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Kalman Filters in 2 hours?Kalman Filters in 2 hours?

•• Hah!Hah!

•• No magic.No magic.

•• Pretty simple to apply.Pretty simple to apply.

•• Tolerant of abuse.Tolerant of abuse.

•• Notes are a standalone reference.Notes are a standalone reference.

•• These slides are online atThese slides are online at
http://www.http://www.cscs..uncunc..eduedu/~tracker/ref/s2001//~tracker/ref/s2001/kalmankalman//



Rudolf Emil KalmanRudolf Emil Kalman

•• Born 1930 in HungaryBorn 1930 in Hungary

•• BS and MS from MITBS and MS from MIT

•• PhD 1957 from ColumbiaPhD 1957 from Columbia

•• Filter developed in 1960-61Filter developed in 1960-61

•• Now retiredNow retired



What is a Kalman Filter?What is a Kalman Filter?

•• Just some applied math.Just some applied math.

•• A linear system: f(a+b) = f(a) + f(b).A linear system: f(a+b) = f(a) + f(b).

•• Noisy data in Noisy data in �������� hopefully less noisy out. hopefully less noisy out.
•• But delay is the price for filtering...But delay is the price for filtering...

•• Pure KF does not even adapt to the data.Pure KF does not even adapt to the data.



What is it used for?What is it used for?

•• Tracking missilesTracking missiles

•• Tracking heads/hands/drumsticksTracking heads/hands/drumsticks

•• Extracting lip motion from videoExtracting lip motion from video

•• Fitting Bezier patches to point dataFitting Bezier patches to point data

•• Lots of computer vision applicationsLots of computer vision applications

•• EconomicsEconomics

•• NavigationNavigation



A really simple exampleA really simple example



Gary makes a measurementGary makes a measurement

ˆ x 1 = z1

ˆ σ 21 = σ 2
z1 14121086420-2
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Conditional Density Function



Greg makes a measurementGreg makes a measurement

Conditional Density Function

z2 σ 2
z2

,

ˆ x 2 = ...?

ˆ σ 22 = ...? 14121086420-2

N(z1,σz1

2 )



Combine estimatesCombine estimates



Combine variancesCombine variances



Combined EstimatesCombined Estimates

ˆ x =

ˆ σ 2 = σ 2
2

ˆ x 2

14121086420-2

Conditional Density Function

N( σ 2)ˆ x,ˆ 

Online weighted average!



But suppose we’re movingBut suppose we’re moving

•• Not Not allall the difference is error the difference is error
•• Some may be motionSome may be motion
•• KF can include a motion modelKF can include a motion model
•• Estimate velocity and positionEstimate velocity and position

14121086420-2



Process ModelProcess Model

•• Describes how the Describes how the statestate changes over time changes over time

•• The The statestate for the first example was scalar for the first example was scalar

•• The The processprocess  modelmodel was  was ““nothing changesnothing changes””

A better model might beA better model might be

•• State is a 2-vector [ position, velocity ]State is a 2-vector [ position, velocity ]

•• positionpositionnn+1+1 =  = positionpositionnn +  + velocityvelocitynn * time * time

•• velocityvelocitynn+1+1 =  = velocityvelocitynn



Measurement ModelMeasurement Model

““What you see from where you areWhat you see from where you are””
notnot

““Where you are from what you seeWhere you are from what you see””



Predict ���� CorrectPredict ���� Correct

KF operates byKF operates by

•• Predicting the new state and its uncertaintyPredicting the new state and its uncertainty

•• Correcting with the new measurementCorrecting with the new measurement

predictpredict correctcorrect



Example: 2D Position-OnlyExample: 2D Position-Only

(Greg Welch)(Greg Welch)



Apparatus: 2D TabletApparatus: 2D Tablet



Process ModelProcess Model
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Measurement ModelMeasurement Model

  z Hx vk k k= +

u

v

H

H
x

y

u

v
k

k

x

y

k

k

k

k







 =
















 +









0

0

~

~
zk xkH vk

measurement statemeasurement
matrix noise



PreparationPreparation
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InitializationInitialization

P0

0

0
=









ε
ε

x Hz0 0=



PREDICTPREDICT
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CORRECTCORRECT
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Example: 2D Position-VelocityExample: 2D Position-Velocity

(PV Model)(PV Model)



Process Model (PV)Process Model (PV)
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Measurement Model (Same)Measurement Model (Same)
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Example: 6D HiBall TrackerExample: 6D HiBall Tracker

(x, y, z, roll, pitch, yaw)(x, y, z, roll, pitch, yaw)



ApparatusApparatus

HiBall with six
optical sensors

Ceiling panel
with LEDs



State Vector (PV)State Vector (PV)
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LED position (3D)



Non-Linear Measurement ModelNon-Linear Measurement Model
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SCAAT vs. MCAATSCAAT vs. MCAAT

•• Single or Multiple Constraint(s) at a TimeSingle or Multiple Constraint(s) at a Time
•• Dimension of the measurementDimension of the measurement

• Nothing about KF mathematics restricts it

• Can process in “batch” or sequential mode

•• SCAATSCAAT
• Estimate 15 parameters with 2D measurements

• Temporal improvements

• Autocalibration of LED positions



HiBall InitializationHiBall Initialization

•• Initialize pose using a brute-force (relativelyInitialize pose using a brute-force (relatively
slow) MCAAT approachslow) MCAAT approach

•• Initial velocities = 0Initial velocities = 0

•• Initial process covariance Initial process covariance PP00 = ~cm/degrees = ~cm/degrees

•• Transition to SCAAT Transition to SCAAT KalmanKalman filter filter



Nonlinear SystemsNonlinear Systems

(Gary Bishop)(Gary Bishop)



Kalman Filter assumes linearityKalman Filter assumes linearity

•• Only matrix operations allowedOnly matrix operations allowed

•• Measurement is a linear function of stateMeasurement is a linear function of state

•• Next state is linear function of previousNext state is linear function of previous
statestate

•• CanCan’’t estimate gaint estimate gain

•• CanCan’’t handle rotations (angles in state)t handle rotations (angles in state)

•• CanCan’’t handle projectiont handle projection



Extended Kalman FilterExtended Kalman Filter

Nonlinear Process (Model)Nonlinear Process (Model)
• Process dynamics: A becomes a(x)

• Measurement: H becomes h(x)

Filter ReformulationFilter Reformulation
• Use functions instead of matrices

• Use Jacobians to project forward, and to relate
measurement to state



Jacobian?Jacobian?

•• Partial derivative of measurement withPartial derivative of measurement with
respect to staterespect to state

•• If measurement is a vector of length MIf measurement is a vector of length M
•• And state has length NAnd state has length N
•• Jacobian Jacobian of measurement function will beof measurement function will be

MxN MxN matrix of numbers (not equations)matrix of numbers (not equations)
•• Often evaluating h(x) and Often evaluating h(x) and JacobianJacobian(h(x)) at(h(x)) at

the same time cost only a little extrathe same time cost only a little extra



TipsTips

•• DonDon’’t compute giant symbolic t compute giant symbolic Jacobian Jacobian withwith
a symbolic algebra packagea symbolic algebra package

•• Do use an automatic method duringDo use an automatic method during
developmentdevelopment

•• Check out tools from optimization packagesCheck out tools from optimization packages

•• Differentiating your function line-by-line isDifferentiating your function line-by-line is
usually pretty easyusually pretty easy



New ApproachesNew Approaches

Several extensions are available that workSeveral extensions are available that work
better than the EKF in some circumstancesbetter than the EKF in some circumstances



System IdentificationSystem Identification

Model Form and ParametersModel Form and Parameters

(Greg Welch)(Greg Welch)



Measurement Noise (R)Measurement Noise (R)



Sampled Process Noise (Q)Sampled Process Noise (Q)
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Example: 2D PV ModelExample: 2D PV Model
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Parameter OptimizationParameter Optimization
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Multiple-Model ConfigurationsMultiple-Model Configurations

Off or On-Line Model SelectionOff or On-Line Model Selection



Off-Line Model SelectionOff-Line Model Selection
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On-Line Multiple-Model EstimationOn-Line Multiple-Model Estimation
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Final Combined EstimateFinal Combined Estimate
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MME WeightingMME Weighting
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Low-Latency During MotionLow-Latency During Motion
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Smooth When StillSmooth When Still
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ConclusionsConclusions

Suggestions and ResourcesSuggestions and Resources

(Greg Welch)(Greg Welch)



Many Applications (Examples)Many Applications (Examples)

•• EngineeringEngineering
• Robotics, spacecraft, aircraft, automobiles

•• ComputerComputer
• Tracking, real-time graphics, computer vision

•• EconomicsEconomics
• Forecasting economic indicators

•• OtherOther
• Telephone and electricity loads



Kalman Filter Web SiteKalman Filter Web Site

http://www.cs.unc.edu/~welch/kalman/

•• Electronic and printed referencesElectronic and printed references
• Book lists and recommendations

• Research papers

• Links to other sites

• Some software

•• NewsNews



Java-Based KF Learning ToolJava-Based KF Learning Tool

• On-line 1D simulation
• Linear and non-linear
• Variable dynamics

http://www.cs.unc.edu/~welch/kalman/



KF Course Web PageKF Course Web Page

http://www.cs.unc.edu/~tracker/ref/s2001/kalman/index.html

( http://www.cs.unc.edu/~tracker/ )

• Electronic version of course pack (updated)
• Java-Based KF Learning Tool
• KF web page

• See also notes for Course 11 (Tracking)



Closing RemarksClosing Remarks

•• Try it!Try it!
• Not too hard to understand or program

•• Start simpleStart simple
• Experiment in 1D

• Make your own filter in Matlab, etc.

•• Note: the Note: the KalmanKalman filter  filter ““wants to workwants to work””
• Debugging can be difficult

• Errors can go un-noticed



EndEnd


