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Synopsis

We present in these lectures, in an informal manner, the very basic ideas and results of
stochastic calculus, including its chain rule, the fundamental theorems on the represen-
tation of martingales as stochastic integrals and on the equivalent change of probability
measure, as well as elements of stochastic differential equations. These results suffice for
a rigorous treatment of important applications, such as filtering theory, stochastic con-
trol, and the modern theory of financial economics. We outline recent developments in
these fields, with proofs of the major results whenever possible, and send the reader to the
literature for further study.

Some familiarity with probability theory and stochastic processes, including a good
understanding of conditional distributions and expectations, will be assumed. Previous
exposure to the fields of application will be desirable, but not necessary.
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INTRODUCTION AND SUMMARY

The purpose of these notes is to introduce the reader to the fundamental ideas and results
of Stochastic Analysis up to the point that he can acquire a working knowledge of this
beautiful subject, sufficient for the understanding and appreciation of its rôle in important
applications. Such applications abound, so we have confined ourselves to only two of them,
namely filtering theory and stochastic control; this latter topic will also serve us as a vehicle
for introducing important recent advances in the field of financial economics, which have
been made possible thanks to the methodologies of stochastic analysis.

We have adopted an informal style of presentation, focusing on basic results and on
the ideas that motivate them rather than on their rigorous mathematical justification, and
providing proofs only when it is possible to do so with a minimum of technical machinery.
For the reader who wishes to undertake an in-depth study of the subject, there are now
several monographs and textbooks available, such as Liptser & Shiryaev (1977), Ikeda &
Watanabe (1981), Elliott (1982) and Karatzas & Shreve (1987).

The notes begin with a review of the basic notions of Markov processes and martin-
gales (section 1) and with an outline of the elementary properties of their most famous
prototype, the Wiener-Lévy or “Brownian Motion” process (section 2). We then sketch
the construction and the properties of the integral with respect to this process (section
3), and develop the chain rule of the resulting “stochastic” calculus (section 4). Section
5 presents the fundamental representation properties for continuous martingales in terms
of Brownian motion (via time-change or integration), as well as the celebrated result of
Girsanov on the equivalent change of probability measure. Finally, we offer in section 6 an
elementary study of dynamical systems excited by white noise inputs.

Section 7 applies the results of this theory to the study of the filtering problem. The
fundamental equations of Kushner and Zakai for the conditional distribution are obtained,
and the celebrated Kalman-Bucy filter is derived as a special (linear) case. We also outline
the derivation of the genuinely nonlinear Beneš (1981) filter, which is nevertheless explicitly
implementable in terms of a finite number of sufficient statistics. A reduction of the filtering
equations to a particularly simple form is presented in section 8, under the rubric of “robust
filtering”, and its significance is demonstrated on examples.

An introduction to stochastic control theory is offered in section 9; we present the
principle of Dynamic Programming that characterizes the value function of this problem,
and derive from it the associated Hamilton-Jacobi-Bellman equation. The notion of weak
solutions (in the “viscosity” sense of P.L. Lions) of this equation is expounded upon. In
addition, several examples are presented, including the so-called “linear regulator” and the
portfolio/consumption problem from financial economics.
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1. GENERALITIES

A stochastic process is a family of random variables X = {Xt ; 0 ≤ t < ∞}, i.e., of
measurable functions Xt(ω) : Ω → R, defined on a probability space (Ω,F , P ). For every
ω ∈ Ω, the function t 7→ Xt(ω) is called the sample path (or trajectory) of the process.

1.1 Example: Let T1, T2, · · · be I.I.D. (independent, identically distributed) random
variables with exponential distribution P (Ti ∈ dt) = λe−λtdt, for t > 0, and define

S0(ω) = 0, Sn(ω) = Σn
j=1Tj(ω) for n ≥ 1.

The interpretation here is that the Tj ’s represent the interarrival times, and that the Sn’s
represent the arrival times, of customers in a certain facility. The stochastic process

Nt(ω) = #{n ≥ 1 : Sn(ω) ≤ t}, 0 ≤ t <∞

counts, for every 0 ≤ t <∞, the number of arrivals up to that time and is called a Poisson
process with intensity λ > 0. Every sample path t 7→ Nt(ω) is a “staircase function”
(piecewise constant, right-continuous, with jumps of size +1 at the arrival times), and
we have the following properties:

(i) for every 0 = t0 < t1 < t2 < · · · < tm < t < θ < ∞, the increments Nt1 ,
Nt2 −Nt1 , · · · , Nt −Ntm

, Nθ −Nt are independent;

(ii) the distribution of the increment Nθ −Nt is Poisson with parameter λ(θ − t), i.e.,

P [Nθ −Nt = k] = e−λ(θ−t) (λ(θ − t))k

k!
, k = 0, 1, 2, · · · .

It follows from the first of these properties that

P [Nθ = k|Nt1 , Nt2 , ..., Nt] = P [Nθ = k|Nt1 , Nt2 −Nt1 , · · · , Nt −Ntm
, Nt] = P [Nθ = k|Nt],

and more generally, with FN
t = σ(Ns; 0 ≤ s ≤ t):

(1.1) P [Nθ = k|FN
t ] = P [Nθ = k|Ns; 0 ≤ s ≤ t] = P [Nθ = k|Nt].

In other words, given the “past” {Ns : 0 ≤ s < t} and the “present” {Nt}, the “future”
{Nθ} depends only on the present. This is the Markov property of the Poisson process.

1.2 Remark on Notation: For every stochastic process X, we denote by

(1.2) FX
t = σ

(
Xs ; 0 ≤ s ≤ t

)
the record (history, observations, sample path) of the process up to time t. The resulting
family {FX

t ; 0 ≤ t < ∞} is increasing: FX
t ⊆ FX

θ for t < θ. This corresponds to the
intuitive notion that

(1.3)
{
FX

t represents the information about the process
X that has been revealed up to time t

}
,
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and obviously this information cannot decrease with time.

We shall write {Ft ; 0 ≤ t < ∞}, or simply {Ft}, whenever the specification of the
process that generates the relevant information is not of any particular importance, and
call the resulting family a filtration. Now if FX

t ⊆ Ft holds for every t ≥ 0, we say that
the process X is adapted to the filtration {Ft}, and write {FX

t } ⊆ {Ft}.

1.3 The Markov property: A stochastic process X is said to be Markovian, if

P [Xθ ∈ A|FX
t ] = P [Xθ ∈ A|Xt]; ∀ A ∈ B(R), 0 < t < θ.

Just like the Poisson process, every process with independent increments has this property.

1.4 The Martingale property: A stochastic process X with E|Xt| <∞ is called

martingale, if E(Xt|Fs) = Xs

submartingale, if E(Xt|Fs) ≥ Xs

supermartingale, if E(Xt|Fs) ≤ Xs

holds (w.p.1) for every 0 < s < t <∞.

1.5 Discussion: (i) The filtration {Ft} in 1.4 can be the same as {FX
t }, but it may also be

larger. This point can be important (e.g. in the representation Theorem 5.3) or even crucial
(e.g. in Filtering Theory; cf. section 7), and not just a mere technicality. We stress it, when
necessary, by saying that “X is an {Ft} - martingale”, or that “X = {Xt,Ft; 0 ≤ t <∞}
is a martingale”.

(ii) In a certain sense, martingales are the “constant functions” of probability theory;
submartingales are the “increasing functions”, and supermartingales are the “decreasing
functions”. In particular, for a martingale (submartingale, supermartingale) the expecta-
tion t 7→ EXt is a constant (resp. nondecreasing, nonincreasing) function; on the other
hand, a super(sub)martingale with constant expectation is necessarily a martingale. With
this interpretation, if Xt stands for the fortune of a gambler at time t, then a marti-
nale (submartingalge, supermartingale) corresponds to the notion of a fair (respectively:
favorable, unfavorable) game.

(iii) The study of processes of the martingale type is at the heart of stochastic analysis, and
becomes exceedingly important in applications. We shall try in this tutorial to illustrate
both these points.

1.6 The Compensated Poisson process: If N is a Poisson process with intensity
λ > 0, it is checked easily that the “compensated process”

Mt = Nt − λ t , FN
t , 0 ≤ t <∞

is a martingale. �
In order to state correctly some of our later results, we shall need to “localize” the

martingale property.
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1.7 Definition: A random variable τ : Ω → [0,∞] is called a stopping time of the filtration
{Ft}, if the event {τ ≤ t} belongs to Ft, for every 0 ≤ t <∞.

In other words, the determination of whether τ has occurred by time t, can be made
by looking at the information Ft that has been made available up to time t only, without
anticipation of the future.

For instance, if X has continuous paths and A is a closed set of the real line, the
“hitting time” τA = min{t ≥ 0 : Xt ∈ A} is a stopping time.

1.8 Definition: An adapted processX = {Xt,Ft ; 0 ≤ t <∞} is called a local martingale,
if there exists an increasing sequence {τn}∞n=1 of stopping times with limn→∞ τn = ∞ such
that the “stopped process” {Xt∧τn ,Ft ; 0 ≤ t <∞} is a martingale, for every n ≥ 1.

It can be shown that every martingale is also a local martingale, and that there exist
local martingales which are not martingales; we shall not press these points here.

1.9 Exercise: Every nonnegative local martingale is a supermartingale.

1.10 Exercise: If X is a submartingale and τ is a stopping time, then the stopped process
Xτ

t
4
= Xτ∧t , 0 ≤ t <∞ is also a submartingale.

1.11 Exercise (optional sampling theorem): If X is a submartingale with right-
continuous sample paths and σ, τ two stopping times with σ ≤ τ ≤ M (w.p.1) for some
real constant M > 0, then we have E(Xσ) ≤ E(Xτ ).

2. BROWNIAN MOTION

This is by far the most interesting and fundamental stochastic process. It was studied
by A. Einstein (1905) in the context of a kinematic theory for the irregular movement
of pollen immersed in water that was first observed by the botanist R. Brown in 1824,
and by Bachelier (1900) in the context of financial economics. Its mathematical theory
was initiated by N. Wiener (1923), and P. Lévy (1948) carried out a brilliant study of its
sample paths that inspired practically all subsequent research on stochastic processes until
today. Appropriately, the process is also known as the Wiener-Lévy process, and finds
applications in engineering (communications, signal processing, control), economics and
finance, mathematical biology, management science, etc.

2.1 Motivational considerations (in one dimension): Consider a particle that is sub-
jected to a sequence of I.I.D. (independent, identically distributed) Bernoulli “kicks”
ξ1, ξ2, · · · with P [ξ1 = ±1] = 1/2, of size h > 0, at the end of regular time-intervals
of constant length δ > 0. Thus, the location of the particle after n kicks is given as
h · Σn

j=1ξj(ω); more generally, the location of the particle at time t is

St(ω) = h.

[t/δ]∑
j=1

ξj(ω) , 0 ≤ t <∞.
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The resulting process S has right-continuous and piecewise constant sample paths, as
well as stationary and independent increments (because of the independence of the ξj ’s).
Obviously, ESt = 0 and

V ar(St) = h2

[
t

δ

]
∼=

h2

δ
t .

We would like to get a continuous picture, in the limit, by letting h ↓ 0 and δ ↓ 0,
but at the same time we need a positive and finite variance for the limiting random variable
St. This can be accomplished by maintaining h2 = σ2δ for a finite constant σ > 0; in
particular, by taking δn = 1/n, hn = σ/

√
n, and thus setting

(2.1) S
(n)
t (ω)

4
=

σ√
n

[nt]∑
j=1

ξj(ω) ; 0 ≤ t <∞, n ≥ 1.

Now a direct application of the Central Limit Theorem shows that

(i) for fixed t, the sequence {S(n)
t }∞n=1 converges in distribution to a random variable

Wt ∼ N (0, σ2t) .

(ii) for fixed m ≥ 1 and 0 = t0 < t1 < ... < tm−1 < tm < ∞, the sequence of random
vectors

{(S(n)
t1 , S

(n)
t2 − S

(n)
t1 , . . . , S

(n)
tm

− S
(n)
tm−1

)}∞n=1

converges in distribution to a vector

(Wt1 ,Wt2 −Wt1 , . . . ,Wtm −Wtm−1)

of independent random variables, with

Wtj −Wtj−1 ∼ N (0, σ2(tj − tj−1)), 1 ≤ j ≤ m.

You can easily imagine now that the entire process S(n) = {S(n)
t ; 0 ≤ t < ∞}

converges in distribution (in a suitable sense) as n→∞, to a process W = {Wt ; 0 ≤
t <∞} with the following properties:

(i) W0 = 0;

(ii) Wt1 ,Wt2 −Wt1 , · · · ,Wtm −Wtm−1 are independent,

(2.2) for every m ≥ 1 and 0 = t0 < t1 < . . . tm <∞;

(iii) Wt −Ws ∼ N (0, σ2(t− s)), for every 0 < s < t <∞;

(iv) the sample path t 7→Wt(ω) is continuous, ∀ ω ∈ Ω.

2.2 Definition: A process W with the properties of (2.2) is called a (one-dimensional)
Brownian motion with variance σ2; if σ = 1, the motion is called standard.
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If W (1), . . . ,W (d) are d independent, standard Brownian motions, the vector-valued
process W = (W (1), . . . ,W (d)) is called a standard Brownian motion in Rd. We shall take
routinely σ = 1 from now on.

One cannot overstate the significance of this process. It stands out as the prototypical

(a) process with stationary, independent increments;

(b) Markov process;

(c) Martingale with continuous sample paths; and

(d) Gaussian process (with covariance function R(t, s) = t ∧ s).

2.3 Exercise: (i) Show that Wt, W
2
t − t are martingales.

(ii) Show that for every θ ∈ R, the processes below are martingales:

Zt = exp
(
θWt −

1
2
θ2t

)
, Yt = exp

(
iθWt +

1
2
θ2t

)
.

2.4 White Noise: For every integer n ≥ 1, consider the Gaussian process

ξ
(n)
t

4
= n

[
Wt −Wt−1/n

]
; 0 ≤ t <∞

with E
(
ξ
(n)
t

)
= 0 and covariance function Rn(t, s)

4
= E

(
ξ
(n)
t ξ

(n)
s

)
= Qn(t− s), where

Qn(τ) =
{
n2( 1

n − τ) ; |τ | ≤ 1/n
0 ; |τ | ≥ 1/n

}
.

As n→∞, the sequence of functions {Qn}∞n=1 approaches the Dirac delta. The “limit”

ξt = “ lim
n→∞

ξ
(n)
t ”

(in a generalized, distributional sense) is then a “zero mean Gaussian process with covari-
ance function R(t, s) = E(ξtξs) = δ(t− s)”. It is called White Noise and is of tremendous
importance in communications and system theory.

Nota Bene: Despite its continuity, the sample path t 7→Wt(ω) is not differentiable
anywhere on [0,∞).

Now fix a t > 0 and consider a sequence of partitions 0 = t
(n)
0 < t

(n)
1 < . . . < t

(n)
k <

. . . < t
(n)
2n = t of the interval [0, t], say with t(n)

k = kt2−n, as well as the quantity

(2.3) V (n)
p (ω)

4
=

2n∑
k=1

∣∣∣Wt
(n)
k

(ω)−W
t
(n)
k−1

(ω)
∣∣∣p, p > 0,
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the “variation of order p of the sample path t 7→ Wt(ω) along the nth partition”. For
p = 1, V (n)

1 (ω) is simply the length of the polygonal approximation to the Brownian path;
for p = 2, V (n)

2 (ω) is the “quadratic variation” of the path along the approximation.

2.5 Theorem: With probability one, we have

(2.4) lim
n→∞

V (n)
p =

∞ ; for 0 < p < 2
t ; for p = 2
0 ; for p > 2

 .

In particular:

(2.5)
2n∑

k=1

∣∣∣Wt
(n)
k

−W
t
(n)
k−1

∣∣∣ −→
n→∞

∞ ,

(2.6)
2n∑

k=1

(
W

t
(n)
k

−W
t
(n)
k−1

)2

−→
n→∞

t .

Remark: The relations (2.5), (2.6) become easily believable, if one considers them in L1

rather than with probability one. Indeed, since

E
∣∣∣Wt

(n)
k

−W
t
(n)
k−1

∣∣∣ = c ·
√
t
(n)
k − t

(n)
k−1 = c · 2−n/2t

1
2

E
(
W

t
(n)
k

−W
t
(n)
k−1

)2

= t
(n)
k − t

(n)
k−1 = 2−n t ,

with c =
√

2π, we have as n→∞:

E
2n∑

k=1

∣∣∣Wt
(n)
k

−W
t
(n)
k−1

∣∣∣ = c.2n/2 → ∞ , E
2n∑

k=1

(
W

t
(n)
k

−W
t
(n)
k−1

)2

= t . �

Arbitrary (local) martingales with continuous sample paths do not behave much dif-
ferently. In fact, we have the following result.

2.6 Theorem: For every nonconstant (local) martingale M with continuous sample paths,
we have the analogues of (2.5), (2.6):

(2.7)
2n∑

k=1

∣∣∣Mt
(n)
k

−M
t
(n)
k−1

∣∣∣ P−→
n→∞

∞
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(2.8)
2n∑

k=1

(
M

t
(n)
k

−M
t
(n)
k−1

)2 P−→
n→∞

〈M〉t ,

where 〈M〉 is a process with continuous, nondecreasing sample paths. Furthermore, the
analogue of (2.4) holds, if one replaces t by 〈M〉t on the right-hand side, and convergence
with probability one by convergence in probability.

2.7 Remark on Notation: The process 〈M〉 of (2.8) is called the quadratic variation
process of M ; it is the unique process with continuous and nondecreasing paths, for which

(2.9) M2
t − 〈M〉t = local martingale.

In particular, if M is a square-integrable martingale, i.e., if E(M2
t ) < ∞ holds for every

t ≥ 0, then

(2.9)′ M2
t − 〈M〉t = martingale.

2.8 Corollary: Every (local) martingale M , with sample paths which are continuous and
of finite first variation, is necessarily constant.

2.9 Exercise: For the compensated Poisson process M of 1.6, show that M2
t − λt is a

martingale, and thus 〈M〉t = λt in (2.9)′.

2.11 Exercise: For any two (local) martingales M and N with continuous sample paths,
we have

(2.10)
2k∑

k=1

[M
t
(n)
k

−M
t
(n)
k−1

][N
t
(n)
k

−N
t
(n)
k−1

] P−→
n→∞

〈M,N〉t
4
=

1
4

[
〈M +N〉t − 〈M −N〉t

]
.

2.12 Remark: The process 〈M,N〉 of (2.10) is continuous and of bounded variation
(difference of two nondecreasing processes); it is the unique process with these properties,
for which

(2.11) MtNt − 〈M,N〉t = local martingale

and is called the cross-variation of M and N . If M,N are independent, then 〈M,N〉 ≡ 0.

For square-integrable martingales M,N the pairing 〈·, ·〉 plays the rôle of an inner
product: the process of (2.11) is then a martingale, and we say that M,N are orthogonal
if 〈M,N〉 ≡ 0 (which amounts to saying that MN is a martingale).

2.13 Burkholder-Gundy Inequalities: Let M be a local martingale with continuous
sample paths, 〈M〉 the associated process of (2.9), and M∗

t = max0≤s≤t |Ms|, for 0 ≤ t <
∞. Then for any p > 0 and any stopping time τ we have:

kp · E〈M〉pτ ≤ E(M∗
τ )2p ≤ Kp · E〈M〉pτ
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where kp,Kp are universal constants (depending only on p).

2.14 Doob’s Inequality: If M is a nonnegative submartingale with right-continuous
sample paths, then

E

(
sup

0≤t≤T
Mt

)p

≤
(

p

p− 1

)p

· E
(
XT

)p
, ∀ p > 1 .

3. STOCHASTIC INTEGRATION

Consider a Brownian motion W adapted to a given filtration {Ft}; for a suitable adapted
process X, we would like to define the stochastic integral

(3.1) It(X) =
∫ t

0

XsdWs

and to study its properties as a process indexed by t. We see immediately, however, that∫ t

0
Xs(ω)dWs(ω) cannot possibly be defined for any ω ∈ Ω as a Lebesgue-Stieltjes integral,

because the path s 7→Ws(ω) is of infinite first variation on any interval [0, t]; recall (2.5).

Thus, we need a new approach, one that can exploit the fact that the path has finite
and positive second (quadratic) variation; cf. (2.6). We shall try to sketch the main lines
of this approach, leaving aside all the technicalities (which are rather demanding!).

Just as with the Lebesgue integral, it is pretty obvious what everybody’s choice should
be for the stochastic integral, in the case of particularly simple processes X. Let us place
ourselves, from now on, on a finite interval [0, T ].

3.1 Definition: A process X is called simple, if there exists a partition 0 = t0 <
t1 . . . < tr < tr+1 = T such that Xs(ω) = θj(ω); tj < s ≤ tj+1 where θj is a bounded,
Ftj

−measurable random variable.

For such a process, we define in a natural way:

(3.2)

It(X) =
∫ t

0

XsdWs
4
=

m−1∑
j=0

θj(Wtj+1 −Wtj ) + θm(Wt −Wtm); tm < t ≤ tm+1

=
r∑

j=0

θj(Wt∧tj+1 −Wt∧tj ).

There are several properties of the integral that follow easily from this definition; pretend-
ing that t = tm+1 to simplify notation, we obtain

EIt(X) = E
m∑

j=0

θj(Wtj+1 −Wtj ) =
m∑

j=0

E
[
θj · E(Wtj+1 −Wtj |Ftj )

]
= 0 ,
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and more generally, for s < t:

(3.3) E[It(X)|Fs] = Is(X) .

In other words, the integral is a martingale with continuous sample paths. What is the
quadratic variation of this martingale? We can get a clue, if we compute the second
moment
(3.4)

E(It(X))2 = E

(
m∑

j=0

θj(Wtj+1 −Wtj
)

)2

= E
m∑

j=0

θ2j (Wtj+1 −Wtj
)2 + 2 · E

m∑
j=0

m∑
i=j+1

θiθj(Wti+1 −Wti
)(Wtj+1 −Wtj

)

= E
m∑

j=0

θ2jE[(Wtj+1 −Wtj )
2|Ftj ] +

+ 2 · E
m∑

j=0

m∑
i=j+1

θiθj(Wtj+1 −Wtj ).E[Wti+1 −Wti |Fti ]

= E
m∑

j=0

θ2j (tj+1 − tj) = E

∫ t

0

X2
u du.

A similar computation leads to

(3.5) E[(It(X)− Is(X))2 | Fs] = E

[∫ t

s

X2
u du

∣∣∣Fs

]
,

which shows that the quadratic variation of I(X) is 〈I(X)〉t =
∫ t

0
X2

u du .

On the other hand, if Y is another simple process, a computation similar to (3.4),
(3.5) gives E[It(X)It(Y )] = E

∫ t

0
XuYudu and, more generally,

E[(It(X)− Is(X))(It(Y )− Is(Y ) | Fs] = E

[∫ t

s

XuYu du | Fs

]
.

We are led to the following.

3.2 Proposition: For simple processes X and Y , the integral of (3.1) is defined as in (3.2),
and is a square-integrable martingale with continuous paths and quadratic (respectively,
cross-) variation process given by

(3.6) 〈I(X)〉t =
∫ t

0

X2
u du , 〈I(X), I(Y )〉t =

∫ t

0

XuYu du .

12



In particular, we have
(3.7)

E[It(X)] = 0 , E(It(X))2 = E

∫ t

0

X2
udu , E[It(X)It(Y )] = E

∫ t

0

XuYudu. �

The idea now is that an arbitrary measurable, adapted process X with

E

∫ T

0

X2
udu < ∞

can be approximated by a sequence of simple processes {X(n)}∞n=1 , in the sense

E

∫ T

0

|X(n)
u −Xu|2du −→

n→∞
0 .

Then the corresponding sequence of stochastic integrals {I(X(n))}∞n=1 converges in the
sense of L2(dt⊗dP ), and the limit I(X) is called the stochastic integral of X with respect
to W . It also turns out that most of the properties of Proposition 3.2 are maintained.

3.3 Theorem: For every measurable, adapted process X with the property
∫ T

0
X2

u du <∞
(w.p.1), one can define the stochastic integral I(X) of X with respect to W . This process
is a local martingale with continuous sample paths, and quadratic (and cross –) variation
processes given by (3.6).

Furthermore, if we have E
∫ T

0
X2

udu <∞, then the local martingale I(X) is actually
a square-integrable martingale and the properties of (3.7) hold. �

Predictably, nothing in all this development is terribly special about Brownian motion.
Indeed, if we let M,N be arbitrary (local) martingales with continuous sample paths, we
have the following analogue of Theorem 3.3:

3.4 Theorem: For any measurable, adapted process X with∫ T

0

X2
u d〈M〉u < ∞ (w.p.1),

one can define the stochastic integral IM (X) of X with repect to M ; the resulting process
is a local martingale with continuous paths and quadratic (and cross–) variations

(3.8) 〈IM (X)〉t =
∫ t

0

X2
ud〈M〉u, 〈IM (X), IM (Y )〉t =

∫ t

0

XuYu d〈M〉u .

(Here, Y is a process with the same properties as X.)

13



Furthermore, if Z is a measurable, adapted process with
∫ T

0
Z2

ud〈N〉u <∞ (w.p.1),
we have

(3.9) 〈IM (X), IN (Z)〉t =
∫ t

0

XuZud〈M,N〉u .

If now E
∫ T

0
(X2

u + Y 2
u )d〈M〉u < ∞ , E

∫ T

0
Z2

u d〈N〉u < ∞, then the processes IM (X) ,
IM (Y ) and IN (Z) are actually square-integrable martingales, with

(3.10) E(IM
t (X)) = 0, E

(
IM
t (X)

)2 = E

∫ t

0

X2
u d〈M〉u ,

(3.11) E[IM
t (X)IM

t (Y )] = E

∫ t

0

XuYu d〈M〉u ,

(3.12) E[IM
t (X)IN

t (Z)] = E

∫ t

0

XuZu d〈M,N〉u .

3.5 Remark: If we take Z ≡ 1, then obviously IN (Z) ≡ N , and (3.9) becomes

〈IM (X), N〉t =
∫ t

0

Xu d〈M,N〉u .

It turns out that this property characterizes the stochastic integral, in the following sense:
suppose that for some continuous local martingale Λ we have

〈Λ, N〉t =
∫ t

0

Xu d〈M,N〉u , 0 ≤ t ≤ T

for every continuous local martingale N ; then Λ ≡ IM (X).

3.6 Exercise: In the context of Theorem 3.4, suppose that N = IM (X) and Q = IN (Z) ;
show that we have then Q = IM (XZ) .
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4. THE CHAIN RULE OF THE NEW CALCULUS

The definition of the integral carries with it a certain “calculus”, i.e., a set of rules that
can make the integral amenable to more-or-less mechanical calculation. This is true for
the Riemann and Lebesgue integrals, and is just as true for the stochastic integral as well;
it turns out that, in this case, there is a simple chain rule that complements and extends
that of the ordinary calculus.

Suppose that f : R → R and ψ : [0,∞) → R are C1 functions; then the ordinary
chain rule gives

(f(ψ(t))′ = f ′(ψ(t)) · ψ′(t),

or equivalently:

(4.1) f(ψ(t)) = f(ψ(0)) +
∫ t

0

f ′(ψ(s))dψ(s).

Actually (4.1) holds even when ψ is simply of bounded variation (not necessarily contin-
uously differentiable), provided that the integral on the right-hand side is interpreted in
the Stieltjes sense. We cannot expect (4.1) to hold, however, if ψ(·) is replaced by W.(ω),
because the path t 7→ Wt(ω) is of infinite variation for almost every ω ∈ Ω. It turns out
that we need a second-order correction term.

4.1 Theorem: Let f : R → R be of class C2, and W be a Brownian motion. Then

(4.2) f(Wt) = f(W0) +
∫ t

0

f ′(Ws)dWs +
1
2

∫ t

0

f
′′
(Ws)ds , 0 ≤ t <∞ .

More generally, if M is a (local) martingale with continuous sample paths:

(4.3) f(Mt) = f(M0) +
∫ t

0

f ′(Ms)dMs +
1
2

∫ t

0

f
′′
(Ms) d〈M〉s , 0 ≤ t <∞ .

Idea of proof: Consider a partition 0 = t0 < t1 < . . . < tm < tm+1 = t of the interval
[0, t], and do a Taylor expansion:

f(Wt)− f(W0) =
m∑

j=1

{f(Wtj+1)− f(Wtj
)} =

=
m∑

j=1

f ′(Wtj
)(Wtj+1 −Wtj

) +
1
2

m∑
j=1

f
′′
(Wtj

+ θj(Wtj+1 −Wtj
)) · (Wtj+1 −Wtj

)2,

where θj is an Ftj+1−measurable random variable with values in the interal [−1, 1]. In this
last expression, as the partition becomes finer and finer, the first sum approximates the
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stochastic integral
∫ t

0
f ′(Ws)dWs, whereas the second sum approximates

∫ t

0
f ′′(Ws)ds;

cf. (2.6).

4.2 Example: In order to compute
∫ t

0
WsdWs, all you have to do is take f(x) = x2 in

(4.2), and obtain ∫ t

0

WsdWs =
1
2
(W 2

t − t) .

( Try to arrive at the same conclusion, by evaluating the approximating sums of the form∑m
j=1Wtj

(Wtj+1 −Wtj
) along a partition, and then letting the partition become dense in

[0, t]. Notice how harder you have to work this way!).

4.3 Theorem: Let M be a (local) martingale with continuous sample paths and 〈M〉t = t.
Then M is a Brownian motion.

Proof: We have to show that M has independent increments, and that the increment
Mt−Ms has a normal distribution with mean zero and variance t− s , for 0 < s < t <∞.
Both these claims will follow, as soon as it is shown that

(4.4) E
[
eiθ(Mt−Ms)

∣∣∣Fs

]
= e−

1
2 θ2(t−s); ∀ θ ∈ R .

With f(x) = eiθx, we have from (4.3):

eiθMt = eiθMs +
∫ t

s

iθeiθMudMu −
θ2

2

∫ t

s

eiθMudu ,

and this leads to:

E
[
eiθ(Mt−Ms)

∣∣∣Fs

]
= 1+iθ·e−iθMsE

[∫ t

s

eiθMudMu

∣∣∣Fs

]
−θ

2

2

∫ t

s

E
[
eiθ(Mu−Ms)

∣∣∣Fs

]
du .

Because the conditional expectation of the stochastic integral is zero (the martingale prop-
erty!), we are led to the conclusion that the function

g(t)
4
= E

[
eiθ(Mt−Ms)

∣∣∣Fs

]
; t ≥ s

satisfies the integral equation g(t) = 1− 1
2θ

2
∫ t

s
g(u)du. But there is only one solution to

this equation, namely g(t) = e−
1
2 θ2(t−s), proving (4.4). �

Theorem 4.1 can be generalized in several ways; here is a version that we shall find
most useful, and which is established in more or less the same way.

4.4 Proposition: Let X be a semimartingale, i.e., a process of the form

Xt = X0 +Mt + Vt , 0 ≤ t <∞
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where M is a local martingale with continuous sample paths, and V a process with contin-
uous sample paths of finite first variation. Then, for every function f : R → R of class
C2, we have
(4.5)

f(Xt) = f(X0) +
∫ t

0

f ′(Xs) dMs +
∫ t

0

f ′(Xs) dVs +
1
2

∫ t

0

f
′′
(Xs) d〈M〉s , 0 ≤ t <∞ .

More generally, let X = (X(1), · · · , X(d)) be an Rd - valued process with components
X

(i)
t = X

(i)
0 +M

(i)
t + V

(i)
t of the above type, and f : Rd → R a function of class C2. We

have then

(4.6)

f(Xt) = f(X0) +
d∑

i=1

∫ t

0

∂f

∂xi
(Xs)dM (i)

s +
d∑

i=1

∫ t

0

∂f

∂xi
(Xs)dV (i)

s +

+
1
2

d∑
i=1

d∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Xs) d〈M (i),M (j)〉s , 0 ≤ t <∞.

4.5 Example: If M is a local martingale with continuous sample paths, then so is

(4.7) Zt = exp
[
Mt −

1
2
〈M〉t

]
, 0 ≤ t <∞

and satisfies the elementary stochastic integral equation

(4.8) Zt = 1 +
∫ t

0

ZsdMs , 0 ≤ t <∞ .

Indeed, apply (4.5) to the semimartingale X = M − 1
2 〈M〉 and the function f(x) = ex.

The local martingale property of Z follows from the fact that it is a stochastic integral; on
the other hand, Exercise 1.9 shows that Z is also a supermartingale.

When is this supermartingale actually a martingale? It turns out that

(4.9) E
[
exp
{1

2
〈M〉T

}]
< ∞

is a sufficient condition. For instance, if

(4.10) Mt =
∫ t

0

XsdWs
4
=

d∑
i=1

∫ t

0

X(i)
s dW (i)

s

with
∫ T

0
||Xt||2dt <∞ (w.p.1), then the exponential supermartingale

(4.11) Zt = exp
(∫ t

0

XsdWs −
1
2

∫ t

0

||Xs||2ds
)
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satisfies the equation

(4.12) Zt = 1 +
∫ t

0

ZsXsdWs , 0 ≤ t <∞

and is a martingale if

(4.13) E
[
exp
{1

2

∫ T

0

||Xs||2ds
}]

< ∞.

4.6 Example: Integration-by-parts. With d = 2 and f(x1, x2) = x1x2 in (4.6), we
obtain

(4.14) X
(1)
t X

(2)
t = X

(1)
0 X

(2)
0 +

∫ t

0

X(1)
s dX(2)

s +
∫ t

0

X(2)
s dX(1)

s + 〈M (1),M (2)〉t .

4.7 Exercise: Using the formula (4.6), establish the following multi-dimensional ana-
logue of Theorem 4.3: “If M = (M (1), . . . ,M (d)) is a vector of (local) martingales with
continuous paths and 〈M (i),M (j)〉t = tδij , then M is an Rd - valued Brownian motion.”

Here, δij =
{

0 , i 6= j
1 , i = j

}
is the Kronecker delta.

5. THE FUNDAMENTAL THEOREMS

In this section we expound on the theme that Brownian motion is the fundamental martin-
gale with continuous sample paths. We illustrate this point by establishing “representation
results” for such martingales in terms of Brownian motion. We conclude with the cele-
brated result of Girsanov, according to which “Brownian motion is invariant under the
combined effect of a particular translation, and of a change of probability measure”.

Our first result states that “every local martingale with continuous sample paths, is
nothing but a Brownian motion, run under a different clock”.

5.1 Theorem: Let M be a continuous local martingale with There exists then a Brownian
motion W , such that:

Mt = W〈M〉t ; 0 ≤ t <∞.

Sketch of proof in the case 〈M〉 is strictly increasing ∗: In this case 〈M〉 has an inverse,
say T , which is continuous (as well as strictly increasing).

∗ E.g., if Mt =
∫ t

0
Xs dBs, where B is Brownian motion and X takes values in R\{0}.
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Then it is not hard to see that the process

(5.1) Ws = MT (s) , 0 ≤ s <∞

is a martingale (with respect to the filtration Gs = FT (s), s ≥ 0) with continuous sample
paths, as being the composition of the two continuous mappings T : R+ → R+ and
M : R+ → R. On the other hand, it is “intuitively clear” that 〈W 〉s = 〈M〉T (s) = s, so
W is Brownian motion by Theorem 4.3. Furthermore, replacing s by 〈M〉t in (5.1), we
obtain W〈M〉t = MT (〈M〉t) = Mt , which is the desired representation. �

A second representation result, similar in spirit to Theorem 5.1, is left as an Exercise.

5.2 Exercise: Let M be a local martingale with continuous sample paths, and quadratic
variation of the form 〈M〉t =

∫ t

0
X2

s ds for some adapted process X. Then M admits the
representation

(5.2) Mt = M0 +
∫ t

0

Xs dWs , 0 ≤ t <∞

as a stochastic integral of X with respect to a suitable Brownian motion W .

(Hint: If X takes values in R\{0}, show that one can take

(5.3) Wt =
∫ t

0

1
Xs

dMs

in (5.2). For the general case assume, as you may, that the probability space is rich enough
to support a Brownian motion B independent of M , and use B to modify accordingly the
definition of W in (5.3)). �

Here is now our final, and most important, representation result for martingales in
terms of Brownian motion. In constrast to both Theorem 5.1 and Exercise 5.2, the Brow-
nian motion W in Thorem 5.3 is given and fixed.

5.3 Theorem: Let W be a Brownian motion, and recall the notation FW
t = σ(Ws; 0 ≤

s ≤ t) of (1.2) for the history of the process up to time t. Every local martingale M with
respect to the filtration {FW

t } admits a representation of the form

(5.4) Mt = M0 +
∫ t

0

Xs dWs , 0 ≤ t <∞ ,

for a measurable process X which is adapted to {FW
t } and satisfies

∫ T

0
X2

s ds < ∞
(w.p.1) for every 0 < T <∞ . In particular, every such M has continuous sample paths.
�
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5.4 Remark: If M in Theorem 5.3 happens to be a square-integrable martingale, then X
in (5.4) can be chosen to satisfy E

∫ T

0
X2

sds <∞ for every 0 < T <∞ .

Finally, we present the fundamental “change of probability measure” result (Theorem
5.5). By way of motivation, let us consider a probability space (Ω,F , P ) and independent,
standard normal random variables ξ1, ξ2, . . . , ξn on it. For an arbitrary vector µ ∈ Rn,
introduce a new measure P̃ on (Ω,F) by

P̃ (dω) = exp

{
n∑

i=1

µiξi(ω)− 1
2

n∑
i=1

µ2
i

}
· P (dω),

which is actually a probability, since

P̃ (Ω) = e−
1
2

∑n

1
µ2

i ·
n∏

i=1

E
(
eµiξi

)
= 1.

What is the distribution of (ξ1, . . . , ξn) under P̃ ? We have

P̃ [ξ ∈ dz1, . . . , ξn ∈ dzn] = exp

(
n∑
1

µizi −
1
2

n∑
1

µ2
i

)
· P [ξ1 ∈ dz1, . . . , ξn ∈ dzn]

= (2π)−n/2 exp

{
−1

2

n∑
i=1

(zi − µi)2
}
dz1 . . . dzn.

In other words, under P̃ the random variables (ξ1, . . . , ξn) are independent, and ξi ∼
N (µi, 1). Equivalently, with ξ̃i = ξi − µi, 1 ≤ i ≤ n : the random variables (ξ̃1, . . . , ξ̃n)
have the same law under P̃ , as the random variables (ξ1, . . . , ξn) under P (namely, inde-
pendent and standard normal).

The following result, which extends this idea to processes, is of paramount importance
in stochastic analysis. We formulate it directly in its multidimensional form.

5.5 Theorem (Girsanov (1960)): Let W = {Wt,Ft ; 0 ≤ t ≤ T} be d−dimensional
Brownian motion, X = {Xt,Ft ; 0 ≤ t ≤ T} a measurable, adapted, Rd – valued process
with

∫ T

0
||Xt||2dt <∞ (w.p.1), and suppose that the exponential supermartinale Z of (4.11)

is actually a martingale:

(5.5) E(ZT ) = 1.

Then under the measure

(5.6) P̃ (dω) = ZT (ω)P (dω),
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which is actually a probability by virtue of (5.5), the process

(5.7) W̃t = Wt −
∫ t

0

Xs ds, Ft , 0 ≤ t ≤ T

is Brownian motion.

5.6 Remark: Recall the sufficient condition (4.13) for the validity of (5.6); in particular,
Z is a martingale if X is bounded.

5.7 Remark: We have the following generalization of Theorem 5.5. Suppose that M is
a local martingale with continuous sample paths and M0 = 0, for which the exponential
local martingale Z = exp[M − 1

2 〈M〉] of (4.7) is actually a martingale, and define a new
probability measure P̃ as in (5.6). Then for any continuous, P -local martingale N , the
process

Ñt
4
= Nt − 〈M,N〉t = Nt −

∫ t

0

1
Zs

d〈Z,N〉s, 0 ≤ t ≤ T

is a (continuous) local martingale under P̃ .

6. DYNAMICAL SYSTEMS DRIVEN BY WHITE NOISE INPUTS

Consider a dynamical system described by an ordinary differential equation of the form

(6.1) Ẋt = b(t,Xt) + σ(t,Xt)ξt ,

where Xt is the (Rd−valued) state of the system at time t, and ξt is the (Rn−valued)
input at t.

The study of dynamical systems of this form, for deterministic inputs ξ, is well-
established. We should like to develop a similar theory for stochastic inputs ξ as well; in
particular, we shall develop a theory for equations of the type (6.1) when ξ is a white noise
process as in 2.4.

Since, formally at least, we have ξt = dWt/dt, we shall prefer to look at the integral
version

(6.2) Xt = η +
∫ t

0

b(s,Xs) ds +
∫ t

0

σ(s,Xs) dWs , 0 ≤ t ≤ T

of (6.1), where W is an Rn - valued Brownian motion independent of the initial condition
X0 = η, and the convention of (4.10) is being used. For suitable drift b and volatility σ
coëfficients, we should like to answer questions concerning the existence, the uniqueness,
and the various properties of the solution X to the resulting stochastic integral equation
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(6.2). Note that, before we can even pose such questions, we need to have developed a
theory of stochastic integration with respect to Brownian motion W (in order to make
sense of the last integral in (6.2)). This was part of the motivation behind the theory of
section 3.

6.1 Example: Linear Systems. In the case b(t, x) = A(t)x+a(t), σ(t, x) = B(t)x+b(t),
the resulting equation

(6.3) dXt = [A(t)Xt + a(t)]dt+ [B(t)Xt + b(t)]dWt

(in differential form) is linear in Xt, and can be solved in principle explicitly; the solution
X is then a Gaussian process, if the initial random vector X0 has a normal distribution
and is independent of the driving Brownian motion W .

More precisely, one considers the deterministic linear system

(6.3)′ ξ̇(t) = A(t)ξ(t) + a(t)

associated with (6.3), and its homogeneous version ξ̇(t) = A(t)ξ(t). The fundamental
solution of the latter is a nonsingular, (d×d) matrix-valued function Φ(·) that satisfies the
matrix differential equation Φ̇(t) = A(t)Φ(t), terms of Φ(·), the solutions of (6.3)′, and of
(6.3) with B(·) ≡ 0, are given by

ξ(t) = Φ(t)
[
ξ(0) +

∫ t

0

Φ−1(s)a(s)ds
]

and

Xt = Φ(t)
[
X0 +

∫ t

0

Φ−1(s)a(s)ds+
∫ t

0

Φ−1(s)b(s)dWs

]
,

respectively. In particular, if X0 has a (d-variate) normal distribution, then X is a

Gaussian process with mean vector m(t)
4
= EXt and covariance matrix ρ(s, t)

4
=

E[(Xs −m(s)).(Xt −m(t))T ] given by

m(t) = Φ(t)
[
m(0) +

∫ t

0

Φ−1(s)a(s)ds
]

ρ(s, t) = Φ(s)
[
ρ(0, 0) +

∫ s∧t

0

Φ−1(u)b(u)(Φ−1(u)b(u))T du

]
ΦT (t).

Let us now look at a few, very special cases of (6.3), with d = n = 1.

(i) If A(·) = a(·) = b(·) ≡ 0, the unique solution of the resulting linear equation dXt =
B(t)XtdWt is given by

Xt = X0 · exp
{∫ t

0

B(s) dWs −
1
2

∫ t

0

B2(s) ds
}

;
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cf. (4.11), (4.12).

(ii) If A(t) = −α < 0, b(t) = b > 0, a(·) = B(·) ≡ 0, the resulting Langevin equation

(6.4) dXt = −αXtdt+ bdWt

leads to the so-called Ornstein-Uhlenbeck process (Brownian movement with propor-
tional restoring force). Assuming that there is a unique solution to (6.4) – cf. Theorem
6.4 below – we can find it via an “integration by parts”:

d(Xte
αt) = eαt(dXt + αXtdt) = beαtdWt , that is,

(6.5) Xte
αt = X0 +

∫ t

0

beαsdWs , t ≥ 0 .

Now if X0 is independent of W and has a distribution with mean EX0 = µ and
variance V ar(X0) = σ2, it follows easily from (6.5) that EXt = µe−αt, V ar(Xt) =
(σ2 − b2

2α )e−2αt + b2

2α . Thus, the limiting (and invariant) distribution for this process
is the normal N (0, b2/2α).

For a complete treatment of the general linear equation (6.3) in several dimensions, cf.
Karatzas & Shreve (1987), §5.6.

6.2 Exercise: Introduce the diffusion matrix α(t, x) = σ(t, x)σT (t, x) , i.e.,

(6.6) aij(t, x) =
n∑

k=1

σik(t, x)σjk(t, x) , 1 ≤ i, j ≤ d

and the linear, second-order differential operator

(6.7) Atφ(x)
4
=

d∑
i=1

bi(t, x)
∂φ(x)
∂xi

+
1
2

d∑
i=1

d∑
j=1

aij(t, x)
∂2φ(x)
∂xi∂xj

.

If the process X satisfies the equation (6.2), f : [0,∞) × Rd → R is a function of class

C1,2, and βt
4
= e

−
∫ t

0
Kudu for some measurable, adapted and nonnegative process K, show

that the process

Mf
t

4
= βtf(t,Xt)− f(0, X0)−

∫ t

0

(
∂f

∂s
+Asf −Ksf

)
(s,Xs)βs ds , 0 ≤ t <∞

is a local martingale (square-integrable martingale, if f is of compact support) with con-
tinuous sample paths, and can be represented actually as

d∑
i=1

n∑
k=1

∫ t

0

∂f(s,Xs)
∂xi

σik(s,Xs)βsdW
(k)
s .
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6.3 Exercise: In the case of bounded, continuous drift and diffusion coefficients b(t, x),
and a(t, x), establish their respective interpretations as local velocity vector

(6.8) bi(t, x) = lim
h↓0

1
h
E[X(i)

t+h − xi|Xt = x] ; 1 ≤ i ≤ d

and local variance-covariance matrix

(6.9) aij(t, x) = lim
h↓0

1
h
E[(X(i)

t+h − xi)(X
(j)
t+h − xj)|Xt = x] ; 1 ≤ i, j ≤ d.

Here is the fundamental existence and uniqueness result for the equation (6.2).

6.4 Theorem: Suppose that the coefficients of the equation (6.2) satisfy the Lipschitz and
linear growth conditions

(6.10) ‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ K‖x− y‖, ∀ x, y ∈ Rd,

(6.11) ‖b(t, x)‖+ ‖σ(t, x)‖ ≤ K(1 + ‖x‖), ∀ x ∈ Rd,

for some real K > 0. Then there exists a unique process X that satisfies (6.2); it has
continuous sample paths, is adapted to the filtration {FW

t } of the driving Brownian motion
W , is a Markov process, and its transition probability density function

P [Xt ∈ A|Xs = y] =
∫

A

p(t, x; s, y)dx

satisfies, under appropriate conditions, the backward

(6.12)
( ∂
∂s

+As

)
p(t, x; ·, ·) = 0

and forward (Fokker-Planck)

(6.13)
( ∂
∂t
−A∗

t

)
p(·, · ; s, y) = 0

Kolmogorov equations. In (6.13), A∗
t is the adjoint of the operator of (6.7), namely

A∗
t f(x)

4
=

1
2

d∑
i=1

d∑
j=1

∂2

∂xi∂xj
[aij(t, x)f(x)]−

d∑
i=1

∂

∂xi
[bi(t, x)f(x)]. �

The idea in the proof of the existence and uniqueness part in Theorem 6.4, is to
mimic the procedure followed in ordinary differential equations, i.e., to consider the “Picard
iterations”

X(0) ≡ η, X
(k+1)
t = η +

∫ t

0

b(s,X(k)
s )ds+

∫ t

0

σ(s,X(k)
s )dWs
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for k = 0, 1, 2, · · · . The conditions (6.10), (6.11) then guarantee that the sequence of
continuous processes {X(k)}∞k=0 converges to a continuous process X, which is the unique
solution of the equation (6.2); they also imply that the sequence {X(k)}∞k=1 and the solution
X satisfy moment growth conditions of the type

E‖Xt‖2λ ≤ Cλ,T ·
(
1 + E‖η‖2λ

)
, ∀ 0 ≤ t ≤ T

for any real numbers λ ≥ 1 and T > 0, where Cλ,T is a positive constant depending only
on λ, T and on the constant K of (6.10), (6.11).

6.5 Exercise: Let f : [0, T ]×Rd → R and polynomial growth condition

(6.15) max
0≤t≤T

|f(t, x)|+ |g(x)| ≤ C(1 + ‖x‖p), ∀ x ∈ Rd

for some C > 0, p ≥ 1, let k : [0, T ] ×Rd → [0,∞) be continuous, and suppose that the
Cauchy problem

(6.16)
∂V

∂t
+AtV + f = kV, in [0, T )×Rd

V (T, ·) = g, in Rd

has a solution V : [0, T ] × Rd → R which is continuous on its domain, of class C1,2 on
[0, T ) × Rd, and satisfies a growth condition of the type (6.15) (cf. Friedman (1975),
Chapter 6 for sufficient conditions).

Show that the function V admits then the Feynman-Kac representation

(6.17) V (t, x) = E

[∫ T

t

e
−
∫ θ

t
k(u,Xu)du

f(θ,Xθ)dθ + g(XT )e−
∫ T

t
k(u,Xu)du

]

for 0 ≤ t ≤ T , x ∈ Rd, in terms of the solution X of the stochastic integral equation

(6.18) Xθ = x+
∫ θ

t

b(s,Xs)ds+
∫ θ

t

σ(s,Xs) dWs , t ≤ θ ≤ T.

We are assuming here that the conditions (6.10), (6.11) are satisfied, and are using the
notation (6.7).

(Hint: Exploit (6.14) in conjunction with the growth conditions (6.15), to show that the
local martingale MV of Exercise (6.2) is actually a martingale.)

6.6 Important Remark: For the equation

(6.19) Xt = ξ +
∫ t

o

b(s,Xs)ds+Wt , 0 ≤ t ≤ T
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of the form (6.2) with σ = Id, the Girsanov Theorem 5.5 provides a solution for drift
functions b(t, x) : [0, T ]×Rd → Rd which are only bounded and measurable.

Indeed, start by considering a Brownian motion B, and an independent random vari-
able ξ with distribution F , on a probability space (Ω,F , P0). Define Xt

4
= ξ + Bt, recall

the exponential martingale

Zt = exp
{∫ t

0

b(s, ξ +Bs) dBs −
1
2

∫ t

0

‖b(s, ξ +Bs)‖2 ds
}
, 0 ≤ t ≤ T ,

and define the probability measure P (dω)
4
= ZT (ω)P0(dω). According to Theorem 5.5, the

process

Wt
4
= Bt −

∫ t

0

b(s, ξ +Bs) ds = Xt − ξ −
∫ t

0

b(s,Xs) ds , 0 ≤ t ≤ T

is Brownian motion on [0, T ] under P , and obviously the equation (6.19) is satisfied. We
also have for any 0 = t0 ≤ t1 ≤ ... ≤ tn ≤ t and any function f : Rn → [0,∞) :

(6.20) Ef(Xt1 , ..., Xtn
) = E[f(ξ +Bt1 , ..., ξ +Btn

)]

= E0

[
f(ξ +Bt1 , · · · , ξ +Btn

) · exp
{∫ t

0

b(s, ξ +Bs) dBs −
1
2

∫ t

0

‖b(s, ξ +Bs)‖2ds
}]

=
∫
Rd

E0

[
f(x+Bt1 , · · · , x+Btn

) · exp
{∫ t

0

b(s, x+Bs) dBs −
1
2

∫ t

0

‖b(s, x+Bs)‖2ds
}]
F (dx).

In particular, the transition probabilities pt(x; z) are given as
(6.21)

pt(x; z)dz = E0

[
1{x+Bt∈dz} · exp

{∫ t

0

b(s, x+Bs)dBs −
1
2

∫ t

0

||b(s, x+Bs)||2ds
}]

.

6.7 Remark: Our ability to compute these transition probabilities hinges on carrying
out the function-space integration in (6.21), not an easy task. In the one-dimensional case
with drift b(·) ∈ C1(R), we get

(6.22) pt(x; z) dz = exp{G(z)−G(x)} · E0

[
1{x+Bt∈dz} exp

{
−1

2

∫ t

0

V (x+Bs)ds
}]

,

from (6.21), where V = b′ + b2 and G(x) =
∫ x

0
b(u)du. In certain special cases, the

Feynman-Kac formula of (6.17) can help carry out the computation.
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7. FILTERING THEORY

Let us place ourselves now on a probability space (Ω,F , P ), together with a filtration {Ft}
with respect to which all our processes will be adapted. In particular, we shall consider
two processes of interest:

(i) a signal process X = {Xt ; 0 ≤ t ≤ T}, which is not directly observable, and

(ii) an observation process Y = {Yt ; 0 ≤ t ≤ T}, whose value is available to us at any
time and which is suitably correlated with X (so that, by observing Y , we can say
something about the distribution of X).

For simplicity of exposition and notation, we shall take both X and Y to be one-
dimensional. The problem of Filtering can then be cast in the following terms: to compute
the conditional distribution

P [Xt ∈ A | FY
t ] , 0 ≤ t ≤ T

of the signal Xt at time t, given the observation record up to that time. Equivalently, to
compute the conditional expectations

(7.1) πt(f)
4
= E[f(Xt)|FY

t ] , 0 ≤ t ≤ T

for a suitable class of test-functions f : R → R.

In order to make some headway with this problem, we will have to assume a particular
model for the observation and signal processes.

7.1 Observation Model: Let W = {Wt,Ft; 0 ≤ t ≤ T} be a Brownian motion and
H = {Ht,Ft; 0 ≤ t ≤ T} a process with

(7.2) E

∫ T

0

H2
sds <∞.

We shall assume that the observation process Y is of the form:

(7.3) Yt =
∫ t

0

Hsds+Wt , 0 ≤ t ≤ T.

Remark: The typical situation is Ht = h(Xt), a deterministic function h : R → R of the
current signal value. In general, H and X will be suitably correlated with one another and
with the process W .

7.2 Proposition: Introduce the notation

(7.4) φ̂t
4
= E(φt|FY

t )
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and define the innovations process

(7.5) Nt
4
= Yt −

∫ t

0

Ĥsds, FY
t ; 0 ≤ t ≤ T.

This process is a Brownian motion.

Proof: From (7.3), (7.5) we have

(7.6) Nt =
∫ t

0

(Hs − Ĥs)ds+Wt ,

and with s < t:

E(Nt|FY
s )−Ns = E

[∫ t

s

(Hu − Ĥu) du+ (Wt −Ws)
∣∣∣ FY

s

]
=

E
(∫ t

s

{E(Hu|FY
u )− Ĥu du

∣∣∣ FY
s

)
+ E

[
E
(
Wt −Ws

∣∣∣ Fs

) ∣∣∣ FY
s

]
= 0

by well-known properties of conditional expectations. Therefore, N is a martingale with
continuous paths and quadratic variation 〈N〉t = 〈W 〉t = t, because the absolutely
continuous part in (7.6) does not contribute to the quadratic variation. According to
Theorem 4.3, N is thus a Brownian motion. ♦

7.3 Discussion: Since N is adapted to {FY
t }, we have {FN

t } ⊆ {FY
t }. For linear

systems, we also have {FN
t } = {FY

t }: the observations and the innovations carry the same
information, because in that case there is a causal and causally invertible transformation
that derives the innovations from the observations; cf. Remark 7.11. It has been a long-
standing conjecture of T. Kailath, that this identity should hold in general. We know now
(Allinger & Mitter (1981)) that this is indeed the case if H and W are independent, and
that the identity {FN

t } = {FY
t } does not hold in general. However, the following positive

– and extremely useful – result holds.

7.4 Theorem: Every local martingale M with respect to the filtration {FY
t } admits a

representation of the form

(7.7) Mt = M0 +
∫ t

0

ΦsdNs , 0 ≤ t ≤ T

where Φ is measurable, adapted to {FY
t } , and satisfies

∫ T

0
Φ2

sds < ∞ (w.p.1). If M
happens to be a square integrable martingale, then Φ can be chosen so that E

∫ T

0
Φ2

sds <∞.

Comment: The result would follow directly from Theorem 5.3, if only the “innovations
conjecture” {FN

t } = {FY
t } were true in general ! Since this is not the case, we are going
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to perform a change of probability measure, in order to transform Y into a Brownian
motion, apply Theorem 5.3 under the new probability measure, and then “invert” the
change of measure to go back to the process N .

The Proof of Theorem 7.4 will be carried out only in the case of bounded H , which
allows the presentation of all the relevant ideas with a minimum of technical fuss.

Now if H is bounded, so is the process Ĥ, and therefore

(7.8) Zt
4
= exp

(
−
∫ t

0

ĤsdNs −
1
2

∫ t

0

Ĥ2
sds
)
, FY

t , 0 ≤ t ≤ T

is a martingale (Remark 5.6); according to the Girsanov Theorem 5.5, the process Yt =
Nt −

∫ t

0
(−Ĥs) ds is Brownian motion under the new probability measure

P̃ (dω) = Zt(ω)P (dω).

Consider also the process

(7.9)
Λt

4
= Z−1

t = exp
(∫ t

0

ĤsdNs +
1
2

∫ t

0

Ĥ2
sds
)

= exp
(∫ t

0

ĤsdYs −
1
2

∫ t

0

Ĥ2
sds
)
, 0 ≤ t ≤ T,

and notice the “likelihood ratios”

dP̃

dP

∣∣∣∣
FY

t

= Zt ,
dP

dP̃

∣∣∣∣
FY

t

= Λt

as well as the stochastic integral equations (cf. (4.12)) satisfied by the exponential processes
of (7.8) and (7.9):

(7.10) Zt = 1−
∫ t

0

ZsĤs dNs, Λt = 1 +
∫ t

0

ΛsĤs dYs .

Because of the so-called Bayes rule

(7.11) Ẽ(Q|FY
s ) =

E[QZt|FY
s ]

Zs
,

(valid for every s < t and nonnegative, FY
t – measurable random variable Q), the fact

that M is a martingale under P implies that ΛM is a martingale under P̃ :

Ẽ[ΛtMt|FY
s ] =

E[ΛtMtZt|FY
s ]

Zs
= ΛsMs ,
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and vice-versa. An application of Theorem 5.3 gives a representation of the form

(7.12) ΛtMt =
∫ t

0

ΨsdYs =
∫ t

0

Ψs(dNs + Ĥs ds) .

Now from (7.12), (7.10) and the integration by parts formula (4.14), we obtain:

Mt = (ΛM)tZt =
∫ t

0

(ΛM)sdZs +
∫ t

0

Zsd(ΛM)s −
∫ t

0

ΨsZsĤsds

=
∫ t

0

ΛsMsZs(−Ĥs)dNs +
∫ t

0

ZsΨs(dNs + Ĥsds)−
∫ t

0

ΨsZsĤsds

=
∫ t

0

ΦsdNs, where Φt = ZtΨt −MtĤt . �

In order to proceed further we shall need even more structure, this time on the signal
process X.

7.5 Signal Proces Model: We shall assume henceforth that the signal process X has
the following property: for every function f ∈ C2

0 (R) (twice continuously differentiable,
with compact support), there exist {Ft} - adapted processes Gf , αf with E

∫ T

0
{|Gft|+

|αf
t |}dt <∞, such that

(7.13) Mf
t

4
= f(Xt)− f(X0)−

∫ t

0

(Gf)s ds, Ft ; 0 ≤ t ≤ T

is a martingale with

(7.14) 〈Mf ,W 〉t =
∫ t

0

αf
s ds.

7.6 Discussion: Typically (Gf)t = (Atf)(t,Xt), where At is a second-order linear dif-
ferential operator as in (6.7). Then the requirement (7.13) imposes the Markov property
on the signal process X (the famous “martingale problem” of Stroock & Varadhan (1969,
1979), which characterizes the Markov property in terms of martingales of the type (7.13)).

On the other hand, (7.14) is a statement about the correlation of the signal X with
the “noise” W in the observation model.

7.7 Example: Let X satisfy the one-dimensional stochastic integral equation

(7.15) Xt = X0 +
∫ t

0

b(Xs)ds+
∫ t

0

σ(Xs)dBs
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where B is a Brownian motion independent of X0, and the functions b : R → R, σ : R →
R satisfy the conditions of Theorem 6.4. The second-order operator of (6.7) becomes then

(7.16) Af(x) = b(x)f ′(x) +
1
2
σ2(x)f ′′(x),

and according to Exercise 6.2 we may take

(7.17) (Gf)t = Af(Xt), αf
t = σ(Xt)f ′(Xt) ·

d

dt
〈B,W 〉t.

In particular, αf ≡ 0 if B and W (hence also X and W ) are independent.

7.8 Theorem: For the observation and signal process models of 7.1 and 7.5, we have for
every f ∈ C2

0 (R) and with ft ≡ f(Xt), in the notation of (7.4), the fundamental filtering
equation:

(7.18) f̂t = f̂0 +
∫ t

0

Ĝfs ds+
∫ t

0

(
f̂sHs − f̂sĤs + α̂f

s

)
dNs , 0 ≤ t ≤ T. �

Let us try to discuss the significance and some of the consequences of Theorem 7.8,
before giving its proof.

7.9 Example: Suppose that the signal process X satisfies the stochastic equation (7.15)
with B independent of W and X0, and

(7.19) Ht = h(Xt) , 0 ≤ t ≤ T,

where the function h : R → R is continuous and satisfies a linear growth condition. It is
not hard then to show that (7.2) is satisfied, and that (7.18) amounts to

(7.20) πt(f) = π0(f) +
∫ t

0

πs(Af) ds+
∫ t

o

{πs(fh)− πs(f)πs(h)} dNs

in the notation of (7.1) and (7.16). Furthermore, let us assume that the conditional
distribution of Xt, given FY

t , has a density pt(·), i.e., πt(f) =
∫
R f(x)pt(x)dx. Then (7.20)

leads, via integration by parts, to the stochastic partial differential equation

(7.21) dpt(x) = A∗pt(x) dt+ pt(x)
{
h(x)−

∫
R
h(y)pt(y) dy

}
dNt .

Notice that, if h ≡ 0 (i.e., if the observations consist of pure independent white noise),
(7.21) reduces to the Fokker-Planck equation (6.13).

You should not fail to notice that (7.21) is a formidable equation, since it has all of
the following features:
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(i) it is a second-order partial differential equation,

(ii) it is nonlinear,

(iii) it contains the nonlocal (functional) term
∫
R h(x)pt(x)dx, and

(iv) it is stochastic, in that it is driven by the Brownian motion N .

In the next section we shall outline an ingenuous methodology that removes, gradually,
the “undesirable” features (ii)-(iv).

Let us turn now to the proof of Theorem 7.8, which will require the following auxiliary
result.

7.10 Exercise: Consider two {Ft} - adapted processes V ,C with E|Vt| <∞, ∀ 0 ≤ t ≤ T

and E
∫ T

0
|Ct|dt <∞. If Vt −

∫ t

0
Csds is an {Ft} - martingale, then

V̂t −
∫ t

0

Ĉsds is an {FY
t } −martingale.

Proof of Theorem 7.8: Recall from (7.13) that

(7.22) ft = f0 +
∫ t

0

Gfs ds+Mf
t ,

where Mf is an {Ft} - local martingale; thus, in conjunction with Exercise 7.10 and
Theorem 7.4, we have

(7.23) f̂t − f̂0 −
∫ t

0

Ĝfs ds = ({FY
t } − local martingale) =

∫ t

0

Φs dNs

for a suitable {FY
t } – adapted process Φ with

∫ t

0
Φ2

sds < ∞ (w.p.1). The whole point is
to compute Φ “explicitly”, namely, to show that

(7.24) Φt = f̂tHt − f̂tĤt + α̂f
t .

This will be accomplished by computing E[ftYt|FY
t ] = Ytf̂t in two ways, and then com-

paring the results.

On the one hand, we have from (7.22), (7.3) and the integration-by-parts formula
(4.14) that

ftYt =
∫ t

0

fs(Hsds+ dWs) +
∫ t

0

Ys(Gfs.ds+ dMf
s ) +

∫ t

0

αf
sds

=
∫ t

0

(
fsHs + Ys.Gfs + αf

s

)
ds + ({Ft} − local martingale),
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whence from Exercise 7.10:

(7.25) f̂tYt = f̂t Yt =
∫ t

0

{f̂sHs + Ys · Ĝfs + α̂f
s} ds + ({FY

t } − local martingale).

On the other hand, from (7.23), (7.5) and the integration-by-parts formula (9.14), we
obtain,

(7.26)
f̂tYt =

∫ t

0

f̂s(dNs + Ĥsds) +
∫ t

0

Ys

(
Ĝfsds+ ΦdNs

)
+
∫ t

0

Φsds

=
∫ t

0

(
f̂sĤs + Ys.Ĝfs + Φs

)
ds + ({Ft} − local martingale).

Comparing (7.25) with (7.26), and recalling that a continuous martingale of bounded
variation is constant (Corollary 2.8), we conclude that (7.24) holds.

7.9 Example (Cont’d): With h(x) = cx (linear observations) and f(x) = xk; k = 1, 2, · · ·
we obtain from (7.20):

(7.27) X̂t = X̂0 +
∫ t

0

b(̂Xs)ds+ c

∫ t

0

{
X̂2

s − (X̂s)2
}
dNs ,

(7.28)
X̂k

t = X̂k
0 + k

∫ t

0

{
k − 1

2
σ2( ̂Xs)Xk−2

s + b( ̂Xs)Xk−1
s

}
ds

+ c

∫ t

0

{
X̂k+1

s − X̂sX̂k
s

}
dNs ; k = 2, 3, · · · .

The equations (7.27), (7.28) convey the basic difficulty of nonlinear filtering: in order
to solve the equation for the kth conditional moment, one needs to know the (k + 1)st

conditional moment (as well as π(f) for f(x) = xk−1b(x), f(x) = xk−2σ2(x), etcetera). In
other words, the computation of conditional moments cannot be done by induction (on k)
and the problem is inherently infinite dimensional, except in the linear case !

7.11 The Linear Case, when b(x) = ax and σ(x) ≡ 1:

(7.29)
dXt = aXtdt+ dBt, X0 ∼ N (µ, v)
dYt = cXtdt+ dWt, Y0 = 0

with X0 independent of the two-dimensional Brownian motion (B,W ). As in Example
6.1, the R2−valued process (X,Y ) is Gaussian, and thus the conditional distribution of
Xt given {FY

t } is normal, with mean X̂t and variance

(7.30) Vt = E

[(
Xt − X̂t

)2 ∣∣∣Ft

]
= X̂2

t − (X̂t)2.
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The problem then becomes, to find an algorithm (preferably recursive) for computing the
sufficient statistics X̂t, Vt from their initial values X̂0 = µ, V0 = v.

From (7.27), (7.28) with k = 2 we obtain

(7.31) dX̂t = aX̂tdt+ cVtdNt,

(7.32) dX̂2
t =

(
1 + 2aX̂2

t

)
dt+ c

(
X̂3

t − X̂tX̂2
t

)
dNt.

But now, if Z ∼ N (µ, σ2), we have for the third moment:

EZ3 = µ(µ2 + 3σ2),

whence X̂3
t = X̂t[(X̂t)2 + 3Vt] and:

X̂3
t − X̂tX̂2

t = X̂t[(X̂t)2 + 3Vt − X̂2
t ] = 2VtX̂t.

From this last equation, (7.31), (7.32) and the chain rule (4.2), we obtain

dVt = d
(
X̂2

t − (X̂t)2
)

=
(
1 + 2aX̂2

t

)
dt+ 2cVtX̂tdNt − c2V 2

t dt

− 2X̂t[aX̂tdt+ cVtdNt],

which leads to the (nonstochastic) Riccati equation

(7.33) V̇t = 1 + 2aVt − c2V 2
t , V0 = v.

In other words, the conditional variance Vt is a deterministic function of t, and is given
by the solution of (7.33); thus there is really only one sufficient statistic, the conditional
mean, and it satisfies the linear equation

(7.31)′
dX̂t = aX̂tdt+ c Vt dNt

= (a− c2Vt)X̂tdt+ cVtdYt, X̂0 = µ.

The equation (7.31)′ provides the celebrated Kalman-Bucy filter.

In this particular (one-dimensional) case, the Riccati equation can be solved explicitly;
if a > 0, −β are the roots of −cx2 + 2ax+ 1, and λ = c2(α+ β), γ = (v + β)/(α− v),
then

Vt ≡
αγeλt − β

γeλt − 1
−→
t↑∞

α.

Everything goes through in a similar way for the multidimensional version of the
Kalman-Bucy filter, in a signal/observation model of the type

dXt = [A(t)Xt + a(t)]dt+ b(t)dBt, X0 ∼ N (µ, v)
dYt = H(t)Xtdt+ dWt, Y0 = 0
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and 〈W (i), B(j)〉t =
∫ t

0
αij(s) ds, for suitable deterministic matrix-valued functions A(·) ,

H(·) , b(·) and vector-valued function a(·). The joint law of the pair (Xt, Yt) is multivariate
normal, and thus the conditional distribution of Xt given FY

t is again multivariate normal,
with mean vector X̂t and non-random variance - covariance matrix V (t). In the special
case α(·) = a(·) = 0, V (·) satisfies the matrix Riccati equation

V̇ (t) = A(t)V (t) + V (t)AT (t)− V (t)HT (t)H(t)V (t) + b(t)bT (t), V (0) = v

(which, unlike its scalar counterpart (7.33), does not admit in general an exacit solution),
and X̂ is then obtained as the solution of the Kalman-Bucy filter equation

dX̂t = A(t)X̂tdt+ V (t)HT (t)[dYt −H(t)X̂tdt], X̂0 = µ.

7.12 Remark: It is not hard to see that the “innovations conjecture” {FN
t } = {FY

t }
holds for linear systems.

Indeed, it follows from Theorem 6.4 that the solution X̂ of the equation (7.31) is
adapted to the filtration {FN

t } of the driving Brownian motion N , i.e., {F X̂
t } ⊆ {FN

t }.
From Yt = Nt − c

∫ t

0
X̂sds it develops that Y is adapted to {FN

t }, i.e., {FY
t } ⊆ {FN

t }.
Because the reverse inclusion holds anyway, the two filtrations are the same.

7.13 Remark: For the signal and observation model

(7.32)
Xt = ξ +

∫ t

0

b(Xs)ds+Wt

Yt =
∫ t

0

h(Xs)ds+Bt

with b ∈ C1(R) and h ∈ C2(R), which is a special case of Example 7.9, we have from
Remark 6.6 and the Bayes rule:

(7.33) πt(f) = E[f(Xt)|FY
t ] =

E0[f(ξ + wt)Θt|FY
t ]

E0[Θt|FY
t ]

.

Here

Θt
4
= exp

{∫ t

0

b(ξ + ws)dws +
∫ t

0

h(ξ + ws) dYs −
1
2

∫ t

0

[b2(ξ + ws) + h2(ξ + ws)]ds
}

= exp
{
G(ξ + wt)−G(ξ) + Yt h(ξ + wt)−

∫ t

0

Ysh
′(ξ + ws) dws

− 1
2

∫ t

0

(b′ + b2 + h2 + Ys · h
′′
)(ξ + ws)ds

}
,

P0(dω) = Θ−1
T (ω)P (dω), G(x) =

∫ x

0
b(u) du . Here (w, Y ) is, under P0, an R2−valued

Brownian motion, independent of the random variable ξ.
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For every continuous f : Rd → [0,∞) and y : [0, T ] → R, let us define the quantity
(7.34)

ρt(f ; y)
4
= E0

[
f(ξ + wt). exp

{
G(ξ + wt)−G(ξ) + y(t)h(ξ + wt)

−
∫ t

0

y(s)h′(ξ + ws)dws −
1
2

∫ t

0

(
b′ + b2 + h2 + y(s)h

′′)
(ξ + ws)ds

}]

=
∫
Rd

E0

[
f(x+ wt). exp

{
G(x+ wt)−G(x) + y(t)h(x+ wt)

−
∫ t

0

y(s)h′(x+ ws)dws −
1
2

∫ t

0

(
b′ + b2 + h2 + y(s)h′′)(x+ ws

)
ds
}]
F (dx),

where F is the distribution of the random variable ξ. Then (7.33) takes the form

(7.35) πt(f) =
ρt(f ; y)
ρt(1; y)

∣∣∣∣
y=Y (ω)

.

The formula (7.34) simplifies considerably if h(·) is linear, say h(x) = x; then
(7.36)

ρt(f ; y) =
∫
Rd

E0

[
f(x+ wt). exp

{
G(x+ wt)−G(x) + y(t)(x+ wt)−

∫ t

0

y(s)dws

− 1
2

∫ t

0

V (x+ ws)ds
}]

F (dx),

where

(7.37) V (x)
4
= b′(x) + b2(x) + x2.

Whenever this potential is quadratic, i.e.,

(7.38) b′(x) + b2(x) = αx2 + βx+ γ; α > −1,

then the famous result of Beneš (1981) shows that the integration in (7.36) can be car-
ried out explicitly, and leads in (7.35) to a distribution with a finite number of sufficient
statistics; these latter obey recursive schemes (filters).

Notice that (7.38) is satisfied by linear functions b(·), but also by genuinely nonlinear
ones like b(x) = tanh(x).
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8. ROBUST FILTERING

In this section we shall place ourselves in the context of Exanple 7.9 (in particular, of
the filtering model consisting of (7.3), (7.15), (7.19) and 〈B,W 〉 = 0 ), and shall try to
simplify in several regards the equations (7.20), (7.21) for the conditional distribution of
Xt, given FY

t = σ{Ys; 0 ≤ s ≤ t}.

We start by recalling the probability measure P̃ in the proof of Theorem 7.4, and
the notation introduced there. From the Bayes rule (7.11) (with the rôles of P and P̃
interchanged, and with Λ playing the rôle of Z):

(8.1) πt(f) = E[f(Xt)|FY
t ] =

Ẽ[f(Xt)Λt|FY
t ]

Λt
=
σt(f)
σt(1)

where

(8.2) σt(f)
4
= Ẽ[f(Xt)Λt|FY

t ].

In other words, σt(f) is an unnormalized conditional expectation of f(Xt), given FY
t .

What is the stochastic equation satisfied by σt(f) ? From (8.1), we have

σt(f) = Λtπt(f),

and from (7.10), (7.20):
dΛt = πt(h)Λt dYt ,

dπt(f) = πt(Af)dt+ {πt(fh)− πt(f)πt(h)}(dYt − πt(h)dt).

Now an application of the integration by parts formula (4.10) leads easily to

(8.3) σt(f) = σ0(f) +
∫ t

0

σs(Af)ds+
∫ t

0

σs(fh) dYs.

Again, if this unnormalized conditional distribution has a density qt(·), i.e.

σt(f) =
∫
R
f(x)qt(x)dx

and pt(x) = qt(x)/
∫
R qt(x)dx, then (8.3) leads, at least formally, to the equation

(8.4) dqt(x) = A∗qt(x)dt+ h(x)qt(x)dYt

which is still a stochastic, second-order partial differential equation (PDE) of parabolic
type, but without the drawbacks of nonlinearity and nonlocality.
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To make matters even more impressive, (8.4) can be written equivalently as a non-
stochastic second-order partial differential equation of the parabolic type, with the ran-
domness (the observation Yt(ω) at time t) appearing only parametrically in the coëfficients.
We shall call this a ROBUST (or pathwise) form of the filtering equation, and will outline
the clever method of B.L. Rozovskii, that leads to it.

The idea is to introduce the function

(8.5) zt(x)
4
= qt(x) · exp{−h(x)Yt} , 0 ≤ t ≤ T, x ∈ R.

Because λt(x) = exp{−h(x)Yt} satisfies

dλt(x) = λt(x)
[
−h(x) dYt +

1
2
h2(x)dt

]
,

the integration-by-parts formula (4.10) leads, in conjunction with (8.4), to the nonstochas-
tic equation

(8.6)
∂

∂t
zt(x) = λt(x)A∗(zt(x)/λt(x)

)
− 1

2
h2(x)zt(x).

In our case, we have

A∗f(x) =
1
2
∂

∂x

(
σ2(x)

∂f(x)
∂x

)
− ∂

∂x
[b(x)f(x)],

the equation (8.6) leads – after a bit of algebra – to

(8.7)
∂

∂t
zt(x) =

1
2
σ2(x)

∂2

∂x2
zt(x) +B(t, x, Yt)

∂

∂x
zt(x) + C(t, x, Yt) zt(x),

where B(t, x, y) = yσ2(x)h′(x) + σ(x)σ′(x)− b(x),

C(t, x, y) =
1
2
σ2(x)[h′′(x)y + (h′(x)y)2] + yh′(x)[σ(x)σ′(x)− b(x)]−

(
b′(x) +

1
2
h2(x)

)
.

The equation (8.7) is of the form that was promised: a linear second-order partial differ-
ential equation of parabolic type, with the randomness Yt(ω) appearing only in the drift
and potential terms. Obviously this has significant implications, of both theoretical and
computational nature.

8.1 Example: Assume now the same observation model, but let X be a continuous-time
Markov chain with finite state-space S and given Q-matrix. With the notation

pt(x) = P
[
Xt = x | FY

t

]
, x ∈ S
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we have the analogue of equation (7.21):

(8.8) dpt(x) = (Q∗qt)(x) dt+ pt(x)
[
h(x)−

∑
ξ∈S

h(ξ)pt(ξ)
]
dNt,

with (Q∗f)(x)
4
=
∑
y∈S

qyxf(y). On the other hand, the analogue of (8.4) for the unnormal-

ized probability mass function qt(x) = Ẽ
[
1{Xt=x} Λt | FY

t

]
is

(8.9) dqt(x) = (Q∗qt)(x) dt+ h(x)qt(x) dYt ,

and zt(x)
4
= qt(x) exp{−h(x)Yt} satisfies again the analogue of equation (8.6), namely:

(8.10)

∂

∂t
zt(x) = e−h(x)Yt Q∗

[
zt(·)eh(·)Yt

]
(x) − 1

2
h2(x)zt(x)

=
∑
y∈S

qyxzt(y)e[h(y)−h(x)]Yt − 1
2
h2(x)zt(x) , x ∈ S .

This equation (a nonstochastic ordinary differential equation, with the randomness Y (ω)
appearing parametrically in the coëfficients) is widely used – for instance, in real-time
speech and pattern recognition.

9. STOCHASTIC CONTROL

Let us consider the following stochastic integral equation

(9.1) Xθ = x+
∫ θ

t

b(s,Xs, Us)ds+
∫ θ

t

σ(s,Xs, Us)dWs , t ≤ θ ≤ T.

This is a “controlled” version of the equation (6.18), the process U being the element
of control. More precisely, let us suppose throughout this section that the real-valued
functions b = {bi}1≤i≤d, σ = {σij} 1≤i≤d

1≤j≤n
are defined on [0, T ]×Rd×A (where the control

space A is a compact subset of some Euclidean space) and are bounded, continuous, with
bounded and continuous derivatives of first and second order in the argument x.

9.1 Definition: An admissible system U consists of

(i) a probability space (Ω,F , P ), {Ft}, and on it

(ii) an adapted, Rn – valued Brownian motion W and

(iii) a measurable, adapted, A - valued process U (the control process).

Thanks to our conditions on the coëfficients b and σ, the equation (9.1) has a unique
(adapted, continuous) solution X for every admissible system U . We shall call occasionally
X the “state process” corresponding to this system.
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Now consider two other bounded and continuous functions, namely f : [0, T ]×Rd ×
A → R which plays the rôle of a running cost on both the state and the control, and g :
Rd → R which is a terminal cost on the state. We assume that both f, g are of class C2

in the spatial argument. Thus, corresponding to every admissible system U , we have an
associated expected total cost

(9.2) J(t, x;U)
4
= E

[∫ T

t

f(θ,Xθ, Uθ)dθ + g(XT )
]
.

The control problem is to minimize this expected cost over all admissible systems U , to
study the value function

(9.3) Q(t, x)
4
= inf

U
J(t, x; U)

(which can be shown to be measurable), and to find ε - optimal admissible systems (or
even optimal ones, whenever these exist).

9.2 Definition: An admissible system is called

(i) ε−optimal for some given ε > 0, if

(9.4) Q(t, x) ≤ J(t, x; U) ≤ Q(t, x) + ε ;

(ii) optimal, if (9.4) holds with ε = 0.

9.3 Definition: A feedback control law is a measurable function α : [0, T ]×Rd → A, for
which the stochastic integral equation with coëfficients b ◦ α and σ ◦ α, namely

Xθ = x+
∫ θ

t

b(s,Xs, α(s,Xs))ds+
∫ θ

t

σ(s,Xs, α(s,Xs))dWs , t ≤ θ ≤ T

has a solution X on some probability space (Ω,F , P ), {Ft} and with respect to some
Brownian motion W on this space.

Remark: This is the case, for instance, if α is continuous, or if the diffusion matrix

(9.5) a(t, x, u) = σ(t, x, u)σT (t, x, u)

satisfies the strong nondegeneracy condition

(9.6) ξ a(t, x, u) ξT ≥ δ||ξ||2; ∀ (t, x, u) ∈ [0, T ]×Rd ×A

for some δ > 0; see Karatzas & Shreve (1987), Stroock & Varadhan (1979) or Krylov
(1973). �
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Quite obviously, to every feedback control law corresponds an admissible system with
Ut ≡ α(t,Xt); it makes then sense to talk about “ε - optimal” or “optimal” feedback laws.
The constant control law Ut ≡ u, for some u ∈ A, has the associated expected cost

Ju(t, x) ≡ J(t, x;u) = E
[∫ T

t

fu(θ,Xθ)dθ + g(XT )
]

with f(·, ·, u) 4= fu(·, ·), which satisfies the Cauchy problem

(9.7)
∂Ju

∂t
+Au

t J
u + fu = 0; in [0, T )×Rd

Ju(T, ·) = g; in Rd

with the notation

Au
t φ =

1
2

d∑
i=1

d∑
j=1

aij(t, x, u)
∂2φ

∂xi∂xj
+

d∑
i=1

bi(t, x, u)
∂φ

∂xi

(cf. Exercise 6.5). Since Q is obtained from J(·, ·;U) by minimization, it is natural to ask
whether Q satisfies the “minimized” version of (9.7), that is, the HJB (Hamilton-Jacobi-
Bellman) equation:

(9.8)
∂Q

∂t
+ inf

uεA
[Au

tQ+ fu] = 0, in [0, T )×Rd,

Q(T, ·) = g, in Rd.

We shall see that this is indeed the case, provided that (9.8) is interpreted in a suitably
weak sense.

9.4 Remark: Notice that (9.8) is, in general, a strongly nonlinear and degenerate second-
order equation. With the notation Dφ = {∂φ/∂xi}1≤i≤d for the gradient, and D2φ =
{∂2φ/∂xi∂xj}1≤i≤d for the Hessian, and with

(9.9) F (t, x, ξ,M) = inf
uεA

[ 1
2

d∑
i=1

d∑
j=1

aij(t, x, u)Mij +
d∑

i=1

bi(t, x, u)ξi + f(t, x, u)
]

(ξ ∈ Rd; M ∈ Sd, where Sd is the space of symmetric (d×d) matrices), the HJB equation
(9.8) can be written equivalently as

(9.10)
∂Q

∂t
+ F (t, x,DQ,D2Q) = 0.

We call this equation strongly nonlinear, because the nonlinearity F acts on both the
gradient DQ and the higher-order derivatives D2Q.
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On the other hand, if the diffusion coëfficients do not depend on the control variable
u, i.e., if we have aij(t, x, u) ≡ aij(t, x), then (9.10) is transformed into the semilinear
equation

(9.11)
∂Q

∂t
+

1
2

d∑
i=1

d∑
j=1

aij(t, x)D2
ijQ+H(t, x,DQ) = 0,

where the nonlinearity

(9.12) H(t, x, ξ)
4
= inf

uεA

[
ξT b(t, x, u) + f(t, x, u)

]
acts only on the gradient DQ, and the higher-order derivatives enter linearly. For this
reason, (9.11) is in principle a much easier equation to study than (9.10). �

Let us quit the HJB equation for a while, and concentrate on the fundamental char-
acterization of the value function Q via the so-called Principle of Dynamic Programming
of R. Bellman (1957):

(9.13) Q(t, x) = inf
U
E
[∫ t+h

t

f(θ,Xθ, Uθ)dθ +Q(t+ h,Xt+h)
]

for 0 ≤ h ≤ T − t. This says roughly the following: Suppose that you do not know the
optimal expected cost at time t, but you do know how well you can do at some later time
t + h; then, in order to solve the optimization problem at time t, compute the expected
cost associated with the policy of

“applying the control U during (t, t+ h), and behaving optimally from t+ h onward”,

and then minimize over U .

9.5 Theorem: Principle of Dynamic Programning.

(i) For every stopping time σ of {Ft} with values in the interval [t, T ], we have

(9.14) Q(t, x) = inf
U
E
[∫ σ

t

f(θ,Xθ, Uθ)dθ +Q(σ,Xσ)
]
.

(ii) In particular, for every admissible system U , the process

(9.15) MU
θ =

∫ θ

t

f(s,Xs, Us)ds+Q(θ,Xθ), t ≤ θ ≤ T

is a submartingale; it is a martingale if and only if U is optimal. �

The technicalities of the Proof of (9.14) are awesome (and will not be produced here),
but the basic idea is fairly simple: take an ε - optimal admissible system U for (t, x); it is
clear that we should have

E
[∫ T

σ

f(θ,Xθ, Uθ)dθ + g(XT )
∣∣∣ Fσ

]
≥ Q(σ,Xσ), w.p. 1
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(argue this out!), and thus from (9.4):

Q(t, x) + ε ≥ J(t, x;U) = E
[∫ σ

t

f(θ,Xθ, Uθ)dθ + E
{∫ T

σ

f(θ,Xθ, Uθ)dθ + g(XT )
∣∣∣ Fσ

}]
≥ E

[∫ σ

t

f(θ,Xθ, Uθ)dθ +Q(σ,Xσ)
]

≥ inf
U
E
[∫ σ

t

f(θ,Xθ, Uθ)dθ +Q(σ,Xσ)
]
.

Because this holds for every ε > 0, we are led to

Q(t, x) ≥ inf
U
E
[∫ σ

t

f(θ,Xθ, Uθ)dθ +Q(σ,Xσ)
]
.

In order to obtain an inequality in the reverse direction, consider an arbitrary admis-
sible system U and an admissible system Uε,σ which is ε−optimal at (σ,Xσ), i.e.,

E
[∫ T

σ

f(θ,Xε,σ
θ , Uε,σ

θ )dθ + g(Xε,σ
T )

∣∣∣ Fσ

]
≤ Q(σ,Xσ) + ε.

Considering the “composite” control process Ũθ =
{
Uθ ; t ≤ θ ≤ σ
Uε,σ

θ ; σ < θ ≤ T

}
and the asso-

ciated admissible system Ũ (there is a lot of hand-waving here, because the two systems
may not be defined on the same probability space), we have

Q(t, x) ≤ E
[∫ T

t

f(θ, X̃θ, Ũθ)dθ + g(X̃T )
]

= E
[∫ σ

t

f(θ,Xθ, Uθ)dθ+

+
∫ T

σ

f(θ,Xε,σ
θ , Uε,σ

θ )dθ + g(Xε,σ
T )

]
≤ E

[∫ σ

t

f(θ,Xθ, Uθ)dθ +Q(σ,Xσ)
]

+ ε.

Taking the infimum on the right-hand side over U , and noting the arbitrariness of ε > 0,
we arrive at the desired inequality.

On the other hand, the Proof of (i) ⇒ (ii) is straightforward; for an arbitrary U ,
and stopping times τ ≤ σ with values in [t, T ], the extension

Q(τ,Xτ ) ≤ inf
U
E
[∫ σ

τ

f(θ,Xθ, Uθ)dθ +Q(σ,Xσ) | Fτ

]
of (9.14) gives E

(
MU

τ

)
≤ E

(
MU

σ

)
, and this leads to the submartingale property.

If MU is a martingale, then obviously

Q(t, x) = E
(
MU

0

)
= E

(
MU

T

)
= E

[∫ T

t

f(θ,Xθ, Uθ)dθ + g(XT )
]
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whence the optimality of U ; if U is optimal, then MU is a submartingale of constant
expectation, thus a martingale. �

Now let us convince ourselves that the HJB equation follows, “in principle”, from the
Dynamic Programming condition (9.13).

9.6. Proposition: Suppose that the value function Q of (9.3) is of class C1,2([0, T ]×Rd).
Then Q satisfies the HJB equation

(9.8)
∂Q

∂t
+ inf

uεA
[Au

tQ+ fu] = 0, in [0, T )×Rd,

Q(T, ·) = g, in Rd.

Proof: For such a Q we have from Itô’s rule (Proposition 4.4) that

Q(t+ h,Xt+h) = Q(t, x) +
∫ t+h

t

(∂Q
∂s

+AUsQ
)
(x,Xs)ds + martingale ;

back into (9.13), this gives

inf
U

1
h
E

∫ t+h

t

{
f(s,Xs, Us) +AUsQ(s,Xs) +

∂Q

∂s
(s,Xs)

}
ds = 0 ,

and it is not hard to derive (using the C1,2 regularity of Q) that

(9.16) inf
U

E
1
h

∫ t+h

t

(∂Q
∂s

+AUsQ+ fUs

)
(s, x)ds −→

h↓0
0.

Choosing Ut ≡ u (a constant control), we obtain

Λu 4
=

∂Q

∂t
(t, x) +AuQ(t, x) + fu(t, x) ≥ 0 , for every u ∈ A ,

whence: inf(C) ≥ 0 with C
4
= {Λu;u ε A}.

On the other hand, (9.16) gives inf(co(C)) ≤ 0, and we conclude because inf(C) =
inf(co(C)). Here co(C) is the closed convex hull of C. �

We give now a fundamental result in the reverse direction.

9.7 Verification Theorem: Let the function P be bounded and continuous on [0, T ]×Rd,
of class C1,2

b in [0, T )×Rd, and satisfy the HJB equation

(9.17)
∂P

∂t
+ inf

uεA
[AuP + fu] = 0, in [0, T )×Rd

P (T, ·) = g, in Rd.
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Then P ≡ Q.

On the other hand, let u∗(t, x, ξ,M) : [0, T ] ×Rd ×Rd × Sd → A be a measurable
function that achieves the infimum in (9.9), and introduce the feedback control law

(9.18) α∗(t, x)
4
= u∗

(
t, x,DP (t, x), D2P (t, x)

)
: [0, T ]×Rd → A.

If this function is continuous, or if the condition (9.6) holds, then α∗ is an optimal feedback
law.

Proof: We shall discuss only the second statement (and establish the identity P = Q only
in its context; for the general case, cf. Safonov (1977) or Lions (1983.a)). For an arbitrary
admissible system U , we have under the assumption P ∈ C1,2

b ([0, T )×Rd) by the chain
rule (4.6):

(9.19)

g(XT )− P (t, x) =
∫ T

t

{ ∂
∂t
P (θ,Xθ) +

d∑
i=1

bi(θ,Xθ, Uθ)
∂

∂xi
P (θ,Xθ)+

+
1
2

d∑
i=1

d∑
j=1

aij(θ,Xθ, Uθ)
∂2

∂xi∂xj
P (θ,Xθ)

}
dθ + (MT −Mt)

≥ −
∫ T

t

f(θ,Xθ, Uθ)dθ + (MT −Mt)

thanks to (9.17), where M is a martingale; by taking expectations we arrive at J(t, x;U) ≥
P (t, x). On the other hand, under the assumption of the second statement, there exists an
admissible system U∗ with U∗θ = α∗(θ,Xθ) (recall the Remark following Definition 9.3).
For this system, (9.19) holds as an equality and leads to P (t, x) = J(t, x;U∗). We conclude
that P = Q = J( · ;U∗), i.e., that U∗ is optimal.

9.8 Remark: It is not hard to extend the above results to the case where the functions
f, g (as well as their first and second partial derivatives in the spatial argument) satisfy
polynomial growth conditions in this argument. Then of course the value function Q(t, x)
also satisfies similar polynomial growth conditions, rather than being simply bounded;
Proposition 9.6 and Theorem 9.7 have then to be rephrased accordingly.

9.9 Example: With d = 1, let b(t, x, u) = u, σ = 1, f = 0, g(x) = x2 and take the
control set A = [−1, 1]. It is then intuitively obvious that the optimal law should be of the
form α∗(t, x) = −sgn(x). It can be shown that this is indeed the case, since the solution
of the relevant HJB equation

Qt +
1
2
Qxx − |Qx| = 0

Q(T, x) = x2
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can be computed explicitly as

Q(t, x) =
1
2

+

√
t

2π
(|x|+ t− 1) · exp

{
− (|x| − t)2

2t

}
+
{

(|x| − t)2 + t− 1
2

}
.Φ
( |x| − t√

t

)
+ e2|x|

(
|x|+ t− 1

2

)[
1− Φ

( |x|+ t√
t

)]
where Φ(z) = 1√

2π

∫ z

−∞ e−x2/2dx, and satisfies: α∗(t, x) = −sgn
(
Qx(t, x)

)
= −sgn(x) ;

cf. Karatzas & Shreve (1987), section 6.6.

9.10 Example: The one-dimensional linear regulator. Consider now the case with
d = 1, A = R and b(t, x, u) = a(t)x + u, σ(t, x, u) = σ(t), f(t, x, u) = c(t)x2 + 1

2u
2,

g ≡ 0, where a, σ, c are bounded and continuous functions on [0, T ]. Certainly the assump-
tions of this section are violated rather grossly, but formally at least the function of (9.12)
takes the form

H(t, x, ξ) = a(t)xξ + c(t)x2 + min
u∈R

(
uξ +

1
2
u2
)

= a(t)xξ + c(t)x2 − 1
2
ξ2,

the minimization is achieved by u∗(t, x, ξ) = −ξ , and (9.18) becomes a∗(t, x) =
u∗(t, x,Qx(t, x)) = −Qx(t, x). Here Q is the solution of the HJB (semilinear parabolic,
possibly degenerate) equation

(9.20)
Qt +

1
2
σ2(t)Qxx + a(t)xQx + c(t)x2 − 1

2
Q2

x = 0

Q(T, ·) = 0.

It is checked quite easily that the C1,2 function

(9.21) Q(t, x) = A(t)x2 +
∫ T

t

A(s)σ2(s)ds

solves the equation (9.20), provided that A(·) is the solution of the Riccati equation

Ȧ(t) + 2a(t)A(t)− 2A2(t) + c(t) = 0
A(T ) = 0.

The eminently reasonable conjecture now is that the admissible system U∗ with

U∗t = −Qx(t,X∗
t ) = −2A(t)X∗

t ,

dX∗
t = [a(t)− 2A(t)]X∗

t dt+ σ(t)dWt,
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is optimal.

9.11 Exercise: In the context of Example 9.10, show that J(t, x;U∗) = Q(t, x) ≤
J(t, x;U)dθ <∞ holds for any admissble system for which E

∫ T

t
U2

θ dθ <∞ .

(Hint: It suffices to show that

Q(θ,Xθ) +
∫ θ

t

{
c(s)X2

s +
1
2
U2

s

}
ds , t ≤ θ ≤ T

is a submartingale for any admissible U with the above property, and is a martingale for
U∗; to this end, you will need to establish that holds for every such U .)

The trouble with the Verification Theorem 9.7 is that it assumes a lot of smoothness
on the part of the value function Q. The smoothness requirement Q ∈ C1,2 was satisfied in
both Examples 9.9 and 9.10 – and, more generally, is satisfied by solutions of the semi-linear
parabolic equation (9.11) under nondegeneracy assumptions on the diffusion matrix a(t, x)
and reasonable smoothness conditions on the nonlinear function H(t, x, ξ); cf. Chapter
VI in Fleming & Rishel (1975). But in general, this will not be the case. In fact, as one
can see quite easily on deterministic examples, the value function can fail to be even once
continuously differentiable in the spatial variable; on the other hand, the fully nonlinear
(and possibly degenerate, since we allow for σ ≡ 0) equation (9.10) may even fail to have
a solution!

All these remarks make plain the need for a new, weak notion of solutions for fully
nonlinear, second-order equations like (9.10), that will be met by the value function Q(t, x)
of the control problem. Such a concept was developed by P.L. Lions (1983.a,b,c) under the
rubric of “viscosity solution”, following up on the work of that author with M.G. Crandall
on first-order equations. We shall sketch the general outlines of this theory, but drop the
term “viscosity solution” in favor of the more intelligible one “weak solution”.

Thus, let us consider a continuous function

F (t, x, u, ξ,M) : [0, T ]×Rd ×R×Rd × Sd → R

which satisfies the analogue

(9.22) A ≥ B ⇒ F (t, x, u, ξ, A) ≥ F (t, x, u, ξ, B)

of the classical ellipticity condition (for every t ∈ [0, T ], x ∈ Rd, u ∈ R, ξ ∈ Rd and
A, B in Sd). Plainly, (9.22) is satisfied by the function F (t, x, ξ, A) of (9.9).

We would like to introduce a weak notion of solvability for the second-order equation

(9.23)
∂u

∂t
+ F (t, x, u,Du,D2u) = 0
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that requires only continuity (and no differentiablility whatsoever) on the part of the
solution u(t, x).

9.12 Definition: A continuous function u : [0, T ]×Rd → R is called a

(i) weak supersolution of (9.23), if for every ψ ∈ C1,2((0, T )×Rd) we have

(9.24)
∂ψ

∂t
(t0, x0) + F

(
t0, x0, u(t0, x0), Dψ(t0, x0), D2ψ(t0, x0)

)
≥ 0

at every local maximum point (t0, x0) of u− ψ in (0, T )×Rd;

(ii) weak subsolution of (9.23), if for every ψ as above we have

(9.25)
∂ψ

∂t
(t0, x0) + F

(
t0, x0, u(t0, x0), Dψ(t0, x0), D2ψ(t0, x0)

)
≤ 0

at every local minimum point (t0, x0) of u− ψ in (0, T )×Rd;

(iii) weak solution of (9.23), if it is both a weak supersolution and a weak subsolution.

9.13 Remark: It can be shown that “local” extrema can be replaced by “strict local”,
“global” and “strict global” extrema in Definition 9.12.

9.14 Remark: Every classical solution is also a weak solution. Indeed, let u ∈ C1,2([0, T )
×Rd) satisfy (9.23), and let (t0, x0) be a local maximum of u − ψ in (0, T ) × Rd ; then
necessarily

∂u

∂t
(t0, x0) =

∂ψ

∂t
(t0, x0) , Du(t0, x0) = Dψ(t0, x0) and D2u(t0, x0) ≤ D2ψ(t0, x0)

so that (9.22), (9.23) lead to:

0 =
∂u

∂t
(t0, x0) + F

(
t0, x0, u(t0, x0), Du(t0, x0), D2u(t0, x0)

)
≤ ∂ψ

∂t
(t0, x0) + F

(
t0, x0, u(t0, x0), Dψ(t0, x0), D2ψ(t0, x0)

)
.

In other words, (9.24) is satisfied and thus u is a weak supersolution; similarly for (9.25).

The new concept relates well to the notion of weak solvability in the Sobolev sense.
In particular, we have the following result (cf. Lions (1983.c):

9.15 Theorem: (i) Let u ∈ W 1,2,p
loc (p > d+ 1) be a weak solution of (9.23); then

(9.26)
∂u

∂t
(t, x) + F

(
t, x, u(t, x), Du(t, x), D2u(t, x)

)
= 0
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holds at a.e. point (t, x) ∈ (0, T )×Rd .

(ii) Let u ∈ W 1,2,p
loc (p > d + 1) satisfy (9.26) at a.e. point (t, x) ε (0, T ) × Rd .

Then u is a weak solution of (9.23). �

On the other hand, stability results for this new notion are almost trivial consequences
of the definition.

9.16 Proposition: Let {Fn}∞n=1 be a sequence of continuous functions on [0, T ] ×
R2d+1 × Sd, and {un}∞n=1 a sequence of corresponding weak solutions of

∂un

∂t
+ Fn

(
t, x, un, Dun, D

2un

)
= 0, ∀ n ≥ 1.

Suppose that these sequences converge to the continuous functions F and u, respectively,
uniformly on compact subsets of their respective domains. Then u is a weak solution of

∂u

∂t
+ F

(
t, x, u,Du,D2u

)
= 0.

Proof: Let ψ ∈ C1,2([0, T )×Rd), and let u− ψ have strict local maximum at (t0, x0) in
(0, T ) × Rd; recall Remark 9.13. Suppose that δ > 0 is small enough, so that we have
(u − ψ)(t0, x0) > max∂B((t0,x0),δ)(u − ψ)(t, x); then for n (= n(δ) → ∞, as δ ↓ 0) large
enough, we have by continuity

max
B̄

(un − ψ) > max
∂B((t0,x0),δ)

(un − ψ),

where B
4
= B((t0, x0), δ). Thus, there exists a point (tδ, xδ) ∈ B((t0, x0), δ) such that

max
B̄

(un − ψ) = (un − ψ)(tδ, xδ).

Now from

∂

∂t
un(tδ, xδ) + Fn

(
tδ, xδ, un(tδ, xδ), Dun(tδ, xδ), D2unψ(tδ, xδ)

)
≥ 0,

we let δ ↓ 0, to obtain (observing that (tδ, xδ) → (t0, x0), un(tδ, xδ) → u(t0, x0),
Djψ(tδ, xδ) → Djψ(t0, x0) for j = 1, 2, because ψ ∈ C1,2, and recalling that Fn

converges to F uniformly on compact sets):

∂u

∂t

(
t0, x0) + F

(
t0, x0, u(t0, x0), Dψ(t0, x0), D2ψ(t0, x0)

)
≥ 0.

It follows that u is a weak supersolution; similarly for the weak subsolution property.
�
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Finally, here is the result that connects the concept of weak solutions with the control
problem of this section.

9.17 Theorem: If the value function Q of (9.3) is continuous on the strip [0, T ] × Rd,
then Q is a weak solution of

(9.27)
∂Q

∂t
+ F (t, x,DQ,D2Q) = 0

in the notation of (9.9).

Proof: Let (t0, x0) be a global maximum of Q − ψ, for some fixed test-function ψ ∈
C1,2((0, T )×Rd), and without loss of generality assume that Q(t0, x0) = ψ(t0, x0). Then
the Dynamic Programming condition (9.13) yields

ψ(t0, x0) = Q(t0, x0) = inf
U
E
[∫ t0+h

t0

f(θ,Xθ, Uθ)dθ +Q(t0 + h,Xt0+h)
]

≤ inf
U
E
[∫ t0+h

t0

f(θ,Xθ, Uθ)dθ + ψ(t0 + h,Xt0+h)
]
.

But now the argument used in the proof of Proposition 9.6 (applied this time to the smooth
test-function ψ ∈ C1,2) yields:

0 ≤ ∂ψ

∂t
(t0, x0) + inf

uεA
[Au

t0ψ(t0, x0) + fu(t0, x0)] =

=
∂ψ

∂t
(t0, x0) + F

(
t0, x0, Q(t0, x0, Q(t0, x0), Dψ(t0, x0), D2ψ(t0, x0)

)
.

Thus Q is a weak supersolution of (9.27), and its weak subsolution property is proved
similarly. �

We shall close this section with an example of a stochastic control problem arising in
financial economics.

9.18 Consumption/Investment Optimization: Let us consider a financial market
with d+1 assets; one of them is a risk-free asset called bond with interest rate r (and price
B0(t) = ert), and the remaining are risky stocks, with prices-per-share Si(t) given by

dSi(t) = Si(t)
[
bidt+

d∑
j=1

σijdWj(t)
]
, 1 ≤ i ≤ d.

Here W = (W1, ...,Wd)T is an Rd - valued Brownian motion which models the uncertainty
in the market, b = (b1, ..., bd)T is the vector of appreciation rates, and σ = {σij}1≤i,j≤d

is the volatility matrix for the stocks. We assume that both σ, σT are invertible.
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It is worthwhile to notice that the discounted stock prices S̃i(t) = e−rtSi(t) satisfy
the equations

dS̃i(t) = S̃i(t).
d∑

j=1

σij dW̃j(t), 1 ≤ i ≤ d,

where W̃ (t) = W (t) + θt, 0 ≤ t ≤ T and θ = σ−1(b− r1).

Now introduce the probability measure

P̃ (A) = E[Z(T )1A] on FT , with Z(t) = exp
{
−θTW (t)− 1

2
||θ||2t

}
;

under P̃ , the process W̃ is Brownian motion and the S̃i’s are martingales on [0, T ] (cf.
Theorem 5.5 and Example 4.5).

Suppose now that an investor starts out with an initial capital x > 0, and has to decide
– at every time t ∈ (0, T ) – at what rate c(t) ≥ 0 to withdraw money for consumption
and how much money πi(t), 1 ≤ i ≤ d to invest in each stock. The resulting consumption
and portfolio processes c and π = (π1, ..., πd)T , respectively, are assumed to be adapted to
FW

t = σ(Ws; 0 ≤ s ≤ t) and to satisfy∫ T

0

{
c(t) +

n∑
i=1

π2
i (t)

}
dt <∞, w.p. 1 .

Now if X(t) denotes the investor’s wealth at time t, the amount X(t) −
∑d

i=1 πi(t) is
invested in the bond, and thus X(·) satisfies the equation
(9.28)

dX(t) =
d∑

i=1

πi(t)
[
bidt+

d∑
j=1

σijdWj(t)
]

+
(
X(t)−

d∑
i=1

πi(t)
)
rdt− c(t)dt

= [rX(t)− c(t)]dt+
d∑

i=1

πi(t)
[
(bi − r)dt+

d∑
j=1

σijdWj(t)
]

= [rX(t)− c(t)dt+ πT (t)[(b− r1)dt+ σdW (t)] = [rX(t)− c(t)]dt+ πT (t)σdW̃ (t).

In other words,

(9.29) e−ruX(u) = x−
∫ u

0

e−rsc(s)ds+
∫ u

0

e−rsπT (s)σdW̃ (s); 0 ≤ u ≤ T .

The class A(x) of admissible control process pairs (c, π) consists of those pairs for which
the corresponding wealth process X of (9.29) remains nonnegative on [0, T ] (i.e., X(u) ≥
0, ∀ 0 ≤ u ≤ T ) w.p.1.

It is not hard to see that for every (c, π) ∈ A(x), we have

(9.30) Ẽ

∫ T

0

e−rtc(t)dt ≤ x .
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Conversely, for every consumption process c which satisfies (9.30), it can be shown that
there exists a portfolio process π such that (c, π) ε A(x).

(Exercise: Try to work this out ! The converse statement hinges on the fact that every
P̃−martingale can be represented as a stochastic integral with respect to W̃ , thanks to
the representation Theorems 5.3 and 7.4.)

The control problem now is to maximize the expected discounted utility from con-
sumption

J(x; c, π)
4
= E

∫ T

0

e−βtU(c(t)) dt

over pairs (c, π) ∈ A(x), where U : (0,∞) → R is a C1, strictly increasing and
strictly concave utility function, with U ′(0+) = ∞ and U ′(∞) = 0. We denote by
I : [0,∞] onto

−→ [0,∞] the inverse of the strictly decreasing function U ′.

More generally, we can pose the same problem on the interval [t, T ] rather than on
[0, T ], for every fixed 0 ≤ t ≤ T , look at admissible pairs (c, π) ∈ A(t, x) for which the
resulting wealth process X(·) of

(9.29)′ e−ruX(u) = xe−rt −
∫ u

t

e−rsc(s)ds+
∫ u

t

e−rsπT (s)σdW̃ (s); t ≤ u ≤ T

is nonnegative w.p.1, and study the value funtion

(9.31) Q(t, x)
4
= sup

(c,π)∈ A(t,x)

E

∫ T

t

e−βsU(c(s)) ds ; 0 ≤ t ≤ T, x ∈ (0,∞)

of the resulting control problem. By analogy with (9.8), and in conjunction with the
equation (9.28) for the wealth process, we expect this value function to satisfy the HJB
equation

(9.32)
∂Q

∂t
+ max

π∈Rd

c∈[0,∞)

[1
2
||π∗σ||2Qxx + {(rx− c) + πT (b− r1)}Qx + e−βtU(c)

]
= 0

as well as the terminal and boundary conditions
(9.33)

Q(T, x) = 0, 0 < x <∞ and Q(t, 0+) =
e−βt

β

(
1− e−β(T−t)

)
U(0+), 0 ≤ t ≤ T.

Now the maximizations in (9.32) are achieved by ĉ = I(eβtQx) and π̂ = −(σT )−1θQx/Qxx,
and thus the HJB equation becomes

(9.34)
∂Q

∂t
+ e−βtU

(
I(eβtQx)

)
−Qx · I(eβtQx)− ||θ||2

2
Q2

x

Qxx
+ rxQx = 0 .
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This is a strongly nonlinear equation, unlike the ones appearing in Examples 9.9 and 9.10.
Nevertheless, it has a classical solution which, quite remarkably, can be written down in
closed form for very general utility functions U ; cf. Karatzas, Lehoczky & Shreve (1987),
section 7, or Karatzas (1989), §9 for the details.

For instance, in the special case U(c) = cδ with 0 < δ < 1, the solution of (9.34) is

Q(t, x) = e−βt(p(t))1−δxδ,

with

p(t) =
{

1
k [1− e−k(T−t)] ; k 6= 0
T − t ; k = 0

}
, k =

1
1− δ

[
β − rδ − δ||θ||2

2(1− δ)

]
and the optimal consumption and portfolio rules are given by

ĉ(t, x) =
x

p(t)
, π̂(t, x) = (σT )−1 x

1− δ
θ ,

respectively, in feedback form on the current level of wealth.

10. NOTES:

Section 1 & 2: The material here is standard; see, for instance, Karatzas & Shreve
(1987), Chapter 1 (for the general theory of martingales, and the associated concepts of
filtrations and stopping times) and Chapter 2 (for the construction and the fundamental
properties of Brownian motion, as well as for an introduction to Markov processes).

The term “martingale” was introduced in probability theory (from gambling!) by
J. Ville (1939), although the concept was invented several years earlier by P. Lévy in
an attempt to extend the basic theorems of probability from independent to dependent
random variables. The fundamental theory for processes of this type was developed by
Doob (1953).

Sections 3 & 4: The construction and the study of stochastic integrals started with a sem-
inal series of articles by K. Itô (1942, 1944, 1946, 1951) for Brownian motion, and continued
with Kunita & Watanabe (1967) for continuous local martingales, and with Doléans-Dade
& Meyer (1971) for general local martingales. This theory culminated with the course of
Meyer (1976), and can be studied in the monographs by Liptser & Shiryaev(1977), Ikeda
& Watanabe (1981), Elliott (1982), Karatzas & Shreve (1987), and Rogers & Williams
(1987).

Theorem 4.3 was established by P. Lévy (1948), but the wonderfully simple proof that
you see here is due to Kunita & Watanabe (1967). Condition (4.9) is due to Novikov(1972).
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Section 5: Theorem 5.1 is due to Dambis (1965) and Dubins & Schwarz (1965), while
the result of Exercise 5.2 is due to Doob (1953). For complete proofs of the results in this
section, see §§ 3.4, 3.5 in Karatzas & Shreve (1987).

Section 6: The field of stochastic differential equations is now vast, both in theory and
in applications. For a systematic account of the basic results, and for some applications,
cf. Chapter 5 in Karatzas & Shreve (1987). More advanced and/or specialized treatments
appear in Stroock & Varadhan (1979), Ikeda & Watanabe (1981), Rogers & Williams
(1987), Friedman (1975/76).

The fundamental Theorem 6.4 is due to K. Itô (1946, 1951). Martingales of the type
Mf of Exercise 6.2 play a central rôle in the modern theory of Markov processes, as was
discovered by Stroock & Varadhan (1969, 1979). See also §5.4 in Karatzas & Shreve
(1987), and the monograph by Ethier & Kurtz (1986).

For the kinematics and dynamics of random motions with general drift and diffusion
coëfficients, including elaborated versions of the representations (6.8) and (6.9), see the
monograph by Nelson (1967).

Section 7: A systematic account of filtering theory appears in the monograph by Kallian-
pur (1980), and a rich collection of interesting papers can be found in the volume edited
by Hazewinkel & Willems (1981). The fundamental Theorems 7.4, 7.8 as well as the
equations (7.20), are due to Fujisaki, Kallianpur & Kunita (1972); the equation (7.21) for
the conditional density was discovered by Kushner (1967), whereas (7.31), (7.33) constitute
the ubiquitious Kalman & Bucy (1961) filter. Proposition 7.2 is due to Kailath (1971), who
also introduced the “innovations approach” to the study of filtering; see Kailath (1968),
Frost & Kailath (1971).

We have followed Rogers & Williams (1987) in the derivation of the filtering equations.

Section 8: The equations (8.3), (8.4) for the unnormalized conditional density are due to
Zakai (1969). For further work on the “robust” equations of the type (8.6), (8.7), (8.10)
see Davis (1980, 1981, 1982), Pardoux (1979), and the articles in the volume edited by
Hazewinkel & Willems (1981).

Section 9: For the general theory of stochastic control, see Fleming & Rishel (1975),
Bensoussan & Lions (1978), Krylov (1980) and Bensoussan (1982). The notion of weak
solutions, as in Definition 9.12, is due to P.L. Lions (1983). For a very general treatment
of optimization problems arising in financial economics, see Karatzas, Lehoczky & Shreve
(1987) and the survey paper by Karatzas (1989).
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ITÔ, K. (1951) On stochastic differential equations. Mem. Amer. Math. Society 4, 1-51.

KAILATH, T. (1968) An innovations approach to least-squares estimation. Part I: Linear
filtering in additive white noise. IEEE Trans. Autom. Control 13, 646-655.

KAILATH, T. (1971) Some extensions of the innovations theorem. Bell System Techn.
Journal 50, 1487-1494.

KALMAN, R.E. & BUCY, R.S. (1961) New results in linear filtering and prediction theory.
J. Basic Engr. ASME (Ser. D) 83, 85-108.

KALLIANPUR, G. (1980) Stochastic Filtering Theory. Springer-Verlag, New York.

KARATZAS, I. (1989) Optimization problems in the theory of continuous trading. Invited
survey paper, SIAM Journal on Control & Optimization, to appear.

KARATZAS, I., LEHOCZKY, J.P., & SHREVE, S.E. (1987) Optimal portfolio and con-
sumption decisions for a “small investor” on a finite horizon. SIAM Journal on Control
& Optimization 25, 1557-1586.

KARATZAS, I. & SHREVE, S.E. (1987) Brownian Motion and Stochastic Calculus.
Springer-Verlag, New York.

KRYLOV, N.V. (1980) Controlled Diffusion Processes. Springer-Verlag, New York.

KRYLOV, N.V. (1974) Some estimates on the probability density of a stochastic integral.
Math. USSR (Izvestija) 8, 233-254.

KUNITA, H. & WATANABE, S. (1967) On square-integrable martingales. Nagoya Math.
Journal 30, 209-245.

KUSHNER, H.J. (1964) On the differential equations satisfied by conditional probability
densities of Markov processes. SIAM J. Control 2,106-119.

KUSHNER, H.J. (1967) Dynamical equations of optimal nonlinear filtering. J. Diff. Equa-
tions 3, 179-190.

56
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