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Synopsis

The purpose of these lectures is to offer an overview of Stochastic Portfolio

Theory, a rich and flexible framework for analyzing portfolio behavior and eq-
uity market structure. This theory was developed in the book by E.R. Fern-
holz (Stochastic Portfolio Theory, Springer 2002) and was studied further in
the papers Fernholz (Journal of Mathematical Economics, 1999; Finance &
Stochastics, 2001), Fernholz, Karatzas & Kardaras [FKK] (Finance & Stochas-
tics, 2005), Fernholz & Karatzas [FK] (Annals of Finance, 2005), Banner, Fern-
holz & Karatzas [BFK] (Annals of Applied Probability, 2005), and Karatzas &
Kardaras (preprint, 2006). It is descriptive as opposed to normative, is con-
sistent with the observable characteristics of actual portfolios, and provides a
theoretical tool which is useful for practical applications.

As a theoretical tool, this framework provides fresh insights into questions
of market structure and arbitrage, and can be used to construct portfolios with
controlled behavior. As a practical tool, Stochastic Portfolio Theory has been
applied to the analysis and optimization of portfolio performance and has been
the basis of successful investment strategies for close to 20 years.

I am indebted to my audience at Bowling Green, in particular to my col-
leagues Gabor Szekely, Gordon Wade, Haowen Xi and Craig Zirbel for the invi-
tation to deliver the Eugene Lukacs lectures, for their interest and stimulating
questions during the lectures, and for their hospitality. Many thanks are due to
Constantinos Kardaras who read an early version of these notes and for offered
many valuable suggestions, and to Adrian Banner for his many corrections to
the manuscript.
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1 The basic Model for Portfolios

We shall place ourselves, throughout these lectures, within a model M for a
financial market of the form

dB(t) = B(t) r(t) dt , B(0) = 1 , (1.1)

dSi(t) = Si(t)

[
bi(t)dt +

d∑

ν=1

σiν(t)dWν(t)

]
, Si(0) = si > 0 , i = 1, . . . ,m ,

consisting of a money-market B(·) and of m stocks, whose prices S1(·), · · · , Sm(·)
are driven by the d−dimensional Brownian motion W (·) =

(
W1(·), · · · ,Wd(·)

)′
with d ≥ m. Contrary to a usual assumption imposed on such models, here it is
not crucial that the filtration F = {Ft}0≤t≤T be the one generated

by the Brownian motion itself.

Thus, and until further notice, we shall take F to contain (possibly strictly)
the Brownian filtration FW =

{
FW

t

}
0≤t≤T

with FW
t := σ(W (s), 0 ≤ s ≤ t) .

We shall assume that the interest-rate process r(·) , the vector-valued pro-

cess b(·) =
(
b1(·), . . . , bm(·)

)′
of rates of return, and the (m× d)−matrix-valued

process σ(·) =
(
σiν(·)

)
1≤i≤m, 1≤ν≤d

of volatilities, are all F−progressively mea-

surable, and satisfy the integrability conditions
∫ T

0
| r(t)|dt < ∞ as well as

m∑

i=1

∫ T

0

(
∣∣ bi(t)

∣∣ +

d∑

ν=1

(
σiν(t)

)2

)
dt < ∞ (1.2)

almost surely, for every T ∈ (0,∞) . With the notation

aij(t) :=
d∑

ν=1

σiν(t)σjν(t) =
(
σ(t)σ′(t)

)
ij

=
d

dt
〈 log Si, log Sj 〉(t) (1.3)

for the non-negative definite matrix-valued variation-covariation rate (or simply
“variance-covariance”) process a(·) =

(
aij(·)

)
1≤i,j≤m

, as well as

γi(t) := bi(t) −
1

2
aii(t)

︸ ︷︷ ︸
, i = 1, . . . ,m , (1.4)

we may use Itô’s rule to solve (1.1), in the form

d
(
log Si(t)

)
= γi(t) dt +

d∑

ν=1

σiν(t) dWν(t)

︸ ︷︷ ︸
, i = 1, . . . ,m , (1.5)

or equivalently:

Si(t) = si · exp

{∫ t

0

γi(u) du +

d∑

ν=1

∫ t

0

σiν(u) dWν(u)

}
, 0 ≤ t < ∞ .
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We shall refer to the quantity of (1.4) as the rate of growth of the ith stock,
because of the a.s. relationship

lim
T→∞

1

T

(
log Si(T ) −

∫ T

0

γi(t) dt

)
= 0 , i = 1, · · · ,m , (1.6)

valid when the individual stock variances aii(·) are bounded, uniformly in
(t, ω) ; this follows from the strong law of large numbers and from the rep-
resentation of (local) martingales as time-changed Brownian motions.

1.1 Definition: Portfolio Rules. A portfolio π(·) =
(
π1(·), . . . , πm(·)

)′
is

an F−progressively measurable process with values in the set

∆m
+ :=

{
(π1, . . . , πm) ∈ Rm

∣∣ π1 ≥ 0, . . . , πm ≥ 0 and
m∑

i=1

πi = 1
}

.

(1.7)

An extended portfolio π(·) =
(
π1(·), . . . , πm(·)

)′
is an F−progressively measur-

able process, bounded uniformly in (t, ω) , that takes values in the set ∆m :={
(π1, . . . , πm) ∈ Rm

∣∣ ∑m
i=1 πi = 1

}
. For future reference, let us introduce also

the notation ∆m
++ :=

{
(π1, . . . , πm) ∈ ∆m

+ | π1 > 0, . . . , πm > 0
}

.

Thus, a portfolio corresponds to a trading strategy that is fully invested at
all times in the equity (stock) market, never sells stock short, and never invests
in or borrows from the money market. An extended portfolio can sell one or
more stocks short (though certainly not all) but is never allowed to borrow
from, or invest in, the money market. When the need arises to differentiate
portfolios from their extended counterparts, we shall add the adjectives strict
(or “long-only”) for emphasis.

The interpretation is that πi(t) represents the proportion of wealth V (t) ≡
V w,π(t) invested at time t in the ith stock, so the quantities

hi(t) = πi(t)V w,π(t) , i = 1, · · · ,m (1.8)

are the dollar amounts invested at any given time t in the individual stocks.

The wealth process V w,π(·) that corresponds to an extended portfolio π(·)
and initial capital w > 0 , satisfies the stochastic equation

dV w,π(t)

V w,π(t)
=

m∑

i=1

πi(t) ·
dSi(t)

Si(t)
= π′(t)

[
b(t) dt + σ(t) dW (t) ]

= bπ(t)dt +

d∑

ν=1

σπ
ν (t) dWν(t) , V (0) = w , (1.9)

and

bπ(t) :=
m∑

i=1

πi(t)bi(t) , σπ
ν (t) :=

m∑

i=1

πi(t)σiν(t) (1.10)

3



for ν = 1, . . . , d. These quantities are, respectively, the rate-of-return and the
volatility coëfficients, that correspond to the portfolio π(·) .

By analogy with (1.5) we can write the solution of the equation (1.10) as

d
(
log V w,π(t)

)
= γπ(t) dt +

d∑

ν=1

σπ
ν (t) dWν(t)

︸ ︷︷ ︸
, V w,π(0) = w (1.11)

or equivalently:

V w,π(t) = w · exp

{∫ t

0

γπ(u) du +

d∑

ν=1

∫ t

0

σπ
ν (u) dWν(u)

}
, 0 ≤ t ≤ T .

Here

γπ(t) :=

m∑

i=1

πi(t)γi(t) + γπ
∗ (t)

︸ ︷︷ ︸
(1.12)

is the growth rate, and

γπ
∗ (t) :=

1

2




m∑

i=1

πi(t)aii(t) −
m∑

i=1

m∑

j=1

πi(t)aij(t)πj(t)




︸ ︷︷ ︸

(1.13)

is the excess growth rate, of the portfolio π(·) .

As we shall see in Lemma 3.3 below, for a (strict, “long-only”) portfolio
rule, this excess growth rate is always non-negative – and is strictly positive for
portfolios that do not concentrate their holdings in just one stock.

Again, the terminology “growth rate” is justified by the a.s. property

lim
T→∞

1

T

(
log V w,π(T ) −

∫ T

0

γπ(t) dt

)
= 0 (1.14)

which is valid, for instance, when all eigenvalues of the variance/covariance
matrix-valued process a(·) of (1.3) are bounded away from infinity: i.e., when

ξ′a(t)ξ = ξ′σ(t)σ′(t)ξ ≤ K||ξ||2 , ∀ t ∈ [0,∞) and ξ ∈ Rm (1.15)

holds almost surely, for some K ∈ (0,∞) . We shall refer to (1.15) as the
uniform boundedness condition on the volatility structure of M .

Without further comment we shall write V π(·) ≡ V 1,π(·) for initial wealth
w =$1. Let us also note the following analogue of (1.11), namely

d
(
log V π(t)

)
= γπ

∗ (t) dt +

m∑

i=1

πi(t) · d
(
log Si(t)

)
. (1.16)
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1.2 Definition: We shall use the reverse-order-statistics notation for the
weights of an extended portfolio π(·), ranked at time t from largest down
to smallest:

max
1≤i≤n

πi(t) =: π(1)(t) ≥ π(2)(t) ≥ . . . ≥ π(n−1)(t) ≥ π(n)(t) := min
1≤i≤n

πi(t) .

(1.17)

1.1 General Trading Strategies

For completeness of exposition and for later usage, let us go briefly in this
subsection beyond (extended) portfolios and recall the notion of trading strate-
gies: these are allowed to invest in (or borrow from) the money market, and to
sell stocks short. Formally, they are F−progressively measurable, Rm−valued
processes h(·) =

(
h1(·), · · ·hm(·)

)′
that satisfy the integrability condition

m∑

i=1

∫ T

0

( ∣∣hi(t)
∣∣ ∣∣bi(t) − r(r)

∣∣ + h2
i (t) aii(t)

)
dt < ∞ , a.s.

for every T ∈ (0,∞) . The interpretation is that the real-valued random variable
hi(t) stands for the dollar amount invested by h(·) at time t in the ith stock.
If we denote by Vw,h(t) the wealth at time t corresponding to this strategy
h(·) and to an initial capital w > 0, then Vw,h(t) − ∑m

i=1 hi(t) is the amount
invested in the money market, and we have the dynamics

dVw,h(t) =

(
Vw,h(t) −

m∑

i=1

hi(t)

)
r(t) dt +

m∑

i=1

hi(t)

{
bi(t)dt +

d∑

ν=1

σiν(t) dWν(t)

}

or equivalently

Vw,h(t)

B(t)
= w +

∫ t

0

h′(s)

B(s)

[ (
b(s) − r(s)I

)
ds + σ(s) dW (s)

]
, 0 ≤ t ≤ T .

(1.18)
Here I = (1, · · · , 1)′ is the m−dimensional column vector with 1 in all entries.

As mentioned already, all quantities hi(·) , 1 ≤ i ≤ m and Vw,h(t) − h′(·)I
are allowed to take negative values. This possibility opens the door to the
notorious doubling strategies of martingale theory (e.g. Karatzas & Shreve
(1998), Chapter 1). In order to rule these out, we shall confine ourselves here
to trading strategies h(·) that satisfy

P
[
Vw,h(t) ≥ 0 , ∀ 0 ≤ t ≤ T

]
= 1 . (1.19)

Such strategies will be called admissible for the initial capital w > 0 on the
time-horizon [0,T ]; their collection will be denoted H(w;T ) .

We shall also find useful to look at the collection H+(w;T ) ⊂ H(w;T ) of
strongly admissible strategies, with P

[
Vw,h(t) > 0 , ∀ 0 ≤ t ≤ T

]
= 1 .

Each extended portfolio π(·) generates, via (1.8), a trading strategy h(·) ∈
H+(w) :=

⋂
T>0 H+(w;T ) ; and we have Vw,h(·) ≡ V w,π(·) .
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2 The Market Portfolio

Suppose we normalize so that each stock has always just one share outstanding;
then the stock price Si(t) can be interpreted as the capitalization of the ith

company at time t, and the quantities

S(t) := S1(t)+ . . .+Sm(t) and µi(t) :=
Si(t)

S(t)
, i = 1, . . . ,m (2.1)

as the total capitalization of the market and the relative capitalizations of the
individual companies, respectively. Clearly 0 < µi(t) < 1 , ∀ i = 1, . . . ,m and∑m

i=1 µi(t) = 1 , so we may think of the vector process µ(·) =
(
µ1(·), . . . , µm(·)

)′
as a portfolio rule that invests a proportion µi(t) of current wealth in the ith

asset at all times. The resulting wealth-process V w,µ(·) satisfies

dV w,µ(t)

V w,µ(t)
=

m∑

i=1

µi(t) ·
dSi(t)

Si(t)
=

m∑

i=1

dSi(t)

S(t)
=

dS(t)

S(t)
,

in accordance with (2.1) and (1.9). In other words,

V w,µ(·) ≡ w

S(0)
· S(t) ; (2.2)

investing according to the portfolio µ(·) is tantamount to ownership of the
entire market, in proportion of course to the initial investment. For this reason,
we shall call µ(·) the market portfolio. By analogy with (1.11) we have

d
(
log V w,µ(t)

)
= γµ(t) dt +

d∑

ν=1

σµ
ν (t) dWν(t) , V w,µ(0) = w , (2.3)

and comparison of this last equation (2.3) with (1.5) gives the dynamics of the
market-weights

d
(
log µi(t)

)
=

(
γi(t) − γµ(t)

)
dt +

d∑

ν=1

(
σiν(t) − σµ

ν (t)
)
dWν(t) (2.4)

for all stocks i = 1, . . . ,m , in the notation of (1.10), (1.12); equivalently,

dµi(t)

µi(t)
=

(
γi(t) − γµ(t) +

1

2
τµ
ii(t)

)
dt +

d∑

ν=1

(
σiν(t)−σµ

ν (t)
)
dWν(t) . (2.5)

Here we introduce, for an arbitrary extended portfolio π(·), the quantities

τπ
ij(t) :=

d∑

ν=1

(
σiν(t) − σπ

ν (t)
)(

σjν(t) − σπ
ν (t)

)
(2.6)

=
(
π(t) − ei

)′
a(t)

(
π(t) − ej

)
= aij(t) − aπ

i (t) − aπ
j (t) + aππ(t)
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for 1 ≤ i, j ≤ m , and set

aπ
i (t) :=

m∑

j=1

πj(t)aij(t) , aππ(t) :=

m∑

i=1

m∑

j=1

πi(t)aij(t)πj(t) . (2.7)

We shall call the matrix-valued process τπ(·) =
(
τπ
ij(·)

)
1≤i,j≤m

of (2.6) the vari-

ance/covariance process relative to the extended portfolio rule π(·) . It satisfies

m∑

j=1

τπ
ij(t)πj(t) = 0 , ∀ i = 1, · · · ,m . (2.8)

• The corresponding quantities

τµ
ij(t) :=

d∑

ν=1

(
σiν(t)−σµ

ν (t)
)(

σjν(t)−σµ
ν (t)

)
=

d 〈µi, µj〉(t)
µi(t)µj(t)dt

, 1 ≤ i, j ≤ m

(2.9)
of (2.6) for the market portfolio π(·) ≡ µ(·) , are the variances/covariances

of the individual stocks relative to the entire market. (For the sec-
ond equality in (2.9), we have used the semimartingale decomposition of (2.5).)

3 Some Useful Properties

In this section we collect some useful properties of the relative variance/covariance
matrix valued process in (2.6), for ease of reference in future usage.

For any given stock i and extended portfolio π(·), the relative return process
of the ith stock versus π(·) is the process

Rπ
i (t) := log

(
Si(t)

V w,π(t)

) ∣∣∣∣∣
w=Si(0)

, 0 ≤ t < ∞ . (3.1)

3.1 Lemma: For any extended portfolio π(·) , and for all 1 ≤ i, j ≤ m and
t ∈ [0,∞) , we have, almost surely:

τπ
ij(t) =

d

dt
〈Rπ

i , Rπ
j 〉(t) , in particular, τπ

ii(t) =
d

dt
〈Rπ

i 〉(t) ≥ 0 , (3.2)

and τπ(t) =
(
τπ
ij(t)

)
1≤i,j≤m

is a.s. nonnegative definite. Furthermore, if the

variance/covariance matrix a(t) is positive definite, then the matrix τπ(t) has
rank m − 1 , and its null space is spanned by the vector π(t) , almost surely.

Proof: Comparing (1.5) with (1.11) we get the analogue

dRπ
i (t) =

(
γi(t) − γπ(t)

)
dt +

d∑

ν=1

(
σiν(t) − σπ

ν (t)
)
dWν(t)
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of (2.4), from which the first two claims follow.

Now suppose that a(t) is positive definite. For any x ∈ Rm \ {0} and with
η :=

∑m
i=1 xi , we compute from (2.4):

x′τπ(t)x = x′a(t)x − 2x′a(t)π(t) · η + π′(t)a(t)π(t) · η2 .

. If
∑m

i=1 xi = 0 , then x′τπ(t)x = x′a(t)x > 0 .

. If on the other hand η :=
∑m

i=1 xi 6= 0 , we consider the vector y := x/η that
satisfies

∑m
i=1 yi = 1 , and observe that η−2 · x′τπ(t)x is equal to

y′τπ(t)y = y′a(t)y − 2y′a(t)π(t) + π′(t)a(t)π(t) =
(
y − π(t)

)′
a(t)

(
y − π(t)

)
,

thus zero if and only if y = π(t) , or equivalently x = η · π(t) . ¤

3.2 Lemma: For any two extended portfolios π(·), ρ(·), we have

d

(
log

V π(t)

V ρ(t)

)
= γπ

∗ (t) dt +

m∑

i=1

πi(t) · d
(

log
Si(t)

V ρ(t)

)
. (3.3)

In particular,

d

(
log

V π(t)

V µ(t)

)
= γπ

∗ (t) dt +

m∑

i=1

πi(t) · d (log µi(t)) (3.4)

=
(
γπ
∗ (t) − γµ

∗ (t)
)
dt +

m∑

i=1

(
πi(t) − µi(t)

)
· d (log µi(t)) .

Proof: The equation (3.3) follows from (1.16), and the first equality in (3.4) is
the special case ρ(·) ≡ µ(·) . The second follows from the observation, borne out
of (2.4), that

∑m
i=1 µi(t) d(log µi(t)) =

∑m
i=1 µi(t)(γi(t)−γµ(t)) dt = −γµ

∗ (t) dt .

3.3 Lemma: For any two extended portfolios π(·), ρ(·) we have the numéraire-
invariance property

γπ
∗ (t) =

1

2




m∑

i=1

πi(t)τ
ρ
ii(t) −

m∑

i=1

m∑

j=1

πi(t)πj(t)τ
ρ
ij(t)


 . (3.5)

In particular, recalling (2.8), we obtain

γπ
∗ (t) =

1

2

m∑

i=1

πi(t)τ
π
ii(t)

︸ ︷︷ ︸
; (3.6)

whereas from (3.6), (3.2) and Definition 1.1, we get

γπ
∗ (t) ≥ 0 for any (strict) portfolio π(·) . (3.7)

8



Proof: From (2.6):
∑m

i=1 πi(t)τ
ρ
ii(t) =

∑m
i=1 πi(t)aii(t) − 2

∑m
i=1 πi(t)a

ρ
i (t) +

aρρ(t) , as well as

m∑

i=1

m∑

j=1

πi(t)τ
ρ
ij(t)πj(t) =

m∑

i=1

m∑

j=1

πi(t)aij(t) − 2

m∑

j=1

πj(t)a
ρ
j (t) + aρρ(t) ,

and (3.5) follows from (1.13). ¤

For the market portfolio, the equation of (3.6) becomes

γµ
∗ (t) =

1

2

m∑

i=1

µi(t) τµ
ii(t)

︸ ︷︷ ︸
; (3.8)

the summation on the right-hand-side is the average, according to the market
weights of individual stocks, of these stocks’ variances relative to the market.
Thus, (3.8) gives an interpretation of the excess growth rate of the market port-
folio, as a measure of "intrinsic volatility available in the market".

3.4 Exercise: For any extended portfolio rule π(·) , show

d

(
log

V π(t)

V µ(t)

)
=

m∑

i=1

πi(t)

µi(t)
dµi(t) − 1

2

m∑

i=1

m∑

j=1

πi(t)πj(t)τ
µ
ij(t) . (3.9)

(Hint: Recall (3.4) in conjunction with (2.4), (2.5) and the numéraire-invariance
property (3.5)).

3.5 Lemma: Assume that the variance/covariance process a(·) of (1.3) sat-
isfies the following strong non-degeneracy condition: all its eigenvalues are
bounded away from zero, i.e., there exists an ε ∈ (0,∞) such that

ξ′a(t)ξ = ξ′σ(t)σ′(t)ξ ≥ ε||ξ||2 , ∀ t ∈ [0,∞) and ξ ∈ Rm (3.10)

holds almost surely. Then for every extended portfolio π(·) and 0 ≤ t < ∞ , we
have in the notation of (1.17) the a.s. inequalities

ε
(
1 − πi(t)

)2

≤ τπ
ii(t) , i = 1, · · · ,m . (3.11)

If the portfolio rule π(·) is strict, we have also

ε

2

(
1 − π(1)(t)

)
≤ γπ

∗ (t) . (3.12)

Proof: With ei = (0, · · · , 0, 1, 0, · · · , 0)′ the ith unit vector in Rn , we have

τπ
ii(t) =

(
π(t)−ei

)′
a(t)

(
π(t)−ei

)
≥ ε ||π(t)−ei||2 = ε

[(
1 − πi(t)

)2
+

∑
j 6=i π2

j (t)
]
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from (2.6) and (3.10), and (3.11) follows. Back into (3.6), and with πi(t) ≥ 0
∀ i = 1, · · · ,m , this lower estimate gives

γπ
∗ (t) ≥ ε

2
·

m∑

i=1

πi(t)


 (

1 − πi(t)
)2

+
∑

j 6=i

π2
j (t)




=
ε

2
·




m∑

i=1

πi(t)
(
1 − πi(t)

)2
+

m∑

j=1

π2
j (t)

(
1 − πj(t)

)



=
ε

2
·

m∑

i=1

πi(t)
(
1 − πi(t)

)
≥ ε

2

(
1 − π(1)(t)

)
. ¤

3.6 Lemma: Assume that the uniform boundedness condition (1.15) holds;
then for every (strict) portfolio rule π(·) , and for 0 ≤ t < ∞ , we have in the
notation of (1.17) the a.s. inequalities

τπ
ii(t) ≤ K

(
1 − πi(t)

) (
2 − πi(t)

)
, i = 1, · · · ,m (3.13)

γπ
∗ (t) ≤ 2K

(
1 − π(1)(t)

)
. (3.14)

Proof: As in the previous proof, we get τπ
ii(t) ≤ K

[(
1 − πi(t)

)2
+

∑
j 6=i π2

j (t)
]
≤

K
[(

1 − πi(t)
)2

+
∑

j 6=i πj(t)
]

= K
(
1 − πi(t)

)(
2 − πi(t)

)
as claimed in (3.13),

and this leads to

γπ
∗ (t) ≤ K ·

m∑

i=1

πi(t)
(
1 − πi(t)

)

= K ·
[

π(1)(t)
(
1 − π(1)(t)

)
+

m∑

k=2

π(k)(t)
(
1 − π(k)(t)

)
]

≤ K ·
[

(
1 − π(1)(t)

)
+

m∑

k=2

π(k)(t)

]
= 2K

(
1 − π(1)(t)

)
. ¤

4 Portfolio Optimization

We can formulate already some interesting optimization problems.

Problem #1: Quadratic criterion, linear constraint (Markowitz, 1952).
Minimize the portfolio variance aππ(t) =

∑m
i=1

∑m
j=1 πi(t)aij(t)πj(t) , among all

portfolios π(·) with rate-of-return bπ(t) =
∑m

i=1 πi(t)bi(t) ≥ b0 at least equal to
a given constant.
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Problem #2: Quadratic criterion, quadratic constraint. Minimize the
portfolio variance

aππ(t) =

m∑

i=1

m∑

j=1

πi(t)aij(t)πj(t)

among all portfolios π(·) with growth-rate at least equal to a given constant γ0:

m∑

i=1

πi(t)

(
γi(t) +

1

2
aii(t)

)
≥ γ0 +

1

2

m∑

i=1

m∑

j=1

πi(t)aij(t)πj(t) .

Problem #3: Maximize the probability of reaching a given “ceiling” c before
reaching a given “floor” f , with 0 < f < w < c < ∞ . More specifically,
maximize P [Tc < Tf ] , with Tξ := inf{ t ≥ 0 |V w,π(t) = ξ } for ξ ∈ (0,∞) .

In the case of constant coëfficients γi and aij , the solution to this problem
comes as follows: one looks at the mean-variance, or signal-to-noise, ratio

γπ

aππ
=

∑m
i=1 πi(γi + 1

2 aii)∑m
i=1

∑m
j=1 πiaijπj

− 1

2
,

and finds a portfolio π that maximizes it (Pestien & Sudderth (1985)).

Problem #4: Minimize the expected time E [Tc ] until a given “ceiling” c ∈
(w,∞) is reached.

Again with constant coëfficients, it turns out that it is enough to maximize
the drift in the equation for log V w,π(·), namely

γπ =
∑m

i=1 πi

(
γi + 1

2 aii

)
− 1

2

∑m
i=1

∑m
j=1 πiaijπj ,

the portfolio growth-rate (Heath, Orey, Pestien & Sudderth (1987)).

Problem 5: Maximize the probability P [Tc < T ∧ Tf ] of reaching a given
“ceiling” c before reaching a given “floor” f with 0 < f < w < c < ∞ , by a
given “deadline” T ∈ (0,∞).

Always with constant coëfficients, suppose there is a portfolio π̂ = (π̂1, . . . , π̂m)′

that maximizes both the signal-to-noise ratio and the variance,

γπ

aππ
=

∑m
i=1 πi(γi + 1

2 aii)∑m
i=1

∑m
j=1 πiaijπj

− 1

2
and aππ =

m∑

i=1

m∑

j=1

πiaijπj ,

respectively, over all π1 ≥ 0, . . . , πm ≥ 0 with
∑m

i=1 πi = 1. Then this portfolio
π̂ is optimal for the above criterion (Sudderth & Weerasinghe (1989)).

This is a big assumption; it is satisfied, for instance, under the (very strin-
gent, and unnatural...) condition that, for some G > 0 , we have

bi = γi +
1

2
aii = −G , for all i = 1, . . . ,m .

Open Question: As far as I can tell, nobody seems to know the solution to this
problem, if such “simultaneous maximization” is not possible.
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5 Relative Arbitrage, and Its Consequences

The notion of arbitrage is of paramount importance in Mathematical Finance.
We present in this section an allied notion, that of relative arbitrage, and explore
some of its consequences. In later sections we shall encounter very specific,
“descriptive” conditions on market structure, that lead to this form of arbitrage.

5.1 Definition: Relative Arbitrage. Given any two extended portfolios
π(·), ρ(·) with the same initial capital V π(0) = V ρ(0) = 1 , we shall say that
π(·) represents, relative to ρ(·),
• an arbitrage opportunity over the fixed, finite time-horizon [0, T ] , if there
exists a constant q = qπ,ρ,T > 0 such that

P [ V π(T ) ≥ q V ρ(T ) , ∀ 0 ≤ t ≤ T ] = 1 (5.1)

and we have

P [ V π(T ) ≥ V ρ(T ) ] = 1 and P [ V π(T ) > V ρ(T ) ] > 0 ; (5.2)

• a superior long-term growth opportunity, if

Lπ,ρ := lim inf
T→∞

1

T
log

(
V π(T )

V ρ(T )

)
> 0 holds a.s. (5.3)

5.1 Strict Local Martingales

Let us place ourselves now, and for the remainder of this section, within the
market model M of (1.1) and under the conditions (1.2), (1.15). We shall
assume further, that there exists a market price of risk (or “relative risk”)
ϑ : [0,∞) × Ω → Rd ; namely, an F−progressively measurable process with

σ(t)ϑ(t) = b(t)−r(t)I , ∀ 0 ≤ t ≤ T and

∫ T

0

||ϑ(t)||2 dt < ∞ (5.4)

a.s., for each T ∈ (0,∞) . Here I = (1, · · · , 1)′ is the vector in Rn with all
entried equal to 1. (If the volatility matrix σ(·) has full rank, namely m, we

can take ϑ(t) = σ′(t)
(
σ(t)σ′(t)

)−1
[ b(t) − r(t)I ] .) In terms of this process, we

can then define the exponential local martingale and supermartingale

Z(t) := exp

{
−

∫ t

0

ϑ′(s) dW (s) − 1

2

∫ t

0

||ϑ(s)||2 ds

}
, 0 ≤ t ≤ T (5.5)

(a martingale, if and only if E(Z(T )) = 1 ), and the “shifted Brownian Motion”

Ŵ (t) := W (t) +

∫ t

0

ϑ(s) ds , 0 ≤ t ≤ T . (5.6)

12



5.2 Proposition: A Strict Local Martingale. Under the assumptions
of this subsection, suppose there exists a time-horizon T ∈ (0,∞) such that
relative arbitrage exists on [0, T ] . Then the process Z(·) of (5.5) is a strict
local martingale: we have E[Z(T )] < 1 .

Proof: Assume, by way of contradiction, that E[Z(T )] = 1 . Then from the
Girsanov Theorem the recipe QT (A) := E[Z(T ) · 1A ] defines an equivalent

probability measure on F(T ) , under which Ŵ (·) of (5.6) is Brownian motion
and the discounted stock prices Si(·)/B(·) martingales, for i = 1, · · · ,m (be-
cause (1.15) is assumed to hold). To wit, this QT is an Equivalent Martingale
Measure (EMM) for the model. For any extended portfolio π(·) , we get then
from (5.6) and (1.9):

d(V w,π(t)/B(t)) = (V w,π(t)/B(t)) · π′(t)σ(t) dŴ (t) , V w,π(0) = w > 0 ,

and because of (1.15) the wealth process V w,π(·) is a square-integrable martin-
gale; thus so is the difference D(·) := V w,π(·)− V w,ρ(·) for any other extended
portfolio ρ(·) . But this gives EQT

(
D(T )

)
= D(0) = 0 , a conclusion inconsis-

tent with the consequences QT

(
D(T ) ≥ 0

)
= 1 and QT

(
D(T ) > 0

)
> 0 of

(5.2). ¤

• Now let us consider the “deflated” stock-price and wealth processes

Ŝi(t) :=
Z(t)

B(t)
Si(t) , i = 1, · · · ,m and V̂w,h(t) :=

Z(t)

B(t)
Vw,h(t)

(5.7)
for 0 ≤ t ≤ T , for arbitrary admissible trading strategy h(·) and initial capital
w > 0 . These processes satisfy, respectively, the dynamics

dŜi(t) = Ŝi(t) ·
d∑

ν=1

(
σiν(t) − ϑν(t)

)
dWν(t) , Ŝi(0) = si , (5.8)

dV̂w,h(t) =

(
Z(t)h′(t)

B(t)
σ(t) − V̂w,h(t)ϑ′(t)

)
dW (t) , V̂w,h(0) = w . (5.9)

(In other words, the ratio Z(·)/B(·) continues to play its usual rôle as “deflator”
of prices in such a market, even when Z(·) is just a local martingale.)

5.3 Exercise: Strict Local Martingales Galore. Verify the claims of
(5.8), (5.9). Then show that, in the setting of Proposition 5.2, the deflated

stock-prices Ŝi(·) of (5.7) are strict local martingales: E [ Ŝi(T ) ] < si holds for
every i = 1, · · · ,m.

5.4 Proposition: Non-Existence of EMM. In the context of Proposition
5.2, no Equivalent Martingale Measure can exist for this model if the filtration
is generated by the driving Brownian Motion W (·) : F = FW .

Proof: If F = FW and Q is equivalent to P on FT , then the martingale repre-
sentation property of the Brownian filtration gives (dQ/dP)|Ft

= Z(t) , 0 ≤ t ≤

13



T for some process Z(·) of the form (5.5) and some progressively measurable

ϑ(·) with
∫ T

0
||ϑ(t)||2 dt < ∞ a.s.; and Itô’s rule leads to the extension

dŜi(t)

Ŝi(t)
=

(
bi(t) − r(t) −

d∑

ν=1

σiν(t)ϑν(t)

)
dt +

d∑

ν=1

(
σiν(t) − ϑν(t)

)
dWν(t)

of (5.8) for the deflated stock-prices of (5.7). But if all the Si(·)/B(·) ’s are

Q−martingales, then the Ŝi(·) ’s are all P−martingales, and this leads to the
first property σ(·)ϑ(·) = b(·) − r(·)I in (5.4). We repeat now the argument of
Proposition 5.2 and arrive at a contradiction with (5.2), the existence of relative
arbitrage on [0, T ] . ¤

Let us introduce now the decreasing function

f(t) :=
1

S(0)
· E

[
Z(t)

B(t)
S(t)

]
, 0 < t ≤ T (5.10)

which satisfies f(0) := 1 > f(t) > 0 from Exercise 5.3.

5.5 Exercise: With Brownian filtration F = FW , m = d and an invertible
volatility matrix σ(·) , consider the maximal attainable relative return

R(T ) := sup
{

r > 1 | ∃h(·) ∈ H(1;T ) s.t.
(
V1,h(T )/V 1,µ(T )

)
≥ r , a.s.

}

(5.11)
in excess of the market, over the interval [0, T ]. Show that this quantity can be
computed then in terms of the function of (5.10), as R(T ) = 1/f(T ) .

5.6 Exercise: The shortest time to beat the market by a given amount.
Let us place ourselves under the assumptions of Exercise 5.5, but now assume
that relative arbitrage exists on [0, T ] for every T ∈ (0,∞) ; cf. section 7. For
a given “exceedance level” r > 1, consider the shortest length of time

T(r) := inf
{

T > 0 | ∃h(·) ∈ H(1;T ) s.t.
(
V1,h(T )/V 1,µ(T )

)
≥ r , a.s.

}

(5.12)
required to guarantee a return of at least r times the market. Show that this
quantity is given by the number T(r) = inf

{
T > 0 | f(T ) ≤ 1/r

}
, the inverse

of the decreasing function f(·) of (5.10) evaluated at 1/r.

5.7 Exercise: (An observation of C. Kardaras (2006).) Show that in the Defi-
nition 5.1 of relative arbitrage, the requirement (5.1) is somewhat superfluous,
in the following sense: If one can find a portfolio π(·) that satisfies the domi-
nation properties (5.2) relative to some “benchmark” portfolio ρ(·) , then there
exists another portfolio π̂(·) that satisfies both (5.1) and (5.2) relative to the
same benchmark ρ(·) .

(Hint: Consider the more conservative strategy of investing a portion w ∈ (0, 1)
of the initial capital $1 in π(·) , and the remaining proportion 1 − w in ρ(·) .)

5.8 Exercise: Can the counterparts of (5.11), (5.12) be computed when one is
not allowed to use general strategies h(·) ∈ H(1;T ) , but rather only strict-sense
portfolios π(·) ?
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6 Diversity

The notion of diversity for a financial market corresponds to the intuitive (and
descriptive) idea, that no single company can ever be allowed to dominate the
entire market in terms of relative capitalization. To make this notion precise, let
us say that the model M of (1.1), (1.2) is diverse on the time-horizon [0, T ],
if there exists a number δ ∈ (0, 1) such that the quantities of (2.1) satisfy a.s.

µ(1)(t) < 1 − δ , ∀ 0 ≤ t ≤ T (6.1)

in the order-statistics notation of (1.17). In a similar vein, we say that M is
weakly diverse on the time-horizon [0, T ], if for some δ ∈ (0, 1) we have

1

T

∫ T

0

µ(1)(t) dt < 1 − δ (6.2)

almost surely. We say that M is uniformly weakly diverse on [T0,∞), if
there exists a δ ∈ (0, 1) such that (6.2) holds a.s. for every T ∈ [T0,∞).

• It follows directly from (3.14) of Lemma 3.6 that, under the condition (1.15),
the model M of (1.1), (1.2) is diverse (respectively, weakly diverse) on the
time-interval [0, T ], if there exists a number ζ > 0 such that

γµ
∗ (t) ≥ ζ , ∀ 0 ≤ t ≤ T

(
respectively,

1

T

∫ T

0

γµ
∗ (t) dt ≥ ζ

)
(6.3)

holds almost surely. And (3.12) of Lemma 3.5 shows that, under the condi-
tion (3.10), the conditions of (6.3) are satisfied if diversity (respectively, weak
diversity) holds on the time-interval [0, T ].

• As we shall see in section 9, diversity can ensured by a strongly negative rate
of growth for the largest stock, resulting in a sufficiently strong repelling drift
(e.g., a log-pole-type singularity) away from an appropriate boundary, as well
as non-negative growth-rates for all the other stocks.

• If all the stocks in M have the same growth rate ( γi(·) ≡ γ(·) ,
∀ 1 ≤ i ≤ m ) and (1.15) holds, then we have almost surely:

lim
T→∞

1

T

∫ T

0

γµ
∗ (t) dt = 0 . (6.4)

In particular, such an equal growth-rate market M cannot be diverse, even
weakly, for long time-horizons, provided that (3.10) is also satisfied.

Here is a quick argument: recall that for S(·) := S1(·)+ · · ·+Sm(·) we have

lim
T→∞

1

T

(
log S(T ) −

∫ T

0

γµ(t)dt

)
= 0 , lim

T→∞

1

T

(
log Si(T ) −

∫ T

0

γ(t)dt

)
= 0
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a.s., from (1.14), (1.6) and γi(·) ≡ γ(·) , ∀ 1 ≤ i ≤ m . But then we have also

lim
T→∞

1

T

(
log S(1)(T ) −

∫ T

0

γ(t)dt

)
= 0 , a.s.

for the biggest stock S(1)(·) := max1≤i≤m Si(·) , and note the inequalities
S(1)(·) ≤ S(·) ≤ mS(1)(·) . Therefore,

lim
T→∞

1

T

(
log S(1)(T )−log S(T )

)
= 0 , thus lim

T→∞

1

T

∫ T

0

(
γµ(t)−γ(t)

)
dt = 0 .

But γµ(t) =
∑m

i=1 µi(t)γ(t) + γµ
∗ (t) = γ(t) + γµ

∗ (t) , because of the assumption
of equal growth rates, and (6.4) follows. If (3.10) also holds, then (3.12) and
(6.4) imply

lim
T→∞

1

T

∫ T

0

(
1 − µ(1)(t)

)
dt = 0 ,

so weak diversity fails on long time-horizons: once in a while a single stock
dominates the entire market, then recedes; sooner or later another stock takes
its place as absolutely dominant leader; and so on.

6.1 Exercise: Coherence. We say that the market model M of (1.1), (1.2)
is coherent, if the relative capitalizations of (2.1) satisfy

lim
T→∞

1

T
log µi(T ) = 0 almost surely, for each i = 1, · · · ,m (6.5)

(i.e., if “none of the stocks declines too rapidly”). Under the condition (1.15),
show that coherence is equivalent to each of the following two conditions:

lim
T→∞

1

T

∫ T

0

(
γi(t) − γµ(t)

)
dt = 0 a.s., for each i = 1, · · · ,m ; (6.6)

lim
T→∞

1

T

∫ T

0

(
γi(t)− γj(t)

)
dt = 0 a.s., for each pair 1 ≤ i, j ≤ m. (6.7)

6.2 Exercise: Argue that if all the stocks in the market M have constant
growth rates, and if (1.15), (3.10) hold, then M cannot be diverse, even weakly,
over long time-horizons.

7 Diversity leads to Arbitrage

We provide now examples which demonstrate the following principle: if the
model M of (1.1), (1.2) is weakly diverse over the interval [0, T ], and if (3.10)
holds, then M contains arbitrage opportunities relative to the market portfolio,
at least for sufficiently large time-horizons T ∈ (0,∞) .
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The first such examples involve heavily the so-called diversity-weighted

portfolio π(p)(·) =
(
π

(p)
1 (·), . . . , π(p)

m (·)
)′

, defined for arbitrary but fixed p ∈
(0, 1) in terms of the market portfolio µ(·) of (2.1) by

π
(p)
i (t) :=

(
µi(t)

)p

∑m
j=1

(
µj(t)

)p , ∀ i = 1, . . . ,m . (7.1)

Compared to µ(·), the portfolio π(p)(·) in (7.1) decreases the proportion(s) held
in the largest stock(s) and increases those placed in the smallest stock(s), while
preserving the relative rankings of all stocks. It is relatively easy to implement in
practice, as it involves only observable quantities (the relative market weights)
and needs no parameter estimation or optimization. The actual performance of
this portfolio relative to the S&P 500 index over a 22-year period is discussed
in detail by Fernholz (2002), Chapter 6.

We show below that if the model M is weakly diverse on a finite time-horizon

[0, T ], then the value-process V π(p)

(·) of the portfolio in (7.1) satisfies

V π(p)

(T ) > V µ(T ) ·
(
m−1/p e εδT/2

)1−p

(7.2)

almost surely. In particular,

P

[
V π(p)

(T ) > V µ(T )
]

= 1 , provided that T ≥ 2

pεδ
· log m, (7.3)

and π(p)(·) is an arbitrage opportunity relative to the market µ(·), in the sense
of (5.1)-(5.2). The significance of such a result, for practical long-term portfolio
management, cannot be overstated.

z What conditions on the coëfficients b(·), σ(·) of M are sufficient for guar-
anteeing diversity, as in (6.1), over the time-horizon [0, T ] ? For simplicity,
assume that (3.10) and (1.15) both hold. Then certainly M cannot be diverse
if b1(·) − r(·), . . . , bm(·) − r(·) are bounded uniformly in (t, ω), or even if they
satisfy a condition of the Novikov type

E

[
exp

{
1

2

∫ T

0

∣∣∣
∣∣∣ b(t) − r(t)I

∣∣∣
∣∣∣
2

dt

}]
< ∞ . (7.4)

The reason is that, under all these conditions (3.10), (1.15) and (7.4), the pro-

cess ϑ(·) = σ′(·)
(
σ(·)σ(·)

)−1
[ b(·) − r(·)I ] satisfies the requirements (5.4), and

the resulting exponential local martingale Z(·) of (5.5) is a true martingale –
contradicting Proposition 5.2, at least for sufficiently large T > 0 .

Proof of (7.3): Let us start by introducing the function

Gp(x) :=
( m∑

i=1

xp
i

)1/p

, x ∈ ∆m
++ , (7.5)
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which we shall interpret as a “measure of diversity”; see below. An application of
Itô’s rule to the process {Gp(µ(t)), 0 ≤ t < ∞} leads after some computation,
and in conjunction with (3.9) and the numéraire-invariance property (3.5), to
the expression

log

(
V π(p)

(T )

V µ(T )

)
= log

(
Gp(µ(T ))

Gp(µ(0))

)
+

∫ T

0

g(t)dt

︸ ︷︷ ︸
, g(t) := (1− p) γπ(p)

∗ (t)

(7.6)

for the wealth V π(p)

(·) of the diversity-weighted portfolio π(p)(·) of (7.1). One
big advantage of the expression (7.6) is that is free of stochastic integrals, and
thus lends itself to pathwise (almost sure) comparisons.

7.1 Exercise: Verify the computation (7.6).

For the function of (7.5), we have the simple bounds

1 =
m∑

i=1

µi(t) ≤
m∑

i=1

(
µi(t)

)p
=

(
Gp(µ(t))

)p

≤ m1−p

(minimum diversity occurs when the entire market is concentrated in one stock,
and maximum diversity when all stocks have the same capitalization), so that
the function of (7.5) satisfies

log

(
Gp(µ(T ))

Gp(µ(0))

)
≥ − 1 − p

p
· log m. (7.7)

This shows that V π(p)

(·)/V µ(·) is bounded from below by the constant m−(1−p)/p ,
so (5.1) is satisfied for ρ(·) ≡ µ(·) and π(·) ≡ π(p)(·) .

♠ On the other hand, we have already remarked that the biggest weight of
the portfolio π(p)(·) in (7.1) does not exceed the largest market weight:

π
(p)
(1)(t) := max

1≤i≤m
π

(p)
i (t) =

(
µ(1)(t)

)p

∑m
k=1

(
µ(k)(t)

)p ≤ µ(1)(t) (7.8)

(check this, and that the reverse inequality holds for the smallest weights:

π
(p)
(m)(t) := min1≤i≤m π

(p)
i (t) ≥ µ(m)(t) ).

We have assumed that the market is weakly diverse over [0, T ], namely, that

there is some 0 < δ < 1 for which
∫ T

0

(
1−µ(1)(t)

)
dt > δ T holds almost surely.

From (3.12) and (7.8), this implies

∫ T

0

γπ(p)

∗ (t) dt ≥ ε

2
·
∫ T

0

(
1−π

(p)
(1)(t)

)
dt ≥ ε

2
·
∫ T

0

(
1−µ(1)(t)

)
dt >

ε

2
· δ T

a.s. In conjunction with (7.7), this leads to to (7.2) and (7.3) via

log

(
V π(p)

(T )

V µ(T )

)
> (1 − p)

[
εT

2
· δ − 1

p
· log m

]
. ¤ (7.9)

18



If M is uniformly weakly diverse and strongly non-degenerate over an in-
terval [T∗,∞), then (7.9) implies that the market portfolio will lag significantly
behind the diversity-weighted one, over long time-horizons; i.e., (5.3) holds:

Lπ(p), µ = lim inf
T→∞

1

T
log

(
V π(p)

(T )
/

V µ(T )
)

≥ (1 − p)εδ/2 > 0 , a.s.

7.2 Exercise (Fernholz 2002): Under the conditions of this section, consider
the portfolio with weights

πi(t) =

(
2 − µi(t)

G(µ(t))
− 1

)
µi(t) , 1 ≤ i ≤ m, where G(x) := 1 − 1

2

m∑

i=1

x2
i

for x ∈ ∆m
++ . Show that this portfolio leads to arbitrage relative to the market

over sufficiently long time-horizons [0, T ], namely with T ≥ (2m/εδ2) log 2 .
(Hint: Establish an analogue of (7.6) for this new portfolio π(·) and function
G , in which g(t) =

(∑m
i=1 µ2

i (t)τ
µ
ii(t)

)
/(2G(µ(t))) .

8 Mirror Portfolios, Short-Horizon Arbitrage

In the previous section we saw that in weakly diverse markets which satisfy
the strict non-degeneracy condition (3.10), one can construct explicitly simple
arbitrages relative to the market over sufficiently long time-horizons. The pur-
pose of this section is to demonstrate that, under these same conditions, such
arbitrages exist indeed over arbitrary time-horizons, no matter how small.

For any given extended portfolio π(·) and real number q 6= 0 , define the
q−mirror image of π(·) with respect to the market portfolio, as

π̃ [q](·) := q π(·) + (1 − q)µ(·) .

This is clearly an extended portfolio; and it is strict, as long as π(·) itself is
strict and 0 < q < 1 . If q = −1 , we call π̃ [−1](·) = 2µ(·) − π(·) the “mirror
image” of π(·) with respect to the market.

By analogy with (2.6), let us define the relative covariance of π(·) with
respect to the market, as

τπ
µµ(t) :=

(
π(t) − µ(t)

)′
a(t)

(
π(t) − µ(t)

)
, 0 ≤ t ≤ T .

8.1 Exercise: Recall from (2.8) the fact τµ(t)µ(t) ≡ 0 , and establish the ele-
mentary properties τπ

µµ(t) = π′(t)τµ(t)π(t) = τµ
ππ(t) , τµ

π̃ [q]π̃ [q](t) = q2 τµ
ππ(t) .

8.2 Exercise: Compute the wealth of π̃ [q](·) relative to the market, as

log

(
V π̃ [q]

(T )

V µ(T )

)
= q log

(
V π(T )

V µ(T )

)
+

q(1 − q)

2

∫ T

0

τµ
ππ(t) dt .
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8.3 Exercise: Suppose that the extended portfolio π(·) satisfies

P
(
V π(T )/V µ(T ) ≥ β

)
= 1 or P

(
V π(T )/V µ(T ) ≤ 1/β

)
= 1

and

P

(∫ T

0

τµ
ππ(t) dt ≥ η

)
= 1

for some real numbers T > 0 , η > 0 and 0 < β < 1 . Then there exists another
extended portfolio π̂(·) with P

(
V π̂(T ) < V µ(T )

)
= 1 .

8.1 A “Seed” Portfolio

Now let us consider π = e1 = (1, 0, · · · , 0)′ and the market portfolio µ(·) ; we
shall fix a real number q > 1 in a moment, and define the extended portfolio

π̂(t) := π̃[q](t) = q e1 + (1 − q)µ(t) , 0 ≤ t < ∞ (8.1)

which takes a long position in the first stock and a short position in the market.
In particular, π̂1(t) = q + (1 − q)µ1(t) and π̂i(t) = (1 − q)µi(t) for i =
2, · · · ,m . Then we have

log

(
V π̂(T )

V µ(T )

)
= q ·

[
log

(
µ1(T )

µ1(0)

)
− q − 1

2

∫ T

0

τµ
11(t) dt

]
(8.2)

from Exercise 8.2. But taking β := µ1(0) we have (µ1(T )/µ1(0)) ≤ 1/β ; and
if the market is weakly diverse on [0, T ] and satisfies the strict non-degeneracy
condition (3.10), we obtain from (3.11) and the Cauchy-Schwarz inequality

∫ T

0

τµ
11(t) dt ≥ ε

∫ T

0

(
1 − µ(1)

)2
dt > εδ2T =: η . (8.3)

From Exercise 8.3, the market portfolio represents then an arbitrage opportunity
with respect to the extended portfolio π̂(·) of (8.1), provided that for any given
T ∈ (0,∞) we select

q > q(T ) := 1 + (2/εδ2T ) · log (1/µ1(0)) . (8.4)

♣ The extended portfolio π̂(·) of (8.1) can be used as a “seed”, to create all-long
portfolios that outperform the market portfolio µ(·), over any given time-horizon
T ∈ (0,∞). The idea is to embed π̂(·) in a sea of market portfolio, swamping the
short positions while retaining the essential portfolio characteristics. Crucial in
these constructions is the a.s. comparison, a consequence of (8.2):

V π̂(t) ≤
(

µ1(t)

µ1(0)

)q

· V µ(t) , 0 ≤ t < ∞ . (8.5)
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8.2 Relative Arbitrage on Arbitrary Time-Horizons

To implement this idea, consider a strategy h(·) that invests q/(µ1(0))q dollars
in the market portfolio, and −1 dollar in the extended portfolio π̂(·) of (8.1)
at time t = 0, and makes no change thereafter. The number q > 1 is chosen
again as in (8.4). The wealth generated by this strategy, with initial capital
z := q/(µ1(0))q − 1 > 0 , is

Vz,h(t) =
q V µ(t)

(µ1(0))
q − V π̂(t) ≥ V µ(t)

(µ1(0))
q

[
q − (µ1(t))

q ]
> 0 , 0 ≤ t < ∞ ,

(8.6)
thanks to (8.5) and q > 1 > (µ1(t))

q
. This process Vz,h(·) coincides with the

wealth V z,η(·) generated by an extended portfolio η(·) with weights

ηi(t) =
1

Vz,h(t)

[
q µi(t)

(µ1(0))
q · V µ(t) − π̂i(t) · V π̂(t)

]
, i = 1, · · · ,m (8.7)

that satisfy
∑m

i=1 ηi(t) = 1. Now we have π̂i(t) = −(q − 1)µi(t) < 0 for
i = 2, · · · ,m , so the quantities η2(·), . . . , ηm(·) are strictly positive. To check
that η(·) is an all-long portfolio, we have to verify η1(t) ≥ 0; but the dollar
amount invested by η(·) in the first stock at time t, namely

q µ1(t)

(µ1(0))
q · V µ(t) −

[
q − (q − 1)µ1(t)

]
· V π̂(t)

dominates q µ1(t)
(µ1(0))

q · V µ(t)−
[
q − (q − 1)µ1(t)

]
·
(

µ1(t)
µ1(0)

)q

V µ(t) , or equivalently

V µ(t)µ1(t)

(µ1(0))
q ·

[
(q − 1) (µ1(t))

q
+ q

{
1 − (µ1(t))

q−1
}]

> 0 ,

again thanks to (8.5) and q > 1 > (µ1(t))
q
. Thus η(·) is indeed an all-long

(strict) portfolio.
On the other hand, η(·) outperforms at t = T a market portfolio that starts

with the same initial capital; this is because η(·) is long in the market µ(·) and
short in the extended portfolio π̂(·), which underperforms the market at t = T .
Indeed, from Exercise 8.3 we have

V z,η(T ) =
q

(µ1(0))
q V µ(T ) − V π̂(T ) > zV µ(T ) = V z,µ(T ) a.s.

¶ Note, however, that as T ↓ 0 , the initial capital z(T ) = q(T )/(µ1(0))q(T )−1
required to do all of this, increases without bound: It may take a huge amount of
initial investment to realize the “extra basis point’s worth of relative arbitrage”
over a very short time-horizon – confirming of course, if confirmation is needed,
that time is money... .
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9 A Diverse Market Model

The careful reader might have been wondering, whether the theory we have
developed so far may turn out to be vacuous. Do there exist market models of
the form (1.1), 1.2) that are diverse, at least weakly? This is of course a very
legitimate question.

Let us mention then, rather briefly, an example of such a market model
M which is diverse over any given time-horizon [0,T ] with 0 < T < ∞ , and
indeed satisfies the conditions of subsection 4.1 as well. For the details of this
construction we refer to [FKK] (2005).

With given δ ∈ (1/2, 1), equal numbers of stocks and driving Brownian
motions (that is, d = m ), constant volatility matrix σ that satisfies (3.10), and
non-negative numbers g1, . . . , gm , we take a model

d
(
log Si(t)

)
= γi(t) dt +

m∑

ν=1

σiνdWν(t) , 0 ≤ t ≤ T (9.1)

in the form (1.5) for the vector S(·) =
(
S1(·), · · · , Sm(·)

)′
of stock prices. With

the usual notation S(t) =
∑m

j=1 Sj(t) , its growth rates are specified as

γi(t) := gi 1Qc
i
(S(t)) − M

δ
· 1Qi

(S(t))

log
(
(1 − δ)S(t)/Si(t)

) . (9.2)

In other words, γi(t) = gi ≥ 0 if S(t) /∈ Qi (the ith stock does not have the
largest capitalization); and

γi(t) = −M

δ
· 1

log
(
(1 − δ)/µi(t)

) , if S(t) ∈ Qi (9.3)

(the ith stock does have the largest capitalization). We are setting here

Q1 :=

{
x ∈ (0,∞)m

∣∣∣ x1 ≥ max
2≤j≤m

xj

}
, Qm :=

{
x ∈ (0,∞)m

∣∣∣ xm > max
1≤j≤m−1

xj

}
,

Qi :=

{
x ∈ (0,∞)m

∣∣∣ xi > max
1≤j≤i−1

xj , xi ≥ max
i+1≤j≤m

xj

}
for i = 2, . . . ,m−1 .

With this specification (9.2), (9.3), “all stocks but the largest behave like ge-
ometric Brownian motions” (with growth rates gi ≥ 0 and variances aii =∑m

ν=1 σ2
iν ), whereas the log-price of the largest stock is subjected to a log-pole-

type singularity in its drift, away from an appropriate right boundary.
One can then show that the resulting system of stochastic differential equa-

tions has a unique, strong solution (so the filtration F is now the one generated
by the driving m−dimensional Brownian motion), and that the diversity re-
quirement (6.1) is satisfied on any given time-horizon. Such models can be
modified appropriately, to create ones that are weakly diverse but not diverse.
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♠ Slightly more generally, in order to guarantee diversity it is enough to require

min
2≤k≤m

γ(k)(t) ≥ 0 ≥ γ(1)(t) , min
2≤k≤m

γ(k)(t) − γ(1)(t) +
ε

2
≥ M

δ
· F (Q(t)) ,

where Q(t) := log
(
(1 − δ)/µ(1)(t)

)
.

Here the function F : (0,∞) → (0,∞) is taken to be continuous, and such
that the associated scale function

U(x) :=

∫ x

1

exp

[
−

∫ y

1

F (z)dz

]
dy , x ∈ (0,∞) satisfies U(0+) = −∞ ;

for instance, we have U(x) = log x when F (x) = 1/x as above.

• Under these conditions, it can then be shown that the process Q(·) satis-

fies
∫ T

0
(Q(t))−2 dt < ∞ a.s. – and this leads to the a.s. square-integrability∑m

i=1

∫ T

0
(bi(t))

2 dt < ∞ of the induced rates of return for individual stocks

bi(t) =
1

2
aii + gi 1Qc

i
(S(t)) − M

δ
· 1Qi

(S(t))

log
(
(1 − δ)S(t)/Si(t)

) , i = 1, · · · ,m .

This property is, of course, very crucial: it guarantees that the market-price-of-
risk process ϑ(·) := σ−1 b(·) is locally square-integrable a.s., so the exponential
local martingale Z(·) of (5.5) is well defined. Thus the results of Proposition
5.2 and Exercise 5.3 are applicable to this model.

For additional examples and an interesting probabilistic construction, see
Osterrieder & Rheinländer (2006).

10 Hedging and Optimization without EMM

Let us broach now the issue of hedging contingent claims in a market such as
that of subsection 5.1, and over a time-horizon [0, T ] for which (5.2) is satisfied.

Consider first a European contingent claim, that is, an F(T )−measurable
random variable Y : Ω → [0,∞) with

0 < y := E [Y Z(T ) /B(T ) ] < ∞ (10.1)

in the notation of (5.5). From the point of view of the “seller” of the contingent
claim (e.g., stock option), this random amount represents a liability that has to
be covered with the right amount of initial funds at time t = 0 and the right
trading strategy during the interval [0, T ], so that at the end of the period (time
t = T ) the initial funds have grown enough, to cover the liability without risk.
Thus, the seller is very interested in the upper hedging price

UY (T ) := inf
{

w > 0 | ∃ h(·) ∈ H(w;T ) s.t. Vw,h(T ) ≥ Y , a.s.
}

, (10.2)

the smallest amount of initial capital that makes such riskless hedging possible.
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The standard theory of Mathematical Finance assumes that M , the set of
equivalent martingale measures (EMM) for the model M , is non-empty; then
computes UY (T ) as

UY (T ) = sup
Q∈M

EQ [Y /B(T ) ] ,

the supremum of the claim’s discounted expected value over this set of proba-
bility measures. In our context an EMM will typically not exist (that is, M = ∅
as in Proposition 5.4), so the approach breaks down and the problem seems
hopeless.

Not quite, though: there is still a long way one can go, simply by utilizing the
availability of the strict local martingale Z(·) (and of the associated “deflator”
Z(·) /B(·) ), as well as the properties (5.8), (5.9) of the processes in (5.7). For
instance, if the set on the right-hand side of (10.2) is not empty, then for any

w > 0 in this set and for any h(·) ∈ H(w;T ), the local martingale V̂w,h(·) of
(5.7) is non-negative, thus a supermartingale. This gives

w ≥ E
[
V w,h(T )Z(T ) /B(T )

]
≥ E [Y Z(T ) /B(T ) ] = y ,

and because w > 0 is arbitrary we deduce the inequality UY (T ) ≥ y (which
holds trivially if the set of (10.2) is empty, since then UY (T ) = ∞ ).

10.1 Completeness without an EMM

To obtain the reverse inequality, we shall assume that m = d, i.e., that we have
exactly as many sources of randomness as there are stocks in the market M,
and that the filtration F is generated by the driving Brownian Motion W (·) in
(1.1). With these assumptions one can represent the non-negative martingale
M(t) := E [Y Z(T ) /B(T ) | F(t) ] , 0 ≤ t ≤ T as a stochastic integral

M(t) = y +

∫ t

0

ψ′(s) dW (s) ≥ 0 , 0 ≤ t ≤ T (10.3)

for some progressively measurable and a.s. square-integrable process ψ : [0, T ]×
Ω → Rd . Setting V∗(·) := M(·)B(·)/Z(·) and h∗(·) := (B(·)/Z(·)) a−1(·)
σ(·)

[
ψ(·)+V∗(·)ϑ(·)

]
, then comparing (5.9) with (10.3), we observe V∗(0) = y ,

V∗(T ) = Y and V∗(·) ≡ V y,h∗(·) ≥ 0 , almost surely.

Therefore, the trading strategy h∗(·) is in H(y;T ) and satisfies the exact

replication property V y,h∗(T ) = Y a.s. This implies that y belongs to
the set on the right-hand-side of (10.2), and so y ≥ UY (T ) . But we have
already established the reverse inequality, actually in much greater generality,
so recalling (10.1) we get the Black-Scholes-type formula

UY (T ) = E [Y Z(T )/B(T ) ] (10.4)

for the upper hedging price of (10.2), under the assumptions of the preceding
paragraph. To wit, a market M that is weakly diverse – hence without an
equivalent probability measure under which discounted stock-prices are (at least
local) martingales – can nevertheless be complete. Similar observations have
been made by Lowenstein & Willard (2000.a,b) and by Platen (2002, 2006).
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10.2 Ramifications and Open Problems

10.1 Example: A European Call-Option. Consider the contingent claim

Y =
(
S1(T ) − q

)+
: this is a European call-option with strike q > 0 on the

first stock. Let us assume also that the interest-rate process r(·) is bounded
away from zero, namely that P[ r(t) ≥ r , ∀ t ≥ 0 ] = 1 holds for some r > 0,
and that the market M is weakly diverse on all sufficiently large time-horizons
T ∈ (0,∞). Then for the hedging price of this contingent claim we have from
Exercise 5.3, (10.4), Jensen’s inequality, and E [Z(T ) ] < 1 :

S1(0) > E [Z(T )S1(T )/B(T ) ] ≥ E [Z(T )(S1(T ) − q)+/B(T ) ] = UY (T )

≥
(
E [Z(T )S1(T )/B(T ) ] − q · E

(
Z(T ) · e−

∫
T
0

r(t) dt
))+

≥
(
E [Z(T )S1(T )/B(T ) ] − q e−rT E [Z(T )]

)+

≥
(
E [Z(T )S1(T )/B(T ) ] − q e−rT

)+

, thus

0 ≤ UY (∞) := lim
T→∞

UY (T ) = lim
T→∞

↓ E
(
Z(T )S1(T )/B(T )

)
< S1(0).

(10.5)

The upper hedging price of the option is strictly less than the capitalization of
the underlying stock at time t = 0, and tends to UY (∞) ∈ [0, S1(0)) as the
horizon increases without limit.

If M is weakly diverse uniformly over some [T0,∞), then the limit in (10.5)
is actually zero: a European call-option that can never be exercised has zero
hedging price. Indeed, for every fixed p ∈ (0, 1) and T ≥ 2 log m

pεδ ∨ T0 , and with

the normalization S(0) = 1 , the quantity

E

(
Z(T )

B(T )
S1(T )

)
≤ E

(
Z(T )

B(T )
V µ(T )

)
≤ E

(
Z(T )

B(T )
V π(p)

(T )

)
·m 1−p

p e−εδ(1−p)T/2

is dominated by m
1−p

p ·e−εδ(1−p)T/2 , from (7.2), (2.2) and the supermartingale

property of Z(·)V π(p)

(·)/B(·) . Letting T → ∞ we obtain UY (∞) = 0 .

10.2 Remark: Note the sharp difference between this case and the situation
where an equivalent martingale measure exists on every finite time-horizon;
namely, when both Z(·) and Z(·)S1(·)/B(·) are martingales. Then we have
E[Z(T )S1(T )/B(T ) ] = S1(0) for all T ∈ (0,∞), and UY (∞) = S1(0) : as
the time-horizon increases without limit, the hedging price of the call-option
approaches the current stock value (Karatzas & Shreve (1998), p.62).

10.3 Remark: The above theory extends to the case d > m of incomplete
markets, and more generally to closed, convex constraints on portfolio choice as
in Chapter 5 of Karatzas & Shreve (1998), under the conditions of (5.4). See the
paper Karatzas & Kardaras (2006) for a treatment of these issues in a general
semimartingale setting.
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10.4 Exercise: Argue that the “put-call parity” property UY −UX = S1(0)−q ,
which is valid for the put and call options X = (q−S1(T ))+ and Y = (S1(T )−
q)+ when a unique EMM exists on [0, T ], fails when the deflated stock-prices
are strict local martingales as in Exercise 5.3.

10.5 Open Question: Develop a theory for pricing American contingent claims
under the assumptions of the present section. As Constantinos Kardaras (2006)
observes, in the absence of an EMM (in fact, even when there exists an equivalent
probability measure under which discounted prices are local martingales), it may
not be optimal to exercise only at maturity t = T an American call option
written on a non-dividend-paying stock: early exercise may be advantageous,
and this is closely related to the property UY (∞) = 0 above.

Can one then characterize, or compute, the optimal exercise time?

10.3 Utility Maximization in the Absence of EMM

Suppose we are given initial capital w > 0 , a finite time-horizon T > 0 , and
a utility function u : (0,∞) → R (strictly increasing, strictly concave, of class
C1 , with u′(0) := limx↓0 u′(x) = ∞ , u′(∞) := limx→∞ u′(x) = 0 and u(0) :=
limx↓0 u(x) ). The problem is to compute the maximal expected utility

u(w) := sup
h(·)∈H(w;T )

E
[
u
(
V w,h(T )

) ]

from terminal wealth; to decide whether the supremum is attained; and if so,
to identify a strategy ĥ(·) ∈ H(w;T ) that attains it. We place ourselves under
the assumptions of the present section, including those of subsection 10.1.

10.6 Exercise: Show that the answer to this question is given by the replicating
strategy ĥ(·) ∈ H+(w;T ) for the contingent claim

Υ = I
(
Ξ(w)D(T )

)
, D(·) := Z(·) /B(·) ,

in the sense V w,ĥ(T ) = Υ a.s. Here I : (0,∞) → (0,∞) is the inverse of
the strictly decreasing “marginal utility” function u′ : (0,∞) → (0,∞) , and
Ξ : (0,∞) → (0,∞) the inverse of the strictly decreasing function W(·) given
by

W(ξ) := E
[
D(T ) I ( ξ D(T ))

]
, 0 < ξ < ∞ ,

which we are assuming to be (0,∞)−valued.

• In the case of the logarithmic utility function u(x) = log x , x ∈ (0,∞) , show
that the “log-optimal” trading strategy h∗(·) ∈ H+(w;T ) and its associated
wealth process V∗(·) ≡ V w,h∗(·) are given, respectively, by

h∗(t) = V∗(t) · a−1(t)[ b(t) − r(t)I ] , V∗(t) = w/D(t) (10.6)

for 0 ≤ t ≤ T . Note also that the discounted log-optimal wealth process satisfies

d
(
V∗(t)/B(t)

)
=

(
V∗(t)/B(t)

)
ϑ′(t)

[
ϑ(t) dt + dW (t)

]
. (10.7)
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Remark: Note that no assumption is been made regarding the existence of an
EMM (i.e., that Z(·) should be a martingale). See Karatzas, Lehoczky, Shreve
& Xu (1991) for more information on this problem, and on its much more
interesting incomplete market version d > m , under the assumption that the
volatility matrix σ(·) is of full (row) rank and without assuming the existence
of EMM.

The log-optimal trading strategy of (10.6) has some obviously desirable fea-
tures, discussed in the next exercise. But unlike the functionally-generated
portfolios of the next section, it needs for its implementation knowledge of the
variance/covariance structure and of the mean rates of return; these are very
hard to estimate in practice.

10.7 Exercise: The “Numéraire” Property. Assume that the log-optimal
strategy of (10.6) is defined for all 0 ≤ t < ∞ . Show that it has then the
following “numéraire property”

V w,h(·) /V w,h∗(·) is a supermartingale, ∀ h(·) ∈ H+(w) , (10.8)

and deduce the asymptotic growth optimality property

lim sup
t→∞

1

t

(
log

( V w,h(t)

V w,h∗(t)

))
≤ 0 a.s., ∀ h(·) ∈ H+(w) .

10.8 Exercise (Platen (2006)): Show that the equation for Ψ(·) := V∗(·)/B(·) =
w/Z(·) in (10.7) can be written as

dΨ(t) = α(t) dt +
√

Ψ(t)α(t) · dB(t) , Ψ(0) = w

where B(·) is one-dimensional Brownian motion, and α(t) := Ψ(·) ||ϑ(·)||2 .
Then observe that Ψ(·) is a time-changed and scaled squared Bessel process

in dimension 4 (sum of squares of four independent Brownian motions); that
is, Ψ(·) = X

(
A(·)

)
/4 , where

A(·) :=

∫ ·

0

α(s) ds and X(u) = 4(w + u) + 2

∫ u

0

√
X(v) db(v) , u ≥ 0

in terms of yet another standard, one-dimensional Brownian motion b(·) .

11 Functionally-Generated Portfolios

We shall introduce now a class of new portfolios, called functionally-generated,
that generalize broadly the diversity-weighted ones of section 7. For these new
portfolios one can derive a decomposition of their relative return analogous to
that of (7.6), and this proves useful in the construction and study of arbitrages
relative to the market. Just like (7.6), this new decomposition (11.2) does not
involve stochastic integrals, and opens the possibility for making probability-one
comparisons on given time horizons.
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Suppose that G : Rm → (0,∞) is a C2−function, such that the mapping
x 7→ xi Di log G(x) is bounded on some open neighborhood U of ∆m , for all
i = 1, · · · ,m . Consider also the extended portfolio rule π(·) with weights

πi(t) =


Di log G(µ(t)) + 1 −

m∑

j=1

µj(t)Dj log G(µ(t))


 · µi(t)

︸ ︷︷ ︸

, 1 ≤ i ≤ m.

(11.1)
We call this the extended portfolio generated by G(·) . It can be shown
that the wealth process of this extended portfolio, relative to the market, is
given by the master formula

log

(
V π(T )

V µ(T )

)
= log

(
G(µ(T ))

G(µ(0))

)
+

∫ T

0

g(t) dt

︸ ︷︷ ︸
, 0 ≤ T < ∞ (11.2)

with drift process g(·) given by

g(t) :=
−1

2G(µ(t))

m∑

i=1

m∑

j=1

D2
ijG(µ(t)) · µi(t)µj(t) τµ

ij(t)

︸ ︷︷ ︸
. (11.3)

The quantities of (11.1) depend only on the market weights µ1(t), · · · , µm(t) ,
not on the covariance structure of the market. Therefore (11.1) can be imple-
mented, and its associated wealth-process V π(·) observed through time, only
in terms of the evolution of these market weights over [0, T ] .

The covariance structure enters only in the computation of the drift term
of (11.3). But it should be stressed that in order to compute the “cumulative

effect”
∫ T

0
g(t) dt of this drift over a period of time [0, T ] using past data, there is

no need to know or estimate this covariance structure at all: the equation (11.2)

does this for us in the form
∫ T

0
g(t) dt = log

(
V π(T )G(µ(0))/V µ(T )G(µ(T ))

)
,

which contains only observable quantities.

11.1 Exercise: Establish the "master formula" (11.2).

11.2 Exercise: Suppose the function G(·) is concave – or, more precisely, its
Hessian D2G(x) =

{
D2

ijG(x)
}

1≤i,j≤m
has at most one positive eigenvalue for

each x ∈ ∆n and, if a positive eigenvalue exists, the corresponding eigenvector
is orthogonal to ∆n . Then the portfolio rule π(·) generated by G(·) as in
(11.1) is strict (i.e., each weight πi(·) is non-negative), and the drift term g is
non-negative; if rank

(
D2G(x)

)
> 1 holds for each x ∈ ∆n , then g(·) is positive.

For instance, the choice

• G(·) ≡ 1 generates the market-portfolio;

• G(x) = ϕ1x1 + · · · + ϕmxm generates the portfolio that buys at time t = 0,
and holds until time t = T , a fixed number of shares ϕi in each stock;
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• G(x) =
(
x1 · · ·xm

)1/m
generates the equally-weighted (or “value-line”) port-

folio ηi(·) ≡ 1/m , i = 1, · · · ,m with g(·) ≡ γη
∗ (·) ;

• G(x) =
(
xp

1+· · ·+xp
m

)1/p
for some 0 < p < 1 generates the diversity-weighted

portfolio π(p)(·) , of (7.1) with g(·) ≡ (1 − p) γπ(p)

∗ (·) ;

• Consider the entropy function H(x) := 1 − ∑m
i=1 xi log xi , x ∈ ∆m

++ and,
for any given c ∈ (0,∞) , its modification

Gc(x) := c + H(x) , which satisfies: c < Gc(x) ≤ c + log m, x ∈ ∆m
++ .

(11.4)
This new, modified entropy function, generates an entropy-weighted portfolio
̟c(·) with weights and drift given, respectively, as

̟c
i (t) =

µi(t)

Gc(µ(t))

(
c−log µi(t)

)
, 1 ≤ i ≤ m and gc(t) =

γµ
∗ (t)

Gc(µ(t))
.

(11.5)

11.1 Sufficient Intrinsic Volatility leads to Arbitrage

Broadly accepted practitioner wisdom upholds that “sufficient volatility creates
opportunities in a market”. We shall try to put this intuition on a precise
quantitative basis in Example 11.3 below, by identifying the excess growth rate
of the market portfolio – which also measures the market’s “available intrinsic
volatility”, according to (3.8) and the discussion following it – as a quantity
whose availability can lead to arbitrage opportunities relative to the market.

11.3 Example: Suppose now that in the market M of (1.1), (1.2) there exists
a constant ζ > 0 such that

1

T

∫ T

0

γµ
∗ (t) dt ≥ ζ

︸ ︷︷ ︸
(11.6)

holds almost surely. For instance, this is the case when the excess growth rate
of the market portfolio is bounded away from zero: that is, when

γµ
∗ (t) ≥ ζ , ∀ 0 ≤ t ≤ T︸ ︷︷ ︸ (11.7)

holds almost surely, for some constant ζ > 0 .

Consider again the entropy-weighted portfolio of (11.5), namely

̟c
i (t) =

µi(t)
(
c − log µi(t)

)
∑m

j=1 µj(t)
(
c − log µj(t)

) , i = 1, · · · ,m , (11.8)

now written in a form that makes plain its over-weighting of the small capi-
talization stocks. From (11.2) and the inequalities of (11.4), one sees that the
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relative performance of this portfolio with respect to the market, is given by

log

(
V ̟c

(T )

V µ(T )

)
= log

(
Gc(µ(T ))

Gc(µ(0))

)
+

∫ T

0

γµ
∗ (t)

Gc(µ(t))
dt (11.9)

> − log

(
c + H

(
µ(0)

)

c

)
+

ζT

c + log m

almost surely. Thus, for every time horizon

T > T∗(c) :=
1

ζ

(
c + log m

)
· log

(
1 +

H
(
µ(0)

)

c

)
,

or for that matter any

T > T∗ =
1

ζ
H

(
µ(0)

)
(11.10)

(since limc→∞ T∗(c) = T∗ ) and with c > 0 sufficiently large, the portfolio ̟c(·)
of (11.8) satisfies (5.2) relative to the market, on the given time-horizon [0, T ]. It
is straightforward that (5.1) is also satisfied, with q = c/(c+H(µ(0)) . ⋄

In particular, we have L̟c,µ ≥ ζ/(c + log m) > 0 a.s., under the condition
(11.7) and with the notation of (5.3). Note also that we have not assumed in
this discussion any condition (such as (1.15) or (3.10)) on the volatility structure
of the market, beyond the minimal assumption of (1.2).

Remark: Let us recall here our discussion of the conditions in (6.3): if the
variance/covariance matrix a(·) has all its eigenvalues bounded away from both
zero and infinity, then the condition (11.7) (respectively, (11.6)) is equivalent
to diversity (respectively, weak diversity) on [0,T ]. The point of these latter
conditions is that they guarantee the existence of relative arbitrage even when
volatilities are unbounded and diversity fails. In the next section we shall study
a concrete example of such a situation.

z Figure 1 plots the cumulative market excess growth for the U.S. equities over
most of the twentieth century. This computation does not need any estimation of
covariance structure: from (11.9) we can express this cumulative excess growth

∫ ·

0

γµ
∗ (t) dt =

∫ ·

0

Gc

(
µ(t)

)
· d

(
log

(
V ̟c

(t)

V µ(t)

Gc(µ(0))

Gc(µ(t))

))
,

just in terms of quantities that are observable in the market. The plot suggests
that the U.S. market has exhibited a strictly increasing cumulative excess growth
over this period.

Open Question: Is the condition (11.7) sufficient for the existence of relative
arbitrage over arbitrary (as opposed to sufficiently long) time-horizons?

Remark: For 0 < p ≤ 1 , introduce the quantity

γ π,p
∗ (t) :=

1

2

m∑

i=1

(
πi(t)

)p
τπ
ii(t) (11.11)
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which generalizes the excess growth rate of a portfolio π(·) , in the sense γ π,1
∗ (·) ≡

γ π
∗ (·) . It is shown in Proposition 3.8 of [FK] (2005) that, with 0 < p < 1 , the

a.s. requirement

Γ(T ) ≤
∫ T

0

γ p,µ
∗ (t) dt < ∞ , ∀ 0 ≤ T < ∞ , (11.12)

where Γ : [0,∞) → [0,∞) is a continuous, strictly increasing function with
Γ(0) = 0 , Γ(∞) = ∞ , guarantees that the portfolio

πi(t) := p

(
µi(t)

)p

∑m
j=1

(
µj(t)

)p + (1 − p)µi(t) , i = 1, · · · ,m (11.13)

is an arbitrage opportunity relative to the market, namely P [V π(T ) > V π(T ) ] =
1 , over sufficiently long time-horizons: T > T∗ := Γ−1(m1−p log m/p) .

Open Question: Does (11.12) guarantee the existence of relative arbitrage
opportunities over arbitrary time-horizons?

Open Question: Is there a result on the existence of relative arbitrage, that
generalizes both Example 11.3 and the result outlined in (11.12), (11.13)? What
quantity(ies) might be involved, in place of the market excess growth or its
generalization (11.12)? is there a “best” result of this type?

Open Question: We have presented a few portfolios that lead to arbitrage
relative to the market; they are all functionally generated (F-G). Is there a
“best” such example within that class? Are there similar examples of portfolios
that are not functionally generated, nor trivial modifications thereof? How
representative (or “dense”) in this context is the class of F-G portfolios?

Open Question: Generalize the theory of F-G portfolios to the case of a market
with a countable infinity (m = ∞) of assets, or to some other model with a
variable, unbounded number of assets.

Open Question: What, if any, is the connection of F-G portfolios with the
“universal portfolios” of Cover (1991) and Jamshidian (1992) ?

11.2 Selection by Rank, Leakage, and the Size Effect

An important generalization of the ideas and methods in this section concerns
generating functions that record market weights not according to their name (or
index) i , but according to their rank. In order to present this generalization, let
us recall the order statistics notation of (1.17) and considerfor each 0 ≤ t < ∞
the random permutation

(
pt(1), · · · , pt(m)

)
of (1, · · · ,m) with

µpt(k)(t) = µ(k)(t) , and pt(k) < pt(k +1) if µ(k)(t) = µ(k+1)(t) (11.14)

for k = 1, . . . ,m. In words: pt(k) is the name (index) of the stock with the
kth largest relative capitalization at time t, and ties are resolved by resorting
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to the lowest index. Using Itô’s rule for convex functions of semimartingales
(e.g. Karatzas & Shreve [KS] (1991), section 3.7), one can obtain the following
analogue of (2.5) for the ranked market-weights

dµ(k)(t)

µ(k)(t)
=

(
γpt(k)(t) − γµ(t) +

1

2
τµ
(kk)(t)

)
dt +

1

2

[
dLk,k+1(t) − dLk−1,k(t)

]

+
d∑

ν=1

(
σpt(k)ν(t) − σµ

ν (t)
)

dWν(t) (11.15)

for each k = 1, . . . ,m − 1 . Here the quantity L k,k+1(t) ≡ ΛΞk
(t) is the semi-

martingale local time at the origin, accumulated by the non-negative process

Ξk(t) := log
(
µ(k)/µ(k+1)

)
(t) , 0 ≤ t < ∞ (11.16)

by the calendar time t ; it measures the cumulative effect of the changes that
have occurred during [0, t] between ranks k and k + 1 . We are also setting
L0,1(·) ≡ 0 , Lm,m+1(·) ≡ 0 and τµ

(kℓ)(·) := τµ
pt(k)pt(ℓ)

(·) .

Speaking intuitively, and somewhat loosely, the quantity Lk,k+1(t) (respec-
tively, Lk−1,k(t)) accounts in (11.16) for the cumulative upward (resp., down-
ward) “pressure” exerted on the kth-ranked stock by its immediate follower
(resp., leader) in the relative capitalization rank.

A derivation of this result, under appropriate conditions that we choose not
to broach here, can be found on pp.76-79 of Fernholz (2002); see also Banner &
Ghomrasni (2006) for generalizations.

With this setup, we have then the following generalization of the master
formula (11.2): consider a function G : Rm → (0,∞) exactly as assumed there,
but now written in the form

G(x1, · · · , xm) = G
(
x(1), · · · , x(m)

)
, ∀ x ∈ ∆m

for some G ∈ C2(∆m) . Then with the shorthand µ(·)(t) :=
(
µpt(1)(t), · · · , µpt(m)(t)

)′
and the notation

Γ(T ) := −
∫ T

0

1

2G
(
µ(·)(t)

)
m∑

k=1

m∑

ℓ=1

D2
kℓ G

(
µ(·)(t)

)
· µ(k)(t)µ(ℓ)(t)τ

µ
(kℓ)(t) dt

+
1

2

m−1∑

k=1

[
π pt(k+1)(t) − π pt(k)(t)

]
dLk,k+1(t) , (11.17)

one can show that the performance of the portfolio π(·) in

π pt(k)(t) =


Dk log G

(
µ(·)(t)

)
+ 1 −

m∑

j=1

µ(ℓ)(t)Dℓ log G
(
µ(·)(t)

)

 · µ(k)(t) ,

(11.18)
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1 ≤ k ≤ m , relative to the market, is given as

log

(
V π (T )

V µ(T )

)
= log

(
G
(
µ(·)(T )

)

G
(
µ(·)(0)

)
)

+ Γ(T ) , 0 ≤ T < ∞ . (11.19)

We say that π(·) is then the portfolio generated by the function G(·) . The
details of the proof can be found in Fernholz (2002), pp.79-83.

¶ For instance, G(x) = x(1) gives the portfolio π pt(k)(·) = δ1k , k = 1, · · · ,m
that invests in the largest stock only. Its relative performance

log

(
V π (T )

V µ(T )

)
= log

(
µ(1)(T )

µ(1)(0)

)
− 1

2
L1,2(T ) , 0 ≤ T < ∞

will suffer in the long run, if there are many changes in leadership: in order for
the biggest stock to do well relative to the market, it must crush all competition!

11.4 Example: The Size Effect is the tendency of small stocks to have
higher long-term returns relative to their larger brethren. The formula of (11.19)
affords a simple, structural explanation of this observed phenomenon, as follows.

Fix an integer n ∈ {2, · · · ,m − 1} and consider GL(x) = x(1) + · · · + x(n) ,
GS(x) = x(n+1) + · · · + x(m) . These functions generate, respectively, the large-
cap-weighted portfolio

ζpt(k)(t) =
µ(k)(t)

GL(µ(t))
, k = 1, · · · , n and ζpt(k)(t) = 0 , k = n + 1, · · · ,m

(11.20)
and the small-cap-weighted portfolio

ηpt(k)(t) =
µ(k)(t)

GS(µ(t))
, k = n+1, · · · ,m and ηpt(k)(t) = 0 , k = 1, · · · , n ,

(11.21)
respectively. According to (11.19), the performances of these portfolios relative
to the market are given by

log

(
V ζ(T )

V µ(T )

)
= log

(
GL(µ(T ))

GL(µ(0)

)
− 1

2

∫ T

0

ζ(n)(t) dLn,n+1(t) , (11.22)

log

(
V η (T )

V µ(T )

)
= log

(
GS(µ(T ))

GS(µ(0)

)
+

1

2

∫ T

0

η(n)(t) dLn,n+1(t) , (11.23)

respectively. Therefore,

log

(
V η (T )

V ζ(T )

)
= log

(
GS(µ(T ))GL(µ(0))

GL(µ(T )GS(µ(0)

)
+

∫ T

0

ζ(n)(t) + η(n)(t)

2
dLn,n+1(t) .

(11.24)
If there is “stability” in the market, in the sense that the ratio of the relative
capitalization of small to large stocks remains stable over time, then the first
term on the right-hand side of (11.24) does not change much – whereas the
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second term keeps increasing and accounts for the better relative performance
of the small stocks. Note that this argument does not invoke at all any putative
assumption about “greater riskiness” of the smaller stocks.

The paper Fernholz & Karatzas (2006) studies conditions under which such
stability in relative capitalizations prevails, and contains further discussion.

11.5 Remark: Estimation of Local Times. Hard as this might be to have guessed
from the outset, the local times Ln,n+1(·) ≡ ΛΞn

(·) appearing in (11.15), (11.17)
can be estimated in practice pretty accurately; indeed, (11.22) gives

Ln,n+1(·) =

∫ ·

0

2

ζ(n)(t)
d

(
log

(
GL(µ(t))

GL(µ(0))

V µ(t)

V ζ(t)

))
, n = 1, · · · ,m − 1 ,

(11.25)
and the quantity on the right-hand side is completely observable.

11.6 Exercise: Leakage in a Diversity-Weighted Index of Large Stocks.
With n and ζ(·) as in Example 11.4 and fixed p ∈ (0, 1), consider the diversity-
weighted, large-capitalization index

π♯
pt(k)(t) =

(
µ(k)(t)

)p

∑n
ℓ=1

(
µ(ℓ)(t)

)p , 1 ≤ k ≤ n and π♯
pt(k)(t) = 0 , n+1 ≤ k ≤ m

(11.26)

generated by G♯
p(x) :=

(∑n
ℓ=1

(
x(ℓ)

)p)1/p
, by analogy with (7.5), (7.1).

Express the performance of (11.26) relative to the entire market as

log

(
V π♯

(T )

V µ (T )

)
= log

(
G♯

p(µ(T ))

G♯
p(µ(0))

)
+

∫ T

0

(1−p)γπ♯

∗ (t)dt−
∫ T

0

π♯
(n)(t)

2
dLn,n+1(t) ,

and relative to the large-cap-weighted portfolio ζ(·) of (11.20) as

d log

(
V π♯

(t)

V ζ (t)

)
= d log Gp

(
ζ(1)(t), · · · , ζ(n)(t)

)
+ (1 − p)γπ♯

∗ (t)dt

+
1

2

(
ζ(n)(t) − π♯

(n)(t)
)
dLn,n+1(t) (11.27)

in the notation of (7.5). Because π♯
(n)(·) ≥ ζ(n)(·) from (7.8) and the remark

following it, the integral of the last term in (11.27) is monotonically decreasing.
It represents the “leakage” that occurs when a capitalization-weighted portfolio
is contained inside a larger market, and stocks cross-over (leak) from the cap-
weighted to the market portfolio.(
Hint: Use the property Gp(s1, · · · , sm) = sGp(

s1

s , · · · , sm

s ) , s := s1 + · · · +
sm of the function in (7.5), to get G♯

p(µ(t))/GL(µ(t)) = Gp

(
ζ(1)(t), · · · , ζ(n)(t)

)
.
)
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12 Stabilization by Volatility

We shall see in this section that the condition (11.7) is satisfied on every time-
horizon [0, T ] , T ∈ (0,∞) in an abstract market M with

d
(
log Si(t)

)
=

α

2µi(t)
dt +

1√
µi(t)

· dWi(t)

︸ ︷︷ ︸
, i = 1, · · · ,m . (12.1)

Here α ≥ 0 is a given real constant, and m ≥ 2 an integer. The theory
developed by Bass & Perkins (2002) shows that the resulting system of stochastic
differential equations

dSi(t) =
1 + α

2

(
S1(t)+. . .+Sm(t)

)
dt+

√
Si(t)

(
S1(t) + . . . + Sm(t)

)
dWi(t) ,

(12.2)

i = 1, . . . ,m , for the ∆m
++−valued diffusion process S(·) =

(
S1(·), · · · , Sm(·)

)′
,

determines uniquely its distribution; and that the conditions (1.2), (5.4) are sat-
isfied by the processes bi(·) = (1+α)/2µi(·) , σiν(t) = (µi(t))

−1/2 δiν , r(·) ≡ 0
and ϑν(·) = 1/2

√
µν(·) , 1 ≤ i, ν ≤ m . The reader might wish to observe that

condition (3.10) is satisfied in this case, in fact with ε = 1 ; but (1.15) fails.

The model of (12.1) assigns to all stocks the same log-drift γi(·) ≡ 0 , and
volatilities σiν(t) = (µi(t))

−1/2 δiν that are largest for the smallest stocks and
smallest for the largest stocks. Not surprisingly then, individual stocks fluctuate
rather widely in a market of this type; in particular, diversity fails on [0, T ]; see
Exercises 12.2 and 12.3.

12.1 Stability and Arbitrage Properties

Yet despite these fluctuations, the overall market has a very stable behavior.
We call this phenomenon stabilization by volatility in the case α = 0 ; and
stabilization by both volatility and drift in the case α > 0 .

Indeed, the quantities aµµ(·) , γµ
∗ (·) , γµ(·) are computed from (2.7), (1.13),

(1.12), respectively, as

aµµ(·) ≡ 1 , γµ
∗ (·) ≡ γ∗ :=

m − 1

2
> 0 , γµ(·) ≡ γ :=

[
(1 + α)m − 1

]

2
> 0 .

(12.3)
This, in conjunction with (2.2), computes the total market capitalization

S(t) = S1(t) + . . . + Sm(t) = S(0) · e γt+B(t) , 0 ≤ t < ∞ (12.4)

as the exponential of the standard, one-dimensional Brownian motion B(·) :=∑m
ν=1

∫ ·

0

√
µν(s) dWν(s) , plus drift γt > 0 . In particular, the overall market

and the largest stock S(1)(·) = max1≤i≤m Si(·) grow at the same, constant rate:

lim
T→∞

(
1

T
log S(T )

)
= lim

T→∞

(
1

T
log S(1)(T )

)
= γ , a.s. (12.5)
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On the other hand, according to Example 11.3 there exist in this model portfolios
that lead to arbitrage opportunities relative to the market, at least on time-
horizons [0, T ] with T ∈ (T∗,∞) , where

T∗ :=
2H(µ(0))

m − 1
≤ 2 log m

m − 1
.

To wit: we can have relative arbitrages in non-diverse markets with unbounded
volatilities. The last upper bound in the above expression becomes very small
as the “size” m of the market increases, leading to the plausible conjecture that
it should be possible to construct such relative arbitrages over any given time
horizon with T ∈ (0,∞) . The validity of this conjecture has been established
recently by A.Banner & D.Fernholz (2006).

12.2 Bessel Processes

The crucial observation now, is that the solution of the system (12.1) can be ex-
pressed in terms of the squares of independent Bessel processes R1(·), . . . ,Rm(·)
in dimension κ := 2(1 + α) ≥ 2 , and of an appropriate time-change:

Si(t) = R2
i

(
Λ(t)

)
, 0 ≤ t < ∞ , i = 1, . . . ,m , (12.6)

where

Λ(t) :=
1

4

∫ t

0

S(u) du =
S(0)

4

∫ t

0

e γs+W(s) ds , 0 ≤ t < ∞ (12.7)

and

Ri(u) =
√

Si(0) +
κ − 1

2

∫ u

0

dξ

Ri(ξ)
+ Wi(u) , 0 ≤ u < ∞ . (12.8)

Here, the driving processes Wi(·) :=
∫ Λ−1(·)

0

√
Λ′(t) dWi(t) are independent,

standard one-dimensional Brownian motions (e.g. [KS] (1991), pp.157-162). In
a similar vein, we have the representation S(t) = R2

(
Λ(t)

)
, 0 ≤ t < ∞ of the

total market capitalization, in terms of the Bessel process

R(u) =
√

S(0) +
mκ − 1

2

∫ u

0

dξ

R(ξ)
+ W(u) , 0 ≤ u < ∞ (12.9)

in dimension mκ , and of yet another one-dimensional Brownian motion W(·) .

This observation provides a wealth of structure, which can be used then to
study the asymptotic properties of the model (12.1).

12.1 Exercise: Justify the representations of (12.6)-(12.9).

12.2 Exercise: For the case α > 0 (κ > 2 ) , obtain the ergodic property

lim
u→∞

(
1

log u

∫ u

0

dξ

R2
i (ξ)

)
=

1

κ − 2
=

1

2α
, a.s.
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(a consequence of the Birkhoff ergodic theorem and of the strong Markov prop-
erty of the Bessel process), as well as the Lamperti representation

Ri(u) =
√

si · eαϑ+Bi(ϑ)

∣∣∣∣∣
ϑ =

∫
u
0

R
−2
i (ξ) dξ

, 0 ≤ u < ∞

for the Bessel process Ri(·) in terms of the exponential of a standard Brownian
motion Bi(·) with positive drift α > 0 . Deduce the a.s. properties

lim
u→∞

(
log Ri(u)

log u

)
=

1

2
, lim

t→∞

(
1

t
log Si(t)

)
= γ , (12.10)

lim
T→∞

1

T

∫ T

0

aii(t) dt = lim
T→∞

1

T

∫ T

0

dt

µi(t)
=

2 γ

α
= m +

m − 1

α
, (12.11)

for each i = 1, . . . ,m . In particular, all stocks grow at the same asymptotic
rate γ > 0 as does the entire market, and the model of (12.1) is coherent in the
sense of Exercise 6.1.

12.3 Exercise: In the case α = 0 (κ = 2 ) , show that

lim
u→∞

(
log Ri(u)

log u

)
=

1

2
holds in probability ,

but that we have almost surely:

lim sup
u→∞

(
log Ri(u)

log u

)
=

1

2
, lim inf

u→∞

(
log Ri(u)

log u

)
= −∞ .

Deduce, from this and (12.5), that

lim
t→∞

(
1

t
log Si(t)

)
= γ holds in probability, (12.12)

but also that

lim sup
t→∞

(
1

t
log Si(t)

)
= γ , lim inf

t→∞

(
1

t
log Si(t)

)
= −∞ (12.13)

hold almost surely. To wit, individual stocks can “crash” in this case, despite
the overall stability of the market; and coherence now fails.

(Hint: Use the following zero-one law of Spitzer (Transactions of the American
Mathematical Society, 1958): For a decreasing function h(·) we have

P

(
Ri(u) ≥ u 1/2 h(u) for all u > 0 sufficiently large

)
= 1 or 0 ,

depending on whether the series
∑∞

k=1

(
k | log h(k)|

)−1
converges or diverges.)
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12.4 Exercise: In the case α = 0 (κ = 2 ) , show that

lim
u→∞

P
[
µi

(
Λ−1(u)

)
> 1 − δ

]
= δ m−1

holds for every i = 1, . . . ,m and δ ∈ (0, 1) ; here Λ−1(·) = 4
∫ ·

0
R−2(ξ) dξ is

the inverse of the time-change Λ(·) in (12.7), and R(·) is the Bessel process in
(12.9). Deduce that this model is not diverse on [0,∞) .

12.5 Exercise: In the case α = 0 (κ = 2 ) , compute the exponential (strict)
local martingale of (5.5) as

Z(t) =

( √
s1 . . . sm

R1(u) . . . Rm(u)
exp

[
1

2

∫ u

0

( m∑

i=1

R−2
i (ξ)

)
dξ

]) ∣∣∣∣∣
u=Λ(t)

.

12.6 Exercise: In the context of the volatility-stabilized model of this section,
compute the variance of the diversity-weighted portfolio of (7.1) with p = 1/2 :

π
(p)
i (t) =

√
µi(t)∑m

j=1

√
µj(t)

, i = 1, · · · ,m

Show that we have the relative arbitrage P [V π(p)

(T ) > V µ(T ) ] = 1 , at least
on time-horizons [0, T ] with T > (8 log m)/(m − 1) .

Furthermore, show that this diversity-weighted portfolio outperforms very
significantly the market over long time-horizons:

Lπ(p),µ := lim inf
T→∞

1

T
log

(
V π(p)

(T )

V µ(T )

)
= lim inf

T→∞

1

2T

∫ T

0

γπ(p)

∗ (t) dt ≥ m − 1

8
,

almost surely. Open Question: Do the indicated limits exist? Can they be
computed in closed form?

12.7 Exercise: For the equally-weighted portfolio ηi(·) ≡ 1/m , i = 1, · · · ,m
in the volatility-stabilized model with α > 0 verify, using (12.5), (12.10) and
(12.11), that the limit

L η,µ := lim
T→∞

1

T
log

(
V η(T )

V µ(T )

)
= lim

T→∞

1

T

∫ T

0

γη
∗ (t) dt

of (5.3) exists a.s. and equals

L η,µ =
m − 1

2m

(
1 +

1 − (1/m)

α

)
.

In other words: equal-weighting, with its bias towards the small-capitalization
stocks, outperforms significantly the market over long time-horizons.
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12.8 Exercise: Show that in the context of this section, the extended portfolio

π̂i(t) :=
1 + α

2
−

( m

2
(1 + α) − 1

)
µi(t) = ληi(t)+(1−λ)µi(t) , i = 1, · · · ,m

with λ = m(1+α)/2 ≥ 1 (that is, long in the equally-weighted η(·) of Exercise
12.7, and short in the market), has the numéraire property

V π(·)/V π̂(·) is a supermartingale, for every extended portfolio π(·) .

Open Question: Does the a.s. limit L π̂,µ := limT→∞
1
T log

(
V π̂(T )/V µ(T )

)

exist? If so, can its value be computed in closed form?

Open Question: For the diversity-weighted portfolio ̟c
i (·) of (11.8), compute

in the context of the volatility-stabilized model the expression

L̟c,µ := lim inf
T→∞

1

T
log

(
V ̟c

(T )

V µ(T )

)
= γ∗ · lim inf

T→∞

1

T

∫ T

0

dt

c + H(µ(t))

of (5.3), using (11.8) and (12.3). But note already from these expressions that

L̟c,µ ≥ m − 1

2(c + log m)
> 0 a.s. ,

which shows again a considerable outperforming of the market over long time-
horizons. Do the indicated limits exist, as one would expect?

Open Questions: For fixed t ∈ (0,∞) , determine the distributions of µi(t) ,
i = 1, · · · ,m and of the largest µ(1)(t) := max1≤i≤m µi(t) and smallest µ(m)(t)
:= min1≤i≤m µi(t) market weights.

What can be said about the behavior of the averages 1
T

∫ T

0
µ(k)(t) dt , par-

ticularly for the largest ( k = 1 ) and the smallest ( k = m ) stocks?
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13 Ranked-Based Models

Size is one of the most important descriptive characteristics of financial assets.
One can understand a lot about equity markets by observing and making sense
of the continual ebb and flow of small-, medium- and large-capitalization stocks
in their midst. A particularly convenient way to study this feature is by look-
ing at the evolution of the capital distribution curve log k 7→ log µ(k)(t) ; that
is, the logarithms of the market weights arranged in descending order, versus
the logarithms of their respective ranks (see also (13.13) below for the steady-
state counterpart). As shown on p. 95 of Fernholz (2002), this log-log plot has
exhibited remarkable stability over the decades of the last century.

It is of considerable importance, then, to have available models which de-
scribe this flow of capital and exhibit stability properties for capital distribution
that are in at least broad agreement with these observations.

The simplest model of this type assigns growth rates and volatilities to the
various stocks, not according to their names (the indices i ) but according to
their ranks within the market’s capitalization. More precisely, let us pick real
numbers γ , g1 , . . . , gm , σ1 > 0 , . . . , σm > 0 satisfying conditions that will be
specified in a moment, and prescribe growth rates γi(·) and volatilities σiν(·)

γi(t) = γ +

m∑

k=1

gk 1
Q

(k)
i

(S(t)) , σiν(t) = γ +

m∑

k=1

σk 1
Q

(k)
i

(S(t)) (13.1)

for 1 ≤ i, ν ≤ m with d = m and S(·) =
(
S1(·), · · · , Sm(·)

)′
. Here

{
Q(k)

i

}
1≤i,k≤m

is a collection of polyhedral domains in Rm , with the properties

{
Q(k)

i

}
1≤i≤m

is a partition of Rm , for each fixed k ,

{
Q(k)

i

}
1≤k≤m

is a partition of Rm , for each fixed i , and the interpretation:

y = (y1, . . . , ym) ∈ Q(i)
k means that yi is ranked kth among y1, . . . , ym .

(Ties are resolved by resorting to the lowest index i ; for instance, Q(1)
i ≡ Qi ,

1 ≤ i ≤ m is the partition of Rm of section 9, right below (9.3); and so on.)

It is clear intuitively that, if such a model is to have some stability properties,
it has to assign considerably higher growth rates to the smallest stocks than to
the biggest ones. It turns out that the right conditions for stability are

g1 < 0 , g1+g2 < 0 , . . . , g1+· · ·+gm−1 < 0 , g1+· · ·+gm = 0 . (13.2)

These conditions are satisfied in the simplest model of this type, the Atlas Model
that assigns

γ = g > 0 , gk = −g for k = 1, . . . ,m−1 and gm = (m−1)g , (13.3)

thus γi(t) = mg · 1
Q

(m)
i

(S(t)) in (13.1): zero growth rate goes to all the stocks

but the smallest, which then becomes responsible for supporting the entire
growth mg of the market.
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These specifications amount to postulating that the log-capitalizations Yi(·) :=
log Si(·) , i = 1, · · · ,m satisfy the stochastic differential equations

dYi(t) =

(
γ +

m∑

k=1

gk 1
Q

(i)
k

(Y(t))

)
dt +

m∑

k=1

σk 1
Q

(i)
k

(Y(t)) dWi(t) , (13.4)

with Yi(0) = yi = log si . As long as the vector Y(·) =
(
Y1(·), · · · , Ym(·)

)′
is

in the polyhedron Q(i)
k , the equation (13.3) posits that the coördinate process

Yi(·) evolves like a Brownian motion with drift γ + gk and variance σ2
k .

The theory of Bass & Pardoux (Probability Theory & Related Fields, 1987)
guarantees that this system has a weak solution, which is unique in distribu-
tion; once this solution has been constructed, we obtain stock capitalizations as
Si(·) = eYi(·) that satisfy (1.1), (13.1).

♠ An immediate observation from (13.3) is that the sum Y (·) :=
∑m

i=1 Yi(·)
of log-capitalizations satisfies

Y (t) = y + mγ t +
m∑

k=1

σk Bk(t) , 0 ≤ t < ∞

with y :=
∑m

i=1 yi , and Bk(·) :=
∑m

i=1

∫ ·

0
1
Q

(i)
k

(Y(s)) dWi(s) , k = 1, . . . m

independent scalar Brownian motions. The strong law of large numbers implies
directly

lim
T→∞

1

T

m∑

i=1

Yi(T ) = mγ , a.s.

Then it takes a considerable amount of work (see Appendix in [BFK] 2005), in
order to strengthen this result to

lim
T→∞

1

T
log Xi(T ) = lim

T→∞

Yi(T )

T
= γ a.s., for every i = 1, . . . ,m .

(13.5)

13.1 Exercise: Use (13.5) to show that the model specified by (1.5), (13.1) is
coherent in the sense of Exercise 6.1.

Remark: Taking Turns in the Various Ranks. From (13.4), (13.5) and the
strong law of large numbers for Brownian motion, we deduce that the quantity∑m

k=1 gk

(
1
T

∫ T

0
1
Q

(k)
i

(Y(t)) dt
)

converges a.s. to zero, as T → ∞ . For the

Atlas model in (13.3), this expression becomes g
(

m
T

∫ T

0
1
Q

(m)
i

(Y(t)) dt − 1
)

,

and we obtain

lim
T→∞

1

T

∫ T

0

1
Q

(m)
i

(Y(t)) dt =
1

m
a.s., for every i = 1, . . . ,m .

Namely, “each stock spends roughly (1/m)th of the time, acting as Atlas”.
Again, with considerable work, this is strengthened in [BFK] to

lim
T→∞

1

T

∫ T

0

1
Q

(k)
i

(
Y(t)

)
dt =

1

m
, a.s., for every 1 ≤ i, k ≤ m

︸ ︷︷ ︸
, (13.6)
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valid not just for the Atlas model, but under the more general conditions of
(13.2). Thanks to the symmetry inherent in this model, “each stock spends
roughly (1/m)th of the time in any given rank”; see Proposition 2.3 in [BFK].

13.1 Ranked Price Processes

For many purposes in the study of these models, it makes sense to look at the
ranked log-capitalization processes

Zk(t) :=

m∑

i=1

Yi(t) · 1Q(k)
i

(Y(t)) , 0 ≤ t < ∞ (13.7)

for 1 ≤ k ≤ m . From these, we get the ranked capitalizations via S(k)(t) =

eZk(t) , with notation similar to (1.17). Using an extended Tanaka-type formula,
as we did in (11.15), it can be seen that the processes of (13.7) satisfy

Zk(t) = Zk(0) + (gk + γ) t + σk Bk(t) +
1

2

[
Lk,k+1(t) − Lk−1,k(t)

]
(13.8)

for 0 ≤ t < ∞ in that notation. Here, as in subsection 11.2, the continu-
ous increasing process Lk,k+1(·) := ΛΞk

(·) is the semimartingale local time at
the origin of the continuous, non-negative process Ξk(·) = Zk(·) − Zk+1(·) =
log

(
µ(k)(·)/µ(k+1)(·)

)
of (11.16) for k = 1, · · · ,m − 1 ; and we make again the

convention L 0,1(·) ≡ Lm,m+1(·) ≡ 0 .

These local times play a big rôle in the analysis of this model. The quantity
Lk,k+1(T ) represents again the cumulative amount of change between ranks k
and k + 1 that occurs over the time-interval [0, T ]. Of course, in a model such
as the one studied here, the intensity of changes in the lower ranks should be
higher than in the top ranks.

This is borne out by experiment: as we saw in Remark 11.5 it turns out,
somewhat surprisingly, that these local times can be estimated based only on
observations of relative market weights and of the performance of simple portfo-
lio rules over [0, T ] ; and that they exhibit a remarkably “linear” increase, with
positive slopes that increase with k (see Fernholz (2002), Figure 5.2).

The analysis of the present model agrees with these observations: it follows
from (13.5) and the dynamics of (13.8) that, for k = 1, . . . ,m − 1 , we have

lim
T→∞

1

T
Lk,k+1(T ) = λk,k+1 := −2

(
g1 + . . . + gk) > 0 , a.s. (13.9)

Our stability condition guarantees that these limits are positive, as they should
be; and in typical examples, such as the Atlas model where λk,k+1 = kg , they
increase with k.

13.2 Some Asymptotics

A slightly more careful analysis of these local times reveals that the non-negative
semimartingale Ξk(·) of (11.16) can be cast in the form of a Skorohod problem

Ξk(t) = Ξk(0) + Θk(t) + ΛΞk
(t) , 0 ≤ t < ∞ ,
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as the reflection, at the origin, of the semimartingale

Θk(t) = (gk − gk+1) t − 1

2

[
Lk−1,k(t) + Lk+1,k+2(t)

]
+ sk · W̃ (k)(t) ,

where sk :=
(
σ2

k + σ2
k+1

)1/2
and W̃ (k)(·) :=

(
σk Bk(·) − σk+1 Bk+1(·)

)
/sk is

standard Brownian Motion.

As a result of these observations and of (13.9), we conclude that the process
Ξk(·) behaves asymptotically like Brownian motion with drift −λk,k+1 < 0 ,
variance σ2

k , and reflection at the origin. Consequently,

lim
t→∞

log

(
µ(k)(t)

µ(k+1)(t)

)
= lim

t→∞
Ξk(t) = ξk , in distribution (13.10)

where, for each k = 1, . . . ,m − 1 the random variable ξk has an exponential
distribution P(ξk > x) = e−rkx , x ≥ 0 with parameter

rk :=
2λk,k+1

s2
k

= − 4(g1 + · · · + gk)

σ2
k + σ2

k+1

> 0 . (13.11)

13.3 The Steady-State Capital Distribution Curve

We also have from (13.10) the strong law of large numbers

lim
T→∞

1

T

∫ T

0

g
(
Ξk(t)

)
dt = E

[
g(ξk)

]
, a.s.

for every rank k, and every measurable function g : [0,∞) → R which sat-
isfies

∫ ∞

0
|g(x)| e−rkx dx < ∞ ; see Khas’minskii (Theory of Probability & Its

Applications, 1960). In particular,

lim
T→∞

1

T

∫ T

0

(
log

µ(k)(t)

µ(k+1)(t)

)
dt = E

[
ξk

]
=

1

rk
=

s2
k

2λk,k+1
, a.s. (13.12)

This observation provides a tool for studying the steady-state capital distribu-
tion curve

log k 7−→ lim
T→∞

1

T

∫ T

0

log
(
µ(k)(t)

)
dt =: n(k) , k = 1, · · · ,m − 1 (13.13)

alluded to at the beginning of this section (more on the existence of this limit in
the next subsection). To estimate the slope q(k) of this curve at the point
log k , we use (13.12) and the estimate log(k + 1) − log k ≈ 1/k , and obtain in
the notation of (13.14):

q(k) ≈ n(k) − n(k + 1)

log k − log(k + 1)
= − k

rk
=

k
(
σ2

k + σ2
k+1

)

4(g1 + · · · + gk)
< 0

︸ ︷︷ ︸
. (13.14)
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♠ Consider, for instance, an Atlas model as in (13.3). With equal variances
σ2

k = σ2 > 0 , this slope is the constant −σ2/2g ; the steady-state capital
distribution curve can be approximated by a straight line. On the other hand,
with variances σ2

k = σ2 + ks2 growing linearly with rank (as indeed suggested
by Figure 5.5 in Fernholz (2002)), we get for large k the approximate slope

q(k) ≈ − 1

2g

(
σ2 + ks2

)
, k = 1 , · · · ,m − 1

This suggest a decreasing, concave steady-state capital distribution curve, whose
(negative) slope becomes more and more pronounced in magnitude with increas-
ing rank, very much in accord with the features of Figure 5.1 in Fernholz (2002).

Remark: Estimation of Parameters in this Model. Let us remark that (13.9) pro-

vides a method for obtaining estimates λ̂k,k+1 of the parameters λk,k+1 , from
the observable random variables Lk,k+1(T ) that measure cumulative change
between ranks k and k + 1 ; recall Remark 11.5 once again. Then estimates of
the parameters gk follow, as ĝk =

(
λ̂k−1,k − λ̂k,k+1

)
/2 ; and the parameters s2

k

can be estimated from (13.12) and from the increments of the observable capital

distribution curve of (13.13), namely ŝ 2
k = 2 λ̂k,k+1[ n(k) − n(k + 1) ] . Finally,

we make the following selections for estimating the variances:

σ̂ 2
k =

1

4

(
ŝ 2
k−1 + ŝ 2

k

)
, k = 2, · · · ,m − 1 , σ̂ 2

1 =
1

2
ŝ 2
1 , σ̂ 2

m =
1

2
ŝ 2
m−1 .

13.4 Stability of the Distribution of Capital

Let us now go back to (13.10); it can be seen that this leads to the convergence
of the ranked market weights

lim
t→∞

(
µ(1)(t) , . . . , µ(m)(t)

)
= (N1, . . . , Nm) , in distribution (13.15)

to the random variables

Nm :=
(
1 + e ξm−1 + · · · + e ξm−1+···+ξ1

)−1
and Nk := Nm · e ξm−1+···+ξk

(13.16)
for k = 1, . . . ,m − 1 . These are the long-term (steady-state) relative weights
of the various stocks in the market, ranked from largest (N1) to smallest (Nm).
Again, we have from (13.15) the strong law of large numbers

lim
T→∞

1

T

∫ T

0

f
(
µ(1)(t) , . . . , µ(m)(t)

)
dt = E

[
f(N1, . . . , Nm)

]
, a.s. (13.17)

for every bounded and measurable f : ∆m
++ → R . Note that (13.12) is a special

case of this result, and that the function n(·) of (13.13) takes the form

n(k) = E [ log(Nk) ] =

m−1∑

ℓ=k

1

rℓ
− E

[
log

(
1 + e ξm−1 + · · · + e ξm−1+···+ξ1

) ]

︸ ︷︷ ︸
.

(13.18)
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This is the good news; the bad news is that we do not know the joint
distribution of the exponential random variables ξ1 , · · · , ξm−1 in (13.10), so we
cannot find that of N1 , · · · , Nm either. In particular, we cannot “pin down” the
steady-state capital distribution function of (13.18), though we know precisely
its increments n(k + 1) − n(k) and thus are able to estimate the slope of the
steady-state capital distribution curve, as indeed we did in (13.14). In [BFK]
a simple, certainty-equivalent approximation of the steady-state ranked market
weights of (13.16) is carried out, and is used to study in detail the behavior of
simple portfolio rules in such a model. We refer to this paper the reader who is
interested in the details.

Major Open Question: What can be said about the joint distribution of the
long-term (steady-state) relative market weights of (13.16)? Can it be charac-
terized, computed, or approximated in a good way? What can be said about
the fluctuations of log(Nk) with respect to their means n(k) in (13.18)?

Research Question and Conjecture: Study the steady-state capital distri-
bution curve of the volatility-stabilized model in (12.1). With α > 0 , check the
validity of the following conjecture: the slope q(k) ≈ (n(k)− n(k + 1))/(log k −
log(k + 1)) of the capital distribution n(·) at log k , should be given as

q(k) ≈ −4γ khk , hk := E

(
log Q(k) − log Q(k+1)

Q(1) + · · · + Q(m)

)
,

where Q(1) ≥ · · · ≥ Q(m) are the descending order statistics of a random sample
from the chi-square distribution with κ = 2(1 + α) degrees of freedom.

If this conjecture is correct, does k hk increase with k ?
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14 Proofs of Selected Results

Exercise 5.3: Suppose that the processes Ŝi(·) are all martingales; then so

is their sum, the process Ŝ(·) := Z(·)S(·)/B(·) . We normalize as w = S(0) =
1 , so that V µ(·) ≡ S(·) . With h(·) ≡ V µ(·)µ(·) and ϑµ(t) := σ′(t)µ(t) −
ϑ(t) , the equation (5.9) takes then the form dV̂ µ(t) = V̂ µ(t)(ϑµ(t))′ dW (t) ,
or equivalently

V̂ µ(t) = exp

(∫ t

0

(ϑµ(s))′ dW (s) − 1

2

∫ t

0

||ϑµ(s)||2 ds

)
, (14.1)

and with W̃ (t) := W (t) −
∫ t

0
ϑµ(s) ds , 0 ≤ t ≤ T we get

(
V̂ µ(t)

)−1
= exp

(
−

∫ t

0

(ϑµ(s))′ dW̃ (s) − 1

2

∫ t

0

||ϑµ(s)||2 ds

)
.

The process W̃ (·) is Brownian motion under the equivalent probability measure

P̃T (A) := E [ V̂ µ(T ) · 1A ] on F(T ), and Itô’s rule gives

d

(
V π(t)

V µ(t)

)
=

(
V π(t)

V µ(t)

)
·

m∑

i=1

d∑

ν=1

(
πi(t) − µi(t)

)
σiν(t) dW̃ν(t) (14.2)

for an arbitrary extended portfolio π(·), in conjunction with d(V π(t)/B(t)) =

(V π(t)/B(t))π′(t) σ(t) dŴ (t) of (1.9) and (5.6) . Then the boundedness condi-

tion (1.15) implies that the ratio V π(·)/V µ(·) is a martingale under P̃T ; in par-

ticular, EP̃T [V π(T )/V µ(T ) ] = 1 . But if π(·) satisfies P[V π(T ) ≥ V µ(T ) ] = 1 ,

we get P̃T [V π(T ) ≥ V µ(T ) ] = 1 ; in conjunction with EP̃T [V π(T )/V µ(T ) ] =

1 , this leads to P̃T [V π(T ) = V µ(T ) ] = 1 , or equivalently V π(T ) = V µ(T )
a.s. P , contradicting (5.2). Thus

Ŝj(t) = sj · exp

(∫ t

0

(ϑ(j)(s))′ dW (s) − 1

2

∫ t

0

||ϑ(j)(s)||2 ds

)
(14.3)

of (5.8) is a strict local martingale, for some (at least one) j ∈ {1, · · · ,m}; we

have set ϑ
(k)
ν (t) := σkν(t) − ϑν(t) for ν = 1, · · · , d , k = 1, · · · ,m .

Suppose now that the claim of the Exercise 5.3 fails, i.e., that Ŝi(·) is a

martingale for some i 6= j. Then the measure P
(i)
T (A) := E [ (Ŝi(T )/si) · 1A ] on

F(T ) is a probability, under which W̃ (i)(t) := W (t)−
∫ t

0
ϑ(i)(s) ds , 0 ≤ t ≤ T

is Rd−valued Brownian motion. By analogy with (14.1)-(14.3) we have now

(
Ŝi(t)

)−1
=

1

si
· exp

(
−

∫ t

0

(ϑ(i)(s))′ dW̃ (i)(s) − 1

2

∫ t

0

||ϑ(i)(s)||2 ds

)
,

and d (Sj(t)/Si(t)) = (Sj(t)/Si(t)) ·
∑d

ν=1(σjν(t) − σiν(t)) dW̃
(i)
ν (t) . Thus,

thanks to condition (1.15), the process Sj(·)/Si(·) is a P
(i)
T −martingale on
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[0, T ], with moments of all orders. In particular,

Sj(0)

Si(0)
= EP

(i)
T

[
Sj(T )

Si(T )

]
= E

[
Z(T )Si(T )

B(T )Si(0)
· Sj(T )

Si(T )

]
,

which contradicts E[Z(T )Sj(T )/B(T )] < Sj(0) and thus the strict local mar-
tingale property of Z(·)Sj(·)/B(·) under P.

Exercise 8.2: Write the second equality in (3.4) with π(·) replaced by π̃[q](·) ,
and recall π̃[q] − µ = q (π − µ) . From the resulting expression, subtract the
second equality in (3.4), now multiplied by q ; the result is

d

dt

(
log

V π̃[q]

(t)

V µ(t)
− q log

V π(t)

V µ(t)

)
= (q − 1) γµ

∗ (t) +
(
γπ̃[q]

∗ (t) − q γπ
∗ (t)

)
.

But from the equalities of Exercise 8.1 and Lemma 3.3, we obtain

2
(
γπ̃ [q]

∗ (t) − q γπ
∗ (t)

)
=

m∑

i=1

(
π̃[q](t) − q πi(t)

)
τµ
ii(t) − τµ

π̃[q]π̃[q](t) + q τµ
ππ(t)

= (1 − q)

m∑

i=1

µi(t)τ
µ
ii(t) + q τµ

ππ(t) − q2 τµ
ππ(t) = (1 − q) [ 2 γµ

∗ (t) + q τµ
ππ(t) ] .

The desired equality now follows.

Exercise 8.3: If we have P
(
V π(T )/V µ(T ) ≤ 1/β

)
= 1 , then we can just take

π̂(·) ≡ π̃ [q](·) with q > 1 + (2/η) · log(1/β) , for then Exercise 8.2 gives

log

(
V π̃ [q]

(T )

V µ(T )

)
≤ q

[
log

(
1

β

)
+

1 − q

2
η

]
< 0 , a.s.

If, on the other hand, P
(
V π(T )/V µ(T ) ≥ β

)
= 1 holds, then similar reasoning

shows that it suffices to take π̂(·) ≡ π̃ [q](·) with q < min
(
0, 1−(2/η)·log(1/β)

)
.

Exercise 11.1: To ease notation somewhat, let us set gi(t) := Di log G(µ(t))
and N(t) := 1−∑m

j=1 µj(t)gj(t) , so (11.1) reads: πi(t) =
(
gi(t) + N(t)

)
µi(t) ,

for i = 1, · · ·m . This way, the terms on the right-hand side of (3.9) become

m∑

i=1

πi(t)

µi(t)
dµi(t) =

m∑

i=1

gi(t) dµi(t) + N(t) · d
(

m∑

i=1

µi(t)

)
=

m∑

i=1

gi(t) dµi(t)

and
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m∑

i=1

m∑

j=1

πi(t)πj(t)τ
µ
ij(t) =

m∑

i=1

m∑

j=1

(
gi(t) + N(t)

)(
gj(t) + N(t)

)
µi(t)µj(t)τ

µ
ij(t)

=

m∑

i=1

m∑

j=1

gi(t) gj(t) · µi(t)µj(t)τ
µ
ij(t) ,

the latter thanks to (2.8) and Lemma 3.1. Thus, (3.9) gives

d

(
log

V π(t)

V µ(t)

)
=

m∑

i=1

gi(t) dµi(t) −
1

2

m∑

i=1

m∑

j=1

gi(t) gj(t) · µi(t)µj(t)τ
µ
ij(t) dt .

(14.4)

On the other hand, D2
ij log G(x) =

(
D2

ijG(x) /G(x)
)
−Di log G(x)Dj log G(x) ,

so we get

d
(
log G(µ(t)

)
=

m∑

i=1

gi(t) dµi(t) +
1

2

m∑

i=1

m∑

j=1

D2
ij log G(µ(t)) · d〈µi, µj〉(t)

=

m∑

i=1

gi(t)dµi(t) +
1

2

m∑

i=1

m∑

j=1

{
D2

ijG

G

(
µ(t)

)
− gi(t)gj(t)

}
µi(t)µj(t)τ

µ
ij(t) dt

by Itô’s rule in conjunction with (2.9). Comparing this last expression with
(14.4) and recalling (11.3), we deduce

d
(
log G(µ(t)

)
= d

(
log

V π(t)

V µ(t)

)
− g(t) dt , that is, (11.2).

Exercise 7.1: For the function Gp(·) of (7.5), we have DiGp(x) =
(
xi /Gp(x)

)p−1

and

DiDjGp(x) = (1 − p)
(
Gp(x)

)1−p
[
(xixj)

p−1 (
Gp(x)

)−p − xp−2
i δij

]
.

This leads from (11.1) to the diversity-weighted portfolio of (7.1), and from
(11.3) to

g(t) =
1 − p

2




m∑

i=1

π
(p)
i (t)τµ

ii(t) −
m∑

i=1

m∑

j=1

π
(p)
i (t)π

(p)
j (t)τµ

ij(t)


 = (1−p) γπ(p)

∗ (t)

via the numéraire-invariance property (3.5).

Exercise 12.6: From (7.6) with p = 1/2 we get

log

(
V π(p)

(T )

V µ(T )

)
= log

(∑m
i=1

√
µi(T )

∑m
i=1

√
µi(0)

)2

+
1

2

∫ T

0

γπ(p)

∗ (t) dt .
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The first term on the right-hand side is bounded from below by − log m . Con-
cerning the second term, we have the excess growth rate computation

m∑

i=1

π
(p)
i (t)

µi(t)
−

m∑

i=1

(π
(p)
i (t))2

µi(t)
=

(∑m
k=1(

√
µ(k)(t) )−1

) (∑m
k=1

√
µ(k)(t)

)
− m

(∑m
k=1

√
µ(k)(t)

)2

for the quantity 2γπ(p)

∗ (t) . Clearly
(∑m

k=1

√
µ(k)(t)

)2 ≤ m , so we obtain

2mγπ(p)

∗ (t) ≥
m∑

k=2

1√
µ(k)(t)

(
k−1∑

ℓ=1

√
µ(ℓ)(t) +

m∑

ℓ=k+1

√
µ(ℓ)(t)

)

≥
m∑

k=2

1√
µ(k)(t)

· (k − 1)
√

µ(k)(t) =
m(m − 1)

2
.

The conclusions follow now easily.

Exercise 12.7: From (12.5) and (12.10) we get limT→∞(1/T ) log µi(T ) = 0
a.s. for every i = 1, · · · ,m (coherence). Here γη

∗ (t) = ((m−1)/(2m2))
∑m

i=1(1/µi(t))
is the excess growth rate of the equally-weighted portfolio, and the master for-
mula (11.2) with G(x) = m

√
x1 · · ·xm gives

log

(
V η(T )

V µ(T )

)
=

1

m

m∑

i=1

log

(
µi(T )

µi(0)

)
+

m − 1

2m2

m∑

i=1

∫ T

0

dt

µi(t)
.

The claim follows now from (12.11).

Exercise 12.8: An easy computation gives 2γπ(t) =
∑m

i=1 πi(t)[ 1 + α −
πi(t) ]/µi(t) for the growth rate of any extended portfolio π(·) in our con-
text. Now, given any (µ1, · · · , µm) ∈ ∆m

++ , it is checked that the expres-
sion

∑m
i=1 πi[ 1 + α − πi ]/µi is maximized at π̂i = (λ/m) + (1 − λ)µi over

(π1, · · · , πm) ∈ ∆m . Therefore, γπ̂(·) ≥ γπ(·) pointwise, for every extended
portfolio π(·) .

As discussed in [KK] (2006), this leads to the numéraire property.
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Figure 1: Cumulative excess growth
∫ ·

0
γµ
∗ (t) dt for the U.S. market during

the period 1926 – 1999; reproduced here from [FK] (2005). The data used for
this chart come from the monthly stock database of the Center for Research in
Securities Prices (CRSP) at the University of Chicago. The market we construct
consists of the stocks traded on the New York Stock Exchange (NYSE), the
American Stock Exchange (AMEX) and the NASDAQ Stock Market, after the
removal of all REITs, all closed-end funds, and those ADRs not included in the
S&P 500 Index. Until 1962, the CRSP data included only NYSE stocks. The
AMEX stocks were included after July 1962, and the NASDAQ stocks were
included at the beginning of 1973. The number of stocks in this market varies
from a few hundred in 1926 to about 7500 in 1999.
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