P
=1

The second amount, &), is independently allocated (o the consumption of another
good, nsing the same probability structure. This continues until all X sums are spent.
Let s represent the number of sums allocated to the consumption of good

£ (Z;':l He = K). Find the distnbution of (ry, ...#;). BExpress the expenditure

on cach good, £, as a4 funcoion of #, and derive the mean and the covariance ma-
tnx ol {8, ..., £). Compare this mean with those which arc traditionally used to
describe completed demand systems.



Appendix 3.1 Existence of a Utility
Function

Assume that the individual makes rational choices. Consequently, the choice
sets are such that:

Yme M C M:Am|M L Am|M=.

We shall show that:

{i) all rational choices reduce to choices from among two options (binary
choices),
(i1} rational choices are transitive,
{(111) making rational choices is equivalent to maximizing a utility function.

Lemma 1: We have:

Amp = { ] Amist—tm1-

m’ e
' =

Proof:

{1) The hypothesis of rationality implies:
Vo' c M- {m} : AmIM - AmlM—{m"}s
SO:

AmIM - m AmIM- [}

wle M
m tn

{ii} To compiete the proot we need to demonstrate that:

A D m A m M-

m'eM
m'm

65
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For:

Ym e M —{m}, VYm' eM-— {m,m’},
we have:

At T A\ M—[m}-
Specifically:

Apst N Ampr—pm) = 4

From which we derive that:

VYm' e M —{m}: Aoy 0 ﬂ Amip—imy | =9,

m'eM
mf ?I'm

and so:

Um:c_.w Ay N m A mM—{my | = (.
m' Fm

nr' o
m";ﬂ‘m
Since the choice scts constitute a partition of §2, we see that:
ﬂ Amim—imy C Amar.

e A
' =ZEm

Lemma 2: We know that:

Am'M - ﬂ Amlm,m“-

WA
' fm

Proof: This result follows directly from lemma ¥. Applying it to
A M=o ey, WE Sce that:

e M mt e
m’ e ' Am

Continuing in this vein leads to a decomposition consisting only of binary
choices. U
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Lemma 3:
Amlm,m' M A m' |, m" C A ol E I

This reflects the transitive naturc of binary choices, if m is prefered to #’, and
m' 15 prefered to m”, then m is prefered to m”.

Proof: From lemma 2 we know that;

Amlm,m“, m" = Am?m.m’ & Amlm. e

-

A m' e, me MA et s

Am'lm,m’

Am”lm_.m', mY = A m|m, M A L
Binary choices partition the set of states-of-the-world, §2, as fellows:
£2 = Amlm..m’ L Am"lm:m':
£2 = Amlm,m” L Am"'|m,m”r
Q = A m’ o, m” U A Y|t .

These three sets generate eight partitions of £2. For example, A 4, ', - 18
composcd of:

Amom, mmt = (A— thir, p MA nt|mt, m A Am“lm’,m”)
U (A K|, w’ 1 Amlm.m” MA et m”) -

which we recognize as the union of two composites. A v e me AN A jpring e
can be constructed similarly. Only six of the eight partitions of £ come inio
play, however, since;

Q2 =A e F B A T LA el om LA L R T A
the following two set intersections are empty:

Amlm,m' M An:"hn’,m‘” - EL
A R, M A mtm m = .

In particular, the first equation allows us to write:
Amlm.rn' M Am“l:n'.m” CF Am"lm“.m" = Amhn, Y
]

Theorem 1: Choice sets can be derived from utility maximization if
and only if choices are rational,

Proof: The necessary condition is easy to verify, we discussed it in
remark 3, To demonstrate the sufficient condition, we assume that choices are
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rational and define the function V as:

Vm ((U) = Z zm!m,m“ (m),

where M 1s the set of all possible options and Z |, .. (@) is defined:

1, if e 1= Ammn"
Z papm.me (@) = {[] gmemise.l "

This utility function represents choices if:
wEAym VYmeM, m#£m Vyilw > V,(w).

According to lemma 2:

Am|M — ﬂ Amlm,m-’-

.
woeM
w' =

To show the equivalence. i1 is sufficient to demonstrate that:
Yme M, YVmeM-—{ml:owcApymm < Vnlw) > Vy(w).

We shall do this in two steps.

Al.0.3 Necessary Condition
W € Apm.m = Vi (@0} > Vo {0).
We have:
Vi (@) = Vi k) = D [ Z i (0) — Z gy ()]

LY
't -f_ { [} Jr:"’}

+ [mem (ﬂ'}) - ‘Zm’|m.m’" (fﬂ')],
= Z [Zm|m,m” {(w) — Zmim m» {(-:J}] + 1,
o A

rn'”F{:r;.m:‘r}

SINCE @ € A p)m - by assumption, and thus w € A i jm. -
It is sufficient to show that cach term on the RHS is non-negative. We shall
procede by contradiction. Assume that one of these terms is negative:

Zmlm,m” ({U) - JZ?f:"i|1",~1:',r:.~1:“r {w] = D+
In this case we must have:

w ¢ Am|m1m” a“d {1} E Aml’lnl"m”u
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But according to lemma 3, this implics that @ € A 5 e, Which contradicts
our assumption, So all of the terms must be positive or null,

Al.0.4  Sufficient Condition

Vi (w) = Ve lw) = w € A ppn.me
It is sufficient to show the inverse:

W & Apgm, o = Vi {ow) < Vo (o),
or

W E Apm o = Vi () > Vi, (w),

which follows directly from the necessary condition. [



Appendix 3.2 Compatibility Conditions

A2.1 Necessary Condition

Lemma 4:
Pr{y'=0]y*=0)Pr(y =0y =1)
Prvt=1]y?=0)Pr{y=1|yl =1)

Proof: To demonstrate this equality it is sufficient to express the con-
ditional probabilities in terms of the joint and marginal probabilities. We see
that each member is equal to:

O

Replacing the conditional probabilities by their expression as functions of
the explanatory variables, we obtain:

exp (x'b') exp (x*6*) = exp (x?8%) exp (x4}
B 4 xtet = P 4 xR

A2.2 Saufficient Condition

Assume that the compatibility condition holds:

aibl + x4B = 27+ X
F0
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Define the joint distribution ( Py, Por, Pig, Pi1) by the relations:
Poo = exp (x'b' + x%6%) Py,
Pio = exp {x*b") Py,
Py = cxXp (xzbz) Py,
Pii=1— FPyy+ Pio+ Po.
We cun easily confirm that the conditional distributions associated with this
distribution are given by (3.7)
Pro
Py + Py’
1
I+exp(x'b')
Py
Poy + Py’
1
1+ exp (x2b7)°
Py
Pog + Py’
exp (x?b?%)
exp (x!5' + x*b*) + exp (x28%)’

1 -y
= because of the compatibil-

ips
1 + exp (.x b ) ity condition,

Pr(yl = 1|y2=0)

Pr(y2=1|y'=[}) = e

I +exp (x*p4)’



4 Estimation Methods and Tests

4.1 The General Model

The gualitative response models which we introduced in the previous chapters,
be they univariate or multivariate, based on normal distributions (probit) or
logistic distributions {logit), can ali be described by means of a general mathe-
matical model. This formulation, which was introduced by Amemiya [Amc76],
is very useful for the study of various estimation methods.

Consider a series of observable independent random variables ¥, 7 =

1,....4,i=1,...,n; assuming K + 1 values with probabililies given by:
ij (b): Fk (K]jh],ngbg,...,XHth), k=0 ..., K, (41]
where the by, A = 1. ..., H are vectors of unknown parameters with gy, ele-

ments and the X;; are ¢,-dimensional row vectors with observations of type j
on the exogenous variables.
The functions F*, assumed known, are constrained by

FY =0, Vk,
K
Z Fé = 1.
k=0
The likelihood of the observations y;, j = 1... ., J.i=1,..., #, 18 given

by:

4 K
Liyib) = H H [ij (h)]”*-"‘

=1 k=0

where ny; indicates the number of times y takes the value k from among the
observations of type j.

This likelihood only depends on the observations over the intermediary of
the values ng; . &k = 0...., K,j=1,..., 7, sothese are exhaustive statistics

for estimation of the parameters. Similarly, if we denote 7; the proportion of

72
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observations for which the varable y takes the value & during an experiment
of type j, we have my;, = %i, which implies that the guantities m;. k =
L K, j=1.....,J are exhaustive statistics (cf. section 2.6.1).

The log of the likelihood function is:

5 K
log [L{y:b)] = > ) "y log [Py (b)), (4.2)
J=1 &=t}
o1

g .
log[L(y;m]=> " {nj- > iy log [Py ()] } (4.3)

j=l k=0

Equation (4.1} describes a univariate {one vartable) model where the de-
pendent variable assumes several values. Models with several variables, each
assuming a number of values, can always be reduced to a univariate model with
more outcomes. Frequently, however, we will prefer keeping the distinction
between the different qualitative variables, as this allows us to investigate the
concepts of marginal and conditional probabilities.

To simplify matters, we begin our examination with a bivariate medel. The
observations are on the pair:

vy ={yi. ¥}, Ji=LlL....4 i=1,..,nj
which assumes the values {k|,%k}. 4 = 0,..., K, k» = 0,..., K>, with
probabilities:

Poi (B).= F5% (%11, x9;ba, ..., xg;by),  j=1{1.2}). 4.4

This is structurally equivalent to a univariate model assuming the values (&), 42} .
The log of the likelihood funcsien is given by:

K] KQ

log (L) = Z D> Ak 108 [Pows )] (4.5)

=1 k| =0 k=0

Denote P;fl jih) = Zh—u Py i,; (b} the marginal distributi{m of v i and
LT ij_ﬂ Rk, the number of times we observe y} ; = k) among trials
of type j. The conditional distributions are written:

Pyr i (b)
Pkﬂkjj (h) = ﬁs
)
and we define:
ks

Rk — N ;
)



74 Econometrics of Qualitative Variables

Substituting, equation (4.5) becomes:

J K, K;

|[}g (L] = Z Z ZH;(I;QJ; {ng [ijj (b}] —f—]Dg [Pblhj [h)] }.

J=1 & =0k;=t}
N £

— Z Z iy, ; log [P;L-gj (b)]

=1 & =0

I K A
+ Z Z e {Z 7ttty 108 [Proie, 7 (b)] }
ka ==}

F=1 k=0
that is:
log (L) =log (L) +1og (Ly1). (4.6)

where log (L) is the logarithm of the marginal likelihood of the observations
ny,; and log (L 7} can be interpreted as the conditional likelihood of the ob-
servations ng g, ; given the values sy ;.

By symmetry, we also have:

log (LY = log (L>) + log (L1 5). (4.7)

4.2 Estimation Methods
421 Maximum Likelthood

This method consists of choosing as estimator the value of b which maximizes
the logarithm of the likelibood function [equation (4.2)]:

J K
log (L) = max Zl gn;{j log [Py (b)].
Jil:

As we shall see, the log likelihood formulation results in nonlinear systems.
It will gencrally be necessary to solve them using iterative processes, such as
the method of scoring.

4.2.2 Minimum Chi-square

Observations corresponding to an index j, rg;, . ... ng;. follow a multinomial
distribution with parameters #;, Fy; (b)Y, ..., Pg; (b). For this index j, the
distance between the fitted values and the actual values can be measured by the
x 2 distance:

K 2
2 Z ey — ny Pry (b))

X = n, Py (b)

k=0
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For the set of all indices j, this distance can be measured by:

S g K
¢ (b) = Z =X g (f;) | @

F=1 k=)

We call the value obtained from minimizing ¢, (h) the minimum chi-square
eSHMLOr.

Asymptotically, i.e. when J 1s fixed and all the »;-s tend to infinity, the
tfunction ¢, can be replaced by a function simpler to minimize:

s (b) = ZZ [ — nj ij (h)] 4.9)

J=1 k=l

Again, the first order conditions lead to nonlinear equation systems which
must be solved using iterative procedures.

4.2.3 The Generalized Berkson Method

This estimation procedure, which we presented for the dichotomous case in
section 2.6.2, was partially generalized by Amemiya [Ame77]. We will give
a unified presentation here. Asymptotically (J fixed, n; — oo, ¥j) . the ob-
served frequencies my; converge to the true probabilities Fy; (b) and are such
that { . /7, [7:; — Py (0)]} is distributed normally. For the principal mod-
els used in gualitative analysis, it is generally possible o find a function
G : R* — R*, such that G has an inverse and G [Py; (b),.... Pg; (b)]
is linear in (x1;br, X2;b2, .. .. Xu; b )

Xi;b
G[P;h)..... Pr;(b)] = : = AX;b,
Xgiby
where:
K” U U b
1
X;' _ 0 ng b =
O by
0 0 XHj

The mapping G is defined up to an isomorphic transformation. Py; {(b) is not

explicitly represented in & because of the constraint ZI‘:{:” Fy; (b) = 1 on the
probabilities.
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Let us replace the true probabilities in the function G with the observed
frequencies and write a first-order Taylor expansion. Asymptotically, we have:

Gj :G(J'le-,---aﬂﬂ'j)1

= G [Py (D), .... Px; ()]
R 3G (Pyy..... Pxj)
—I—; ;PRJ 22 (7 — Py (B)],

AG( Py, . P . . . .
(P Pxs) is an X -dimensional vector comprising the derivatives of

where
G with respect to Py;.
This structure 1s equivalent to:

-~

G;~AX;b+u,, (4.10)
with:

The formulation in equation (4.10) appears asymptotically equivalent to a
model which is linear in b, but with the covariances of the normally distributed
disturbance terms depending on the parameters.

The Berkson method consists of either:

* cstimating b by the maximum-likelihood method applicd to the almost normal
model in (4.10)}, or, more simply,
» estimating the model using weighted least squares.

4.2.4 Limited Information Maximum Likelihood Estimation (LIML)

Application of the maximum-likelihood method can prove forbidding when
the number of parameters is very large, or when the functional form F£¥ is too
complex. Instead we can reduce our scope and estimate either:

* the marginal likelihoods £, and L,, or
*» the conditional likelihoods L 2 and L oy, or
* first the marginal likelihood L;, and then the conditional likelihood L 7).

In the remainder of this chapter we shall study in detail these various
methods of estimation. We shall assume that the functions #* are twice con-
tinuously differentiable, which is always true for the probit and logit models.
Furthermore, we shall assume that the parameters by, ..., by are identified —
the identification problem is generally resolved at the stage of model building
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(cf. chapter 3) — and that they are not correlated. This last assumption is not
always satisfied in practice (¢f. section 3.4.2.2), but the estimation techniques
we shall examine can easily be generalized to account for this problem. We
simply incorporate the relationships between the parameters as constraints on
the maximizations or minimizations.

4.3 The Maximum-Likelihood Method
4.3.1  The Estimator and its Properties

The maximum-likelihood estimator is obtained by writing the first-order con-
ditions

g log (L)
0= db,
g K k .
F
0=5"% ny, a0y @10
i=1 k=0 EELD

where h = 1,..., H, F* (j) = P;; (b) = F* &xuhl, ... Xp;byr), and where
F;f { /) indicates the partial derivative of F*™ {j) with respect to the A-th
coordinate;

HF'& (Xubl, PR XHJ'bH)
dby, '

Ff(j)=

The likelihood equations can be written in matrix form, Denote:

FY(h) 0
DIF (D= _ : ,
O FX ()
(K + D x(K+1)
F () F ()
ALF ()] = : :
Fi* (P S ()
(K +1)x H
H{}j
N(j) =
R,

(K +1)x1
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X1j 0 0O
{ X7
X; = & | ,
0 0 XHj
b,
b =
b,;
g < H

Using this notation, we have:

alog(L)_ixfg[F(')]’D[F(')l_lN iy =0 (4.12)
b -*J-zl / ! ! Ve |

The maximum-likelihood estimator 3¢, which solves equation system,
(4.12) asymptotically (J’ fixed, n; — oo, ¥j) converges to b, Furthermore, it
is asymptotically normally distributed:

asy | 92 log(£)]”
;@ML"""*{IJ-E["'W] . (4.13)

(In section 4.6 we shall examine the existence, convergence, and asymptotic
normality of the estimators).

It remains to find the asymptotic covariance matrix of 34, . For this we
require the matrix of second derivatives:

3% log (L}

, Yhd.
3by, 0b,

Denoting Ff, the second order derivative of F* () with respect to the ele-
ments indexed by & and £, we have:

52log (L) me= 0 [F;fu)};

Obsob, ot T, | FE Gy T
Rt ~FEDOFEG) | B L
—ZZ”‘U’ N2 ¢ t FE () XniXefs
i=1 k=0 (F) () J
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K

! Fr (Y FFGY
_ZZ”’H R ALY LS XMX”

j=1 k=0 (F&* ()

4 K
iy () )

K X

— ; i Fk{ ) fi!,i g

Taking expectations of the negative of this amount:

+
J

K

# log (L} FE(GHYFEG
E
[ dbhdh! ] JZIZ !-' (J) FT_,I'KFJT

S X
Z Zn Fy ()X,

FEGFEG
TR ) Xy Xe

i
M““
M:x-

Fr;

i k=0

S

since the derivative of Zf:u F*{jy = 1 is zero everywhere.
Finally. we have the derivatives in matrix form:

8% log (L)
gl &7
[ abab ]

g
=Y m X IAF(OVIDF(HITAF () X, (4.14)
J=i
In practice, when we evaluate the precision of the estimator 357 we replace

. 32 le1pe( £ 4 .
the unknown parameters in E [—%ﬂ‘—}} by their estimates.

4.3.2 Examples using Probit and Logit
Application of the maximum-likelihocd method to dichotomous models has al-

ready been discussed in chapter 2. We will now present several more examples.

4.3.2.1 Univariate Polvchotomous, or Multinomial, Logit Model
This madel is written:

__exp (xk | hk)
E{r = EXP (Xt;bt)

Py (b) =

where, by convention. Xg; by is set equal to zero to avoid problems of 1dentifi-
cation.
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Assuming that there 1s no linear dependence between the parameters b, we
have:

—FY (Y FR (), it k # A,
koo
Fi () = { [1 — F* ()] F* (), if k = h.

Accounting for these equalities we substitute into the likelihood equa-
tion (4.11), vielding:

) K
S T

J=1 k=t}

J
0= n;[my — F" (/)] %3,
i=I
where i =1, ..., H.
Hence, as in the dichotomous case, we find an orthogonality condition relating
the explanatory vanables and the residuals ms; — F A

4.3.2.2  Bivariare Dichotomous Conditional Logit Mode!
Consider the pair of dichotomous variables (}-‘} , y?) fitting a condi-
tional logit distribution:

1
1l w2 — oY —
P‘r(y_j- 1|}*’-_U)_ I+ exp (xi,;by )

|

Privli=1|v* =1} =

r(}; . |}; } 1 +EXP (K:jbg)’
1

‘2._.—_' ‘I. — —

Pl-(-}'_i’ 1 }’_; U) 1+EX]J (K].jhj.).
]

Priy} =1]y; =1)

T+ exp {xa,;ba)’

As we saw in section 3.4.2 these conditional distributions are compatible
(i.e. determine a unique solution) if and only if:

K[jb1+X4jb4———ngh2 -F-ngb_q, V‘L

In this case we can derive the joint distribution from the conditional probabili-
ties, for example;

P“J' (b) = Pl’(y} = 1,}-‘? = ])T

and similarly for Pig; (B}, Fa; (b), and Pgo; (b). This in turn yields the likeli-
hood equation. Maximization of the likelihood must respect the compatibility
constraint, however.
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4.3.2.3  Bivariate Dichotomous Probit Model

Consider two choice functions of the form:

le = —_I]J'bt -+ L

V3= —xg;b2 + vy,

where the v|; and v;; are tdentically distributed with correlation coefficient p:

v (5)-( 1)l

The dependent variables are defined by:

1, ifvF <0
A =d Y ‘ =
i {{L otherwise ' k={1.2]

For each index j, there are four choice probabilities given by:

Py = Pr(}‘j' = 1*«"? =1) = F' (xi;b1, x3;b2, p),

RSP T R S
= ] f o, u, uxydudus,

—

where [ (o, #,, it2) describes the density function:

v1()-( D]

and F! the corresponding (normal bivariate) distribution.
Further:

Py =Pr(yl=1,3=0)=Pr{y, =1)—Pr(y; = 1,y = 1),
= @ (x;;b,) — Fy (x1;b1, x2;ba, p},
Py =Pr(y} =0y =1) =@ (x2;b) — Fy (x1;b1,x5;b2, 0},
and:
Piy=1— Py, — Py — Py

These probabilities contain double integrals which must be evaluated us-
ing numeric technigques. Because these techniques are computationally very
demanding, the logit formulation has a clear advantage over probit.

4.3.2.4  Sequential Trichotomous Model
The probabilities are given by:

P = F {x;;h),
Pyj = [1 = F (xi;b0)] F (x25b2),
Py = [1— F (xi;b1)] [1 = F (x2;b2)}].
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Notice that the logarithm of each of these probabilities is the sum of a func-
tion of b, plus a function of ha. Maximizing log (L)} reduces to the separate
maximization of two functions, one on b; and one on b;, It is, in fact, equivalent
to estimating two dichotomous models.

The preceding observation generalizes dircctly to the maximization of
sequential models 1n which the dependent variable assumes more than three
values.

4.3.3 The Method of Scoring

This method is an iterative proccdure used to calculate the maximume-likelihood
estimator. It has the same propertics in the general qualitative response model
as it does 1n the special case of the dichotomous model we discussed in
section 2.5.2.

Starting from an original value 3; obtained, for example, as an estimate
generated by the Berkson generalized method (cf. section 4.2.3), we apply the
algorithm:

Bruss = B +E [— > “”g(”}_i o) (4.15)
38,013, G
where the %EJ} notation indicates that the derivative is evaluated at b = 3,,,.
If this procedure converges to b as m — 0o, the limit is characterized by:
a log (L) _ 0
934

When the model is well behaved, this solution to the likelibood equation is
identical to Basr.

Amemiya [Ame76] has shown that this iterative procedure can be interpreted
as 4 generalized least-squares type approach applied to a well chosen linear
model.

Consider the observed frequencies: m;; = ’:Ii: we have:

N P
;Tk_jz 'F (})+H’kj$
where u;; has mean zero and vartance:

|
var (ug,; ) = ;Fk (O = Fe ()]

F
For a given index value j, the u;;-s are correlated:

cov (uy;. ty; b e ,
o) =~ VG kL
f

Letting 7= (4) be a K-dimensional vector with clements F* (j) k= 1.....
K, and D F* (f) a diagonal matrix with the clements of F* () on the diagonal,
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the covariance matrix of (#1;. ..., ux;) is given by:

1 * - # - * “F
Aj= [DF*(jy— F~()) F*(j)'].
!
Notice that this matrix is non-singular since we did not incorporate the dis-
turbance corresponding to &£ = 0. Given an initial value of the parameter 3y,
we can expand the functions F* (j3 = Pi; (b) around this value, yielding:

K
F(jy== F* U)|h=ﬂ + Z [Fy ()] b3 b — x4 58],
=1

and thus:

K
kg koo
Ty — F (Dly_g + D Fr (D] %08
fi=1
K
~ 2 Doy Xasn + 1
=1
Using pg; to denote the LHS, for which the value is known, we obtain a linear
formulation:

1]~

[F}f(j)]h_fyxhjhh+ukj'- kzl,...,ﬁ-,

al

h=1 i=1,.... 4

Prj =~

The vanance-covariance matrix A ; 1s a function of b. If we use this model to
calculate the weighted least-squares estimator for b using the covariance matrix
A |h=ﬁ~ the value obtained is identical to that given by the method of scoring
[cf. equation (4.15)]. In consequence, we can interpret this latter method as a
succession of estimates using the method of weighted least squares,

Finally, recall that there exist other procedures, such as the Berndt-Hall-Hall-
Hausman method. for solving the maximume-likehihood equations.

4.4 The Minimum Chi-Squared Method
4.4.1 The Estimator Assoctated with |

To derive this estimator we begin by writing the first-order conditions from
eguation (4.8):
dg
FTw

£
=1k

ﬂ: hzl,...,H.,

K

. 2
Wo— B ) [HU —n;F (7)),
Fi () n;F(j)?

H e ’
0
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4 K .
nkj_”ij(J]_ koo o ;
222 UL

=1 k=0

K
o

g
S niFcU )2

In expression (4.16) the second term becornes vanishingly small relative to the
first term as the value of #; tends to infinity. Furthermore, E:.— o FE(hH =0.
The likelihood equations can be rewritten:

k

PR |
I 9) DUVEL LAY

J=1 k=0

where 8, is vamshingly small compared to the first term. In matrix form we
have:

A
0= X;A[F (DVIDF (DT N () +3. (4.17)
i=1

If we compare this result to the likelihood equations (4,12} we find that the
minimum chi-square estimator, /3;, obtained by minimizing ¢ 18 asymptoti-
cally equivalent to the maximum-likelihood estimator.

4.4.2 The Estimator Associated with ¢

The first-order conditions are :

dpa
= — h=1 , H
0 dby
g K koo
- —n. F
:ZZg[”‘” n Fi ()] nFf ()X, (4.18)
=1 k=0 nk__r'
I K 2
=33 LFYGYE (DX
il ke T

since Zf:{) FF(h =0
In matrix form, condition (4.18) 1s:

g
SOXIAIF DI IDR (DI D (NG =0 (4.19)

j=1

Asymptotically, as n; — oo, 7 () is equivalent to F (/) and equation (4.19)
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is equivalent to {4,12}. 3., the soluticn to the current equation system, is
asymptotically equal to Sy, ., the solution to the maximum-likelihood equa-
tion (Morimune [Mor79]).

4.5 The Generalized Berkson Method
4.5.1 Finding the Function G for Various Models

We shall present this method for several of the models introduced in chap-
ter 3. The material in this section remains valid regardless of whether a linear
dependence exists hetween the parameters by,.

4.5.1.1 Bivariate Dichotomous Probit Model
As we saw 1n section 4.3.2.3, this model is defined by:

Pi; = Fi (x1;b1, %3;b3, p),
Py, =@ (xy;b) — Fy (x1;b1.x2;b2, o),
Pi; = @ (x2;b2) — Fy (x1;b1,x25b0, o),
Paj =1 — P; — P3; — Py,

where P, as usual, is the standard normal density and Fy the bivariate normal:

@) Gl

We have:
Xi;b = ¢! (PU + Py,
Xa;b2 = @7 (P + Pyp),
p =G (Pu, Py, P3;'),

where (73 1s determined by

Piy=Fi[® ' (P + Py), @7 (P + Pyy), Ga (Pry. Pay. Paj)].

4.5.1.2 Polvchotomous Logit Model

In this model the existence of a linear relationship between the param-
eters 1s also immaterial. The formulation includes the standard univariate and
multivariate models as special cases.

The model is defined by:

P, oxp {xe;hy)

= . k=0,... K,
o Ylieoexp (xeb)
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where, by convention, x;bg = 0. We derive:

P.-
log (i) =xby,. k=1,... K.
P[}j

4.5.1.3 Urnivariate Ordered Trichotomous Model
The probabilities are:

P ;= F(x;b+a).
Prp=F {ij+ag) — F (th+cri), ay > daip,
Py =1-= P — Py,
yielding:
F7U(Py;) =x;b+ay.
F7U(Py + Py) =x;b+ .

4.5.1.4 Sequential Trichotomous Mode!
The formulation is {as in section 4.3,2.4);

Pi; = F {xy;by),

Py = [1—F (x1;b1}] F (x2;b2),

Pyj = [1 = F (xy;b1}] [1— F (x2;b2}].
yielding:

XUb] = F_l (P]J'),

P
by =F1 ]
e (1—PU)

4.5.2 The Estimator and its Properties

Recalling the notation introduced in section 4.2.3, the linear approximation is
written:

f?j=G(:rr1j,...,:rKj)%Aij+uj, (420)
with:
K G (P, ..., Px,)
j = Z 2P (me; = Pus)-
k=1 £

We write AG {f) for the matrix of partial derivatives of G evaluated at the point
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(Pi;..... Pg;). The covariance matrix of 7y; — Py, & = 1,..., K is given
by:

1
Aj=—[DF ()= F () F ()],
5

and we derive the varnance-covarnance matrix of the error terms:

Q, =cov{u;) = AG(YA;AG ().

j =

The generalized Berkson estimator is obtained by applving generalized least
squares to this model with the observed frequencies my; replacing the unknown
true probabilities £;; in Q; (the ensuing matrix is denoted €2,).

The Berkson estimator 1s:

—1
1 4
LI | ey —1 &
Be=| D _X;AQAX | D> XAQ6Gy, (4.21)
i=1 j=1
and a consistent estimmator of its variance 1s given by:
—1
g
Var(By) = { > X,A'Q7TAX; | (4.22)
f=l1
G being non-singular, we can substitute the expression for 27!, yielding:
—1
var (Ba) = { > X[A[AG ()] AT [AG (D17 AX;

j=I
Since G (j)~' A = F*(j), we differentiate to obtain:
(AG ()] 'A=AF(j).

Yielding a consistent estimate of the variance of the estimator Fg:

—1
J

cov () = ZX;&F* (j)" ﬂ;l,ﬁ}?* () XJ.
=1

Now, the inverse of A; is known to be:
ATl =n; [DF? (j)]_] —iee’
K, d Pﬂ} H

where e is a K -dimensional column vector of ones. Substituting into the equation
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for var (3g). we have:

J

var (33 = { SR XA (Y DE* () AR () X,
i=1

!

1; ! ! TP L * ox

— ——X; [E AF {‘;)] e AFT(j) X,

Py

—1
S

= D i X,AF (Y DF ()T ' AF () X,
i=1
Comparing this cxpression with equation (4.14) we see that the gencralized
Berkson estimator is asymptotically efficient.

4.6 Asvmptotic Properties of the Estimators

In the preceding sections we used rather intuitive arguments to derive some
asymptotic results. Rigorous proofs of these results are generally founded on
a methodology proposed by Jenarich [Jen69]. We shall follow this procedure,
assuming that J is fixed and that n; = ;7. where the &; arc fixed and where a
tends to infinity. This type of asymptote corresponds 10 the notion of repeatcd
exXperiments.

4.0.1 Srrong Convergence of the Estimators

The estimators which we have examined arc all based on the optimzation of
a given set of critcria expressed as functions of the parameters b and variables
Zy=mg, k=0.... K, j=1,...,J. The functions are:

¢ for the maximum-likelihood estimator:

21(Zp, b) =log (L) — lﬂg(n)—ZH Z%{lm Py (0},

f=1
+ for the minimum chi-square estimator:
J K
1 [TT};_,: PkJ (b]]
Z,. by =— bh) = E & E
g2{Z,. b) HWl {b) < | 2 ij b

« for the Generalized Berkson method:
I
g5 (Zn by =S (G, — AX;b) 2,1 (G; — AXb).
1
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These estimators are well behaved when applied to the usual Jogit and probit
models. In particular. they are continvous and possess indefinitely high-order
derivatives with respect to the parameters. Furthermore, the values assumed by
Z, are elements of a compact set, 7ry; € [0, 1], V&, j.

[n what follows we assume that the value of the estimator is contained within
a compact set B, and that the value of the unknown true parameter by, is also in
the interor of 8.

Theorem 2: Consider two compact sets Z and B in Euclidean space
and let g be a continuous real function defined on Z ® B:

g {z. b} — {z. b}

{iy Foreachz ¢ 7, there exists at least one value /3 (z} € Bsuchthat g [z, 3 (z)]
= max [g (z, b)].
=
(i} If Z, converges to a limit zg such that the set of solutions 3 (z) converges
to a point by, then 3 (Z,} tends to by,

The last property is a result of the continuity of the mapping 3 with respect
{0 Z.

Proof;
(1} The partial mapping b — g (z, b) is continuous on the compact set B and
hence has a minimum & (z) for at least one value of z.
(i1} Consider a sequence of solutions 3 {Z,). As this sequence has values in
B. there exists a subsequence 3 (Z”j) which converges to a limit b,,. For
this subsequence we have:

& [Z”;’ﬁ (Z”;)] =B £Z";" h“)'
SO

lim g [Z,,.8(Z:)] = g (Z,,.bo).

HJ.—:".'JL
Using the continuity of the mapping g. we sce that:
g (zo, b)) = g (2o, by).

As 3 (zp) converges to by, we see that b,. = by. In consequence, every
convergent subsequence converges to the same limit bg. Since B 1s compact,
this implies that the sequence converges to by, O

Proposition 5: The estimators obtained by optimizing g1, gz. or gz
converge almost surely to the value of the true parameter by,
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Proof: We will demonstrate this for the case of the maximum-like-
lihood estimator. We have already seen that the function g, satisiies the assump-
tions of theorem 2.

Let zg = Fy; (bg) , then:

S K
g1 { [Py (b0)]. b} =D 8, > Py (bo)log [Py (0],

=l k=0
is maximized over b such that:
Pri(by = Pi; (bo), ¥k, j

{cf. cxercise 25).
Once the model is identified, this condition is cquivalent to b = by, and:

3 [Py (bo)] = be.

We define the sequence 7, as comprising the empirical frequencies my;. Ac-
cording to the law of large numbers., as Z, converges almost surely to 2y, =
Pr (by), the maximum-likelihood estimator 3 (Z, ) converges almaost surely 1o

BlF; by =by. DO

Remark 4: From a purely mathematical perspective, we must point
out the a step has been omitted from the foregoing demonstration. We would
need to show that, when Z,, is stochastic. it is possible to select a pointin 3 (Z,)
such that for each value assumed by Z,,, 8 (Z,) is an¢stimator, i.e. a measurable
function (cf. Jennrich [Jen&9]).

4.6.2  Asvmptotic Normality

We shall demonstrate that the maximum-likelihood and minimum chi-square
estimators are asymptotically normally distributed. First we need to make an
additional assumption concerning the functions g and g;. In particular, we
postulate that they are threc times continuously differentiable.

Given one of these functions, g, and a value which maximizes it, 3 (Z,). we
have seen that g (Z,,, b) converges almost surely to by. In other words, for all
¢, there exists a value of & and a neighbourhood £24 such that:

I1B[Zy ()] —bolf <€, Vw e Qy. Vaz N,

with probability greater that 1 — €.

Since by is in the interior of B, we can, by taking a sufficiently small e,
ensure that Yw € 25, Yo = N, 3| Z, (w)] 1s also in the interior of 8, Since g
is differentiable, 3 | Z, (w}] satisfics the first-order conditions:

08 { Zn (w); BIZy ()]} _

0, Vwe Ry, Yn=N.
db
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This f.o.c. can be written in a more tractable form. Since g i1s three times
continuously differentiable, we can perform the following expansion of the
first-order derivative:

dg dg{z, by) Agiz. by
= h) — 2
3 &P > T aban )
+ O {lIb — by ®),
_ Bg(z.by) | 9°g(z, bo)
- ah dbdb’
+ O (b —byll - |z — zg]]).

(b — by) + O (IIb — byl*)

Substituting Z,, for z and 3 (Z,,) tfor b, and setting 24 = Pr (by). we obtain:

3g (Z,. bo) 3% [Py (bo), bo]
b dboly
= 0p {”JB {(Z,) — ball),
where o, is infinitesimal in probability.
We can now apply the central limit theorem to the functions g, permitting us
to conclude that:

[3 (Zn) — byl

dg
- L Z.!u h
ﬁah( o)

converges in distribution to the normal distribution.
In consequence:

-

Hbahfg [PI‘ {hﬂ): hﬂ] «/E[ﬁ (Zn} - hDL and \/E[;B (Z”} — hn]

i g Pribn) by

converge in distribution to normal, since the matrix =S5

when the model is identified.

1s non-singular

4.7 Limited Information Maximum Likelihood (L1ML)

This method involves a loss of efficiency compared to the full infermation
maximum-likelihood method discussed in section 4.3. On the other hand it 15
simpler to calculate and justifies to some extent the introduction of marginal-
conditional, conditional-conditional, etc. models.

4.7.1  Information Derived from the Marginal Distributions

This method, introduced by Ashford-Sowden [AS70], is of particular interest
for evaluating probit models with more than three choice functions. It avoids
the computationally very demanding evaluation ol multiple integrals.
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Consider three latent variables:

|
Vj ZXU.'])] +‘L-‘1j,
7

VJT' = Xz;‘bz + V24,

3 \

which define three dichotomous variables:

1__;:_{1, if Vi > 0,

“7 710, otherwise, k=1{l.2.3)

Let {1y, vz, v3) be characterized by the following normal distribution:

0 1 o1z pi3
N 0 Pz L paa

0 Mz ez 1

The estimation proceeds as follows:

+ Esumate ) {respectively b1, b3) by maximizing the marginal likelihood of
¥} (¥, y7}. This yields the estimators 8y, S, 83,

» Estimate the correlation coefficients vusing the marginal distributions of the
ordered pairs. For example, to estimate pj> we calculate the density of
(_\.-‘}? yf) i = 1...J, by substituting £3,, f2. derived in the first step, for
by and &, in the likelihood function. We then maximize the new function over
/12. This procedure 1s consistent. but not asymptotically efficient.

4.7.2 Twa-stage FEstimation using the Marginal
and Conditional Distributions

This procedure, described by Amemiya [Ame78], was applied to a bivariate
logit model defined on two classes of parameters by ard b; by Domenich-
McFadden. The marginal distribution of the first group, L, only depends on
b,. while the cenditional distnbution of the second, L 5, given the first, is a
function of both by and h». The procedure is:

* Estimate by by maximizing log (L), vielding the estimator 3.
* Maximize log [L an (b2, 3y }] with respect to b, to generate the estimate (35.

These estimators are consistent, but they are not asymptotically efficient
(except in the special case of the sequential madel where £.; | does not depend
on b;). The appeal of this approach is that it facilitates computation of the
estimates since it reduces the number of parameters to be cstimated in each
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maximization. At each stage we can replace the maximum-likelihood method
with the generalized Berkson method.

4.7.3  Estimation of Conditional Logit Models

In these models (cf. section 3,4.2) the parameters are derived from the condi-
tional distributions. In consequence, we limit our analysis to these more tractable
computations and ignore the jomnt distributions.
We begin by examining the case of a conditional dichotomous bivanate logit
model:
B 1
L+ exp {x;;b )’
1
1 4+ exp (nghg) '
]
| + exp (x3,ba}’
1

IJ_?,: ‘]-: — e .
Pr(y; =1y, =1) b+ exp (x4;b4)

Priy;=1|y; =1} = (4.23)

Pr(}.'z. :{]| _1-'! :ﬂ) —

Under the compatibility condition:
X]jh] + X4Jr-h4 = XgJ;hg -+ Xj)fb:—!..
Denote the observed frequencies sy, o1, T, 7115 Tor each trial of type
j. To estimate b, we simply calculate the conditicnal frequency:
Nlﬂj-
Ty + Moo

and apply Berkson’s method.
Consider the logir transformation defined by:

fogit (v) = log (]1—),
—y

we have:

) shyY
logit (—;) 2 xy b+ u g,
o7 + Mo

and can apply generalized least squares to this equation.

Notice that this method can be improved by simultaneously performing the
logit transformation on the first three equations of (4,23} and then applying
least squares. The residuvals uy ;. u3;. 13y are, of course, correlated.
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Finally, observe that separate estimation of the parameters from the cquations
in (4.23) can serve to verify whether the specification of the model as a condi-
tional distribution is appropriate. We simply test the compatibility conditions &
POSEETIOrT,

4,8 Principal Test Procedures

The aforementioned techniques yield estimators which are asymptotically nor-
mal as the sample size tends to infinity. Furthermore, we have seen that in
the case of grouped data several of these methods yield estimators which are
asympiotically equivalent.

It is relatively simple to use these estimators to generate test procedures,
several of which will, again, be asymptotically equivalent.

We shall present the primary test procedures using, as our starting point, the
maximum-likelihood method. This estimator is consistent even in the absence
of grouped data (which is not the case for Berkson's method). Furthermore, this
is the most widely used estimation method.

Denote:

g

K
log (L (ys D) = > >~y log [Py (b)]

j=1 k=0
the Tog-likelihood under the general hypothesis A,
Now we partition the parameter vector b into two groups b = ( :;' ) . where
2

b, is r-dimensional and b, comprises (g — #) elements. The null hypothesis 1s:

H{_‘, . {b] == {”
We consider two different maximum-hikelthood estimators for b.
The unconstrained estimator G% = g' solves the problem max {log[L
2

(v: b)]}. As we have seen, this estimator is consistent and asymptotically normal
with a covariance maitrix given by the inverse of the Fisher information matrix.
Performing a decompaosition corresponding to the sub-vectors, we have:

_ (B ey b; Ly Iy
ﬁ_(ﬁz) N (hz) (1'21 fzz)

Inverting the Fisher information matrix by partition yields:

_ —1
var (8)) & [Ii — Ioisn' 't
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(1) The consirained estimator is calculated under the null hypothesis. It is of
the form:

e 0
8 _(55)?

where /35 solves the maximization of log [L (y; 0. 3,)] over bz,

Under the null hypothesis, (35 is consistent and asymptotically normal;

sy

A5~ N (b, 15,

We see that there are various asymptotically equivalent ways 1o test the
hypothesis Hy - by =10

4.8.1 The Wald Test

The idea underlying this test is to accept the null hypothesis it the unconstrained
estimate of by is close to zero. The statistic is a measure of b -s proximity to
zero, given by:

£y = 3 [var (801" 8. (4.24)
= ;31 [fn - F12f2_gl le} 3,

where T denotes a consistent estimator of the information matrix.

Il the null hypothesis Hy obtains, this statistic is asymptotically chi-sguare
distributed with » degrees of freedom. Denote xs, (#) the 95 percent critical
point of this distribution, the Wald test of the null hypothesis with five percent
significance is:

{ accept Hy, if £, < Xgsq (#). (4.25)

reject Hy, if &, > xoe ().

4.8.2 The Likelihood-Ratio Test

This test is based on a comparison of two maximum-likelihood estimators, gen-
erated by maximizing the constrained and unconstrained likelihood tunction.
The statistic 1s:

S = =2 {log [L (y: B)] —log [L (: B) ]}, (4.26)
which is also asymptotically x° (r). The test consists of:

{accept Hy, if £ < Xgsq (). (4.27}

This procedure is asymptotically equivaient to the Wald test.



96 Econometrics of (Qualitative Variables

4.8.3 The Maximum Score Test (Lagrange Multiplier Test)

When the null hypothesis is true. the two estimators 3 and 3° should be very
close to each other. The same is true for the vectors of scores:

log[L (y: b)) {%‘% (v: b“)J

93 L) (y: bY)

and:

dlog [L (y;0:b%); [ 7557 (3:10:bg) ] [2held (4. g b))
3B | Roa(D) (00 bgy | 0 '

R
The score statistic 1s defined by:

8 log [L (y: b*)]

-1 3log [L {y:b)]
ash "

3

- n
ELa = (fll—fuf"gz 21)

(4.28)

and is asymptotically equivalent (under fy) to the Wald statistic, £, and to the
likelihood-ratio statistic, &; 5.
The test is:

{ ﬂCCCpt Hj}, if EL;‘W =2 X&ﬁf,:%:- (F),

‘ ) 5 (4.29)
reject Hy, iof Exa > Xosq (7).

Due to their asymptotic equivalence, the criteria for choosing between these
procedures reduces in large measure to their ease of use. In practice the Lagrange
multiplier 1s the most popular. as it 1s calculated by a simple regression.

ael =

-1
Since [f“ S IE,J is a part of the inverse of the Fisher information
matrix, we see that:

d 1 Liyib)] .1 dlog|Ll{yv:b
£y = 208 | (}f Ny dlogl {;Y iy (4.30)
@ (39 A 3
We now insert the individual observations into the likelihood equation, which
we indicate with:

log (L (y;b)] = > " logll (i3 1.

i=1
If the observations are not correlated between each other, we have:

dlog (L (y: )] _ Z d log L (yi: b}l
8 (3 iR TC0 N
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Furthermore, a consistent estimator of the Fisher information matrix is given
by:

N

. Z dlog{{; (yi: ] 2 logf; (¥ b)j_
=1

a3 a3y
We can now write the statistic £, a:

~. dlog[l (vi: b
o = 3 oI

— 3 (B’
Z": dlog L (vi; bo)] 8log [l (ve; be)] |
pr 83+ 8 (3
* . 3log [k (3 bd] |
X Z e . (4.31)

Denote f the # x g matrix defined:
[ dlog [ (¥ byl
a ’
and e the n-dimensional vector comprised of ones. Expression (4,31} shows

that the statistic &7, is exactly the sum of squares of the predictions in the
artificial linear regression:

e =1 a4+ errors, (4.32)

where a is a vector of ¢ parameters.

4.8.4  Hausman’'s Specification Test

A final notion we will touch on invelves comparing the two estimates of the
nuisance parameter b. The statistic is of the form:

sy = (B~ B°) [var (g —var (8°)]” (8 - 8), (4.33)

where |- - -]7 denotes a generalized inverse,

Under Hy, when [var (3) — var (3°)]  converges to a generalized inverse of
var (3) — var (3°) = var (3 — 3%), we can show that &4 is asymptotically chi-
square with r* {= rank | var (3} — var {3)]) degrees of freedom. The variances
arc evaluated under the null hypothesis.

The rank r* is always less than or equal to the number of constraints, 7. In
the special case #* = r, the statistic £y; 15 equivalent to £, §; » and &; 5 which
we have already seen.
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A particular advantage of Hausman’s procedure is that it can easily be ex-
tended to the case of two estimators: 3 and 37, where the former is consistent
under Hy and the latter is consistent and efficient under Hjy. The test consists of:

{accept Hy, if 65 < xéso (7).

| ! (4.34)
reject Hy, if 6 = ¥eq (F),

with:

tn = (8- 5) [vai () —var (5] (8- 3,

r* = rank [var (3) — var (3)] = rank [var (8 — 8°}].

For this test to be consistent it is clearly essential that 3 — 3° does not 1end
to zero i Hy 1s not true.

Finally, notice that the value of the rank r*must be derived from & priori
theoretical knowledge. There is no way to estimate it from the equation r* —
rank [var (f]) — var [,SL')] , since rank is not a continuous mapping.

4.9 Goodness of Fit

Just as in the linear case, we can introduce measures of goodness of fit. These
are analogous to the familiar R~ coefficient of determination. The underlying
idea is to compare the chosen model as represented by the estimated likelihood
function L (y: b) with a more general model which can be written:

P = vij-

wherethe v;. k = 1,..., K, j = 1...., K are independent parameters )y, 15
constrained by 377 1, = 1). This is the formulation which defines the null
hypothesis Hy.

4.9 1 Measures Assoclated with the Likelifiood-Ratio Test

For the unconstrained maximization of the log-likelihood the theoretical prob-
abilities P;; are replaced by the observed frequencies ry; in the expression for
log (L), yielding:

J K
= ZZ g log (:rk,

i=1 k=0

The likelihood-ratio statistic is given by:
Ein = —2 {_I‘J‘g IL (y. 3) — log (f“)] }
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The dimension of the nuil hypothesis is equal to the number of elements in
b, that is, g = Zh ; @x. The alternative hypothesis is characterized by K - .J

independent parameters.
When the initial model obtains, & » will be distributed x2 (K - J — g).

4.9.2  Chi-square Goodness of Fit Measures

If the chosen statistic is not maximum likelihood, but rather chi-square. it scems
reasonable to use the fellowing measure of goodness-of-fit:

w1 (G31) = ii (n; — n; Py (;@:)]2

i=1 k=0 7y By (B
or
J K 2
B [ — nj Prj (B2}
w1 (32} = J,E:] ;LE:“ e : (4.36)

Under the null hypothesis, these statistics are asymptotically equivalent Lo the
ML expression:

—2 {log[L (A)] — log (L)},

as all the a1 ;-5 tend to infinity. In fact:

J K
—2{log{L (B —log (L)} = —22 Zn;q log

=1 &=

If the null hypothesis is true, both 7;; and Py; (3) converge towards Pi; (3°)
asymptotically, Rewriting the expression as a second order cxpansion we
have:

—2{log[L (3] — log (L} }

o e i)

=t k=0

Py (,B) —my 1 (P (B )
D I L

=1kt
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The first term on the right-hand side is nil. since it is equal to:

S K
—2) _n; {Z [P (3) — ﬂlﬂ} =0,
J=l

k=0
and hence:
. S K P, p
~2 {log [L (B)] — log (£)} =~ ZZHJL&J v @]
=1 k=0 Tk
= 2 (3)

In particular, ¢, (3) and ¢, ((3) are asymptotically chi-square with { K- J — ()
degrees ot treedom.

4.10 Omitted and Irrelevant Variables

Given a gualitative model, for example a polychotomous logit madel defined
by the probabilities:

exp (x;bg)

P (b) = - :
ZLD exp (x¢by)

by = 0, (4.37)

wemay wonder whether some important explanatory variables have not been
forgotten. On the other hand, some of the included variables may not belong
in the equation, having no real power to explain the qualitative endogenous
variable. In the former case equation {4.37) will constitute the null hypothesis,
while in the latter case it will be the alternative hypothesis. If we dispose of
maximum-likelihood estimalors, 3, of the true parameters, b, &k = 1. ..., K.
it seerns reasonable to use a maximum-score test for the case of omitted variables
and a Wald test for the case of irrelevant variables.

4101  Omitted Variables

Let’s look at the case of an explanatory variable, z, which has not been in-
. e P
corporated into the probability Tﬁf\%. The gencral model corresponds to the

polychotomous logit model defined by:

eXplxe by ) .
it & = ky,
ZHLD expix; by +exp(xig b 20}’ v

Py {a, h) = exp xy By + o)

Zk#*n exXp{x b*'}+exp{xku by, +za}’

otherwise.

The null hypothesis, that is the original model, obtains when o = Q.
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The log-likelihoed of the general model is:

o / X =
log [L (¥: a. b):| = Z Z ny; log [Pk_;‘ {a, b}] .

J=I k=0
/ =
= Zn_; log [ng {ct, h)]
J=1
J X o
Py (e, b
+ ZZ}IM log M
Je=1 k=1 Po; (a. b)
This form of the log-likelihood equation is particularly interesting, as the
expression log [M} is linear in the parameters.
Pocle. b}

The score for the parameter a is:

d log [E (¥ a,h)} Y
H{I Z(_ 1 Pk@;('ﬂ b]?.,; +ZH£”~" -?_,la

i=1 i=1

J
- Zn-f- [ﬂkﬂ-}'_ Py (a, b)] <

j=

Replacing the parameters by their estimates under the null hypothesis, we have:

J log [E (y; 0. B)] ; N
Aa = Z”f !mfn-.:'_ P, ; (0, .‘3)] Z;

F=1

Notice that my, ; Pku ; (0. 8) = P;.;O ; (0, 3) can be interpreted
as the difference between Jﬁ and a natural estimator of its mean, and hence
viewed as a residual of the Lstlmatlon The estimated score is the scalar product
of this residual and the omitted variable. When this variable is “almost orthog-
onal” to the residuals, the score will be close to zero and the original model
must be deemed the “true’ model. Obviously, to complete the test we still have
to examine the variance of the score £, — Iubfhjf I . This 1s left as an exercise
for the reader.

4.70.2  Irrelevant Vuriables

Assume now that among the variables x;,. some do not contribute to ex-
plaining the cndugcnuus variables, We can decompose x;, = {(x . x;j‘) and
b, = (bL.. bkn) . and test the null hypothesis, #; : b} = 0, (i.e. the x;, arc
irelevant), The simplest way Lo verify this is given by the Wald test.
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For example, if x;, consists of a single variable, the Wald statistic is &, =
i, . . . 2.
3—’% and, under the null hypothesis, it i1s asymptotically distributed < with
T -'ﬁn
one degree of freedom. Setting the Type I error cut-off level at five percent,
this test consists of accepting the null hypothesis Hy if the student’s #-statistic

associated with the coetficient 35 is less than two. and rejecting it otherwise:

r
. &,
aceept Hy, if [%| < 2,
ﬁ-’fu
<
: R
reject Hy,  if ﬁ = 2.
'ﬂk
“ n

The two test procedures we have just seen for omitted and irrelevant variables
arc similar to the tests typically applied to the lincar model.

4.11 A Test for the Polychotomous Logit Formulation
4.11.1 Characterization of the Logit Polvchotomous Model

Before developing test procedures for the polychotomous logit modcl. it may
be of some interest to characterize this formulation in terms of the conditional
probabilities of a restricted number of altermatives.

Let us consider a polychotomous logit model corresponding to the alterna-
tives £k = {0, ..., K'}. We have:

eXp (X by )
Ehhzﬂ EXP (Xpby) .

If Aisasubsetof {0, ..., K}, wecancalculate the probability of an alternative
%, knowing that it belongs to A. We have:

Py (b} _ exp (X by}
Dohea Pr(d) 30, exp(xaby)

Hence this restricted conditional model is also polychotomous logit. This
property can be related to the preservation property of log-finear models upon
conditioning (cf. chapter 3).

We can even derive the following, more precise result:

P (b)) = E=0,...,.K, & =0

ke A.

Pya(b) =

Propasition 6: A model is polychotomous logit if all 1ts conditional
probabilities:

[Prik.ey (D) . Pejgy (b)) . VK. €

define a dichotomous logit model,
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Proof: Essentially, we need to demonstrate the sufficiency condition.
Consider the conditional probabilities Py (b)), & = 1, ..., K. Since the
conditional models arc polychotomous logit, we can write:

exp (x;be)
1+ exp (x:by)

Pro (b)) =

or, cquivalently:

Py (b) _ Fr (b
Py (b))  Fy(b)

We conclude that:

—exp(Xhy)., ¥Yhi=1,..., K.

| K. P (b) £
= — = =1+ exp (x¢hy),
Po(by 2= Py (b) ; p (i)
ang so that:
b
P (h) = &P (XeDe) ‘
I+ >, exp{xiby) m

In the case of some other models, such as the sequential logit, this property
works for finding some conditional probabilities, but not for all.

Remark 5: Be careful not to confuse the property we just discussed
with the property of the irrelevance of independcent alternatives, Conditional
probabilities are calculated for the whole set of choice probabilities {O, 1,.. ..,
K}

4.11.2  Hausman Test for Polvchotorous Logit Formulation

The aforementioned property of the logit model consiitutes the basis for a
variant on the Hausman test which is very simple to apply. [f the moded is true,
there cxist several consistent estimators of the parameters.

To simplify the analysis, let’s focus our attention on the parameters by, £ € A,
where A contains the alternative o.

We can estimate the bhg-s by applying the maximum-likelihood method to
the logit model, The cstimator. 3;. & € A is asymplotically etficient.

We can also consider the log-likelihood conditional on A, that is:

o

log[LIA (] =) Y mlog[Pus (D).

f=1 kcA
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and derive the estimator {{3,, ¥ € A) which maximizes this function. This cs-
timator is consistent but not, generally, asymptotically efficient.

If the null hypothesis is true {i.e. the model is polychotomous logit) the
statistic given by:

ty = (B, — Ba) [var (B,) — var (3.0] (B4 — Ba).

where 3, denotes the vector (3. k € A) and where [-- .17 indicates a general-
ized inverse, is asymptotically chi-square with degrees of freedom equa! to the
rank of var (5’.4) — var (f34). Note that this rank depends on the dimension of
the subset A comprising the alternatives under consideration.

According to this specification test we accept the polychotomous logit model
if £ < xds4 {rank {var (3,) — var (B.4}] }, and reject it otherwise.

Observe that we did not specify the allernative hypothesis H,. To ensure
convergence we could define H, as the set of distributions for which &g tends
to +oc under H.

4.41.3  The Multinomial Logit Model as a Special Case

A traditional approach to specification testing has been to introduce a general
model of which the model in question is a special case. To simplify. we shall
examince an example with three alternatives. Hausman-McFadden [HME4] pro-
pose the following probability structure:

cxp (2% ) exp (ha)

Pi(b. A) = )
D) = T [exp (xsbs) + exp ()] |
Xzhy A
Py b3y — exp (%) exp (ra) |
exp {a [exp (xabs) + exp ()] }
Py (h, i) = oXp (x3h3)

exp (x3b3) + exp(ra)’

where i is a scalar parameter and where the constant « is defined:

a=loglexp| — )} +exip 3 )
M u

s0 that the three probabilities sum to one,

This model includes the multinomial logit as 4 special case corresponding to
A = 1, and we can test the hypothesis Hy : (3 = 1) using one of the procedures
introduced in section 4.8,

Similar “super-models” can be applied in a number of circumstances (cf.
Ben-Akiva | Aki74], McFadden [McF76]).
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Exercises

Consider the model in section 3.2.2 and assume that the errors (2], 17) are inde-
pendent and distribuled:

NI
0/ N po,  og ’

Write the probability of each value in terms of the parameters, Can these probabilities
we written in the lorm of equation {4.1)7?
(Dithicult) We have data on independent dichotomous variables yi;, 8 = |, ..., 5,
j = 1, 2. These variables are such that:

Priy, =1) = F{o),

Priya=1) = F{fi +ao;)
where the funcuon F is the logististic distribution. Show that the maximum-likeli-
hood estimalor for 8 converges to 28 as n — oo. Calculate Pr{y;, = 1| ¥+
vz = |y and use this to find another estimaor for 8. Is this estimator consistent as
" — oc?
Consider the bivariate dichotomous conditional logit model 1n section 4.3.2 and
assume that the compatilality condition is satisfied. Show Lhat:

Priy' =0|y =0} Pr(y =1[y=0) 1
- + _ — .
Pr(}-‘l:(}|_v' =D) Pr(}-‘EZU|}=':l) Pr (_}’2=U)

Derive the probabilities and the distribotion of Py, £ro, o, Fo.

(Continuation of excreise 3) Derive the forms of the probabilities of the joint distri-
bution and the likelihood equations. Don’t forget that the maximization must respect
the compatitibility constraint.

{Continuation of exercise 3} For the model which you just derived, find the function
G permitting it to be expressed as a lincarapproximaton. s this different than the one
which would have been obtained dirgctly from the conditional probabibities? Apply
generalized least squarcs to this model. don’t forget to account for the compatibility
constraint.

Berkson’s methad allows us to approximate any qualitative response model with a
lingar model. Show that in this correspondence:

{a) The simple dichotomy corresponds to a single-equation linear model.

(h} The polychotomous logit mode! corresponds to a nested regression with serial
correlation.

(c) The sequential logit mode! corresponds to a recursive model,

Find the analogies with: ANOVA, analysis of lagged variable models, simulla-
neous equation models.
Recall thatif # (x} is a strictly convex function, we have E [ (x}] = u [E (x)], where
the equality only holds when x is almost sorely constant (the Jenson, or convexity,
incquality).
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(ay Tet P,k = 1, ....K and Py. hk = 1, ..., K be two discrete probabilities.
Dealine:
X P
&
d, (P, Fi} = P lee | — ¥ —ui(l)].
(H E_D (T [ ( P[m)

where u 1% a strictly convex function.
1. Verify that &, (P. Py} 1s always positive.
2. Show that d, (P, ;) i1s nil if and only if P = F,.
(o) vaidcﬁan mterprelation of the function &, when: wix) = logi(x},u{x) =
ix — 1) .

Assume that we have n independent observations from the distribution of the
elementary probabilities P (b}, and denote my the observed frequencies associated
with each alternative. Define the cstimator 8 (u) as the soluiion Lo the problem:

K
_ £y
mbm kE_O |iu (;) —u(]}].

Show thal the estimators 8 (u) are asymptotically cquivalent to the maximum-
likelihood estimator.



5 The Log-Linear Model and its
Applications

5.1 Introduction

In chapter 3 we presented procedures usetul for analvsing models of one or
more dependent variables assuming several discrete values. These models must
be constructed on a case by case basis, reflecting our intuition of the dynamics
underlying the phenomena under investigation. The formulation may be that
of a continuous {atent variable with a threshold determining the value of the
qualitative variable, or it may involve assumptions about the number of decision-
makers and their behaviour. This intuitive understanding of the behaviour we
are modelling is essential, but it must be complemented with rigorous statistical
methods,

In the first sections of this chapter we shall intreduce a series of techniques
suitable for studying relationships between qualitative variables — testing for
independence and conditional independence, for example. This descriptive ap-
proach 1s useful for specifying the model.

To begin, we assume thal our observations correspond to a single sctting of
the exogenous variable, i.e. the probability associated with each value of the
endogenous variable is independent of the observation. The various probabalities
are summarized in a contingency table, the number of entries of which being
determined by the number of variables.

Let us cxamine a few specific cases to illustrate how the tests are applied.

(i) The joint distribution of two dichotomous variables can be summarized in
a two by two (2 x 2) contingency table,

\ ¥a
¥ {) |

O Poo | Po
L Pl P

107
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The two variables are independent if the conditional distribution of y,
given y» does not depend on y». This condition can be written:

Py Pl
Poo + P P+ P’
P Pon = Por Pro.

{ii} I[nthc case of two variables, with v dichotomous and y; trichotomous, we
have a two by three (2 x 3) contingency table:

v
" o|1]2
| 0| Poo| Por | Poz

L Pro| Pri| Prz

i

The variables are independent when:

PiriFPoy = ProPor,
For Pro = Ppg P2,

In the preceding examples the assumption of 1ndependence translates nto
linear constraints on the vector of the logarithms of the joint probabilities,
log (P). This concept is fundamental to the construction of the log-linear model,
it is cquivalent to postulating that: i} log (P) belongs to a given subspace of
R*, M, and ii) the probabilities sum to one.

log (P E M,

(5.1)
eP =1
where e is a vector of ones. Thus, assuming independence between the variables
is equivalent to postulating that log (P) 18 linear.

From a practical point of view, log () must be expressed relative to a given
base. We shall see that the base usunally applied to the analysis of variance is
particularly suited to problems of independence or conditional independence
(though it is clearly not applicable to all problems of this nature).

In the following sections we will examine several specific cases, two (section
5.2) and three (section 5.3) dichotomous variables, and two polychotomous
variables (section 5.4). A gencral examination of contingency tables is presenied
in section 5.5, while scction 5.6 is devoted to the simultancous analysis of
several contingency tables and to the relationship between the log-linear model
and certain logistic models. Finally, section 5.7 provides an application to the
question of how business executives form expectations.
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5.2 The Case of Two Dichotomous Variables
521 The Saturared Model

The distribution of a pair of dichotomous variables (v;. ¥;) is represented by
the two by two (2 x 2) contingency table;

o
¥ 01
0P| P

1| Po| Py

where the probabilities satisty:
Po+Pu+Po+Pu=1F;=0  i={}1}, j=1{01}.

We say that the model is sarurated if the probabilities are not subject to further
constraints. This saturated model is a special case of the log-linear model in
equation (5.1}, because:

log (FPon)
log ( P,
log (P) — g (Fo) e M= R
log (£in)
log (P11}
I = P+ For+ Po+ Prr.

These joint probabilities are easily estimated if we have »n independent ob-

servations on the variables (', ¥} . They can be represented in a frequency

tahle;
¥z
¥l \ 0|1

DFID[} Rl
[REATEY

]
The distribution of these observations 1s polynomial with parameters #, Py,
Fai, Pio. P We have:

1
_ HH Hi1 LT L3N]
Pr (s, gy, 1o, A1) = T ,Pﬂn For £y Py
Ryg-Ror Hp-Hay

Application of the maximum-likelihood method leads us to maximize
log |Pr (nag, oy, #10. 1) | under the constraints in equation (5.2). The solu-
tion 1s simply the observed frequencies:

ip={0.1}, L£=1{01}.
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The calculations above were performed in £ defined by the standard base:
(1,0,0,00,(0. 1, 0,00, (0,0, 1,0), (0, 0,0, 1) . Other bases for the n-space
can be choscn. In particular, we shall look at one corresponding to a decompo-
sition of the probabilities into principal, secondary, etc. effects.

Let us write log ( P, ) as:

log (Pri.) = 1t + oy () + 02 (i) + B2 (1, 1),
v =10, 1}, fH={01}. (53)
Here u represents the principal effect, o) (i1) the marginal effect of the first
variable, o2 (i2) the marginal effect of the sccond variable, and £ (41, i2) the
cross effect. collectively these are known as interaction terms,

The following constraints are usually introduced to ensure unigueness of the
decomposition (5.3):

0=Zaf1 (i),
u:iaz (i),
0= iﬁu (fy.72).
0= iﬁlgff.,i:J.

The first constraint. for example. indicates that the average effect of the first
variable is nil.
Accounting for the constraints and defining:

gy =a (1N, w=a 1), Biz=pFa. 1)
we obtain:

log { Poy) = 1t — oy — w2 + Pz,
log (Poi) = ¢ — @y + w2 — Bz,
log (Pp) = ¢t + oy — ez — Bi2,
log (P11} = 0+ o + a2+ B2

(5.4)

[n vector notation these equalities are written:
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Here we have an instance in which the various terms i, oy, w2, B2 constitute
the coordinates of log {(P) with respect to a base other than the familiar standard
one. This base can easily be made explicit. Let {/y and U/} be the vectors:

o0 (!

) v=()

Using & to denote the Kronecker product of matrices, we have;

2 h
Uy Uy = } Uy U = _11

_l - ] -

—1 (1]
U@l = _II Uyl = :}
I ]

These vectors are orthogonal.
The new coordinates can obviously be expressed as functions of the old ones.
Solving system (5.4) yields:

73

£

oy

fz

where:

£.

% [log (Poo) + log (Pui) + log (Pg) + log (P11)].
log (P.) .

[log (Pio) + log (Pi1)] — i,

log (P1)] ~ tlog (P.)],

[log (Po)) + log (P11} — i,

[log (P — [leg(P.)],
log (P} — log (£4) — log (P.) + [Ing{P..)],

| = Y fed | =

- (Pa =+ P,

Fod  —

(P + o).

(Pooy + Por + P + Pr1).

Bl = 02—

Remark 6: It 1s implied in the preceding derivations that the loga-
rithms of the probabilities are not equal to zero. This assumption will be made

henceforth.
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5.2.2 Measures of Association

The coefficient of correlation provides a natural measure of the relationship
between v, and y», having the desirable property of being invariant with respect
to the coding of the variable (cf. exercise 6).
Using the P, and £, notation defined above. we have:
var(y;) = Pr. (1 — P},
var {(vo) = Py (1 — FP).
cov {y1. y2) = E[wiy: — E(niyadls
= Py — A Py,
= Pni— (Pu+ Pio) (P + Por).
Pyl = Py — Py — Py) — Pl
= PP — PiyPur.

The correlation cocfficient is:
PriPoo — P FPa B
\,/P]. il—P Pyl — P

P, ¥) =

The sign of the correlation coefhcient depends on that of P Poy — Piofur,
if it is equal to zero we have independence {which in this case is equivalent Lo
the absence of correlation between v, and v;).

Another natural measure of the correlation between ¥ and y; 1s given by the
cross lerm B2 from the decomposition of log (P). This coefficient is equal to:

l . 1 1
B2 ZIOE(PH}—E [log (Pm}-i-lﬂg(Pn)]—; [Tog (Pp) + log (P1r).

l
+ :I [log (Pa1) +log (P1) + log (Poy) + log{Pm)],
1

[log (P11) + log (Poy) — log (Pip) — log (Po))],

1 | (PIIPDD)
=-log| — }.
4 ProFoy

Hence £, has the same sign as g (3, ¥2) .

Proposition 7: If 8,7 = 0 (B> < 0). there exists a positive (negative)
correlation between the variables. If 8,2 = 0. the variables are independent.

Consequently, the assumption of independence can be verified by testing
whether the coefficient £;; = 0. One way we can do this is by applying a Wald
test to the maximum-likelihood ¢stimalor for £ > from the saturated model. It
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can easily be verified that this is asymptotically equivalent to the usual x? test
for independence {cf. exercise 7).
The joint probabilities can be estimated under the assumption of indepen-
dence. The maximume-likelihood estimators are:
L |

f}il.ig - , i = {01 I}* iz = {U* l}!
fl

n

where n; =3, my,and g, = 35 mg.
In practice, the test for independence may serve two purposes:

ii} to verify independence beitween two qualitative endogenous variables, in
which case the structure of the model reduces from a joint distribution to
the simpler case of two independent marginal distributions (cf. exercise 2).

{11} to examine the relationship between a qualitative endogenous vanable vy
and a qualitative exogenous variable vs. It the assumption of imdepen-
dence 1s borne out by the test, this explanatory variable has no place in the
model.

3.2.3 Observations on the Imterpretation of the Interaction Term

By way of analogy with the traditional analysis of variance (ANOVA) model,
the terms i, «y. @3, B2 are often called the principal effect ) , the marginal
effects (@), w7), and the cross etfect (f;). It is important to bear in mind,
however, that these terms do not have the same interpretation as they do 1n anal-
ysis of variance, In ANOVA | an endogenous variable 13 explained in terms of
other qualitative variables. In our present analysis [the decomposition in equa-
tion (5.3)] we are examining the joint probabilities of the vuriables (v, v2),
which are expressed in terms of themselves. In other words, the relationship
between the endogenous vanables 1s under scrutiny. This imphes that the model
has no explanatory function and the “etfects” are not subject to the usual
interpretation.
There are, however, interesting interpretations to be made.

5.2.3. 1  Iterpretation of the Sign of o
From the set of equations in (5.5), the term o) is equal 10:

o) = = [log (Pw)] + log (P11)

5|

I _
— [Iog(Pm) + log (P11) + log (Py) + |i‘.-g{PmJJ,

g (2 10)
4 Py Pn /-
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Notice the similarity between this expression and that for the second-order

term:
1 FT &
Bz = - log (ﬂ ﬂ)

oy appears as a measure of association after the cells of the contingency table
have been reordered. More precisely, let us define a dichotomous vanable v,
such that:

V3 =—

e ol

l. iftyy=wv=1lory =y =0,
0. otherwise.

For example. vy = (1 — ¥) (1 — ) + (¥,¥;) . Letting PJ. P}, Py,. PG, be
the joint probabilities of (ys, y2), we have:

1 ¥ P*
= — lﬂ LL” 00 — *"'1
N= R (Pﬁnﬂ:‘l) i

where 3}, is the cross term from the table constructed from the elements y;
and y». We see that «,, like S1;, is 4 measurc of the relationship between
variables.

To illustrate, let v, denote the purchase of a given good at time ¢ and y» the
purchase of the same good at time ¢ + 1. y3 = 1 signifies that the behaviour
was the same over the two periods (1.e. the good was bought, or not boughit,
both times). «; = 0 if the decision to purchase the good in period ¢ + 1 is
independent of a change in behaviour between the two periods.

Determining whether or not any of the values oy, a2, 812 is nil constitutes an
important step in the construction of the contingency tables — revealing which
c¢lements belong there.

5.2.3.2 Relationship with Analvsis of Variance

Assume that we have information concerning the pass rates of a group
of students writing an exam () and whether or not these students receive
scholarships (v2}. Decomposition (5.3) vields the joint probabilitics Py, Py,
Po, P

In order to conduct a traditional analysis of variance study of the impact of

receiving a scholarship on the probability of passing, we need to explain the
pass rates of recipients and non-recipients. This model is constructed from the
conditional probabilities;

Py = a + by (success rate of recipients),

Py =a — by (success rate of non-recipients),

where « is the principal effect and by is the first-order etfect.
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This vields:
po— P~ Pio
2
B l [ P B P ]
S 2Pu+ Py Pot Pyl
_1[ PuFon — Por P ]
2 P+ Pad (P Po) )

Comparing this expression with that for £, we see that »; has the same sign as
f12. The cross term from the decomposition in equation (5.3) is thus a first-order
effect in terms of analysis of variance,

5.3 The Case of Three Dichotomous Variables

The procedures from the previous section can easily be generalized to the case of
three dichotomous variables. Furthermore, since this model 1s somewhat more
complex, we can test assumptions other than simply the global independence
of variables.

531 The Saturated Mode!

The distribution of (¥, v, ¥3) 1s summarized in the contingency table:

R £ (} l
¥2 = 0] Popo| Poo |

n =0 v2 = 1| Powg| Por
‘¥z = 0| Pion| Prog

e ]}: = [ Puo| i

There are eight joint probabilities such that:

BRI

and the log-linear formulation of the saturated model is:
log (P ¢ RY,
eP=1.

Assume that we have n independent observations on the triple, and let #; .,
be the number of observations for which v, = §,.v; = i3, v3 = 3. The
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maximum-likelihood estimators of the joint probabilities are:

- FLf ia ...
P, = — 2 . i, ia = {0, 1},

.04y n

These can be decomposed in order to isolate to the various effects. There are
now third-order cross eftects:

P, = 1
+ oy (i) + a2 (i) + oy (43) (5.6)
+ B2 (61, i2) + Bi3 (14 £3) + faz (F2, 73) o
+ vi2a (i1, {2, 3).

In order to ensure uniqueness, we Hnpose:
()= ai)=0 a()=0()=0,
i

Bys (-, i3) = Zﬁu (i),i2) =0, Vi, and, similarly

Biz (i, ) =0, Vi, (5.7)
Bz, i3) = B3, ) = B (- iy = Baa iz, ) =0,
Viza iz, 63) = 103 (U, -0 £3) = s (y.f2, ) = 0.

There are 27 effects in all (the principal effect, six first-order effects, twelve
sccond-order effects, and eight third-order cffects) as well as nincteen inde-
pendent constraints (three on the first-order effects. nine on the second-order
effects, and seven on the third-order effects). The formulation in cquations (5.6)
and (5.7) allows us to decompose any element of R¥1% = R¥,

To solve the cquation system {35.7) we define:

wy = (1), ax=ax(l), o3=a;5(),
Biz =821, 1), Bua= izl 1), Bay=Paall, 1),
i3 = yiza (1. 1, 1),

and let € be a function defined by:

. 1, ifi=1.
CO=93_1 ifi=o

Using this notation, we have:
oy (‘-J) = ;€ (ff}f
Bie (i;.0e) = Byee (i) € (Gie), (5.8)
Viee iy ie, i) = yire€ (i7) € (k) e (ig).
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This yields, for example:

log (P =g+ o +ax+as+ Bz + B + Bos + yios,
log (Prip) = st +ay +az — o3 + Si2 — Bz — Py — vioa,
ete.
The coordinates 1n the new base (i, a1, &2, a3, S12, £13, H23, ¥i23) can obvi-
ously be written in terms of log ( P,,;,;, }. vielding:
o= log (P }.
oy = log (P} —log (P.),
oy = log (P} — log (P.),
oz = log (P.) — log (P.),
Pro=log (P —log(P.)y—log(P.) +log{P.).
Bz =log(Py—log(P.y—log(P.1)+1log{P.).
By =log(Fn) —log(F) —log (P )+ log(P ).
viza = log (P} —log (Py1) —log (P} —log (P1) + log (P.)
+log (P )+ log(P. ) —log{P ).

[n these expressions the *-” in the subscripts indicates that we have taken the
mean over the corresponding value. as on page 111. Thus, for example:

|
ng (P|} = ; ZZ ll'.)g ('P!'[i'g] )
ia

i

3.3.2 Marginal and Conditional Distributions

When we know the joint distribution of v, ¥», and v, we can derive the
marginal and conditional distributions and alse examine whether or not they
are amenable o simple decompositions corresponding to initial effects.

5.3.2.f The Marginal Distribution of vy
This distribution is characterized by two probabilities:

Priy; =1 =PL.=> % P,
i

[

Priyi=0)=Po.=> > Poir:
i1

£
These can be decomposed in terms of the effects, yielding:
logi(P.) =i+ a(l),
log ( Py.) = o + & (0),
where & (1) + & (0) = 0.
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These effects can, in tum, be expressed as functions of the effects occurring
in the decomposition of the joint distribution:

FI — e.ﬁ-l—&{])

E : E E,.rx.+n'|U}'+r:r:1{r'k}+|:ralf_a]+.|‘5|2UJ'_}.J'+ﬁ|_i'[1.i_x}+.-‘52-_atf.*..!'ﬁ}-l—}’mlil-fl.i'q‘.l
£y Iy
P.[; — Eﬂ. b ée{th
— li‘?‘ﬁ'_&{”
:E E €H+H|m.‘-'+ﬂ'1{f3}+a';fi!J+.1‘312fﬂ.i31+,3|.1.{ﬂ.r'_=,1+.323'fiﬂ_q!'a]l--}’uam,iz-!'JJ‘

.f; i3

Clearly, the expressions tor & and ¢ (1) obtained from solving the preceding
equations are not simple. They could also have been derived from the marginal
distribution of {v|, v2).

5.3.2.2 The Conditional Distribution of v\ Given (va, ¥3)
We have:

Py i,
Zh Pflﬂ'lin .

eI Al )+ At yinali,ig)

Pr{vi=i|ya=iz, ya=i3) =

EE_ g1 Bt Bralin a0 vaslic daadsn
1
Since:
D e ) + Biz G d2) + Bia din. i3 + viaa (i1 d2.i3)] =0,
i
we conclude that;
ay (F1) + Bz (G i2) + Bis (G 1) + vz (6, 2, 83)

is the first-order effect corresponding to this conditional distribution.

5.3.2.3  The Conditional Distribution of vi and ys Given v;
We have:
Priy =i,y =izl ya=13)
Pf.]fzi_'a
Zi, Z;‘z P!'lt'zft
PLTREIDE e CRR b VLTSN L T P AN L o e RO U U TR I LIPLERY

Z. Z et (L e+ f o d il B =S liad 4y i i |
I f2

Conditional on vy = {4, we are interested in the distribution of a pair of dichoto-
mous variables, with each probability decomposed into various-order effects:



The Log-Linear Model and its Applications 119

principal, fi, first-arder, &, (i1) and &; ({2) . and second-order, ﬁ 2 (11, I2) . We
can easily verify that:

a) (i) = ) () + Bis (6, i3),
&y {i2) = w2 (12) + fa3 (12, £3),
Bz i1 i2) = B (i1, i) + i3 (1. i2. i),

since &) () =2 () = B2 (-, i2) = B2 (i1, ) = 0.

5.3.3 The Assumption of Independence

5.3.3.1 [Independence Between v, and (yz. vi)

If these variables are independent, the conditional distribution of ¥,
given y» and y;, does not depend on these latter variables. From the expression
for this conditional distribution obtained in the previous section we derive:

Biali. 2y =Bl i) = yiza i i2,03) =0, ¥i, i i3

(ct. exercise 3). The same result holds, f;3 ({2, /3) = 0, for the conditional
distribution of vy, given (v, v3}.

Conversely, if all the cross effects are nil, #; ;,;, 15 proportional to g i) goralizd
e®sUs) which is the product of functions of 7y, i2, and 73, respectively. Hence
the variables are independent.

Proposition 8: v, v, and y; are independent if all the cross effects
Bz, Biz. fi23, and 33 are nil,

5.3.3.2 -mdependence of (vy, y2) Conditional on v,
Conditional on yz = {3, v; and ys are independent if the cross effects
in the joint distribution is nil. Thus:

BumAﬁ=0¢{ﬁ_ﬁ”mJ%_ Vi, .
0 = y1os (6, i2, 13},

Notice that the fact that these variables are dichotomous implies that the
foregoing conditions are true whether i = 1 or iy = 0 [since a3 (71,12, 1) +
Yiza (£, iz, 0) = 0], The concept of conditional independence is not specilic Lo
a value of y;.

Proposition 9: v, and v» are mmdependent conditional on yy if and
only if:

O = B2 (v, 12).

o Y, 2. 03,
0 = y123 (1172, 13), ;
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Variables such as (y;. ¥2). which are independent with respect to a third
variable y;, are not necessarily independent of each other. Given the assumption
of conditional independence, the distribution of the pair (v, v2) Is:

P — E et U 1l ey (B b+ Baaliaais)
] - =

12~
i
which can not be decomposed into a function of 71 multiplied by a function of

2. We see from the torm of 7,;,. that ¥| and v; are related only over y;. Let us
now examine the marginal distribution of (y2, vk

P = Ao e (2 e fa A i b B (a5 )
-fafs — [ .

{
This probability can be written as:

P = efttotat@sisify i),

Comparing the two eXpressions, we sce lhatﬁﬂ ({2, i3) 15 equal to B3 (12, i3).
Assuming the conditional independence of (v, ¥2) given y3, we can study the
relationship between y» and y3 (y) and y3) entirely on the base of the marginal
distribution of {¥>, va) [{¥1. ¥2)] (ct. exercise © for the analogous property for
guantitative models).

53.3.3.3  Independence Berween (v, v2) and v3

The pair (vy. ¥2} 15 independent of v if the conditional distritbution of
{¥1, ¥2), given that y3 = i3, does not depend on the value of i3, Given the form
of this conditional probability (cf. section 5.3.2), we have the proposition:

Proposition 10:; The pair (¥;. ¥2) Is independent of vy if and only if:

Bzl i3) = B iz o f3) = prza G, 02,430 =00 Yi, i1,
In this case (v1, v2) and v; may be analysed separately.

3.3.3.4 The Choice Between OUne and Two Independent of the

Irrefevant Alternative Three

Recall from chapter 4 that the choice between one and two is indepen-
dent of three it:

Pus _ Pz
Ps)123 Py
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Assume that, instead of asking a survey subject to make a choice, we ask him
to state for each option whether or not he likes it:

~_ |1, ifbe likes i1,
i 0, otherwise.

We can derive his preferences from the answers.

The individual strictly prefers one totwoand threc if vy = land y» = y3 = 0.
he strictly prefers two to one and three 1f vy = 0, y» = 1, and y; = O, and three
to one and two if v; = v» = 0 and y3 = 1. In all other cases he is undecided.

The probability that an individual will strictly prefer one to two and three,
given that he 1s not undecided is:

Proo
Prop + Poo + Foo

and, by symmetry:

P =

Poro
Paaz = -
Pya + FPoio + Poo
Employing the same logic, we see that the probability that he will strictly
prefer one to two given that he isn’t indifferent between them is:
Pioo + Pio

Pioo + Pior + Poio + Pont

Pz =

similarly:
Proio + Font
-Proo + P + P + Pori

Fran
£

Py =
P
= 22 becomes:

121 Fraz
Pion Pun + P
Poo  Poo+ Ponr
Proo o1 = PooPion.
log (Proo) + log (FPo11) = log (Puie) + log (Pun) .

Decomposing the logarithms of the probabilities according 1o equation {5.8).
we obtain:

The conditiom

(s + oy — o — a3 — B2 — B3 + P2z + yi23)
+(p — oy o +ay — Bio — Pz + Pz — yiaz)
= {4 —oy + o —ay — B2+ Bz — By + yi23)
+ (1 + o — e + a3 — 2+ B3 — B — vz,
B3 = faa.
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Proposition 11: The choice between alternatives one and two is in-
dependent of alternative three if alternative three has the same effect on the
probability of choosing one as it does on the probability of choosing alternative
WO

5.3.4 Estimation Under the Assumption of Independence

The various types of independence examined in section 5.3.3 can be tested with
several techniques. including the likelihood-ratio test statistic. Application of
thesc tests is facilitated by the fact that, under the assumption of independence,
we can find an explicit formulation for the maximum-likelihood estimators.

5.3.4.1 Estimation Under the Assumption of the Independence of

v, vz and vy
The null hypothesis 1s:

Hﬂ : Pf]fgi_‘l_ - 'Pf'|-' P-I'-JF-P--I'_J." Vil-. EE: i3~

under which the log-likelihood is writien:

IUE{LG)—ZZZthnng :1:1.!_.)
= ZEZHW log (P,..) +log (Ps.) +log (P},
i
_Z”“ log (P, +Z”" log( P m Zn 4 dog( P i)

The maximization of log (L) under the constraints:

Zlog (P} =1, Z]og (P} =1, Z log (P,
i iz i3

yields:
~ ﬂ['_l -~ ”'IE Ly n‘l [
Pf|-- = P—fg- = T s — T
H ) i
- Ry B
fiizis — .
n o n R

5.3.4.2 Estimation Under the Assumption of the Independence of
(¥1. ¥2) and y3

Reasoning similar to that in the previous paragraphs gives us:

ﬂﬁ!—g' n*-!'_;

'Pi-| E-'J];_J, =
L M
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5.3.4.3  Estimation Under the Assumption of Conditional

fndependence of (v1, v2) Given y;3
We denote Py ., the distribution of ¥ given y3 = {3 and Py, the
distribution of v, given yy = ;3. The null hypothesis Is:

Ho o By, = Pigin Lo Py

Hence:

log {Ly) = Z Z Z"“““ log { Fyiais ) »
= Z Z Z"“"“ log( P;, .1, ) +log{ P} +log( )],
- Z i”“ i log (P} + Z Z”-izf; log (P 41i.)
+ Zi:n i log ) o

This must be maximized under the constraints:

1 = Z Piise  Via,
iy

1 = Z Poiu, Vi,
iz

1 = Z P..r'_,'.
fu

And the solutions are:

n Rp . R . 1o
_ 1+ - Pzl o '3
Holin — T iy 1 PPI:., — T .
n, H..h Fi
ﬁ? _ Figy Foap, Py
£ Ealy == -

R, Ry, A

5.3.4.4 Estimation Under the Assumpition that the Choice Between

vy and v is Independent of v
We need to maximize the log-likelihood:

20202 rann 8 (P

under the constraints:
] - Z E E th;j;-
i I i1

0= PiooPorr — Poro Pror-
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Let 4 and w be the Lagrange multipliers associated with each of these con-
straints. The first-order conditions are:

0:

d log (L) 0—
8 Pogo B
o log (L) 0 —
8 Porwy
o log (L) 0—
aPn B
o log () 0 —
AP
fow . 0=
Pooo
filo — A, 0=
FPrio
ng1n
e —}\,—jLP(], ﬂ:
FPoro v
FL100
— A+ ji Py, 0=
P]{H] [t

A log {L)

dlog {L)
3 Py
dlog (L)
3P
dlog (L)

P
Ao

1

— A+ 1P,

— & — oo,

Multiplving each equation by the corresponding probabality and summing

222 e =2 > D P
i iz i i i £

+ 2 (Pron Ponn — Piron Pong) = 0,

yields:;

OT:

n—Ai=0 = A=n
We conclude that;
A FLiwn
Poo =
Fl
A Hm’
Pog = —
n
a LEANTY)
Prig = —
n
- nl
Py =0
)
andd:
0= nuy — 1 Poo — P FPoro.

= ngn — 7 Pon + 1 Piga Pon.
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O =4#g0 — 8P+ 1 ProoPur,
O =mio — #Por — ¢ P Poro.

Combining the first and the last equations:

O =nmuy — P — ron — nPon,
i H1m
FPoro— Propo = — — —.
n n
016
Fon=—+4a.
n
Hn]
Py = .
n

where @ is a constant whose value is to be determined. Similarly, combining
the second and third equation, we obtain:

Py = ot + b,
#
n
Py = 14 b
7

Now we sum the first two eqguations:
apg + o — 8 (Pown+ Fun) =08 a+b5=0.

The unknown parameter is detined by:

ProonPort = FPoro Pions

o L o Him
(I Y LT R e
M # it H

Riooftolr  Aowfion o B + Ay -+ Roo + Ron
e 1 = 17 '
g = Roofton — 2oofhol
"~ n(now + fion + Hieo + o)
Hence:
ﬁ:'mn _ an n Ao — Boimnfim ‘
7 n (npjo + i Ros -+ Bon)
= 101 Ronfioly — oot 1ol
P = + |
n (oo + R+ Ron 1 Fonn )
Poyy = o Hofoll — ool ,
g n(ngio + Mol + Rwoe + Ho)
» ATEY Foonfor — ol
Py = —

f A (o + w4 oo + Bo )
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The probability of one being chosen when the available options are onc and
two 15 given by:

p ﬁ1m+ﬁml
12 = = = —
Proo + Pron + Pore + Pon
oo + Rt

Riop + o+ Row + Ror
Notice that the complicated term:

fooftoll — Ao
4
ninogn + nwl + e + o)

o=

has disappearcd.

5.4 Two Polychotomous Variables

This is the case of a (2 x 2) contingency table in which the two variables
{¥1, ¥2) can take [y and > values respectively. These values are indexed {) =
,.....Hh —landi> =0, ... — 1.

The logarithms of the joint probabilitics can be decomposed:

log (P} = it +ay () + a2 (1) + Bz (1, i2), (5.9)
where:

ey (=) =Bnhin=838{. )=0, V..

541 Grouping

In the polychotomous case we have a new possibility — grouping some of
the valucs. Consider, for example, the case of y,. We can form two groups,
the first containing {0, 1} and the other {2, ..., I} — 1}. The joint probabilitics
corresponding to this new classification are:

FPoaye = Po, + Pl
or, using equation {5.9);

&

P araliz) [Eﬂ'l{ﬂ}+ﬁ|1[ﬂ.fz} 4+ E_m(l} | ﬁ]:ﬂ_{l.iz}]
Wb i = ey (60 | oeati 2+ Spaii,ind
Zh Ee'g ST Lotz )+ B2ii . i

When these new probabilities are decomposed, the first-order term associated
with the second variable is the samc as before: &7 (/3) = @5 (/2). The other
effects ft, &, 8, are rather complicated functions of the initial cffects. This
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difficulty of expressing the new effects in terms of the old ones i1s a general
featurc. persisting even when the values are similar, 1.e. when:

o () = o (1) :

Po, = Py & o B

h N {)‘312 (0,i2) = B2 (1, i)
In this case:

2 ezl (- BiadlLia)

Z;‘ ZE geeL by baatizd bz dd 217

L 2
Using the notation from equation (3.9) we can write:

log (Pro.yi;) = # 4y (1) + a2 (2) + Biz (1, i2) + log (2),
log (Pi.,) =p+a (i) +az i)+ i f2). i =2

Py, =

And the new effects are given by:
log (Poai) =i+ & (1) + o2 (i2) + B2 (1.72),
log (P .,) = R+ & () +ea (i) + Bia (i i), 6 =2

The primary effect, f&, found by taking the mean of the logarithms of the joint
probabilities, is:

lug (2} l fH—1 ] f>—1
=+ L —1) + f _IEHI(EI)+ };2]'12“2)
i1= 2
| IH—1i=1
+ - ’ ,312 (I-|g£2}!
L —1) ;l; 2)

log (2) o (M
L =1 Hh—1

The expressions for &, and 8, as functions of the initial effects are even more
complicated. Clearly, an analysis of variance type decomposition is ill-suited
te the study of grouped data.

When the values corresponding to the zero and one settings of the index arc
similar, however, the maximum-likelithood estimators are casily calculated. The
null hypothesis;

H{} : P.m2 = P”z‘- sz,

can be tested using the likelihood-ratio test statistic.
let s2; ;, be the number of obscrvations for which y; = 7, and y» = {z. Under
the alternative hypothesis, the maximum-likelihood estimators are:
i LTS

E.|[-?_ I
Fi
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and we maximize the log-likelihood equation:

fi-15H-1

log (L) = Z Zn,-,,—z log (”‘:jz)v

i =l =0

Under the null hypothesis, on the other hand. the maximume-likelihood esti-
mators are:

- - Ho, + M

Py, =Py, = B —
~ i : )

P, =2 if i =2
Ida 7 1 [

and the maximum of the log-likelihood solves:

fr—1
log (Ly) = E (n{;.!-1 + ”l:‘;) iog (%)

L=l
fi—1f-—1 .
303 mis o ()

F]—D I'!-—ﬂ

Letung A represent the likelihood ratio we have:

—log{A)= -2 [log {Lg) —log {L)] .

faet
[ = I + }1’ ia
=_2 Z lm},, ng(nr}Z: gl ) + s, l{:-g(n“_?-zn—“—)} :
(- 17

lz_ﬂ

This value is asymptotically distributed chi-square with 7, — 1 degrees of
freedom, since the null hypothesis is defined by /; — 1 independent con-
straints.

5.5 General Analysis of a Contingency Table

Our ability to decompose the logarithms of the joint probabilities into principal,
first-order, second-order, cte., terms, combined with the fact that the some as-
sumptions can be written simply as functions of these terms, allows us to gener-
alize our analysis to an indeterminate number of qualitative variables, Consider
4 qualitative variables y|. ..., ¥, assuming [y, ... [, values respectively, The
Joint distribution of these variables is characterized by the probabilities:

P]‘(_}"lzils---~}’q:iﬁr):R'|..J"‘,- f]zn,..‘,fl—l, T T

These probabilities can be summarized in an f; x ... x [, contingency
table.
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5.5.1  An ANOVA-type Decomposition

In this decomposition the logarithms of the joint probabilitics appear as the
sums of the effects of different orders:

log (P 4,) =n
+a i) + ..+ ay (i)

+ B G iy + oo+ Byg (fg 1iy) (5.10)
+ ..
I (P iq)

with the usual condition that the means are zere when we sum over the index
of any variable:

O=u () =o2(=... =, (")
0=BunCi) =Bl )=...= B4 (1),
:r‘3 —1. i(— 2 T g
-t lig=1-) (5.11)
0= (- iae oo sig) =, g (e i3, 00y),

= "*:ﬂ-]‘l...q (f],f] ..... iq—]q.)g

This formulation generalizes those given in equations (5.4) and (5.6) for
the case of two and three dichotomous variables respectively. We must how
investigate whether every set, log (P!-l___!-q, ST iq) . permits this type of de-
COMpOSsItion.

Let us sort the vector log (P, } in the lexicographic order and denote it
log (P):

C leg{(Poo.o) ]
log { Po....0.1)

log (P) = | log (Pu...0.5—1)
log { Po....0.1.0)

| log (P;]—l___.:;,,—l ) A
The term log ( P;,.;,) is the coordinate indexed:

f1fgf_1,...fq-1—5:!31'4.“1'@ -|—+..+£'q_1fq+fq+l.
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Let the /;-dimensional vectors U, X U"}':_l, F=1.... g be detined:
1] [ —1] [0 ]
1 0 —1
Ui=[:|. Uvi=]|:]| U= :
I 0 0
1 1] L
R
0
Ui—t = :
—1
LT

These vectors are independent and each is orthogonal to all the others.
We define:

— 77! 2 g
Uf.il...iq— Ufl 7e sz X .. & U-q|

where the vectars (U,
conslitute a base of:

E — th...xf,.;

and in which the vector log (P) allows a unique decompaosition. Notice that £
is the sum of the orthogonal subspaces:

Eg spanned by Ugg o = Ug] 2 Uﬁ & ... Ui,
E| spanned by U;, o0 = U;'I, RQU;® ... UL,
Lh=1,....5H—1,

Fy spanned by Uy, o4, = UeU.e..U?,

L’q =1 ¥ -!rq - I!

Eiz spanned by U; .. 0 = U!-'I & Ui @ ... U],
Hn=1...., H—1 =1 .... fHr—1

E\ _qspannedbyU; ., , =U' U, &... @ U .
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Thus. log (P) 1s the sum of orthogonal projections onto various subspaces.
Denoting [;-,—-:-1___,-?] the vector with elements y;, ;. . we can easily verify that the
projeclion onto Ep 1s:

PT[]‘jE” [l[)g {Pfl---'-r.l)] - “LJ’

where i 1s iIndependent of £ . .. {,. The projcction on Ey 1s:
projg, [log (P, ;)] =le Dl o () =0,

and so on up to £ _,. where we have:
with:

Using this fact, we can easily derive the values of the various coordinates
ooy (£, etc. Thus:

1 (1) = projg,ag, [log (P, !'4)] — Projg, []Ug (P""""j”)] i
= [log (P, ) —log (P )].

The decomposition 1o equations (5.10) and (5.11) has a simpler form. When
the variables are all dichotomous, the subspaces Fq, Ey, ..., E,, Epn, ... By
are one-dimensional and there exists only one independent effect corresponding
toeach of a;, Brer ooy

Let:

oy = oy (]),

.Iﬁ,i-[’ - ﬁ_}'f‘: {]:. ]}*

W = w1000 1),

Nrre

and let € he a function such that:

. I, ifi=1,
i) =
1. ifi =0.
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In this special case, the decomposition {5.10} and (5.11) becomes:
ng (Pi]...iq.) = J&L

iq
+ ZO‘UE (ij}
+ Z D Bree (i) € (o)

f=1 =¥
+ ...

+an g€ (1), € (ir;)

We can determine the sign of a given effect by counting the number of
variables determining it which assume the value zero, 1f this number is even,
the sign is positive, otherwise it is negative.

5.5.2 Conditional Distributions and the Assumption of Independence

Conditional distributions derived from the joint probabilitics P;, ;, allow for
ANOVA type decompositions — they are simply written as sums of the various-
order terms.

Consider a partition of v, ..., ¥ into two subsets ¢, = {v...., ¥) and
az = (Vit1, - ... ¥q ). Writing the joint probabilities according the form given
in equation (5.10), we see that:

Pri{vi =11 ....% =it|l Yer1 = lagte.n. Yy =1y)
P i,
Zf[ s th Pe'....e'q ,
Z_.—- a (iS5 T B (i) e (g

£ [=1 p=f

ZQJ{U} ZZﬁ-:[I ded bt g (i iy}

T..Te

i ix

We define:

H]:{il."".‘il‘f}? 7?2:{5'#;4—!;-“-!-‘;};

and let 6,, (#,,) represent the sum of effects indexed by the values appearing in
i (12}, and 2, .. the sum of effects depending both on components of 1, and
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1. We have;

Pr(}ﬂ = fl._ B f-,t;|}‘k+1 = I'k_|_1.. e ¥y = Iq)

gy TPy Ty

Z eﬂ"” t Gr-'l +r}"-‘| i ?
m

By +5 0,

4
) f’a"‘l Fthiens ”

i'h )

The decompeosition of the conditional probability into the principal, first-
order, cte. terms can now be found. [f s = {fk+1 e iq} is fixed. the principal
term is:

i =—log|Y efattun
|

and the first-order term. 0 ; (r‘j) 7= 1...., k&, is the sum of effects which only
depend on n, over the intermediate term i ;:

G (i) =y )+ 30 B0 Grie) + 30 S v (i i) + .
e fomeco: f=m

The second-order term, B, (i;.ie} . £ = 1,.... k. j = 1...., £, is obtained
by summing the effects depending on n| over i;, i;, and so on. Obviously, they
gencrally depend on the values assumed by the variables in ;.

Proposition 12: ¢, = {vi.....»}and @2 = {yq1..... ¥, are
independent if and only 1f 6, ,,, = 0. ¥y, 2.

Proof: The necessary and sufficient condition 1s that the conditional
probability of {}"l_ e yk} , given {}-‘k+1 s }-‘q} = 172, does not depend on
712. This obtains when &, ,, = 0. ¥, O

This proposition cxtends to cases of more that two groups. Consider, for
example, the partition of {¥, ..., ¥, } into three subsets:
al = {}:]! '-':I-.h}:
i1 = {-}':h‘l'l? ree y‘-’l"'kz_}'
tiy = {,'?'k] bha b le oo Y }
and let:
mo={i. ... 0},
T = {;M-{-Iu [ ijﬂ[-l-k'g}!

Hy = {i.ﬁ:|+k"_-—'—]: LR iq}.'

=
-
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represent the corresponding indices. 8, ., 8,,, 8, denote the sums of the cffecis
with one index. &, ... &, ... By, the sums over two effects, and 8, ,,,,, incorpo-
rates all three.

According to propostion 12, ¢, is independent of gz U a3 if and only if:

9:31:;3 - Qr“r.l_q = Hr}u};.rj-;, - U'« V’?l! Mz, K3 (512)

Under this assumption of independence between a; and a; U a1, the marginal
distribution of @ U ¢z is given by:

Prig, =1, a; =m) = ZPT (@) = 1, a2 =12, a3 = 13).

Hi
. R N L
_E grm e i e,
i

88"'—‘- AT P
L]

where ft is the principal term of this marginal distribution.

Proposition 13: a,, ¢2. and @5 are globally independent if:

Poin = O = gy = Opan, = 00 Y1, 12, 13-

Proof: If a1, ¢, and @3 are globaily independent, then a) is indepen-
dent of a; U a3, and g is independent of a; U a3, satisfying the conditions in
equation {5.12). Conversely. if these conditions are fulfilied, the joint distribu-
tion:

E'U_'_ﬁlf'.‘] +H'.‘2 +H?‘r‘_l.

=

Pria; =m.ax = 02, a3 = n3) =
= gH Oy g'ﬁlﬂz g'ﬁlﬂj \

is the product of functions depending only on 1y (772, #3), S0 a,, @z, and a; are

independent. 0

Instead of examining the conditional distribution of ay given g2 \J a3, we can
focus on the distribution of a, U a» given ay. We have:

Pria)=m.,a:=mlaz=n3}= €31+(H,,| +0 1 }H Oy 4 Onziy )+ {8y 0z T s )-_
where ji is the principal term of this distribution {ji depends on n3).
Proposition 14: a; and > are independent conditional on a3 = n3.

if and only if:

91’“”2 = Gr}u.i':!.r?, =0, Y.z, ons.
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When @ and a» are conditionally independent with respect to 3, the joint
distribution of (a,, ay) i1s:

Pr (c) = 1y, a3 = 1’}3) = E E’“+H"1_H’-'2 i+ g 0000 .

"

-f’-““ +Hr_| | +Hrl v +HJ_I 3] L_,G.-_Q -+ r}lrz_li_-,! .
il

We see that &, and 6, . ure the first-order and cross etfects associated with
the marginal distribution of ¢, respectively. When the assumption of conditional
independence is satisfied we can analyse the relationship between ¢ and 3 by
studving the marginal distribution of a; U a;.

5.6 The Log-Linear Model
3.6.1 Defintrion and Examples

In the most general version of the log-linear model {cf. Haberman [Hab74]) it
is assumed that each observation consists of J independent vectors, ng; k =
0, LK j=1...... 7, each of which is distributed multinomially A (r;

Pojs - P, i)
The probabilities, Py, are obviously constrained by:

These conditions can be written:
PP = F=1.....4,

where P is the vector of all the probubtlities:
P=(Pu,Piu,.... P, Poo. Pizo ... P s ),

and where %7 is a set of j vectors which contain ones and zeros with the
F-th vector indexed & =0, .. ., K;. v spans a subspace A", Finally, log (P)

indicates the vector with members log ( Pg; ).

Definition 2: A modcl fAtling the preceding description is log-linear
it the vector log (P) is constrained (o belong to some space A containing A

This model, which is a gencralization of the definition given in equation
(5. 1), allows for the simultancous analysis of several contingency tables.

Assume, for example, that we have independent observations on two dichoto-
mous variables v, and y., for 7 dates, r = 1, ..., T. If n,; 1s thc number of
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observations for date f, the data can be summarized in 7 (2 x 2) frequency

tables:
| \}'Zr
¥l 0 |
0

o (i1,
Ly |22y3,

|
The comresponding contingency table with the theoretical probabilitics is:

| \}’Er
[ ¥t 0 1

(H Poor | Por,
1y Pror | £11e

In this example we have j = r, J = T and the indices k assume the valucs
(0, 0. (0, 1).(1,0), and (1, 1).

In section 5.2.2 we discussed how to formulate the hypothesis of indepen-
dence tor this type of (2 x 2) table, and we examined how this assumption
could be tested. Given the fact that we now dispose of data for a number of
dates, 1t 1s preferable to apply a global test to all the data. Under the assumption
of indcpendence, the probabilities are constrained by:

Pooe Prve = FPory Pros,
log ( Pope) +log (P11,) = log (Pyy,) + log ( Piyy). Ve,

These conditons are of the form:
log (P} € AA.

We can further verify that A1 contains the vector ¢!, In fact, £’ is such
that:

(7}

Ua.r,? -

I, fr =¥ i =101},
(), otherwise.

This yields:

{r {ry __ il it)
Voor T Vi = Vorr + Vg YT

5.6.1.1 The Log-Linear and Logistic Models

Another model which gives rise to the log-linear form is the univariatc
polychotomous logit model {cf. sections 3.3 and 4.3.2), In this model we have
a variable which can take X + 1 values and for which we have observations for
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j = L...., J states of the world. The probability that the variable will assume
the value & under conditions § is given by;
exp (X
Py = pixs®;) i _o .k P=1,.. 1

ZE o eXp (X¢ .:)

These conditions can also be wntten:
lng(ijjzxkjhj+aj. k=10,..., K, j=1,..., 1.

where the ;-5 are uniquely determined by the conditions:

Written like this, the univariate polychotomous logit model resembles a log-
linear model. In fact, if we admit the possibility of imposing linearity conditions
on the parameters b; of the logit model, the only difference between the log-
linear and the univariate polychotomous logit model] is the fact that the number
of values K ; assumecd by the dependent variable may vary with the conditions
j in the former case, but is fixed in the latter. This difference may be deemed
irrelevant in most cases.

This virtual equivalence between the log-linear and the univariate polychoto-
mous logit model clearly does not extend to other models such as: the probit
model, the sequential logit model, the bivariate conditional logit model, elc.

5.6.2 Some Theoretical Propositions

From the formulation of the log-linear model given n delinition 2 it is pos-
sible to establish some statistical results — calculation of exhaustive statistics
and derivation of some properties of the maximume-likelihood estimator, for
cxample. These properties are general and do not require specification of the
base for AM. We do, however, specify this space to facilitate interpretation of the
results for our examination of the logit model, and to simplify the ANOVA-(ype
analysis.

Consider the likelihood associated with the log-lincar model. It is given by:

I = - ex HRJ]D P_;;;
E H& u(”h)} ’ Zl% g( )

L.

= exp(n. log (P)),

i=1 Hk =p (”h}

where {-. -} designatcs the scalar product, and n the vector with elements sy, .
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Let ¢4 be the subspace orthogonal to A in M, and Py, Pa. and Py be
orthogonal projections onto M, A7 and 4. Since log (P) is in M, we have:

Paqm, log (P)},
Parmt+ Pym, Poslog (P) + Paslog (P) + Py log (P)),
Parn, Parlog (P)) + {Pym, Frylog (P)},

n, Py log (P)) 4+ (Fyn, Py log (P)).

{n,log (P}} =

e T il T o T

The penultimate cquality derives from the orthogonality of the subspaces A
and 4. The vector P log (P) can be written;

i
Py log (P = Z ﬁ);!.-"“‘j'}.
i=I
Now we impose the constraints (¢, P} = 1. ¥, yielding:

log (P) = P [log (P)] + Py [log (P,

J
= 378,07 + Pylog (P).
=1

From this expression we sce that the coordinates of P are of the form:

Py = cexp (ﬂj) exp [H‘_’,{ log (ij)]-

Rewriting the constraints:

1 = ', Py,
K,
l=2_ P
k=10
Ky

I =exp(3;) Zexp [P log (P )]

k=t
Letting exp [ P log (P)] denote the vector with exp | Py log (Pi;}] as its ele-

menls, we find:

1
(L1, exp [Py log (P)))

exp (8;) =

and thus:

3; = —log(e'"’, exp [Py log (P) 1},
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J
Py log (P = Z ﬁjym,

J
- — Z vV ogi'!! exp [Py log (P)]).
§ =l

This leads us Lo a new expression for the likelihood:

A

n;!

L=]] [—K,"’ I:IGKP{{PMH, Py log (P))
i1 [TiZone!

Ny
- Z{“, vy log (vt exp [P log (P)]) }

J
=11 [ ] exp {{Pu“? Prilog (P))
Hx.: UHM1

j=1
J
~ an log{v'’, exp [Py log (P)])}.
i=l1

Exammation of this formulation reveals that the “true”™ parameter, when the
constraints are accounted for. 15 Py log (P). Furthermorc. we sce that the like-
lthood can be written as a function of oafy the observations:

ry

N
H i
K *
., |
=1 || i

as a function of orly the paramcters:

exp ¢ — Z n;log{e'), exp [Pu log (P}} b

and as a function of both the observations and the parameters;
cxp{fym, Py log (P)).
Examining the cross term, we obscerve {cf. Monfort [ 1950]:

Proposition 15: The log-linear model is exponential. and the statistic
Pry 18 sufficient minimal for the parameter Py, log (P) .

It is not always possible to find a maximum-likelihood estimator for the
paramelers of an exponential model. However, if the estimator exists, it is
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always unique and is obtained by solving the likelihood equations. Letiing
# = Py log (P), we can maximize the likelihood over § € If or, cquivalently,
maximize:

g

{9y = (n. &) — Z”f log{r'Y) exp ().

j=1

We easily find the differential of this expression:

g
;) doy;
df(f;)—zzﬂk;d*gk; Z Zk GEXP{M) A.:‘

i=1 k=0 k "y eXPp (‘9&:

= ZZ (H;”' - .‘IJ,-P;CJ,-) dg,::j,

F=1 k=0
= {dd.n — m (P}},

where m (P) is a vector of the means of the elements of n and where 48 < IA.

Proposition 16: When it exists, P — the maximum-likelihood estima-
tor of P — is the unique solution to this equation system:

n—m (13) =27
PecX,
log (P) e A

Notice that in the special case of a single contingency table the expression
n —m (P) € U* reduces to P — P e 14+, where P is the vector of empirical
frequencies calculated from the observations. Consider, for example, a vector x
in M, P —Pbelongsto 4L, butalsoto A=, so (x, P—P) = ¢and the maximum-
likelihood estimator of the function {(x, P} is simply (X, P3. This explains why,
in the cases examined in sections 5.2, 5.3, and 5.4, it was generally quilc easy
to find the maximum-likelihood estimators of the statistics (cf. cxercise 7).

5.7 Applications
5.7.1  Business Cvcle Studies

Among the most common applications of logit and log-linear models 18 the
analysis of questionnaires with qualitative data. Surveys designed in this manner
have the advantage of simplicity and tend to yield usetul data very quickly. This
is why qualitative questionnaires arc frequently used for surveys in business
cycle studies. These studies attempt to predict the evolution of certain economic
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mdicators over the subsequent three or four months (or analyse this behaviour
for the preceding period). When these surveys are conducted with heads of
business as the sample group, the questions may be, for example:

(i} How have your prices P, moved over the last three or four months?
(11) What type of price changes, P, do you anticipate in the next three or four
months?

The respondents are asked to choose among:

A fincrease”
— *no change™
>, “decrease”

Similar questions are asked concerning their realized and anticipated level
of production, how many orders they have or expect to receive, their expenses,
their balance sheet, etc.

5.7.2  Expected and Realized Values

When information is simultaneously available on expected and realized changes

of some economic variables (prices, for example) we can compare the two data

sets and attemnpt 1o understand how executives form expectations. In a series

of articles Koenig, Nerlove, Ottenwaelter, and Oudiz ([KINOE1] and [Ner83])

proposed several log-linear models to describe the formation of expectations.

They estimated:
(i) Models of the conditional distribution of P given P/ 2 P, — these arc

analogous to adaptive expectations models.

(i1} Models of the conditional distribution of P* given £, F,, analogous to
extrapolative-type maodels.

(1ii} They also intreduced a generalized error correction mechanism, derived
from the distribution of AP* given E (F,).

The variable AP* — changes in expectations — 1s trichotomous and takes
values according to:

*\P;{ |
P, Ve

_}\4
+ [+
_I_

/b
I
I
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The variable € ( P,) “error in expectation” or “surprisc’ is defined by:

: P,

EP;*\ 1= 1N
A=+ ]+
i — | — =+
ENESE

Studying these models may also allow us to determine the lag. ¢, which pro-
vides the strongest correlation between cxpectlations and realizations, Knowl-
cdge of this value can allow us to make better use of the expressed expectations
to obtain advance indicators of the true values tor the following three or [our
months.

5.7.3  Price Adjustment Studies

Another application of data from business cycle studies was developed by
Kawasaki-McMillan-Zimmerman ([ KMZ83]). They wanted {o test the hypoth-
esis that companies react differently to demand changes depending on whether
these changes are perceived as permanent or temporary. If the change is per-
ceived as permanent, companies will tend to adjust both the price and the level
of output. It the change is construed as temporary, however, only the level of
production is altered.
Data for these studies compriscd the following four qualitative, tnichotomous
variables:
(i) P;:change in the price level between the previous and the current month.
(ii) O;: change in the quantily of output between the previous and the current
month.
(i1t} ) changes in the order book. this variable is used to cstablish short-term
variations in demand.
(iv} G7}: anticipated change in the level of outpul for the next six months, this
variable occurs as a proxy for long term changes in demand.

These variables are trichotomous and may asswme the values {7, —., ™).
The data is used to create two samples, one corresponding to obscrvations for
which G7_, is “~=", i.c. no change in production. and a second sample in which
the values of G} | and Dy,_ are the same and indicate a rcal change. be it 7~
(increase) or > (decrcase). For each of these sub-samples the authors estimate
a conditional log-linear model on the ordered pair (7, Q,) given D),_,.

Estimating these models and applying tests of indcependence allow us to
derive the following results from the data:



(1)
(ii}

{i11}

N |

5.2

5.3

5.4

3.5
5.6
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A short-term shift in demand results in a price and / or production level
change.

Variations in the price and guantily produced are greater for permanent
than for temporary changes in demand.

Unlike permanent changes, lemporary demand changes do not have a sig-
nificant effcet on price levels.

Exercises

Consider the dichotomous variable ¥ assuming the values zero and one. Any order-
muaintaining coding of ¥ can be wnltlen:

o, iy =1

T {fh ity =1,
where # = o. Show that z can be expressed as z = ay + # with a = (0 and that
the correlation between the two dichotomous variables ¥, and y» does not depend
upon the coding (as leng as it maintains the order).
Consider n independent observations on two dichotomous variables y) and y;. Use
the chi-square method to test lor the independence between ¥, and y: (notice that
the x° formulation allows lor significant simplification). Compare this with the
lest lor g, = 0.
Consider three dichotomous variables v, vo and .. sach that v, and y2 are indc-
pendent of each other, and are mdependent conditional en y:. PDocs global inde-
pendence between the three variables v, 2, v obtain?
When two dichotomous variables arc independent for any values of the explanatory
variables, is seems reasonable to introduce a logistie model:

. 1 |
Priyvi=10 v =0)= 1—_|__;;{."b'. ] _|_ exzhz ”
I PR L
Priyi=0.y=11= 1 4+ X | 4 pxab2’
€x1h| |

Prov=1toye=0= 17750 o

LTELTT vl

i

| + exiti | 4 pxab2’

£

Privi=1.vwv=1)=
Show thal i’ we have n observations on the cndogenous variables comesponding
to several values of the exogenous variables, then full information maximum-
likelihood estimation is cquivalent to maximum likelihood applied to the marginal
distributions.

Verify that if 8 (/y. {2} does not depend on 7, then we must have 8 (4,. /) = (.
Dlerive from cquation (15) that every (2 = 2) array:

]Ug_ {.I”Ul]} IGg{F[II.}
log (£ log (P)
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5.7

5.8

5.9

5.10

511
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1% a combinaticen of the tables:

N

Interpret the tables in this decomposition.

Consider the case of two polychotomous variables (cl. seclion 5.4.1). Find a test
lor the equality of the conditional distributions corresponding to two values of the
first variable:

Hy:Priva=hlyw=0=Pr{y =iy =1}, Vi,

Consider the conditional bivariate dichotomouws logit model in section 4.3.2. [s this
a log-linear madel? Answer the same question for a sequential logit model.
Consider a (2 x 2) contingency able, and let the assumption of independence hold.
Determine the subspace AA associated with this log-linear model. Furthermore,
using the procedures presented on page [40 show that the linear functions of the
joint probabilities are none other that the marginal probabilities.

Sometimes the log-linear model is defined with the assumption that the mean.
m (P . of the n observations satishies:

log [m {(P)] € M.

Show that if A7 < A this condition is equivalent to log (P} € M.

Assume that the toiple (¥, ¥2. ¥3) is normally distributed. Furthermore, let v, and
»: be independent conditional on v;. Whal constraints does this condition imposc
on the parameters of the normal distribution? Find the conditional distmbution of v
given ¥y and the conditional distribution of ¥y given v;. vy. Compare your resulls
wilh those obtained in section 5,3.3,



6 Qualitative Panel Data

Time serics data, or mixed time series and cross section data, are often analysed
with the theory of processes. This procedure may, for example, be applied 1o
lincar models with serial correlation or with lagged endogenous variables — in
the latter case the values assumed by the endogenous variables are described by
a Markov process. Similar models can be built when the endogenous variable is
qualitative; these derive from the theory of Markov chains (however, cf. section
2.8.3 for a different approuch.)

1t is beyond the scope of this chapter to develop a full treatment of this theory.
Rather, we shall restrict our analysis to showing how it can be used to build
qualitative models of time series and to studying estimation problems associated
with this type of model.

6.1 Definition of a Markov Chain

Consider a qualitative variable y assuming f values. j =0, . ... J—1.for which
we have ohservations over a period of time, £ = 0, .... 7. These observations
(¥0s ¥14 - .-y ¥, ..., ¥7) have a joint distribution which can be characterized in
several ways.

One approach 1s to postulate a priori the marginal distribution of ys. the
conditional distribution of y| given w,. the conditional distribution of ¥, given
(v, vp). etc. We have:

Pr(yy = jo,....¥r = jr}
= Pri{vo = jo) Pr{y1 = jilyo = fo)Pr{y2 = f2l 1 = J1. ¥o = Jjo)

GPrlyr = grliyror = Jronooo Yo = o)
Definition 3: yw, ..., yy constitutes a first-order Markov chain if:
Priy, = jily (= ficts oo %0 = jo)
=PT(_}’r=jr|,Vr | = Sr—1). Y, Jo =1 Jo.
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In other words, yn. . ... vy is a Markov chain if v, does not depend on previous
values of ¥ except through the intermediary effect of v,_;. When this condition
is satisfied the joint distribution is written:

T
Pr(yo = joo-o¥r = jr) = Prive = jo) [ [ (3v = 2o 1= 1),
=1
From here on we shall use the notation:
Po 7 (o - jr) = P(¥o = jo....,yr = jr) the joint probability.

the marginal probability

Poij) =Pl =jn) of the j-th observation,

the probability that the
Py =P(y=jly_1=1) value of v changes from i
to f betweens — 1 and 2.

Using this notation, we see that:
T
Po_r Go oo dry = PoGoy || Py s (.

=1
Fi(p) = Z . Z [PU (Jod Pip (1) Pppn (23,00 Py, (I)]1 (6.1)

iy Frmi
Equation (6.1) can also be written in matrix form. Let P, be a vector with J
clements, P, (f), j =0,..., J — 1, and let P (/) be a square (J x J) matrix
with clements Py, (0). 8 =0, ..., J—1.j=0,...,. J — 1. All the elements of

P (#) are positive and the sum across any row equals one, since;

F—1 F -1
DR => Py =jly ==L
j=0

F=0

P {#) is called a transition matrix (from ¢ - 1 to £).
In matrix form the second equality of (6.1) becomes:

Po=PY Pt — 1. . P(i)YPy. (6.2)

Definition 4: A Markov chain is called homogencous if its transition
matrix does not depend on time: P{t) = P, V¥r.

In this case equation {6.2) becomes:

P, = P/Py. {6.3)
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Remark 7: The first-order Markov process introduced in definition 3
15 analogous to a quantitative linear model in which the endogenous variable is
lagged by onc period. Te obtain the equivalent for higher-order lags, ie. up to
a duration of p, we write:

Plye=Jtly 1= Jimts oo y0 = Jo)
=P (}-‘; =kl Y=g, Mo = jr—p)=
This 15 called a Markov chain of order p.

The issues we shall examine for p = 1 arc casily generatized to the case of
any pasitive integer p,

6.2 Independent Observations on a Markov Chain (Micro Data)
0.2.1  Maximum-Likelthood Estimation

Assume we have n independent cbservations on the process (Yo, ..., W) f =

..., #. [fweinterpretthe index i as corresponding Lo an individual, our data is
a sample of individuals observed repeatedly over time. This is called panel data.
Denote ny_y (Jo. - ... jr) the number of observations lor which v, =
Joe oo, vir = jr.n; (Jiy the number for which v, = . and#s,_ |, (j;_y, j) the
number for which v,_, = f,_; and v, = J;. The distribution of the observations
(Mo, - ¥k = 1oL,k is given by
L= T tPor G o.oo fipy)mortne i,
doodr
wu o Jr)
= 1T [P0 Pan (1) Py (D] 77
dredr
i Aoy U 1o
= [Trre o> OTLTL 175 o 0] o 0
=1 g e

This decomposinan reveals that the set of values:
Mo (Jo), Bemr e e e e YUY 00 Jis s

constitutes an exhaustive statistic for the problem,
The maximum-likelihood estimators of the prababilities Py (jo)and P;,_, ;, (#)
are obtained by maximizing:

log (£) =Y ny (o) log [ Py (o)

in

,
+3 573 nr e G i log [Py, (0]

=l G g
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under the constraints;
t= " Pyljo)
Fu
1= Py 0, YrVj .
i

This solves for:
ng (jo)

Py (o) = pat (6.4)
EX IR (f:--l- J’r)
Biroans (1) = PR (D

The maximum-likelihood estimators of the transition probabilities at time ¢
are none other than the corresponding empinical frequencies.
6.2.2 Properties of the Estimators

To study the propertics of aforementioned estimators we must first determine
the values of rg_ 4 (o, - -+, Jr) 1 (e 1s fede and 1, ().

The varables g 7 (p... j7).f = 0,.... T,y = 0.....J — 1, have a
multinemial distribution with parameters s, Lo+ (Go. ... Jrdnoe.7 (o Jrhs
t=0.....T.4,=0,....J—1.

Similarly, the distribution of =, 1, (fi (. j;). i 1 = 0,...,F —1,j =
g, ... J — 1 and the distribution of n, (j,), j, = 0. .. J —1 arc both multinomial
with parameters, n, Py, {(ji—y. i) o1 =0,...,. -1, =0,....J—1

and n, # (j). jo = 0,...,J — L[where Py, (jio1. /1) = Priy. = ji1.
¥, = ji 3. respectively.
We can easily derive the conditional distrnibution of:

e vy Gty f)e hor=0,....0 =1, j=0....,. =1,
given the values of:

neGe Dy e =000 =1,

yielding:
Pr [nr—],r (j!—la }r)]
! . . L P PRy
L, T1, [m et f-ﬂ_ HJ}—I HJ} [P’—“ Gr 1 J"fj] |
_ dr—1 gt b Lt )
— Al . P P He gl fe 1)
H,r i[”r—l':..f-.-—lﬂt H,Jr lE i I(Jr 1)]
(6.5
where
Rt Uim) = D ttre1s G ). (6.6)

A
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This conditional probability can be rewritten:

H [, 1 {Ji—1 ]! H Ii,Pj._Lr (et jr}j]”r Lelfe 1.0
H_;‘, [”r b (jr—l,j:)]! P P (1)

e

[Hs— [.fr— }J' By —ts Grer i
-1l I1; [= : (f'll ,r')hH[Pﬁ-m (ey] "
Ji Pl VH—=1s g )y

jr—l .f-f

Proposition 17: Conditional ons,_¢ (j;_1), ji—1 =0,...,J — 1 the
variables:

1y l.fe{j!—lsjf): j;zﬁ,.‘.,\!""l? jr—]_:Ui---uj_]-
are independent and follow a multinomial distribution with parameters:
He y (feo ), PJ'; . {1). j;:U ..... J—1, Je—i =0,...,5— L.

We immediately see thal:

E [?1;—1.;__(j171, J:):| !
e —1)

E{P; .. )]
E { — 1 E[n v (rots Jo¥ emt (o) }
1y (Ji—1)
E[P;_; (1],
P
So the estimators of the transition probabilities are unbiascd.
var [P, (0] =B{var [£, ;, )| n— G-}
+var {E[ P, (O|ne1 Gon] )
=E{var [P, ;, &)|n . U=}
=Eln 1 (r D] P, (D [1= P,y 0],
= nPoi G Py O [L= Py (0],

Similarly:
COV [ﬁj o (1), ﬁjr i (I)]
= —E{[n_1 G-I Pj_ 1 ()Y Py 4 (D},
—RP G- Py (P ) 1E G F
=0 ifi_ #j 1.

I



150 Econometrics of Qualitative Variables

Tt remains to examine the relationship between the estimators of the transition
probabilities for two different dates. To lacilitate this analysis we assume # large.
Asymptotically, the maximum-likelihood estimators:

have a multivariate normal distribution. Furthermore, notice that the constrained
maximization of the leg-likelihood is equivalent to a series of individual con-
strained maximizations with respect to the parameters: Pp (jo), jo = O, ...,
=L P i)y =0,....J—-1Lj=0...J-1lt=1.....T.
Hence the estimators of this family of parameters are asymptotically inde-
pendent (ct. exercise 4).
Finally, we have:

Proposition 18: The variables:

B, =t 1)
”-!_I (.Jirf—]_)

for a given j,_, and 1. have the same asymptotic properties as the usual estima-
tors of the probabilities for 4 multinomial distribution with parameters:

Elnoy (e Dl =aPo G APy 0. jeo=0,... . F — ]

These variables are asymptotically independent for different values of f_;
and ¢ )

6.2.3 Homogeneous Markov Chains

In homogencous Markov chains the transition probabilities do not depend on
the date: P;; (1) = P, V7. The log-likelihood is given by:

log (L) = Z 1y (o) log [Py Cindl

il

+35TS T nys G, i log (P 4).
O

= Zn{; o) log [ Po{o)]

An

S o
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We maximize this under constraint of:
] = Z Fo { ju).
i

1= "P; Yi=0..J-1
;

and solve:
N rig (o)
Pyijo) = AT (e
M
T ..
B Z;:I et (L, .f]_ (6.7)

o — : T

Z’jz'{; Z’?:] ﬂf 1.r {“:'l Jr)
Z;] Flp—1+ {fs j}
ZE;_] My {3) ,

where P;; is a weighted average of the estimators obtained from solving a
non-homogeneous Markov chain:

,

LS - n,_1 {i)

P = E P = .
ar SRR SHIT IR ()

Following the same rcasoning as in section 6.2.2 (scc Anderson-Goodman
[AGS7]) we can show that:

Proposition 19: The variables P, ; corresponding to a given value of
the index { have the same asymptotic distribution as the usual estimators of the
probabilities of a multinomial distribution with paramcters:

r T
£ |:ZH;_] (f]] = .“IZ P;_1 f!) and PF'_.f' _,f =1,.... g.

i=1 =1

The variables associated with difterent values of /i are asymptotically inde-
pendent.

6.2.4  Testing for Homogeneity

Using our # observations, we can obviously test the assumption of homogeneity
of the Markov chain. Let A be likelihood-ratio test statistic calculated under the
null and the alternative hypothescs. We know that asymptotically —2 log (A) is
distributed chi-square with J (J — 13 (T — 1) degrees of freedom. This is the
number of independent constraints we have to impose on the P;; (¢)-s to ensure
homogeneily.
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In the example:
—2log(Ay=—23_ 3> nm 14 Gio1. Ji)
Y P

* {lﬂ'g (ﬁj,_u}) - ng I:ﬁfr Lir (r)] }’

= =23 "33 mas G i)

L TP

X IUE []_ + P_]’:j_|_,|;i - Pj:—lj',v (r}:l

P q )
is, under the noll hypothesis, equal to:
-2 Z Z z.-'?t—l {(Ji=1) ﬁj,_JjI ()
Foka

A

e

lIJ:L"J’I:—IJ;r T ﬁ.?f 1 fe {f) . l [PJ i T p..?-.l—lfr {I)]n
B 1

4 e

P ;1)

ﬁ_.';r—ljr (r)

2

. I:"afr 1H "ﬁfr—lfr (I)]
=35> T ma G ) - :
L A PJI‘ Lir (I)
This is 4 sum of chi-square statistics.

6.3 Independent Observations on a Markov Chain (Macro Data)

In the preceding section we assumed that we had individual observations tor
each date. Frequently, however, we only have values for n; (), j = 0,...,
J—1.f = 0,.... T. from which we cannot exiract the individual values
fe_1 (i, J). We must re-cxamine the issue of estimation with this type of
data.

In the subsequent argument we shall distinguish between two cases:

(i) Observations for all dates apply to the same collection of individuals. i.e. the
sarme sample is followed for the duration of the measuremcent (“complete
panel data”),

(ii) A new sample is taken for each period (“incomplete pancl data™).

6.3.1 Macro Data and Complete Panel Data

When stodying the distribution of the observations sp (jo) . ..., 7 (Jr) 1tis of
some use to examine the conditional distributions of the values for a given dale
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oM () je =000 00 F — 1, given our knowledge of the previous values:
e (—deoccsin i) o =000, =1, ju=0.....J— L

Since #, {f) = Zi_.]:u”f e Ufe—1. J1), proposition 17 gives us:
E[n; Gdlaea Gro0n.-e no (o))
=E[n, (j - (=],

F=1

P/l

E [Hr—l,r {fr—1. J'r)| w1 Uy -1]]-
de—1 =t

41

P.P} 14 {)n; | (J;.f—l)n
fr—1=0

where f,_ 1 =04 =0,....J—1,/=0,..., /0 —1.
The canditional second moment of n, (,) 1s obtained in a similar manner;

var [HI {j!)l Re (jf—] ): ey HU {:.Jiﬂ)‘! ji!'—l

=0..../ -1, ju=00....4 — 1]
J—1
=var | > e Geors jo| ot Ge D0 g =000, 0 — 1
fro1=0
F—1
= 2 var [ 1 Geor do s Geon),
o=l

because of the conditional independence of the n, | (j, . j)-s corresponding
to different indices j,_,.
The expression given above is equal Lo:

4—1
Z Py i Y[V =P 5 )] n 1 (o).

..f: IZU
Furthermore. we see that;

covlnm, (i} n, (fMe, 1 (o) oo (i)
4 —1

= 3 [Py O Py (O 1 GioD).

=0
where f;, =0,...,J —1,i=0,....¢t — 1.

[}
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6.3.1.1 Estimating the Transition Prohabilities
We are particularly interested in estimating the transition probabilities:

P.frl..i'-r(rj‘r:i""!T:- jf:“!"'el’r_]--

The distribution of the observations n, (), j; =0,...,J=-1,t=1.....T
is somewhal complex, making application of the maximume-likelihood method
difficult. An alternate approach is to use the expressions for the conditional
cxpectations and variances which we just derived. We can write:

J—=1
ne () = > Pl O G O+ e U, (6.8)

fi—1 =t}
with:

E [« Ur)|"1r—l (1) =0, 00004 = 1] =10,
Je=0,...,J-1t=1....,T.

This model is linear in the parameters P;,_, ; (). so it seems reasonable to
apply a least-squares approach. However, as the number of independent ob-
servations, T (J — 1), is less than the number of parameters to be estimated,
T-J {J — 1), this won’t work unless we impose further constraints on the transi-
tion probabilities. Onc possible approach is to postulate that the Markov chainis
homogeneous, P;_,; () = P,,_ ;. In this case there are J{J — 1) mdependent
parameters and cstimation is possible if T = J. The model becomes:

J—1
noi) =Y Pymoa (D +¢€ (f), 1, j variable. (6.9)
i=0
Notice that the variables n, (j;) and the paramcters F;; satisfy the relabon-

ships:
o= Zn; ().
:

1=> P Vi,
i

and we can now apply ordinary least squares to equation (6.9) with the ob-
servations n, (f) corresponding to j = 1,...,J — 1, The parameters P,
for a given j. occur only in equations in which the endogenous variable as-
sumes the value n; (j) = 1,.... T, so we may limit our attention to these
equations to obtain the o.l.s. estimators. This mode! can be written in matrix
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form:

[ ry ()]
na{j}

L7 (4) ]

[ g (1)
ny (1)

L rr— (1)

_ PU _
P 2

P ]

or. simplifying notation:

nij)=nP;+el(j).

m (2)
ny (2)
nr_i )
€1 (/)]
Ll e Fj}
LET '(J')_

The o.Ls. cstimator for P; is then:

-

Py = (w0

LAt ().

155
ap{J — 1) ]
FI {J' - ]]
nr_i (S — 1) ]
(6.10)
{6.11)

This estirnator is consistent but not asymptotically efficient, since the informa-
tion contained in the conditional variance-covariance matrix of the disturbance
term has not been incorporated.

In order to rectify this and improve our estimate we can perform the following

three operations.”

(1) Estimmate F; with ordinary least squares, yiclding .5[-}.

(11) Replace F7;; with f’,-_,- in expression {6.10) lo calculate an estimator of the
conditional covariance matrix of the error term. The conditional vanance
for €, (j) is thus estimated with:

J—=1
G [e (o @i =0, = 1]1=>" Py (1 — Py)n,y (i),

and the covanances arc:

cove (j). e (kY n, ((i).i=0,....J

= [—Pij Pixne_y (0)].
1

J—1
i=

i =1
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{iii) Apply generalized least squares to the model (6.9) with observations
a iy e =1....7T, j=1,...J— 1, by replacing the covariance matrix
with its estimator from step (ii).

0.3.2  Macro Data and Incomplete Panel Data

In this case we still have data for the various values of the qualitative dependent
variables, but we no longer take the valucs from the same sample on each
date. More precisely, we consider an infinity of independent realizations of a
homogenecus Markov chain v, f = L. ..., 7. i € I (where 7 is an infinite set)
for each date t. We draw a sample of size 1, independently and equi-probably
and obscrve the distribution of the elements of the sample [rom the values they
assume. Denote m, () the number of individuals in the sample for whom ¥,
takes the value j. Clearly:;

Zm: (.H = ;.

=0

Because the samples are drawn independently, the random vectors:
{f”;(o)q-‘.,mr(aj_l]]a r=]..,.,.._T|

arc independent. The distribution of each of these vectors is multinomial with
parameters m,, [P (0). ..., P (J = 1)].

Remark 8: The parameters are P {(), ..., £ {(J — 1) because the
universe / has an infinite number of members. If this unimrwe had only a finite
number of elements, N, the P, (j)-s8 would be replaced with - ”’ , where N, ()
is the number of individuals in 7 for whom y, = j (cf. McRae [MCRTT]) Since
the N, (j)-s are stochastic, this would complicate the analysis. From a practical
perspective, if the sample sizc is large, the universe 1s even larger and there 13
no appreciable difference between the two approaches.

The distribution of the observations is easily found to be:

Hr (O

T

I1

(=1 H—u iy {J’)T

Unfortunately. this expression is still complicated in the paramcters [which,
you will recall, are the initial probabilities, £y (j), and the transition} proba-
bilitics. Thus. in the case of a homogeneous chain, the parameters enter Into
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P, (7) in the form:

J-1

Po() =3 PP Gy,
=0
F—=1 -1 J-1

:ZZ"‘ZPil.fPF':h"‘PM: |Pﬂ(ir)-

P =0 ia=0 f=tl

Application of the maximum-likelihood methed is thus hopeless when the num-
ber T is too large.
Another approach is to write the relationship:

J—1

P(j)y=>_P,P_i (),

i =i}

and replace the theoretical probabilities P (j) in this equation with the observed
frequencies:

This vields a lincar model of the type:

J ol
Pjy=>) PyP_(h+e) (6.12)

i—1

What can we say aboutl the disturbance term ¢, ()7 s mean 185 zero
because: '

J—1

Ele, ()1 =P (j)— > PPy (i) =0

i=1

It is also correlated with the variables P, | (/). We see this from the expression
tor the error:
Sl

e()=P (=D PP )

{1}

and from the fact that .f’; ( 7) 1s mdependent of P, {i). This model is thus
characterized by errors in the variables. However, as m, — 00, Vi, B, {1
tends towards F, (), P, (jytowards P _; (j). and €, (j) towards zcro. Even
though this is a model of errors in the vanables, the o 1s. estimator of Py derived
from equation (6.12) (written for the indices j =1,....J —1.t=1,....7)
is consistent. To give a more rigorous demonstration of this result, consider the
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form of this estimator:

Py, Pyy o Pyt =1
P,y Proi(y o Prj(J—1
Bo) .- Po(J—1) ‘
x IS :
Proi) - Pro(J—1

Po) - Pod=D1 N\ [P

Pr iy o Py y(J—1) Pr(j)

Since P, (j) converges to Py (j), we conclude that the o.l.s. estimator con-
verges to:

Py (O) Py (d —1)
Py - Pr g (J-—-1)

Po(® - Py(J—1) ‘
4 . . :

Progi o Pro) (S =1)
PO e Py =N P

x : i : :
Pe_ 0y - Pr. {J—1}) Py (j)

Notice also that we can write:

Py i) Py oo PJ =D Py

Prij) Pry(0)y - Pry(J—1) Py

From this expression we can conclude that the o.l.s. estimators converge to the
true values of the transition probabilities.

These estimators can be improved if we account for the information contained
in the covariance matrix of € {(j) (cf. exercise 4}, Because the expression for
this matrix includes the unknown transition probabilities we begin by estimating
them. One possible approach i1s as follows:
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(1) Apply o.l.s. to equation {6,12) to obtain consistent estimators of the tran-
sition probabilities F;;.
(11) Find the covariance matrix for:
71
e (=P (H—=D PP (i)
1=l
This matrix, depending on the quantities Pi; and P, (), is estimated by
replacing F;; with its estimator derived in the preceding step, and replacing
P (j) by Py (/).
(11} Apply weighted least squares to equation {6, 12) using our results from the
previous step as the covariance matrix.

This estimation procedure yields asymptotically efficient estimators. (Gou-
riecroux-Monfort-Trognon [GMTS85]).

6.4 Transition Probabilities Depending on the Explanatory Variables

As the purpose of this book is to study models with explanatory variables,
we shall consider transition probabilities which arc functions of exogenous
variables for an individual ¢ at time ¢.

To simplify notation, we write the transition probabilities in logistic form.
Thus, F;; - (r) ., represents the probability that an individual § passes from state
j to state j* during the interval between ¢ — 1 and #. This is written:

et Oy

P (f) = :
I.il_nr B j{—zh Exi; f,l:_."' I!;I-ll‘l;.-

Each row of the transition matrix constitutes a probability distribution. and

is modelled with the logistic formulation. In order to ensure that the model

is identibed, we set by = 0,¥j = 0,...,J — |, The explanatory variablcs

generally depend on the states between which the transition takes place, j and

!

g -
We see that, in the dichotomous case, j = 2, the model is perfectly defined
by:

& Yitu bl
P () = 1 + evmnbar’

IR
P (1) = 1+ exuibn
where/ =1,...,0,0=1,...T.

From here on we shall assume that the behaviour of different individuals is
independent and is a function of the values of the exogenous variables.
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6.4.1 The Case of Micro Data

Letting #,0..7 (o, - - -, jr) Tepresent a variable assuming the value onc (1) if
Vio = Jjo.....wr = Jjy. and the value zero (0} otherwise, the distribution
function for the observations:

Hinr (Jo. .. Jr). E=1,..., n, {jg.-.-.jrt=0.....J—1,

conditional on the original state, 1s given by:

L' LV - '[I ..... f-
H H Pos () Pip s (200 ooy Pigy gy (1] 700,

i=1 j..

The ]ng—llkf.:llhnnd is:

log (L) = Z Z rio.7 Go - - jr) {10g [Pis, (1]

=1 j.
+ log [ I (ZJ] ...+ log [Pr'_.r'r—l..i’}' (T)] }“.'

:Zng [L

where:
log (L) = D mima (J77) log [Py (V)]
= Z i (4i7) log [Py (2)]
+.o+ Zn;,r. vr () log [Py (D],
with:

o 1. if w,.q=j and »,=j"
Pig-re (1) = (0, otherwise

Assuming that the parameters b;; are linearly independent, we see that
> log (L ;) depends only on the parameters by, j* = 1,..., J —1, and we
can maximize the elements of 3, log (L ;;) imdividually. Clearly, this max-
imization results in nonlinear equations which must be solved using numeric
methods,

As 1s usual in models of qualitative dependent variables, the quest for asymp-
totically efficient estimators is facilitated when we have repeated observations.
This occurs when the number of different values assumed by the explanatory
variables x;,;+ is small relative to the number of observations r (7 + 1) J2,
in particular when the vector multiplication xy;,-by;;: 1s of the form x;; o ;- +
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213, where the vector x assumes K values X,, & = 1,..., K and where K
is small relative to s {incorporating cross effects increases the number of values
assumed by the explanatory variables considerably.)

The set of observations can be partitioned into K subsets gy, &k =1...., K,
corresponding to the individuals for whom x; = X;. Denote n, the number
of individuals in g, ng,—q. (J, _;'") the number of individuals in this sob-
population for whom v, ; = j and v, = j', and #y,—, (j) the number for
whom v,,_; = /.

The log-likelihood is:

P
log (L) = Z znk.r—l.r (L Ji) log [Pk_s,.--' (”]'

k=1 =l j.j

This reveals that, as in section 6.2.1, the values:
ki—1: {I: Ii)

Heao1 (Y

P n
Pajy (1) =

constitute a family of exhaustive statistics for the parameters «x and 3 from the
cxpression for the transition probabilities.

As g consequence, when the sig-s are large forall k = 1, ... K, we can
base the estimation directly on the asymptotic distribution of the Py ;- (1)-s.
According to proposition 17, we know that for different k., 7, or ¢ the variables
Py, (£) are asymptotically independent, and that:

Prin (1) — Py (1)

\/”kﬁk.:—l (j) :
' Pris (1) — Po_q (1)
(}

~as L] Ay @

where:

Aygi (1)
[ Pejo (O [1 = Pyyo o) - |

— By (1) Py (£)
i P (O [1 = Pejso (1]

We can apply the maximum-likelihood method to this asymptotically normal
maodel, The estimation procedure is minimum chi-square.




162 Econometrics of Qualitative Variables

[t is preferable in this case, however, to generalize the Berkson method and
estimate the asymptotic distribution of:

lo &, |UII]
Pl

-’:‘1_;..;—1[?]
_]“g [ ﬁk_.illl:,r] :l _

Smcee:
Aoy T
I- log | 22 _
Vg Feoll) Xeiidey] + -'»lr_;'[.'ﬂji
log [P‘;'-J"‘(”} Xpj 4= 5 4+ Zeg g 137,01
L Frain

[ AL .
log [W} — Xgj1051 — 21035

-~

Feia—1il) , _ e .
_Ing [——pi_{“m ] — Xpj7 191 — Lja—1f301

iz asymptotically normal N [U; £y (r}] where Q; (1) = Ay, (1) Ay Agy (1),
The matrix Ag; {¢) contains the partial derivatives of the transformed variables
with respect to the original ones:

= 1 1 I -

it FLedd R Pt,ﬁ
: .
fenda 0
Agi (1) = L
d ¢ Firzzlz]
b
L [) n - s .Pi;_l'_.n’—l “] _

This new, asymptotically equivalent normal model is linear in the paramctlers
a and 3, so they can be estimated asympitotically efficiently using generalized
least squares with the estimates P, (f) replacing the unknown Py (¥)-s in
£; (1) [GMTES].

Let’s illustrate with the dichotomous case. After transformation we have:

[Pkm (1)
hjg =
Proo (1)

} = Xpm @ + 2015301 + €oy (7).
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and

Py (r)
log {m} = Xgi1 + zo1 80+ e ().

The error terms are asymptotically independent with variance:

l
var [€go) (1)] =

Ay Prr—1 (0) Proy () [1 — Prpy (D]
|
i Pro_1 (1) Peny (Y [T — Py ()]

We see that, in order to estimate the parameters (ay, 3y and (o1, B11).
we individually estimate two separate simple dichotomous logit models (cf.
chapter 2).

var |egny (£)] =

6.4.2 The Case of Macro Data

We shall limit our analysis to the case of complete panel data and ussume that
we have repeated observations. A relationship analogous to equation (6.9} can
be postulated:

J—1
=0
=1l ... =1 =1 ....T. (613
A consistent estimator for the parameters ;.. 3;;, j =0...., J — I canbe

found using nonlinear least squares. We minimize the expression:

2
J—i

T
Dol (=D Py W (D] - J=1 =
=1

d=U

)=

"
Il

with respect to o ;- and 35,

A particularly interesting case arises when all of the Markov chains are
homogencous, i.e. when the transition probabilities do not depend on time ¢.
Under these conditions we can find an efficient estimator for « ;. First of all,
ignoring the logistic form of the transition probabilities, we find efficient and
consistent estimators [or the probabilities (denoted Py;;v) using the method
described at the end of section 6.3.1. Next we use these estimators to construct
an approximately linear model and to estimate the o ;-5 using a Berkson-type
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approach. This involves applying generalized least squares to the model:

Ao J=0 0=,
ng —.\f{;"r :xk_,f_j'aj_f"—{_ukjj“- j :0,...,.)" - ],
Prjo L=1,....K.

6.5 Applications

In its most complete form, with variables indexed on time, the model developed
in the preceding scction has not yvet been employed. Applications 1o date have
essentially involved individual qualitative explanatory variables. This allows
the model to be reduced to a homogeneous Markov chain for each category of
individual.

Among possible uses forthis model, we shall look at a study of unemployment
and a dvnamic approach to discquilibrium issues.

6.5.1  Unemplovment Survey

Some agencics responsible for allocating unemployment insurance premiums
keep records with panel-type data on recipients. For each individual, data may
include information on items such as current job stutus: unemployed (receiving
premiums) or employed (not receiving premiums), and a profile of the individ-
ual’s characteristics — age, level ol education, participation in training courscs,
etc. In addition to allowing for analysis of the bearing of certain individual
characteristics {X;) or macroeconomic indicators (z,) on uncmployment rates.
this data can be analysed using a Markov chain and yield some very interesting
and intuitive statistcs,

6.5.1.1 Duration of Unemplovment

We may, for example, derive the distribution of the duration of unem-
ployment from knowledge of the transition probabilities. Consider an individual
who 15 working at the date indexed zero and unemployed at titne one. Denoting
the state of being unemployed zero (0) and of being emploved one (1), the
duration of unemployment 7 equals one with probability:

Pr (T — I.] = PU]_ (2},
The probability that T = 2 is given by:
Prit =2}y =1 — Fyu (2)] Py (3).

And. in general, we have:

'3
Prir =k =[] — P (O] Py (k+ 1)

f=1
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Probability
F 3

¥

Fig. 6.1. Probablily of finding work over tirme

In the special case of a homogeneous Markov chain this expression simplifies
to:

Priz = &)= (1 — Por)* ' Py.

50 we see that the duration of unemployment follows a gcometric distribution.

0.5.1.2  Survival Functions

Another interesting result occurs it we calculate so-called survival
functions (the name derives from their association with studies of mortality).
This type of function yields the probability of finding work following ¢ periods

of uncmployment. The expression 1s:
Pr (}"i.:+| =1 ‘ Yr =y, =0 ..., %0 = U)-

In the case of a first-order Markov chain this reduces to Pr( Vi) = I!"-,-‘f_, = U) .
Clcarly, this expression won't represent a higher-order Markov chain, Calcula-
tion of this function gives an idea of how the probability of finding work depends
on the length of the preceding period of unemployment. Ceteris paribus, this
function is graphed as depicted in fig. 6.1. This shape results from the fact that
twao effects are superimposed:

{1) a positive effect translating the efforts made by the unemployed person.
(i1} a negative impact on potential employers of the duration of unemploy-
ment,

These problems can also be studied using continuous time. but the ditfi-
culties are at least as great as in the present case. The reader is referred to
chapter 12,
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Table 6.1. Marginal Probabilities of IR for differerit dates

Keynesian Under Classical Penmanent

Sample unemployment CONSUMpPLion unemployment inflation
Date size T e G Yo
7503 1.741 67.03 15.51 11.77 5.69
7506 LEIR 607 15.51 079 3
511 1,869 68.27 1487 1.4 5.46
76 03 1.842 6281 18.24 11.67 7.28
76 06 1,787 51.82 22.5 13.43 12.25
7611 1,829 8528 20178 13.72 10.22
7703 1.923 57.88 15.82 14.3 9
7706 1.917 58.53 18.62 14.45 8.4
7711 2119 60.97 18.12 13.07 7.84
TRO03 2013 62.49 18.33 12.57 6.61
78 U6 2,051 39,87 L¥.07 14.33 773
78 10 1§85 60.62 1'7.54 173 T
7901 2,030 6().93 16.85 15.28 6.92
7903 1,958 60.82 15.79 16.35 7.04
79 06 1,965 56.69 15.98 18.73 8.6
7910 1,996 34.61 16.33 2014 592
2001 1,91y a7 16.21 8. 86 ¥.23
8003 2,031 54.01 16.45 20.38 9.16
80 06 1,957 56,11 16.09 18.65 9.15
8O 10 2,015 63.23 16.63 14.14 6
8101 I B0 6901 14.63 12.42 3.94
8103 1.726 71.55 12.57 12.34 3.54
8106 1.671 73.55 11.19 11.85 3.41
81 10 1,774 70.97 12.63 12.91 3.49
5201 1,832 70.69 11.68 13.37 4.26
B2 (3 1,743 69.31 13.42 12.79 4.48
B2 06 1,648 63.96 15.53 14,93 5.58
6.5.2 The Evaolution of Disequilibria

In business cycle surveys corporate cxecutives may be asked about constraints
they are experiencing in obtaining supplics, recruiting personnel, in sales, and
with credit. A posteriori, we can group them according to their responses.
This approach was used by Bouissou, Lafont, and Vuong [BLV&6] using
French data. The survev guestions werg:
10 —"If you were to receive more orders could you increase production with
your current capacity?”
[f the response is “yes” ([} = 1), that suggests that the company is con-
strained on the goods market. If the response is “no” (/@ = 0), it is not.
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IL — “Arc you currently experiencing difficuities recruiting?”

If the answer is “yes™ (fL = 1), the company is probably undergoing diffi-
cultics linding suitable employees, it “no™ (IL = 0) the opposite is truc.

With this data we can categorize each company 1nto one of four groups:

IR =0 “Keynesian unemployment.” if /(2 =1 and L =1{),

IR =1 ‘“under-consumption,” if f{Q=1and IL =1,
IR =2 “classical unemployment,” i[JQ =0and IL =0,
ff =3 “permanent inflation,” if 7O =0and fL. = 1.

Table 6.1 provides an estimate of the evolution of the marginal probabilities
of TR for the periods covered by the survey.

Of greater interest is the estimated matrix of transition probabilities obtained
under the assumption of homogeneity:

85.82 2469V 2431 12.13
1 7.00 6424 274  18.53
100 | 573 2.32 6545 14.51
1.45 875 7.51 54.84

FFrom this matrix we see that there is significant inter-period stability in the
classiflication of the companies. The probahilities of staying in the same group
from one period to the next are shown in the diagonal, and we sce that these are
always guite high. Movement from onc regime Lo another tends to be movement
toward “Keynesian unemployment.”

Exercises

6.1 Consider the dichotomous model at the end of section 6.4.1. Writc out the expression
for:

T N
1 Fun (1) Fry tf)
log | - - == 1o
T; [Pm]f”] ;; [Pmo(f}]

What are the propertics of the estimator for e obtained by regressing this value
on an cxplanatory vaniable defined:

1 &
Xan — ? E Xgo !
k=1

6.2 Let:

Poan (1)

log | =
P (1)

] = Xy + S Boie + €rop (1)

represent a dichotomous model in which the parameters o arce functions of time and
{3 functions of the individvals® characteristics. Count the number ol parameters and
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check whether the asymptotic results always obtain. Is it irue thal the test of the null
hypothesis:

Ay B = 0.

where wg, s independent of ¢, is equivalent to the assumption that the Markov
chain corresponding to the k-th sub-population is homogeneous? How can we verify
whether the impact of a given explanatory variable decreases over time”?

Assume that the model deseribing the dichotomous observations 1s as follows:

| |:—'”km (1)
g =

Fron {0
but that when estimating gy, we omit the term x.q &y, . Evaluate the resulting bias

in the estimator for gy and cxamine its sign,
Consider a stabistical model with 4 set ol parameters . The likelihood equation is:

} = xporcnne + Zeon Bote + s (1),

Y
Ly =]z w0
k=1

where the 0, -5 are hnearly independent subsets of the parameter vector. Find the
form of the matrix of second derivatives of the log-likelihood:

¢ log| L (6)]
56
Using this information, show that the Fisher information matrix is block diagonal
and that the maximum-likelihood estimators of the &,-s are not serially correlated.
Assume that we have micro-data on a homogencous Markov chain with transition
probabilitics 7. Tet n;, () be a variable assuming the value one (1) 1f individual
f s n state foat time ¢, and vero (0) otherwise. Veniy that we can write:

f-1

#y (f) = Z”:‘.r 1 (J) P_,u‘“j + u; (51,

=it

where u;, { j) 15 a disturbance term with mean rzero.

Calculaie the ordinary least squares estimator for £;-; from this model and verify
thatit is identical to the maximum-likelihood estimator dertved from the micro-data.
Consider a serics of p + 1 random variables ¥2, X! .| X' These vectors are all
of the same (fixed) size, and asymptotically (A — o)

Yk - Y*\:
VE | XD - XL~ N0, R,
»
Xe — X%
where Y1, X1 . .. X2 are constant unknown vectors satisfying:

Yoo =X b+ 4+ X0b, = X b
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Find the best estimator for £ from the observations ¥y, X[, ..., X} .
Given a symmetric p-dimensional matrix A, consider the estimator:

BN = (X AT'X) XA Yy
{a) Show that:
VELB (&Y — b = (X AT X)) XA WE T — Xab) + o,

where o, 15 a negligible residual.
{b) Show that asympioticilly:

VE [bi(A) — b
ST N [D, (XA X)) T XLAT AT (XLATIX ) ]}
where ¥ is the asymptotic covarnance matrix of:
Vie, = k(Y — Xub).

(¢) Verify that the asymptotic variance of 8, (A) is the smallest possible in the ¢lass
of symmetric matrices for A = E. What is the corresponding estimator?

{d) Explain how these resnlts apply to the case of incomplete macro panel data
described in section 6.3.2.



7 The Tobit Model

7.1 Censored Observations
S 3.0 The Problem

The simple Tobit model was originally introduced to study how households
allocate their income to the consumption of durable goods. This type of con-
sumption has the peculiar feature that, at any point in time, expenditure on a
given good may be any positive amount, but for many households it will be
exactly zero as well. It we plot this type of data with income, v, on the abscissa
and expenditure, ¢, on the ordinate, we obtain one cluster of points representing
positive expenditures and another cluster strung along the y axis.

Clearly, a4 simple linear regression madel, such as ¢ = a + by + #, 1s inade-
guate for al least two Teasons:

(i) The scatter diagram will be poorly represented by a funclion € = a + by,
since 1t consists ot two distinct parts.

(11) The usual assumptions about continuously distributed disturbance terms arc
not appropriate in this situation. For instance, the probability of observing
e = (} 15 not equal to zero,

712 Evelution of a Stock

The unigue Form of this cluster of data is due to the fact that we do not ob-
serve aclual consumption of the durable good, but only instances in which the
consumer replenishes his stock. More precisely, let s, represent the supply
of the good held by the household in period ¢+ — 1 and s the desired supply
(total consumption) for period . It s, _; is consumecd at the rate vy, then the
following modification of the stock is called for:

e =57 — (s | —du;).

170
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[
—

Fig. 7.1. Consumptiom of durable goods

Purchases for the period, ¢, are thus:

ey, el =0,
&y = .
0, otherwise.

Assuming that s,_; and v, are known, we may follow the usual procedure of

modelling total consumplion using a linear specification. We have;

Xebh — (s —dv) +ur, ifxib— (50 —du) + o > 0,

g = )
(}, otherwise,

The values assumed by the variables x,. s, . |, and dv, will typically vary between
households,

7.4.3 A Rationing Model

Rationing 1s a common phenomenon in economics. For example, we encounter
rationing in the availability of certain consumption goods, in ceilings on assis-
tance payments to houscholds and businesses, in wage controls, etc.

Let ¥} be the optimal choice of y for individual ¢ in the absence of rationing,
and assume that the choice of v is constrained to exceed some floor £;. Under
rationing, the amount consumed will be:

},f* 1 if .V{* E En" »
¥ = .
£;, otherwise.

In the aforementioned examples the threshold, £,, is generally known and we
can rewrite the model in terms of the difference v; — £;:

yE— . Hyr -8 =0,

(0. otherwise,
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This new formulation of the model i1s analogous to that obtained in sec-
tion 7.1.2. The endogenous variable 1s always non-negative and assumes the
value zero for many of the observations.

7.2 The Simple Tobit Meodel
7.2.1  Specification of the Model

For cach observationi. i = 1, ..., #, the dependent variable 15 defined by:

i yF = F
¥i = Yoo D= (7.1)
£;, otherwise,

where ¥} = x;b 4+ u,. b ix a vector of unknown parameters containing K
elements, x; is 4 vector comprising observations corresponding to the clements
of b, and the £;-s are the (known) thresholds.

To complete the model we have to specify the distribution of the error
terms, ;. We assume that these are independent and have conditional density
functions f and diswributions F which are the same for each u; up to a scaling
parameter s:

Hi .
=~
5
The distribution of v; 1s given by:
Pr(yi = £;) =Priy’ < &}.

M; f,‘ ng
=Pr{ — < — — |
5 Ay 5
E;‘ be
o
5 kY

lts density function on the interval (€;, o) is:

%f (y,- :X‘b)

If all the £;-s have a constant, known value, £, and if the model ¥ = x;b 4+ «;
includes a constant term, we can simplify equation (7.1) by defining a new
dependent variable ¥ = v, — £. yielding:

. [¥. iy =0,
= 0. otherwise,

(7.2)

with j:e = th — {4 iH; — X,‘,S + ;.

Here we have reverted to a formulation in which the threshold values are
identically equal to zero. To simplify the exposition in the remaining sections
of this chapter we shall work with this special case.
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7.2.2  Combined Qualitative and Quantitative Models

The model of equation (7.2) has two components: a qualitative aspect reflected
in the division of the values of 3* into strictly positive and zero-valued groups,
and a quantitative part describing the range of positive values of ¥; for some
settings of the index i.

Equation (7.2) can be viewed as a hybrid between standard quantitative
regression models and dichotomous qualitative models such as:

1, ify' >0,

0. otherwise.

)
*

Notice that there exists an inverse relationship between the amount of informa-
tion we have about the value ¥* and the degree to which the model is gualitative.

To analyse this model il seems reasonable to choose a distribution func-
tion with simple applications 1o both its guantitative and its qualitative aspects.
The usual choice 1s the standard normal distribution {denoted ® tfor the dis-
tribution function and ¢ for the density function), yielding the Tobit Model.
Other distributions have been proposed, however — the logistic distribution (the
quahtative aspect is then a logit model), the log-normal distribution { Amemiya-
Boskin [AB74]), and the normal distribution subject to a Box-Cox transforma-
tion (Poirier [Po1771), but these variations are rarely used.

2.2.3 The Latent Variable

The Tobit model is based on a variable (y*) which is not alwavs observed
{(the latent variable). Assumptions about its distribution cannot be tested with
confidence trom our observations on y. We find, however, that this variable is
crucial for our analysis. Not only is it the introduction ot the latent variable
which allows us to formulate models of phenomena such as those described
in sections 7.1.2 and 7.1.3, but it is required if we want to try and answer
questions like “How does the fact that 4 household is not purchasing any of
the good affect the rate at which it 18 running down its stock?” or “For how
long will this household refrain from buying this good?” or “What impact will

L LL

raising the ceiling have on social assistance disbursements’:

7.3 Least Squares Estimation

Even though the expression m equation (7.2) 1s not a lincar regression model,
we can estimate the parameter b by applying ordinary least squares to the entire
sample or only to values for which v; = 0 — the complete observations. Either
procedure yvields biased estimators, so we need o examine other techniques.
This will be our [ocus in the following sections.
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7.3.1  Application of O.L.S. to the Entire Sample

The ordinary least squares formulation is:

H =1 I
! !
3= E X, X; E X, V.

i=i

=
To find 1ts expectation we require E [ v;]. Using [ormulas from appendix 7.1,
we obtain:

E [}'IJ'] =k [(le + #;) :’-x.b—l—u_.] :

b b
E[y] = x;bd (x;—> + S (X’ )
) R

Clearly E[3] is a nonlinear function of b and hence cannot be equal to b; thus
{3 15 blased. This bias can be either positive or negative as demonstrated by the
following example.

Given a model with a single explanatory variable (K = 1) we have:

o Z;E_w AP ¥

or:

It all the valucs of x;, and the true value of 4, are positive, we see that:
AL I
;ﬁ:_l xE (¥ - S xih

no 0 = i 2
D i X Zi:l A

Since E (v;) > x; b, ¥i, b is overestimated. Conversely, if all values of x; are
negative & 1s underestimated,

= b.

E(f) =

7.3.2  Application of O.L.58. 10 the Complete Observations

The ordinary least squares formulation is:
|

B=13 xx > xy

iy, =0 R

and its distribution is determined conditional on the fact that y; is strictly positive
for the retained observations:

—1

E(3) = Z X;X; Z XE (vl ye = 0.

iyl i w0
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Now it remains to calculate E (v;| y; = 0). The conditional distribution of
v;, given that ¥, = 0 is conlinuous over the posttive real numbers, yields the
density function:

I /y —xbY I
¥ 5 o (XPY

R

The mcan is derived in appendix 7.1:

X,ib
w _ =
E{yly =0 =xb+s —( xj,-b) :
® (47)
Again we find that the ordinary least-squares estimator is biased. and that the
bias may be negative or positive,

7.4 The Likelihood Function of the Simple Tobit Model
74.1  The Likelihood Function

Denote jp (4;) the set of indices (§) for which v = 0 (¥, > (). These sets
contain sy and #| elements respectively.

Since the variables y; are independent. the likelihood L is obtained by finding
the product of the marginal distributions of the observations:

T ()1 (5]

fe gn FE
_X:'h 1 1 vV, — X,‘h ) ?
= Y exp | —= | ¥/ .
H' ( Ay )H{Sqf’Zn P [ 2 ( ¥
The log-likelihoed is easily derived:

Iy e
h

X; ni 3 1 . 5
log(L) =) & (_T) — S log (275%) — 55 D (v —xib)’.

= iy

7.4.2  Derivatives of the Log-fikelihood

In order to simplify notation we adopt the following convention:
(=)

P :
s
] X b

Wi = —¢@ .
5 5
] (—mh)
¥ :
s 5

PD;
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The first derivatives with respect to b and s¢ arc:

dlog (L) @, 1 : '
8..';.-__ = — Z axj + E E (J’: — X h} X,
I T
, 3)
§ log (L) 1 wi Ry ] Z 2 v
7353 = 2;2 K;‘ba - ? —+ ? {.}’:' — x;b)".
fm Ju

The second-order partial derivatives are given by:

8% log (L) @ D, , ] )
_— = — Z ;151 ((ﬁ': — 5_2x£h) XX — E ZX;-XJ:.
St

dbdb’

#2 log (1) ] o [ D
Tastay = 3?2 o |52 (M- @ — b x,
iy ! ’
1 .
_3_42{}’ X;h:}}(“
A
3% log (L 1 o [ @, |
c;(”) 4t i’ [ > (b)Y’ —3bixb — g, {xfhf]
9 (T ) 4s S d)‘ 87

L] 1 . 2
+ 254 - "—ﬁ JZI(}-,' — K;'b) .

743 An Interesting Change of Parvameters

In the probit aspect of the Tobit model we can only identify ]T‘ so this is what
we solve for. Letting:

b 1
c= - and h= —,
A 5

the log-likelihood 1s written:

log (L) = ) " log[® (—x;¢)] + 1 log (h)
g

1 ] _
— E] log (2i) — 3 E (hy; — x,€)°.
Sl

Proposition 20: The log-likelihood s concave in e and 4.

Proof: We know that the function log (L) 1s concave, because:

dilog[® ()] @)

oyl @2 ()

[x& (x) + @ (x)],
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is always negative. This result follows from the interpretation of x® (x)+¢ (x)
as the primitive of ®. which 1s positive;

xP(xy+wx)= / & (1) e

So we see that the log-likelihood 1s the sum of concave functions, and is hence
also concave, ||

This translation of the parameters allows us to find much simpler expressions
for the derivatives of the log-likelihood tunction.
For example. we have:

T DT L ED ML LS

¢ ¢'(_ i }
7 1 L
% _ M Z(hh —X;C) Vi,
and:
32 log (L) Z @ (—x¢) X @ (—x;¢) e — x.
dedc’ & (—x,c) P (—x;¢) * e

2
i ng (L) Z X,

dhde’

3% log (L) ) 5

. = —— — V.
#h? h? i

A

7.5 The Maximum-Likelihood Method
7.5.1  Properties of the Maximum-Likelthood Method

This method yields values of the parameters which maximize the likelihood
function or, equivalently, the log of the likelihoed function. Denoting £ and 5
Lthe estimators for ¢ and # respectively, proposition 20 reveals that the solution
to the likelihood equations:

dlog (L)
T A
dlog (L}
T ah
is unique if it exists. and ¢ and » are equal to the maximum-likelihood estimators
of ¢ and h.
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Consequently, the maximum-likelihood estimators b and s> uniquely solve:

_ dlog(L)
= b
dlog (1.)
= Ty
and they satisty:
ﬁ:E and r,::--l.
a o

As aresult, we sce that the estimation can proceed using the first-order condi-
tions from differentiation with respect to b and 52, or, more simply, with respect
to ¢ and . Regardless which method is chosen, the first-order conditions cannot
be solved analyiically — we require numerical methods Lo find the estimators,

1t can be shown that. under classical assumptions. an asymptotic solution
to the likelihood equation always exists, and this estimator has the following
characteristics:

~ — @as B — o, where:

= (2) o (5).
=(2)=(3)

321oa (LYY
~~+ N |8 E _ ¥ log(h)
dgog’

It remains to specify the expression tor the information matrices,

and

7.5.1.1 Using the parameters b and s-

We have:
C —-H% I{?g (L)
ghaby’

D; L+ ;]
_53[“"* ( - 1x,-b)+—-»,—t] X;X;.
X< 5

i
—§:{a2¢[hc,m —on] + % b
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E —a%log EL)
(as?)"

- 1 i !:Da' 5
= Z { T 1A D, {? (x;h)” ~ 30;x;b — ¢ (th}']

i—1

1 — &,
254

|
+ 36 [5‘2 (1 — &) — -‘s'be{Pf] }

7512 Using the parameters ¢ and h

We have:
E %ﬁfh_ = g—% {x;e{l — i) + ;) x;,
E % =ZI£ [2(1 — @) + (x;0)? (1 — @) + x,00],

where ¢, = & (—x;¢) and ¢, = ¢ (—X;¢). as on page 177.

7.5.2 Algorithms

Solutions to the likelihood equations are obtained by iteration. In addition to
the standard Newton-Raphson and Berndt-Hall-Hall-Hausman methods, we
shall describe an algorithm which is more particularly suited to the Tobit
model.

7.5.2.1 The Newton-Ralphson Algorithm
We begin with an arbitrary value tor «y and calculate the subsequent
values using the following iteration formula:

9% log [L (g)] }‘] 3log L (g))

————— = (7.4)
Ay 0y,

’Tn’rl%ﬂfn_{ a"}’,,

This algorithm is increasing, as can be seen from proposition 20, so the series
¥, converges to the maximum-likelihood estimator ~y.
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7.5.2.2 The Berndt-Hall-Hall-Hausman Algorithm
The iterative formula is similar to equation (7.4);

—t
LAl L; a1l L; #log[L
,TH]%%JF{Z{& oglL: (g)] log| (g)]} gL @1

Yo dy, Y

i=1

where £.; 1s the density function for the 7 -th observation.

This method has the advantage that it only requires first-order partial deriva-
tives. As in the previous case, this algorithm is increasing and henee consistent
for the Tobit model.

7.5.2.3 The Fuir Algorithm
We can also construct an iterative procedure directly from the likeli-
hood equations:

B dlog {L)

de
U_E)l-::-g{L)
B8R

Expressed as functions of b and 32, these can be written:

(o) S () ]

il

1
st=— 3 (i = xibly,
1

A

ors
b= Ay (b,s?).
s° = Az (b),

where A, and A» arc known functions. The iterations are performed in the
following manner. If 3, and o2 are the values obtained at the n-th itcration. Lhe
subsequent iteration yields:

JSH:-.—] = Al (.Bn: gnz)s and
Thr1 = AE (Jgn—l-l)-

This algorithm will not necessarily converge, but when it does the result is
the solution to the maximum-likelihood equations.

7.5.3  Finding the Initial Values

Application of the preceding algorthms nccessitates selection of an initial value
~p. The closer this is to the truc value g, the faster convergence will occur.
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Generally, v, is obtained using a method which is easier to apply. but less
precise, than the maximume-likelihoed procedure.
In the case of the Tobit model, one of the following methods may be used:
(1) Apply o.Ls. to the set of all observations. The initial bias in ~yy will disappcar
when the iterative procedures are applied.
(1) Apply o.ls. 1o the censored observations.

Other methods can be used, but they will not significantly simplify the prob-
lem except in the case of repeated observations. For example:

(1) Consider the dichotomous probit model associated with the Tobit model
and apply a Berkson-tvpe procedure. Unfortunately, this will only yield
an estimate of ?

(i1) Apply a two-stage method for each of the quantitative and qualitative parts
of the model (ct. section 7.6),
(i) Apply a moments-based method (cf. section 7.7).

7.6 Two-Stage Estimation
7.6.1  The Merhiod

The Two-stage method essentially consists of successively estimating [irst the
qualitaiive. and then the quantitative aspects of the model.

7.0.1. 1 First Step
The qualitative aspect of the model consists of the probit model with:

b
Pr{z,, =1} =Priy >0 =& (x,— —) = &b (x,¢).
_ P
¢ can be estimated using one of the methods from chapter 2 (maximum likeli-
hood, Berkson method, etc.) Let us denote the estimator derived at this stage C.
It is important to recognize that this first step 1s simpler than direct maximum-
likelihood estimation of the Tobit model in the case of repeated data.

7.0.1.2 Second Step
The quantitative part of the model corresponds to values of v for
which { € j,. For these observations we can write:

¥i =E(¥|i € pn)+ v

where v; has mean zero. From appendix 7.1:

xb
E(wlic ny=E(y|y = 0}=th+s£( o)

@ (%)
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Replacing this conditional expectation by its expression, we obtain:

@ {(x;C)
= X{h iy
’ M D (x;c)
Or:
@ (X;¢)
= ' I
X e R Y
where:
w, = % + Ay I:P (xfc) _ @ {XEC)

O (x;e)  P(x))

[n this formulation the quantitative parl of the model appears as a linear
function of b and 5. Since ¢ 1s a consistent estimator of ¢, the disturbance terin
w; is asymptotically centered around zero, and the o.l.s. estimators for b and s
obtained from regressing v on X and {I%i} for the observations in ;, converge
to the true values asymptotically.

Notice, however, that for finite sample sizes the ¢.].5. estimators are biased

because the error term w; is correlated with the explanatory variable ﬂ’;—%

7.60.2 Using Weighted Least Squares for the Second Step

For the second step we can improve on the estimation by accounting for the
form of the covariance matrix of the disturbance term w;. We shall present a
procedure for repeated observations, as this provides arelatively straightforward
application and simple notation.

Letd; = % J=1..... J. represent the proportion of independent experi-
ments conducted under environmental conditions x;. The observations on the
cndogenous variables are:

ij—{—u,-_}', iijb-i-u,-_; = (},

0, otherwise.

¥ijp =

For this step the linear model iy writlen:

¢ (%;¢)

AN . F=1.....J, T =1....,81;,
P (x;¢) B E Y

¥ij = th + &
for v;; = O.

The explanatory aspect depends only on the index j, so we can group the
observations corresponding to similar experiments. Let ¥ represent the av-
erage value of the complete observations (_}-’,-j = U) associated with the j-th
cxperiment, and let w* be the mean of the corresponding errors, The preceding
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model’s estimate of the parameters is equivalent to:

v (x;¢)

¥, =x;b4+s———=
J’Jr 7 q}(XfC)

+w, j=1,.... J.

Finding the variance-covariance matrix for w5, j = 1, ..., J, is somewhat
more delicate, as it depends not only on ¥4 but also on ¢ and on the correlation
between ¢ and ¥';. We simply sketch the pmc,edure here, referring the reader to
Heckman [Hec?ﬁ] for the details.

When n tends to infinity, the asymptotic variance of the disturbance term is
given by:

Bhid3

(i) = 0 | % 1

1 A s ooy —1 s A
+h10[ }X(XQ X) XD[—:|,
where D |-..] is a matrix with the elements in brackets on the diagonal and

zeros elsewhere, and where:

X,
X =
X7
Q=D [Fd} (1 _ q])],
Bep?
v, = (x;¢),
®; = ¢ (x;¢),

A= x;0® (x;¢) + ¢ (x;¢).

This asymptotic covariance matrix is a function of the parameters b and
s, which are themselves functions of ¢ and 4. To simplify notation we write
A = A{c, k). Before applying generalized least squares to this approximately
linear model we must replace the elements of A with their consistent estimators.
The resulting matrix is denoted A.

The two-stage estimator now has the form:

: 1 PR
(f) = [(X9) AX. )] | (X AT
e(x;¢)

(x,C)°
matrix for this estimator is defined by the usual expression:

varg,, [ [ 2 )] =[xy A=ty
- (2)

a

where ¥ 1s a column vector with elements The asvmptotic covariance
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7.7 The Method of Asymptotic Least Squares
7.7.1  The Gourieroux-Monforr-Trognon { 1985] Method

The method of moments provides another useful approach for the case of rc-
peated observations. The “zero-"" and first-order moments of y;; are:

x;b
vy -0 (22)
— ib(xjc),
b h

X;c 1
= ?fb (x;¢) + ¢ (x;e}.

These moments can be approximated by the corresponding empirical tre-
quencics:

¥,

i
|

¥;

Thus, when g is sufliciently large, we have:
T = O (x_,-l:),
R 1
¥ X;'E‘I' (xje) + P (x;¢),
oT!
@' (7;) ~ x;¢,
hTI A2 TR GC 4 @ [d)_l (Tj)].
Finally, we obtain a model which is linear in the parameters ¢ and #:
fb_l (I'j) = X;¢C -+ L'JE,
1 — 2 {7.5)
@7 {t)] = —uxe+ Ay, +v;.

Once we have found the asymptotic covariance matrix of (t'} v:f). j =
l...., J. whichis easily derived from thc corresponding matrix for (t;, ¥), j =
I,..., .. weighted least squares can be applied to equation (7.5). This will yield
consistent estimators of ¢ and /, and, by extension, of b and 5, since ¢ = % and
h=1

¥
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7711 The Asvmptotic Covariance Matrix of the Errvor Term
The disturbance terms (v}. 1.=_?). J=1...., J.are asymplotically cor-
related. We have:
P (l-B;) (1—2 A,
it StV ] A=A

|
1 l 3 ; )
vary, |~al S ¥i . . (7.6}
: oy i A i

7.7.2 The Estimator

Using A to denote the right hand side of equation (7.6), wc replace the param-
eters with therr consistent estimators and let A ; be the resulting matrix. The
asymptotic least squarcs estimators for ¢ and # are given by:

! o
G) =\ 2 @ATe ) 2 QAT A (7.7)
j= -

whoere:

and:

e (0 ).
¢ P (7)) ]

The asymptotic covariance matrix for expression (7.7} is given by:
- 1

[V (§)] =[Sy a, e

i=l

-

where:

0® = lim O, * 0
1IT1 = .
I s T ~®;x; Efyy)

Expanding this expression, we obtain:

v [ ($)]

X;D{mmfl ¢y+z¢ ’“"“"}X ' (—@)e
I

: . : i’
e (_TX) ffD[W—isﬂ]E

where e is a vector consisting entirely of ones.
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7.7.3  Comparison with Other Methods of Estimation

Proposition 21:
(i} The asymptotic least squares estimator is uniformly betier than the two-
stage estimator.
(i1) The asymptotic least squarcs estimator permits efficient estimation of a
hyperplane of the parameters.

For a detailed proof, see [GMTE5].

Obviously, these comparisons are based on the asymptotic properties of the
methods, and we may wonder whether the results hold when the number of
repetitions tor each group is small. Simulations have shown that, in this case,
the maximum-likelihood and asymptotic least-squares methods yield similar
results, On the other hand, Heckman’s method appears to be significantly less
precise, particularly for estimation of the standard error. 5.

7.8 The Generalized Tohit Model
7.8.1  Expenditure on Durable Goods

In the model of expenditures on durable goods described n section 7.1.2, the
consumer simultaneously decided whether or not to purchase a certain good and
how much to spend on it. Alternatively, we could assume that these decisions
are taken sequentially.

First, the individual chooses whether or not to purchase the good. This de-
cision can be described by a dichotomous qualitative choice model based on
some criteria vy, :

vy = 0, individual { buys the good,
vi:. < 0, e does not.
Subsequently he determines how much he will spend. y{.. The observed vari-
able, v, is:
¥, ifyy =0,

- (7.8
i (). otherwise. )

This formulation generalizes the simplc Tobit medel (in which ¥, = ).
In particular, it allows us to analysc the degree of correlation between the two
decisions.

7.8.2 Observarions on Salaries

Let us examine a model of labour force participation and salary determination.
An individual seeking work must deternmine which jobs to accept and which
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ones to reject. Let s}, represent the salary offered. and 53, the salary expected
(the reservation wage). She will accept the job if 57, = s3;. in which casc her
salary will be y; = s7,. It she rejects the Job offer, s{;, < 53;, her salary will be
¥i = 0.

L ek e
Sipe 108 = 550

(), otherwisc.

Giiven this formulation, we have a simple Tobit model with an unknown
threshold sJ;. [f we set ¥, = s}; and ¥3; = 5|, — s3;, we can rewrite this model
in the form of equation (7.8).

Offered and expected wages are functions of the individual’s characteristics,
In the case of a married woman, for example, 57 may depend upon her level of
education, age, etc., while 53 reflects the premium she places on staying home,
the number of children at home, her husband’s income, her age and level of
education as well as other factors,

W
55, = Xo:by 4 uoy,

where x; and x- may share some clements.

7.8.3 Non-Response

Frequently individuals will refuse or neglect to answer some questions on a
questionnaire. Assumne that we wish to find the mean m, of some characteristic
¥;- Some people will not give this information, y; = m,; + ;. and this
propensity to conceal the facts is a function of certain traits x»>. An answer will
be provided if ¥3;, = x5;b2 -+ #y; is positive, otherwise not.

The survey results will hence be:

¥, My =0,
Yi = .
non-response,  otherwise.

In this example we clearly see an endogenous variable which is both quali-
tative and quantitative. From here on we shall denote “non-response” as zero
for compatibility with previous models.

Let us muke the further assumption that the error terms, w; and ;. are
mdependently and 1dentically normally distributed:

.
, 0 57 ry| s
{# ) ~ N

" 1
0 FA Sy 55

We can calculate the rate of non-response, 7. for individuals with characteristics
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U
v

Fig. 7.2, Survey non-response when v < (.

¥ and x3:
= Pr(3% < 0|3 =y},

g | T m) A xeb
N Saa/ 1 — #=

For a set of individuals with the same characteristics Xa . this rate is an increasing
(decreasing) function of ¥ when r < 0 (r = ). Rates of non-responsc for
income-related questions which increase with income are captured well by this
type of model.

Ordinary least squares estimation of #; on the complete observations. which
implies using the approximation:

E}'{#U i
My = ———
Hy

leads us to undercstimate the true value of the mean when r = Q.

7.8.4  Selectivity Bias

In the preceding section we described a situation in which respondents do not
answer one question while answering the others, In this case we know the vector
of characteristics xo. Frequently we only have information on individuals who
have filled out the questionnaire. Our obscrvations are thus limited to those for
whom y; = ¥f,.

Many examples of this phenomenon can be found: we have data on for-
eign workers only if they decided to emigrate, salarics only for individuals
who are working, grades obtained by students who choosc to take an exam,
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characteristics of job seekers registered with a government agency, responses
to voluntary guestionnaires only from people who agree to participate, etc,

Given that we have complete information on cach observed individual, it
1% lempting to use o.l.s. to analyse the data. However, we have already scen
that in some situations this procedure can lead to biased estimators. All of the
examples we have listed conceal a selection process in the generation of the
observed values — this is known as self-selectivitv, while the resulting bias is
known as the sefectivity bias. Consider the model:

¥ ity =0,

= 0. otherwise,
where;

i = Xy +wyg,

¥3; = Xo;bo + uy,
and;

4
. 0 57 PSS iyl
{#1;. u2n) ~ N ol 3
285152 &3

The ordinary least squares estimator of b 1s unbiased if:

@ (Ksz:)
E(w v 20 =x:b © ro—"7 20 o r=0
&$ (xszz)
&2

As soon as the selection process incorporates any dependency on ¥, a bias
15 introduced which increases with |#|. This bias appears because some ex-
planatory variables included in X; have been omitted. In this sense, what we are
dealing with can be considered a specification error.

While demonstrating the existence of this bias is quite straightforward from a
mathematical perspective. its interpretation is less so. An example which helps
to clarify this is given by a model of an individual’s career profile, showing the
evolution of salary, v, as a function of age, age.

Let this profile be for women and assume that it 15 represented by an approx-
imately linear formulation:

s=a-age+ b+ u.

If all women between the ages of sixteen and sixty yvears decided to work the
observations would look as in figure 7.3,

In fact, women’s labour force participation rates are highly dependent on age.
In general, these rates are lower for women aged 1620, 2544, and 55-60. For
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Age

¥

Fig. 7.3. Profile of evolution of women’s incomes — all women working

the first group this is due to the fact that many women are still pursuing their
studies. Hence observed salaries witl, on average, be below what they would be
if all women worked. Conversely. women between twenty-five and forty-four
years of age who continue working are those whose salary 1s above average.
The points which we observe will thus look approximately as in Hgure 7.4.

Visually, we can tell that least squares estimation will not provide a satisfac-
tory fit to the data.

7.9 Estimation with the Generalized Tobit Model
7.9 The Likelihood Equation

We see that;
. Yip iy =0,
‘ (), otherwisce,
5 k&
e '.t * * s = > ¢
[} - L} [ ] -
* & @ L -
*y
»
- >
Apre
L

Fig. 7.4. Prohle of the evolulion of women's incomes — observed data
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where:
¥ =X;:by 4 uy;,

Vo = Xa;bo + 14,

, 0 512 rs s
(w1, w2i) ~ N \ R ]
0 rs| s 55

Let jn denote the set of sy indices for which y, = 0 and }, the complementary
set with 727 elements. The tikelihood is given by:

e (2N ()

Jis A

Kz;‘hﬂ F
P -+ — (% — xy;b .
X H { — [ - 5 (¥i — X 1):| }

b: and s> only appear in this equatmn as ?— s0 there exists an identification

problem — only r, 5, by, and ® ; are determthed.
As in the case of the simple Tobit model, it is useful to perform a translation
of the parameters. We have:

l

and:

h| - —.
51
b

e = —,
)
b2

= —,
¥a

vielding:

log (L) = Z log [ {—x3,€:)] + 1y log (hy)

i

+ Z log [¢ (A y; — x€)]

+Zlog¢- { i [X2:¢2 + ¥ (B y: — x:;‘f])]}-

For a given value ot r, this function is concave in A, ¢, and c.

292 The Maximum-Likelihood Method

The maximum-likelihood method is applied to this model in the usual manner
and yields nonlinear equations which must be solved using numeric algorithms.



192 Econometrics of Qualitative Variables

Notice, however, that 15 of some interest to modify the procedure in order to
account for the partial concavity of the likelihood function with respectto A, ¢,
and ¢> {(when r is fixed). We can, for example, iterate over a series of values for
r and maximize the likclihood function with respect to the other parameters at
each step. We then retain the value of r corresponding to the greatest likelihood.

7293 Two-Stage Estimation

1t is always usetul to have a simple estimation method, even if 1t 18 not efficient.
In particular, we need to be able to evaloate the quality of the adjustment
process, to sce whether or not the model needs to be modified. Furthermore,
simple models may provide starting values for the iterative algorithms ol more
complex ones. For example, the following procedure can be applied:

(1) Identify the model given ubove with the probit model, yielding:
Pr{zy, =1) =Pr{y} = 0),

— ¢ (Xz'b‘)
X

where:
- 0, ifyy <0,
T 1, otherwise.
This provides us with an estimator for ¢» = ';‘— which we call (5.

(i) Having looked at the qualitative part of the model. we will now turn our
attention to its quantitative aspect, corresponding to the indices 7 € ji:

o ()
(I-} (x-n.—h») )
i

E{yli e n)=xb +rs

Let:

ALY
Vi = $ (x;(2)

We limit our sample to the elements in j; and regress v, on X; and ifff
obtaining estimators for by and rs, which are asymptotically unbiased
but not efficient. In fact, the errors corresponding to this method are het-
eroscedastic, since:

var (yi |t € ji)
3 2 @ (X2/C2) @ (xzi¢2) ]°
— J J— I{: J . J—
s+ (o) EEAGE: (X2:C2) LF' (Xz:€2)
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(iii) It remains o cstimate £,. For that we consider the residual. #);, from the
preceding regression:
e = ¥ — X3 — pory.
Since:
slz = var{y,|{i € 1)

2
@ (X3;¢ g (X7;C3
_i_ (."i'l?':.z Kza'ﬂzg |i(—:|]

D (X200} P (X2;C2)

it follows that:

e (rog)” A
7= = E .U‘i- —+ il E (Xzsf-;ﬂfﬁ + ‘,"5“,-2)-
A

Iy Fi
J !

Under the usual assumptions this procedure yields consistent and asymptoti-
cally normal estimatoers, The variance-covariance matrix, which is not equal to
the inverse of the Fisher information matrix, was estimated by Heckman.

7.10 Robustness of the Estimation Methods

(One of the advantages of ordinary least squares as applied to the lincar modcl
is that it can be meaningfully used even in situations when the standard as-
sumptions do not hold. This technique will yield good estimators even when,
for example, the model is heteroscedastic, the disturbance terms are correlated,
the endogenous variable 1s measurcd with error, an explanatory variable which
is orthogonal te the included variables has been omitted, etc, Because of this
feature we describe the 0.1.5. modei as robust.

Since the Tobit model derives directly from a lincar modcel, it is reasonable
ta examine the estimation methods which we have introduced to sce if they are
characterized by the same robustness. As the estimators of this model cannot
be expressed analytically, we shall look at this issue from the perspective of
their asymptolic propertics.

7.10.1  Heteroscedasticity (Maddala-Nelson (MN75f)

Beginning with a simple example, we will show that the estimator & derived
usimng equation (7.3} 1s not consistent when the disturbance term 1is hetero-
scedastic.

Assume thal the observations are generated by the model:

¥rooit vy = 0,
{3, otherwise,
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with ¥} = mg + u;. Amaong the 2n disturbances, the variance of the first n 15 55
while the variance of the remaining # is 4s2. Furthermore, we set the unknown
true values of the parameters mg and sg equal to zero and one respectively. If
we ignore the heteroscedasticity and estimate the paramcters s and s vsing
maximum-likelihood methods, we must maximize:

1 1 <& —m
= log(L,) = - Z {log [(I?' (—;—):‘ T — log (Js v 23'1‘) Ly

i=]

L E e ()]

f=r+1

1
— log (S‘\a"ZH) W T g2 (y; —m)? (] — z;-;) }

Asymptotically, the maximum-likelihood cstimators converge towards the
values of m and s which maximize:

1
foe = lim —log(L,).

N—r 3 B

Applying the law of large numbers and defining a random £ which is dis-
tributed N ((}, 1), we have:

. =E {Iug [d) (—_m)] 7. — log [suf 2:'1'} Te

5

1 5
~ga (e =M (- z;}}
+ E {lng [d:l (_—Sm) T2e — lOg (.5‘@2:&') Tk

__1.'_1; (28 — m)z 32£j| } H]

2
2

S/_.
— 3 5
~log m(_m)}_mg(srzn)_ﬂ-..+ m__ 5
Ay

257 2.2 257

where:

_Jo0, ife =0,
11, otherwise.
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Differentiating with respect to m and s and setting the derivative equal to
£ero. we obtain:

oo dte o 190F) w3
I 5 D (_T*" ¥4 532w
oo e _  melSE) 1 m  6m S

L — :
ds sPe (Y s s B2 83

It the estimator for m converges to mg = (). then these two equations should
have a common root:

B 1 @ (N 3
TS0 22w
| 5
= —y + §3
implying:
0= —2s 4+ 3,
0= —s” +5.

which 15, of course. Impossible. Since we have armnived at a contradiction, we
see that the maximum-likelihcod estimator calculated under the assumption of
homoscedasticity is not consistent.

To understand this, consider that. unlike in the linear case, we cannot estimate
m independently of 2, The error we made in our assumptions on the form of
5% spills over into our estimation of m,

7 A40.2  Errors in the Endogenous Variables

A similar experiment can be performed using a different modification of the
Tobit model.,

For example, let the quantitative part of the endogenous variable be measured
with an crror, v, such that:

E(ny =10
var {v) = 5.

We have:

Lo P R

i+ ity =0,

{, otherwise,

where v/ = x;b+u, . E(u,) =0, var(u,) = 5% and where the variables #; and
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v; are independent and normally distributed. When the mcasurcment error, v,
is normal, this model can be interpreted as a generalized Tobit model with the
deterministic parts of ¥}, and ¥3; identical.

Application of the maximum-likelihcod method in this situaton will yield
inconsistent cstimators of s and 5°. Stapleton and Young {SY&1] demonstrate
and that. asymptotically, this technique leads to overestimation of the variance,
and they use Monte Carlo trials to examine i{s impact on 1.

7.1F Generalized Residuals and Tests
7111 Mrerpretation of the Vector of Scores

Consider alinear Gaussian model with independent observations v, i = 1,
n. which are distributed N (x;b, 5} . The log-likelihood associated with the -th
ohservation i1s:

= |
g | (37 b.5%)] = =3 log (+7) — 3 log @) -

252 (37 — x,-h)z_

The vector of scores is:

olog [f (3} b.s?)]

I
I,
= Xl
d log [f (y,-*;b,.sz}] _ 1 |
ds? T 257 - ?&“"H“
1 3
= 2—52 (H? — S“).

These are relatively simple functions of the errors. #;, and we shall demon-
strate that these expressions have analogues in the Tobit model. In order to keep
the computations simple. we restrict our analysis to the case of the simple Tobit
maxdel.

Propesition 22: Consider the simple Tobit model defined by: yv; =
¥'zy-. with the y'-s independent and disiributed N (x;b. 5°}. The vector of
SCores 18 given by:

a log (L) 1 & , X
T:S_szih{uir}JjJ’

i=I1

3 log (L) 1 =, o z
T as? | 242 Z £ (uf| i) — 5]

f==1
with #, = ¥ — x;h.
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All we need to do is replace the latent errors in the scores of the linear model
with their estimates given the endogenous variables y;.

Proof: Let us verify this for i‘;’% by way of illustration. We know
that:

J'h)
D

I_'L)‘ + T, {vi — X;h)}

|

dlog (L) 1 <~
T:EZ":{“‘%

1
———
|
.y
b=
T
- |;.g

where;

0, ify <0,
1. otherwise.

As to the estimated latent variable, if v, = 0, wc have:

E (1] vy = E (37 — xib| v).

:
= v’ —x;h,
= ¥ — Xb,
and, it v, < O:
E(u;]l v) = E(» —x;b| ¥ <0},
= E (u;|u;, < —x;b},
 se (%)
& (x;h) '

So the predicted form of the error is:

b
E{uﬂ" }"é) - (1 - Z_};J ]:_%} + Ly (v — th),

5

which is what we were looking for. Calculation of the score with respect to 2
proceeds analogously. [

Notice that the predicted crror is a function of y; and x; as well as of the
parameters b and s

E(as|y) =& (v %2 b, 57 ),
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Int the usual case of the linear model. we have:
E (u;| ¥i)=E (HE [ }1;'*):
= ¥ — X:b,

and the error can be approximated by substituting & for b. Generalization of
this procedure to the Tobit model leads to the following definition.

Definition 5:
(i) We call first-order generalized residuals the approximations to the predicted
latent variables given by:

=0, (v x. B.a%),
= E (Hf-f J‘)E')rhzlﬂ,,\'zz::ng b

{i1) We call second-order generalized residuals the quantities:

ﬁ:z} =E {uﬂ yi‘)b:ﬁ,.\'zzﬁz .

The first-order generalized residuals have the same asymptotic properties as
the predicted errors E (#;] y:). In other words, they are asymptotically centred,
since: E[E (u; | ¥ ] = E{u;) = 0.

Furthermore, these residuals are generally heteroscedastic: var [E (u;| ;)] is
not constant. This vanance s, incidentally, always less that var (u; ). The first-
order gencralized residuals can be plotted on a “residuals graph™ (cf. Chesher-
Insh [CI8&7]) as in figure 7.5. We see that this graph has two distnct parts,
representing the qualitative and the quantitative aspects of the Tobit model
respectively.

o, 4
' .
2 | L. .
L 3 . & »
1 - -
a . . -
L J
-4 [
" B - » - X
o & B [ ] '
o »
-1 ‘v
.
a &
" B
k J

Fig. 7.5. Residuals Graph
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A 1E2  Imterpretation of the Likelthood Eqgquations

The likelihood equations can easily be rewritten in terms of the generalized
residuals, vielding:
#H

0= X H;,

H
1 ~ (2]
'] :—E TR
n

i—=1

=]

where #; and a?} are functions of 3, .

The first expression captures the orthogonality between the explanatory vari-
ables and the generalized residuals. It can be interpreted as a system ol normal
equations. The second shows that the estimator ot the variance is the sum of
squares of the predicted errors to within a factor of %:

n

l b
Jz:_}é E ZHE|_}“].----FH

i= 1 b:lﬂ,.\'z =1'}'2

In particular, the maximum-likelihood esdmator of 57 is always positive in the
Tobit model.

7113 Maximum-Score Test for Omitted Variables

Maximum-score tests of assumptions about the parameters of a Tobit mode! are
bascd on the estimated score, and so are easity written interms of the generalized
residuals. Consider the test for omitted variables. The generai hypothesis is;

P L+
_}(!l — }I 3_1,-_'1

where ¥* ~ N (x1b) + X;2b2.5%),i = L, ..., n, and the null hypothesis Hy
imvolves setting b; = 0,
To derive the score test statistic we begin with:
dlog (L) [ . 2 1 < .
- 1 _.0, (}'r ] = —F Klrﬂﬁt-.
ibs ¥ rBl ( ) J{% ; 2T

where 3 and (%) arc the constrained maximum-likelihood estimators and 7
the generalized residuals corresponding Lo the constrained model.
The torm of the statstic can be derived directly trom this equation, yvielding:

i "
E - 22 E : Py
EM’L = X,'QI{; I Xjﬁ“:' .

=1 J'=]
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22
i~ = E xqu,g E XEX”(H

i=1 i=l1

n 5 - n
Zx;lx” (&) Zx:]x;g (i

i=l i=1

—1

To perform the test we:

7.1

7.2

7.4

7.5

7.6

7.7

accept  Hy : (by = 0) it Eyrr < yggs, (dim b)),
reject  Hp: (b = 0) it Eyrp > Xgeq, (dim bo).

Exercises

Examine the model with two thresholds delined hy:

0, ify* <0,
_‘_r‘. — _"|,.-‘f1 ifU 5 _V:‘ = IG'
10, if 10 =y,

where v = x,b + u;.
Given a latent variable ¥v° = x;b + i7,, consider the following three models:

(a) We observe all the values of ¥,

(b} We observe y* if ¥ = (1. otherwise we observe zcro,

(c) We simply observe whether ¥ 15 positive or negative.
Assume that the-disturbance terms are independent and share the same distribution
N (U, .93) . Write the likelihood functions for these three models and find their
Fisher information matrices. Compare and contrast them.
Consider the model in equation (7.2). Suppose that the disturbance terms are
independent and that the distnbution of = is logistic. Writc the likelihood function
for this model. Show that lhese equatiuhs have, at most, onc solution, and that it
is the global maximum of the likelihood.
The Truncated Model
Write the likelihood equation for a situation in which we only have observations
on y for the complete observations. [s this likelihood concave in - . L and “"
It has been proposed that the consumption ol tationed grocerics be modcllcd
with a truncated log-normal formulation? What justifications can you find for
this specitication?
For the simple Tobit modcl, explain how we can create adjusted values lor y;,
denoted ¥, and use the distance between ¥, and y; to evaluate the *“‘quality” ol the
model.
Find a formula approximating the estimator tfor st in the simple Tobit model where
#¥ = m + 4, and the error terms are independent and distributed N (0, 1) .
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7.8 Consider the model:
¥r=ax, + b+ e

viooif yr =0,
Y = .
’ 0. othcrwise.

Assume that the pair (x,, €,) arc independent and distributed:

|5) G

Apply ordinary least squares to a regression of y on x and 1. The cstimator for a
is:

_ dovix, )
= —————
VAM [Y)

verify that @ tends towards aE ( v*] ¥* = 0). Use this inlormation to denive 4 con-
sistent cstimator for a.

7.9 The Friction Model
Economic phenomena are often characterized by inertia. To llustrate, if the change
in the return 1o a certain financial asset. Ar, is very small, changes 1n holdings of
that asset For any given agent, A A, are quite likely to be nil. This may be due, for
example, to transactions costs. The relationship between A4, and Ar can thus be
graphed as in figure 7.6:
The following model has been proposed to describe this situation:

vy =+ xb 4wy,

Vi = by +xh +u;

Aad

hi

Fig. 7.6. Changes in holdings of financial assets
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7.10

7.11

7.12

7.13

7.14

7.15
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with & = b,. The observed endogenous variable is defined:

Vi iy <0,

v =4 0 ify;, =0 and ¥y} =0,

¥y, ify =0
Discuss this model in the context of the financial assets problem, paying particular
atlention to the implied assumptions as they relate to the thresholds Ary and Ars;.
What significance can we atlach 1o the fact that the equations for ¥, and ¥}, contain
the same error term #,? why not use two ditferent ones?
The Friction Medel (continued)
Assumge that the disturbances, «;, are independent and share the same distribution
N {0. .92), Write the distributions of the observations yv;. 7 = ). ..., n, and derive
the likelihood cquations. Can vou propose a two-stage method 1o estimate the
paramelers?
The Friction Model {cnd)

In order to allow the two thresholds to vary independently the mode! in exercise 7.9
has becn modified to:

Mio b,

D Wy = and b o< owy,

ot

‘I;J ' it .VE: =Wy,

where v = 30 4wy, and vy = xo 80 o+ i What kind of joint distribution must
we postulate for (u,, u ) if this model is to make sense’ Sugpest one, Does this
mode! seem usctul to you?

Assmme that the qualitative part of the endogenous variable is determined by the
tollowing twa critenia;

-

Vio= X403 4 Ho;,

ol

Yho= Xiby +oag

The observed endogenous variable is:
e ¥ =0 and vy O
= { (4, otherwise,

Study this model.

Consider the Tobit model defined in section 8.2.1, Verity that the cstimator for
by obtlained by regressing v, f = 1. .. .4 on xy; is not consislent. Would it be if
cov (. i3 = 07

Consider again the Tobit model defined in section 8.2.1. Calculate E (.}-;‘].% .v,-) aned
use this information o gencrate a prediction fur the valucs assumed by the falent
viriable yI.

How would we have to modify the likelthood if we observed ¥ and y3 7



Appendix 7.1 Moments of the Truncated
Normal Distribution

We have:

yrooaf y* = )
V= .
i {3, otherwise,

- 7
where v“~» N {m, a°).
This condition can be written;

vi=m+ oe.

with & ~ N (0, 1)}.

{i) Priyv = 0} =Pr{y* = 0),
=Prim+ocr = 0),

T —
=t-e(-7)
=2 ()

Priyv =0)=® (——),

(ii) E(y) = E{¥"z,.0),

= E [(m + TE) :J?‘J-'-G:‘.'Z-'-”‘J!

Fi
=md (—) + oE (E:zﬁ_}_g),
ﬁ 1}

=md (m) + 7 /ﬁ- xp(x)dx,

)
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m
=m® (E + oy (——)1
o o

o () oo (%)

a

where:

s
L

0, e <},
11, otherwise,

and « represents some term or function,

(i)  B[(y —m)zysa] = E (¥2y-0) —mPriy > 0),

[‘-’) E (}:-2) = E (.}?*z_}-"b-ﬂ)?

=E [("'n + JE)E Zfrf+c}’.£‘:3-{-’] *

=m’® (E) + 2mag (E) + o?E{e*zn_n).
o ;

o
Now:
E (szzib_i) = / x2plx)dx,
= — xg (0|7 + / @ (x)dx,
" m m
= -Zo (D)o (7))
Thus:

2y — i (7 m 2 (7
E(y)=m CD(U) —I—mcrrp(n) + o CD(U).
(v1} E [(}‘ —my zJ.-_H_,D] =E (}-‘2) —2mE {¥) + m- Pr (y = 0),

» m m
=g P (—) — mag (—)
e} ‘el
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(vil)  var(y) =B (y’) —[E(»]°.
2

= (2) tman (2) %0 () - mia (7)

- HL Mt 3?2 T
e (2)0 () ot (2).
F el J

(Vi) var(y|y > 0) =B (y}|y > 0) — [E{y*|y > D)JZ




Appendix 7.2 Moments of the Truncated
Normal Bivariate
Distribution

et

Lo

7 N ny c:rl2 pcrlqo-g .
¥y 2 PFT a5

We wish to calculate the conditional momenis:
E (»H ¥ =0) and wvar (}Tl ¥; = 0).

To do this it is of somce interest to decompose ) to isolate the conditional
expectation of ¥y given y37.

E{y

We have:
i =By ¥) + v,

y;’f) = 1 —I—,{J— (}-* —ma)

]
=m; +p— (¥ —m>) + v,
o2

where v 15 snme variable independent of ¥, with mean zero and variance:
2
var{v} = o, (1 — )

M B3] > 0) = B mi4p (v - ma) |5 = 0],
2 E

+E(u,rv:::nj.

= E | mt, —{—p—(h—-mg) ya = 0},

*
2 — F¥ > Frae]
J— },. [ — .
T g}

— M

=m| + prE (
¢ (%)

::-fS

=m1+PCﬁ

a3

)
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¥o > U}.

¥3 > U}
¥, = U}

from appendix 7.1.

(i) E{(1)°] % > 0]

] 2
=E{ m +P— (¥3 —mz)—l-bl}

- 2
=E{ ML —|—,0— (}’;—FH;)]

—|—2E{ !ml + p— (}2 — ma):l v
vy

+E (v7] ¥7 >
2
= { |:m1 +,{)J—I (_}-‘; —m:) + U‘[] }2* s U} +b(bf)
2
'*— — o *
=m[+2pm1mE{ gg-’?’iz '}ng }%}-}-E(uf}
2 2 2
Mz nes
o e(B) ] me(®)
=my +2pm o ———— + poj | ———— + 1
2(2) 7 o (%)
+oit (1 - p%)
My nty
=m) + 2pmr o + ooy | — —+ oy

{111) var (uﬂ ¥y = 0)

!| v = 0] - [E(i] 55 > 0)).

mels) [e(s)
weo(z) |e(%)

_ 2 RIS
=o t+ap —

from (i} and {ii}.



8 Models of Market Disequilibrium

8.1 Observations on the Quantity Exchanged
8.1.1 The Model

In classical microcconomic analysis we assume that a good’s market price
and thc quantity exchanged are determined as its price adjosts until supply
and demand are equal. This equilibrium model is based on the supply, §, and
demand, D, equations, which are functions of price, p :

D =g (p),
S =g (p)

and on an cquilibrium condition:
D=5

The equilibrium price, p©, solves:
g (py =g (p).

This sclution is unique if both g! and g2 are continuous, with the former strictly
decreasing and the latter strictly increasing. The cquilibrium amount exchanged
Is given by:

Qe —_ gl (pi’) —_ gE (PP)-
Under these assumptions any observation {9, %) is a point both on the de-
mund. and on the supply, curves.

When prices are rigid and the market clearing price Ievel cannot be attained,
rationing appears. It the price is below equilibrium, demand will exceed supply
and will not be fully satisfied. Conversely, if the price is too high, suppliers will
have stocks which they cannot sell.

In disequilibrium the amount traded on the market will be less than or equal
to min (D2, 5). In the analysis to follow we shall let ¢ = min (£, §), implying
that agents have perfect knowledge of the market.

208
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Cuantiry
Fy Supply
s=g,(p}
qe e e "

Demand
d=g,{p)

-
i . Price

Fig. 8.1. Market clearmg price amd guanlity

Quantity
&
Supply

} Eationing

e

Demand

[
-

r Price

7

Fiz. 8.2. Rationing

To complete the model we specify linear demand and supply functions, .S,
and D, yielding the amount demanded and supplied (at time £} as functions of
price, p,, and of exogenous variables, x! and x2, respectively:

Dy = ayp; +x,by + uy, (8.1)
Sy = a2pr + X?bz + iy,

wheret = 1..... T.oap < 0,a4r > Q. uyy, 4o are disturbance terms which are
uncorrelated over time and distributed:

(} .'iil Y58
N [(ﬂ) (rﬂ;.sg Ji‘% ):|

The observed variables are p,, x|, x>, and the amount exchanged:
O, = mun (D, 5). (8.2)

Notice that demand and supply are not necessarily both observed. If D, < 5.
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we see demand. otherwise — supply. Finally, our modcl 1s:
(J;, = min (f.’lpr + x,'h. + .o +xfhg —I—Hz;). t=1,....T,

which is obviously not linear in the parameters.

8.1.2  Expectations on the Quantity Exchanged

The introduction of disturbance terms reflects a degree of randomness in the
behaviour of agents. On average, demand at any point in time, ¢ is, E(D;) =
a,p, +x'b . whilesupply is E(S;) = a2 p: + xfhg. The average amount traded
is thus the minimum of two random variables with normal distributions:

E(Q;) = E[min (D, 5,}].

Since min (D, 5/} < D,, we sec immediately that E () < E (L)) and, by
symmetry, E (@) = E(S5;). This implies that:

E(Q) =min[E{(D) E{S)]

Letting r = (. we find the expression for this expectation:

h] I v

where s, = E(S5,),d, = E(D,), and s° = 5% + 53.
This expeclation can be rewritten in the (ollowing two formulations:

B’ P s — d, .
E(Q) =8 —s |- ® ("‘ --‘E) + g (T’ )] (8.3)

Al ¥

E{QY=4d, —= ff'r _51,:13 (df — -';I) t oy (d, _i):l
y

Since v € R. ¥y, we know that ¥ - @ (¥) + ¢ (¥} = 0, and conscquendly:

E'(Q.r) < d, = E (D),
E(Q:) <5, =E{S).

Furthermore,
as p, — oo, o —s5 — —oc, E(Q)—d — 0,
as pr— —o¢, 5 —d, — —oc, E(Q;)—s5 — O
The graph of the average quantity exchanged as a function of price is hence
situated under the graph of min (d,, 5,), and is bounded on top by this function
as the price tends toward Loc.

The distance between these two curves increases with s, i.e. with the variance
of the disturbances in the supply and demand equations.
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Average
Cuantiry

&

q=E{Q) .

Price

(L

Fig. 8.3. Avcrage quantity exchanged when 8, D random

8. 1.3  Likelihood Analvsis
Denoting g, (d. s) the density function of the pair (3, §;) . we have:

Pri¢y € A) =Pr(Q; € At Dy = S§) +Pr{Q, € A; D, = 8)),
=Pr(D, € AT D, < §)+Pr(§; € A; D, = 5,),

= / [/ 8r f}-‘,z]dz} dy +/ [/ g: (z, __v)dz] dy,
- '4 - J, ‘_.1 l.":

= / {/ g (v.2)dz + / & (2, y}dz] dy.
JA LS ¥

The density function of (2, is thus:
) b
iy (g) = / g (g, 2¥dz + [ 2 {z.q)dz. (8.4)
Jy oy

and hence, given the assumption ol normality:

1
g ld,8) = ———

25 /det >
1 /d — —x'by d — - x!
wexp|—= [ 4 TGP T X b1y o a1 P X£b1 !
205 —axpr — X, b2 5 —dapr — X;ba
where > is the covariance matrix of the disturbance terms,

Using the independence of the 2,-s, we derive the likelihood of the obser-
vations:

T
L=1]4 a0
=1

Applying maximum likelihood yields eqguations which arc nonlinear in
the parameters, necessitating the use of numerical algorithms. When the
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disturbances u; and 1, are not correlated, the density function h; (g, ) is simply:

1 ayp; + xtby — +x°h; —
h (g} = — ¥ ( 2l . f-}':) &$ (GQP; (22 Qr)
51 AT _ 82
+l@(@m+ﬁh—m)¢(@m+ﬁm—m)+
& &7 ¥

Notice that maximum likelihood must be applied to this model with caution,
The likelihood can always be driven to infinity by choosing parameters so that
$) (or 52) evaluates to zero. Consider the set of observations (p,, x}, ¢.) .1 =
1,....7T, it is possible to find values for a; and b, such that a1 p; + X} b —
g, < 0 for all t, while a1 p, + xrlbl — ¢, = 0 for some ¢t = t. Letting s
tend toward zero by assigning finite, positive values to as. b2, and s;. the

{erm:
lﬁ(mm+ﬁm—@)¢(mm+ﬁm—m>,

52 52 &1

is bounded for ¥¢. On the other hand, if s, tends toward zero, the term:

1 (alp,+x:h1 _fh) (ﬂzpr‘Fx?bE*@'r)
@ U

Y| n 32

tends toward zero for all 1 = t and toward infinity forr = 7.
As a result, the maximum likelihood evaluates to (plus) infinity. Two proce-
dures can be used to prevent this occurrence, we can:
(1) cslimate the parameters under the constraint that s, and s» are grealer than
some strictly positive value, or
(i) restrict the domain and search for a local solution to the maximum likeli-
hood equation.

[t can be shown that there exists 4 local maximum which converges 10 the
truc value of the parameter.

8 1.4 Predictiont

Having estimated the discquilibrinm model, we often wish to assign values to
some of the latent variables in order to impute an economic interpretation to
the results. At this point a decision must he made whether to incorporate the

T In this chapter the terms “predicting” is not used in the sense of forecasting. Rather, we predict,
or “determine”” whether a market 15 dominatced by the demand or the supply side. This is referred
to a8 the regime.
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natural constraints on the variables. Te simplify our calculations we assume
that the disturbance terms are not serially correlated.

8.1.4.1  Determining the Regime
. Since our observations only tell us how much of the good was ex-
changed. we have no way of knowing whether this corresponds to the demand,
or to the supply, side of the market. To infer this information (i.e. the existence
of excess demand or supply at time ¢) we need the value of an index;

(1, itD, > &,
710, otherwise.

Unconstrained Prediction  This prediction, 2, =k (Q...., Qr), is
the estimator closest to z,

B —2) =min(E[k(Qi..... @r) — z]}*,
Clearly, this is equal to the conditional expectation of z,, given 4. ..., Ot

Er = E(Zr| Qli rae s QT}e
= E(z;] ) (because of independence over time),
= Pr{ﬂr - *STE'| QI)!

vielding:

2ha—s, ) -
%‘P (ﬂl_ﬂr"‘f;bz ;,) b (%_I—::'hl q,)
PriD, = 5|0 =qg) = -
he (g:)

To evaluate this probability we replace the parameters s1, a2, bs, etc, by their
estimates.

Constrained Prediction  Since the latent variable z; can only assume
the valucs zero or one. we may wish to impose this same property on the
prediction Z,. To do this we solve:

Zo=min{Ek(Q,..., O7) — 211,

where K 1s the set of functions only assuming the values zero or onc. Clearly
the solution to this problem cannot be Z,, since this variable may only take
values 1n the open interval (0, 1). We can, however, use 2, to help us find an
expression for Z,. Using the properties of conditional expectation, we have:

E[k(Qi.....07) — " =E[k(C1. ..., Q) — 31> +E(z, — 3%
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Next we nced the function closest to 2, whose range comprises only the
values zero or one. The obvious choice is:

- I--. if Ei’ :_} %-.
10, otherwise.
We conclude that the market is characterized by excess demand 1f this condi-

tional probability is greater than one half (i.e. when the supply side dominates),
and vice versa.

8.1.4.2 Determining the Quantity _ X
[nconstrained Prediction of D, and 5, D, and §, arc equal to:
D =E(D/] Q).
3, - E{51| Qr)
Since the calculation of these two quantities is obviously similar, we restrict
our analysis to developing the first case as an example:
E(DN QG =qg)=Pr(D, =S| Q:=q)E(S| ¢ =¢q. D = 5))
+Pr{D < 5|1 Q =q) ECIN Q. =g, D= 5),
=ZLE(HS =9. D = g)
+ (I = 2)E(D| Dy = gq. 5 > q),
=ZE(D| D, =q)+ ({1 —Zg.

Now all that remains is to apply the equation for the mean of a truncated
normal variable to obtain the desired prediction.

Constrained Prediction of D, and S, By construction, any observa-
tion O, will satisfy the equality ¢, = min (D, §;}. On the other hand, this
will not be true for the titted values D, and S,. If we wish to impose this as a
constraint and find new values, 1, and 5, we must solve the following problem:

min {E[k' (Q1,.-., @) — D] +E | (Q1,.... 0) - 517}

Bkt

where the functions &' and k2 are such that:

Using reasoning analogous to that in the analysis of the regime, we see that
the solution to this equation is equivalent to that of:

min {E[k'(Q] ,,,,, Or) — D] +E[K O ... Qr)—S}]Z}.

e
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Several cases can be distinguished, depending on the relationship of the values
of D, and §; to that of Q,.

it Br = .Srlr - Q:, then .I{m); = f}; and S‘g - Q;,
it Sf = D; = QI- then .I{m); - Qr and S‘r - S,h

if max (5}, f},) < Q,, then D =g, and § = Q,.

Intuitively, we can see that the last case should be a rare occurrence if the
model is correctly specified. In fact, observing this situation is a good indication
that we need to rework our formuiation.

Finally, notice that it is not impaossible that predictions concerning the regime
and the quantity, being derived independently, may be incompatible. For exam-
ple. we may have:

1 N -
:':'r = E and Dlr = S;.

8.1.4.3 Dertermining Equilibrinm

We may also be interested in examining what the market would look
like in equilibrium. This implics finding the market clearing price py and the
corresponding quantity F. values which can be derived directly from the
equations for ), and &;. given a price p,. In fact:

K,zhz + i3 — x;lh] S

P = :
a) — dz
S, — D
p; = —— + P
oy — dz
Hence:
X 5 —D
pE=E(pf| Q) =p, +—
dy — 2

8.2 Observations on the Regime and the Quantity Exchanged
8.2, 1 The Model

In the disequilibrium meodel we examined in section 8.1, a good’s price is con-
sidered fixed at any point in time and variable between periods. The trajectory
of 1ts evolution 1s a function of the nature of the observed disequilibria, As a
first approximation, we may speculate that the price will increase in the case of
excess demand and decrease under excess supply. Integrating this information
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int our model, we obtain:

D! =y + xrlb] + iy,
S.; = i ¥ -+ th: + “Hag,

2 = min {f}. 5;). (8.5}
APy = Pryt — Pus
=h (D, — &),

where /i is an unknown monotonically increasing function.

Since we don’t know k. the only information added by incorporating this
function is the specification of the regime. If Ap, > 0 we know that there is
excess demand, while A p, < 0 implies excess supply.

We observe two endogenous variables, O, and z,. or. equivalently, two trun-
cated variables:

!)* L f_)_r, if DI <~ S{,
1 0, otherwise,

(8.6)
y {S,, if 5, = D,
Sr' =

). otherwise.

8.2.2 Estimation Methoeds

When a or g- are non-zero, the quantity exchanged depends on the exogenous
variables over the unknown function /. The likelihood also depends upon this
function and is thus of no use.

The only case in which this model can be estimaled is when current or past
prices den’t impact on the quantity demanded or supplied. Clearly, this is of
little practical interest. In this situation the vanables (D, . §;) are indcpendent
over time and characterized by a normal two-dimensiconal distribution which is
a function of the parameters b, by, £. The associated marginal models are of
the Tobit generalized form (cf. chapter 7), whose properties they share.

In particular, in this model applying ordinary least squares 1o a regression of
D, on x' (for D, < S,) yields inconsistent estimators of the demand equation
parameters. Consistent estimates of these parameters can be obtained, however,
with the maximum-likelihood method (cf. excrcise 3), or by expanding the two-
stage method we cxamined in the context of the generalized Tobit model.

8.3 Predetermined Evolution of the Price
831 The Model

Qur analysis in section 8.2 revealed that in order to simultaneously include
prices in the supply and demand equations while accounting for the regime we
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need to specify the function /. In this section we shall define the price adjust-
ment equation as:

Apy = piy — P

8.7
;‘..(D, - S!)s ( )

where 2 1s 4 positive real number. Now the price at time £, equal 1o p, =
Py + A (D — 5,1), 1s predetermined.

Equation (8.7) can now be used to eliminate price, p,, from the supply and
demand equations, yielding:

Dy —D, | =a1(p;—p 1) +xby —x_ by +uy — 1,0,
Dy — Dy =a1h (D — S} +K;1h] _x;I_th + oy — Uy,
D, =1 +aja) Dy — a1A8—
+X:b1 — XI1_1b1 —I—Ml; — Myl

We see that the equation for I, contains the endogenous lagged variables
D,_ | and §,_,. This introduces serial correlation between the quantities supplied
and demanded at time ¢ and their previous values,

8.3.2 Estimation Methods

We have seen that (£, §;) are not uncorrelated over time. The same is true for
the observable endogenous variables { Q,, 4 p,). To find the likelihood we first
need the conditional density of ([3,, §;) given Q,_,, Ap,—y, Q2. Apy_a, ...
We can then derive the conditional distribution of ¢, and Ap, given their
previous values.

Let i (1, &+) be a normal two-dimensional density funciion with mean

0 . . . . .
([} and covariance matrix 2. Gaven previous values of the observable en-

dogenous variables, the conditional density of {f},, S,), denoted g, (¢. 5), is
equal to;

g, {d. s) = (d —aypy — X:b|,.'s‘ — s Py —X?bg).

Consequently. the conditional density function of {{,, & p,) 1s;

l Ap Ap
h; (q’ “F—\"-JU) = 3 [Z-ﬂp (q + A ‘q) + (]' _Zip) (f!:fi' _ T):i.

[

where:

(1, itap=0,
~52 7 1 0, otherwise.
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The likelihcod is:

,
L= Hh: (ff:: &f}r):

=1

1 Hp | Fa
= H Igr (*-?r"‘ }L,!-‘?r) H Igr (Qr,fh— fr)

rdp =0 RPN A,

This relatively simple likelihood is easy to maximize using an iterative algo-
rithm. Incidentally, notice that initial values for the parameters can be found by
applying instrumental least squares to the supply and demand equations after a
preliminary transformation. We write:

|
0, = D, — Iﬁprﬁ&p,;

|
= arp, +x'b; — L APzap, i

In these equations A p,z,,, (which incorporates p; ) is correlated with the
disturbance term u,,. The parameters, @, by, :}T may, however, still be esti-
mated consistently if we use instrumental least squares, with p,, x!, and x? as
instruments. To ensure identification. the vector of explanatory variables for the

supply equation, X must contain at least one variable not included in x!.

8.4 Endogenons Evolution of Prices
8.4.1 A Preliminary Model

Untii now we have assumed that the price, p;, 1s fixed at any point in time ¢,
A disequilibrium state is also feasible if the price 15 allowed to adjust instan-
taneously, provided the change is not sufficient to produce equilibrium. In this
case p, 1s an endogenous variable correlated with the disturbance terms of the
supply and demand functions.

The simplest model of this phenomenon is as follows:

Dr - mp; —|—Xrlh1 =+ Hir.
S =arp + X?hﬁ + i,

Q; = min {1, §,), (8.8)
Apr = pr— Pi1-
- j‘-{Dr - S;}e

where A Is a positive parameter reflecting the rate at which the price adjusts.
Notice also that the equation for A p, has changed from the previous section.
In this model quantities (D,, S;) depend on price, which itself depends upon
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quantities over the last equation in (8.8). Consequently, we simultancously
solve for three variables p,, J;, and §,.

The price adjustiment equation can be rewritten if we introduce the equilib-
rium price;

X2bo + oy — X1by — uy,

& —
P =
&7 — da

Furthermore:
Dy — 8 = (a —a2) pr + X, by + w1, — Xy — un
= (ay —a2) {p, — P} ).

Substituting this for excess demand in the price adjustment equation yields:

LApy = p, — p_| = Ala) — az) (Pr o Pf)-

Letting:
Alaz —ay)
T @ — ey
we obtain:
pe= (= p y+pp; (8.9}

Since 4 = 0,a» = 0. and a; = 0, we see that ji 15 bounded by zero and
one. Consequently, p, lies between the previous period’s aclual price and the
current period’s equilibrium price.

84.2  Estimarion Methods

8.4.2.1 Instrumental Least-Squares Estimation
The quantity exchanged, Q,, can be written:

Q=D —z)+ St e,
¢y = D+ (S5 — i)z,

where:

(1, iD=,
~ 710, otherwise.

as in section 8.1.4.
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LIsing the price equation D, — §;, = %&p;. we obtain:
1
QIZHIP;‘FX,]h] _IﬂpaZa;;,+ulr- (8.10)

Here we have a model which is linear in the parameters g,. by, and -, and
comprises two explanatory variables, p and A p, 7, ,, which are correlated with
the error term ;. Consistent estimators of these two parameters can be obtained
with instrumental least squares. provided there are at least two explanatory vari-
ables in the supply function {x?} not present in the demand function (x!). The
supply function parameters ¢; and b, are obtained symmetrically:

Qr = 8§ + (D —5) (1 — ZQPJ).
, |
= dz ‘f‘X;h’z + }—zﬂp; (1 — Zﬁpr) + ;.

Notice that applying imstrumental least squares to this second equation will
vield a different estimate of A. We avoid this by estimating:

] 1
2 — iﬂpr (] - Z.-i,p,) = drp; +X;b2 + v2r.

where A is a consistent estimator of & obtained in the first stage. For this pro-
cedure to work we require that the demand equation containg at least one ex-
ogenous variable not occurring in the supply cquation.

8.4.2.2 The Maximum-Likelihood Method

Before deriving the density function of (@, p,) we need to find it for
(D, 5;). Substituting our expression for £, and 8, interms of p, into the supply
and demand equations yields:

Dy =aypy 4+ @k (D — 8) + x/by 4 uyy,

S: = aapii + @A (D — 8) +%/ba + Uy,
or;

(1 —a M) D+ aAS, = a1 p—1 + Xy + uy,,
—ti A D (L +axr) S = arp + szhg + i,

Now. (D,, §;) can be derived from the pair (#,,. t2,) as follows. The Jaco-
bian of the transformation, | /| = 1 + {@» — a,) A is always positive under the
standard assumptions: a> = 0, a; < (O, and A = 0. If o (1, &2) s the density
tunction for the disturbance term, then the density of {D,, §;), conditional on
previous values, is given by:

gld, sy =1+ (@2 —a) 2] ¥ [(1 —ay)d +arhs —ai1p,. | — X, b
—drhtd + {1 +a-t)s —da ] = X!zb:].



Models of Market Disequilibrinm 221

As in sectien 8.3.2, the likelihood 1s given by:

1 1 1 1
L= H & (qf + I&p;,qr> H PRl (qr,q: - I&p:)‘

g =0 : fo e =0

8423 O.LS. Estimation of the Price Adjustment Equation
The price adjustment equation is:

pr= (1 — ) pr_y + ppy,
2 = (I —H»Jp.r—l—Fx?bza— _K;hl—

+ K (tiyy — ;).
i — 2
Since the variables p,_, xf. and x: are not correlated with the disturbances
wy, and x2., we can apply ordinary least squares to this eguation. This yields
an estimate for g which is important tor the characterisation of equilibrium, as
we shall see.

8.4.3  The Assumption of Equilibrium

Equilibrium in the market for a good is characterized by equality between the
good’s actual price p, and its equilibrium price pf. According to equation
(8.9} this implies that ¢¢ = 1. or equivalently —in terms of how fast price
adjustment occurs — 4 = 0. As to the parameters, the existence of equiltbrium
is independent of time. Consequently, from equation system {8.8). if the market
1s in equilibrivm during any period, it will be so all the time. This definition
of an equilibrium model ceincides with the statistical meaning of the term.
From the likelihood equation in section 8.4.2, letting 4 approach {plus) infinity
vields:

Ly = ]___[ (az —ay ¥ (g, — a1 py — X, by.gq —arp — K}Ehz).
!

which 18 none other than the likelihood corresponding te the cquilibrium
model.

[n practice, 1t is often important to know whether or not the market in question
is approximately in equilibrivm. We can test this with the parameters, defining
Hy: (1 = 1) = (» = +2¢) . However, this hypothesis can not be tested using
standard procedures, 1.e. the likelihood-ratio test or the Student’s r-test. The
null hypothesis, Hy : @ = | applies to the boundary ot the set of possible
values assumed by ;e [0, 1], and the appropriate test is one-sided. Consider
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the equation:
i
ayp — dz
I i
_|_
i — d2 g1 — dz

Pr— Pl = —upi_ +X'b;

—xby (t£2; — H1,).

It is tempting to test the null hypothesis Hy @ 0 = 1 by comparing the calcu-
lated t-statistic for @0 with 1.96 for a 95% probability. In fact, it must be com-
pared to 1.64 for a one-sided test, leading us to reject the null hypothesis more
frequently.

844 A General Mode!

A natural extension to the endogenous price equation involves incorporating
exogenous variables and a disturbance term:

Hpy = — i
= 3D — 5+ by + us,.

This formulation includes everything we have seen so far,

If 5 = 0, if lagged values of supply and demand don’t enter into x*, and il
the disturbance term uy, 1s independent of &y, and u4,, then price is completely
exogenous. In this case the price adjustment equation contributes nothing, and
we recover the model from section 8.1.

For the model in section 8.3, we let 4 and the variance of «3, be nil, and set
x by = u (D — 3 1k

Section 8.4 introduced a model corresponding to b; = 0 and var (u,,) = 0.
The equilibrium model appears as a limiting case when we let A tend to plus
infinity.

The estimation methods described 1n these sections can casily be extended
to account for the expanded price adjustment eguation.

Exercises

8.1 Given the conditions under which the model in section 8.1 is identified. Verify that,
even if it is identified, we still require a minimum number of observations on demand
and supply to bc able to estimate the parameters.

8.2 Would we modify our estimation methods in section 8.1 if the values of D, and §;
were cbhserved?

Consider the model in seciion 8.7 with r = 0 and 57 = s3. Find Pr{£, = §,).
Show that Pr (D, < &) > 7 if and only if pf > p..
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8.4
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8.6

8.7

8.8
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Leta, = a; = Uinthe medel from secion B.2, and let g, {d. 5) represent the density
function of the pair D,, 5,. Show that the likelihood of the model is:

[ 4]

L= H /xgrfznffr:'ffz H g (z.qdz.

e 0} e tagp = AT

In this likelihood, isolate the information contrnibuted by the ¢, -5,

Show that cquation (8.9} can be used to express the price p, as a function of past
and current equilibrium prices.

We can estimale Lthe parameters of equation (8.10) by performing a regression of
2. on all of the exogenous variables in x] and x?. Denoting p, the resulting fitred
value of p,. we regress O, on P, ), and A frza;,, where Afy, = p, — B, and
where 745 1s defined:

{n, if p, <0,
I3 =

1, olherwise.

Will this procedure yield consistent estimators?

Verify that when the equilibrium price p¢ is independent of ¢, the price-adjustment
cquation p, = pup,_) + {1 —p} pf, 0 = ¢ =< 1 ensures the convergence of p, to
the equilibrium price.

Consider the maodel in equations (8.5) and (8.6), letting the disturbance terms ),
and w3, be independent and distributed N (D, :.f) and N (U, s;) respectively. Find
E (i)f p,) and E (S,*’ pr). Conditional on the valucs of p,, derive a two-stage
mcthod to estimate the parameters.

Assume that the demand and supply functions are normal linear equations:

D, = ap +xb, +uy,
S = a;p + thg + i,

wherer = 1,.... T and:

B - [] SE
(1, #2,) ~asy N Ku)‘ (Ul § )}

(a) Calculate E (Q,l Prox}, xf) for the disequilibrium model €&, = min (£, §,}
and for the equilibrivin model ¢, = £, = §,.

(b} Use these results to derive a test for market equilibrium versus disequilib-
rinin without building any super-models (¢f. Davidson. R. and MacKinnon,
I. [DME1]}

=

LE O



9 Truncated Latent Variables Defined
by a System of Simultaneous
Equations

9.1 The General Model

In previous chapters we were primarily interested in the study of a single en-
dogenous variable defined as a functon of one or more lutent variables. Often.,
however, we wish to study values assumed simultaneously by several endoge-
nous variables, some of which may be limited whilc others are not. For that
reason we now introduce simultaneous equation models.

The general structure of the type of model we shall be studying in this chapter
is as follows:

(i) L latent variables, y* = {pf..... y{..... y}_‘)’, are defined by a simul-
taneocus equation system:

A¥Y' = Xb+u, o ~, N0, Z). (9.1)

{(ii) One purpose these variables serve 1s to partition the observations, i =
1....,n. into K catcgories or regimes ¢, ..., jx:

i€ n ey el (9.2)

where the C-s are known sets constituting a partition of R,
(iii) Finally, the observable variables, v = (}-‘. ... ¥p) ., are aobtained for
cach regime as known, affine functions of the latent variables:

vi =Dy +di. i€ . (9.3)

Notice that, depending on the choice of C and of I, some latent variables
may not contribule to the definition of the partitions or. for that maiter, they
may not be (even partialiy) obscrvable. Nevertheless, the model in equatiens
(9.1). (9.2}, and (9.3) covers 4 great number of casecs.

224
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Forexample, if L = p = 1 and K = 2. we recover the dichotomous model:

{ I, if ¥* = O,
y =
’ (0, otherwise,

and the simple Tobit model:

‘ ¥y, ity =0,
Y= 0, otherwise.

When p = | and L. = K = 2, we have the generalized Tobit model:

v = {"T if v > 0,
' 0.  otherwise,
and the disequilibrivm model, defined:
_ T b =
Y= J# if e JE
Yoo ¥ =
Some qualitative dichotomous models simultaneously describe the behaviour
of several agents. for example:
b = 1, if ¥ = Oand y3 = 0,
‘ 0, otherwise.
In all of these examples a single dependent variable is observed. If we now
turn dre attention to situations in which two dependent variables, vy and ys. are
simultancously observed, we find that there are many more possible scenarios.

Thus, if L = 2, the formulation resembles the disequilibrium model with
observations on the regime:

7\’_!'-' e .}! ;‘

: . yi =0 :
vy = 0 } it vy =y, and 71 } il v = ¥,

Y2 =5
We also have various qualitative models, such as:
e 4
4 = 1. i ¥ =0, and - — 1, it 3 =0,
0, if » =0 . ¢, it yf =0
Some new models arise, in which we may, for example, simultaneously ob-
serve a qualitative and a quantitative model:

*

¥I= Y i y1 =¥ -
it vy = 0, and if < 0,
yo=1 ) y2 =10
or a quantitative variable and a truncated variable:
* . *
¥ =¥ . ¥ =W i
1 if ¥ = 0, and it y; <0
¥z = ¥;. ¥ =0
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9.2 Estimation Methods

If we wish to conduct a gencral inquiry into estimation procedures for the
parameters A, b and ¥ in equations (9.1), (9.2), and (9.3), we will find this
specification rather difficult to manipulate. In this section we shall present
estimation methods for models which arc sufficiently simple to be usable in
practice. Examples and applications are given in section 9.3,

There are several approaches to the issue of estimation, and we must choose
one suitable to the particular form of cur model. While this presentation fo-
cuses an simple models, these techniques can be expanded to apply to more
complex ones. Notice, however, that any functional form incorporating normal
distributions in more than three dimensions cannot be considercd malleable at
this point in time.

Q.21 The Maximum-Likelihood Method

As usual, this method is of great use when applied to models with truncated
dependent variables, vielding non linear likelihood equations which must be
solved using numerical algorithms.

Before determining the likelihood, we must first find the distribution of the
latent variables. Once these have been caleulated, we can derive the distribution
of the observable endogenous variables.

Thus, consider the model with latent variables defined:

_}-‘TI- = ﬂ|_‘y‘£- + b5 + X 4 .

,_t (9.4)
¥y, = az¥y; + b3z + uy

where x and z are two exogenous variables and the disturbances are assumed
- A 4

independent: #,; ~ N (0, s7) and u>; ~ N (0, s5). The obscrved endogenous
variables are:

I

yﬁ.
¥3;,  1F¥3 > 0, {9.5)
). otherwise.

¥ii

Yo —

To find the distribution of the latent variables, we rewrite equations (9.4} in
‘their reduced form:

. by \ b2 < ap by i + ayu;
}‘ , — —_— - . —_— I _—
I l—a]ag 1—a|a2 : 1 — fI1diy 1 — aya»
9.6
. azb ¢c2ba s aaiy; + uy (.6)
1—(11(12 1 — i I — ajas 1 —aaz

The distribution of the vector {¥},. ¥%;) is consequently seen to be normal
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bivariate. The means of the latent variables, m; and #14,, are given by the deter-
ministic parts of equation system (9.6}, while their variances and covariances.
denoted n?, n3 and n| nz, respectively. are:

Ef + af.s§

— b

M= 3°
(1 —aja)”
A a%sf -+—S22
s = — 3
(1 —aaz)
ag.ﬁ? -+ als-f
i, = —————=

(1 —ajazy*

From this we can directly derive the density function of the obscrvable vari-
ables. The density of (v;. ¥2;) 1s equal to that of the latent variables when
vy; > (), and equal to:

] |:_‘5*‘1:' — mu] @ —ma + "’::—T {(¥1; — M)

171 1 ma'1l —r? '

when ¥ — 0.

The likelihood is a complicated function of the parameters of the structural
equation (9.4}, and it is preferable to pertorm a change of parameters before
maximization. We can. for example, introduce new parameters such as:

b b; b3

* k]
d—ayg» 1 —ayas 1 —ayan

. oz, AL HaL R

While the likelihood in this model is bounded, that is not generally true, [t
may tend toward infinity, as we saw in section 8.1.3 during our examination of
disequilibrium models. This occurs when the values assumed by the observable
variables do not permit us to identify to which regime the data points correspond.
This is the case, for example, in a model based on four latent variables ¥, v, 5,
and vy, with observed variables:

YI =1,
[0t =0
T Uy it wso.

9.2.2 Two-Stage Regression in Stacked Regression Models

When equation (9.1} represents a system of stacked regressions {(l.e. A = 7)),
the two-stage regression procedure permits a siraightforward generalization.
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Consider the model:
¥ii = Xuby +ouy
¥a; = Xoiba + wezy,
¥i = X3;bs + us,
with cbserved ecndogenous variables:
Mo iE v >0,

E!
¥ = ]
lf y;i E O"

.}:‘Ete"

1. if 33 = O,
Yau = o

0, iy =0,

Equivalently, we can define:

¥, f vy = 0,
L=

0. ifyf <0,

{, if y3, = 0,
20=9 . ifvk <0

.}'2{‘ L }'31' —

This model is comprised of two generalized Tobit models which share a variable
defining the regime.

For the first step, we estimate the probit aspect. Le. the part of the model
associated with the observations on yy;. The second step consists of analysing
the data corresponding to zy; # 0 and zz; # 0 separately. using the methods
presented in chapter 7.

9.2.3  Preliminary Estimation of the Reduced Form

When equation (9.1) represents a true system of simultancous eguations, i.e.
when the system is not recursive, estimation typically begins by examining
the parameters of the equations of the reduced form. To illustrate, examine the
maodel in expression (9.4) and (9.5}, The reduced form, equation (9.6}, can be
rewritten:

‘* 1 -
¥ = cn - CnX + e + vy

¥y, = €21 4 €%y + CnZ + Uy

with:
b h3 ey by
=7 Cop=_—"—. C3=_ —" -
l—ﬂlag ]—(11(1‘2 |l —aa-
axb) azbn by
L) T ’ Cop = ———, Coy = ———
1 — i ]—u|a2 l—ala:
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and:
. 2 . 2 .
var(vy;) = 5y, var{vy) = 53, COV{vy. vy) =Trmn.

[f we ignore the constraints on the parameters of the reduced-form cquations,
these can be estimated from the observations.

Thus. ¢1y. €12, €13, 1y are found by regressing the variable vy (: }’,“) on the
number one (1), on X, and on z using ordinary least squares. The parameters of
the second equation are found trom the Tobit model:

¥a. 1ty = ()

e
1

0, otherwisce.

Finally. the correlation, v, 1s obtained by examining the residuals of the estimate.

This procedure yields consistent estimates of the parameters, but it is clearly
nol efficient. It now remains to calculate the parameters of the structural equa-
lons —ay, a2, b, b, and b;.

024  Instrumentaf-Variables Estimation

Let T" represent the estimators of €. We can predict the values of the latent
variables by;

?’T} = Vi1 + YieX + Y137,
and:
-}H'.;e' = Y2i T ¥ X; + Tri3Z;.

Asymptotically, these variables are not correlated with the disturbances. Sub-
stituting the predicted values for ¥{; and ¥J; into the right-hand side of cquation
{9.4), wc apply ordinary least squarcs to the first equation to estimate ay. by,
and b2, and Tobit to the sceond equation to obtain a; and b;.

Q2.5 Amemiva’s Method

This method consists of examining the relation & expressing the parameters C
as functions of (ay, a2, b1, bz, b}

C=h l:ah(l’g.bl,hg,hj), (9?)

When the model is exactly identified, the application A 1s a bijection (i.e. has
4an inverse over its entire domain), and:

(o, a2, B, 3.8 =h L,
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provides a consistent estimator of the coefficients of the structural equations. In
the general case, the model is overidentified, and equation (9.7) yiclds several
estimates of the parameters (@, a2, b, b2, bz) in terms of C:

{aj, ax, b, ba. b)) =h" (C},

where i~ € 'H 1s a generalized inverse,

Every estimator defined by A~ (C), o~ € H, is consistent, so we need to
select the “best™ one. Amemiya [Ame78] proposed the following course of
action. For the model under consideration, equation (9.7) yields:

1 —] Ol Ll €3 . bl bg 0
—dz | cy1 €2 €aas A0 0O bs/)’

I we wish to inspect the parameters ¢» and bs from the second equation of
{9.4), we see that they are related to the parameters (7 by:
=l .
Czx = daly2,

Cry = a¢; + b:-l,.
Replacing the C-s by their estimators, we obtain:

Yrl = dayy + w2,
Yr2 = dxyiz + wn.
Y1 = dayiy + ba 4+ was,

where wn) = 27 = €31 + a2 (0 = V11). and similarly for was and was.

We can now estimate a» and bz by regressing the vector (ya;, 22, y23) on
the two vectors (M. 712, Y13) and (0, 0, 1Y using o.Ls.

A variation on 1his method consists of applying weighted least squares n or-
der 1o account for the information in the covariance matrix of the cw-s [GMTRE5].
This procedure, like that described in section 9.3.4, does not provide estimates
of the variances and covariances of the disturbance terms.

9.3 Some Applications
9.3.1 Urnionization and Salary Levels

The objective of this study 15 to describe the relatienship between union mem-
bership and salaries. Each worker can decide whether or not to belong to a
union, and will choose according to his or her preferences, the level of union
dues. and the expected change in salary.
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Let w,; and w,; represent the salary an individual 7 receives depending on
whether she does, or does not, belong to a union, respectively. She will decide
to join a union if the increase in pay exceeds a threshold, p;. which is a function
of her characteristics:

—. ..__—: = pl..

The relative increase can be approximated by log (w,;) — log (u,;), and we
shall use this expression to develop the model. The latent variables are given
by:

log (wy;) = X;;by + 5,
log (w,;) = Xyba + vy,
o = X3;b3 + sz
The observed variables are, whether or not the individual is in 4 union (yy;)
and wages {y):
¥ = 1,
v = log (wy,),
if log (w,,} — log (w,,) = p;, while:
yii =0,
vy = log (uwy, ).
if log (wy, ) — lﬂ'g (W} < .

Here we have a gqualitative observation on y| and truncated data on the two
variables log {w;) and log (w,).

0.3.2 Agricultural Price Support

In order o guarantee a minimun income to farmers, the government may decide
o intervene in the market. Consider an agricultural product with domestic
demand and supply given by:

D, =a p +x,b +upy, a <0,

Lg; = azp; _|_ nghg + u:f1 fl';l_ -3 ﬂ

1f the government docs not act, the market price and quantity will tend toward
an equilibrium. In particular:

pr=p, = —— (X/by — x;bo g — uay).
dz —
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Assuine that a policy is adopted to ensure that the price does not fall below
some floor p}, which is set exogenously. If pf is above the support threshold
7 there is no need for intervention. If, however, the market price is lower, the
govermment steps in and begins buying the good, driving up the price until it
reaches py. The domestic market can now be modelled as follows:

Dy =a1p: +x1/by + uyy.
S = dapy + Xo b + o,
pe = max (pf. p}).
This market incorporates two regimes:
(1) when p; > p/. D, = §, and p, = pf.
(i1) when p; < p/, the quantity demanded by the government is §, — D, = 0.
the amount exchanged is equal to the supply, and the observed price is
p: = pi (with p] exogenous).

In the special case of supply 5, not depending on price p;. we can explicitly
solve the likelinood equations (cf. appendix 9.1).

Y.3.3  Extensions of the Workforce Participation Model

Typically, models of work-force participation are based on the assumption that
the individual can choose how many hours he desires to work, based on the
prevailing hourly wage. This hypothesis is contradicted by evidence collected
in household surveys, in which peaple often complain of being under-emploved.
either because they wish to work longer hours or because they are unemployed
and would rather not be.

9.3.3.1  Labour Supplv (The Double-Hurdle Model)
A model which incorporates the supply side was analysed by Blundell,
Ham, and Meghir [BHM®86]. The observations are generated by the system:

, {fej‘. it ¥ > O and D; > 0.

0, otherwise,

where /; 1s the observed number of hours. & is the desired number of work-
ing hours, and £ is a variable indicating whether or not the individual is
employed.

This kind of model, based on two latent variables A} and ;. allows us to
distinguish between three different groups of individuals: those whose work
load corresponds to their desires (h}" = 0, I} = U) . those who are not working
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because they don’t want to (h:‘ - {J) . and the unemployed who want to work

0.3.3.2 Constraints on the Desived Hours

In practice. the number of hours worked, #;, may be less than desired.
and people searching for work may accept Jobs paying less than their expecta-
tions, suggesting that these conditions are deemed preferable (o unemplovment.
This was modelled by Narendranathan and Nickell [NN86]. The reduced tormn
of the econometric model corresponds to:

AT, it iy = 0and A7 > 0,
R, =4 d, It < 0and C; = (),
0, otherwise.

Here D); represents the supply constraint corresponding to the best possible job
for the individual, while ; is the salary which he will accept.

9.3.4 Income and the Level of Education

To analyse the cffect of education on incomne it is necessary to account for
individuals’ choices. We postulate that this wiil be based, at least partially, on
a maximization of expected future income.

In what follows we consider two types of education, denoted A and B. and
assume that the program of studies A exceeds 8 1n duration by an amount equal
to S, The series v* (¢). representing the stream of future income subsequent to
completion of studies, is defined as a geometric growth curve. ¥ is the salary
earned upon entry onto the job market, and g* is the rate of growth of income.
These parameters depend upon individual i 's characteristics. Letting graduation
from studies B correspond to the beginning of working life, we have:

. . if O <t <5,
Kai {I) — —* ¥ - - -
yroexp gk (f — 8], if § < ¢,
¥u (1) = ¥, exp [g;f (r}] if 0 = t.

Assume a discount factor, r;, which is constant over time and individuals
(ri = g2, g5}, costless education. and an infinite time horizon. Total expected
income over the course of the mdividual’s working life is:

Vi =] Yur () eXp (—rit) dt,
5

¥oi
— + exp {—r; S),

Fi — Bar
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m the case of study program A, and:

Vi = / Vo (EYexXp (—rif) dr,
0

ot

¥
Fi — &b ,
for program 8.

Conscquently, it follows that individual { chooses an education of type A if
Vi = Vi or, equivalently, if 7, = log ( ) is positive. Lincarizing the expres-
sion for a regime change, we find:

"r = Cp + ) [1Dg ( {u) ng ( hr)] + cjgm +C;ghl t CaF;
To complete the model, we set:

log (¥} = xiby + w1,

g = Xiobo + 140,

log ( ;n) = X;3b3 + ;3.

gr = Xiaba + ;4.
It remains to specify how the observations are collected. Each individual 1s
observed at two times in his working life, at the beginning and again twenty
years later. This procedure provides data on the program of studies, the initial

salary ¥;. and the rate of growth g,. Mathematically, the endogenous observed
variubles are;

log (¥ y = ]{}g( m) ]
Fui = gaj s g
> if L: 0,
log (35) = O -
Shi = )
log {(vui) = A
Lni — O .
- L ff .
log (¥) = log (¥,) e =0
Eri = g;, J

9.3.5 Rationing of Bank Loans

The model presented in this section was used to study the behaviour of the
“Federal Home Loan Bank Board™, an agency of the United States Government
which advances money to financial institutions specializing in home ownership
mortgages. We denote £ the demand for homes, D the demand for advances,
() the actual amount disbursed, and R the rate of interest on this money. Let L,
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the demand for homes, be a function of advances given:
L =a) +u,

where # incorporates the other exogenous explanatory variables as well as the
disturbance term. Demand tor advances, [, is a function of the interest rate:

D=5hR+ .

We now wish 10 explain the behaviour of the government agency which sets
£ and R. Dehning the objective function as a quadratic loss function, we have:

V={(L-t) +c(R—R) +d(D— Q).

The first term measures the difference between the demand for housing £ and
the demand desired by the funding agency, L*. In the second term. R* reflects
various costs — this term cnsures 4 degree of stability in the interest rate scrics
R. Substituting the expressions for £ and L into this equation, we oblain:

. e % ) S
V={(aQ+u—-L") +c(R—R*") +d(BR+v— Q).
This function is to be minimized, subject to the constraint:
O<=<0D & Q<bhR+ v

We see that this model incorporates two regimes. depending on whether or not
the constraint is binding.

9.3.5.1 The Constraint is not Binding
@ and R are oblained by setting the partial derivatives
equal to zero:

dy

He

dav
and o

3%

n:%ézzamg+u—Lﬂ—adwR+u—QL
oV

[):ﬁ:2c(R—R*)—|—2bd(bR—|—v—Q}.

Solving this svstem vields R and @ as linear functions of &, v, L*, and R*.
R = GgriH + g2 -|—£f]3fz* —I—QHR*,
Q = gait + g2av 4 g2 LY + gy RY,
where the coefficients ¢y, . ... ¢4, g21. ..., g2 are parameters of the initial
values. In this case the regime is characterized by the inequality:
Q = bR+ v, gn + gnv + g23L.7 + gg R™,
= b {giu+ giov + gil” + g RY) + v



236 Econometrics of Qualitative Variables

©.3.5.2 The Constraint is Binding
If the last inequality doesn’t hold, ¢ is equal to &R + v and the rate
of interest is obtained by minimizing:

V:(abR+av+u—L*)E+C(R—-R*)2.

i
i

Solving 4 = 0 for R yields:
R = piu+ prv+ piL™ + paR™,

and @ is derived by setting #R +v = (.
We leave to the reader to verify that, when the observed variables arc L, (2.
and R, the model fits the pattern of equations (9.1}, (9.2), and (9.3).

9.3.6 Estimating the Production Possibilities Frontier

9.3.6.1 The Usual Model

The production possibilities frontier 1s generally defined as the max-
imum level of output that can be generated from a given sel of inpuis. For
simplicity, we shall use a Cobb-Douglas production [unction in our analysis:

vy = log (07) = xib 4+ uy;,

where i = 1. ..., n, Q7 designates the maximum outpul, X; contains the logs
of the guantity of inputs, and #}; is the disturbance term distributed N {0, 57)
by assumption.

Fining empirical data directly to this type of model involves making the
implicit assumption that firms achicve their optimum output. Phenomena such
as friction and incomplete information may generate a degree of incfficiency,
however. In this case, obscrvations on a point in the production set will lie inside
the production possibilities frontier:

v = log ({J;) < log (Q:‘) = x;b + uy;.

One way to account for this constraint involves introducing an additional
error term which can only assume negative values.

¥i = 10g {Qi'}!
= ]Dg (QT) + vz,
= X;b 4+ u; + v3;.

where vs; = 0. This model differs from the classical regression model in that
the error is composite and has an asymmetric distribution.
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To complete this maodel, we must specify the distribution of the term, v,
representing the firm’s inefficiency. In order to continue working with normal
distributions we often specify that:

vy = — |upl,

where ts; 15 a normal variable distributed N (U, S%), independent of u);.
The reduced form of the model is:

v, = ;b 4wy — |uad,

which is constructed from two normal variables (u,;, u2;) after truncation of
the latter.

An absolute measure of inefficiency is found by taking the expectation of the
added term, E |z, |. Since this expectation is constant, we can readily see that the
usual moxdel is quite restrictive. In particular, it does not allow for inefficiency t{o
depend on the level of production of the firm, nor upon the characteristics of the
production process. Furthermore, it seems intuitively logical that the form of
the inetficiency, i.e. our assumption about the distribution of v3;, should depend
on the natore of its primary causes. We now examine a macroeconomic model
of inefficiency resulting trom insufficient concentration in an industry.

9.3.6.2 A Macroeconomic Model of Inefficiency
Consider N firms. all with the same production function:

¥n = log {gn),
= a + log{z,) b,

iz
— a—+ by log (z),
£==1
where ¢ indexes the elements of the input vector z. Assume the firms to be
technologically efficient from the microeconomic perspective. such that the
quantities (z,, g,) for irma, 2 =1, ..., N, satisfy:

lﬂg (‘f) = dy + ]Dg (Z:) b.

From a macroeconomic perspective, we see that to produce 0 = Ef:] Qn
the firms collectively use Z; = > |_, z¢4, V£, inputs. In the case of increasing
returns to scale, denoted Zf:l b; = 1. we could increase total preduction by
ailocating all output to a single firim, thus increasing the level of concentration
in the industry. Denoting this maximum output %, we have log (QJ%) = a +
log (Z) b. The inefficiency associated with the luck of concentration is measured
by the difference between  and (*.
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Explicit forms for the degree of inefficiency are obtained by specifying the
distribution of production between the firms. To illustrate. assume that the
input quantities z,, are independent with a log-normal distribution log (Nz,) ~
N (m, ). The cutput quantities, g,,, are also independent and distributed log-
normal:

=1

I.
log ( Neen) + (Z by — I) log {N) ~ N {a + b'm, b’'Tb}.

When the number of firms is sufficiently large, we can obtain rcasonable ap-
proximations to Z, &, and O~
We begin by [ocusing on the quantities of inputs (€, £ = 1, ..., L) used. We
have:
N

ZJ!". — E CEm

n -l
1 &

= ;7 > exp (),
N =1

wherethe values v, n = 1, ..., N, are independent and distributed N (mf, c.f‘)
Application of the law of larger numbers yiclds:

Zs 22 B |exp (ven) ]

5
A
= exp _(H‘lg —+ é_)

And the maximum output satisfies:

i
log{Q") =a + be log{(Z).
f=1
. Sz
= i +;bf (mf —+ Et)
Similar reasoning allows us to find an approximate expression tor real pro-
duction . We have:

M
Q= Z tfr

=1
i

— Nl_Zrzﬂbf% ZCXP (u*'n]f

n=I
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with the variables w,,n» = 1, ..., N independent and identically distributed
N{a +b'm, b'Eb) . The law of large numbers allows us to write:

0 = N'_Erﬂf”E (EW)?

|- L iy p hIEh
= N =1 "expla+bm+ 5 .

and we see the expression [or log ( Q) reappear 1n the equation for log ((2):

log (Q) = log (") (I—be) N PR —Zf’*“"*‘

To simplity, we umpose that the matrix T 1s diagonal, yielding:

l0g (@) — iog (" (]_th)N Zb(] biy st

log {(Q*) =a + be log (Z:).

F=1

We see that the additional term measuring inefficiency due to insuificient
concentration is not constant over the agents, which may, for example, represent
sectors. In particular. 1t depends upon the number of firms, &, in the sector,

on the degree to which returns to scale (Zf‘ ) 1) are increasing. on the
allocation of production between firms, ';“ F=1, , L,and ontheelasticities
b £ =1,..., L.

9.4 The Maximum-Expectation (MLE.) Algorithm

We have already described several general algorithms used to numerically solve
the likelihood equations. A further approach propesed by Dempster, Laird, and
Rubin [DLR77] 1s of considerable interest for solving models ot the form (9. 1),
(9.2), and (9.3).

Q4.1 Description of the Algorithin

This algorithm relies in a fundamental manner on the distribution assigned to the
latent variables y*. In this section we shall denote this distribution £* (¥*; 1), and
F (¥: t) that of the observed variables. If the latent variables were observable,
the parameters t could be estimated by an application of maxinmum likelihood
lo F*

max {og [F* (v t)] }.
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Since the latent vanables are only partially known over the intermediary of
the observed y-s, it seems reasonable to introduce the conditional expectation
of log { F*) given v. Specifically, we define the function:

Q(68:1) =E, {log [F*(y: 0)|y]}.

where @ i1s an estimator of the parameter vector . The conditional expectation
of log [F* {y*; 8}] is denived for the distnbution corresponding to the value t
of the parameter.

Each iteration of the algorithm comprises two steps: calculation of the ex-
pectation - step E, and maximization - step M. It 8, is the value obtained at
the p-th iteration, the (p + 1)-th iteration is as follows:

step E: calculate O (8, 1)

step M: maximize with respecttor : (BF; r‘).

Clearty, the function ¢ only nceds to be dernved once, and it 15 often rel-
atively easy to find for models with truncated variables. This algorithm is of
particular interest when maximizing 0 is easier than directly maximizing of
log [F* (¥; t}].

G.4.2 An Example
To tilustrate this procedure. consider the case of a simple Tobit model:

.}I;-* — th -+ H;, p ~ N I:U’ SE]’

v, iy =1,
'v. —_— )
! {}, otherwise.

The distribution of the latent variable is:

log [F (y*;ﬁ')]
A n : l 4 * z
= —5 log (o) — 5 log (2} — 5 > G —x8)".

=1

and:

and the function @ is derived as:

o8, 0

H
1 3 ) _ 1 . 2|

=3 log {6%) — 5 log 27y — s ;E=] E, [(_}-f — X,—ﬁ) ‘h}

Now, all we need to calculate is this last conditional expectation. If v; = (},

we see that:

E, [(‘h* - xe‘zg:}z

}"r'} = (3 — %0,
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whereas if y; = 0. we have:
E [ (3 —x03)| ]
= E, [(y;")E vt o= {J} — 2x,;3E, (uf

All that remains to do is replace the various conditional expectations by their
expression (cf. chapter 7}, To simplify notation, we write:

¥ < 0) +(x,3)°.

h@ﬁﬂ=5“ﬁfﬁ<@e
pi (b, s%) = E, (5737 <0).
Yiclding:
n - # 1 - . 2
Q0.1 = —3 log (o7} 5 log (27) — 5— > (¥ —x;8)
1 H
— 55 2 [ = 2xiBus + a7

o

It is obviously a simple matter to maximize this function over 3 and o2, as
it is quadratic in 8 and solves explicitly for that variable. o ¢ is found with:

2 1 ; i =
0" = {Z (v — %3 + Z (2 — 2%; Bty + (xxﬁ)h]} :
71 Jo

9.4.3 Convergence of the Algorithm
Proposition 23: The M.E. algorithm is increasing.

Proof: Denote L (t) = logfF {y,t)] and let H{8.t) = E;l{log
{F{¥*|y: &) ¥]} be the conditional expectatiocn of the log-likelihood of ¥*
given y, Since:

log [F* (y": )] =log [F (y*|y;t)] + L(8),
we take the conditional expectation of each element of the equation, vielding:
Q. N=H(B, 1)+ LiB).

We derive:

L (E"PH) —L (9.”) = [Q (HIH—] : 9!!) -0 (Gw 9:})]
+ [H (3:?:9!*) - H (9P+1= H.f?)]'
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The first term is positive, since 8,0 1s the maximum of @ [#, t] with respect
to &, and the second term is also positive since H (8. 1) < H (L. t), VL, 8 by
Kullback’s inequality.

Having shown that L (GPH) — L (Bp)is positive, we concludce that the algo-
rithm is mcreasing. O

Under some regularity conditions (Boyles [Boy73]) the following property
can be shown to hold:

Proposition 24: The series 8, converges to the solution of the likeli-
hood equations.

This convergence may be to maxima (local or global). or it may be to saddle
points.

9.5 Lagrange Multiplier Tests

The results for generalized residuals and for the maximum-score tests which
we developed in the chapter on the Tobit model can be applied to all the models
considered in this chapter. This cnables us to develop various tests for modcels
of simultaneous equations, and specifically, tests of exogeneity.

9.5.1 The Expression for the Vector of Scores

The model presented in equattons (9.1). (9.2}, and (9.3) belongs to a larger
class of models defined as follows:

(1) The latent model is a multi-dimensional Gaussian model:
Y5 e NIm (3, 0) S5 (0)], i=1.....n,

where the variables ¥~ ure independent.
{11} The observable variables are derived trom the latent variables over a known
transformation g:

v =g (¥}

In this type of maodcel it is an easy maitter to establish the relationship between
the score associated with the latent model, L.e. the score of the log-likelihood
equation log | #* {y*: t)] . and the score associated with the observable model ~
founded on log [F (¥: t)].
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Proposition 25: The observable score is equal to the predicted latent
SCOTe!

dlog|F (v: 1)) —E dlog [F* (¥, O]
at - at 'J

For a proof see Gourieroux, Monfort, Renault, and Trognon [GMRTR6].

This property allows us to obtain a simple formulation for the score statistics.
Assume we divide the parameters t into two groups, denoted a and b, where
the former enter into the mean while the latter define the variance.

The latent log-likelihood is:

fl

log [F* {y": t) — Z (— —i log (2m) ~ ; log {det [£2; (Y]}

=1

Lo, f
_EZ [3’}' — X, ﬂ)l 27 (b [}-‘j" — m{X;. a)]).
i=l
We dilferentiate to obtain the latent score. Letting &; = ¥y — m (x;. a) rep-

resent the latent error, we obtlain:

dlog[F* (y*, t)] dm (X al
da; (b} i

dlog[F* (¥". 01
HF)I

R . o 9% (b)
= zgﬁ{ﬁ" () [F ~ wyu; Q27" (b)] ™ }

2y

The observable scores are the predicted latent scores and are thus functions
of the observations over the fitted errors (generalized first-order residuals) and
over their squares (generalized second-order residuals),

Hogli (i 01 _ - dm (x;.a)

=1 b E ) ‘i)
C}ﬂ,." i=| daJ R
dlog| £ (v; t)]
db;
] H Q
:—E Tr{ﬁ,-_l(b) []_E(;u‘-uH}‘g (h)] d dbtb]}
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952 Tests of Exogeneity

Consider a two-dimensional simultancous equation model {cf. section 2.1). y3
may appear as an explanatory variable in the first equation (the equation for
¥}), and we may wonder whether or not this variable should be considered
exogenous. Considering this question within a context of limited information,
we have a model:

Vi, = ayy, + xb 4 ugg,

Vo, = X € + Zi¢2 + Uy,

where z; represents explanatory variables occurring in the second equation
and not in the first. The assumption that ¥, is exogenous constitutes the null
hvpothesis,

0 = cov (¥%, uu),
H.[]. .
() = cov (Hg;. HH}.

In order to facilitate evaluation of the vector of scores, 1L is of some interest
to parametrized the variances with:

ot - wll o
wll 2|
This allows us to reformulate Hy as:
w'? = 0.
The latent score associated with «'? is:
dlog [F* {y". )]
dew'?
o

1 o . ot il (2
T Yl ; 2 log [mllmz- = (@) ] * dewl? Z (=)

=1

x (J*’ﬁ —ayy — x,—bj (.‘r‘;} —Xi¢| — Z.ffz)..

4

2
: 2 wog T E Ui, .

wllwl? — (mlg) i1

The ¢bscrvable score, evaluated under the null hypaothesis, 1s thus:

Alog [F (y: 1)]
ijll

‘ ZAZEﬂ(HnHsz}L

e =0 i=1

where E, signifies that the expectation is taken under the null hypothesis. Conse-
quently, we see that the Lagrange multiplier test for the exogeneity of a variable
is based upon the generalized cross residual.
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The preceding expression forthe score can be simplified significantly, though.,
if the latent variable y} is observable. In that case we have:

dlog[F (y: 1)) .
= E il i
EPRE e f§=1 Ceeyel vid us

and only first-order residuals occur in the cxpression.

9.6 Models with Serial Correlation

Other general results can be obtained regarding correlation between the resid-
uals.

9.0.1 The Model

Assume that the latent variables fit the model:
Avi=xb+u, t=1...,T,

with error terms which are first-order auto-regressive:
4y, = Ruy .| + ;.

K 1s a matrix of values which are strictly less than onc and €, is Gaussian white
noise with covariance matrix £2.

The ohservable variables are derived from the latent variables by & mapping
independent of the index z:

. *

ye =g (¥).

In the cases we have seen so far, the function g has been a linear piece-wise
mapping.

9.6.2 A Testfor Seriaf Correlation

Before using this model, we may wish to consider to what exlent such a gen-
cralization 1s useful. To verify this, we need to test the hypothesis Hy : R =0,
and, if possible, do so with the simplest estimators (i.e. the estimators corre-
sponding to the null hypothesis being true). The Lagrange multiplier test allows
us to answer this question, it is based on the statistic:

= dlog[F (y: A, b, @, R)]

IR A=Ay b=Gy Q= Qur K=

where A, Barr, and €244, are the maximum-likelihood estimators of the
parameters under the null hypothesis.
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Calculation of the Lagrange multiplier statistic [GMT835] leads to the fol-
lowing test.

(i) Begin by cstimating the fitted errors under the null hypothesis:

i (v A b Q)Y =Eapo r—o(#:] ).

(ii) These predictions depend upon the unknown parameters, for which we
substitute their maximum-likelihood estimators calculated vunder the null
hypothesis, yvielding:

i, = (¥ Aper. Bur, Q).

(i} & 1s found by:

.
= (@)Y B @
a2

This statistic is asymptotically normal and, in consequence, can be trans-
formed to a test statistic with a x 2 distribution, given by:

T ‘rT —1
3 = (Z fir @fi":—-l) |iz (ﬁ'rﬁ;) = (ﬁflﬁz_l)j|

=2

S is analogous to the Durbin-Watson statistic, the difference being that the
latent residuals are replaced by their estimates given the observable variables.

Proposition 26: Let« be the dimension of the matrix R, and xgsq, (d”)
the 95% confidence interval for the x 2 distribution with ¢ degrees of freedom.
The Lagrange multiplier test for the null hypothesis, Hy : R = 0, consists of:

accept Hy, if S) < xZq (d7).
reject Hy, otherwisc.

9.6.3 Estimationof A,b

If the test leads us to reject the nuil hypothesis Ay : 8 = 0, we are left with the
problem of how to estimate 4 and b in the presence of serial correlation. Under
the alternative hypothesis the likclihood frequently has a complicated form
involving as many integrals as there are observations, This makes it impossible
to apply the maximum-likelihood method, even using numerical algorithms.



Truncated Variables in Simultaneous Equations 247

However, we may still achieve good estimates of A and » by making use the
following proposition.

Proposition 27: The maximum-likelihood estimators Az and Fare
calculated under the null hypothesis retain the property of consistency even in
the presence of autocorrelation,

For a proof see [GMTR85].

This generalizes our results for the probit model (cf. chapter 2). Notice,
however, that €24, is no longer a consistent estimator of £2, and that the usuval
formulas for the variances of A, and 3asr. do not obtain in the presence of
serial correlation.

Exercises
9.1 Consider three latent vanables defined by:
Yo = Xuby . A=1,2,3,
and the model of regime changes with the observed variabies:

{ J*'Te" ]f .}!;:' - [)‘

vy, ify: <0

R (). othemwise,

{ Lol yy = O,

Write the likehhood for this model on the assumption that the disturbances are
normally distributed. Under these conditions, can we estimate by from a regression
of y; on xy; for all § such that z; =17
9.2 Inthe following disequilibrium model supply, §;, 13 assumed exogenous and known:
Dy = a p, + Xy + oy,
Pr— o = ALD — 8, + ug,
QF — mil'l{D;.. S.‘!} .
The endogenous, observed varables are (&, and p,. Show that this model fits into
the framework of (9.1}, (9.2) and (9.3) and suggest several ways to estimate the
parameters.

2.3 Consider the model we examined in section 9.2.2, but now let the latent variables
be defined recursively:

¥ = X 4 ay,
J‘;E;' = ﬂ}?;} +Xg;b2 + oy,
¥y = Xaba 4w

Show that the two-stage estimation method can casily be gencralized to this case.
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9.4

9.5

9.6

9.7

9.8

9.9

Econometrics of Qualitative Variables

Discuss the problem of identification in the context of the model mn (9.1}, (9.2) and
(9.3). Verify that for the parameters to be identified they must be in equation (9.1).
Find the likelihood dcfined by the following latent vanables:

yio=mptu, i=1....,n k=123

where the disturbances u,; are independent and distributed N ([}, rrf) and where the
observable variable is:

yie- yg =0,
}?E = * o £
Yo, fyy = Ol

Confirm that the maximum of this likelihood is infinite.

Write the likelihood for the model in section 9.3.2 when the ermor terms (w7, ta;)
are independent over time and follow the same bivariate normal distribution.
Under the assumptions of the model in the preceding question, verify that the dis-
tributions of p, and §; — D, are normal truncated. Derive an estimator other than
maximum-likelihood lor some of the model’s parameters.

How would we write the model in section 9.3.2 if we only observe the gquantty
exchanged and the market price? Can all the parameters be estimated?

We wish to simultaneously study whether a family 1s a home-owner and how much
money they spend on housing. Let £y; = x;;by 4 1, represent annual expenditure
when they own their home, and ¢z, = Xy,bs + uy; the cost of renting. Assume that
the decision (o purchase, §; = 1, or to rent, {; = 0, is given by:

;= 1, ifl‘(],‘hj, + a1, = [],
"1 0, otherwise.

If you have observations on whether or not the household is a home-owner and

how much it spends on housing, find the likelihood for the model |assume that

(#y;. e, 1y ) are independent and distributed N (0, X)].
What information can be derived from testing the null hypothesis:

Fooccoviug, B2y = cov (o, 12y = 07



Appendix 9.1 A Model with Price Floors
— The Recursive Case

In models of agricultural production we generally postulate that supply is de-
termined by price from the preceding period, p, g, not by the current price, p,.
This creates a lag between the point in time at which the farmer decides how
nwich he will supply and the nme at which it actually arrives on the market. Let-
ung the disturbances of the supply and demand curves, uy, and w2, respectively,
be independent over time, the lagged price p,_; may be incorporated into the
explanatory variables X3, in the supply equation.
The model becomes:

Dy=a p, +xb) gy, ) =0,
S = X2:by + uz,
where r = 1. ... T. The observable vanables are D, 5,, and the market price:
[, = max (pf! ﬁ'f)
With |, and «, independently distributed N (0, s7) and N (0, 53} respec-

tively, the likelihood is:

I 5 T \
L="Tlogl{—ay—Tlog(2r)— 5 log (s7) — — lr.)g (.‘:‘:})
T
Z (dy — a1 pr —x1:b1)° — —2 — X2;ba)”

255

q.E
“lrl

where T\ designates the number of periods in which the market is in cquilibrium.
This log-likelihood can be decomposed into L = £ + L», with:

A T ,
L =T log(—a) — — ll::-g (2 — E]og (57)

—a pr — x1;by)7,

25*

=1
249
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and:
T
L= 5 log (2w) — — lc:-g (52 E (s, — x2,b2)7 .

Since I, depends only on a;, bj. and 55, and L3 only on by and s5. we
can easily find the maximum-likelihood estimators for these parameters by
separately maximizing the two functions. This is straightforward for £5. The
maximum-likclihood estimator for b2 (A1) is obtained by applying o.Ls. Lo the
supply cquation, and the estimator o is then yielded by:

T
1
;== > (s — X252
=1

To find the maximum-likelihoad cstimators of the other parameters
(a1. b1, s}, we begin by solving for sf, yielding:

T
1 .
ol (ay. b)) = - > (di —arpe —xib1).

t=1

Substituting a7 (a;, b)) for 57 in L, we have:

_ T i
Li(ay, ) =T log(—ay) — 3 Ingz (e, —a pr — x;;b1)? + const.
=1

To solve for b, we need to minimize:

T .
Z (d, — a\pt; — X1, b7,

i=1
yielding:
Biay = (X, X)X, (d —aip),

where X, 4, and p are matrices whose rows consist of x|,. d;. p;.
Substituting into LY {«), &), we obtain:

: T L ,
L (@) = Tilog (—ap) — 5 log t; (8, — all_[r]“} + const,

where 4, and [1 arc delined:
5 = [f — X (X, X))

[T = [f—)ﬁ (X;X])_
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d and I1 are none other than the residuals from the regression of  and p on the
columns ot X .
Finally, it remains to maximize L9 {a,). The {irst order condition is:
,
_ [1, (5, — a 1_.[]) T]
TZ’—.}. e o ]2 + — =0,
S 8 —aT)) ay

The maximum-likelihood estimator of a4, ), 1s the solution to the second-order
equation:

. )
G (N =Ty Y T +a (T =21 Thé + T 8 =0.

t=1 t=1 i—=1
Ignoring the classical ¢ase of the equilibrium model (7} = 7)), we may
assume that 7, — 7 < (. Consequently, the roots of the equation are real and
of opposite signs, The negative solution is:
_@h =73, TLé + VA ALD
2 -y, 12

oy

with:

T 2 - .
A= (T —27))° (Z 1'[,6;) AT, (h = T) Z s
=1 =1

=1

This solution corresponds to a maximum of E‘I, since it 1s strictly concave in
o) = .
In summary, the following steps yield the solution:
(i) apply ordinary least squares to the supply equation to obtain 8; and o
{(ii) regress d on X, and derive the vector of residuals §.
(ii1) regress p on X, and derive the vector of residuals F1.
{iv} calculate «r; by means of the formula (Al.1).
(v} finally, find 8y and 012 by regressing the vector & — o p on the columns
in X1 .



10 Simultaneous Equation Systems
with Truncated Latent Variables

10.1 The General Model
10.1.1  Description

The most general formulation of simultaneous equation systems with truncated
latent variables is obtained when these variables are introduced into the equation
system (9.1). The model is still defined on the basis of a set of latent values ¥*,
and the observed variables are related to the latent variables over:

y=0Dyv"'+d,, ¥y el. k=1.....K. {10.1)
The defimtion of the latent variables ts now written:
A¥Y*  + Ty = Xb 4+ u, (10.2)

Latent and observable variables are simultaneously defined, each in terms of
the other. The mode! of equations (9.1}, (9.2}, and {9.3) is a special case ol this
one, resulting when we set [0 = 0.

112 The Problem of Consistency

Bearing the foregoing obscrvations in mind. it is still of some interest to dis-
tinguish this model from that discussed in the previous chapter, In fact, this
new formulation introduces an additional difficulty. The model in equations
(9.2}, (9.3), and (10.2) does not permit us 1o express the observable endoge-
nous variables, ¥, interms of the exogenous variables and the disturbance terms,
Comnsequently, the model does not define the values assumed by the endogenous
variables, and hence is incomplete. In the standard terminology of simultaneous
equation madcelling, this system does not always yield a reduced form.

To obtain a reduced form we must express the latent variables in terms ol
the exogenous variables and the errors, This 1s accomplished by replacing y in

252
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equation {10.2) with an expression in ¥*, yielding:

K
AY' +T ) (Diy* +di) 2= Xb+u,
=1

where:

[, ify* ed.
0, ify* ¢ Cy.

]

We sce that the reduced form exists (i.e. that the mode! is consistent), if and
only if:

K
Ay + T Z (D;,L-}** -+ d,e.;) Z
k=1

has an inverse.

Notice that this relation is picce-wise affine — hence the equivalence between
consistency and invertibility. Before investigation the model’s consistency fur-
ther, we shall demonstrate the existence of relatively simple formulations which
are not consistent.

Consider the bivariate qualitative model defined:

* L)
¥ = a1yt oy,

. {(10.3)
v, iyl = 0. yi. ify) =0,
¥ —_ Y =
- 0, otherwise, 72 0, otherwise. (10.4)
We see that:
(i Ty =a» = 2,4, > 0,142 > 0and u; = u2, no solution extsts for ¥y

and y,. Assume, for example, that v, = (. The first cquation 1n (10.3)
reveals that y¥ > 0 and, in consequence, y' = v;. Substituting back into
the second equation of (10.3), we sec that ¥7 > 0, hence y2 > 0, which
contradicts our assumption. By symmetry, y; > 0.

We now examine the case of both variables vy and v, assuming strictly
positive values, v, and v» solve for:

¥1 =2y +uy,
¥2 =2y + u1,

implying ¥y = v2 = —u; = 0, contradicting the specification that uy = (.
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(ii) Another type of difficulty arises because this model may yield more than

one solution. Letting @) = a; = —2 and 4| = 42 = 1, we see that:
11
(5. 3)
(_]a i}

are all solutions.

Turning now 1o a morc thorough study of the model’s consistency, we substi-
tute the expression for the observable variables in terms of the latent variables
into equation system (10.3), yielding:

* I*" —
¥ — ¥z = Hy,
}’ﬁk _"GE}’TZI = M,

where;

0, ifyf <0, .
7 ={1,2}.

L. if y; =0,

The piece-wise linear relation is;

(_;z _fll), if y7 > 0, and ¥} > 0<% ()7, ¥3) €y,

(é —1611>, if y) =@, and ¥ = 0 & (yf,y;‘) e {3,

1. 0 - - )
(U. l)’ if v < 0, and y§ <0< (37, ¥3) € (s,

(—]ﬂ{g {1}) if yj = 0. and 33 < 0 <& (3], ¥3) € (s,

and we must verify that each of these does indeed have an inverse.
The four cones Cy, C;, (3. C4 are transformed by this relation to C; . C5, C3, Cj.
These are, respectively, the positive cones generated by the vectors:

() () (0)-()
(o)) () ()

Several possibilities arise:

(1) If @) » O and a; < (}, the cones look as represented in figure 10.}.
Since the C}-s are disjoint and cover real 82, the relation is one-to-one.
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(*)

D

(3) i

Fig. 101, g = 0,a2 <= O

()

£
1
NID s
N’

D

| c'\’ c,
() s 4

Fig. 102, ¢y = 0,3 = 0. ayg92 = |

(i1} The case of @y = 0 and a» > 0O is symmetric and the relation is still a
bijection.

(i1 oy > 0.4 > Gand ajay < 1,
the relation is again one-to-one {cf, figure 10.2).

(iv} The situation: &, <= 0. a2 < 0, and g¢1a> < 1 is analogous.

(v If e, > 0,42 = 0; and a,4; = L. the relation is neither one-to-one nor
onto. The cones may have non-empty interscctions. and hence multiple
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Q

0 Ci Cs c,
o
-1

Fig. 103, ay > 0,42 = O, a4y > 1

solutions (y7, ¥3) for some values of (yi.y2) arise. Conversely, their
union will not equal &2, implying that some values of (¥, y2} have no
solution, as in figure 10.3

(vi) &y = 0,42 < O, and eya> = 1 is analogous to item (v).

To summarize, the linear piece-wise application is not one-to-one unless ¢ a; <
1, and constraints must be imposed on the coefficients to ensure the model’s
consistency.

10.1.3  Consistency Conditions

These conditions have been made explicit for two cases of practical importance.

Proposition 28: Assume that the regimes {; are defined by the con-
straints a;y* > 0 or a;y* < O, where j = 1,...,J, and that the a;-s are
linearly independent. Consider a linearly picce-wise continuous function with
matrix A for each C;. The function has an inverse if, and only if, the determui-
nants of the matrices A, all have the same sign.

For a proof see Gourieroux-Laffont-Monfort |[GMTR0].

In the example, we see that the determinants of the matrices are 1 —aya2. 1, 1,
and 1 respectively, vielding the consistency condition 1 — ayas > 0, which
corresponds to what we found geometrically.
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The other case for which we have determined the necessary and sufficient
consistency conditions pertains to models in which the variables y from equation
( 19.2) are equal to the qualitative variables associated with the latent variables:

-
¥ = |? lt'}.f}U'
! 0, otherwise.

Proposition 29: The model in equation {10.2) 1s consistent if, and
only if, it is passible to reorder the variables so that the matrix A~'I is triangular
with zeros on the diagonal.

For a proof sce Schmidt {Sch78].

This condition is equivalent to the assumption that equation system (10.2)
is recursive. There exists one latent variable. y1;, which can be expressed as a
tunction of only the exogenous variables and a disturbance term: a second one,
¥a;» which is a function of the exogenous variables, the disturbance term, and
¥i;+and a third, vi;. depending on ¥7.. y7,, etc.

An application of this proposition is given in section 10.2.2.

10.2 Some Exampies
10.2.1  An Agricultural Model

This model was proposed by Quandt to describe the melon market in the United
States. Markel demand, £3,, is expressed as an inverse demand curve:

pr = a1 D +x,b) + uyy,

where p, 15 the price of melons and x;, a vector of explanatory variables. Supply,
3. 15 a flunction of the quantity available, &,, and of the quantity of melons which
suppliers actually want to scll £,. &, depends on:

(1) market price at the time of seeding (p,_;) ., and
(i) climate.

In other words, &, 15 determined strictly by exogenous and lagged endogenous
vartables:

ke = X b + uo,.
while £, depends on the current price and other explanatory variables:

£y = azpy + Xa b3y + Uy,



258 Econometrics of Qualitative Variables

Supply, S5;. is defined as the minimum of &4, and £;:
S, = min {k;. £;),

and. finally, the market i1s assumed in cquilibrium, so that:
O, = D, = 5.

This model contains six latent variables p,. ., £,, D,, 5;. and @,, the only
observable endogenous variables are p, and the quantity exchanged, O,.

In order for this madei to make sense, the endogenous variables {observed
or latent) must be well defincd. Since O,, D,, §, are functions of £, and £, 1t
is sufficient that we be able to express each of py, &, £; as unique functions
of the exogenous variables and the disturbance terms. The resulting system 15
described by:

pr = aymin{k,. £,) + X by + uy,,
ke = xo:bo + by,
£y = azpr + X3, ba + us..
This model comprises two regimes C; and €5 such that:
Ci = {k = &}
Cz = {kr = fr}+

Under regime C; we have:

o X b+ oug, 1 0 —a
Al &k | = xb2+ 42 |, where Ay = 0 1 0
£, Xy, b1+ Uy —ily 0 1
and under C»:
P xub +uy | —a; O
A- | & = | xybr+us |, where 42 = 0 1 0
£, X303 + way —dy 0 1

The consistency conditions [cf. equation (10.1}] are satsfied if det (4,) and
det (A;) are of the same sign, that 1s:

det{A;)-det{As) =1 —aa3; = O

When this condition holds, we can unambiguoeusly find the reduced torm and
derive the likelihood of the observations from the Jacobian.
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10.2.2 A Madel with Transiations

Various economic phenomena can be explained by a model of the following
type:

¥i; = XDy a5 ey ug.
va = Xoibo + a2 y); + ooy +

boif oy, = 0,
¥y = ;
' ). otherwise.

Thus, for exampie, v§; and v3; could represent quantity cxchanged and price
in an equilibrium model. The two equations would then be the supply function
and the inverse demand function respectively. When price y3; exceeds a certain
ceiling {zero here, but any constant value is possible) the government intervenes.
This intervention may take the form of subsidies to economic agents to induce
a shift in the supply and demand curves of ¢ and ¢3.

This model satisfies the assumption of proposition 29. Expressing v, and
v3; as functions of y;;, we have:

v, = ———— (0 +a162) ¥au
| — aya»
1 By oo
+ ——— (Xiiby + @1 Xoibh2) + ———
i — 1az 1 — aya»
* = b L]
vy = ———— (az2¢; +¢2) ¥y
l— aa;

1 aadty; + Mo
~= (@aXiibh + Xoiba) + u
i— e 1 — ayin

Clearly, this system is recursive if, and only if, the cocfficient of y»; in the
second equation is nil, i.e. if a;¢] + ¢; = 0. Here, in contrast to in our previous
example, the condition appears in the form of an equality (as opposed to an
inequality). We derive another expression of this condition by writing the matrix
AT with the variables ordered (y7,. ¥3,):

]

1 0 1—erqcen
AT =
(} L (arey + ¢2)

| —arqen

() +ac)

or in the order (_vi—._ yﬁ-):

- e .
A-TE = | e (21 +e2) ¢ (c1 + ajea)

0 0
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The condition a2¢7 4 c2 = (¢ ensures that at least one of the matrices (in this
case, both} 1s triangular with zeros on the diagonal.

10.3 A Disequilibrium Model of Two Markets
10.3.1 The Model

This section focuses on a generalizalion 1o the two-market case ol the dis-
equilibriuvm model. This will allow us to describe the impactl on one market of
quantity constraints on the other.

Consider the standard model of a market for one good, a labour market, and
two agents. The consumer acts as a buyer on the goods market and as a supplier
on the labour market, while the firm supplies the good and demands labour.
If demand for the good is insutficient the firm faces rationing in its supply of
the good. being unable to produce and sell all it wants. Conscquently, it hires
less labour than desired, imposing rationing on the labour supply side in turn.
Clearly, disequilibria in the two markets are not independent.

Disequilibrium market models are generally constructed on the basis of the
notions of ¢ffective demand and supplv. Several definitions exist for each of
these concepts, and we shall use those which generate the simplest econometric
model {cf. Gourleroux-Laffont-Maonfort | GLMR(| for a model based on another
definition).

In our model the ettective demand and supply schedules are those desired by
the agents when they account for rationing on the other market. Let ¢ {{J»)
represent the quantity exchanged on market one (two), assumed to be the min-
imum of the desired amounts:

@1 = min (D, 5y),
QQ = min (Dg. Sg}.
The agent who demands on market one i1s squeezed by the quantity constraint
(J» on market two. His demand, considering this constraint, 1s given by:

Dy =a1 (O +x1by + 1y,

where the X, -5 are exogenous variables. The other demand and supply sched-
ules have analogous forms. Introducing the date of the observation, 1. into our
notation, we have:

Dy, = a| Qs + x,by + uy,,

St = a3 Qo + X b + 1z,

Da, = a; Q1 + xa by + v,

82 = .{I%Q“ + x4:by + 1y,
wheret =1,....7T.

{10.5)
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Q1 = min (Dy,, Si).
(22 = min ( Dy, 5ap). (10.6)

The constrained market impacts on the other market over the coefficients

al, ai, al, a3, called the cross-over coefficients. This model allows for four

possible regimes at any given point in time, depending on whether or not each
market is characterized by excess supply or by excess demand.

10.3.2  Interpretation of the Consistency Conditions
Equations (10.5} and (10.6) vield:

Dy —a; min (D2, Sy} = x1,by + uyy,

S1; — ay min (D, S3,) = Xo;ba + uz;.

s — ﬂ'lz min (q,. 51,) = X1, b3y + 13,

S5 —aimin (D, $11) = X4/ ba + 4.

The LHS appears as a mapping, g, piece-wise lincar and continuous, onto
(Dy,, 8y D2, 520 . The mairices generated by g for eachregime are as follows:

1 0 —a; 0
0 1 —az' O
for Dy, = &, and Dy, < 89, 1 A = \ ,
—a; 0 1 O
-—a% 0 0 1

for D“ = S]; and .Dg; =g Sg; . AQ =

o - O O
|
s
[

for D” = 51; and Iy = 51; N Ag = (

Lo S e B e B

|}

L R

bdba —pD

o o= D O
|

- 2 oo
ld e — pm

1 0 —aj 0
1 0O 1 —al ©
for Dy, < 8;,and Da, < 83, 1 Ay = 0 —a? 1 0
0 —a; 0 1
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Application of proposition 28 yields the following expression for the consis-
tency condition:

1,2 12 12 12

Il —ayay, 1—wa;y, | —asa;. 1—asa;,
must all have the same sign, This condition is thus a function of the cross-over
effects. Of these expressions, two involve only coefficients of the same agent:

P2 1,2

The usual assumptions about the concavity of utility functions imply that:

1 --alla;': >0 and 1 —aéalz = (.

Consequently. the two other expressions | — aaf and 1 — alas must also be
positive for the consistency criteria to obtain. It can be shown {cl. Gourieroux-
Laffont-Monfort [GLMS0]} that the constraints 1 —a|a; > Oand | —aja; > 0
are necessary and sufficient conditions for the stability of a quantity adjustment
process.

Finally, notice that the consistency conditions which ensure the existence
of a reduced form correspond, in terms of economic theory, to necessary and
suffictent conditions for the existence of a unique equilibrium with a fixed price,

10.3.3 A Model with Endogenous Prices

We can expand the model in equations (1(1.5) and (10.6) by adding the following
price adjustment equations for each market:

My — Py = A 0y — 510), Ap = O
Ple — Pu—1 1 (I, 1:) ‘ 1 (10.7)
Pu — Pau. i = Az (D — 52), Az = O

As n the single equation case, this modification allows for the use of simpler
estimation methods while facilitating a generalization of the model to include
equilibrium as the limit case (A = 42 = +00).

The parameters of these equations can casily be estimated using mstrumental
least squares. We simply write:

Ql: = Dy + (5, — DIJ)ZS.,ED”-,

Q]: = Sl: + {DH - S]r) (] - Z.'_f]_-‘_:ﬂl_.)v

2 = Doy + (S5 — D) 2y, <p., .

Qu = S + (Do — 52) (1 — 25,25,
where:

0: ]f SE!‘ E Dzn

& i
1, otherwise,

+
5

=, =
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Equivalently:

]
Qi = a] Oy + X1/br + ™ (Prle-t — Pu) Zpoop, | T Hiss
.1

|
Q1 = asQy + Xarby + 3 (P = Pra—1) (1 = Zpyepy, o)+t
1

5 1
Oy = ay Oy + Xahy + ™ (P2e—1 — P2 2o,y + H3e,

lﬂ
QEF — a%er —+ x4rb4 + }L_z (P]r - Plr—l) (] = P |) + 4y,
where:

i B 0, if pyy = pro-.
TPEEPLCS T ], otherwise,

The first of these equations relates the endogenous variable ¢, to the ex-
ngenous variables Qs , (p” — _-’-’1_:—1) o~ Ples P2 and to the exogenous
variables in x;,. (Notice that p, and p2, may occur in X ). The parameters can
be estimaied by two-stage least squares.

10.4 Aggregation of Disequilibrium Markets

The disequilibrium models we introduced in chapter 8 and section 10.3 derive
directly from the microeconomic theory of fixed prices, but they are estimated
using macroeconvmic data. lmplicit in this approach is the assumption that
within each market the quantity traded is equal to the minimum of the amount
supplied and demanded. For a given period ¢ (almost) all agents must be in the
same regime. Now, we can clearly sce from the data in section 6.5.2, derived
from business cycle surveys, thal this is rarely the case. In this section we
shall turn our attention to the definition of more malleable specifications which
explicitly account [or aggregation, and derive a model incorporating continuous
Iransition from a regime in which all suppliers are constrained to one in which
this is true for all buyers.

1.4, Aggregation with No Crossover Effect

Consider a good which 1s simultaneously exchanged on several markets, in-
dexed {,{ = 1l....,n. Demand on market i 15 denoted £3;,. and supply 3;,.
The quantity traded at a given time is ;, = min ({X,, 8;;). Assumc that there
is no cross-over effect between markets: a buyer whose demand is nol met in
one market cannot make his purchase on another markel. Under this arrange-
ment, excess supply on one markel can simultaneously coexist with excess
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demand on ancther. This structure allows us to derive a model with a number
of macroeconomic features.
Global demand is given by:

D=3 Du.

i=1
and global supply is:
H
Sf - Z S'jf.
i=1

The aggregate quantity exchanged is:

Qt = Z Qir-

i=1
which is different from:
min (D, $) =min { > Die. 3 Si
(=1 =1

when markets characterized by excess demand coexist with markets in excess

supply.
Let the proportion of markets in excess supply be:

n
P = — R VIR SO
Fi it it

i=1
where:

L o [},, ifS!'r = DI'I1
28,0 1, otherwise.

Unfortunately, this macroeconomic formulation is not very tractable. One
way to simplify it is to let the number of markets » tend to infinity while cach
individual market becomes infinitely small. We write:

dl'
Dy = -,
f?
&
S“‘ - _ra
fl

and postulate that the empirical distribution of the variables {d;;, s;;).{i =
l,....n tends toward a density function f; {d. ). This formulation has the
effect of incorporating the macroeconomic variables (for example, the price,
p¢) into the moments of the distribution, and the microeconomic differences
between markets into the density function.
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Duantily
&

/\

Fig. 114, Quantity exchanpged and regime switching

-
Price

i

As n tends Lo infinity the macroeconemic variables, whose observed values
are the empirical means, tend toward the theoretical means associated with the
linmting distribution f,. Denoting the expectation of this distribution E,, we
obtain:

D, = E; (d),

S = E; (s},

0, = E, min{d, 5),

I, = E‘r {(Zynd) = £ {5 = d)-

Example 9: Consider the case in which the limiting distribution is
normal with mean:

D, = E, (d),
S, = E (s5).
and with the second moments given by:
cr,?‘ = var, (d).
U]‘j‘ = var; {5).

0 = cov, (d, x).

Using our results from seclion 8.1.2. we sce that the quantity exchanged is:

, — D ,— D o~ D
0. =5 —o [T Pre (22 +y (222,
o a o

with o2 = {T[z -+ rfi When D, and §; are linear functions of the price p,, the
graph of the expectation 1s the same as it was in that scction. but it now has a
diffcrent interpretation:
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The graph of the gquantity exchanged is strictly below that of the function
min (£, §;), representing a continuous transition from a situation in which
all buyers are constrained (p, — —oo) to one in which all suppliers are
{p: — +00).

Example 10: Clearly. we can postulate other [unctional forms for the
limiting distribution. yielding different equations for the guantity exchanged.
For example, using the C.E.S. function, we find:

QrZ(D:-F-S;')&. Fo= ().

In the hmiting case: ¥ — —o¢, we revert to the model 2, = min(f,, §,} —
increasing values ol » imply a greater degree of aggregation (ef. exercise 0).

10.4.2  Aggregation with Crossover Effects

The approach we have just examined can be generalized by introducing of
the possibility of cross-over effects between markets. This implies that some
buyers and some supplicrs are active on more than one market simultaneously,
and suggests that we must examine the allocation of rationing among agents.
This case was studied by Gourteroux-Laroque [GL83].

Assume that economic agents (for example buyers) are active on all markets,
and that their demand schedules are linear functions of the constraints, This
entails constraints on the cross-over effects — constraints which are analogous
to those we derived as consistency conditions. When these are satisfied we can
demonstrate the existence and unigqueness of an cquilibrium at a fixed price. In
conscguence, itis possible to obtain an explicit expression for the quantities O,
and the proportions IT,. These expressions depend on the distribulion of excess
demand ¢ = o — 5 between the markets. Let ¢, = I}, — §; be aggregate excess
demand, o be the variance of ¢. F the distribution function of the associated
normalized variable, defined by:

and g the function:

gD =E (a2, p—(1-m).

where:

o Mu—Fla-m=o,
Ju—p-1-11 1, otherwise.
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sSolving the system for @, and I, yields:

€ )

— =[x (M) - TLF LA -0

+o [gMy+ (L —T) F (L —TI,)
—F =1, (10.8)
Q=D —(l—-cyo[gT) —L,F " (1 —11,)],
=8 —(1—¢)o[g(M)+ (1 -0 F {1 —Nyj,

where ¢ and ¢’ are cross-over effect coefficients for buyers and sellers respec-
tively, These coetficients are constrained by the closed interval ¢, ¢ € |0, 11.

In the simplest case, with D, and §, linear functions ol price p, (the for-
mer decreasing, the latter increasing). it can be shown that the graph of @,
as a function of p, is concave and asymptotically approaches the supply and
demand curves {cl. excrcise 7). Tt is thus analogous 1o the curve obtained in the
aggregation model with no cross-over effects,

Iris also of some interest to examine the evolution of this graph under differing
specifications of the cross-over effects.

If ¢ = ¢ = 0, there is no cross-over clicct and we revert to the model
of section 10.4.1. Increasing values of ¢ and ¢ yield a graph approaching the
functionmin (5, ;). Atthe limit the graphs merge, indicating thal agents move
freely between markets.

10.4.3  Estimetion

Giiven a formulation like the one in equations (10.8) , it is possible to simulta-
ncously estimate the parameters of the supply and demand equations, as well as
the coctheients of the cross-over effects. These coetficients can only be found
to within a scale parameter, as they appear solely in the expressions (1 — ¢) o
and (1 — ') o. Consequently. itis not possible to separate the cross-over effect
from the variance (o?) of the excess demand equation.
If the supply and demand functions are written:
Dy = pr +x0b) + 1y,

S, = axp, + X2 b + 1y,
we can substitute into equation {10.8), yvielding:
Q= -1 =)o [¢) —TLF' (1 = | +a p: +xi:b + w0y,

O =—(l—cYo [gM)+ (1 —T,) F~' (1 — )|
+ a2+ Xg,hg =+ i,
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When (J, (the quantity exchanged) and T1, (the proportion of markets char-
acterized by excess demand) are both observed, it is possible to estimate the
parameters using two-stage least squares or maximum likelihood. If ), and u>,
are independent and follow a normal distribution with mean zero and varance
ol and o, the likelihood is given by:

T
eQ.m =] .,

=1

where:

1 { Q1+ (1 —cyo [g L) — AL, F " (1= T1) - ayp, — %,,by ] }

L g¥ 20 L)

o

{Q, +{l —cYe [¢ M)+ (1 - 03 F 11— 0] —ap. —xg,hg}
)(,g) .

with the Jacobian:

a
FIF 11— T

[(1—e) T, + {1 —¢") (1 —T1)].

Jf:

If only the quantity cxchanged is observable we must integrate over [, to
obtain the marginal distribution of €. Usually, this must be done numcrically.

10.1

10.2

10.3

10.4

10.5

Excrceises

Find the likelihood of equation system (10.5) and (10.6). Do you think that this
likehihood is usable if the prices in x,,. ..., X4, arc endogenous?

Under the assumptions in (10.5) and (10.6), find the probabilily of being in each
regime. When do we have:

PI‘{D” =, Lg“-, D}_‘J - .5‘2_;} — PI'I:D“ < Sl:)Pr(DZr = S:{]?

Consider the system (10.5), (10.6), and (10.7) with the prices explicitly included
inX;,. X5, Xs,. and X4,. Show that the model can be rewritlen in terms only of the
differences betwecen actual und equilibrium quanuties and actual and equilibrivm
prices.

From the preceding exercise. show that the price adjustment cquation can be wntten
exclusively as a function of current and lagged prices and of the equilibrium price.
Venity thal this equation is a piecewise lincar recurrence tunction.

Consider the model in equations {10.5), (10.6) and {10.7), and assume that the
values of the exogenous variables and the disturbances are known. Show that there
exists a onc-to-one relationship between D3, 8. Db, 5 and Q. Un. P P
(don’t forget that prices may occur in X, ..., X ).
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10.6 Assume that demand and supply follow a Weibull distribution with coefficients of
proportionality  and s:

Fx) =ax® "exp(—x") 2,0

We have:
D,
7
i -ﬂ\_,.:. f
&y

Assuming independence between D, and 5, calculate E {((2,) as a function of 4,
and &,. Verify thal the resulting equation is of the C,E.S. type. [cf example 10}
1L7 (a} Show that {c[. section 1(.4.2)
dg (1) -
= F7 {1 — I}
AT { }
{b) Find the denvatives of:

— o [g (M) —NOF ' (1 — D]

+d [gM+ A -MFa-I] - F "(1-1),
and of:

g (I — NF (—T1T).
What are the signs of these detivaiives?

(c) Draw the graphs ot IT as a function of p and of  as a function of p for D
and § linear functions of p.

10.8 Show that [T, and Q, tend toward limits as o tends toward zero (or as o and «
tend toward onc). What are these limits? Interpret your results.



11 The Econometrics of Discrete
Positive Variables: the Poisson
Model

11.1 Introduction

Data describing economic behaviour ofien consist of variables assuming a small
number of positive values. For reasons analogous to those given in the intro-
duction to chapter 2. the classical linear model is inadequate for the study of
how these variables depend on other quantitative or qualitative variables: the
scatter of observations is i1l suited to a linear fit; the assumption of normality
appears unjustified as the variable takes a small number of values (and does so
with strictly positive probabilities); the predictive equations may, in fact, yvield
values which the variables cannot assume, ete.

The formulations proposed in the literature (El Sayyad [Say73]. Lancaster
[Lan76], Gilbert [Gil79], and Hausman-Hall-Griliches [GHHE&4]) postulate that
the discrete variable tollows a Poisson distribution whose parameters are de-
termined by the exogenous variables, This distribution is clearly justified when
the variable in question describes the number of occurrences of an event during
a given time span and, of course, when all the usual assumptions underlying a
Poisson process hold. The model 1s useful. for example, to deseribe how many
Hights will armve at an airport on a given day as a [unction of the date: how
many work-related accidents will occur in a firm as a function of the character-
istics of that firm; the number of bankruptcies in a given industry, how many
patent applications will be submitted in a given year (Hausman-Hall-Griliches
[GHH84[), etc. This simple type of structure can also provide a good first ap-
proach to describing variables which do not fully meet the conditions of the
Poisson model — particularly cases in which the assumption of independence be-
tween the present and the past does not hold. Thus, for example. i has been used
to explain the number of times individuals chunge jobs over the course ol a year
{Gilbert [Gil797).

270
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11,2 The Simple Poisson Model
11.2.1 Description

Let v, i = 1. ... n. represent # observations on the discrete variable assuming
values in V. In the simple model we assume that each of the variables y;
are independent and follow a Poisson distribution with parameters 4;. These
parameters depend on the values assumed by K exogenous vanables: X; =
(X1 ..., X)) over:

A = exp (x;b).

X
= exp Z-x:'kbk :
k=1

where the b, -s are parameters.

The choice of this functional form to relate the parameters Lo the cxogenous
variables is justified in large part by the need to ensure that the values ol 4; are
positive. We cannot. for example, usc a lincar [ormulation, A; = X;b, as this
requires imposing the constraint x;b = O, ¥/, on the parameters, which may
very well Iead to inconsistencies. Furthermore, when the x; -s are the logarithms
of cconomic variables, x;; = log {X;;). the parameter by is defined by:

_dlogE ()]
i 10{:’ {Xe'.fc) ‘

and can be interpreted as an elasticity.
The mean and the variance of y; are »; = exp(x;b)}, and the probability
associated with an observation 1s:

- - ¥
EXP{—Af) A;
\7 '

Fi -

£ =
The log-likclihood of the model 15 thus:

L(y:b)= Zlﬂg [£{¥i)],

i=l1

i F e
— — Z}h,- + Z v log (A;) — Z log (¥ 1),

i=l1 i1 i=l1

— — iexp (x;b) + i}‘ixih — ilﬁg(}’f!}-
i=1

i=1 i—1

Notice that this function 15 concave in b.
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11.2.2 The Maximum-Likelihood Method

The parameters of these equations can be estimated using the maximum-
likelihood method:
oL  ,
5h = 2% [exp () — 3] = 0.
=1

This equation reflects the orthogonality between the explanatory variables, x; .,
and the residuals of the estimation, exp (x;h) — y;.

Due to the strict concavity of the function £, the solution to this system
of equations (/) assuming it exists (cf. exercise 7), is unique and defines a
maximum. The Hessian is:

A%,
adbab’

= — Zx;x,- exp {x;b).

i=l

From this expression we can derive the asymptotic variance-covariance ma-
trix of the maximum-likelihood estimator:

n —1
{;E‘i}asy (ﬁ) — [Z XEXI' cxXp (Xnﬂ]] . (11.1})
=1
This model is easy to work with. In particular, the fact that it 1s strictly concave
enables us to use standard maximization algorithms. Notice, incidentally, that
when it contains a constant term, l.e. an exogenous variable equal to one, the
likelihood equation becomes;

n

3 [exp By — x| =0,

=1
implying that the mean of the residuals of the estimation 15 zero. Comparison

of numeric estimates of this mean with zero thus provides a useful measure of
the precision of the algorithm.

11.3 The Poisson Model with Stochastic Coefficients
F1.3.1 Description

The formulation we have just examined suffers from the limitation that, for a
given X;, the variance of y; cannot be determined independently of its mean. To
avoid this difficulty we reformulate the model to include an additional random
element;

i = expi(x;b+ &)
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This additional source of randomness, g£;, captures various specification
errors in the parameters A, — such as omitted explanatory variables which are
independent of x; — and we must be careful to distinguish this term from the
initial error term. This latter reflects the fact that our observations on the data
comprise an underlying stochastic element, while the former pertains to the
randomness of the coefficients in our new model. To solve this model it 1s nec-
essary to integrate over &£. The distribution of y;, conditional on x; and &;. is
P (A0, from which we can derive the distribution of v; conditional on X;:

£ (¥) / exp [—exp (x;b + &;}] [exp (b + £0)] " g (51) de;
- Vil =
# }’r'I
(L].2)

where g i1s the density function of £;. If the ;-5 ure independent and 1dentically
distributed under g, wc sce that the log-likelihood is:

L"(y;h, g) = Z log [€* (3)].

i=]

The expression for L* clearly depends on the chosen distribution g of &, and
only when exp (£) 18 assumed to tollow a gamma distribution does it have a
simple torm.

11.3.2  Integration with Respect to the Gamma Distribution

Notice that if theé model containg a constant term, we can always transtorm
the error term such that the mean of exp (g;) is equal to one. Letting the dis-
tribution of exp (g) be gamma with mean one and variance n°, the density
functien 1s:

Integrating according to equation (11.2), we obtain a negative binomial distri-
bution for £* :

o) remem]”

r #) v, +1) [1 + plexp (x,-b)] yel i

£ =



274 Econometrics of Qualitative Variables

Now, the usual procedure 15 to maximize:

H

L* = log [£*(x)].

i--1

with respect to the parameters b, °. Unfortunately, therc arc two problems
associated with this procedure:

(i} Solving the likelihood equations and estimating Lheir variances requires
calculating the first and second derivatives of the gamma function numeri-
cally.

{i1) The estimates thus obtained are no longer well-behaved if the truc distn-
bution of exp (£) is not gamma.

In consequence., we need to find estimation methods for the modcel with
stochastic coefficients which are simpler to apply and yield consistent estimators
for any distribution function g with mean one and variance n°.

11.3.3 Calculating the Moments of y;

As in the case of the classical linear model, it seems natural to search for methods
which only involve the first two moments of the endogenous variables. These
maoments are easily found by decomposing the distribution conditional on &;.
Assuming a specification error, £;. such that:

= E [exp (&) .

[
|

1n° = var [exp [Eg}],
we see that:

E () = E[E(»|eh
=E [cxp (x;b + E;)] .
= cxp (XM E [exp (£,}],
= exp (x;h).
Similarly:
var (v} = E|var (y¢] &)1 + var [E (] )],
=E [exp {x:b + Eg]} + war [exp (x; b + E;}] .
= exp (x;b) E [exp (£:}] + exp (2x;b) var Texp (£;)].
= exp (x;h) + ne cxp (2x;b).
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Use of the ervor term &; permits us to mtradoce the supplementary parameter
7”. and consequently the mean and the variance of y; can vary independently,
subject to var {v;) = E ().

11.3.4 Some Estimation Methods

Various consistent estimation techniques which rely only on the first two mo-
ments are available. Here we shall present the main ones along with the respec-
tive asymptotic covariance matrices of the estimators. The proofs of conver-
gence and asymptotic normality can be found in Gourieroux-Monfort-Trognon
[1980].

.34 1 The Ordinary Least Squares Method
The estimators (3555 and ﬁ?)r,s are obtained in two stages. Bp; 5 18
detined as the selution to the minimization problem:

i=1
We take advantage of the particular form of var (y;) to estimate 5
var () = exp (x;b) + 57 exp (2x;b).

Denoting &i;; = ¥, — exp (X; BoLs). we estimate > by the coefficient of the
regression of &7, — exp (x; Bors) on (2x;B801s) , that is:

A2 > [f i —exp (K@ﬁm,sﬂ exp (2x; 30 5)
fors = Y exp(dx: Bory) ’

These estimators are consistent. The asymptotic variance of 3q, ¢ can be
estimated by:

i
— -1
Varﬂ.\'_]»’ UBULS] = Z K:Kg CAp (ZX!'.'@UJ’.S)

=1

[ n
x ZX:X; exp (2%, 80Ls)
L i=1
x [exp (x1Bors) + ngrsexp (2x:F0cs)]
1

cn
. Z X;XJ' exp (inﬁtj[.g) . (l 13)
Li1
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11.3.4.2 The Weighted Nonlinear Least Squares Method

The procedure in the previous section can be improved if we take into
consideration the variances of the observations in our estimation of b, yielding
a two-stage procedure, The estimator, 3,., 1s the solution to the problem:

[}?; — CXp (:«:gh)]2
Bors) + ihrsexp(2x;Fors)’

H
min
b ,Z=1: exp (X;
while the estimator for #° is:
Yor @3 — exp (x:8u)] exp (2% )
S exp{4x;3,.) '

where @I = v — cxp (X:53.).
These estimators are also consistent. An estimator {or the asymptotic variance
covariance matrix of 3, is given by:

e 2_ -
n [T

R

vﬂii'ns_\-‘ (;Bu) = Z

=1

XIX; exp (2x;53,.)

— (11.4)
exp (xfﬁu') + ??a cXp I:EXJ: f“ul)

The estimator /3,, 18 asymptoticaily more precise than 3,5 (cf. exercise 2).

11.3.4.3 The Pyseudo Maximum-Likelihood Method

This method consists of applyving the maximum-likelihood method
while treating v; as if normally distributed, with mean:

E (¥:) =¢xp (x;b),

and variance;:

var (y;) = exp (x;b) + n° exp (2x;b).

T obtain the estimators we maximize:

n
max > ¥ (v, %5 b.n?),
b.n? i1

with:

\ 1 1 .
r (}-‘;, X;. b, n“) = ~3 log (2) — 5 log |exp (x;b) + r,:z exp (2x,-b}]

I [w —expix,b)?

2 exp (x;b) + 2 exp (2x;b)




The Poisson Model 277

The estimators, Fpyss and 3.,,; . are consistent, with asymptotic covariance
matrix:

Var o (Bpasr =
Valaer (Braifpas) Z & (Beae. Aour) 9 (Beae. Fibps

=1

-i: i (v, %0 b, n?) 8y (% bon?)
= A
= @ (*‘BPML’ ﬁi’ML) 3 (Bryr. fpare)

- @ (vi,xi; b ’) B
)

Z v (v % b.r’) ] |

| =1

11.3.4.4 Pseudo-Maximum Likelthood Using

the Poivson Distribution

Instead of postulating that the distribution of y; is normal, we may
calculate the maximum likelihood on the assumption that the y;-s independently
tollow a Poisson distribution, P [exp {x,—b)]. The resulting estimator for b is
clearly identical to the one yielded by the basic Poisson model. It is consistent
even though we have ignored the specification error . However, the asymptotic
variance of this estimator 1s no longer given by the equation (11.1). We must, in
particular, take into consideration the fact the variance of y; is no longer equal
to its mean.

We have:

. " —1 "
Vil (3) = {Z X;X; eXp (x.-,@)] {}: x;x,E [exp (x;b) — }-’f]z}

i=lI i=1

e —1
x [Z X[ X; exp {x,ﬁ)] :

—1 . —1
+ 5? [Z X%, exp (x;3) ]

=1l

= [Z X;X; cxp (X;3)
i=l1

b —1
Z X;X; eXp (xi-,(i)] :

i=1

x |:Z X;X; eXp {27(,,(3)]

i=1

This estimator obviously loses precision in the presence ol specificalion error.
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11.4 The Bivariate Poisson Model
114} The Prohabilistic Model

In this section we shall present a generalization of the Poisson madel with two
discrete positive endogenous variables, vy and v;. We begin with the standard
assumptions of the Poisson distribution expanded to accommodate the bivariate
case. These assumptions are as follows:

{i) vy () and y, (¢} measure the trequency with which events of type one and
tvpe two occur respectively during the interval between (0 and £.
{ii) Occurances of any event between ¢ and r + d¢ arc independent of any
occurrences before £,
(iii) Between ¢ and ¢ 4+ dt onc of the following may occur:

{a) One event of type one and no event of type two, with probabilily Adt +
0 (dt) |0 (dr) designates an infinitesimally small interval compared to
di],

(h) One event of type two and no cventl of type one, with probabulity
pdr + 0 (dr)y,

(c) One event of type one and one event of type two, with probability
vdt + O {dt),

(d) No event, with probability | — Adr — pdr — vdr 4 ({dr).

Given these assumptions, we can casily find the disuibuation of the process
Lvy (1), w (13]. Observe that:
Pom(E)=Privi(t}=n,w{t)=m]|, nmelN,
and:

Gt,u.vy=E [H.*«'utrlu_vgm] ’

= Z Z Py ()",
rf

il

is the moment generating function for [y (¢}, y2 (£)]. We have:

Pomt+dty =P, (1)1l —Adt —pdf —vdt +0(dr)]
+ 1 m () |2 dt + 0 (d1)]
+ Py 1 () [ dt + O (df)]
+ Pty (1) [vdt + 0 (d1)].
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Taking the limit as d¢f — 0, we obtain:

d Py m (1)

gy AR B ) T Al (D)

+ f-"'-'Pn,m—l (r:l + v Pn—l.m-- 1 (I)'
And, carrying this over to the moment generating function yiclds:

Gz, u, v)
ot
Gt,u,v) =expi(—A — p— v+ AU+ v+ vuvdi,

=(—A—p—v+iu+ pv+vauv) G, u, v,

Now we can derive the expression for the probabilities P, ,, {r). Unforu-
nately, the resulting equations are not very tractable (cf, exercise 3). Conse-
quently, it appears preferable to characterize the variables v (£}, 2 () by their
first two moments.

The moment generating function reveals that:

yi ey ~P[{a+v)e],
vz (£) ~ P[{p +v)r),
and thus:
Ely: ()] = var[y {£)] ={(x + v},
Ely: ()] = var[»2 (¢)| = (it + v)r.

The covariance between y (¢} and 2 (¢} follows from the second derivative
of G:

E ¥ (1) y2 (£}]

[HZG (£, &, U}]
duduv e loel
=wt+(A+vit(p+ )i,
and hence:
cov [y (£). y2 (1)) = vr.

Notice that, when v = (, the moment generating function of the pair [y (£}, v2
{£}] is equal to the product of the moment generating functions of y; (#) and

¥z (£):
Git,u. =G, e 1YG (i, 1w,

and s0 the variables are independent. In this model the notions of uncorrelated
ardl independent are synonymous.
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[1.4.2 The Econometric Model

Turning now to the econometric model, we begin by postulating that we have
several independent observations yi;. v2;,i = 1,....# on variables whose
distributions correspond to those described in the previous section. These ob-
servations occur over a period of durationz = 1. This is, of course, a convention,
any length of time could be used and incorporated into the parameters A;, ty, vy.
To complete the model, it remains to specify the relationship between the pa-
rameters and the explanatory variables. By analogy to the stacked regression
model we assume that the covariance between y); and v;; 1s constant. Further-
more, we adopt an exponential form for the two other parameters, introducing
into each a stochastic omitted-variable term:

A = exp{x;b + 1),

fi = Cxp (Zi€ + &),

w =1,
where:

1=E [exp {51,-)] =E {exp (82;'}]1

n? = var [@Xp (:‘:‘]f]],
(11.5)
n5 = var [exp (!:'21')],
112 = COV [EXP (£17) . CXPp (E‘zf)]-

Given the complex form of the probabilities £, ,. (cf. cxercise 3), it is clearly
not practicable to integrate over the random terms {£y;, £4,) in order to apply the
maximum-likelihood method. On the other hand, estimation methods based on
the first two moments c¢an easily be generalized. The moments of the observed
variables arc:

E{y1;) = exp (x;b) + v,

E {y2} = exp{z:c) + v.

¥ exp (X;b) %
Yol —_—
¥z v exp (z;¢)
exp (x;b) 0 ntoon
0 exp (z;¢) Mz 3

exp (X;:h) O
X
0 exp (z;c)

The nonlincar least squares method consists of estimating b, ¢ and v by
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minimizing:

]

min > [(y1 — exp (x:b) — ) + (v2 — exp (z:€) — v)7],

b.eow

i--1

and then performing a regression on the residuals to estimate rﬁ. n3, Hiz2.

This method could also have been formulated so as to include in the first
minimization the variance-covariance matrix of the observations. The pseudo
maximume-likelihood method also allows for a straightforward generalization,
based on 4 two-dimensional normal distribution.

Remark 9: At the estimation stage, it is usually necessary to solve for
v under the constraint v = 0. Similarly, the test of independence is one-sided,
comparing Ay : v = 0 with H, : v > (. This constraint on v is perfectly
rcasonable, as v reflects the relationship over time between the variables, and
must be positive since the counters must increase with time. This constraint does
not imply any restriction on the sign of the unconditional corrclation between
the variables (cf. cxcreise 4).

Remark 10: Notice, finally, that it would be possible to retain spec-
lications other than the one given in equation {11.5), but that they would, in
general, be more difficult to evaluate numerically (cf. exercise 5).

Exercises

11.1 Itis somelimes stated that the simple Poisson model is ill-suited to 1ypical econo-
metric data since the empirical variance is usvally greater than the empirical mean.
What do you think of this observation?

11.2 Consider the simple Poisson model with a single explanatory variable. Using a
procedure analogous to that in section 2.4.4, show that:

(a) the hikelihood cquation always has a solution if min {x;) = (0 < max (x;), or,
(b} if this condition does not hold, a solution exists if and only if cne of the
ocbservations on y 15 nON-2e1o.

11.3 Let 7 be detined as:

__ )L ity =0,

T 10, otherwise.
where v is described by a simple Poisson model. Show that = follows a Gompertz
distribution.

11.4 Find the first-order conditions satisfied by the estimator 3, .
1L5 Let the estumators in equations (11.3) and (11.4} be such that:

Ll I:i':air.u'_}: (.gfjf..ﬁ'] - vara,y_r (ﬁ{JLSJ:I —* {)1 lfﬂ — OX0
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and:
f I:‘::';]-‘u.f}- {..IBI.L') — Vil (.Bir:):l — 0. itn — oo,

(a) Using the Gauss-Markov theorem show that, if X and €2 are (s, k)-dimensional
and (#, ny-dimensional matrices respectively, we have:

1

(x'o'x) "« (x'x)7 XX (X'X)
() Denve that:

lim I:H\-"H.I'a”. {Jﬂﬂ.‘]] < limn [nvarﬂ.i}' (18(3 -I'--‘S'):I

roros A o

11.6 Consider the model introduced in sectoon 11.4.1, show that;

Py (1) = T THTAL L (),

with:
r.l'l b oere " + m ' rn+m—]
Apm(t) = A"u—’”( ) o
(n 4+ m! nim! n+m— 1)
mot 4+ m+ 1) +
v
Y = Do — 1)
grtmp n+m+ p)!
_|_ ;LH_PI_L"[_FUF . { + + I) .
in+m— p)! {n— p)im—pip!

where p = min (s, mj).
11.7 Given variables defined such that:

cov{ ¥, ¥ulx) =wv = 0,
show that it is simultaneously possible to have:
cov (yi. ya) < 0.

11.8 Dhscuss the following specifications:
(ﬂ) j".l' = exp (xab + 'E]E];
i = expiz;c + €3},
1, = cXp(u,d + €3;).
(b) X + v = exp(xb + £y;),
ti + v = exXpiz;c + €3),
v, = 1.
{C) A, +v, =cxpix;h+ e},
My + W o= Cxp(Z;c+ e},

Ve = o Y/ -;‘vi + W L4 + v
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11.9 Discrete Panel Data
Let v,.t = 1,...,T,i = l....,n, represent a set of independent variables
following a Poisson distribution with parameters:

Ay = expix;b)

respectively,
{a) Find the distribution of:

Yo = Z! BT

i=I1
{b} Derive the conditional distribution of ¥;,,+ = 1...., s, given y,. Show that
the resulting conditional model is logit polychotomous. Relate this result to
the vsval procedure for estunating lincar models with composite errors.



12 Duration Models

In the last chapter we presented various models suitable for describing duration-
related data. These are used to analyse phenomena such as: how long a person
remains unemployed, the length and size of bank overdrafts, the delay between
successive purchases of a certain good, the life expeclancy of certain types of
vehicles depending on their characteristics, or the manner in which an employee
rises through the ranks of a corporatc hierarchy. The principal mathematical
characteristics of these data is that they assume a series of positive valucs.
Specification of the distribution of these processes is based upon the theory of
renewal processes, the simplest example of which is the Poisson process. While
it is beyond the scope of this chapter to develop this theory exhaustively, we
shall present some of its aspects. This will allow us to establish the connection
between duration models and some models developed in previous chapters:
reservation wages {chapter 7). labour-market disequilibria (chapter 8), panel-
data models (chapter 6), and Poisson models (chapter 11).

12.1 The Basic Models
12.1.1 Describing the Distribution of a Positive Real Variable

Let ¢ be a duration variable distributed continucusly over &', In practice, this
variable represents the time elapsed in a particular state (i.e. unemployment,
position in a hierarchy, etc.), or scparaling two events {change of job, births,
purchases, etc.)
We adopt the following notation:

(1) £ (1) is the density function for this variable (assumed strictly positive}).
(i) F () = [, f () du is the corresponding distribution function,
(i) SitHr=1—F (1} = J‘fx‘ () is the survival function.

The distribution of ¢ is clearly characterized by any one of these three func-
tions. There exist, however, further functions which may be used, and which
possess interesting interpretations.

254
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12.1.1.1 The Hazard Function

Definition 6: The harsard function, denoted A. is defined as:

ny e O _ @
1 — F{t) S (1)

and is interpreted as follows:

ot

=50
_ iy L PrUE < E = 4dn
= a0 dr Pr(r < ¢) |

_ 1
=£}!1£nmEPr(r < { =t+di| ¢ = t)

where 4 (1) Is the instanranecus rate of exit from the statc.

Proposition 30: The hazard function characterizes the distribution of
£. We have:

!
S(I]:exp{—[l(u)du} f e RT.
Jo

Proof: Clearly, if we find the equation for the survival function, we
can derive a one-to-one mapping between S and A, and hence show that the
hazard function charactenizes the distribution. Since:

, . dS (1)
F)y= 0
we have:
b LS
S5{(r) dt

d
— « % log S ).
gy 08 (f)

Integrating, and using the fact that 5 (0) = L. we see that:

— / af{iydu =log[S(1)].
Jo

and hence:

!
S{1y = exp {— /] l(u]duli
e
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Examination of the expression for the survival function reveals that it contains
a primitive of this function:

!
Aty = / Ay du.
0
This is called the cusmilarive survival function.

12.1.1.2 The Conditional Survival Function

The value of the hazard functon is none other than the value, in ¢, of
the conditional density of £ given that £ = ¢. We shall examine this conditional
distribution more thoroughly.

Definition 7: The conditional survival function is defined as:
S(tly=Pri¢ =t+n|li > 1.

This, 1n turn, can be expressed as a function of the survival function and the
hazard function:

Pr{{ =t +1p)
Pr(_c > Iy)
St + fy}
S (fo)

£+1y iy
= —f l(u}du+/ A (.
0] 0

=1
S(t|tn) = exp [— / A (V) du} .

~F Ly

=exp{—[A(t+ ) — A ()]}

St =

1

Thus:

(12.1)

12.1.1.3 The Remaining Mean Duration

We can also work with conditional expectations instead of probabili-
ties. After a duration ¢ has been spent in a state, the remaining time is £ — £,
and the remaining mean duration is E{(& — ¢| & = ).

Definition 8: The remaining mean duration is defined as:

r{ty=E{Z —t|& = t).
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The expression tor r from the survival function is:

F{t) = 7 )f ( — 1) f (u)du,

l R

:—m f {H""I)dS(HJ.

1 - >
=m{—(u+—z)5(u)|, +fr S(u)du},

1 o _
=S—(ﬁff S (u)du. (12.2)

Proposition 31: The function » characterizes the distribution of the
duration.

Proof: It suffices to express the survival function in terms of the func-
tion r. From equation (12.2) we see that:

1
Cr () d: U S(”)d“}

After integrating:

! du bl
/ Py —log[$ (M}du]—i—log/ [S (1) du].

Applying equation {12.2) , we find;

r(0) = /3-5(11'}.-::’1{,
Jo

and hence:

f U o {/ lS(u]a'u:| + log [+ (O]
L]

r (u] 0

implying:

s ' odu
f §@ydu = r {0)exp [—/ r(u}]'
r S0 .

Finally, differentiation yields:

DR () " du
S{I)—r{r)exp[/u r(u):|' -
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12 1.2 Dependence over Time

I2.1.2.1 Forms of the Hazard Function
The nature of the dependence of the hazard function upon time is often
very important for the interpretation of the model.

Thus, if ¢ designates the life expectancy of a machine, depreciation can
be modelled using an increasing hazard function, reflecting the fact that the
probability of breakdown increases with the machine’s age.

If, on the other hand, ¢ designates the duration of unemployment, a function
which is decreasing for large values of + may be more appropriate. This is
because workers who have been unemployment a long time frequently have
greater difficulty finding a new job.

&
A

>
t
Fig. 12.1. Hazard tunction for unemployment duration

g

w{t) T

-
i

{1

Fig. 12.2. Hazard lunction for mortality rates among French males

Generally, however, hazard functions are not monotonic. We have alrcady
seen in chapter 6 that hazard functions corresponding to uncmployment du-
ration are frequently first increasing and then decreasing. If we are interested
in studying mortality rates of French males, we may wish to specify a hazard
function {or mortality rate) as depicted in figure 12.2,

In addition to the expected increase as r becomes sufficiently large, there are
two peaks: one corresponds to infant mortality (¢ == 0 years), while the second
corresponds to motorcycle accident casualdes {z ~ 19-20 years) .
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12.1.2.2 The Cuase of Independence over Time
A limiting case is ¢learly one in which the hazard function is constant.

Definition 9: Independence over time holds if and only if A (t) = A,
mdependent of 1.

Simce the hazard function 15 only one possible characterization of the dis-
tribmion of the duration, the property of independence over time can also be
expressed using the other functions 7, §, 7, elc.

Proposition 32: Independence over time can only hold if the distri-
bution of the duration is exponential .

Proof: According to proposition 30, the condition A (t} = A is equiv-
alent to:

S(r) = exp [— ] l{u)du],
0
= eXp(—Af),

and this is, in fact, none other than an exponennal survival function.

This proposition explains the central role plaved by the exponential distribu-
tion in models of duration.

Proposition 33: Independence over time exists when the remaining
mcan duration 1s constant: ¥ (f) = #.

Proof: According to equation (12.2), we have:

|
F“):m/f S{H)dﬂ.

1 I
_ L ) du,
exp (—At) [ eXp (—u) i

1

e
Here we see that the remaining mean duration can be expressed as the recip-
rocal of the rate of change between stales.

Finally. the conditional survival function is given by:

Sitjtg) =Pr{¢ =1+ 1| = ty),
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S+

S Ge

exp [—A (f + 10)]
CXp (—im)

= 5 ().

+ exp (—At),

This is independent of the starting date #5 — it is sometimes said that the expo-
nential distribution is without memaory.

12.1.2.3 Intertemporal Independence and Aggregation

The assumption of independence over time is not, in fact, very robust —
it is susceptible, for example. to the simple aggregation ot data. Take ihe case
of a heterogeneous population of unemployed persons. These are classified by
some index v € &' and distributed according to some rule I1 (v). The duration
of unemployment for each individual is assumed to follow an exponential dis-
tribution: S, () = exp[—A (v) ¢], i.e. at the microeconomic level there exisis
intertemporal independence.

Let us look more closely at the situation of a typical individual in this pop-

ulation. The distribution of the duration of unemplovment yields the following
survival function:

S5y = /% S. (1) (v)ydv.
0

:/ exp|—4 (v)t]T1 () dv.
Jo

Applying definition (6) we derive the hazard function:
I dS)
Sy di
fo o wyexp—4 () 1 T1 (v) dv
.fnx exp[—a ()M w)dy

i) =

il

Proposition 34: The hazard function obtained by aggregating a con-
stant hazard function is monotonically decreasing.

Proof: Differentiating A with respect to ¢, we find;
di()
dt

(/ ~ () exp [ (v) 1] 1L (v) dv
ey

X / exp [—A (1) 2] T (v) duv?
0
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+ {/ .l(v}—cxp[—i(v}f}ﬂ(u]dv})
0

|
X "
{f[}m exp[—a (u) il (v) du}2

Denoting:

exp[—A (W] ()Y dv

fy expl—a(v)r] vy du’

I, (v) =

WE Can write:

di(r)
dr

e . e 2
—] () T, () dv + [[ A (v H;(v)dv] \
0 Jo
which expression, according to the Schwartz inequality, is negative. [

The interpretation of this reselt is straightforward. On average, those indi-
viduals who are the earliest to leave the state of unemployment are those with
high values of A (v} (i.e. those who are movers), while those who remain have
low values of A {v) (i.e. stayers). This explains why the rate of exit A (1} de-
creases over time, This phenomenon is known by the lerm mover-staver or
heterogeneity bias.

I2. 1.3 Some Parametric Models

A variety of probability distributions have been used to model duration, each
characterized by its ability to approximate various formulations of the hazard
function and by its ease of use. The most popular distributions currently used be-
long to the Weibull, log-normal. and gamma families of exponential functions.
We shall describe the principal properties of these families of functions.

Fig. 12.3. Exponential distributions
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12.1.3.1 Exponential Distributions

As we have seen, these models reflect independence over time. This
family depends upon a positive parameter A, and its various derivations are;

ity = rexpi(—at).

Firy=1—exp(—Air}.

S(t) = exp(—at).

At = A,
1
F) = -

The first two moments of the duration are:

E() =

l"::.-*l.—

|
vari(g) = VR

Notice that the parameter is inversely related to time.

12.1.3.2 Mixed Exponential Distributions
We shall examine the simplest case of aggregation with respect to two
sub-populations. The density function is:

F (1) = 7@y exp (—at) + 7oz oxp (—ast).

witha; > 0, ax > O, 7wy = O, 2 > 0, and 57y + > = 1. The corresponding
survival function is derived from a mix of exponentially distributed survival
functions parametrized by ¢ and a-;

S{f) = mexp(—at) + mexp (—azf).

The mean of the duration is given by:

E(y= "2+ 2,

£y £y
and the variance:

Ml +m)m(+m) B 2w

il a% £ el -

var ({) =

Using definition 6. we obtain the bazard function:
)

Sty

Ty eXp {—d () + Tada eXp {—dat)

At =

7Ty CXp (—a. 1) T2 exp {—daf)
ey + Taas exp[— (a2 — )|t

T+ mrexp|— (a2 — )t
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Fig. 12.4. Mixed exponential distribution for a- = a;

Examining the case of ¢» > a; we immediately see¢ that the hazard function
15 linear-fractional in exp [— (a2 — @) )] ¢ and decreasing, which is compatible
with the phenomenon of mover-stayer. The value of the function at zero is
ma; + m2a2, and it tends to zero as { tends to plus infinity.

The case of a2 = a; s depicted in figure 12.4.

The remaining duration is detined by:

1 s, 04
F{1) = S(-"J_/, S{u)du.

oexp(—at) + L exp (—aat)

i)

T exXp (—--:fl']f) + maexp{—aat)

This function is increasing n ¢.

12.1.3.3  The Gannna Distribution
The tamily of gamma distributions is indexed by two positive param-
eters, denoted ¢ and v. The density function is:
a't* " exp (—azt)
" (v)

The first two moments are;

Ffy=

E@) =",
1}
var (L) = o3

The hazard function must be expressed by means of integrals, vielding:

f
Sy

A1) =

t* Lexp(~ar)

I u " exp(—au)du’
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& &
l f \

— -
Vv f t Ve f £

Fig. 12.5. Gamma distribution for v = | and v = 1

|
5 e V-l expl—a (u — 1) du
1
f;x [% + I]U_] exXp (—au) du 7

The evolution of this function depends on the values assumed by the param-
eter v relative to one:

v > 1 — the function A is increasing from zero to a.

v = | — the model reduces to the exponential case and the
hazard function is constant.

v =< 1 — the function A is decreasing from + o0 to «.

12.1.3.4 The Weibull Distribution

Another two-parameter generalization of the exponential distribution
is the family of Weibull distributions. Duration, ¢, is assumed distributed ex-
ponentially with parameter a, where @ = 0. The survival function is thus:

S (1) = exp (—ar?).
and the density:
f (1) =abt”™! exp (—arb)‘
This yields a very simple hazard function:
A(r) = abi" ",

which can assume one of the shapes in figure 12.6 depending on »’s value
relative to one.

When this function is increasing, an important difference with the gamma
distribution appears. The hazard function does not approach an asymptote and
hence, for large 1, the model cannot be approximated by one with independence
over hime.
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i, h=3 f‘

> -
b1 t be 1 t

Fig. 12.6. Weibull disinbulion

12.1.3.5 Log-Normal Distributions
The models we presented in the previous section, some of which are
guite easy 1o apply. do not allow for hazard functions which arc mercasing and
then decreasing. Log-normal distributions yield this form.
The duration is specified such that log () follows a log-normal distribution
N (m; o2). The density derives immediately from the normal distribution by a
change of variables:

] 1, 42
fiy= e exp{—ﬁ Hog (1) — | }
_ L |le@—m
ot o '

The survival function is:
log (t) —
St =1- [M}
. o
Using the Mill ratio, we obtain the hazard function:

Iop{t)—rr
0 |2 ]

| — @ |:]UE[.I].I—-H:I:|. )

w

AF) =

|

Fig. 12.7. Log-normal distribution
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4 wt 4

\

| - o
A ool ¢ o=1 t LES L

Fig. 12.8. Log-logistic distributions

This function 1s nil for ¥ = 0, increases toward a maximum and then falls off
toward zero.

12.1.3.6 Log-Logistic Distributions

By analogy to the logit model, we can rework the model in section
12.1.3.5, substituting the logistic distribution for the normal.
Denoting F {t) = m the corresponding distribution, and recalling that

Fy=F [l — F{1)]. we have:

logiry m
I f[ : —}

A (” = ?El — F [log[r}—m] '
_ llF [log(.t)—m.].
o o

r , g .‘- s L] L LY - r R "r - . . - - —_ . _ﬂ
This expression can be simplificd by introducing the parameter ¢ = exp ( - )
We have:

11

iy = E {log(r)

F ¥

I l
:—F[l ( ts ]
o1 (.]g ol )

|
| it

ol | +air

|
1

+ log (a}} :

1

¥ !
o1 +ats

We obtain various shapes depending on the magnitude of ¢ relative to one,
as In figure 12.8.

12.1.4 General Methods for Constructing Other Families of Distributions

We shall now examine the possibility of transforming the distributions intro-
duced in the preceding section to obtain further duration models. Some of these
transformations have already been hinted at.
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Let f (f: v), A {z; v), and § (z; v) represent a family of distributions, parame-
trized by v, which will serve as the basis for our manipulation.

12,141 Aggregation
Assuming that v 1s stochastic, with a distribution parametrized by « :
 {v; a). wecan directly generalize the aggregation of exponential distributions.
The new density function is:

fitia)y= /j' {4: ¢y (v; o) dv,
the survival function 1s:
S ey = /S{r:af}dv.

and the hazard function is:
Fiza)

[ FE@vmra)de
N ﬁ Sty ivia)de’

_ L Suvyw (i)
_\[U;'L(f, L-) L:S(I:U}H(U:u)db'

i(r‘:a] =

Proposition 35: Denoting £ the expectation calculated with respec-
ted to the density:

S vy x (v o)
f: SI {r1 L-'] b {U. a]dl},
we have X (r; ) = EL4 (15 ).

The aggregate hazard function appears as the mean of the individual hazard
functions, being calculated over the remaining individuals at date ¢,

Example 11: In certain cases the integrals can be evaluated analyti-
cally, yielding an explicit function for the new density . Thus, for example,
the family based on the exponential distribution f (¢; v) = vexp (—uvt) and Lhe
distribution of the parameter v of the gamma distribution yields:

a’pr | exp (—av)

Ty, av) = F o) Zewp, ¥ > 0,0 =0,

where;

o Joo ifu =0
=0T 1, otherwise.
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.
¢

Fig. 12.9. Aggregate hazard for exponential distribution

Example 12: Aggregating, we obtain:
fiam= /m }Jﬂe}{p{_w}auvv_l exp (_au)dv!
0

F{v)
= @ - v N exp (—v) (@ + ) dv,
I" (v} Jy
_I'tv+ 1) a'
- T (@4t
_ va®
o (a _|_I)1:+l'

This is a Pareto-type distribution, whose survival and hazard functions are
given by:

Stia,v) = ——,
e (r +a)”

i“;a*”):ﬂ_,_,‘

respectively.
12.1.4.2 Proportional Hazard Model (Lehman Family,

or Cox Model)

The new family is derived trom the old by the following transforma-
tIOms:

Sit;a.v) = St )9,

Ja vy =aSE ) fiv),

Mitia. ) = ai(t: v), a =1
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}JE
.

Fig. 12,10, Proportional hazard model

This last equation gives the family its name. When the auxiliary parameter
a varies, the hazard functions can be derived from each other.

12.1.4.3  Increasing Transformarions of the Duration Variable

Finally, many other distributions., fitting into one of the classical fam-
ilies, can be created from increasing transformations of the duration variable
f, (). We write:

Sit;v,a) =8 [h;l {t): v].
|

F(tv,a) = At

fiva %[hﬂjm]f[ (1) v]

. |

At v.a) = At iy v].
AR TR

Example 13: We can perform this type of transformation in order to
obtain a more tractable formulation of the hazard function. Thus, starting from
an exponential distribution A {z; ) = v, we see that

i

ritiina) = -

cf; I:h;] (I)]

varies along with the derivative ‘i;’: . Consequently, we obtain hazard functions

with increasing and decreasing phases by choosing monotonic transformations
which are sometimes concave and sometimes convex,

12,15 Comparing Distributions

It we wish to make explicit the interpretations of some parameters occur-
ring in these families of distributions, it is usetul to establishing a series of
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pre-orderings of the distributions of the positive variables. For example, as-
sume that the variable { represents a person’s life expectancy and that we wish
to define binary relationships describing his “preference to reach old age.”

12.1.5.1  First-Order Stochastic Dominance
The most representative relation in this class is defined here.

Definition 10: The distribution /* first-order dominates the distribu-
tion f if and only it, for every positive increasing function V, we have:

E*[V{(O)] = /{ Vi) f7 () dt = E[V (D],
HA)

- / V (£) f (£) dt.
0

The function V is to be interpreted as a utility function, and the fact that
it is increasing indicates a desire to live as long as possible. The pre-ordering
implies that £* is preferred to f for all utility functions V. This pre-ordering
yields a simple characterization of the survival function.

Proposition 36: [ first-order dominates / if and only if §* (¢} =
S,

f* is unambiguously preferred to f if and only if the probability of attaining
old age, that it, attaining an age above #, 15 consistently higher with f* than
with f.

Proof: Necessary condition: Let us postulate a utility function:

V. () 0, 1fa =<t
=
! 1. otherwise.

If f* dominates f, we have:

E* [V, (£)] = Pri¢ > 1) = §* (1) > ELV, (¢)] = Pri¢ > 1) = S (£

Sufficient condition: Conversely. 1t can easily be shown that any positive,
increasing function V' can be written as the increasing himit of linear combina-
tions of z,-,. Formulating the inequality in terms of these functions allows us
to derive the inequality for any increasing function V.
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12.1.5.2 Dominance in Hazard Functions

An alternative definition of the preference for age can be derived di-
rectly from examination of the hazard functions. Recall that we have defined
4 (1) as the mortality rate at age 7.

Definition 11: f* dominates f for hazard functions it and only it:

Ay =A"(ty, ¥Vt

/% is preferred if it corresponds to a mortality rate which is consistently lower.
In order to establish the connection with frst-order dominance we require the
following proposition.

Proposition 37:
(1) f* dominates f for hazard functions if and only if:

Sty = Stelw), ¥Yi=0, =0
(i1) This condition is equivalent to:
E'[V N =0l 2 EIVOIL = ],

with ¥i,, V' positive increasing.

Proof:

(i) The fact that parts one and two of proposition 37 are equivalent follows
directly from proposition 36. so we will focus our efforts on proving part
one. :

{11) Necessary conditions for part one:
Letting A (t) > A* (t). ¥t, we Integrate to obtain:

iy T+
/ An)du = / AY{u)du.
1 fa

and expression {12.1) for the conditional survival function allows us to
write:

S*(H ) = S{tt), Vr=0, 185>0

. {iii} Sufficient conditions for part two;
As:

STty = St ), Ye= 0,8 =0,

we also have:

1 ]
lim — [$* (1170 — 1] = lim ~ [S (rl10 — D]
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And our result tollows trom the equality;

1 ! SN
}ﬂl}};[S(Illuj— IJ:I}_I_T} }- {exp [—/ru A(u}du—l]},

= —a {5 O

So we see that first-order stochastic dominance is a special casc, in which
preference for old age is considered only at birth. This relation is less restrictive.

Corollary 1: If f* first-order dominates f for the hazard functions,
then f* dominates f.

12.1.5.3 Conditional Dominance
Finally, proposition 37 suggests the following generalization.

Proposition 38: f* dominates f conditionally if and only if:

B[V e A} =E[V (D)L € A],

for all positive, increasing V and for all 4 € R™T.

It immediately follows that this new pre-ordering is more restrictive than the
simple comparison of hazard functions.

Corollary 2: Il f* dominates f conditionally, then f* dominates f
for the hazard functions.

This pre-ordering is easily applicable, as it reduces to the comparison of
numeric functions.

Proposition 39: /* dominates f conditionally if and only if:

dlog f* (1) _ dlog /()

= ., ¥r =0
dt dt

Proof:
(1) Notice, first of al}, that proposition 38 can equivalently be writicn with

the variable # or another variable x = A ({). Denoting ¢ and &* the
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distributions of x corresponding to F and F* respectively. we sce that G is
none other that the uniform distribution over [0, 1] . The characterization
becomes:

E' [V (x}lx e ATz E[V {x)jx € A},

for any positive increasing function V defined over [0. 1]. For any subset
of [0, 1], A, the inverse distributions are given by: G (x) =x, G" (x} =
F* [F~' (x)]. The corresponding density functions are:

glxy=1,
R L €]
CWE T Tm]

Integrating over the forms we have obtained vields:

E' [V (x)|x e A]

_ FA Vgt (xydx J‘A {x)dx

=E[Vi{x)lx e A] —F—7T—

Jagm ) Jadx
o < Vg (x)dx B L Vixyds [, g*(x)ydx
- Jigrx0)dx f.dx fodx

0 <covy [V (0), g ()],

where covy 1s the covariance calculated with respect to the uniform dis-
iribution of A.

If the function g* is increasing, we can calculate the covariance between
two increasing functions V and g*, which will necessarily be positive (¢f.
exercise 4).

Conversely, if ¢* is not always increasing we will be able to find an
interval, Ag. over which it is decreasing (for convenicnce we assume
that g* is continuously differentiable.) Over this interval Ag we have:
cova, |V (X}, 2" (X)] < 0, as n ¢xercise 4. In this case the inequalities
which are characteristic of the relationship of conditional dominance will
not all hold.

In summary. we have established that f* dominates f conditional on
whether g* 15 Increasing. This condition 1s equivalent to:

log [g* ()] =log { f*[F~' ()]} —log{f [F~' (0]}

increasing in x, or, since the slope of #7! is positive. o

log [ F* (0] —log [f (1N
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increasing in ¢, Differentiating, we obtain:

d log[f* ] _ d log[f ()]

Y = (.
dat dt - -

Remark 11: The preceding proposition 1s formulated in terms of the
derivative of the log-density function. This function:

d log[f (¢)]
dt

is clearly characteristic of the distribution of the duration £, since the constant
of integration is unambiguously determined by the constraint wa firder =1.
This function has some appeal for our study of duration problems. Furthermore,
notice that the distributions for which it is constant is the set of all exponential
distributions,

f2.£.5.4 Examples

Example 14: The family of Weibull distributions corresponds to the
density f (¢) = abt?“Lexp (—ai?) . We have:

dloglf @) _ d B o,
= = — {log (@) + log (b) + (b — Dlog (1) —at”].

= b1 _ abt?™!

I .

The fact that this derivative is decreasing in a provides us with a measure of
the degree of conditional dominance.
If i > «ig :

d log|f {i:a.b)] - d log|f (. ap. b))
dt . d! ’

and f {f; ay, b) dominates f (¢; a, b} conditionally.

Example 15: In the case of Pareto distributions, we have:

i

. _ v
fria,v) = @t
dloglf(ia. v _d [log (v) + vlog (@) — (v + D log { + a)],
lt dt
v+
a _.t +a’

We sce that this function 15 increasing in & and decreasing in v. Theretore, 1t
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vg < v and ag > a, the distribution f (¢; an. Vo) conditionally dominates the
distribution f (f; a, v).

Example 16: Consider two distributions derived from the family of
exponential distributions by aggregation. In order to ensure different degrees
of heterogeneity we introduce two independent random variables v and w, such
that v and v + o are positive and ¢ has mean zero. Define:

S(t) = E [exp (—v1)].
S*(ty = Efexpl— (v +a)t]}.
57 (1) 1s characterized by a greater degree of heterogeneity because, conditional

on v, the parameter v+ is distributed with a mean of v rather than being strictly

equal to v,
Using the assumption of independence, we obtain:

S*(ty = E {exp (—vt)| E [exp (—ar)],
= S (1) E [exp (—an)],

yiclding:
dr(ty  d? log[S* ()] d* log {E [exp(—at)]}
dt dr? dr? ’
_d Ay d¥ log {E [exp (—at)]}
Cdt dr? '

Using exactly the same approach as in proposition 34, we sce that:
2
0~ ~d* log {E [exp (—at)] }
- di?

and, consequently, that:

-

d A1) - d Ar)
dat - dr
['urthermore, we have:
o log [S*(t}]
B dt "
E [vexp(—at)] + E [exp (—v2)] E |a exp (—et)]
| 1) [cxp (—ur)J E [exp {—arj] '

AT() =

Letting ¢+ = (0 in this expression, and using the fact that E (@) = 0, we see
that: A* () = E (1} = A (0) . This equality, combined with:
d A7 (0 - di-.(fj.
dt = dr
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allows us to conclude (by integration) that the hazard function A” is always
situated underneath the hazard function A.

In conclusion, we see that for hazard functions, a greater degree of hetero-
genelty implies dominance.

12.2 Discrete vs. Continuous Time

The question may arise as to whether our choice of continuous time in the
preceding section is truly appropriate. For example, we may wish to consider
cases in which values assumed by the duration are restricted to multiples of
some length . In this case, the distribution of the duration is discrete on V.
We shall develop such a model, which can be considered a special case of the
pancl data models in chapter 6 — corresponding (o a transition between two
states. The characteristics of the discrete model are analogous to those of the
conlinucns-time model.

In the following section we examine what happens to the discrete model as
the unit of time. x4, tends to zero, permitting us to interpret the continuous-time
model as a limiting case of the discrete time case.

12.2. 1 Discrete-Tirme Models

The duration vanable, £, may assume several values (e, k& € V). Atany point
in time, &, the probubility of leaving the state is given by Pr (k) , & € . This
probability is analogous to the hazard function, A, introduced in the continuous
time case. _

Derivation of the distribution of the duration is straightforward. The elemen-
tary probabilities are:

qr = Pr{{ = ku),
= |1 =Pr(M][1 —Pr(1}]---[1 —Pr(k — 1)]Prk).

and the survival function is:
I = Qp =Prik = k),
=[l—=Pr (][l —Pr(D)]...|[1 =Pr{k—1)].
These two functions, g and (, are respectively analogous to the functions [

and § from the continuocus case.
We immediately observe that:

1) Prik} = 1_‘“;2& , as in definition 6 |

() 1 — @y = exp{— Z‘;:} log [1 f}rf}j} } 4% in proposition 30,
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Example 17: If the raie of exit, Pr{k), is constant; Pr{k) = P, ¥k,
we have:

g = (1= PYP,
I — Q= (1 — P,

The distribution of the duration iy geometric and parametrized by P. This
distribution corresponds to the exponential distribution we examined in the
CONUNUOUS time case.

Example 18: An example of a decreasing rate of exit is given by:
Prik}y=1—cxp(—ak —b), a=0 5b&=0
Given this chowce for the funcaon P, the survival function is:

Il = =[1-Pr{®]---[1 =Prk — DI,

k—1
=TT exp—aj - b,
=0
{ k-
=exp | —a Zj — kb
=
' [ hkk— ]
= exp |—a- { 2_) - kb] )

12.2.2  Comparison of Continuous- and Discrete-Time Models

The chosen unit of time is very important in discrete-time modelling, especially
with respect to its impact on the probability of exit. We should, in conscquence,
use the notation Pr (¢, &) instcad of Pr{k) .

[t is reasonable to conclude that, as the unit of time g tends to zero, the
corresponding probability will also lend to zero. More precisely, we postulate
that:

1 H
lim — Pr (u, ) = Ai(t).
= i I

where A {¢) 1s the virtually instantaneous rate of exit for the interval [¢, 1 + p¢].
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Let us examine the limit of the survival function under these conditions, With
p overy small and r fixed. we have:

PI'((T - f) =1 — Q{Lu,.-

v.r'=
S -
=z exp | — Z piw. 11|, since Priu, jy= 0,
L J=U
S B}
~exp | — Z pA (af)
§=0

exp —/ A(u)du],
0

approximating the integral with a Riemann sum. So the relation reduces to the
one we found for continuous time.

Example 19: When Pr(y¢, &) is constant in £, the condition on the
virtually instantaneous rate can be written:

Pr(p. k) = Ajpe.

This expression directly leads us to the following formulation of the geometri-
cally distributed survival function:

Pr (';- = f:l =1- Q!‘L{.r. - (I - ;"-”')F“L:
7 exp [i log (1 — m)}
mn

7= oexp (—at),

which 1s none other that the survival function of the exponential distribution.

12.3  Explanatory Models
12.3.1 Varivus Types of Covariates

The forms for the hazard functions introduced in section 1201 are essentially
ol a descriptive nature. If we wish (o examine the exogenous variables and
understand their influence, we must incorporate them into the distribulion of
the duration.
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We may, at this point, distinguish between several types of explanatory vari-
ables, each raising specific issues regarding specification and estimation. We

shall assume that the observed durations &;, { = L.....n. are for different
individuals { = 1,....n.
(1) Variables Depending on the Individual — Some covariates will be inde-

(i1)

(11i)

pendent of time and distributed exclusively according to the index cor-
responding to the individual, i, Denoting these variables x;, we see that
their value remains fixed over the entire range of ttme cxamined. In the
case of unemployment duration studies, these variables may include, for
example; sex, initial level of education, previous salaries and accumulated
experience, and any other factors which are strictly historical.
Time-Varying Covartates — Other variables are known functions of time.
In practice, these types of variables are quite rare. The standard example
is the mdividual’s age, which i1s a simple transformation on the index r.
The vaniable age may, incidentally, be decomposed inta two clements: the
person’s age at the beginning of the study (which is a characternistic of the
individual and independent of £), and the evolution of the individual’s age
over the course of the study. This second element is clearly not distinct
from the index ¢, and in consequence this case reduces to that discussed
in the preceding paragraph.

There also exists u group of variables which depend on time, but whose
evolution is partially unknown. This group may include varabics which
are uniquely indexed by time, such as the unemployment rate. Another
possibility is that these variables may be indexed by time and the individ-
ual, examples include: the number of children, the amount of government
assistance received. the local unemplovinent rate, ete. These variables are
usually observed intermittently, i.e. at discrete intervals. We denote them
z; =2 ().

12.3.2  The Distribution of the Explanatory Variables Conditional
on the Observations

12.3.2.1 The Case of Explanatory Variables Depending
o the Individual
We shall introduce these variables, x;, into the distribution and param-

etrize themn with 8. The hazard and survival tunctions for individual { arc given

by:

;'\.I' {I} = }'-(xf: f, HJ!
Si{t) = S{x;; 1, 8),

t
= exp {—/ A{x;u; 8) du]‘
0
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It the distribution of the duration is selected from among the Weibull, gamma.
log-norial, etc. families of distributions, we have seen that the hazard function
already incorporates parameters. Some of these may be important for our inter-
pretation in terms of increasing or decreasing dependence on time. Frequently
it 1s over these parameters that x; and & enter into the distribution.

Consequently, the family of exponential distributions depends on a parameter
A such that ,:T defines the average duration. As this parameter is positive, it is
clearly impossible to make it a linear function of the explanatory variables. In
order to conserve this property of positiveness, and to establish an analogy with
the simple Poisson model (cf. chapter 11), we postulate:

Ay = exp(x,3),
1 = exp (—x; ).

with @ = 3. This yields the survival funciion:

Si (1) = exp [— exp (x; 3) r] )

Example 20: Inthe same vein, for Weibull distributions we can spec-
ify:

hi (1 8) = bt Cxp (% 3),

5: (£; 8) = exp [—-f:xp (x; 3 r*"], 8 = (b, fl’)f.
In the two preceding examples, a modification of the cxogenous variables is

sufficient to generate 4 new hazard function. This can be generalized as follows.

Definition 12: A modcl is said 1o be a proportional risk model if and
only if the hazard function can be decomposed into:

M) =g.byh(x. B3, 6=, 3.

[t is clear, however, that this condition 1s quite restrictive.

Consequently, in the case of 4 log-normal maodel, 11 15 not possible to make the
maximum of the function A depend on the values of the explanatory variables.
This can, however, be done using the following formulation.

Definition 13: A model is said to be an acceferated risik model if and
- only if the hazard function can be written:

Aiy=glth(x3).blh(x;, 3.

Finally, we may wish to make the direction of the evolution of A depend upon
the values of x;. Taking the Weibull distribution as an example, A () = abt?™!,
we need to introduce the variables into the parameter b.
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12.3.2.2 The Case of Time-Varving Covariates
In this case we have hazard and survival functions as follows:

A {E) = A [z (8) . w; B,
¢
S; (3) = cxp {/ A lxer oz (u), u; 6] du} .
0
= A [Xf;?-e: (EJ:f§9],

where the notation z; {¢) implies dependency on all values of z; previous to ¢.
Consequently, when the rate of exit depends on the How variables z;, the survival
function incorporates a cumulative fonction of z; which can be inlegrated ancw.

The foregoing expressions cannot be used, however, if the exogenous vari-
ables, 7; (¢). are only observed at discrete intervals.

We shall assume from here on that the values are known for regular intervals —
for example, years. The intervals of the observation are denoted 1y, fo+ 1, to+
2. ..t + &, ..., where —1 < 1y <= (. This latter statement follows from
the fact that the first observation, which is indexed with zero by convention,
will not necessarily fall at the beginning of the year, and hence #; is the most
recent observation preceding the period of study. Given this, we can approximate
the evolution of the unknown z; (¢) with z; (#g). 2, (fo + 1), ..., i (g + &), . ..

Two simple solutions suggest themselves.

(i) The first one is to replace the function z; () with a step lunction. For
cxample, we may define a date 7 such that r — 1y = £, mod L. Now:

W=+ k)
15 the last observed value, and;
1
ef (0 = 5 [z (o + &) + 24 o + & + 1)

15 the mean of the values bracketing the study period.

_4_4

g t-l’.' et i'n'ld- ¥ t’

o]

Fig. 12.11. Step function approximation ta 7;{t)
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z & #

1
1
1
1
|
|
1

-
G tll" P2 tﬂ+£ tﬁ'-‘- b t

Fig. 12.12. Continuous function approximation to g, {f)

Inspection of figure 12.11 reveals that this method will lead to underesti-
mation of z;, and consequently the estimates of the parameters of the hazard
function will be biased downward. The extent of this bias will depend upon
the shape of z; (£} and on the distance betwcen the observations,

(ii) We can also approximate the variable z; with a continuous piece-wise lincar
function. This approach tends to be significantly more precisc than the
preceding, but it is computationally much more demanding.

If we replace z; with an approximation z}, we must also moedify the
associated hazard and survival functions. To illustrate, consider the ap-
proximation:;

M=z lp+ky., itt—f =%k modl.
It follows that we can write:

M) =[xz (0.0 0),
= Alx;iz o+ k). t: 01, ift—n=4kmodl.

The approximated survival function is derived by integration:

SE() :exp{—/ Al (u}du},
0

bl
= exp{ — / Xz () u, @ldu
Jo

k-1 i+
_Zf 3% 23 Gt + ) o t: 8]
Iy

j=1 Vit

!
— / A L%z (fo + k), u; 6]
In

+k

The function § is obtained by integration with z fixed:

f
S(x;z:t,8) =exp [— [ A(X, 20 H,; B}} du.

al)
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We have:

S (1) = exp { — S x; 2 (o), to + 15 8]

o

—i
= [Sxiizito+ Dito+j+ 1 6)
1

J
S (X zifto+ j)ito + 9)]
— [

i

S(xi; 2 (o +Kk); £, 8)
—S x5z (o + k)5 to + k. 6)] }
The form obtained for the survival function is intermediate between that

corrcsponding to the continuous- and the discrete-time models. The discrete
aspect is manifest in the term:

E

1
Sz o+ ) ito+ 5+ 10 6]
1

i
— Sixi 2 (6o + Jyim + J. 9]},
and the continuous part in the other two terms. In essence, the fact that our

observations on some variables arc of a discrete naturce implies that we must
work with a discrete model.

12.4 Estimation

12.4.1 Truncation on the RHS

Data used in cconometric time-series studies are often in the form of panel
data measured over a fixed period of time. Supposce, for example, that we have
unemployment data for the period extending from Janvary 1994 to December
1994 we can distinguish between four types of observations:

January

December

Fig. 12.13. Evolution of unemployment

(i
fii
(iii

{2v
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(i} I[ndividuals who are unemployed in January and remain unemployed in
December. .
{ii) Individuals who are unemployed in January and find a job during the year.
(iii) Individuals who are employed in January and lose their job during the
year.
{iv) Individuals who lose a job and then find another during the vear.

For simplicity we assume that no one goes through several stages of employ-
ment and unemplovment in one year, Graphically, these cases are represented
n ligure 12.13.

Those individuals who were unemployed at the beginning of the study period
can be questioned, and a certain amount of information concerning their em-
ployment history collected: for example: when did they lose their last job, what
was their profession, etc. Given this supplementary information, two types of
data can be distinguished. For groups two and four we know the duration of
their unempiloyment by the end of the year. For groups one and three, on the
other hand, we do not. This latter group is said to be truncated on the RHS, the
former group is not truncated.

To account for this, we shall introduce a dummy variable, d;. for each indi-
vidual, /, to indicate whether or not this person’s data is truncated.

p 1, if not truncated.
“7 10, otherwise.

We also denote the subsets of complete and truncated observations 55, and 5y
respectively.

Furthermore. let 7; be the date on which unemployment begins, £ the duration
of unemployment, and y; the overlap between the period of unemployment and
the study period. given that this latter ends at 7.

The ensuning model is based on the latent variables T; and ;. The observed
variables, ; and y;, are related to the latent variables by:

Ti+4 =T = {dﬁ:i’
¥o =&,
d; = 0,
hi+& =T = {_}-‘j:T‘—?:'=

We see that the distribution of the pair (3, &;), conditional on T;. is given
by:
b (iedy = Fi ) S5 (i)' 74
We can refer to the definition of the hazard function to rewrite this equation:
£ (e di) = 45 )™ S; ().
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Assuming independence between individual observations, we can wrile the
log-likelihood function, conditional on the values of the explanatory variables,
as:

log |L (y;d)] = z log [£; (yi. di)].

=1

=S dilog Dy (31 + > log[S; (v,
i=1 =1

=3 "logla O]+ Y log 1S ()] (12.3)

i =1

This is quite similar to the Tobit model we saw in chapter 7, the principal
difference being that the Tobit madel is based on the normal distribution, while
this one is not.

f2.4.2 Maximum-Likelihood Estimation

In the interest of keeping our notation simple, the data we shall use to present
the principal estimation techniques will only incorporate cxplanatory variables
pertaining to the individual. We have:

Ap {¥i) = A (x;5 i B
Si(yiy = S (X3 w1 8),

— exp {—jir AKX u, B du]
0

log[L (@)1= Tog[h (%, y:: )]+ > log[S (x; »i: 0],

£ i=1
= > log A (%i 3 )] — D [ A (x5 y: 8) du.
P i—1" 0

To apply the maximum-likelihood estimation procedure we write out the
first-order conditions:

0 — dlog (L (8)]
a a6 ‘

_ dlog | & (x;, ¥i: 8)] & g -
=) 20 N Z.fﬂ ap Xetu O) du.

P

assuming that the derivative under the integral exists.
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Under the standard assumptions of regularity, the estimator & yielded by this
expression exists asymptotically, and it is consistent, asymptotically efficient,
and asymptotically normal.

This general formulation does not, however, yield first-order conditions, ora
Fisher information matrix, which are easy to simplify, For this reason we shall
now turn our attention to analysing specific models, namely the Weibull model,
the decomposable model, and the proportional hazard maodel.

[12.4.2.1 The Weibull Model
The Weibull model, in which the explanatory variables are introduced
over a coefficient of affinity, yields the following expression:

A 0) = bt Lexp (x3).

This model contains two types of parameters: the 3 -parameters which measure
the effect of the explanatory variables, and the b-parameter. The likelihood is
given by:

log[L (&) = Z log [by! ™" exp (x;3)]

fey)

n Z log {exp [exp (x:3) ¥7| },

i=1
= > log®) + > (b —)log(y)

2=FT FC 1
+ Z X; /3 - Zexp {x; 3 1}”
fe] i=1
= nilog (B) + (b — 1) > log ()
=gy
+ 2 %8B =3 expuf)y.
icq d=1

ry denates the number of observations in j,, that is the number of complete
‘observations.

Remark 12: In the case of the exponential model, 1.e. when b = 1,
the log-likelthood reduces to:

n

logiL (B = %8~ vexpx0).

) i=1
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If there is no truncation, we have:

i

log [L (6)1 = D [x:8 — yiexp (x:3)].

i=1

The log-likelihood of the Weibull model depends upon the two types of param-
eters. 3 and b, which it incorporates, and it is of some interest to separate them
when we write the first-order conditions. The vector of scores is:

dlog[L ()] _ z x| - Z x; exp (x;3) »7,

33 ier =1
A loga[i 1 -"11 4 Z]Og (yi) — Z log (ve) exp (x:3) ¥ -

ieh

The likelihood eguations:

L Vs L;(BH
,_ 2o [; (8)]

cannot be solved analytically. Even in this simple case the solution must be
found numerically.

Remark 13: In the case of the exponential model, where b = 1, the
estimator, (3. tor the parameter 3, is the solution to:

U:alog[L( )} Z erxp(xfﬁn)}’i-

ae;;

Remark 14: When there is no truncation, the first equation of the
Weibull log-likelihood model becomes:

4 = ix: eXp (xsﬁ) lEXP (_x‘-,@) B },‘:El] '
=]

In this case, we have E (¥f) = exp (—x;3) and this equation becomes:

0= iﬁ X, exp (x;ﬁ) [}‘f" -E (}'f’)}
i=1

which can be interpreted as a condition of orthogonality between the explanatory
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variables, X. and the estimated residuals corresponding 1o y” for the scalar
product associated with diag [exp (x,@)] .

Example 21: The simplest case, when the only explanatory variable
1s the constant, corresponds to the sampling model in a truncated Weibull dis-
tribution, In this case we have:

a log [L{(8)] _ — 1, — exp [f-}} Z 'yf;

03 —
[ (8
%]] " +§]og(} ;) —exp !ﬁzmg (yI f’)].

Inspection of the [irst equation reveals that: exp (—3) = - > 1 . Substi-

i
tuting into the second equation, we obtain an implicit function yielding 4 :

[ —1 H
+Zlogn ) — l : v”‘] > tog (visf).
i=1

(€ f—1
The precision of the maximum-likelihood estimator may be estimated by:
9*log [L (6}]
3030°
The second derivatives of the log-likelihood are:
d‘ log[L (9)l
3o
3°log [L (6)] _
330k
‘loglL (8] m .

RIFZ = Z [log (J’i)] : exp (x;3) }-f’_

Zx X; exp (x; &) ‘»!’

= —Zx log (¥ ¥7) exp (x:8),

i =1

12.4.2.2 The Decomposable Model

Sometimes the estimation is simpler than in the foregoing example.
This occurs when the hazard function contains a separation between the obser-
vations, y. and the paramcters, 3:

e
Ay 3y = Zgu (8 Ao () + R (veds
=1

= 2. (B) g () + Fy ().
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Denoting the primitives of kg and A ; by Hy; and Hy; respectively. and noting
that they are nil for v, = 0, we find that the corresponding density functions
and survival functions are:

fi i By = (g (BYRoi (3:) + hyi (3]
x exp {— [&f (8) Ho: (v) + Hu: ()]},
Si (35 B) = exp {— [/ (B) Hu: (i) + Hu (vi)] }.
We calculate the first and second derivatives of the marginal log-likelihoods:
log [£; (31, B)] = Yog [fi (v, BN Zieyy + 10g[S; (3, BY (1 — zic ).
P oy () del (B)

- g: (,6) hﬂ'r (.}'e} -+ f‘?.“ (LW)Z:'E_“ o _EE} Hy (\, ).
B[ vy
B 3,@ [}“i' (yr'; ﬁ)*"’EJI Hﬂ; (};) .

As the vector of scores 1s nil. the following lemma suggests itself:

Lemma 5: For a decomposable model:

_ Aoy (Yi) o
D—E I:}., (Y ‘8) !_HUJ(YIJ:|*

The sccond derivative is:
3 log [Li (vi; )] _ i B (B) [ ho ()
B L ap0F h(w B

de'e3
ko )]

l E'.':JI'['
[ (s B
Taking expectations with respect to the distribution of ¥, conditional on the

values assumed by the exogenous variables, and using lemma 5, we obtain the
following result.

— Hy; (v )}

Proposition 40: For the decomposable model, the asymptotic preci-
sion of the maximumn-likelihood cstimator is approximately given by:

’r -1
ril,g FE)
F " |: hﬂ! (1 }j|
Vil[" (ﬁ) % Z “IEJ] -

(v BY



320 Economcetrics of Qualitative Variables

Since the functions g and hg are given, we can vary the functien /4. and
aver it the hazard function. We see intuitively that, the larger this function, the
greater the imprecision of the estimator.

On the other hand, as we have seen in preceding sections, the comparability
of hazard functions is closely linked to the notion of heterogeneity. We shall
examine what happens to our results when they are applied to a model derived
from aggregating exponential models.

The survival function is:

Si (v, 3 = /exp {—[v+expx8)] yim } dv.

= exp [~y exp (x;3)] [ exp (—vy; ) dv.

+F 14

Denoting ¥ (v} the moment generating function associated with the distribution
7, we find:
log [S; (yi. 3] = exp (x:3),
= —y exp (x;3) + log [W ()]

This is a decomposable model with:

g (B) = exp(x;3),
Hy: {yi) = ¥i.
Hi {y) = —logl¥ ()]

Direct application of lemma 5 yields the following result.

Proposition 41: For a model derived from an exponential model by
heterogeneity we have;

E, L] =, (¥)).
L:(Y;':ﬁ} ()

In particular, applying this formula to the case of non-truncated variables,
we see that the mean of the inverse of the hazard function is equal to the mean
- duration:

1
Ei | ————-| =E ().

This formula constitutes a direct gencralization of the relationship between
the mean duration and the hazard rate established in the case of temporal 1inde-
pendence (ct. proposition 33}
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Proposition 40) takes the form:

- n' 4 : _
var (ﬁ) ~ (Z Xi% €XP {zx!ﬁ)E{m})

i=1

Proposition 42: For a model derived from an exponential model we

" _I
var (B) = (Z XX, exp (2x;3) E; { qgjla]nglwﬂﬁﬂ }) '

i=1 exp (x;3) — v,

have:

The term:
_ dlog[¥ ()]
Ay,

brings out the effect of heterogeneity.

Finally, there is a corollary for W = 1 which is a classical result of studies
of duration models:

Corollary 3: In the case of the exponential model, we have:

1
"
var (6) ~ [Z X;K;J‘T;'ji .
i=1
withr; = E (Ziﬂ. ]

This matrix is similar to the one we know from the linear model. except
that each observation in the current one is weighted by its probability of being
censored.

12.4.2.3  Proportional Hazard Models
After transformation of the endogenaus vaniables, some duration mod-
els can be rewritten in a simpler form. A particular case of this is found in pro-
portional hazard models, in which explanatory variables are introduced over
exponential functions.
Let the hazard function be:

AXis 1 B) = exp (—x;/3) do (1), (12.4)
where Ay designates the base hazard. The corresponding survival function is:
S (%11 B8) = exp [—exp (—x:3) Ao (£)].

where Ay designates the cumulative base hazard.
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We now intraduce the following transtformation of the duration variable &, :
U =log Ao {f) —x; /3.

We have:
Pr(U; = u;) = Prilog [Ao (Z)] — x:8 = uit,
= Pr {{ = ha] [cxp (x; 3) exp (u,-}] }
= exp [ exp ().

which denves from the expression for the survival function, S.
Thus, the initial model associated with the observations (£, x;) can be refor-
mulated as:

log[AgiZ)]=x8+uw;. i=1....,n, {12.5)

where u; follows the Gompertz distribution, with density g (i) — exp(u)
exp [— exp (u)]. This resembles a lincar model, but it should be noted that
the error term is not centered (the mean is approximately E [#] = —0.57) —nor
is it normally distributed.

This form lends itself to several applications. We may, for example, find
certain simplifications in the likelihood equations or in the expression for the
information maitrix. In particular, the vector of scores is often amenable to intro-
ducton of generalized residuals, which form the basis for the test procedures.
Furthermore, least squares type estimation procedures, while not efficient, may
sometimes yield consistent cstirmnators.

Example 22: Assume that we have uncensored data. We regress the
trunsformed variable log [ Ag (£;)] on the explanatory variables x; to obtain the
parameter vector 3. The estimator 1s:

n L
B= (inm) D log[Ae (2]

i=1 t=1

Since u,; 1s not centered, this estimator is consistent for all elements except the
constant. Also, we can introduce residuals &; = log [Ag (£;)) — 3, which are
approximations to the variables u; — E {u,), and which are centered.

In fact, the formulation introduced in equation {12.53) 1s not always the most
appropriale. Notice, for example, that the transformed variable Ag ({) 15 such
that:

Ap (§) = exp (X, 8) exp (u; ),

where exp (u;) follows an exponential distribution. Since the mean of this last
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distribution is equal to one, we have;

Ap () = exp (%, 3) + wy., (12.6)
with E (m;) = 0. This is an cconometric model which is nonlinear in the
paramcter 3.

In the uncensored case, application of this second model leads us quite nat-

urzlly to introduce the nonlinear least squares estimator 3, solution to the
problem:

M

min D [Ao (@) = exp i)

i=l1
and to the residuals:
W; = Ag (£ — exp (x3).

The simplest way to determine which of the two representations, equa-
tions {12.5) or (12.6), is better suited to the proportional hazard model is
to write out the log-likelihood function associated with the model. It 1s given

by:

log [L* (8)] = > log [exp (—x:5) ko ({1)]

i=t1

+ > log {exp [—exp (—x:8) Ao (&) }.
i=l1

= > x84+ loglho (01 — > exp(—x:8) Ao (&),

i=1 i=I
The corresponding vector of scores is:

dlog [L* (8}] _
ag a

Z X, [—1 +exp(—x:3) Ao (£)].

i=1

= x exp (—x:3) [Ao (&) — exp (i),
i=1

— Z X, exp (—x;3) w;.

=1

Simutarly, in the uncensored case, the likelihood equations, given by:

?1og [;3 ()] _ ;:Z.x: exp (—x,3) & = 0.

signify the conditions of orthogonality between the explanatory variables x;
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and the residuals:
w; = Ap (g} —exp (x;ﬁ)

associated with the formulation of equation (12.6) and estimated by maximum
likelihood.

Remark 15: When the observations are censored, the score ‘”—3’-}5—“

associated with the observable variables v;, { = F, ..., n can be derived {rom
the latent score, given by:

dlog [L{B)] _ .| 2legll"(B)]
873 B 33

This evaluates to:

g log [L "
Dg;ﬁ {r‘B)-I — Z x: cxXp (_KEJ@) E_H [J""'Ln {[;) — exp (K!J@Ji }r!] .

i=1
yvielding the generalized residuals:

W = (Ep [Ao (&) —exp (D Vi]) 55

Y],...._}"n}.

12.4.2.4 Test for the Exponential Distribution

The family of Weibull distributions includes the exponential distribu-
tion. where & = 1, as a special case. So we may wish to test the hypothesis
H; : b = 1. This allows us to determine whether the hazard function is constant
Of Monoetonic.

This test may be performed with the usual methods: the Wald test, the
maximume-score test, or the likelihood-ratio test. No real simplifications are
possible for the calculation of these statistics. As an example we calculate the
statistics for the simple case of observations which are i.i.d. and uncensored.

Example 23; Fromexample 21, the vector of scores %ﬁ% , evaluated
at b = 1, 15 given by:

a1 I ] H #
= 13;,{3 Mo+ log 0 —exp (B S wilog ).

=1 i=l

3, the estimator of 3 calculated under the null hypothesis, is:

oxp () -

H

Z?:l Vi
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Substituting into the score expression, we have:

dlog[L(3: D] _ : L wleg (v)
o —n+§log(y,) PSS
= % {5 —cov [y, log (3}] }.

Under the null hypothesis, the asymptotic variance of this score can be found
using the Fisher information matrix:

var | gloglL (3: D] _ | Iy
“¥ |/ ab " Ies
We leave to the reader to verify that its value 1s consistently estimated by:

{2125 (o) e )
_ M {g i log |exp (B ) | }2-

H

To apply the maximum-score test we accept the null hypothesis (5 = 1) if:

L 5,1) <2

and reject it otherwise.

12.5 Models with Heterogeneity

In the models we have just examined, it has been assumed that the exogenous
variables were measured without error, that no variables were omitted, etc. In
other words, we ignored modelling errors. To account for this possibility, we
need to introduce a parameter of heterogeneity.

12.5.1 Some Properties of Models with Heterogenelty

We begin by presenting a general formulation for these models, by specifying
the direction of the heterogeneity bias, and by giving a precise description of
the mover-stayer model.

12.5.1.1 The Relationship Between Aggregated and

Disaggregated Models

Consider a population of individuals, for example the unemploycd,
with unobservable characteristics categorized into groups v,v € V. The
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population may be divided into several sub-populations, P,., where P, is com-
prised of individuals with characteristics v. This grouping of individuals into
the various sub-populations is summarized by the distribution of heterogeneity
a {efu).

At the disaggreguted level, the distribution of the duration for individuals
characterized by v is given by the following functions:

(1) S{r; v) ~ the disaggregated survival function,

{i1) X {z: v) — the disaggregated hazard function,
(i1} r (f; v) — the average remaining disaggregated duration.

It is important to recognize that the distribution of heterogeneity of the popu-
lation changes over time. Some members of the population of the unemployed
will. with time, find a job, for example. This change occurs each time that a
spell of unemployment ends, 1.e. each time that a duration is obscrved. As the
rate at which individuals leave unemployment is not constant across the sub-
populations, it is likely that the distribution of heterogeneity depends upon the
date. Let us denote this dependence upon time, ¢, with m, (dv) .

This distribution is easy to find. The proportion of individuals remaining
unemployed at time ¢ 18 5 {¢; v). We find:

S (11 v) 7 (dv)
fv St (dvy

a7, (dvy = {12.7)

From here on we denote E,. var,, cov, the expectation, variance, and covari-
ance with respect 1o the distribution w,.

So far. we have described the distribution of the duration in disaggregated
terms. now we shall examine the aggregate distribution, that is for an individual
drawn at random from the whole population 7 = Uy P... The aggregate survival
function is given by;

5(!‘12/5(?; vy (du),
AV

and the average hazard functions are yielded by:

—d log [5 (r}]
dt

= _ i 30_:
F{ty = T D /; S{u)du.

Ay =

The following result provides the relationship between the aggregate and
disaggregated Tunctions. The first part of this proposition has already been
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demeonstrated in proposition 33, the second part is left as an cxercise for the
reader.

Proposition 43:

Ay =E [ 0)],

Firy=E/ [r(r:v)].

12.5.1.2 Heterogeneity Bias

These simple relationships provide the basis for our analysis of the

functions at the aggregate and disaggregated levels. We shall make use of the
tollowing lemma:

Lemma 6: Let g (f: v) be differentiable with respect to ¢, we have;

[L_?_g (1 v)

i
—E [g (. v)] =E,

af “ar } —cov; [g (i vy, A v)].

Proof; We have:

J
H_EF [g ;v = / glg:vym (1; v)duy,
! Vv

where 7 (£; v) 1s the density function for 5, (dv). Applying the product rule to
the terms under the integral, we obtain:

D e i
g I[g{I:U)]

d
/ —g (v vyde + f g(t;v)—m {i; Vdv,
v ot

_E ‘i @ )_ f (t: f; ’: S{t:vym (v 2
- I_E”g "L_ slnw) o oS U]J‘I[U)db] v

3 ] Fl;,vym(w
= E: _' o U - )

LS v () f, f U)W(U)dv}du
[f, S vy de]’ ’

-~ E, [%g(r; vj} + ‘/vg (t: v) [— B (s v) 7 (2 v)

-l-.ﬂ'{!:b‘)] .:’-.(.":tl}?’r{r‘;v)dv]db
1
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af
+ E: [g (4; v EA (£ v)

a
=E, [—g (#; UJ} — Eilg{rv) A fs; v)]

=E, {%g (t: v]} —covy[g (v, A vy O

This formula can be applied directly to the equations:

gl vy =2t v),
Fir; vy = At v

Corollary 4:

dh ()
dt

BE}(I }
—_ . ;Ui
ar

d
= Efgl (£; vy — var, [A (f; v)].

If we wish to analyse the evolution of the mean of the individual hazard
functions, il appears natural to begin with the aggregate hazard function. The
preceding corollary shows, however, that this leads to an underestimation, since:

This heterogeneity bias depends exclusively on the varability of the hazard
function. '

Remark 16: If we have interiemporal independence at the disaggre-
gated level, 1.e. 24 (f; v} = A (v) ., then:

diir)
et

reflecting the negative relationship presented in proposition 34.

= —var [A ()] < 0,

Corollary 5: If the heterogeneity is constant, and if the mapping v —
A (f; v) is increasing for all ¢, then:

For a proot see exercise 10.
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This result 15 analogous to the one we found for the hazard function. The
apparently rcasonable approximation to the evolving mean of the remaining
individual durations, ‘%U actually constitutes an overestimate,

Remark 17: When intertemporal independence obtains at the level
of the individual. we see that drfrl > 0, and we conclude that the average
remaining duration is 1ncreas1ng.

12.5.1.3  Evolution of the Distribution of Heterogeneity
Finally, we can compare the distribution of heterogeneity at two dif-
terent dates.

Proposition 44: Let the coefficient of heterogeneity be constant and
the mapping v — A (¢ v) increasing for all ¢. Then, if ¢* > ¢, the distribution
7, first-order dominates ;..

Proof:
(i} Let g (v) be anincreasing function in v. Applying lemma 6, with g (#: v) =
g (v), we have;

3 e (g ] , :
éIE g (v}] =E; |: a7 :| cov, [g (v), A (7; v)],

= —cov, [g (), A {f; v)].

This value is less than zero, since it represents the negation of two funclions
which are increasing in the same variable, v (cf. exercise 4).

(11) So we see that the application of ¢ — E, [g (v)] is decreasing. Conse-
quently, we have established that for any increasing function g and for any
two dates ¢ and #', we have;

E lg (m)] = Er g (v)].

According to definition 10, this implies that =, first-order dominates
Hr’. I:I

From proposition 36, the condition of first-order stochastic dominance may
be summarized using the allocation functions associated with the distributions
of heterogeneity. These functions are:

¢ (v) = j 7, {dv),
i

where we assume that v is positive.
Let Qp(v)y = O,{v). ¥’ = r. ¥uv. Since the hazard functon incrcascs
with v, these inequalities clearly describe the mathematical formulation of the
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mover-stayer model. The proportion of stayers increases with time regardless of
the specific definition of stayers. that is, the limit value v chosen to distinguish
between stayers and movers.

We have secn that in some cases direct calculation of the distribution of the
duration is possible. For example. if the disaggregated distribution is expenential
A {t; v}y = v, and the distribution of heterogeneity is gamma, then:

at vt (—au)
I' (v)

T{v) =

We have already established, ct. example | 1. that the aggregate duration follows
a Pareto distribution:

The distribution of heterogeneity at time ¢ has the density [uncton:

atyv -l exp (—av)

Tt v) = exp(—vr)

1" (1)
{/1 R at'u” ‘_e?_illl {au)dE]
i I" (v)
_ fa+ O exp(—u) (a + £y v
- T () B
At time ¢/, WLT follows a gamma distribution parametrized by v. The cu-

mulative functions shift toward a line parallel to the abscissa as f increascs.
Over this period the population becomes increasingly homogeneous, and at the
limit, when t = +o¢, there is no differentiation at all — the distributions of
heterogeneity converge to 7ero.

£ ok
7 >
(v}
T ¢ — increasing
] —
Vv

Fig. 12.14. Distribution of heterogeneity — gamma function
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12.5.2  Consequences of Ignoring Heterogeneity

Failing to account for the phenomenon of heterogeneity may result in a signif-
icant bias in parameter estimates, We have examined these types of biases in
the case of the evolution of the hazard and the average duration functions.
Certain types of parametric modcls allow us to perform very precise tests for
bias. We shall examine the case with independent, uncensored observations on
duration which we denote ¥;, { = 1, ..., #. These data fit an underlying model
of proportional hazard with heterogeneity. The individual hazard function is:

rixi v ) =exp (—x8 + v) g (4).

wherc the distribution of the factor of heterogeneity is given by .
This model can be expressed in the following lincar formulation:;

loglAg (YD1 =x8+u;+uv, =11, (12.8)
where i; and v; are independent with distributions:

g{u) = cxp{n)exp [— exp (u)] . and m.

respectively.

Assume that we proceed to use maximum likelihood to estimate the parameter
{3, but torget about the presence of the heterogeneity factor. The estimator we
obtain, 3, is determined from a misspecified model:

leg[Ag(v)l=%08+u:,., =1, ..., 8.

A demonstratuon of the following result is provided in appendix 12.1.
If the model contains 4 constant term:

X['IG = ¢ 4 K:-Cd,

and if ¢ and d are estimated using maximum likelihood without considering the
issue of heterogeneity:

Proposition 45:

(1) The estimator of d is consistent.

(i) The estimator of the constant term ¢ is not, in general. consistent, and the
asymptotic bias is independent of the values assumed by the explanatory
variables,

(1) If the factor of heterogeneity v has meun zero, the asymptotic bias of the
constant 1s posifive,

Consequently, we see that in this model the bias only affects one of the
parameters. Furthermore. it 15 an easy matter in this case (o correct the bias. Let
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us examine the residuals of the estimation;
G = log[Ao{y)] —én —X'dg, i=1...., 7.
When the number of observations is large, we have approximately:
i; 7 log [Ao (¥)] — plim, (&) — x/d,
and so:

) 1< 1 A {2 )
- Z i~ Z log [Ap (3:)] — plim,, (&) — - fo'd’

i=1 i=I i=l

.
=~ ¢p — phim,, (&) — ; Z Hi,
=1

~ ¢ — plim,, (80) — E ().

Thus the estimator of the constant may be adjusted by the difference between
the mean of the residual and the theoretical expectation of the error term. This
latter is approximated by:

E (1) == —0.57,

Notice that this simple method of correcting for the bias does not work if the
data 1s censored.

12.5.3  Parametric Treatment of Heterogeneity

Onc reasonable way of dealing with heterogencity is to choose a distribution
for the heterogeneity, m, from an appropriate family of parametric distributions.
Thus we may select a distribution permitting analytical integration of the basic
survival function, This approach was used by Lancaster |[Lan79] for certain
proportional risk models.

12.5.3.1 Form of the Likelihood
The hazard function is:
A () =exp(x;3) g (£, D).

After introducing a [actor of heterogeneity indicating the omitted variables, we
“have:

A =exp(x; 3 +v) gt b).

Integrating, we obtain the survival function:

i
Si{yvi:x;3+ v.b) =exp {— [ Aj (i U)du:| ,
0
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= exp [— exp{x; 3 + v} ‘/F}If g, b du] .
t

= exp [—expx: 8 + ) G (3. b)],

where (& denotes the primitive of g at zero.

At this point it remains to specity the distribution of the error term v, or,
equivalently, of exp (v). Notice that, as an alternative to introducing a constant
term on the right-hand side, we can postulate that E [exp (v)] = 1.

Furthermore, we have scen that, when exp (v} follows a gamma distribution.
it may be impossible to integrate the survival function analytically. In this case
we specify 4 = exp (v), a gamma distribution with mean one and variance o2,
for the error term. The density function is:

w{ua’) = ()7 e":((;f'—:) ur

o

{12.9)

After intcgration, the survival function is:
S(vilx:6.8.0%)

— / S [}-‘,-,X;,B—i— log (1) .b] T (,u: 0'2) dpe,
o

_ /{ exp [—exp (% 3) G (33 b)]
A}

[ +exp @ G (i )] 7
by

= [l + o exp (xi3) G (i3 b)]_d :

Remark 18: The case of no heterogeneity is obtained by lelling o
tend to zero.

Lm S (¥ x:; b5 3. 0%)
ad
= lim [l +alexp (x,8) G (y;; b)] _a_z,

TRy

1
= lim {exp <_§) log [1 + &% exp (%,3) G (3¢ b)}}.

F2 =]

= CXp [— exp (x; 3y G (v, b)].
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We obtain the density function for this model, accounting for heterogeneity,
by partially differentiating the survival function. Thus:

N \ J
f (}’fixi;b.a&ﬂ“) = —as (}"f|xi; b,ﬁaﬁz),

— exp [~ exp ()] G (i3 )
x [1+oexp(x;8) G (y: 8] " -

And the hazard function is:

exp (x:3) g (¥, )

e 2y _ .
}L(}-;le,f}.ﬁ,ﬂ' ) ]+52¢xp(xgﬁ)(}(}'i;b)

We see that this function is decreasing in o2, which is consistent with the
mover-stayer model.
Finally, the log-likelihood is given by:

log [L(h.B,6%)] = %8+ > logig (3:5)]
A

fl
—> [+ oexpx:B) G (11 b)]
A

I«
a2 > log [1+6exp (x8) G (3:: 5],

i—=1

The paramcters may be estimated by means of maximum likelihood.

12.5.3.2 The Assumption of Homogeneity

The cstimator of the auxiliary parameter o2, which we used in the
previous model, provides the opportunity to construct some hypothesis tests.
In particular, we may wish to test for homogeneity:

Hy:a?=0.

Letus denote, b, A, and 62, the maximum-likelihood estimators of the model
calculated without accounting for the constraint that & = o2 must be positive.
Note that, even though the constraint has not been explicitly taken into account,
the function:

S(ylxib: Ba)=[1+aexpxB)G (v, 6)] (12.10)

only makes sense if ¢ = 0. In conscquence, the null hypothesis defines a bound
on the possible values assumed by «, and so one of the standard regularity
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conditions of an asymptotically normal distribution is violated. Furthermore, it
is not even clear that a solution to the unconstrained likelihood equations exists:

dlog[L (a. 3, b)]

3 (afﬁ E})

since a maximume-likelihood solution may, under certain conditions, lie on the
boundary of the domain.

While we do not wish to delve too deeply into the theoretical difficulties,
it is of some interest to illustrate this problem by evaluating the asymptotic
score under the null hypothesis for an uncensored exponential model with
heterogeneity. This case corresponds to g (v. &) = 1l and G (y, &) = y.

The density function is:

0=

F(3ilxB.0?) =exp ) [ + o exp (B v] 7,

and the lag-likelihood for the uncensored case is:

Ll

log (L, (B.6%); =Y x4,

i—1

l I
= (— + 1) zmg [I +Jzexp i(x; y,-].

2
o
=l

Generally, the asymptotic score evaluated under the null hypothesis, given
by:

o LologlL, (8. UH.

n-s00 F Ao

1s null. Let us examine its valuc in this case.
The easiest way to find the score is to perform a limited expansion of the
log-likelihood £, (3. o%) in the neighbourhood of ¢? = 0. We have:

log IL Zx”ﬂ (—-i— l)

#

2
Z [Uzﬁﬂp (X;3) yi — Z— exp (Zxrﬁ}'?)] .

i=1

ZXﬁ ZLKP{X B3 yi

[ Zexp (x!.ﬁ) ¥+ ! 'EX]} (ZX”@W )]
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yvielding:

dlog[L, (3,0)]
der?

f 1 M
=Y expB i+~ Y _exp(2x:8) y7,
i=1 G
hid I n
Yty
i=1 i=1
where the Z;-s are independent variables with the same exponential distribution

parametrized by one.
The asymptotic score Is:

lim

L ) 8‘0’2 n

1 8log(L, (3,0 1 & 11 P
m . Zz, +

i=l i=

B+ R (2
- E(-C-)—'_ZE'(M):

1
- —E@+ {var () + (E(@)P} =0,

SINCe:
E{z) =var{z) = 1.

Observe that the boundary problem we encountered earlier does not affect
our ability to apply classical test procedures. In particular, the maximum-score
test is founded on the notion of a score which is asymptotically null.

12.6 Renewal Processes

In the preceding sections we focused our attention o the case in which we have
a single observation of duration for each individual. This structure is appropriate
when we are examining unemployment or life expectancy data. In other types
of data, however, we may dispose of information on several durations for each
individual. This will be the case, for example, when we examine certain types
of purchases by household over a given period of time. Even though we now
have several durations for the individual, this situation can be reduced to the
preceding one if the durations are independent and have the same distribution.
We simply create two indices, one for the agent and the other for the duration.
This tvpe of construct is called a renewal process.

In this section we shall examinc some of the concepts underlying these mod-
els, particularly focussing on their relationship to the standard models of dura-
tion and to models with discrete dependent variables.
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[12.6.] The Processes

We are interested in certain events which may occur at different times. In the
following section we shall make the assumption that not more than onc of these
events may take place at any given point in time.

By convention, observations begin at time ¢ = 0, and the timing of the events
1s denoted:

(S, : time of the first event,

Sy, :  time of the #-th event. (12.11)

.

These dates constitute an increasing series of variables;
U{iS] {Sz{ {Sn{5n+1 = ...

Assume that, on average, the duration separating two of thesc events is strictly
positive, implying:

sup |5, | = +00. {1212}

The variables §,, # = 1,2,.... may casily be expressed in terms of the
delay between two successive events. Let £, denote the interval separating the
(# — 1}-th and »n-th cvent. We have:

o =25 =0,
=258 —8 >0,

12.13
{n = SH - Sn—l - ﬂ: ( )

=>Sn=f[+¢3+...—|-¢n, Y.

These concepis can be summmuarized by the graph in figure 12.15.
Within a bounded interval, a strictly finite number of events may occur.
To express this we introduce the set ol all positive integers, IV, — reflecting the

T C Q - & a &
=1 =1 1 et
. . N e
. e ¥ ¥ Ny - ¢
0 5, 5, s, g **°

Fig. 12.15 Muluple dorations
) P
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possible number of occurrences of the event during the interval [0, ¢], ¢ € R7.
We thus obtain a family of variables indexed by continuous time ¢ € &2, Thisset
of variables contains exactly the same information asthe series S, #n=10.1....
reflecting the time of occurrence. We have:
(Ne=n)y=1(5, <t = SJ!+I}|
(S, =ty = (N, = #n),

To summanze, we have cstablished that:

Yhne N, YieRT, {12.14)

Proposition 46: The process underlying the occurrence of these
events can equivalently be described by any of the following three rules:

Sy, n=1,2,... — describing the times of the occurrences.
& n=1,2,... — describing the interval separating the
(CCUTTENCES.
N, te R° — desernibing the number of occurrences

occurring before t.

In consequence, when building our probabilistic model. we can choose a
distribution to describe any one of the processes,

12.6.2  Definition and Properties of Renewal Processes

Definition 14: The occurrence of events along the lines just described
is called a renewal process if and only if the durations ¢,, n = 1,2, ... are
independent and follow the same distribution £.

The most Intuitive example of this phenomenon is obtained when we choose
a shared distribution from the exponential family, which is associated with a
constant risk function.

Definition 13: A renewal process is called a Poisson renewal process
when the duration follows an exponential distribution:

F () =1—exp{(—a{).

According to proposition 46, these definitions can be reformulated to reflect
the processes (.5,) and (N,;).

1262 1 Definitions Based on (§,)
We use * to denote the convolution of the probability distributions.

Proposition 47: The occurrences belong te a renewal process if and
only if:
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(1) The distances S, — S,—1, # = 1.2, ..., are independent.
{(11) The distribution of S, is F**, n=1,2, ...

The particular case of the Poisson renewal process derives [rom the products
of the convolution of the exponential distributions. Thus S, follows a gamma
distribution with » degrees of frcedom after a homothetic transformation. Its
density tunction 1s:

Ats" Vexp(—is)
Dg=(ls
1" {#) -

.ﬁ'i (T) —

12.6.2.2 Definitions Based on (N,)

Properties equivalent to those we have just seen are much more difficult
to demonstrate in the case of N,. We shall limit our discussion to providing
results for the Poisson process, and then explain how to find the distribution of
N, in the general case,

Proposition 48: The occurrences are described by a Poisson process
if and only if:

(i) &y =8 = ... < f,. ¥Yu, the variables N, . N,, — N,,...., N, — N,  are
independent (i.e. N, is a process of independent increments).

(11) The distribution of N, — N, depends only on the distance 1 — s (the process
18 stationary).

How can we derive the distribution of N, from Lhe distribution of the du-
rations? We saw in cquation 12,14 that (N, = 1) = (S5, = 1), and conclude
that:

PriN,=n}y=Pr(N; = n)—Pr(N, =2n+ 1),
=Pr(S; 1) —PriS, =1),
= F7 () — #0),

We now derive the distribution of the variable N, for a Poisson process. We

have:

PI‘(N; — n] —_ .""'-*” (r) _ F*[H-I—]:' (r}

B /f }.”s”_'cxp(r—l.?_}{h_ /‘ 25" exp (—hs) "
A (n — ! ' 0 n! '
_ /’ 275" exp (—ay) s At exp (—as) |’
A (n — 1}! rl "

H }'.n.j-'n_l
' ) oy exp(—as) (1'3}.
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Applying integration by parts. we obtain:

{(#1)" cxp (— A1)
a ! '

Pr(N, =n)

Proposition 49: For a Poisson process, the frequency of occurrences
of the eventin question before some pointin time ¢ follows a Poisson distribution
parametrized by At.

Consequently, we see that postulating a Poisson distribution for discrete
values describing the outcome of some cvent, such as the number of patent
applications made by firms, is tantamount to assuming that the distances be-
tween the times the applications are made follow an exponential distribution,
This assumed distribution in turn justifies the choice of the functional form
A = exp (X; /) to describe how the parameter is related to the explanatory vari-
ables. Tt also illuminates why the assumption that the modelling error follows
a gamma distribution in the case of heterogeneity allows us to integrate the
Poisson model as well as the exponential model associated with duration data.

f2.6.3 Conserving Duality Properties During Estimation

In conclusion, we shall verify that the “duality” — the equivalence between the
representation of durations and counting the number of events in a given period —
is maintained at the estimation level when maximum-likelihood methods are

applied.
Assume that we have observed events following a Poisson process occurring
between time O and ¢, We have &, the number of occurrences, and S, ..., Sy,

the times of occurrence,
There exist two simple approximations to the parameter A.

12.6.3.1 Estimation from N,
We cxamine the observation A,. The likelihood is:

(Atyexp{—at)

LN A)y= N1 :
and the maximum-likelihood estimator of A is:
. N,
}L; —_ T,
i

the observed frequency of the occurrence of the event over the period in question.
This estimator is consistent as ¢ tends toward infinity. Its variance is;
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12.6.3.2 Estimation from §, ... 8y,

Letting N, be fixed. we again apply the maximum-likelihood method
to 4 truncated sample of durations ¢, ..., {y,, omitting the last + — Sy, obser-
vations, The likelihocod can be approximated by:

e
Loy =] [rexpi=2rs].

=l
The corresponding approximate maximum-likelihood estimator 1s:
Ny
Zf;l j .

Clearly, as ¢ tends to infinity,

i::

.E"ﬂl'rr

I S
— E (:'J- o Ne — ]1
I = t

J=l1

and the estimators A, and %, are asymptotically equivalent,
The fact that right-hand side truncation can be ignored here is explained by
the fact that the proportion of observations eliminated, as 7 tends to infinity

{given by ﬁ). tends to zero.

12.7 Optimal Search Strategy

In this section we develop a model of optimal job search. Optimal, in this
casc, means that the job-secker atternpts to maximize the expected value of his
income.

We shall find that his optimal behaviour is to accept the first offer for which
the salary @ exceeds a threshold level £, This cut-off point can be construed
as the reservation wage, and we use this construct to relate models of duration
to the Tobit model in chapter 7 and thus to explain the salary the individual
finally earns.

Furthermore, this search model will motivale a more detailed analysis of
the hazard function, which will appear in composite form — with one aspect
corresponding to the supply of jobs and one to the demand for jobs, i.e. the
behaviour of the job-seeker.

12.7.1  Solution to the Optimal Search Problem

In order to simplity the presentation we start from a stationary perspective.
Assume that the solution exists and is stationary {the existence of the solution
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is based on the Bellman optimallity principle as well as on several propertes
of Martingales.)

Consider an individual looking tor work who wishes to maximize the expec-
tation of all future incomes over an infinite horizon. Over time she receives a
series of randomly distributed job otfers. Assume that the occurrence of these
job offers is distributed as a Poisson process (cf, section 12.6.2) with trequency
i, In particular. let the duration separating two successive offers follow an
exponential distribution with density:

fLexp (—fef).

Each job offer is associated with a salary w. The salanes are assumed random,
uncorrelated with the time of occurrence, and share the same distribution £
The individual responds to each offer in one of the following ways:

(1) She accepts the job offer and (instantaneously) receives the salary « for all
subseqguent periods.

(i1} She rejects the offer and (instantancously) receives soine amount b until
the next offer, at which point the process repeats.

The sum of money denoted # may represent, for example, the difference
between unemployment insurance benefits and the cost of job search.

This {(stationary} process can be summarized with a function ¥, which, for
a given wage proposal w, assumes the valucs W (w) = 1 for acceptance and
W (@) = 0 lor rejection.

Finally, let us denote W* the optimal response and /* the “value of the
search” (the expected value of future income corresponding to the optimal
search strategy.) Now we wish to examine how W* and /* are determined.

Consider a point in time, denoted 00, at which an offer is received. Denote the
time of the next offer . Incorperating a discounting factor, p, and assuming
that the individual behaves according to W at time 0 and according to W* from
time ¢ on, expected total income is:

VU ) = | W) ZaF ()
Jo i

£ -
+E f bexp(—pt)dr + I"exp (—pi;)
0

x]. [1 — V()] dF (w). (12.135)
f

[f she accepts the job her cumulative meome will be:

9] e
— = / wexp (—pt)dt.
Y A0
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If she rejects it. this ammount is:

3
E[[ bexp{'—pr)dr-{—f"‘exp(—pf) :
0

Attime zcro, it 1s obviously in the individual s interest to adjust her behaviour,
W, 50 as to maximize the functdon V (W, 7*). We conclude that the optimal
strategy is such that:

V(w7 =qu}xV(uJ, "y =1" (12.16)

These are the equations we now solve to find the expression for W* and 7.

Proposition 50;
(1} The optimal function W™ has the form:

ifw > £,

W) =<
tw) { 0. otherwisc.
{ii) The threshold, &. representing the reservation wage, is detined by:
i
E=b+- f (w— E)VAF ().
oS

(1il) The optimal level of human capital is given by:

I*:/ © 8 F ) 4
£ £ P

Proof:
(i) Notice, to begin with, that it is possible to simplify the expression for the
function V (¥, I*) . We have;

£
E [/ bexp(—pt) + It exp (—-pf)]

Ju
b r ~ -
= h{;} [l —exp (—=pZ)] + I*exp (—p_f)}.
b

— 2 (I* - g) E [exp (—pZ)1.

£

b (* b) 1
=—+(I"-" .
P e e
b+ *u
mw+p
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Substituting into expression (12.13) we have:

i (e
V (111, I*) = / W () EdF {0}
S0

b+ IE ] [1 — ¥ ()] dF (),
0

[+ o
h+ I* ! b+ I
— QJFJ U () (9 _2mad )dF(wJ.
H+p 0 I M+ p
The maximum of V over all possible strategies W = [0, 1} is clearly
obtained at:

1. ifw = pitlx
W (w) = @ =P
(), otherwise,
Yielding the threshold:

b+ i*u
p+po

(ii) The optimal value of /* can now be solved as:

1= v{¥" %)

! I*u "
’ + f W {w) (w b+ ) d F (),
ey +p

H

g
~ g ] Zows 2 SdF (@)
~ 0 £
{iit) This equation, combined with the definition of the threshold, directly yields
the equation for the reservation wage. O

Corollary 6: The reservation wage satisfies the following condition:

_E=||['»'+E/. [l — F{e)] dw. (12.17)
oy

Proof: We have:

{?:b—% [ (@ — E)d [l — F (w)].
Je
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Integration by parts yields:

1 L o
E=fJ——{(w—$)ll—F(w}]}’ +—/ [1—F (w)]|daw,
P 5 P
L .
E=5b+ — [ — F{w)]|dw. ]
2Je
We see from corollary 6 that £ is uniquely defined. Furthermore, the function:

h(f)—_"f—f’—ﬁ /m”—f’(m)]dm.
£ Jo

1s continuous 1o £, positive as £ tends Lo plus infinity, and negative for £ = 0.
Clearly 1t has a solution. In addition:

qh.-.@:—} =1+ ® [l — F{w)]de = 0.
dE I

Since £ is strictly increasing, the solution is unique.

12.7.2  Distribution of the Duration

The length of unemployment spells in this model depends upon two factors:
the supply of work and the behaviour of the job-sccker (who does not accept
EVEry pProposition).

Denoting the 1ime at which she actually accepts a job ¢, the hazard tunction
associated with ¢ is casy to find, We have:

1
A {1) = lim — Pr d )
A {t) .:.ilrlﬂlﬂdf [t < ¢ <r4+dt|¢ > 1],

i
= | —Pr] A .
J;’El:d; riAl B,

) 1
= 1 n}EPr{C!B]Pr[D],

1
it —

= wPrlwm = £],

where the propositions are defined by:

— asuitable job offer reecived between ¢ and ¢ + d,

A
£ — unemploved at time f,



340 Econometrics of Qualitative Variables

C — ajob offer received between ¢ and ¢ + dt,
P —  the job offer accepted.
A=l — F{&) (12.18)

The instantancous frequency is independent of time, which retlects our assump-
tion of a stationary process.

Equation {12.18) reflects a decomposition of the duration of unemploy-
ment into an involuntary aspect. associated with w, and a voluntary aspect
[1—F{&)].

Obviously, in our stationary-process framework we cannot distinguish be-
tween these two aspects on the basis of simple observations on the duration &.
This distinction becomes possible, however, if we have data, not only on the
duration, but also on the salary (cf, section 12.7.4}.

12.7.3 Calcularing Flasticities (Chesher-Lancaster {CL83])

If we desire to use the model of optimal job search in the context of policy
analysis, our interest will focus on how certain exogenous variables which
impact on search behaviour (i.c. on @ and F) and on the cost of job search
{i.e. on b) aftect the wage rate and duration of unemployment. In order to
pursue this we shall calculate several elasticities.

12.7.3.1 Elasticities with Respect to b

Differentiating equation {12.17), for the reservation wage with respect
to b, we obtain:

313 N

- M- :
ap =, U FE)

a
PTS
]
1+ 201 — F&E)
]
I+i

Thus, the elasticity of the reservation wage with respect to & 1s:
dlog(§) b 1
dlog by £ 1+ 2

(12.19)

From corollary 6 we see that the reservation wage must be strictly greater
that &, implying that:
- 7 log (E_) -
~ dloghy T

0 1. (12.20)
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For example, an increase in unemployment insurance will have a positive effect
on &, and m consequence on the reservation wage. Under the optimal strategy,
the job-secker will tend to refuse a greater number of jobs. This can be observed
directly if we calculate the rate of re-employment & :

dlog(n) _ dlog{u(l — F&I}

dlog(8) 3 log ()
fiiog(k} __._f@® _ (12.21)
3 log (b) L= F{E) 1+ 2

The hazard function for the distribution of salary offers. T—Lf AppCars ex-
plicitly in this cquation,

12.7.3.2  Elasticities with Respect to Jt
Reasoning in the same vein, we derive the equation for the rescrvation
wage:

JE 1]’” dE
— = - 1 — F —,
5. [ 3] B
| I 1
= - / | — F {ew)] efew =,
LS 1+ =
5§06
,u,(l—kj—;)
dlog({&y §—b 1
dlog(u) & 1+

Iy

(12.22)

2
7
This elasucity 1s also bounded by zero and one, The elasticity for the rate of

re-employment is:

dlog(h) __ f&) &—b
dlog (1) (- F@E 1+

(12.23)

12.7.3.3 Expressing Elasticities in Terms of the Salary Received
When the job-seeker accepts a job, her average salary is given by:

> — E [0 : j;ﬂ e F ()
m=LCElwlw:=E]= I;W-
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Integrating by parts:
o = Fw)dw

w=£&4+ [~ F &)
_ £E— b
ST InCFen
and so:
@;E__E 5
=5 (12.24)

Consequently, we see that some clasticitics can be expressed as functions of
only the “salanes”, /#, £, @. for which data may be available in some surveys.
We have:

dlog(E) bo—¢&
8 log (b} - Eao—h
dlog(§) &—baw—§&

dlogip) & @—»b

(12.25)

12.7.4  Estimating Structural Models

Optimal job search models may form the basis for the simultaneous estima-
tion of dependencies between explanatory variables and the supply lunction
(12, F), and the relationship between these variables and the reservation wage.
Retaining the framework of 4 stationary process, we shall limit our examination
1o individual explanatory variables x,. These may appear in g and F so that,
for the i-th individual, we shall adopt the notation:

t(x:3) and  Fw: x;, o).
The reservation wage for the /-th mdividual is defined by:

£ = b+ J’-_’L_(Xe'; ,6) i
&

We see that this value depends upon X, and that the specification is complete
when we have the parameters b, «, 3, and p. We write this function

Exabow, 3. 0).

Notice at this point that the assumption of optimal behaviour, which underlies
equation (12.26), vields a specification which can be solved for the wage otfer.
This is an important difference between this model and the reservation wage
analysis in the Tobit model (cf. chapter 7). where the specifications where
selected independently.

1 — Flew X, a)]dow. {12.26)
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Assume that the individual observations arc independent and contain data on
both the duration and the salary received. In light of the fact that some data may
be truncated on the right-hand side, we can distinguish between two types of
observations:

(1) uncensored observations {{ € ;) , for which we have both the duration and
the actual salary, and

(1) ccnsored observations (i € ;) , for which we have a truncated duration and
the “salary™ b, (which, to simplify, we assume fixed and identical across
individuals).

Denoting v = min (£, ¢;) the observed duration, &; = min («w;, &) the ob-
served wage, and ¢; an index for truncated variables, the likelihood of the
observations is given by

Liv,d, &b Boa. p)= H [fi{wilewi > &) F; )]

el =1
< [ [t =F: 0,
iz =t}
where f .. and F represent the distribution of the duration and where f; (o, | wy;
= &;) designates the conditional density of w; given that w; = &;.
Since:
I — Fy (y) = exp (—u (X1 B)
* {] — F [g (Xt: b, ﬁ..ﬂ‘.", p) - K, QJ} }Ii) +
f.' (.}'14'} =M (X!': JS) {] — F Ig (xi; b'.- ﬁ? o, JD) v X Q‘]}
X [U— £ (v)],
I i % @)

] - P‘ lg (xi':.' b? 18? as ﬂ) XI'-. ':H].i

we finally arrive at the likelihood:

fiCewiley = &) =

s
Liv.d, &b, 3, a p)= H [I - F, (y,-)]
=l
< [T s 03 B) F (i5 %, @)
I'(:_Jf]

The parameters can now be estimated using maximume-likelihood proceduores.
Unfortunately. this will nol nccessarily be simple, as the reservation wage &;,
defined by the implicit equation (12.26), must be recalculated at each iteration.

It is not possible to solve this equation analytically, even for simple distribu-
tions of the wage offers (cf. exercise 9).
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12.8 Non-Parametric and Semi-Parametric Approaches

In the preceding sections, we examined models of duration which were adapted
to the data. To do this we specitied distributions from the family of paramet-
ric distributions. This approach 1s only appropriate if the selected specifica-
1ion is correct or, at least, it the specification error has little impact on the
results.

During our analysis of these models three key notions emerged in the conlext
of the hazard function:

{i) how does it depend on time?

(1) what impact do the exogenous vanables huve on the duration? and
(111) what 1s the effect of heterogenceity?

In the simple case, when these effects are multiplicative, we obtatned a func-
tion ol the type:

A vy =) g (x)u,

in which the base hazard, the effect over g of the exogenous variables, and
the distribution of heterogeneity v are assigned a parametric form. Now we
shall look at how robust the estimation methods are when applied to the prin-
cipal parameters (1.e. those appearing in g) and to crrors in the distribution
and in v. From a practical perspective, 1L appears that the results are very sen-
sitive ta errors in the distribution ol heterogeneity s, and a little less so to
errors in the base hazard Ag. We give an example of this sensitivity in the first
SeCtion.

One way 1o deal with this lack of robustness is to avoid specifying a functional
form for the distributions of 4y and/or ;1. This leads us to introduce models which
are only partially parametric {semi-parametric) and joint estimation procedures
for the parameters of interest and the unknown functions. We shall now examine
these methods more closely for the cases of:

(1} non-parametric estimation of the hazard function in the absence of cx-
planatory variables and of heterogeneity,
(i1} estimation of the cffect of the explanatory variables when the base hazard
15 not specificd, and
(i1} cstimation of the distribution of heterogeneity and of the relevant param-
' cters when only the functions 4 and g are parametric.

In order to keep the presentation simple, we shall restrict cur discussion to the
main principles underlying these metheds, and not delve into their asymptotic
properties.
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12.8.1 Non-Robustness with Respect to the Distriburion of Heterogeneity

This particular form of lack of robustness is easily tested — we simply estimate
the data under several specifications of the distribution 5= while keeping every-
thing else constant. We reproduce the results of a study conducted by Kiefer
and Neumann [KN&1] using data on uncmployment. The hazard function is:

log [+ {x:£; v)] =x3 + blog(t) + v.

The heterogeneity is modelled using normal. log-normal, and gamma dis-
tributions. Clearly. the estimates of the rclevant parameters, b and . differ
significantly under the various assumptions.

Variables

Normal Log-normal Gamma
—-3.92 —13.2 5.90
Constant o
onstan (2.8) 4.7) (3.4)
—0.066 —0.708 ~0.576
logit
oz ©.15) 0. 17) ©.17)
Age 0.0036 -0, 106 — {3,202
(0.048) ((.03) (G.006}
(. 0679 —(}.322 —0.981
Education {0.233) {0.14) {0.301)
Previous level of —0.0512 0.0042 —0.034
Employment (0.0149) (0.023) (0.016}
Amount of —0.0172 0.0061 —0.003
Unemployment Insurance (0.0036) ({.0051) (0.004)
X {3.833 (3159 —0.607
M: d (0,1 o
arried (0.1) (©.362) (©.30) (0.496)
~26.12 25.8 —17.9
Unempl
nemployment Rate (9.5) (10.3) (11.2)
) —0.0028 0.0062 —0,0152
Education - A
Hehion - Age (0.034) (0.0053)

{0.0044)

Sample size 456; standard error in parenthesis

12.8.2 The Kaplan-Meier Estimaror

The estimator most used for models of duration 1s the Kaplan-Meier estimator.
Itis used for duration data which is uncorrelated and identically distributed, and
henee contains no explanatory variables and no heterogencity. The data may be
censored.
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The hazard function i, is not specified — it corresponds 10 a base survival func-
tion Sy. The underlying idea involves constructing an estimator of the survival
rate which is based on a discrete model of duration. Denoting p? the proba-
bility of exit from the population during period i, and P? = ] ., {1 — pY)
the probability of not having exited at the beginning of { + 1, we can approxi-
mate the probability of leaving by replacing the theoretical quanuties with their
¢stimates. This procedure has two problems, however:

{1} The model is in discrete time, while the times of exit arc random and hence
not equi-distant.
(ii} The data may be censorcd.

To account for this latier issue, we must inspect cach data point v; =
min (&;, &) and ascertain whether or not it is & censored value. Denote:

l, it ¥ = c‘?f,

d; = )
’ 0, otherwise,

to denote uncensored data.
In the case of complete data. the probabilily of exit is determined for the data
of how many individuals left the population at this date. The value Is:

"
Niy)= Zfr,;',
=1

where:

1. if vy = vy,

Ii; = ol
I - A
4 0. otherwise,

The corresponding probability 1s:

Applying this to our original idea, we obtain the following estimator.

Definition 16: The Kaplan-Meicr estimator of the survival function
. 1s:

) 1
o= [] {1 - m] |

by =t =1

This estimator is very simple 1o calculate. requiring only a reordering of the
variables. Denoling the ordered variables vy < ... << ¥ < .0 < ¥, WC
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distinguish between those which are, and those which are not, censored;

1. if complete,
l’f{,“p = .
0, otherwise.

The estimator 1s:

. I 0
So () = H (1—m) . (12.27)

For example, if the observations are:
(5t 2 1° 3 6 7t 3],

(where the superscript + indicates that the data is censered), the ordered values
are:

(1" 2 3 5t 6 77 B8]

The Kaplan-Mecicr estimator of the survival function is:

K

{(ty=1 ifr 0,27,
Sty=(1-1} itre (2.3],
Swy=(1-Ha=-1 if £ (3,61,
SOH=01-0-1{-1) ifre6,8],
Siy=0 if r € (8. 00).

Remark 19: Clearly. the approximation to the survival function which
we propose here is in the form of a step-wise tunction, while the true function
is continuous. It is possible 1o smooth the estimator § in order to obtain a
continuous function.

It can be shown that the Kaplan-Meier estimator is consistent and asymptot-
ically normal. Or. more precisely;

Proposition 51: Assume thatthe duration data and the censoring (&) .
are stochastic and independent, with survival functions S and §) respectively.
for all values £, ..., {1, we have:

Vi [Sotn) = So )., 8o (5) — So (1,)] ~ N(O, %),

The general form lor 2. 1s:

=||11'n!:r,..r_,=?| 4 5 (H)
= —Sudt) S {IJ) /” Sh (H}%-Sl. (u)
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Example 24: When the censoring and the duration follow the expo-
nential distribution with parameters p and A respectively, we have:

So (1) = exp {(—Au},
S1{u) = exp(—uu),

min(si2} 5 exp (—Au) du
EU = eXp I:—A. (fj + fj)] [D exp (—',-_L — 2}.__) u._
A

= T a O [—2 (1 + ;)] [exp a4+ w)ymin {4, £;) — 1],
The variance 15 given by:

var {/n [80(6) — So (0] } = }.i exp (— A1)

7
e [exp {fet) — exp (—}Lr)] :

As u increases, censoring becomes more dominant and [ewer uncensored
observations remain, explaining why the variance is an increasing function of
. At the limit, 4 = 4o, the variance is infinite (except when 1 = 0).

In the other limiting case, g = (0, there is no censoring and the variance
is exp (—af) [1 — exp (—r)] . This is minimized at the extremes r = 0 and
P = +4o0.

Remark 20: If we calculate the estimator without considering the
existence of censoring, we obtain the following approximation:

- 1
S[] (T} = H {1 - m}

fiyy =t

This 1s always less than 5o {r). It constitutes a consistent approximation to the
survival function of ¥ and hence underestimates the survival of Z.

12.8.3 Cox's Partial Likelthood

In the previous subsection we examined a non-parametric formulation. In gen-
eral, the model comprises parameters and unknown tunctions simultaneously,
s0 we need to develop tools which account for this duality. These methods are
called semi-parametric. One of the first approaches to this problem to appear in
the literature was Cox’s partial likeffhood, which applies to proportional hazard
maodels. This model corresponds to a hazard function of the form:

A8 3 Ag) = exp (x3) Ay (1),
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The underlying idea is that we consider the base hazard function Ag as a
nuisance parameter to be eliminated. Working with notation similar to that in
the preceding paragraphs, we denote y; |, < ... < y,; the ordered, and perhaps
censored, data: dy;, the variable indicating whether or not the observation
is complete; and R, = {j: ¥y = yu | the set of individuals remaining
in the population at the point in time in which the one represented by vy,
CXIts.

Given that we know which individuals remain in the population, the proba-
bility that the next one to leave is the one associated with vy is:

2 (,v{l'}; |61l AU) o
Z)I'EEH A (}1..?_: ' ‘8‘ }“U)

assuming, of course, that the observation ¥y, is complete.
The cxpresston for this probability can be simplified to:

exp (X(;/3)
E;‘eﬂ{

where x;y denotes the values of the explanatory variables associated with yg;y.
Notice that the unknown function Ay has disappeared.

The partial likelihood is found by multiplying over the complete and the
censored observations:

i

exp (x;8)

¥li)

" of;

_ cxp (i@ |
L, (,@)__H 5 exp (%) (12.28)

Cox’s partial maximum-likelihood estimalor is thus defined as a solution, 3.
to the problem:

t=1 i)

- AP {(x6,3)

s onl ) = Eo | 5. 2

() )

Remark 21: One advantage of this approach is numeric. Notice that
the formulation of the partial likelihood is similar to the expression for the
likelihood 1n a polychotomous logit model. The techniques we learnced for the
latter are hence directly applicable to the former,

It can be shown that the function L, () has an interpretation in terms of
marginal likelihood. This interpretation hinges on the rank of the observations
(at least in the uncensored causce). This is why the estimator which we have
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just defined is consistent, asymptotically normal and with asymptotic precision
which can be approximated by:

_9%log [L, (B)]
3893

12.8.4 Semi-Parametric Estimation when the Specification of the Base
Heazard Funcrion and of the Effect of the Exogencus Variables
is Non-Parametric

Operational estimation methods may ulso be applied when the model includes
exogenous variables and incorporates the effect of heterogeneity. We shall con-
sider a mode! in which the observed variable, ¥ — a possibly censored duration
— is distributed £ ( v| x;; v; &), parametrized by & and conditional on the ex-
ogenous variables x; and on a measure of heterogeneity v,

The distribution of the duration, conditional only on the exogenous variables,
is obtaincd by integrating with respect to the distribution of heterogeneity x.
It 1s:

£iv|x;8:7) = /f(}flx,-: v o dvu.

This function depends upon two types of parameters: €, which 1s a vector of
real numbers, and 7. which 15 a function.

By analogy with the usual paramectric case, we may decide to develop a
maximum-likelihood approach. The cstimator is then defined as a sclution
(6, 7} to the optimization problem:

max Zlﬂg[ii{ysle:ﬂ;n)l

=1

— Zk}g li[fﬁ{yile; v; By mwodu|.

A priori, this is a difficult optimization to perform, as il 1s simultaneously over
a vector € and a distribution &, In fact, however, making use of our knowledge
that distribution functions are increasing, we can establish that the solution, 7,
must be a step-wise function,

Proposition 52: For a given & and a fixed sample size n. the
maximum-likelihood estimator of the distribution 7 15 a discrete distribution
assuming al most n values,
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Introducing the values v;. j = 1, ..., s, which may be assigned weights
T, J= 1, ....n, our optimnization is over a finite number of values:

max max - max Z;log Z;f(wlx v Q)J‘TJ
Z_,T' S i=

Using simulation methods, the performance of this approach way analysed
by Heckman-Singer [HS884] . They used a hazard function from the Weibull
family of distributions:

£(vIxiv; ) = 61y" Lexp [0, + v — y" exp (62 + v)],

without censoring and under several different distributions of heterogeneity.
This study revealed that:
(1} the estimates of 8, &, are quite precise,
(11} the estimate 77 of the disiribution of heterogenceity is not very close to the
actual distribution, even for large sample sizes.

Exercises
12.1 (a) Verify that ‘f”” = —14+Ar()r (1)
(h) Find the case f'or which: r (1) = . vt.

Considening that:
edr ity = —dv + (8 der (1),
= —dr[l —A{dr]+r ey [A{trde].

interpret the equality in part (ii)(a)
12.2 Consider the harzard function defined:

rb| -1 Ibg—l
(fY = ex an + a + gy - .
Fats n ( ] 1 b, 2 by )

{the Box-Cox formulation)
() Show that for g¢; = 0 and @; = 0 we have the distribution associated with
exponential models.

{b} When «) = 0 and &2 — 01t corresponds to the Weibult distribution.
(¢} Which distribution is reflected by a; = 0 and b; = 07

12.3 What constraints are imposed on the hazard function by the tact that the corre-
sponding survival function must by downward sloping and that $(0) = | and
Sitos) =

12.4 Let x; and x» be independent and identically distributed variables, and let g be
an increasing function.
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12.5

12.6

12.7

1238

Econometries of Qualitative Variables

(1) Show that E{[g (x,) — g (x2)] {x; — x2)} 15 always positive.

(b} Express E{[g (x1) — g (x2)] (x; — x-)} as a function of cov [x, g (x,}] ., and
dernve the positiveness of this covariance.

The following interpretation of the residvals in survival models has been pro-

posed. Let the model be specified as, 5 (2, x;. #), andlet the maximum-likelihood

estimator of 8 be . The residual is defined as:

R =—log [S{z:. x.8)].

(a) What is the distribution of S (&, x¢, )7 and of —log [S (&, x.0)]7

(b} Derive the distribution of —log [S (_i]—, X, F})] }

fc) What happens when the data are truncated and £, is replaced with 7

(d} Does this conception of the residual secm appropriate to you?

Duration Model based on the Gamma Distribution

Consider 7 independent observations, ¥, . ... ¥,, drawn {rom the distribution:

|

iy

T ()

Fiv)y= exp(—ay).

(a} Verify that the model is exponential and that the canonical statistics are
ST yeand > 0 log (). |
(b} Write the likehhood equations lor & (lor @) and © (for v). {Denote W the
derivative of the lunction [7).
(¢} Perform the change of parameters {a, v} — (b = =, u). and derive:
L
b

= )
n

=1

Show that i satisfies an implicit function to be determined.
{d) Demonstrate that # and © arc asymptotically uncorrelated, and that:

var (b) o
var (i) == —

L

Consider the proportional risk modet:

L
Ay (1) = exp Z Bilogtx,) | g ().
k=
Intcrpret the parameter 8 as the elasticity of the hazard with respect o the ex-
planatory vanable x, .
Referning to section 12.7.3:
{a) Calculate:

dlog (£) Alog (£}
dlogthy  Ulog(p)
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(b) Use this result to show that these two elasticities may net both be greater that
1

(c) éuggcst a simple test which will allow vs to reject the assumption of optimal
sgarch under some conditions.
12,9 Explain the equation for the reservation wage [cf. equation (12.26}] when the
distribution function F is: cxponential, Weibull, and Pareto.
12.10 Assume that the factor of heterogeneity is scalar, and that the partial mapping
v A (Fv) I8 IncTeasing:
{a) Show that the partial mapping: v — r(£; ) 1% decreasing. Interpret this
result.
{by Use the cquality » (¢) = E,r (¢; v) and lemma © to ¢stablish that:

drir} dJ _ o L n
B +E,a}-r(f.b}_u_nf[r(r, v}, A vy,

¢y Derive the sign of the helerogeneity bias (recall that the correlation between
two increasing functions of the same random variable is always positive),




Appendix 12,1 Asymptotic Properties
of ML under Ignored
Heterogeneity

The study of the convergence of estimators and their limit values rests upon
the search for the pseudo truc values. We begin by finding these in the case of
sampling, then use our result to deal with models with explanatory variables.

Al2.1 The Case of Sampling (d = 0)

Denoting the density of the error term gy, the (pseudo) log-likelihood is:

a,_y log (go {log [Ao (¥)] — ¢}y .
The (pseudo) maximum likelihood of ¢ converges to a value & defined as:

Eq {loglgy (4 + v + cp — o)}
> Fylloglgo(u +v +co — €3]}, Yo,

where Ey designates expectation with respect to the joint distribution of {z, v).

Al12.2 The Case with Explanatery Variables (d # 0)

In the general case, the (pscudo) log-likelihood is:

Z log (g0 {log [Ag (3) — ¢ — xdj ).

i=1

So the (pseudo) maximum-likelihood estimator of (¢, d) converges to a value
(¢}, dg), solution to:

Ve Exe (Ho {log [go (u +v + ¢ — ¢ — x"dy —x"d)] }) 1.

Now, from the definition of & we have:

Eg{loglge (v + v+ cy —co)l} = Eo{log [gn (¢t + v + a)]}.
ETall
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From which we derive that, for all values (¢, d):

Eq{log[gg (e + v 4+ o — ép) 1}
= By {]Ug [gn (v +v+co—c—atdy — x*d)}
and that;

E.- (Eg{log[go (i + v +co — o)1}
> E- (Eo {log [go (v + v+ co— ¢ — x*dp — x*d}] }).

Assuming the uniquencss of the pseudo true value, this implies that ¢ = ¢y
and dj = dp. In particular. we conclude that the estimator dy converges to the
true value dp.

Al12.3 Direction of the Bias of the Constant Term
The true pseudo-value &) solves:

max (BEy [log [ga (e + v+ g — ) D).

where gg (1) = exp (u) exp [— eXp (u}] . The solution ¢y satisfies the first-order
condition:

GZElﬁfl_ﬂg[gu(u—l—v—i—c‘u—ﬁuﬂ}

di
=Ey [1 —exple + v+ co— o)),
=1 — Eky [ﬂp {H)] Eu [cxp (U)] exp (g — &l
= 1 — Eq [exp(v)] exp (cp — &),
since  Eg [exp )] =1
Eg [exp ()] = exp (& — c0).

Becausce of convexity, exp (¢ — ¢g) = exp[Eg (1] = 1, since the mean of v is
Zero.






Bibliography

[AB74] T. Amemiya and M. Boskin. Regression analysis when the dependent variable
15 truncated lognormal, with an application 10 the determination of the duration of
welfare dependency. International Economic Review, 15485, 1974,

[AG57] T. W. Anderson and L. Goodman, Statistical inference about markev chains.
Journal of the American Mathematicaf Society, 28:89, 1957.

[Aki74] M. Ben Akiva. Multidimensional choice models: Alternative structures of travel
dernand models. Transportarion Research Record, page 568, 1974,

[Ame76] T. Amemiya. The m.L., the minimum chi-square and the non-linear weighted
least squares estimator in the general qualitative response model. Journal of the
American Statistical Association, 71:347, 1976,

[Ame77] T. Amemiya. The modified second round estimator in the general qualitative
response model. Journal of Econometrics, 5:295, 1977.

|Ame78] T. Amemiya. On a two step estimation of a multivaniate logit model. Journal
of Economerrics, 8:13. 1978.

[And84] J. A. Anderson. Regression and ordered categorical variables. Journal: Royal
Staristical Societv - Series B., page 1, 1984,

[AS70] J. Ashford and R. Sowden. Multivariate probit analysis. Biometrics, 26:533,
1970.

[Berdd] J. Berkson. Application of the logistic function to bio-assay. Journal of the
American Statistical Associarion, 3%:357, 1944,

[Ber31] 1. Berkson. Why [ prefer logit to probit. Biometrics, 7:327, 1951.

[BHME6] R. Biundell, J. C. Ham, and C. Meghir. Unemploymcent and female labour
supply. Economic Journal, The, 1986,

IBLVE6] M. Bouissou, . . Laffont. and Q. Vuong. Disequilibrium econometrics on
microdata, Review of Economic Studies, 172:113, 1986.

[Boy73] R.Boyles. On the convergence of the e.m. algonithm, Journal: Roval Statistical
Society - Serfes B., 45:47, 1973,

[CI87] A.D.Chesherand A. Irish. Residual analysis in the prouped and censored normal
linear model. Annafs of Econometrics, 1987,

[CLR3] A, D. Chesher and T. Lancaster. An econometric analysis of reservation wages.
Eronaometrica, 51:1661, 1983,

Lot
iyt
Tt



364 Econometrics of Qualitative Yariables

[Cos81] 5. Cosslett. Maximum likelihood estimator for choice bascd samples. Foono-
metrica, 49:1289. 1981.

[Crad6]) Harald Cramer. Mathematical Methods of Statistics. Pnnceton University Press,
1946,

[DLET77] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete
data via the e.m. algorithm. Journal: Roval Statisticaf Society - Series B, 3911,
1977,

[DMB1] R. Davidson and J. MacKinnon. Scveral tests for model specilication in the
presence of alternative hypothesis. Econometrica, 49:781, 1981.

[F172] R. Fair and D. M. JallTee. Methods of estimation for markets in discguilibrinm.
Econemetrica, 40:497 1972,

[GHHR4] Z. Griliches. B. Hall, and J. Hausman. Econometric methods for count-
ing data with an application to the patents. réed relatonship. Eeonometrica,
1984,

[Gl79] . Gilberl. Econometric models for discrete economic processcs, 1979,

|GLRA] Chnistian Gourieroux and G. Larogue. The aggregation of commodities in guan-
1ty rationing models. friternational Economic Review, 260081, 1985,

[GLMS80] Christian Gouricroux, J. J. Laifont, and A. Monlort. Test of the equlib-
rium vs. disequilibrium hypothesis, 4 comment. Interpational Economic Review,
Pk,

[GME1} Chrisuan Gourieroux and A. Monfort. Asymptotic propertics of the maxamum
likelihood estimator in dichotomouns logit models. Journal of Econametrics, 17:83,
1981,

[GMRTYA] Chostan Gourleroux, A, Monfort, E. Renault, and A. Trognon. Generalized
residuals. Annaly of Econometrics, 1980.

(GMTS80] Christian Gourieroux, A. Monfort, and A, Trognon. Pseudo maximoem like-
lihood methods: Application to poisson models, Econcometrica, 1980,

[GMT85] Christian Gounteroux, A. Monflort, and A, Trognon. (1985), “Moindres Carrés
Asymptoliques”™. Anrnales de 1 INSEE, 58,91-122.

|Hab74] 8. Haberman. The Analvsis of Frequency Data. Umiversity ot Chicago Press,
1974,

[Hec76] J. Heckman. The common structure of stalistical models of truncation, sample
scleetion and limited dependent variables and a simple estimator for such models.
Annals of Economnic and Sociadl Measurement, 5:475, 1976,

|[Hec 78] J. Heckman. Simple statistical models for discrete panel data. Annafes de
PINSEE, 30-31:227, 1978,

[HME41 J. Hausman and Daniel McFadden., A specification test for the muoltinomial
logit model. Econometrica, 52:1219, 1984,

|HS84| 1. Heckman and B. Singer. The identifiability of the proportional hazard maodel.
Review of Economic Studies, page 231, 1984,

[Jen69] R. Jenrrich. Asymptotic propertics of nonlinear least squares eslimators, Jour-
ned of the American Mathematical Society, H:633, 1964,

[Toh84] John Johnston. Econometric Methods. McGraw-Hill, Inc.. 19584,

[KMM76] M. Kohn, Charles F. Manski, and D. Mundel. An empirical investigation ot
factors which influence college going behavior. Annals of Econoniic and Social
Measurement, 5:391. 1976,



Biblingraphy 365

[KMZ83] 5. Kawasaki. J. McMillan, and K, Zimmerman. Inventories and price inflex-
ibility. Econometrica, 154, 1983,

[KN&1] N. Kiefer and G. Neumann. Individual elfects in a nonlinear model: Ex-
plicit treatment of heterogeneity in the empitical job-search model. Econometrica,
49:965, 1981.

|[K586] R. Klemand R, Spady. Semiparamctric cstimation of the binary cutcome model,
1986,

[KNOB1] H. Kénig, M. Nerlove, and G. Ourdiz. On the formation of price cxpecta-
tions: an analysis of business test data by log-linear probatnlity models. European
Economic Review, 16:103. [981.

|[Lan76]| T. Lancaster. Prediciion of poisson valucs, 1976,

[Lan?9] T. Lancaster. Econometric methods for the duration of unemployment. Econo-
meirica, 479391979,

IMan73] Charles F. Manski. Maximum score estimation of the stochastic uulily model
of choice. Journal of Fconomerrics, 3:205, 1975,

IMan85] Charles F. Manski. Semi-paramctric analysis of discrete response: Asvinp-
tolic properties of the maximum score estimator. Journal of Econtomerrics, 27313,
1985,

[McE74] anicl McFadden. Conditional logit analysis of qualitative choice behavior.
In Paul Zarembka, editor, Frontiers in Econometrics, page 105, American Elsevier
Publishing Company, Inc., |974,

[McF76] Daniel McFadden. Quantal choice analysis: a survey. Annals of Economic and
Social Measurement, 5:363, 1976,

(McR77| E. McRae, Estimation of time varying markov processes with aggrepate dala.
Eceonometrica, 45183, 1977,

[MN73] G. 5. Maddalaand F. Nelson. Specification errors inlimited dependcent variables
models. 1975.

[Maor79] K. Morimune. Comparisons of normal and logisue models in the bivanate
dichotomous analysis. Econometrica, 47:957, 1979,

IMR70] L. Miller and R, Radner, Demand and supply in u.s. higher education: A
progress report. American Economic Review, 60, 1970,

[Ner#3] M. Nerlove. Expectations, plans and realizations in theory and practice. Econo-
metrica. 51:1251, 1983.

[NIWN86] W. Narendranathan and 5. Nickell. In R. Blundell and Walker, editors, {/nem-
ployment Search and Labour Supply. American Elsevier Publishing Company, Inc.,
1986.

[Poi77] Dale Poirier. A curious relationship belween probil and logit models, 1977,

[PoaBO] Dale Poiricr. A lagrange multiplier test for skewness 1 binary logil models.
Ecemomic Letrers, 5:14 1, 1980,

[Rob&2] P. Robinson. On the asymptotic propertics of estimators of models containing
limited dependent variables. Economerrica, 50:27, 1982,

[Ron86] G. Ronning. The informational content of responscs from business surveys.
Toulouse University, 1936, [rom: Conference on Applied Microsconometrics.
[Ruud3] P Ruud. Sufficient conditions for the consistency of maximum hkelihood esti-
mation despite mispecification of distribution in multinomial discrete choice mod-

els, Econmnetrica, 51:225, 1983



366 Econometrics of Qualitative Variables

[Say73] . M. El 5ayad. Bavesian and classical analysis of poisson regression. fouwinal:
Rovyal Statistical Society - Serfes B., page 445, 1973.

[Sch78] P. Schmidt. Constraints on the parameters 1 simultaneous tobit and probit
models, 1978,

[SY811 D. Stapelton and I). Young. Censored normal regression with measurement error
on the dependent variable, 1981,

[The71] Henn Theil. Principles of econometrics. John Wiley & Sons, 1971,

[Tob58] J. Tobin. Estimaticn of relationships for limited dependent variables. Econo-
metrice, 26:24, 1958,

[Tve72a] A, Tversky. Choice by elimination. Journal of Mathematical Psyohalogy,
Q:341, 1972,

[Tve72b] A. Tversky. Elimination by aspects: A theory of choice. Psyvchology Review,
79:281, 1972

[Tve771 AL Tversky, Featres of similarity, Psychology Review, 84:327, 1977,



Index

acceleraled nsk maodel, 310
Amemiya, 14, 72,75, 82,92, 173, 230
Amemiva’s method, 229
analysis of variance, 108, 114, 129
Anderson, 61, 151
applications
agricultzral price support, 231
busimess cyele surveys, 1440, 166
chowce ol umiversity, 10
Dowble-Hurdle model, 232
evolution of a stock. 170
expenditure on durable goods, 186
tncome and cducation, 233
jub search, 54, 341
market disegoilibriom, 208
medical studhes, 23
miners’ respiratory health, 41
observations on salarics, 186
price adjustment studies, 142
production possibilities frontier,
236
rationing model, 171
rationing ol hank loans, 234
success in universigy studies, 42
survey non-response, 11, 187
SUTvVey Tesponse, 6
the market for melons, 257
unemplovment survey, 1od
urionization and salary levels, 230
wirk-lorce participation, 232
Ashiford, 41, 91
asymptotic distribution
normal, 9. 161
asymptotic independence. 150
asymptotic leasl squares, {84

Ben-Akiva, 104

Berkson, 1

Berkson method, 21

goncralized, 75, 85, 162

Berndr-1lall-Hall-Hausman method, 19, 180

binomial distribution. 20

bivariate dichotomous comditiomal logit model,
Bl

hivariate dichotomous probit model, 81, 83

variate Powsson model, 278

bluc bus, red bus, 51

Blundell, 232

Buskin, [73

Bowssou, 166

Bovyles, 242

censared ohservations, 170
central limiat theorerm, 21, 91
change of parameters, 176, 227
Chesher. 198
Chester, 346
choice sct, 44
Cobb-Douglas production function, 236
coding, 7
cocthicient of correlation, 112
compatibility condition, 80. 93
conditonal distribution, 117, 132
conditional-condiional mode], 57
contingency table, 107, 128
contimious vs. discrete time models, 307
COMVETZencs

in probability, 21

of alporithms, 19

strong, B8
Cosstett, 30

367



368 Index

Cox’s partial likclihood, 354 Foisson, 270, 340
Cramer, 21 Weibali, 48, 294 304
criss-over coefficients, 261 Daomenich, 92

duratian

distribution, 345
remaining mean, 286, 329
Durbin-Watson stabislic, 246

data
agprepatcd
distribution, 297
independence, 290
complele observations, 174
entire sample, 174

El Sayyad. 270
elasncities. 346

groaped, 20, 126 crrolrs . .
multiple trials, 20 distribution
macro, 1532, 163 i Tobit model, 172
normal, 7

imperfect sample, 156

perfect sample. 152 heteroscedasticiry, 8. 22

micro, 147, 1660 independence, 9

panel. 145 seral cormelation, 22, 35
Davidson, 223 variance, 8
decision tree, 52 heteroscedasticity, 193

errors in vanables, 32 157, 195
cstimation
assumption of independence, 122, 132
consistent, 229
ellicient, 229
initial values, 180

decisions
sequential. 52
simulianeons, 54
decomposable model, 318
Dempster. 239
dependent varahle

interpretable, 41 estimater
variance, 14 a:?ympmtm efficiency, 155
bias, 182

dichotomous model, 225 . .
logit, 102 CONsISTEncy, 135

maximum likalibwood
properties of, 14
uniquenecss, 12

discrete nime model, 306
disequilibrimm Marketr Modcl
cross-over BEffects, 266
disequilibrium model, 208, 225 robustness, 193
aggregation, 263 exhaustive siatistics, 147, 161
rwo-market, 260 cxogcncil}:
tosting for, 244
expectarion
expecied and realized values, 141
explanatory varables

distnbution
hincrmal, 20
comparing. 2949
constructing families, 296

CXIJOHEI’IliﬂL 289,207 324 distribution, 304

gamma, 273, 293 fixed. 14

geometric., 163, 307 stochastic. 14

Gumpertz, 322 expeonential distribution, 289, 202, 324
log-logistic, 2946

lop-normal, 295 Fair. 1, 180

logistic, 11, 24, 41 Fair algorithm, 180

multinimial, 539, 148, 149 Fisher informaton matrix, 14, 94, 96, 193, 325
normal, 11, 24 fixed explanatory variables, 14

norimal bivariate, 227 forecast, &



Index

freguency table, 109
function
hijectivm, 229
harard, 285, 328
dominance, 301
propotional, 298
piece-wise affine, 253
survival, 165, 286, 352

gamma distribution, 273, 293
seneralized residnals. 196
frst-order, 198
second-order, 195
seometric distribution. 163, 307
Gilbert, 270
Gompertz distribuiion, 322
Croodman, 151
soodness of fit, 22, 98
Gowrkeroux, 14, 36, 1539, 184, 243, 250, 2600,
2602, 266, 275
CGoureroux-bMoofort-Tropnon method, 184
Griliches, 270
arcuped data, 20, 124
muliiple trials, 20

Haberman, 135

Hall, 270

Ham, 232

Hausman, 104, 270

Hausman test, 97, 103

hazard function, 2835, 328
dorminance, 301
proportional, 294

fleckman. 1. 183, 186, 193, 357

heterogeneity, 3325
distribution, 351
neplecting, 331
parametric mode!ling, 332

heterogencity bias, 327

heteroscedasticity, 8. 22,193

homogeneily, 151

~ independence
estimation under, 122, 132
independence of an imelevant allemative,
44
inefliviency
production, 236
instrumental variables, 210, 2749

369

interacton term, 113
a-order, 116
cross effect, 110
marginal effect. 110
principal elfect, 110

Irish, 198

irrelevance of an independent alternative,

103

irrelevant variables, 101

itcrative procedures
slep-length, 9

Jaffee. 1
Jennrich. 29, 88, 90
Tohnsion, 5, 26

Kaplan-Meier estimator, 351
Kawasaki. 142

Kiefer, 351

Klein, 30

Koenig, 141

Kohn, 10

Lattont, 256, 260, 262
Lafont, 166
lagred guantitative linear model,
147
Lagrange multiplier test, 96, 2472
Faird, 239
lLancaster, 270, 332, 346
Larogue, 206
Lassibile, 23
|atent vanables, 8, 173, 224, 252
distinmbunon, 226
law of larpe numbers, 21
likelihood
marginal, 74
likclihood equation. ¥, 72, 173, 190
bounded, 227
comeavily, 176
interpretation, 199
solution. 140
Hkebihood-ratio fest, 95, 122,127, 151
Hmited informanon maximum hkelihood
method, 76, 91
Hncar model, 6,9, 22
inadequacy of, 6. 170
lagged quantitanve, 147
log-lincar model, 10}, 135



370 Index

log-logistic distribution, 296
log-normal distrtbution, 295
logistic distribution, 11, 24, 41
logit medel, 11, 24, 39
compatibility condition, 80, 93
conditiaonal, 93
dichotomous, 102
logit transformation, 93

macro data, 152, [63
incomplete pancl data, 156, 169
complete panel data, 152, 163
Maddala, 193
Manski, 10, 28, 30
marginal distnbution. 117
marginal hikelihood, 74
marginal-conditional model, 56
Markov chain
p-order, 147
descripuion, 145
first-order, 145
homogensous, 146, 150
maximum likelihood method, 147
maximum expectatton algorithm, 239
convergence, 241

maximum likeltheod. 11, 74, 77, 147, 177,

190, 211, 220, 226, 272, 315
covariance mairix, b5
properties of estimator, 14
maximum score test, 96, 199, 335
vector ol scores, 196, 242
maximun-score method, 28
McFadden, 1, 14, %2, 164
Mobillan, 142
McRae, 56
Meghir, 232
methoed of scoring, 17, 82
micro data, 147, 160
Miller, 10
minimum chi-square, 74
minimum chi-square methedd, 22, 83 161
. 83
g, 84
modification by a scaling factor, 61

Monfort, 14, 36, 139, 159, 184, 243, 256,

2000, 262, 275
Monte Carlo simulations, 196
Morimune, 25, 85
muover-stayer model, 291, 330
imnltinomial distmbution, 39, 148, 149

multnomial Togit model, 79, 104
Mundel, 10}

Narendranathan. 233

Melson, 193

Nerlove, 141

Meumann, 351

MNewton-Raphson method, 16, 179
MNickell, 233

nen-lincar least squares, 163
non-Parametric methods, 28
non-parametric model, 350
nermal bivariate disteibution, 227
normal distnbution, 11, 24

ohservable varables, 224

distribution, 226
omitted variables, 32, 10}, [99
orilered bivariate dichotomons model, 40
ordered polychotomous univariate meodel, 39
ordinary least squares, 174, 221, 229, 275
Ottenwacler, 141
COudiz, 141

pancl data, 145

DACAMEIers
change of, 176, 227

partitioned observatons, 224

Poiricr, 34, 173

Poisson distribution, 270, 340

Poisson model, 270
bivariate, 278
maximum likclihood esomaton, 272
ordinary least squarcs estimation, 273
pseudo maximum likelihood estimation, 276
stochastie coellicients, 272
weighted non-lincar least squares estimation,

X6
polychotomous logit model, 49, 53, 63, 85, 102,
355

prediction, 212

probabilistic choice theoty, 46
cholce set, 44
existence of utility function, 45
rational behavioar, 45
selection probability, 47

probabilicy
convergence, 21

probit model, 11, 24, 39



Index

production function
Cobb-Douglas, 236

production inefficiency, 236

proporticnal harzard mixdel. 321

pseudo maximum bikelikood, 276

qualitative panel data. 143

Radner, 10
rational behaviour, 45
raticming, 208
recurrence formuola, 17
reduced torm, 226, 252
Renautt, 243
renewy] process, 284, 336
defiminon, 338
Poisson, 338
repedted obscervations, 160
reservation wage, 187, 341, 344
residunals
generalized, 196
first-order, 195
second-order, 198
residuals praph, 198
Rohbinson, 36
robusiness, 193, 35]
Eonning, 62
Rukin, 239
Ruud, 26

sample
censored observations, 170
endogenous stratication, 60
exogenous stratification, 59
independent, 147
method, 58
partiticned observations, 224
perfect ve. imperfect, 152
repeated observations, 160
selectivity bias, 188
saturated model, 1039, 115
Schmide, 257
selection probability, 47
sclectivity bias, 158
sequential logit modet, 53

sequential trichotomous maodel, 81,

36
seral correlation, 22, 35, 245
tests tor, 245

simple dichotomy, 6, 10
simmulations
Monte Carlo, 196
simultaneous cquation models, 224
simultansous equations
consislency, 252
conditions, 256, 261
Singer, 357
singie dependent variable model, 38
Slutsky theorem, 21
Sowden, 41, 91
Spady, 30
specification error, 24
errors in variables, 32, 157, 193
imelevant variables, 101
misspecified distribution, 24
omitted variables, 32, 100, 149
stacked repression raodels, 227
Stapleton, 196
statistics
cxhaustive, 147, 161
sufficient, 20
stochastic dominance, 300
conditional, 302
stochastic explanatory vanables, 14
stochastic indiffercnce interval, 61
stratifcation
cndogenaous, 6
EX0ZEnous, 39
survival function, 165, 352
comditional, 286
cumulative, 286

table
conlingency, 1007, 128
frequency, 109

Taylor expansion, 17

tensorial product, 111

1esl
Durbin-Watson slatistic, 246
Hausntan, 97, 103
Lagrange multiplicr, 96, 242
lhikehhood-ratio, 95, 122, 127, 151
maximnurn score, 99, 199, 335
Wald, 95, 112

tests of exopencity, 244

Theal, 5

theorcm
cerneral limue, 21, 91
Stutsky, 21

371



372 Index

Tohin, | dependent
Tobit model, 170, 225, 240 interpretable, 41
description, 172 vafance, 14
generalived, 186, 225, 228 dicholormaus, 6
estmation, 190 crrors in, 32, 157, 195
maxhnam likelihood, 191 explanatory
maximum likelihood estimation diziribution, 309
tnterprelation of the hikelithood equations, explanatory fixed, 14
199 independence between, 108, 149
likelihood equation, 175, 190 eyquivalence with linear log (P}, 108
tesits, 196 mdependence over time, 289
transtormation latent, 8, 173, 224, 252
logit, 93 diziribubion, 226
lransinon malnx, 146 ohservable, 224
transifion probabilitics, 149, 154 distribution. 226
trichotemous sequential model. 43 omitted, 32, 100, 199
Trognon. 36, 159, 162, 184, 243, 275 stoichasiic explanatory, 14
truncatiom, 313 varances
Twershy, 52 covariance matrix, 13
two dependent variables model, 34 dependent variable, 14, 41
two-stage estimation, 181, 192, 227 BTTS, &

hetcroscedastcity, §. 22, 193
scrial corrclation, 22, 35, 243
vector of seores, 106, 2472
YVuong, 166

umivaraie ordered tnchotomows mode],
itel
univariate pelychotomous fogit model,
79,137
utility funcoion
cxistence, 45

Wald test, 95,112

Weibull distribution, 48, 294, 304

Weibull mmodel, 316

weiphted boast squares, 8, 22, 159, 182, 230

variables _ welshted non-linear least squares, 276
adgaregation
disiribation, 297 Younyg, 196

independence, 290
asvmptotic independence, 150 Zimmerman. 142



