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Direct Kalman Filtering Approach for GPS/INS
Integration

We present a novel Kalman filtering approach for GPS/INS
integration. In the approach, GPS and INS nonlinearities are
preprocessed prior to a Kalman filter. The GPS preprocessed
data are taken as measurement input, while the INS preprocessed
data are taken as additional information for the state prediction
of the Kalman filter. The advantage of this approach, over the
well-studied (extended) Kalman filtering approaches is that a
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simple and linear Kalman filter can be implemented to achieve
significant computation saving with very competitive performance
figures.

. INTRODUCTION

The Global Positioning System (GPS) is
a worldwide radio navigation system and has
applications in aviation, aircraft automatic approach
and landing, land vehicle navigation and tracking,
marine applications, and surveying, etc. [1-2]. A GPS
receiver is a low frequency response navigation sensor
and can provide instantaneous position accuracy in the
order of 15 to 100 m normally at 1 Hz rate. Inertial
navigation systems (INS) are one of the most widely
used dead reckoning systems. They can provide
continuous position, velocity, and also orientation
estimates, which are accurate for a short term, but are
subject to drift due to sensor drifts. The integration
of GPS and INS can limit the shortcomings of the
individual systems, namely, the typically low rate
of GPS measurements as well as the long term drift
characteristics of INS. Integration can also exploit
advantages of the two systems, such as the uniform
high accuracy trajectory information of GPS and the
short term stability of INS.

There are several methods to integrate INS and
GPS, such as, loosely coupled or tightly coupled
integration, closed-loop or open-loop integration,
separated INS and GPS unit or embedded GPS with
INS hardware, etc. [19-21]. In all these designs,

GPS or the GPS/INS integration filter is typically
some form of a Kalman filter. Usually an indirect
(extended) Kalman filter is used with inertial errors

as its state to achieve acceptable performance. A
high-order filter is required to achieve, at best,

near optimal performance. The computation load
associated is very heavy, since on-line Kalman gains
have to be calculated. A fixed Kalman gain is often
used to decrease the computational load but with
sacrifice of performance. In this paper, we present a
direct Kalman filter integration approach in order to
eliminate the computational complexity drawbacks as
discussed above. Here, the so-called direct Kalman
filter is a filter with the vehicle’s position and velocity
among its states. We aim to design a low order, linear
Kalman filter to achieve simple computations but with
competitive performance figures when compared with
the best published data. The two stage GPS filtering
methodology in [6-12] is applied here to preprocess
the nonlinearity prior to the Kalman filter. The same
methodology is also applied here to the nonlinear INS
system, but this is not so straightforward since the
nonlinearity for INS is dynamic rather than simply
static as for GPS.

The paper is organized as follows. A direct
Kalman filter integration approach is given in Section
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II. Simulation results are shown in Section III. Finally,
a conclusion is made in Section IV.

Il. A DIRECT KALMAN FILTERING APPROACH FOR
GPS/INS INTEGRATION

The diagram of the proposed GPS/INS integration
is shown in Fig. 1. The functions of the blocks are as
follows.

Dynamical INS Equations: The navigation
equations convert the inertial measurement unit (IMU)
measured accelerations and angular velocity, along
with feedback position and velocity estimates, to
INS estimated accelerations in an Earth centered
Earth fixed (ECEF) coordinate frame and to attitude
estimates. The IMU and navigation equations together
are referred to as the INS unit.

Algebraic GPS Equations: As in [3-5], the
algebraic GPS equations give position, velocity, and
clock error estimates by solving the nonlinear GPS
pseudo-range and delta range equations. The GPS
front end and algebraic GPS equations are referred
to as the GPS unit.

Data Fusion Kalman Filter (Direct): This filter
obtains estimates of position, velocity, GPS receiver
clock errors, as well as bias and drift in the INS
estimated accelerations, based on the information data
from both the INS and GPS units. Its estimates are fed
back to the INS and GPS units as required.

The essential feature of the proposed integration
all the various nonlinear operations prior to
linear Kalman filtering and to put as much of the
necessary dynamics as possible into the Kalman
filter. Recall that the Kalman filter is the optimal
minimum variance filter for a known linear stochastic
model with zero mean Gaussian noise of known
covariance. Should the model be linear but the noise
be non-Gaussian, then the Kalman filter is the best
linear minimum variance filter. Of course, the more
sophisticated inertial error models with extended
Kalman filtering may improve performance, although
perhaps not always significantly, but will cost
an order of magnitude or more in computational
effort. ‘
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Diagram of GPS/INS integration via direct Kalman filter approach.

The GPS nonlinearities are preprocessed in the
block denoted “Algebraic GPS equations” at the
GPS sample rate. The nonlinearities of the INS are
preprocessed in the block denoted “Dynamical INS
equations.” These involve an integration and so
are dynamical and not algebraic; they calculate an
orthogonal coordinate transformation matrix. The
outputs from the INS block are estimates of the
vehicular attitude, and estimates of accelerations in the
ECEF frame, denoted by superscript € here. The INS
sampling rate is typically an order of magnitude or so
faster than the GPS rate. The acceleration estimates
from the INS unit are fed forward to the data fusion
Kalman filter, along with the GPS estimates.

In this approach, vehicle position and velocity are
chosen as states in the Kalman filter. The propagation
equations are simply the equations of motion of the
vehicle. Accelerations are included in the Kalman
filter to make the propagation equations a better
reflection of the real world. The accelerations are
estimates from INS and taken as known inputs to
the Kalman filter. Additional error states can be
included as filter states. The GPS indicated position
and velocity from the algebraic GPS equation are the
measurements of the Kalman filter, which make the
measurement matrix of the Kalman filter very simple.

In traditional approaches, the inertial errors are
chosen as states in the Kalman filter. The inertial error
model and its linear approximation are well known
and well developed. They are taken as the propagation
equations of the Kalman filter. The measurements
of the Kalman filter are taken to be the differences
of GPS measured pseudo-range and INS estimated
range. Thus measurement matrix of the Kalman filter
incorporates the nonlinearity of GPS pseudo-range
equations.

A. Dynamical INS Equations

The computations performed by a strapdown
navigator may be regarded as comprising two major
parts: propagation of the attitude reference, and
solution of the navigation equations. The former
uses the gyro outputs to calculate the attitude of the
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body coordinate frame with respect to a reference
coordinate frame. The latter uses this relationship
to transform the coordinates of vectors (which may
include accelerometer outputs, velocity, gravity effects,
Earth rotation) between the frames and hence to
calculate acceleration of the body. In our proposed
GPS/INS integration method, consequent velocity and
position calculations frequently carried out in an INS
unit are carried out in the data fusion Kalman filter.
The coordinate frame in which computation is
performed, is usually chosen such that it agrees
with the coordinate frame for the output. Here we
choose the ECEF frame, so as to obtain directly the
geocentric Cartesian coordinates which in turn are
convenient for integration with GPS information.
The continuous-time nonlinear dynamical
equations in the ECEF frame are of the form [19]

re ve
ve | = | Ref* — 200 v° + g°(r°) )
R} R; Q5

where r®,v® are the position and velocity vectors

in the ECEF frame (e-frame), f* the specific force
vector in the body frame (b-frame), g° the gravity
vector in the e-frame and is r® dependent, Rf is

the transformation matrix from the b-frame to the
e-frame, so that f* = R¢f® is the specific force vector
in the e-frame, QY is the skew-symmetric matrix of
the angular velocity vector w, of the b-frame with
respect to the e-frame coordinated in the b-frame,
and €2, is the skew-symmetric matrix of the Earth’s
rotation rate wi, which is known precisely. The
skew-symmetric matrices are of the form

0 -w, w,
Q= w, 0 —w|. @)
~w, w, 0

The various vectors are dependent on time ¢ and the
super dot denotes derivatives with respect to ¢. The
angular velocity vector w'e’b can be obtained by

wh =wh —Rbw,  with RE=R§ (3
where w is the gyro measured angular velocities with
respective to the inertial frame coordinated in the body
frame. After solving (1), a rotation matrix R} from the
body frame to the navigation frame (n-frame) can then
be obtained

b = ReRy “

where R is a rotation matrix from the e-frame to the
n-frame, which is position r® dependent. The rotation
matrix R} is composed of three successive rotations
with angles called yaw, pitch, and roll, which are the
attitude of a vehicle. Therefore the attitude of the
vehicle can be obtained through the rotation matrix
R} [21].
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1) Discrete Time Navigation Equations: The INS
unit seeks to implement (1) in discrete time at the INS
sampling rate with period éT. This rate is chosen so
that the discrete-time equations follow closely the
continuous-time equations (1).

To this end, let us first construct a sampled version
of (1) with state matrix R¢(/) and output v,(/), driven
by Q&0, 5D, O, v, g @ D):

(1 +1) = RE(Dexp(5,(1)6T) (5)
Vo) = RE(DE(D) — 225DV () + g°@°(1))- (6)

Since (5) holds only when ng(l) is constant during
the period of §T from [ to [ + 1, the accuracy of Rf

is dependent on the sample period 6T. The smaller

the 6T, the more accurate the R} calculation. Now
exp(28, () 6T) can be approximated using a (1,1) Pade
approximation [22] denoted with a superbar as

exp(Q8, (1) 6T) = (21 + Q8 (D) ST - Q5 (1) 6T) ™.
@)

This is readily verified to preserve orthogonality.
Higher accuracy approximations can be made by
working with (exp(2%,(1)(6T/2)))? and applying
the (1,1) Pade approximations. (Actually, it

is straightforward to show that (n,m) Pade
approximations preserve orthogonality with n = m,
but otherwise do not.)

The INS unit implements an approximation to (6)
using accelerometer measurements of accelerations
f°(I) which typically are noisy with bias and drift;
likewise for the gyro rotation rates wf, and thus for
w?. Also in the INS unit, the position and velocity
vectors r°,v® are estimated from the data fusion
Kalman filter. This estimation introduces further
errors (noise). Using carets to denote estimates or
measurements, then the navigation equations are
implemented in the INS unit as

RS (1 + 1) = RE(Dexp($25, (1) 6T)
V() = RSP — 205950 + g G(D)).

Recalling that there are drifts and biases in the
measurements from gyros and accelerometers, we
expect that these in turn lead to biases and drifts in the
estimates of the e-frame acceleration v,. The details
are as follows.

&)

B. Bias and Drift in INS

Let angular velocity errors on wf, caused by gyro

drifts be Awb,, leading to drifts AQY, in 25 and
ARY()) in RY([). Then (5) can be rewritten as

R+ 1)+ AR (I + 1)
= R (D) exp((Q5,(1) + AQY, (1)) 6T)
=R{(+ 1)+ RE(DAQE ()T +HOT  (9)
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where HOT denotes higher order terms. Let
accelerometer bias be Af®. Recalling that f* = RSf®,
then

(RE( + 1) + RED AQS (D STHE( + 1) + AP + 1))
=+ D +RE+ DALPUI+ 1)
+ R AQL(EU + 1) + AP(L + 1)) 6T

=0+ D+ A5+ D) + A5+ 1) 6T, (10)

From (10), it can be concluded that gyro drift and
accelerometer bias cause bias Af} and drift Af§ on
specific forces in the e-frame, where

A5+ 1): =R+ DAPI+1) (11)

A+ 1) = REDAQE(DEU + 1) + AP + 1)),
12)

Since equations are in discrete form, Afj, Af5 are
considered as the bias and drift, respectively, of the
e-frame acceleration v,, which are also caused by
gyro drift and accelerometer bias. Actually the errors
on the e-frame acceleration are also dependent on
e-frame velocity errors and position errors which are
introduced by the Kalman filter.

C. Data Fusion Kalman Filter Design

Let the state space model for the design of the data
fusion Kalman filter be

£ =[x" b X" b (AF)T (AF)T]T (13)

where x is the GPS receiver’s position coordinates in
the ECEF frame, and b is the GPS receiver’s clock
range bias. Consider a discrete time signal model

for data fusion, operating at a fast sample rate with
sampling period 6T, as

&1 = A B + W, a4

with [ = 0,1,2,... . We assume first that the fast
sample rate is equal to the INS sample rate and is N
times the GPS rate, where N is some integer, typically
between 10 and 200. Thus the GPS sample period AT
is N 6T. Here the known inputs u, are the e-frame
acceleration estimates from the INS unit via u; = v°,
and

04x3
L3 6T

O7><3

The unknown inputs w, represent the estimation
errors in the accelerations (including estimation
errors in biases and drifts in accelerations), and

other modeling errors. For Kalman filter design
proposes only, these are assumed here to be zero
mean and with known or estimated covariance matrix
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Q, although more sophisticated models of bias
and time-varying statistics can be used at the cost
of increased complexity of Kalman filter design.
The Kalman filter, even designed on simple and
conservative model assumptions is known to be robust
to more real-world noises.

The transition matrix A; has the form

Al=[A11 An} (16)
0 Ay
with
1000 6T 0 O 0]
0100 0 6C 0 O
0010 0 0 6T O
A 0001 0 0 0 6T
""1loooo 1 o o of
0000 0 1 0 O
0000 0 O 1 0
0 000 0 0 0 1]
an
00 0 0 0 0]
0o 0 0 0 0 0
0 0 0 0 o0 0
AL_| 0 0 0 0 0 0
271AT 0 0 AT2 0 0
0 AT 0 0 AT> 0
0 0 AT 0 0 AT
Lo o o o o0 o0
AL = cilz,3 03><3] (18)
L 03,3 Colass
An:{Alz, if 1=mN
Og 6 otherwise
(19
A ={A22, if 1=mN
2 O otherwise

for integers m = 0,1,2,..., where ¢|,c, <1 are
forgetting rates for the biases and drift rate,
respectively. Actually the GPS clock bias and drift
can be processed at the GPS rate.

The measurement equation for the data fusion
Kalman filter model can be represented by

Z,=Cl¢ +v, (20)
where for integers m (as above)
C;r - {[stg 08><6] fOl‘ l = mN ‘ (21)
0 otherwise

Here Z, are the computed position, velocity, and clock
errors from the algebraic GPS equations, and the
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covariance matrix R, of the measurement noise v; is
covariance matrix of the solution from the algebraic
GPS equation [3, 6] which is time varying. The
measurement equation is identical to that for the GPS
Kalman filter in [23] at times O,N,2N,..., and is zero
otherwise.

For the data fusion signal model (14)—(20), the
standard Kalman filter algorithm can be applied.
Three cases are now considered.

Case 1: Identical GPS and INS Sampling Rates
(N =1). Even if the GPS and INS sampling rates
are identical (N = 1), the data fusion Kalman filter'is
somewhat more sophisticated than the GPS Kalman
filter of [6]. This is because of the external “inputs”
from the INS unit, the bias and drift state estimates,
and associated (Kalman) gain terms. In this case the
data fusion filter will, in general, be time varying.
There is a time-varying Riccati error covariance and
Kalman gain, to take account of initial transients and
slow variations in the noise covariance. However, such
a filter can be quite accurately approximated in our
context (performance wise) by a time-invariant filter
using limiting Riccati equation solutions working with
typical noise covariance. Of course, the Kalman gain
can also be gain-scheduled depending on some of the
variables.

The crucial design variables for the linear filter are
then the forgetting rates ¢;,c, and the noise variances
Q,,R;. Selection of these design variables will benefit
from knowledge of the sensor noise, bias, and drift
characteristics

Initialization V1= % 22)
-11-1 = P,
= A £ +B,_,u,_
Prediction é.1/17] l—lgl—l/l—l : 1—-1%-1 (23)
Py =A Py AL +Qy
K, =P,,_,CICP,,_,C, +R]
Update él/, = 51/1—1 +K,[Z, - C,Té,/,_ll (24)

Pl/l =[I- KIC;F]PI/I—I-

Case 2: Integer ratios of GPS and INS Sampling
Rates (N =0,1,2,...). In this case, the C;, matrix
is periodic with its period N being the ratios of
the sampling rates, assumed here to be an integer
(typically between 10 and 100). The associated Riccati
error covariance matrix has a consequent periodic
component, as then has the Kalman gains. However,
such a filter can be quite accurately approximated
(performance wise) by a filter with precisely periodic
Kalman gains. One choice is with the gains to the
bias and drift states being constant and the gains to
the position and velocity and GPS clock drift states
being obtained by the Kalman filter algorithm when
[ =0,N,2N,... and zero otherwise. In the follow,
equations used for a Kalman filter with fixed gains
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to the bias and drift states are shown

Initialization S1p-1= o (25)
Pr1i-1 = Po
é o =A_ & +B,_u,_
Prediction €11 1-181-1/1-1 : -1 6)
Py = AP AL + 4y
k = pl/l_lc,[c}rp,/,‘lc, +R,]!
Py = [I—kclIpy
Update St =Sip-1 + Ki[Z, — Clé-1]
‘ k 27
L, if l=mN @7)
Kl = (kﬁx)6x8 .
0, otherwise

Here p,k,c are covariance matrix, Kalman gain,
observation matrix, respectively, of the first 8 states,
such as, position, velocity and GPS clock error states

[ Igyg for [=mN
“=91 0 .

otherwise
q is the covariance matrix of the process noise vector
w, associated with states of position, velocity and GPS
clock errors and kfix is the Kalman gain matrix of the
6 bias and drift states, it is constant, being the form of

kfix = [03><3 &1ls3
033 8laxs _03><2

(28)

0
3x2 (29)

where g,,g, are constant values, typically less than
1.0, which are again the design parameters of the
Kalman filter. .

Case 3: Nonsynchronized GPS and INS Sampling:
This case can in principle be handled within the
context of Kalman filtering theory, see for example
[18], but for our purposes since N is typical large,
there can be approximate round off to the nearest
integer value and the results used as for Case 2-above.
We do not explain this further here.

REMARKS Using the Kalman filter for an assumed
linear stochastic model (14)—(21), achieves optimality
in a minimum error covariance sense when the noise
is zero mean, white and Gaussian, and is the best
linear filter when the noise is non-Gaussian. Loss

of optimality, perhaps to a negligible degree occurs
in practice since noise errors may be correlated,
non-Gaussian, or the model may also have a degree
of error due to finite filter sampling rates and other
approximations. Even so, our conjecture is that the
extra benefit of using inertial error models with
extended Kalman filtering may not be worth the extra
computational effort, which would be an order of
magnitude or so increase.

The GPS receiver clock error states can be
excluded from the Kalman filter to achieve a
low-dimensional filter with only a marginally
degraded performance. Since GPS algebraic equation
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TABLE I
Mean and Variance of Estimated Position Errors for Three Design Options of GPS/INS

IMU Statistics: 3 deg/hr gyro drift, 0.025 m/s? acceleromater bias

GPS measurement noise variance
Pseudorange: 30.0 m
Pseudorange rate: 50 cm/s

GPS measurement noise variance
Pseudorange: 30.0 m
Pseudorange rate: 5 cm/s

Position Errors Latitude Longitude Height Latitude Longitude Height

First option Mean (m) -5.310 -7.722 0.852 ~-1.003 —-1.388 0.172
GPS resetting Variance (m?) 28.175 117.932 31.615 0.715 2.489 0.847
Second option Mean (m) —0.80834 1317 0.069 1.313 1.361 -0.255
as in [20, 23] Variance (m?) 25.785 102163 29.906 0.4 1.043 0.6445
Proposed Mean (m) —4.504 -3.373 0.761 —0.936 ~-1.572 0.137
method Variance (m2) 21373 102.576 29.721 0.695 2.530 0.844

gives the point estimates of position, velocity and
clock errors (PVT), however they are correlated
with each other in their covariance matrix. When
the clock errors are excluded from the Kalman
filter, actually the correlation of clock errors with
position and velocity is ignored, resulting in the
degraded performance. However the clock errors
cannot be excluded from a Kalman filter if there is
no preprocessing of GPS pseudo-ranges as the GPS
algebraic equation.

The two-stage estimator concept was developed
in [6] for the GPS case. Here the same concept is
extended to the case of GPS/INS Integration. The
GPS algebraic equation is taken as the first stage, the
direct Kalman filter as the second stage estimator. It
is found in the next section that it has performance
loss. This performance loss is due to the low order
model used in the direct Kalman filter, rather than the
two stage estimator. A different approach using the
same concept of the two stage estimator for GPS/INS
integration is discussed in [23]. It uses an indirect
Kalman filter as the second stage estimator; near
optimal performance can be achieved. It is proved
[23] mathematically that the two stage estimator has
superior performance than the EKF when the same
order of Kalman filter model is used. The algebraic
equation does not lose information, since from
solution, the raw pseudo-range measurements can be
recovered completely. In the two stage case, actually
all the information contained in the raw pseudo-range
measurements is fed to the Kalman filter, but in a
different form of PVT, which is simpler to work with
than pseudo-ranges.

. IMPLEMENTATION AND SIMULATION RESULTS

A trajectory used for simulation is assumed as
follows. An airplane’s initial position is at latitude
of 35 deg south, longitude of 150 west and height of
1000 m, the initial velocities are 700 km/hr, 200 m/hr,
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~100 m/hr along the three axes of the navigation
frame, i.e., north, east, and vertical down, respectively.
It is accelerated along the north, east, and down with
the acceleration of 6 km/hr2, 6 kmn/hr2, —6 km/hr2,
respectively. The airplane’s initial orientation is
assumed to be parallel to the navigation frame, i.e.,

0 deg of yaw, pitch, and roll and then rotated with
0.005 deg/s for yaw, pitch, and roll. The simulation
period is 1 hr.

In the implementation of the new proposed 14
state Kalman filter, the algorithm (25)—(27) is used,
therefore fixed Kalman gains for the bias and drift
Aff, Af5 are employed. The forgetting rates ¢;,c,
are set to be 0.99, and the fixed Kalman gains, g,,8,
are set to be 0.008. The prediction rate is set to be
32 Hz; the measurement update rate is set to be the
GPS sample rate, 1 Hz. Therefore §T = 0.03125 s,
AT =1s, and N = 32.

For comparison, two other integration options are
presented. The first integration option, called GPS
resetting, also the simplest from the implementation
viewpoint, is resetting the INS-derived position and
velocity. Here the GPS receiver employs a Kalman
filter as the one discussed in [6, 23]. However, the
prediction equations are implemented at a fast sample
rate, such as 32 Hz here, while the update equations
are implemented at GPS sample rate, 1 Hz. The
second option is the one using the GPS pseudo-range
measurements in the integration filter as discussed in
[20, 23]. Their simulation results are shown in Table 1.

From Table I, it can be seen that the proposed
integration method gives better performance than
the first option, GPS resetting approach, since the
former takes INS calculated accelerations as known
inputs and acceleration biases and drifts as Kalman
filter states. Certainly the proposed method makes
use of the information from INS. However, it gives
worse performance than the second option. This is
because the errors on the calculated accelerations are
modeled by the bias and drift states Afj, Af§ in an
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approximated and simple way as discussed in Section
IIB, while a linearized differential equation of the
acceleration errors are modeled in the second option.
The advantage of the proposed method is that off-line
Kalman gain computation can be implemented so that

on-line computation is low.

IV. CONCLUSIONS

In this paper we have presented a direct Kalman

filtering approach for GPS/INS integration. In

the approach, GPS and INS nonlinearities are
preprocessed prior to a Kalman filter. The GPS
preprocessed data are taken as measurement input;

the INS preprocessed data are taken as an additional
information to the state prediction of the Kalman
filter. The advantage of this approach is that a
simple and linear Kalman filter can be implemented
to achieve significant computation saving with
competitive performance figures.
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